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Abstract

In this paper, we study the non-asymptotic sample complexity for the pure exploration
problem in contextual bandits and tabular reinforcement learning (RL): identifying an ǫ-optimal
policy from a set of policies Π with high probability. Existing work in bandits has shown that
it is possible to identify the best policy by estimating only the difference between the behaviors
of individual policies– which can be substantially cheaper than estimating the behavior of each
policy directly —yet the best-known complexities in RL fail to take advantage of this, and instead
estimate the behavior of each policy directly. Does it suffice to estimate only the differences
in the behaviors of policies in RL? We answer this question positively for contextual bandits,
but in the negative for tabular RL, showing a separation between contextual bandits and RL.
However, inspired by this, we show that it almost suffices to estimate only the differences in RL:
if we can estimate the behavior of a single reference policy, it suffices to only estimate how any
other policy deviates from this reference policy. We develop an algorithm which instantiates this
principle and obtains, to the best of our knowledge, the tightest known bound on the sample
complexity of tabular RL.

1 Introduction

Online platforms, such as AirBnB, often try to improve their services by A/B testing different
marketing strategies. Based on the inventory, their strategy could include emphasizing local list-
ings versus tourist destinations, providing discounts for longer stays, or de-prioritizing homes that
have low ratings. In order to choose the best strategy, the standard approach would be to apply
each strategy sequentially and measure outcomes. However, recognize that the choice of strategy
(policy) affects the future inventory (state) of the platform. This complex interaction between dif-
ferent strategies makes it difficult to estimate the impact of any strategy, if it were to be applied
independently. To address this, we can model the platform as an Markov Decision Process (MDP)
with an observed state [17, 15] and a finite set of policies Π corresponding to possible strategies.
We wish to collect data by playing exploratory actions which will enable us to estimate the true
value of each policy π ∈ Π, and identify the best policy from Π as quickly as possible.

In addition to A/B testing, similar challenges arise in complex medical trials, learning robot
policies to pack totes, and autonomous navigation in unfamiliar environments. All of these prob-
lems can be formally modeled as the PAC (Probably Approximately Correct) policy identification
problem in reinforcement learning (RL). An algorithm is said to be (ǫ, δ)-PAC if, given a set of
policies Π, it returns a policy π ∈ Π that performs within ǫ of the optimal policy in Π, with proba-
bility 1− δ. The goal is to satisfy this condition whilst minimizing the number of interactions with
the environment (the sample complexity).
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Traditionally, prior work has aimed to obtain minimax or worst-case guarantees for this prob-
lem, which hold across all environments within a problem class. Such worst-case guarantees typ-
ically scale with the “size” of the environment, for example, scaling as O(poly(S,A,H)/ǫ2), for
environments with S states, A actions, horizon H. While guarantees of this form quantify which
classes of problems are efficiently learnable, they fail to characterize the difficulty of particular prob-
lem instances—producing the same complexity on both “easy” and “hard” problems that share the
same “size”. This is not simply a failure of analysis—recent work has shown that algorithms that
achieve the minimax-optimal rate could be very suboptimal on particular problem instances [46].
Motivated by this, a variety of recent work has sought to obtain instance-dependent complexity
measures that capture the hardness of learning each particular problem instance. However, despite
progress in this direction, the question of the optimal instance-dependent complexity has remained
elusive, even in tabular settings.

Towards achieving instance-optimality in RL, the key question is: what aspects of a given
environment must be learned, in order to choose a near-optimal policy? In the simpler bandit
setting, this question has been settled by showing that it is sufficient to learn the differences between
values of actions rather than learning the value of each individual action: it is only important
whether a given action’s value is greater or lesser than that of other actions. This observation
can yield significant improvements in sample efficiency [37, 16, 13, 30]. Precisely, the best-known
complexity measures in the bandit setting scale as:

inf
πexp

max
π∈Π

‖φπ − φ⋆‖2Λ(πexp)−1

∆(π)2
, (1.1)

where φπ is the feature vector of action π, φ⋆ the feature vector of the optimal action, ∆(π) is the
suboptimality of action π. Here, Λ(πexp) are the covariates induced by πexp, our distribution of
exploratory actions. The denominator of this expression measures the performance gap between
action π and the optimal action. The numerator measures the variance of the estimated (from data
collected by πexp) difference in values between (π, π⋆). The max over actions follows because to
choose the best action, we have to rule out every sub-optimal action from the set of candidates Π;
the infimum optimizes over data collection strategies.

In contrast, in RL, instead of estimating the difference between policy values directly, the best
known algorithms simply estimate the value of each individual policy separately and then take the
difference. This obtains instance-dependent complexities which scale as follows [42]:

H∑

h=1

inf
πexp

max
π∈Π

‖φπ
h‖2Λh(πexp)−1 + ‖φ⋆

h‖2Λh(πexp)−1

∆(π)2
(1.2)

where φπ
h is the state-action visitation of policy π at step h. Since now the difference is calculated

after estimation, the variance of the difference is the sum of the individual variances of the estimates
of each policy, captured in the numerator of (1.2). Comparing the numerator of (1.2) to that of
(1.1) begs the question: in RL can we estimate the difference of policies directly to reduce the
sample complexity of RL?

To motivate why this distinction is important, consider the tabular MDP example of Figure 1.
In this example, the agent starts in state s1, takes one of three actions, and then transitions to
one of states s2, s3, s4. Consider the policy set Π = {π1, π2}, where π1 always plays action a1, and
π2 is identical, except plays actions a2 in the red states. If φπi

h ∈ △S×A denotes the state-action
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s1

s2

s3

s4

a1

a2

a3

1− 3ǫ

2ǫ

ǫ1

1

r2(s3, a1) = 1

r2(s4, a2) = 1

Figure 1: A motivating example for differences. The rewards for all actions other than the ones
specified in the figure are 0. Define policy set Π = {π1, π2} so that π1 always plays a1, whereas
π2 plays a1 on green states but a2 on red states. The difference of their state-action visitation
probabilities is only non-zero in states s3, s4 and are just O(ǫ) apart.

visitations of policy πi at time h = 1, 2, then we see that φπ1
1 = φπ2

1 since π1 and π2 agree on the
action in s1. But φ

π1
2 6= φπ2

2 as their actions differ on the red states. Since these red states will be
reached with probability at most 3ǫ, the norm of the difference

‖φπ
2 − φ⋆

2‖2Λ2(πexp)−1 =
∑

s,a

(φπ
2 (s, a)− φ⋆

2(s, a))
2

φ
πexp

2 (s, a)

is significantly less than the sum of the individual norms

‖φπ
2‖2Λ2(πexp)−1 + ‖φ⋆

2‖2Λ2(πexp)−1 =
∑

s,a

φπ
2 (s, a)

2 + φ⋆(s, a)2

φ
πexp

2 (s, a)
.

Intuitively, to minimize differences πexp can explore just states s3, s4 where the policies differ,
whereas minimizing the individual norms requires wasting lots of energy in state s2 where the two
policies and the difference is zero. Formally:

Proposition 1. On the MDP and policy set Π from Figure 1, we have that

inf
πexp

max
π∈Π
‖φπ

2‖2Λ2(πexp)−1 ≥ 1 and inf
πexp

max
π∈Π
‖φ⋆

2 − φπ
2‖2Λ2(πexp)−1 ≤ 15ǫ2.

Proposition 1 shows that indeed, the complexity of the form Equation (1.1) (generalized to
RL) in terms of differences could be significantly tighter than Equation (1.2); in this case, it is a
factor of ǫ2 better. But achieving a sample complexity that depends on the differences requires
more than just a better analysis: it requires a new estimator and an algorithm to exploit it.

Contributions. In this work, we aim to understand whether such a complexity is achievable in
RL. Letting ρΠ denote the generalization of (1.1) to the RL case, our contributions are as follows:

1. In the Tabular RL case, [2] recently showed that ρΠ is a lower bound on the sample complexity
of RL, by characterizing the difficulty of learning the unknown reward function; however, they
did not resolve whether it is achievable when the state-transitions are unknown as well. We
provide a lower bound which demonstrates that O(ρΠ) is not sufficient for learning with state
transitions.
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2. We provide an algorithm Perp, which first learns the behavior a particular reference policy π̄,
and then estimates the difference in behavior between π̄ and every other policy π, rather than
estimating the behavior of each π directly.

3. In the case of tabular RL, we show that Perp obtains a complexity that scales with O(ρΠ),
in addition to an extra term which measures the cost of learning the behavior of the reference
policy π̄. We argue that this additional term is critical to achieving instance-optimal guarantees
in RL, and that Perp leads to improved complexities over existing work.

4. In the contextual bandit setting, we provide an upper bound that scales (up to lower order
terms) as O(ρΠ) for the unknown-context distribution case. This matches the lower bound from
[30] for the known context distribution case, thus showing that ρΠ is necessary and sufficient
in contextual bandits even when the context distribution is unknown. Hence, we observe a
qualitative information-theoretic separation between contextual bandits and RL.

The key insight from our work is that it does not suffice to only learn the differences between policy
values in RL, but it almost suffices to—if we can learn how a single policy behaves, it suffices to
learn the difference between this policy and every other policy.

2 Related Work

The reinforcement learning literature is vast, and here we focus on results in tabular RL and
instance-dependent guarantees in RL.

Minimax Guarantees Tabular RL. Finite-time minimax-style results on policy identification
in tabular MDPs go back to at least the late 90s and early 2000s [24, 26, 25, 8, 21]. This early
work was built upon and refined by a variety of other works over the following decade [38, 4, 34,
39], leading up to works such as [28, 9], which establish sample complexity bounds of O(S2A ·
poly(H)/ǫ2). More recently, [10, 11, 33] have proposed algorithms which achieve the optimal
dependence of O(SA · poly(H)/ǫ2), with [11, 33] also achieving the optimal H dependence. The
question of regret minimization is intimately related to that of policy identification—any low-regret
algorithm can be used to obtain a near-optimal policy via an online-to-batch conversion [19]. Early
examples of low-regret algorithms in tabular MDPs are [3, 4, 5, 48], with more recent works removing
the horizon dependence or achieving the optimal lower-order terms as well [50, 51]. Recently, [6, 7]
provide minimax guarantees in the multi-task RL setting as well.

Instance-Dependence in RL. While the problem of obtaining worst-case optimal guarantees in
tabular RL is nearly closed, we are only beginning to understand what types of instance-dependent
guarantees are possible. In the setting of regret minimization, [35, 14] achieve instance-optimal
regret for tabular RL asymptotically. Simchowitz and Jamieson [36] show that standard optimistic
algorithms achieve regret bounded as O(∑s,a,h

logK
∆h(s,a)

), a result later refined by [47, 12]. In set-
tings of RL with linear function approximation, several works achieve instance-dependent regret
guarantees [18, 44]. Recently, Wagenmaker and Foster [45] achieved finite-time guarantees on
instance-optimal regret in general decision-making settings, a setting encompassing much of RL.

On the policy identification side, early works obtaining instance-dependent guarantees for
tabular MDPs include [49, 20, 31, 32], but they all exhibit shortcomings such as requiring access
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to a generative model or lacking finite-time results. The work of Wagenmaker et al. [46] achieves a
finite-time instance-dependent guarantee for tabular RL, introducing a new notion of complexity,
the gap-visitation complexity. In the special case of deterministic, tabular MDPs, Tirinzoni et al.
[41] show matching finite-time instance-dependent upper and lower bounds. For RL with linear
function approximation, [42, 43] achieve instance-dependent guarantees on policy identification, in
particular, the complexity given in (1.2), and propose an algorithm, Pedel, which directly inspires
our algorithmic approach. On the lower bound side, Al-Marjani et al. [2] show that ρΠ is necessary
for tabular RL, but fail to close the aforementioned gap between ρΠ and (1.2). We will show
instead that this gap is real and both the lower bound of Al-Marjani et al. [2] and upper bound of
Wagenmaker and Jamieson [42] are loose.

Several works on linear and contextual bandits are also relevant. In the seminal work, [37] posed
the best-arm identification problem for linear bandits and beautifully argued—without proof—that
estimating differences were crucial and that (1.1) ought to be the true sample complexity of the
problem. Over time, this conjecture was affirmed and generalized [16, 13, 22]. This improved under-
standing of pure-exploration directly led to instance-dependent optimal linear bandit algorithms for
regret [29, 27]. More recently, contextual bandits have also been given a similar treatment [40, 30].

3 Preliminaries and Problem Setting

Let ‖x‖2Λ = x⊤Λx for any (x,Λ). We let Eπ denote the probability measure induced by playing
policy π in our MDP.

Tabular Markov Decision Processes. We study episodic, finite-horizon, time inhomogenous
and tabular Markov Decision Processes (MDPs), denoted by the tuple (S,A,H, {Ph}Hh=1, {νh}Hh=1)
where the state space S and action space A are finite, H is the horizon, Ph ∈ R

S×SA denote the
transition matrix at stage h where [Ph]s′,sa = P(sh+1 = s′|sh = s, ah = a), and νh(s, a) ∈ △[0,1]

denote the distribution over reward at stage h when the state of the system is s and action a is
chosen. Let rh(s, a) be the expectation of a reward drawn from νh(s, a). We assume that every
episode starts in state s1, and that νh and Ph are initially unknown and must be estimated over
time.

Let π = {πh}Hh=1 denote a policy mapping states to actions, so that πh(s) ∈ △A denotes the
distribution over actions for the policy at (s, h); when the policy is deterministic, πh(s) ∈ A outputs
a single action. An episode begins in state s1, the agent takes action a1 ∼ π1(s1) and receives reward
R1 ∼ ν1(s1, a1) with expectation r1(s1, a1); the environment transitions to state s2 ∼ Ph(s1, a1).
The process repeats until timestep H, at which point the episode ends and the agent returns to
state s1. Let V

π
h (s) = Eπ[

∑H
h′=h rh′(sh′ , ah′)|sh = s], V π

0 the total expected reward, V π
0 := V π

1 (s0),

and Qπ
h(s, a) = Eπ[

∑H
h′=h rh′(sh′ , ah′)|sh = s, ah = a] the amount of reward we expect to collect if

we are in state s at step h, play action a and then play policy π for the remainder of the episode.
Note that we can understand these functions as S and SA-dimensional vectors respectively. We
use V π = V π

0 when clear from context.
We call wπ

h ∈ △S the state visitation vector at step h for policy π, so that wπ
h(s) captures the

probability that policy π would land in state s at step h during an episode. Let πh ∈ R
SA×S denote

the policy matrix for policy π, that maps states to state-actions as follows

[πh](s,a),s′ = I(s = s′)[πh(s)]a.
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Denote φπ
h ∈ △SA as φπ

h := πhw
π
h as the state-action visitation vector : φπ

h(s, a) measures the the
probability that policy π would land in state s and play action a at step h during an episode.
From these definitions, it follows that [Phφ

π
h]s = [Phπhw

π
h ]s = wπ

h+1(s). For policy π, denote the

covariance matrix at timestep h as Λh(π) =
∑

s,a φ
π
h(s, a)e(s,a)e

⊤
(s,a).

(ǫ, δ)-PAC Best Policy Identification. For a collection of policies Π, define π⋆ := argmaxπ∈Π V π

as the optimal policy, V ⋆ its value, and φ⋆
h as its state-action visitation vector. Let ∆min :=

minπ∈Π\{π⋆} V
⋆ − V π in the case when π⋆ is unique, and otherwise ∆min := 0. Define ∆(π) :=

max{V ⋆ − V π,∆min}. Given ǫ ≥ 0, δ ∈ (0, 1) an algorithm is said to be (ǫ, δ)-PAC if at a stopping
time τ of its choosing, it returns a policy π̂ which satisfies ∆(π) ≤ ǫ with probability 1 − δ. Our
goal is to obtain an (ǫ, δ)-PAC algorithm that minimizes τ . A fundamental complexity measure
used throughout this work is defined as

ρΠ :=
H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} for ‖φ⋆
h − φπ

h‖2Λh(π)−1 :=
∑

s,a

(φ⋆
h(s,a)−φπ

h(s,a))
2

φ
πexp
h (s,a)

where the infimum is over all exploration policies πexp (not necessarily just those in Π). Recall that
for ǫ = 0, [2] showed any (ǫ, δ)-PAC algorithm satisfies E[τ ] ≥ ρΠ log( 1

2.4δ ).

4 What is the Sample Complexity of Tabular RL?

In this section, we seek to understand the complexity of tabular RL. We start by showing that ρΠ
is not sufficient. We have the following result.

Lemma 1. For the MDPM and policy set Π from Figure 1,

1.
∑H

h=1 infπexp maxπ∈Π
‖φ⋆

h−φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} ≤ 15,

2. Any (ǫ, δ)-PAC algorithm must collect at least EM[τ ] ≥ 1
ǫ · log 1

2.4δ . samples.

Where does the additional complexity arise on the instance of Figure 1? As described in the
introduction, π1 and π2 differ only on the red states, and a complexity scaling as ρΠ quantifies only
the difficulty of distinguishing {π1, π2} on these states. Note that on this example π1 plays the
optimal action in state s3 and a suboptimal action in state s4, and π2 plays a suboptimal action
in s3 and the optimal action in s4. The total reward of policy π1 is therefore equal to the reward
achieved at state s3 times the probability it reaches state s3, and the total reward of policy π2 is the
reward achieved at state s4 times the probability it reaches state s4. Here, ρΠ would quantify the
difficulty of learning the reward achieved at each state. However, it fails to quantify the probability
of reaching each state, since this depends on the behavior at step 1, not step 2.

Thus, on this example, to determine whether π1 or π2 is optimal, we must pay some additional
complexity to learn the outgoing transitions from the initial state, giving rise to the lower bound in
Lemma 1. Inspecting the lower bound of [2], one realizes that the construction of this lower bound
only quantifies the cost of learning the reward distributions {νh}h and not the state transition
matrices {Ph}h. On examples such as Figure 1, this lower bound then does not quantify the cost
of learning the probability of visiting each state, which we’ve argued is necessary. We therefore
conclude that, while ρΠ may be enough for learning the rewards, it is not sufficient for solving
the full tabular RL problem. Our main algorithm builds on this intuition, and, in addition to
estimating the rewards, aims to estimate where policies visit as efficiently as possible.
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4.1 Main Result

First, for any π, π̄ ∈ Π, we define

U(π, π̄) :=
∑H

h=1Esh∼wπ̄
h
[(Qπ

h(sh, πh(sh))−Qπ
h(sh, π̄h(sh)))

2]. (4.1)

Now, we state our main result.

Theorem 1. There exists an algorithm (Algorithm 1) which, with probability at least 1− 2δ, finds
an ǫ-optimal policy and terminates after collecting at most

H∑

h=1

inf
πexp

max
π∈Π

H4‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} · ιβ2 +max
π∈Π

HU(π, π⋆)

max{ǫ2,∆(π)2} log
H|Π|ι

δ +
Cpoly

max{ǫ 5
3 ,∆

5
3
min}

episodes, for Cpoly := poly(S,A,H, log 1/δ, ι, log |Π|), β := C
√
log(SH|Π|

δ · 1
∆min∨ǫ) and

ι := log 1
∆min∨ǫ .

Theorem 1 shows that, up to terms lower-order in ǫ and ∆min, ρΠ is almost sufficient, if we
are willing to pay for an additional term scaling as U(π, π⋆)/∆(π)2. Recognize the similarity of
this term to the that from the performance difference lemma: if there were no square inside the
expectation, the quantity U(π, π⋆) would be equal to ∆(π). However, the square may change the
scaling in some instances. Below, Lemma 2 shows that there exist settings where the complexity
of Theorem 1 could be significantly tighter than Equation (1.2), the complexity achieved by the
Pedel algorithm of [42]. We revisit the instance from Figure 1 to show this; recall from Lemma 1
that the first term from Theorem 1 is a universal constant for this instance.

Lemma 2. On MDPM and policy set Π from Figure 1, we have:

1. maxπ∈Π
HU(π,π⋆)

max{ǫ2,∆(π)2} = 3H
ǫ ,

2.
∑H

h=1 infπexp maxπ∈Π
‖φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} ≥ H
ǫ2
.

Furthermore, the complexity of Theorem 1 is never worse than Equation (1.2).

Lemma 3. For any MDP instance and policy set Π, we have that

max

{ H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} ,
HU(π, π⋆)

max{ǫ2,∆(π)2}

}
≤

H∑

h=1

inf
πexp

max
π∈Π

‖φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} .

We briefly remark on the lower-order term for Theorem 1,
Cpoly

max{ǫ5/3,∆5/3
min}

. Note that for small ǫ

or ∆min, this term will be dominated by the leading-order terms, which scale with min{ǫ−2,∆−2
min}.

While we make no claims on the tightness of this term, we note that recent work has shown that
some lower-order terms are necessary for achieving instance-optimality [45].

4.2 The Main Algorithmic Insight: The Reduced-Variance Difference Estima-

tor

In this section, we describe how we can estimate the difference between the values of policies directly,
and provide intuition for why this results in the two main terms in Theorem 1. Fix any reference
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policy π̄ and logging policy µ (neither are necessarily in Π). Here µ can be thought of as playing the
role of πexp. Or, we can consider the A/B testing scenario from the introduction, where a policy µ
is taking random actions and one wishes to perform off-policy estimation over some set of policies
Π [17, 15]. For any s ∈ S, we define

δπh(s) := wπ
h(s)− wπ̄

h(s)

as the difference in state-visitations of policy π from reference policy π̄, and δπh ∈ R
S as the

vectorization of δπh(s
′).

Policy selection rule. First, we describe our procedure of data collection and estimation. We
collect Kπ̄ trajectories from π̄ and Kµ trajectories from µ, and let {ŵπ̄

h(s)}s,h denote the empirical
state visitations from playing π̄. From the data collected by playing µ, we construct estimates
{P̂h(s

′|s, a)}s,a,s′,h of the transition matrices. Note that ŵπ̄
h(s) simply counts visitations, so that

E[(ŵπ̄
h(s)− wπ̄

h(s))
2] ≤ wπ̄

h(s)
Kπ̄

for all h, s. Define estimated state visitations for policy π in terms of

deviations from π̄ as ŵπ
h := ŵπ̄

h + δ̂πh . Here, δ̂
π
h is defined recursively as:

δ̂πh+1 := P̂hπhδ̂
π
h + P̂h(πh − π̄h)ŵ

π̄
h

Then, assuming, for simplicity, that rewards are known, we recommend the following policy:

π̂ = argmax
π∈Π

D̂π where D̂π :=
∑H

h=1〈rh,πhδ̂
π
h〉 − 〈rh, (π̄h − πh)ŵ

π̄
h〉

Sufficient condition for ǫ-optimality. Here, we show that if

∀π ∈ Π, |D̂π −Dπ| ≤ 1

3
max{ǫ,∆(π)} (4.2)

then π̂ is ǫ-optimal. First, write the difference between values of policies π and π̄ as:

Dπ := V π
0 − V π̄

0 =
∑H

h=1〈rh,πhw
π
h〉 −

∑H
h=1〈rh, π̄hw

π̄
h〉

=
∑H

h=1〈rh,πhδ
π
h〉 − 〈rh, (π̄h − πh)w

π̄
h〉.

(4.3)

Then, it is easy to verify that if |D̂π −Dπ| ≤ 1/3 ∆(π), then D̂π⋆ − D̂π ≥ 0; hence, π̂ 6= π. Hence,
under Condition (4.2), either π̂ = π⋆ or or |D̂π −Dπ| ≤ ǫ. In the first case, clearly π̂ is ǫ-optimal.
In the second case, we can add and subtract terms to write

V ⋆ − V π̂ ≤ |Dπ⋆ − D̂π⋆ |+ D̂π⋆ − D̂π̂ + |D̂π̂ −Dπ̂| ≤ 2ǫ

3
+ D̂π⋆ − D̂π̂ ≤ 2ǫ

3
.

The last inequality follows since π̂ maximizes D̂π. Hence, π̂ would be ǫ-optimal in this case as well.

Sample complexity. Now, we characterize how many samples must be collected from µ and π̄ in
order to meet Condition (4.2). After dropping some lower-order terms and unrolling the recursion
(see Section A for details), we observe that

δ̂πh+1 − δπh+1 ≈ (P̂h − Ph)(φ
π
h − φπ̄

h) + Ph(πh − π̄h)(ŵ
π̄
h −wπ̄

h) + Phπh(δ̂
π
h − δπh)

=
∑h

k=0

(∏h
j=k+1 Pjπj

)(
(P̂k − Pk)(φ

π
k − φπ̄

k) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k )
)
.
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After manipulating this expression a bit more, we observe that

H∑

h=1

〈rh,πh(δ̂
π
h − δπh)〉 =

H−1∑

k=0

〈V π
k+1, (P̂k − Pk)(φ

π
k − φπ̄

k) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k )〉

Recognizing Qπ
h = rh + P⊤

h V π
h+1,

|D̂π −Dπ| =
∣∣∣∣∣

H∑

h=1

〈rh,πh(δ̂
π
h − δπh)〉+ 〈rh, (πh − π̄h)(ŵ

π̄
h − wπ̄

h)〉
∣∣∣∣∣

=

∣∣∣∣∣

H−1∑

h=0

〈V π
h+1, (P̂h − Ph)(φ

π
h − φπ̄

h)〉+ 〈rh + P⊤
h V π

h+1, (πh − π̄h)(ŵ
π̄
h − wπ̄

h)〉
∣∣∣∣∣

We can bound this as:

.

√√√√H2

H−1∑

h=0

∑

s,a

(φπ
h(s, a)− φπ̄

h(s, a))
2

Kµµh(s, a)
+

√√√√
H−1∑

h=0

∑

s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)2wπ̄
h(s)

Kπ̄

=

√√√√H2

H−1∑

h=0

‖φπ
h − φπ̄

h‖2Λh(µ)−1

Kµ
+

√
U(π, π̄)

Kπ̄
.

Here, we applied Bernstein’s inequality and observed that
∑

s′ V
π
h+1(s

′)2Ph(s
′|s, a) ≤ H2. Now, we

have that if

Kµ & max
π∈Π

H−1∑

h=0

H2‖φπ
h − φπ̄

h‖2Λh(µ)−1

max{ǫ2,∆(π)2} and Kπ̄ & max
π∈Π

U(π, π̄)

max{ǫ2,∆(π)2} (4.4)

then Condition (4.2) holds. Notice that up to H and log(·) factors, this is precisely the sample
complexity of Theorem 1 if we set π̄ = π⋆ and minimize over all logging/exploration policies
µ/πexp. Note that, if V̄ denotes the average reward collected from rolling out π̄ Kπ̄ times, then

|V̄ − V π̄
0 | ≤

√
H2

Kπ̄
by Hoeffding’s inequality. Thus, one could use V̂ π = D̂π + V̄ as an effective

off-policy estimator. Likewise, D̂π − D̂π′

is an effective estimator for V π
0 − V π′

0 .
This calculation (elaborated on in Appendix A) suggests that our analysis is tight, and clearly

illustrates that the U(π, π̄) term arises due to estimating the behavior of the reference policy wπ̄
h .

Additionally, note that: if we had offline data from some policy π̄, that had been played for a long
time, so that Kπ̄ ≈ ∞, then we would only incur the Kµ term; this is precisely ρΠ, but with π⋆

replaced with our reference policy π̄ in the numerator.

5 Achieving Theorem 1: Perp Algorithm

While the above section provides intuition for where the terms in Theorem 1 come from, it
does not lead to a practical algorithm. This is because the desired number of samples in Equa-
tion (4.4) are in terms of unknown quantities: {‖φπ

h −φπ̄
h‖2Λh(µ)−1 ,∆(π), U(π, π̄)}, which depend on

9



Algorithm 1 Perp: Policy Elimination with Reference Policy (informal)

Require: tolerance ǫ, confidence δ, policies Π
1: Π1 ← Π, P̂0 ← arbitrary transition matrix
2: for ℓ = 1, 2, 3, . . . , ⌈log2 16

ǫ ⌉ do
3: Set ǫℓ ← 2−ℓ

4: // Compute new reference policy

5: Compute Ûℓ−1,h(π, π
′) as in (5.1) for all (π, π′) ∈ Πℓ

6: Choose π̄ℓ ← minπ̄∈Πℓ
maxπ∈Πℓ

∑H
h=1 Ûℓ−1,h(π, π̄)

7: Collect the following number of episodes from π̄ℓ and store in dataset Dref
ℓ

n̄ℓ = O
(
max
π∈Πℓ

c · HÛℓ−1(π,π̄ℓ)

ǫ2ℓ
· log Hℓ2|Πℓ|

δ

)

8: Compute {ŵπ̄
ℓ,h(s)}Hh=1 using empirical state visitation frequencies in D

ref
ℓ

9: // Estimate Policy Differences

10: Initialize δ̂π1 ← 0
11: for h = 1, . . . ,H do
12: Run OptCov (Algorithm 3) to collect dataset DED

ℓ,h such that:

sup
π∈Πℓ

‖(πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h‖2Λ−1

ℓ,h

≤ ǫ2ℓ/H
4β2

ℓ for Λℓ,h =
∑

(s,a)∈DED
ℓ,h

esae
⊤
sa

and βℓ ← O(
√

log SHℓ2|Πℓ|/δ)
13: Use D

ED
ℓ,h to compute P̂ℓ,h(s

′|s, a) and r̂ℓ,h

14: Compute δ̂πℓ,h+1 ← P̂ℓ,h(πh − π̄ℓ,h)ŵ
π̄
ℓ,h + P̂ℓ,hπhδ̂

π
ℓ,h)

15: end for
16: // Eliminate suboptimal policies

17: Compute D̂π̄ℓ
(π)←∑

h〈r̂ℓ,h,πhδ̂ℓ,h〉+
∑

h〈r̂ℓ,h, (πh − π̄ℓ,h)ŵ
π̄
ℓ,h〉

18: Update Πℓ+1 = Πℓ\{π ∈ Πℓ : maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) > 8ǫℓ }
19: if |Πℓ+1| = 1 then return π ∈ Πℓ+1

20: end for
21: return any π ∈ Πℓ+1

10



our unknown environment variables νh, Ph; hence, we would not know how many samples to collect.
In this section, we propose an algorithm that will proceed in rounds, successively improving our
estimates of these quantities. Define

Ûℓ,h(π, π
′) := Êπ′,ℓ[(Q̂

π
ℓ,h(sh, πh(s))− Q̂π

ℓ,h(sh, π
′
h(s)))

2], (5.1)

where Êπ′,ℓ denotes the expectation induced playing policy π′ on the MDP with transitions P̂ℓ,h, and

Q̂π
ℓ,h denotes the Q-function of policy π on this same MDP. To compute P̂ℓ,h, we use the standard

estimator: P̂ℓ,h(s
′ | s, a) = Nℓ,h(s,a,s

′)
Nℓ,h(s,a)

for Nℓ,h(s, a) and Nℓ,h(s, a, s
′) the visitation counts in D

ED
ℓ,h .

We set P̂ℓ,h(s
′ | s, a) = unif(S) if Nℓ,h(s, a) = 0. The analogous estimator is used to estimate r̂ℓ,h.

The quantity φπ
h − φπ̄

h is estimated as in the previous section: (πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h.

Algorithm 1 proceeds in epochs. It begins with a policy set Π1, which contains all policies
of interest, Π. It then gradually begins to refine this policy set, seeking to estimate the difference
in values between policies in the set up to tolerance ǫℓ = 2−ℓ. To achieve this, it instantiates
the intuition above. First, it chooses a reference policy π̄ℓ, then running this estimate a sufficient
number of times to estimate wπ̄ℓ

h . Given this estimate, it then seeks to estimate δπh for each π in

the active set of policies, Πℓ, by collecting data covering the directions (πh − π̄ℓ,h)ŵ
π̄
ℓ,h +πhδ̂

π
ℓ,h for

all π ∈ Πℓ. To efficiently collect this covering data, on line 12, we run a data collection procedure
first developed in [42]. Finally, after estimating each δπh , it estimates the differences between policy
values as in (4.3), and eliminates suboptimal policies. We omit several technical details from
Algorithm 1 for simplicity, but present the full definition in Algorithm 2.

6 When is ρΠ Sufficient?

Our results so far show that ρΠ is not in general sufficient for tabular RL. In this section, we
consider several special cases where it is sufficient.

Tabular Contextual Bandits. The tabular contextual bandit setting is the special case of
the RL setting with H = 1 and where the initial action does not affect the next-state transition.
Theorem 2.2 of Li et al. [30] show that if the rewards distributions ν(s, a) are Gaussian for each
(s, a), where here s denotes the context, any (0, δ)-PAC algorithm requires at least ρΠ samples.
Crucially, however, they assume that the context distribution—in this case corresponding to the
initial transition P1—is known. Their algorithm makes explicit use of this fact, using this to
estimate the value of φπ. The following result shows that knowing the context distribution is not
critical—we can achieve a complexity of O(ρΠ) without this prior knowledge.

Corollary 1. For the setting of tabular contextual bandits, there exists an algorithm such that with
probability at least 1 − 2δ, as long as Π contains only deterministic policies, it finds an ǫ-optimal
policy and terminates after collecting at most the following number of samples:

inf
πexp

max
π∈Π

‖φ⋆ − φπ‖2Λ(πexp)−1

max{ǫ2,∆(π)2} · β
2 log

1

∆min ∨ ǫ
+

Cpoly

max{ǫ5/3,∆5/3
min}

,

for Cpoly = poly(|S|, A, log 1/δ, log 1/(∆min ∨ ǫ), log |Π|) and β = C
√

log(S|Π|
δ · 1

∆min∨ǫ).
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The theorem is proved in Appendix D, and follows from the application of our algorithm Perp

to the contextual bandit problem. The key intuition behind this result is that, in the contextual
case:

U(π, π̄) = Es∼P1[(r1(s, π1(s))− r1(s, π̄1(s))
2] ≤ Es∼P1[I{π1(s) 6= π̄1(s)}].

It is then possible to show that, since πexp only has choices of which actions are taken (and cannot
affect the context distribution), this can be further bounded by infπexp ‖φπ−φπ̄‖2Λ(πexp)−1 . This is not

true in the full MDP case, where our choice of exploration policy in πexp could make infπexp ‖φπ −
φπ̄‖2Λ(πexp)−1 significantly smaller than U(π, π̄) (as is the case in Lemma 2). Hence, we observe

that the cost of learning the contexts is dominated by that of learning the rewards in the case of
contextual bandits. This is the opposite of tabular RL, where our complexity from Theorem 1 is
unchanged (as seen in Section 4.2) even if we knew the reward distribution. This shows that there
is a distinct separation between instance-optimal learning in tabular RL vs contextual bandits.

MDPs with Action-Independent Transitions. In the special case of MDPs where the tran-
sitions do not depend on the actions selected, the complexity simplifies to O(ρΠ). Note that this
exactly matches (up to lower order terms) the lower bound from [2].

Corollary 2. Assume that all Ph are such that Ph(s
′|s, a) = Ph(s

′|s, a′) for all (a, a′) ∈ A. Then,
with probability at least 1− 2δ, Perp (Algorithm 2) finds an ǫ-optimal policy and terminates after
collecting at most the following number of episodes:

H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} · ιH4β2 +
Cpoly

max{ǫ5/3,∆5/3
min}

for Cpoly, β as defined in Theorem 1.

The intuition for Corollary 2 is similar to that of Corollary 1, and proved in Appendix E.

7 Discussion

In this paper, we performed a fine-grained study of the instance-dependent complexity of tabular
RL. We proposed a new off-policy estimator that estimates the value relative to a reference policy.
We leveraged this insight to close the instance-dependent contextual bandits problem and obtained
the tightest known upper bound for tabular MDPs.
Limitations and Future work One limitation of the present work is that Perp, in it’s current
form, would be too computationally expensive to run for most practical applications; enumerating
the policy set Π is often intractable, but works in contextual bandits have avoided this issue by
only relying on argmax oracles over this set [1, 30]; an interesting direction of future work would
be to extend this technique to tabular RL. Extending the results from this paper to obtain refined
instance-dependent bounds for linear MDPs and general function approximation is an exciting
direction as well.

The new estimator and its improved sample complexity raise additional theoretical questions.
Our upper bound has unfortunate low order terms; can these be removed? Can one show that

U(π,π̄)
max{∆(π)2,ǫ2} is unavoidable for all MDPs in general, thereby matching our upper bound? As

discussed above, a few works have proven gap-dependent regret upper bounds, but we are unaware
of any matching lower bounds besides over restricted classes of MDPs; can our estimator involving
the differences result in even tighter instance-dependent regret bounds for MDPs?
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Notation Description

S State space
A Action space
H Horizon
Ph Transition matrix at stage h
νh Distribution over reward at stage h
rh(s, a) Expected reward at stage h for state s and action a
π Policy
Π Set of candidate policies
πh(s) Distribution over actions for policy π at state s and stage h
wπ
h State visitation vector at step h for policy π

πh Policy matrix for policy π at step h
φπ
h State-action visitation vector for policy π at step h

Λh(π) Expected covariance matrix at timestep h for policy π
Qπ

h(s, a) Q-value function for policy π at state s, action a, and step h
V π
h (s) Value function for policy π at state s and step h

V π Value of policy π
π⋆ Optimal policy within Π
∆(π) Suboptimality of policy π
W ⋆

h (s) Maximum probability of reaching state s at step h over all policies
C Context space (for contextual bandits)
µ⋆ Context distribution (for contextual bandits)
θ⋆ Reward parameters (for contextual bandits)
ρΠ Complexity measure based on feature differences
π̄ℓ Reference policy
δπh Difference in state visitation between policy π and reference policy at step h
Dπ̄ℓ

(π) Difference in value between policy π and reference policy
Uh(π, π

′) Expected squared difference in Q-values between policies π and π′ at step h

Skeepℓ Set of reachable states at epoch ℓ
ǫℓunif Minimum reachability threshold at epoch ℓ
ǫℓexp Tolerance for experiment design at epoch ℓ

βℓ Confidence parameter at epoch ℓ
nℓ,K

ℓ
unif Number of samples and minimum exploration at epoch ℓ

D
ED
ℓ,h Dataset collected during exploration in PERP

D
ref
ℓ Dataset collected from reference policy

Table 1: Table of notation used in the paper
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A Understanding the origins of U(π, π̄)

This section is inspired by the exposition of Soare et al. [37] for justifying the sample complexity
of linear bandits. Fix a reference policy π̄ and some (stochastic) logging policy µ. For K ∈ N

to be determined later, roll out π̄ K times and compute the empirical state visitations ŵπ̄
h(s) =

1
K

∑K
k=1

∑
s,h 1{skh = s}. Also roll out µ K times and compute the empirical transition probabilities

P̂h(s
′|s, a) =

∑K
k=1 1{(skh,akh,skh+1)=(s,a,s′)}
∑K

k=1 1{(skh,akh)=(s,a)} . For any π 6= π̄, use {P̂h(s
′|s, a)}s,a,s′,h to compute ŵπ

h(s).

With δπh+1 := wπ
h+1 − wπ̄

h+1 = Phπhw
π
h − Phπ̄hw

π̄
h = Phπhδ

π
h + Ph(πh − π̄h)w

π̄
h set

D(π) = V π
0 − V π̄

0 =

H∑

h=1

〈rh,πhw
π
h − π̄hw

π̄
h〉 =

H∑

h=1

〈rh,πhδ
π
h〉+ 〈rh, (πh − π̄h)w

π̄
h〉

and also define the empirical counterparts δ̂πh+1 := P̂hπhδ̂
π
h + P̂h(πh − π̄h)ŵ

π̄
h with

D̂(π) =

H∑

h=1

〈rh,πhδ̂
π
h〉+ 〈rh, (πh − π̄h)ŵ

π̄
h〉.

If π̂ = argmaxπ∈Π D̂(π), how large must K be to ensure that π̂ = π⋆ := argmaxπ∈ΠD(π) =
argmaxπ∈Π V π

0 ?

Assume at time h = 0 all policies are initialized arbitrarily in some state s0 so that P̂0(s
′|s0, a)

simply defines the initial empirical state distribution at time h = 1. Let ŵπ
0 (s0) = wπ

0 (s0) = 1 We
can then unroll the recursion for h = 0, . . . ,H − 1

δ̂πh+1 − δπh+1 = P̂hπhδ̂
π
h + P̂h(πh − π̄h)ŵ

π̄
h − δπh+1

= (P̂h − Ph)πhδ
π
h + (P̂h − Ph)(πh − π̄h)w

π̄
h + Ph(πh − π̄h)(ŵ

π̄
h − wπ̄

h) + Phπh(δ̂
π
h − δπh)

+ (P̂h − Ph)πh(δ̂
π
h − δπh) + (P̂h − Ph)(πh − π̄h)(ŵ

π̄
h − wπ̄

h)︸ ︷︷ ︸
Low order terms ≈ 0

≈ (P̂h − Ph)(φ
π
k − φπ̄

k) + Ph(πh − π̄h)(ŵ
π̄
h − wπ̄

h) + Phπh(δ̂
π
h − δπh)

≈
h∑

i=0

( h∏

j=h−i+1

Pjπj

)(
(P̂h−i − Ph−i)(φ

π
h−i − φπ̄

h−i) + Ph−i(πh−i − π̄h−i)(ŵ
π̄
h−i − wπ̄

h−i)
)

=

h∑

k=0

( h∏

j=k+1

Pjπj

)(
(P̂k − Pk)(φ

π
k − φπ̄

k) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k )
)

where we recall φπ
k = πkw

π
k . If ǫk+1 := (P̂k − Pk)(πhw

π
k − π̄wπ̄

k ) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k ) then

H∑

h=1

〈rh,πh(δ̂
π
h − δπh)〉 =

H∑

h=1

h−1∑

k=0

〈rh,πh

( h−1∏

j=k+1

Pjπj

)
ǫk+1〉

=

H−1∑

k=0

H∑

h=k+1

〈rh,πh

( h−1∏

j=k+1

Pjπj

)
ǫk+1〉 =

H−1∑

k=0

〈V π
k+1, ǫk+1〉

=

H−1∑

k=0

〈V π
k+1, (P̂k − Pk)(φ

π
k − φπ̄

k ) + Pk(πk − π̄k)(ŵ
π̄
k −wπ̄

k )〉.
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Finally, we use these calculations to compute the deviation

D̂(π)−D(π) =

H∑

h=1

〈rh,πh(δ̂
π
h − δπh)〉+ 〈rh, (πh − π̄h)(ŵ

π̄
h −wπ̄

h)〉

=
H−1∑

h=0

〈V π
h+1, (P̂h − Ph)(φ

π
h − φπ̄

h)〉+ 〈rh + P⊤
h V π

h+1, (πh − π̄h)(ŵ
π̄
h − wπ̄

h)〉

=

H−1∑

h=0

〈V π
h+1, (P̂h − Ph)(φ

π
h − φπ̄

h)〉+ 〈Qπ
h, (πh − π̄h)(ŵ

π̄
h − wπ̄

h)〉

=

H−1∑

h=0

∑

s,a,s′

V π
h+1(s

′)(P̂h(s
′|s, a)− Ph(s

′|s, a))(φπ
h(s, a)− φπ̄

h(s, a))

+

H−1∑

h=0

∑

s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)
(ŵπ̄

h(s)− wπ̄
h(s))

.

√√√√
H−1∑

h=0

∑

s,a,s′

V π
h+1(s

′)2
Ph(s′|s, a)
Kµh(s, a)

(φπ
h(s, a)− φπ̄

h(s, a))
2

+

√√√√
H−1∑

h=0

∑

s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)2wπ̄
h(s)

K
.

Applying
∑

s′ V
π
h+1(s

′)2Ph(s
′|s, a) ≤ H2, we observe that if

K ≥ min
µ,π̄

max
π

H2
H−1∑

h=1

∑
s,a(φ

π
h(s, a)− φπ̄

h(s, a))
2/µh(s, a)

∆(π)2

+

H−1∑

h=1

∑
s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)2
wπ̄
h(s)

∆(π)2

and we employ the minimizers µ, π̄ to collect data, then D̂(π)−D(π) < ∆(π) and π̂ = argmaxπ∈Π D̂(π) =
argmaxπ∈ΠD(π). Notice that up to H and log factors, this is precisely the sample complexity of
our algorithm. A natural candidate for π̄ is π⋆ so that the first term matches the lower bound of
[2].

On the other hand, suppose we used the data from the logging policy µ to compute the
empirical state visitations ŵπ

h for all π ∈ Π and set π̂ = argmaxπ∈Π
∑H

h=1〈rh,πŵπ
h〉 =: V̂ π

0 . Using
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s1

s2

s3

s4

a1

a2

a3

1− 3ǫ

ǫ1

ǫ21

1

r1(s1, a1) = 1

r2(s3, a1) = 1

r2(s4, a2) = 1

Figure 2: A motivating example for differences. All rewards other than the ones specified in the
figure are 0.

the same techniques as above, it is straightforward to show that if

ŵπ
h+1 −wπ

h+1 = P̂hπhŵ
π
h − Phπhw

π
h

= (P̂h − Ph + Ph)πh(ŵ
π
h − wπ

h + wπ
h)− Phπhw

π
h

= (P̂h − Ph)πhw
π
h + Phπh(ŵ

π
h − wπ

h) + (P̂h − Ph)πh(ŵ
π
h − wπ

h)︸ ︷︷ ︸
Low order terms ≈ 0

≈
h∑

i=0

( h∏

j=h−i+1

Pjπj

)
(P̂h−i − Ph−i)πh−iw

π
h−i

=

h∑

k=0

( h∏

j=k+1

Pjπj

)
(P̂k − Pk)πkw

π
k

and we employ the minimizer µ to collect data, then V̂ π
0 − V π

0 ≤ ∆(π) and π̂ = argmaxπ∈Π V̂ π
0 =

argmaxπ∈Π V π
0 .

B Tabular MDPs: Comparison with Prior Work and Lower Bounds

Illustrative Family of MDP Instances Recall the family of MDP instances in the introduction
(visualized in Figure 2 for ease of reference). The family of MDPs is parameterized by ǫ, ǫ1, ǫ2 > 0,
with H = 2, S = {s1, s2, s3, s4}, and A = {a1, a2, a3}, which start in state s0 and are defined as:

P1(s2 | s1, a1) = 1− 3ǫ, P1(s3 | s1, a1) = ǫ1, P1(s4 | s1, a1) = ǫ2

P1(s3 | s1, a2) = P1(s4 | s1, a3) = 1.

We define the reward function so that all rewards are 0 except r1(s1, a1) = r2(s3, a1) = r2(s4, a2) = 1
for all a.

LetM denote the MDP above with ǫ1 = 2ǫ, ǫ2 = ǫ, andM′ the MDP above with ǫ1 = ǫ, ǫ2 = 2ǫ.
Let Π = {π1, π2} denote some set of policies. Let π1 denote the policy which always plays a1,

and π2 the policy which plays a1 at green states and a2 at red states i.e π2(s1) = π2(s2) = a1 and
π2(s3) = π2(s4) = a2.

Now note that V M,π1
0 = 1 + 2ǫ, V M,π2

0 = 1 + ǫ, V M′,π1
0 = 1 + ǫ, and V M′,π2

0 = 1 + 2ǫ.
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B.1 Comparison with complexities from prior work

The lemma below shows that the upper bound presented in Theorem 1 is smaller than that of
Pedel from Theorem 1 of [42] for all MDP instances.

Lemma 4. For any MDP instance and policy set Π, we have that

1. infπexp maxπ∈Π
‖φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}
≥ 1

max{ǫ2,∆(π)2,∆2
min}

2.

H4
H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

≤ 4H4
H∑

h=1

inf
πexp

max
π∈Π

‖φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

3. HU(π,π⋆)
max{ǫ2,∆(π)2,∆2

min}
≤ H4

∑H
h=1 infπexp maxπ∈Π

‖φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

Proof. Proof of Claim 1. Note that

‖φπ
h‖2Λh(πexp)−1 =

∑

s,a

φπ
h(s, a)

2

φ
πexp

h (s, a)
≥ inf

λ∈∆SA

∑

s,a

φπ
h(s, a)

2

λs,a

In order to solve this optimization problem, we can consider the KKT conditions. We can verify

from stationarity that at optimality, λs,a =
φπ
h(s,a)√

β
for some constant β > 0. But since λs,a must

live in the simplex ∆SA, and since φπ
h(s, a) is itself a distribution over S ×A, it follows that β = 1

must be true. Plugging this optimal value into the above, we obtain that

‖φπ
h‖2Λh(πexp)−1 ≥ inf

λ∈∆SA

∑

s,a

φπ
h(s, a)

2

λs,a
= 1

Then,

inf
πexp

max
π∈Π

‖φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

≥ 1

max{ǫ2,∆(π)2,∆2
min}

directly follows from the above.

Proof of Claim 2. From the triangle inequality,

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

≤ 2 inf
πexp

max
π∈Π

( ‖φ⋆
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

+
‖φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

)

≤ 2 inf
πexp

max
π∈Π

( ‖φ⋆
h‖2Λh(πexp)−1

max{ǫ2,∆(π⋆)2,∆2
min}

+
‖φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

)

≤ 4 inf
πexp

max
π∈Π

‖φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

where we have used that ∆(π) ≥ ∆(π⋆) for all π. Plugging this bound into the expression from (2)
from the Lemma statement completes the proof.
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Proof of Claim 3. We have that

HU(π, π⋆) = H

H∑

h=1

Esh∼wπ⋆
h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2] ≤ H

H∑

h=1

H2 ≤ H4

Then,

HU(π, π⋆)

max{ǫ2,∆(π)2,∆2
min}

≤ H4

max{ǫ2,∆(π)2,∆2
min}

≤ H4
H∑

h=1

inf
πexp

max
π∈Π

‖φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

Where the final inequality follows from Claim 1 above.

The lemma below shows that there are some instances where the complexity from Theorem 1
is strictly smaller in terms of ǫ dependence than that from Theorem 1 from [42] for Pedel.

Lemma 5. On MDPM defined above, we have:

1.
∑H

h=1 infπexp maxπ∈Π
‖φ⋆

h−φπ
h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}
≤ 15

2. maxπ∈Π
HU(π,π⋆)

max{ǫ2,∆(π)2,∆2
min}

= 3H
ǫ

3.
∑H

h=1 infπexp maxπ∈Π
‖φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}
≥ H

ǫ2

Proof. Proof of 1. In this case we have that π∗ = π1, and the only other π of interest is π2. Note
that π1 and π2 differ only at state s3 and s4 at h = 2. Let πexp be the policy that plays actions
uniformly at random. Then, we have

H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

≤ inf
πexp

‖φπ1
2 − φπ2

2 ‖2Λh(πexp)−1

ǫ2

=
1

ǫ2

(
wπ1
2 (s3)

2

w
πexp

2 (s3)
+

wπ1
2 (s4)

2

w
πexp

2 (s4)

)

≤ 1

ǫ2

(
4ǫ2

1/3
+

ǫ2

1/3

)

= 15.

Proof of 2. Note that

max
π∈Π

HU(π, π⋆)

max{ǫ2,∆(π)2,∆2
min}

=
HU(π2, π1)

ǫ2
.
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Then,

U(π2, π1) =
H∑

h=1

Es∼w
π1
h
[(Qπ1

h (s, π1,h(s))−Qπ1
h (s, π2,h(s)))

2]

= Es∼w
π1
2
[(Qπ1

2 (s, π1,2(s))−Qπ1
2 (s, π2,2(s)))

2]

= 2ǫ+ ǫ = 3ǫ.

Combining these proves the result.

Proof of 3. By Claim 1 in Lemma 4, the stated result then follows by recognizing that max{ǫ2,∆(π)2,∆2
min} ≤

ǫ2.

B.2 Lower bound

Lemma 6. On MDPM defined above, any (ǫ, δ)-PAC algorithm must collect

E
M[τ ] ≥ 1

ǫ
· log 1

2.4δ
.

samples.

Proof. Consider Π,M, and M′ defined above. Let E denote the event {π̂ = π1}. By the above
observations, we have that π1 is ǫ-optimal on M while π2 is not, and that π2 is ǫ-optimal on M′

while π1 is not. Then by the definition of an (ǫ, δ)-PAC algorithm, PM[E ] ≥ 1− δ and P
M′

[E ] ≤ δ.
Let γh(s, a) denote the distribution of (rh, sh+1) given (s, a, h) onM, and γ′h(s, a) is the same

on M′. Then, letting νh ← γh, ν
′
h ← γ′h and otherwise adopting the same notation as in Lemma

F.1 of [46], we have from Lemma F.1 of [46] that:
∑

s,a,h

E
M[N τ

h (s, a)]KL(γh(s, a), γ
′
h(s, a)) ≥ sup

E ′∈Fτ

d(PM[E ′],PM′

[E ′])

≥ d(PM[E ],PM′

[E ])

≥ log
1

2.4δ

where the last inequality follows from [23].
Note thatM andM′ differ only at (s1, a1), so

∑

s,a,h

E
M[N τ

h (s, a)]KL(γh(s, a), γ
′
h(s, a)) = E

M[N τ
1 (s1, a1)]KL(γ1(s1, a1), γ

′
1(s1, a1)).

Furthermore, we see that

KL(γ1(s1, a1), γ
′
1(s1, a1)) = 2ǫ log

2ǫ

ǫ
+ ǫ log

ǫ

2ǫ
≤ ǫ.

So it follows that we must have

E
M[N τ

1 (s1, a1)] ≥
1

ǫ
· log 1

2.4δ
.

Noting that EM[N τ
1 (s1, a1)] ≤ E

M[τ ] completes the proof.
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C Tabular MDP Upper Bound

Algorithm 2 PERP: Policy Elimination with Reference Policy

Require: tolerance ǫ, confidence δ, policies Π
1: Π1 ← Π, P̂0 ← arbitrary transition matrix
2: for ℓ = 1, 2, 3, . . . , ⌈log2 16

ǫ ⌉ do
3: Set ǫℓ ← 2−ℓ, ǫℓunif ← ǫℓ

64S3/2H2 , K
ℓ
unif ←

ǫ
−2/3
ℓ

ǫℓunif

4: Skeepℓ = Prune(ǫℓunif , δ/3ℓ
2) (Algorithm 5) // Prune states that are hard to reach

5: Use {P̂ℓ−1,h}Hh=1 to compute Ûℓ−1,h(π, π
′) for all (π, π′) ∈ Πℓ // Compute new reference policy

6: Choose π̄ℓ ← minπ̄∈Πℓ
maxπ∈Πℓ

∑H
h=1 Ûℓ−1,h(π, π̄)

7: Collect the following number of episodes from π̄ℓ and store in dataset Dref
ℓ

n̄ℓ = max
π∈Πℓ

c · HÛℓ−1(π, π̄ℓ) +H4S3/2
√
A log SAHℓ2

δ · ǫ1/3ℓ + S2H4ǫℓunif
ǫ2ℓ

· log 60Hℓ2|Πℓ|
δ

8: Compute {ŵπ̄
ℓ,h(s)}Hh=1 using empirical state visitation frequencies in D

ref
ℓ

9: Initialize δ̂π1 ← 0 // Exploration via experiment design

10: for h = 1, . . . ,H do
11: Define Mℓ,h ∈ R

SA×SA as Mℓ,h ← diag(αs1,a1 . . . αsS ,aA), where αs,a = 1(s ∈ Skeepℓ,h ).

12: Φℓ ←
{
Mℓ,h

(
(πh − π̄ℓ,h)ŵ

π̄
ℓ,h + πhδ̂

π
ℓ,h

)
: π ∈ Πℓ

}

13: ǫℓexp ← ǫ2ℓ/H
4β2

ℓ for βℓ ←
(√

2 log
(
60SH2ℓ2|Πℓ|

δ

)
+ 4

3

√
SA

ǫℓunifK
ℓ
unif

log
(
60H2ℓ2|Πℓ|

δ

))

14: Run D
ED
ℓ,h ← OptCov

(
Φℓ, ǫℓexp,

δ
6Hℓ2

, ǫℓunif ,K
ℓ
unif ,S

keep
ℓ,h , h

)
(Algorithm 3)

15: Use D
ED
ℓ,h to compute P̂ℓ,h(s

′|s, a) ← Nℓ,h(s
′,s,a)

Nℓ,h(s,a)
if Nℓ,h(s, a) > 0, unif(S) otherwise, and

r̂ℓ,h(s, a) =
1

Nℓ,h(s,a)

∑
(s′,a′,r′,s′′)∈DED

ℓ,h
r′ · I{(s, a) = (s′, a′)} if Nℓ,h(s, a) > 0, 0 otherwise

16: Compute δ̂πℓ,h+1 ←Mℓ,h(P̂ℓ,h(πh − π̄ℓ,h)ŵ
π̄
ℓ,h + P̂ℓ,hπhδ̂

π
ℓ,h)

17: end for
18: Compute D̂π̄ℓ

(π)←∑
h〈r̂ℓ,h,πhδ̂ℓ,h〉+

∑
h〈r̂ℓ,h, (πh − π̄ℓ,h)ŵ

π̄
ℓ,h〉

19: Update Πℓ+1 = Πℓ\{π ∈ Πℓ : maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) > 8ǫℓ }
20: if |Πℓ+1| = 1 then return π ∈ Πℓ+1

21: end for
22: return any π ∈ Πℓ+1

C.1 Notation

Covariance matrices. We use

Λh(πexp) = Eπexp [eshahe
⊤
shah

]
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to denote the expected covariance matrix and Λ̂ℓ,h to denote the empirical covariance matrix col-
lected from D

ED
ℓ,h .

State visitations. Let δπℓ,h(s
′) := wπ

h(s
′)−wπ̄ℓ

h (s′), for π̄ℓ the reference policy, δπℓ,h the vectoriza-
tion of δπℓ,h(s

′), and wπ
h(s) = Pπ[sh = s] the visitation probability, and W ⋆

h (s) = supπ w
π
h(s). Then,

we can recursively define
δπℓ,h+1 = Ph(πh − π̄ℓ,h)w

π̄
ℓ,h + Phπhδ

π
ℓ,h. (C.1)

Similarly,

δ̃πℓ,h+1 = Mh

(
Ph(πh − π̄ℓ,h)ŵ

π̄
ℓ,h + Phπhδ̃

π
ℓ,h

)
. (C.2)

And
δ̂πℓ,h+1 = Mh

(
P̂ℓ,h(πh − π̄ℓ,h)ŵ

π̄
ℓ,h + P̂ℓ,hπhδ̂

π
ℓ,h

)
. (C.3)

Value functions. Note that we can express the value function as:

V π
h =

H∑

k=h




k∏

j=h+1

Pjπj




⊤

π⊤
k rk

On the “pruned” MDP, define

r̃ℓ,h = Mℓ,hrh,

and

Ṽℓ,h :=

H∑

k=h




k∏

j=h+1

Mℓ,j+1Pjπj




⊤

π⊤
k r̃ℓ,k.

Reward difference term. Define

Uh(π, π
′) := Eπ′ [(Qπ

h(sh, πh(s))−Qπ
h(sh, π

′
h(s)))

2]

and U(π, π′) :=
∑H

h=1 Uh(π, π
′). Additionally, define

Ûℓ,h(π, π
′) := Eπ′,ℓ[(Q̂

π
ℓ,h(sh, πh(s))− Q̂π

ℓ,h(sh, π
′
h(s)))

2]

where Eπ′,ℓ denotes the expectation induced playing π′ on the MDP with transitions P̂ℓ, and Q̂π
ℓ,h

denotes the Q-function for policy π on this same MDP. Let Ûℓ(π, π
′) :=

∑H
h=1 Ûℓ,h(π, π

′).

C.2 Technical Results

Lemma 7. Let D = {(s1, a1, s′1), . . . (sT , aT , s′T )} be any dataset of transitions collected from level

h. Let P̂ ∈ R
S×SA denote the empirical transition matrix with [P̂ ]s′,sa = N(s′|s,a)

N(s,a) if N(s, a) > 0,

and 0 otherwise, for N(s′ | s, a) =∑t I{(st, at, s′t) = (s, a, s′)} and N(s, a) =
∑

t I{(st, at) = (s, a)}.
Consider any v ∈ [0, 1]S and u ∈ R

SA and assume that N(s, a) > λ > 0 for all (s, a) ∈ support(u).
Then, for P the true transition matrix, we have that with probability at least 1− δ:

∣∣∣v⊤(P − P̂ )u
∣∣∣ ≤

√√√√
∑

s,a

[u]2s,a
N(s, a)

·
(√

2 log

(
1

δ

)
+

4

3
√
λ
log

(
1

δ

))
.

26



Proof. First write

v⊤(P − P̂ )u =
∑

s′

∑

s,a

vs′

(
P (s′ | s, a)− N(s′ | s, a)

N(s, a)

)
usa

=
∑

t

∑

s′

vs′ (P (s′ | st, at)− I{s′t = s′}) ustat
N(st, at)

where the second equality follows from some simple manipulations. Note that, for any t, we have

E

[
vs′ (P (s′ | st, at)− I{s′t = s′}) ustat

N(st, at)
| st, at

]
= 0

and can bound
∣∣∣∣∣
∑

s′

vs′ (P (s′ | st, at)− I{s′t = s′}) ustat
N(st, at)

∣∣∣∣∣ ≤
2ustat

N(st, at)
≤ 2√

λ
· ustat√

N(st, at)

≤ 2√
λ
·
√√√√
∑

s,a

u2sa
N(s, a)

where we have used the fact that N(s, a) ≥ λ for (s, a) ∈ support(u), and since v has entries in [0, 1]
and P (s′ | st, at) and I{s′t = s′} are valid distributions, so

∑
s′ vs′(P (s′ | st, at)−I{s′t = s′}) ∈ [−1, 1].

Furthermore, we have that

Es′t



(
∑

s′

vs′ (P (s′ | st, at)− I{s′t = s′}) ustat
N(st, at)

)2

 ≤ Es′t

[(
ustat

N(st, at)

)2
]
=

(
ustat

N(st, at)

)2

where we have again used that
∑

s′ vs′(P (s′ | st, at)− I{s′t = s′}) ∈ [−1, 1].
By Bernstein’s inequality, we therefore have that with probability at least 1− δ:

∣∣∣v⊤(P − P̂ )u
∣∣∣ ≤

√√√√2
∑

t

(
ustat

N(st, at)

)2

· log 2

δ
+

4

3
√
λ
·
√∑

t

u2stat
N(st, at)

· log 2

δ

=

(√
2 log

2

δ
+

4

3
√
λ
log

2

δ

)
·
√√√√
∑

s,a

u2sa
N(s, a)

.

Lemma 8. Let D = {(s1, a1, r1), . . . (sT , aT , rT )} be any dataset of state-action-reward tuples col-
lected from level h. Let r̂ ∈ R

SA denote the empirical reward estimation with [r̂]sa = 1
N(s,a) ·

∑T
t=1 rt ·

I{(st, at) = (s, a)} if N(s, a) > 0, and 0 otherwise, for N(s, a) =
∑

t I{(st, at) = (s, a)}. Consider
any u ∈ R

SA and assume that N(s, a) > λ > 0 for all (s, a) ∈ support(u). Then, for r the true
reward mean, we have that with probability at least 1− δ:

∣∣∣(r − r̂)⊤u
∣∣∣ ≤

√√√√
∑

s,a

[u]2s,a
N(s, a)

·
(√

2 log

(
1

δ

)
+

4

3
√
λ
log

(
1

δ

))
.
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Proof. First write

(r − r̂)⊤u =
∑

t

(r(st, at)− rt)ustat
N(st, at)

.

Note that, for any t, we have

E

[
(r(st, at)− rt) ustat

N(st, at)
| st, at

]
= 0

and can bound

∣∣∣∣
(r(st, at)− rt) ustat

N(st, at)

∣∣∣∣ ≤
ustat

N(st, at)
≤ 1√

λ
· ustat√

N(st, at)
≤ 1√

λ
·
√√√√
∑

s,a

u2sa
N(s, a)

where we have used the fact that N(s, a) ≥ λ for (s, a) ∈ support(u), and since we assume our
rewards are in [0, 1]. Furthermore, we have that

Ert

[(
(r(st, at)− rt) ustat

N(st, at)

)2
]
≤ Ert

[(
ustat

N(st, at)

)2
]
=

(
ustat

N(st, at)

)2

.

By Bernstein’s inequality, we therefore have that with probability at least 1− δ:

∣∣∣(r − r̂)⊤u
∣∣∣ ≤

√√√√2
∑

t

(
ustat

N(st, at)

)2

· log 2

δ
+

4

3
√
λ
·
√∑

t

u2stat
N(st, at)

· log 2

δ

=

(√
2 log

2

δ
+

4

3
√
λ
log

2

δ

)
·
√√√√
∑

s,a

u2sa
N(s, a)

.

Lemma 9. Let u ∈ R
S be any vector such that ∀s, |us| ≤ M . Then, for any (ℓ, h), the following

holds with probability (1− δ):

∣∣∣Es∼wπ̄
ℓ,h
[us]− Es∼ŵπ̄

ℓ,h
[us]
∣∣∣ ≤

√
2Es∼wπ̄

ℓ,h
[u2s]

n̄ℓ
log

(
2

δ

)
+

2M

3n̄ℓ
log

(
2

δ

)

Proof. The left side of the inequality above takes the form of the deviation between an empirical and
true mean of the random variable us. Hence, the result follows directly from Bernstein’s inequality
since we know |us| ≤M is bounded.

Lemma 10. Assume that A and B are matrices with entries in [0, 1] and whose rows sum to a
value ≤ 1. Then AB also satisfies this.

Proof. To see this, consider the ith row of AB, and note that the sum of the elements in this row
can be written as, for a⊤i the ith row of A, and bj the jth column of B:

∑

j

a⊤i bj =
∑

k

∑

j

aikbjk =
∑

k

aik(
∑

j

bjk).
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Now note that
∑

j bjk is the sum across the kth row of B, so this is ≤ 1 by assumption. Furthermore,∑
k aik ≤ 1 for the same reason. Thus, the ith row of AB sums to a value ≤ 1. Furthermore, it is

easy to see a⊤i bj ≤ 1 for each j. Thus, AB has values in [0, 1] and rows that sum to a value ≤ 1.

Lemma 11. We have that ‖Πj
h=iMh+1Phπh‖2, ‖Πj

h=iPhπh‖2 ≤
√
S for any i, j, h.

Proof. By definition Phπh is a transition matrix—each row has values in [0, 1] and sums to 1—and
Mh+1 is diagonal with diagonal elements either 0 or 1. Thus, each matrix MhPhπh has values in
[0, 1] and rows that sum to a value ≤ 1, so Lemma 10 implies that Πj

h=iMh+1Phπh does as well.

Denote A := ‖Πj
h=iMhPhπh‖2. We can then bound

‖Πj
h=iMh+1Phπh‖22 = ‖A‖22 ≤ ‖A‖2F =

∑

i

∑

j

A2
ij ≤

∑

i

1 ≤ S,

which proves the result. The bound on ‖Πj
h=iPhπh‖2 follows from the same argument.

Lemma 12. We have

δ̃πℓ,h+1 − δ̂πℓ,h+1

=

h−2∑

i=0




h∏

j=h−i+1

Mℓ,j+1Pjπj


 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
.

Proof. This follows immediately from the definition of δ̃πℓ,h+1, δ̂
π
ℓ,h+1, and simple manipulations.

C.3 Concentration Arguments and Good Events

Lemma 13. Let Eℓprune be the event for which the call to Prune in epoch ℓ in Algorithm 2 will
terminate after running for at most

poly(S,A,H, log
SAHℓ

δǫℓ
) · 1

ǫℓunif

episodes and will return a set Skeepℓ such that, for every (s, h) ∈ Skeepℓ , we have W ⋆
h (s) ≥ ǫℓunif , and,

if (s, h) 6∈ Skeepℓ , then W ⋆
h (s) ≤ 32ǫℓunif . Then P(Eℓprune) ≥ 1− δ

3ℓ2
.

Proof. From Lemma 38, this event follows directly with probability (1− δ
3ℓ2

).

Lemma 14. Let Eℓ,hexp be the event for which:

1. The exploration procedure in Algorithm 3 will produce D
ED
ℓ,h such that

max
π∈Πℓ

‖Mℓ,h((πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h)‖2Λ̂−1

ℓ,h

≤ ǫℓexp for Λ̂ℓ,h =
∑

(s,a)∈DED
ℓ,h

esae
⊤
sa, (C.4)
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and will collect at most

C ·
infπexp maxπ∈Πℓ

‖Mℓ,h((πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h)‖2Λh(πexp)−1

ǫℓexp
+

Cℓ
fw

(ǫℓexp)
4/5

+
Cℓ
fw

ǫℓunif
+ log(Cℓ

fw) ·Kℓ
unif

episodes.

2. For each s ∈ Skeepℓ , we have that
∑

(s′,a′)∈DED
ℓ,h

I{(s′, a′) = (s, a)} ≥ Kℓ
unifǫ

ℓ
unif

SA for any a ∈ A.

Above, C is a universal constant and Cℓ
fw = poly(S,A,H, log ℓ/δ, log 1/ǫ, log |Π|). Then P[(Eℓ,hexp)c ∩

Eℓprune ∩ Ēℓest ∩ (∩h′≤h−1Eℓ,h
′

est ) ∩ (∩h′≤h−1Eℓ,h
′

exp )] ≤ δ
6Hℓ2 .

Proof. Since the event Eℓprune holds, for each s ∈ Skeepℓ we have W ⋆
h (s) ≥ ǫℓunif . Now, observe that,

for s ∈ Skeepℓ and any a:

|[(πh − π̄ℓ,h′)ŵπ̄
ℓ,h + πhδ̂

π
ℓ,h](s,a)|

≤ [ŵπ̄
ℓ,h]s + |[δ̂πℓ,h]s| ≤ [wπ̄

ℓ,h]s + |[δπℓ,h]s|+ |[ŵπ̄
ℓ,h −wπ̄

ℓ,h](s)|+ |[δπℓ,h]s − |[δ̂πℓ,h]s||.

By construction, we have [wπ̄
ℓ,h]s, |[δπℓ,h]s| ≤ W ⋆

h (s). By Lemma 19, on Ēℓest, we can bound |[ŵπ̄
ℓ,h −

wπ̄
ℓ,h](s)| ≤

√
8Sǫ

5/3
ℓ . By Lemma 18, on Eℓprune ∩ (∩h′≤h−1Eℓ,h

′

est ) ∩ (∩h′≤h−1Eℓ,h
′

exp ), we can bound

|[δπℓ,h]s − |[δ̂πℓ,h]s|| ≤
√

SHβℓǫℓexp + SH(

√
8ǫ

5/3
ℓ + 32ǫℓunif).

Altogether then, we have

|[(πh − π̄ℓ,h′)ŵπ̄
ℓ,h + πhδ̂

π
ℓ,h](s,a)|

≤ 2W ⋆
h (s) +

√
SHβℓǫℓexp + SH(

√
8ǫ

5/3
ℓ + 32ǫℓunif) +

√
8Sǫ

5/3
ℓ .

By our choice of ǫℓexp and ǫℓunif , we can bound all of this as

≤ Cφ · (W ⋆
h (s) +

√
Kℓ

unifǫ
ℓ
unifǫ

ℓ
exp)

for Cφ = cSHβℓ. This is the condition required by Theorem 2, so the result follows from Theorem 2.

Lemma 15. Let Eℓ,hest be the event at epoch ℓ for step h on which:

(1) For all π ∈ Πℓ, h
′ ≤ h:

∣∣∣∣∣

〈
π⊤
h r̃ℓ,h,

(
h∏

i=h′+1

Mℓ,i+1Piπi

)
(Ph′ − P̂ℓ,h′)Mℓ,h′

[
(πh′ − π̄ℓ,h′)ŵπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

]〉∣∣∣∣∣

≤ βℓ

√√√√√∑

s,a

[
Mℓ,h′

(
(πh′ − π̄ℓ,h′)ŵπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

) ]2
(s,a)

Nℓ,h′(s, a)
.
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(2) For all canonical vectors es′ in R
S, π ∈ Πℓ, and h′ ≤ h,

∣∣∣∣∣

〈
es′ ,

(
h∏

i=h′+1

Mℓ,i+1Piπi

)
(Ph′ − P̂ℓ,h′)Mℓ,h′

[
(πh′ − π̄ℓ,h′)ŵπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

]〉∣∣∣∣∣

≤ βℓ

√√√√∑

s,a

[Mℓ,h′((πh′ − π̄ℓ,h′)ŵπ̄
ℓ,h′ + πh′ δ̂πℓ,h′)]2s,a

Nℓ,h′(s, a)
.

(3) For each (s, a), we have

∑

s′

|P̂ℓ,h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ S

√
log 48S2AHℓ2

δ

Nℓ,h(s, a)
.

(4) For each π ∈ Πℓ,

|〈r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h〉|

≤ βℓ

√√√√√∑

s,a

[
Mℓ,h

(
(πh − π̄ℓ,h′)ŵπ̄

ℓ,h + πhδ̂
π
ℓ,h

) ]2
(s,a)

Nℓ,h(s, a)
.

Then P[(Eℓ,hest )
c ∩ Eℓprune ∩ (∩h′≤hEℓ,hexp)] ≤ δ

6Hℓ2
.

Proof. We prove each of the events sequentially.

Proof of Event (1). Consider any fixed choice of (π, h′). By Lemma 10 and since our re-

wards are in [0, 1], we have that
(∏h

i=h′+1Mℓ,i+1Piπi

)⊤
π⊤
h r̃ℓ,h is a vector in [0, 1]. Let v ←

(∏h
i=h′+1 Mℓ,i+1Piπi

)⊤
π⊤
h r̃ℓ,h and u←Mℓ,h′

[
(πh′ − π̄ℓ,h′)ŵπ̄

ℓ,h′ +πh′ δ̂πℓ,h′

]
. Note that by construc-

tion we have that usa = 0 for s 6∈ Skeepℓ,h′ , and so on Eℓ,h′

exp , we have Nℓ,h′(s, a) ≥ Kℓ
unifǫ

ℓ
unif

2SA for all

(s, a) ∈ support(u). On Eℓprune ∩ Eℓ,h
′

exp , we can then apply Lemma 7 with u and v as defined above

to get that the bound fails with probability at most δ
30H2ℓ2|Πℓ| . Union bounding over h′ and π we

get that the stated result fails with probability at most δ
30Hℓ2 .

Proof of Event (2). Choose

v = e⊤i

(
h∏

i=h′+1

Mℓ,iPiπi

)
and u = Mh′,ℓ

(
(πh′ − π̄ℓ,h′)wπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

)
.

Note that by construction of wπ̄
ℓ,h′ and δ̂πℓ,h′ we have that usa = 0 for s 6∈ Skeepℓ,h′ , and so on Eℓ,h′

exp ,

we have Nℓ,h′(s, a) ≥ Kℓ
unifǫ

ℓ
unif

2SA for all (s, a) ∈ support(u). Furthermore, we have that v ∈ [0, 1]S by
Lemma 10. Then, the event follows by invoking Lemma 7.

31



Proof of Event (3). By Hoeffding’s inequality, for any (s, a), we have, with probability at least
1− δ

24S2AHℓ2
:

|P̂ℓ,h(s
′ | s, a)− Ph(s

′ | s, a)| ≤
√

log 24S2AHℓ2

δ

Nℓ,h(s, a)
.

Thus, we have that with probability at least 1− δ
24SAHℓ2 :

∑

s′

|P̂ℓ,h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ S

√
log 24S2AHℓ2

δ

Nℓ,h(s, a)
.

Union bounding over all (s, a), we obtain that this holds with probability at least 1− δ
24Hℓ2 .

Proof of Event (4). Note first that 〈r̂ℓ,h−r̃ℓ,h,πhδ̂
π
ℓ,h+(πh−π̄ℓ,h)ŵ

π̄
ℓ,h〉 = 〈r̂ℓ,h−r̃ℓ,h,Mℓ,h(πhδ̂

π
ℓ,h+

(πh − π̄ℓ,h)ŵ
π̄
ℓ,h)〉. The result then follows on Eℓprune by a direct application of Lemma 8.

The final result then holds by a union bound.

Lemma 16. Let Ēℓest denote the event that at epoch ℓ and for each h:

(1) For all π ∈ Πℓ and h ∈ [H], we have

∣∣∣〈P⊤
h Mℓ,h+1Ṽℓ,h+1 + rh, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)〉
∣∣∣ ≤ 2H

3n̄ℓ
log

60Hℓ2|Πℓ|
δ

+

√√√√2E
s∼w

π̄ℓ
ℓ,h
[〈P⊤

h Mℓ,h+1Ṽ
π
ℓ,h+1 + rh, (πh − π̄ℓ,h)es〉2]
n̄ℓ

· log 60Hℓ2|Πℓ|
δ

.

(2) For all canonical vectors es ∈ R
S,

|〈es, ŵπ̄
ℓ,h − wπ̄

ℓ,h〉| ≤

√√√√2 log
(
30Hℓ2S

δ

)

n̄ℓ
+

2 log
(
30Hℓ2S

δ

)

n̄ℓ
.

Then P[(Ēℓest)c] ≤ δ
15ℓ2

.

Proof. Proof of Event (1). Consider a fixed choice of π, and let uπs =
〈
P⊤
h Ṽ π

ℓ,h+1 + rh, (πh − π̄ℓ,h)es

〉
,

and note that |uπs | ≤ H for all s. Lemma 9 then gives that with probability at least 1 − δ
30Hℓ2|Πℓ|

we have
∣∣∣〈P⊤

h Mℓ,h+1Ṽℓ,h+1 + rh, (πh − π̄ℓ,h)(w
π̄
ℓ,h − ŵπ̄

ℓ,h)〉
∣∣∣

≤

√√√√2E
s∼w

π̄ℓ
ℓ,h
[〈P⊤

h Mℓ,h+1Ṽ
π
ℓ,h+1 + rh, (πh − π̄ℓ,h)es〉2]
n̄ℓ

· log 60Hℓ2|Πℓ|
δ

+
2H

3n̄ℓ
log

60Hℓ2|Πℓ|
δ

.
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Proof of Event (2). For a fixed choice of s ∈ [S], the event follows from Lemma 9 with u = es
with probability 1− δ, where δ = δ

30Hℓ2S
. Once we take the union bound over all s ∈ [S], then the

event follows with probability 1− δ
30Hℓ2

.
The result then holds by union bounding over each of these for all h.

Lemma 17. On Eℓprune, for all h and π we have

δπℓ,h+1 − δ̃πℓ,h+1

=

h−2∑

i=0




h∏

j=h−i+1

Mℓ,j+1Pjπj


Mℓ,h−i+1Ph−i(πh−i − π̄h−i)(w

π̄ℓ
ℓ,h−i − ŵπ̄ℓ

ℓ,h−i) + ∆π
ℓ,h+1

for some ∆π
ℓ,h ∈ R

S with ‖∆π
ℓ,h‖2 ≤ 32SHǫℓunif . Furthermore, for any π and any i, k satisfying

0 ≤ i ≤ k ≤ H, we have
∥∥∥∥∥∥




k∏

j=i

Mℓ,j+1Pjπj −
k∏

j=i

Pjπj


wπ

i

∥∥∥∥∥∥
2

≤ 32SHǫℓunif .

Proof. By definition, we have that

δπℓ,h+1 − δ̃πℓ,h+1

= Ph(πh − π̄ℓ,h)w
π̄ℓ
ℓ,h + Phπhδ

π
ℓ,h −Mℓ,h+1Ph(πh − π̄ℓ,h)ŵ

π̄
ℓ,h −Mℓ,h+1Phπhδ̃

π
ℓ,h

= (I −Mℓ,h+1)Ph(πh − π̄ℓ,h)w
π̄ℓ
ℓ,h +Mℓ,h+1Ph(πh − π̄ℓ,h)(w

π̄ℓ
ℓ,h − ŵπ̄

ℓ,h)

+ (I −Mℓ,h+1)Phπhδ
π
ℓ,h +Mℓ,h+1Phπh(δ

π
ℓ,h − δ̃πℓ,h)

...

=

h−2∑

i=0




h∏

j=h−i+1

Mℓ,j+1Pjπj



[
(I −Mℓ,h−i+1)Ph−i(πh−i − π̄h−i)w

π̄ℓ
ℓ,h−i

+Mℓ,h−i+1Ph−i(πh−i − π̄h−i)(w
π̄ℓ
ℓ,h−i − ŵπ̄ℓ

ℓ,h−i) + (I −Mℓ,h−i+1)Ph−iπh−iδ
π
ℓ,h−i

]
.

Note that [Ph−i(πh−i− π̄h−i)w
π̄ℓ
ℓ,h′ ]s ≤W ⋆

h−i+1(s), and similarly [Ph−iπh−iδ
π
ℓ,h−i]s ≤W ⋆

h−i+1(s). On

the event Eℓprune, we have that if [Mℓ,h−i+1]s,s = 0, then W ⋆
h−i+1(s) ≤ 32ǫℓunif . It follows from this

that every non-zero element in (I−Mℓ,h−i+1)Ph−i(πh−i−π̄h−i)w
π̄ℓ
ℓ,h−i and (I−Mℓ,h−i+1)Ph−iπh−iδ

π
ℓ,h−i

is bounded by 32ǫℓunif , so:

‖(I −Mℓ,h−i+1)Ph−i(πh−i − π̄h−i)w
π̄ℓ
ℓ,h−i‖2 ≤ 32

√
Sǫℓunif and

‖(I −Mℓ,h−i+1)Ph−iπh−iδ
π
ℓ,h−i‖2 ≤ 32

√
Sǫℓunif .

By Lemma 11, we can bound

‖
h∏

j=h−i+1

Mℓ,j+1Pjπj‖2 ≤
√
S.
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Combining these gives the result.
We now prove the second part of the result. Denote Aj := Mℓ,j+1Pjπj and Bj := Pjπj . Then

k∏

j=i

Mℓ,j+1Pjπj −
k∏

j=i

Pjπj =
k∏

j=i

Aj −
k∏

j=i

Bj

= Ak




k−1∏

j=i

Aj −
k−1∏

j=i

Bj


+ (Ak −Bk)

k−1∏

j=i

Bj

...

=
k∑

s=i




k∏

j=s+1

Aj


 (As −Bs)




s−1∏

j′=i

Bj′


 .

By Lemma 11 we have ‖∏k
j=s+1Aj‖2 ≤

√
S. Furthermore, note that

∏s−1
j′=iBj′w

π
i = wπ

s . So it
follows that

∥∥∥∥∥∥
(

k∏

j=i

Mℓ,j+1Pjπj −
k∏

j=i

Pjπj)w
π
i

∥∥∥∥∥∥
2

≤
k∑

s=i

√
S‖(As −Bs)w

π
s ‖2.

By the same argument as above, we can bound ‖(As −Bs)w
π
s ‖2 ≤ 32

√
Sǫℓunif .

Lemma 18. On the event Eℓprune ∩ (∩h′≤hEℓ,h
′

est ) ∩ (∩h′≤hEℓ,h
′

exp ), we have, for all π ∈ Πℓ:

‖δ̂πℓ,h+1 − δπℓ,h+1‖2 ≤
√

SHβℓǫℓexp + SH(

√
8ǫ

5/3
ℓ + 32ǫℓunif).

Proof. We can write

‖δ̂πℓ,h+1 − δπℓ,h+1‖2 ≤ ‖δ̂πℓ,h+1 − δ̃πℓ,h+1‖2 + ‖δ̃πℓ,h+1 − δπℓ,h+1‖2.

From Lemma 12 we have

δ̃πℓ,h+1 − δ̂πℓ,h+1

=

h−2∑

i=0




h∏

j=h−i+1

Mℓ,j+1Pjπj


 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
.

From Event (2) of Eℓ,hest in Lemma 15, we have that for all canonical vectors es and π ∈ Πℓ:

〈
es,




h∏

j=h−i+1

Mℓ,j+1Pjπj


 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
]

〉

≤ βℓ

√√√√∑

s,a

[Mℓ,h−i((πh−i − π̄ℓ,h−i)ŵ
π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i)]

2
s,a

Nℓ,h−i(s, a)
.
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Now, summing over the bound above for all canonical vectors, and applying this for each i, it
follows that

‖δ̂πℓ,h+1 − δ̃πℓ,h+1‖22 ≤ Sβ2
ℓ

h∑

h′=1

∑

s,a

[Mℓ,h′((πh′ − π̄ℓ,h′)ŵπ̄
ℓ,h′ + πh′ δ̂πℓ,h′)]2s,a

Nℓ,h′(s, a)
≤ SHβℓǫ

ℓ
exp

where the last inequality holds on ∩h′≤hEℓ,h
′

exp .

We now turn to bounding ‖δ̃πℓ,h+1 − δπℓ,h+1‖2. By Lemma 17 we have

δπℓ,h+1 − δ̃πℓ,h+1

=

h−2∑

i=0




h∏

j=h−i+1

Mℓ,j+1Pjπj


Mℓ,h−i+1Ph−i(πh−i − π̄h−i)(w

π̄ℓ
ℓ,h−i − ŵπ̄ℓ

ℓ,h−i) + ∆π
ℓ,h+1

for some ∆π
ℓ,h ∈ R

S with ‖∆π
ℓ,h‖2 ≤ 32SHǫℓunif . Furthermore, on Eℓ,h−i

est , by Lemma 19 we can bound

‖wπ̄ℓ
ℓ,h−i − ŵπ̄ℓ

ℓ,h−i‖2 ≤
√

8Sǫ
5/3
ℓ .

Combining this with Lemma 11 gives the result.

Lemma 19. On event Ēℓest we have:

‖ŵπ̄
ℓ,h − wπ̄

ℓ,h‖22 ≤ 8Sǫ
5/3
ℓ .

Proof. From Event (2) of Lemma 16, we have that for all canonical vectors ei ∈ R
S :

|〈ei, ŵπ̄
ℓ,h − wπ̄

ℓ,h〉| ≤

√√√√2 log
(
30Hℓ2S

δ

)

n̄ℓ
+

2 log
(
30Hℓ2S

δ

)

n̄ℓ
.

Then, combining these bounds together for all s:

‖ŵπ̄
ℓ,h − wπ̄

ℓ,h‖22 ≤
4S log

(
30Hℓ2S

δ

)

n̄ℓ
+

4S log2
(
30Hℓ2S

δ

)

n̄2
ℓ

≤ 4Sǫ
5/3
ℓ + 4Sǫ

10/3
ℓ ≤ 8Sǫ

5/3
ℓ ,

where the last inequality follows from our choice of n̄ℓ in Algorithm 2.

Lemma 20. Let Egood := (∩∞ℓ=1Eℓprune) ∩ (∩∞ℓ=1Ēℓest) ∩ (∩∞ℓ=1 ∩h∈[H] Eℓ,hest ) ∩ (∩∞ℓ=1 ∩h∈[H] Eℓ,hexp). Then
P[Egood] ≥ 1− 2δ.

Proof. By a union bound and basic set manipulations, we have:

P[Ecgood] ≤
∞∑

ℓ=1

P[(Eℓprune)c] +
∞∑

ℓ=1

P[(Ēℓest)c]

+

∞∑

ℓ=1

H∑

h=1

P[(Eℓ,hexp)
c ∩ Eℓprune ∩ Ēℓest ∩ (∩h′≤h−1Eℓ,h

′

est ) ∩ (∩h′≤h−1Eℓ,h
′

exp )]

+

∞∑

ℓ=1

H∑

h=1

P[(Eℓ,hest )
c ∩ Eℓprune ∩ (∩h′≤hEℓ,hexp)].
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By Lemma 13, we have P[(Eℓprune)c] ≤ δ/3ℓ2. By By Lemma 16, we have P[(Ēℓest)c] ≤ δ
15ℓ2

. By

Lemma 14, we have P[(Eℓ,hexp)c∩Eℓprune∩Ēℓest∩ (∩h′≤h−1Eℓ,h
′

est )∩ (∩h′≤h−1Eℓ,h
′

exp )] ≤ δ
6Hℓ2

. By Lemma 15

we have P[(Eℓ,hest )
c ∩ Eℓprune ∩ (∩h′≤hEℓ,hexp)] ≤ δ

6Hℓ2
. Putting this together we can bound the above as

≤
∞∑

ℓ=1

(
δ

3ℓ2
+

δ

15ℓ2
) +

∞∑

ℓ=1

H∑

h=1

2δ

6Hℓ2
≤ 2δ.

C.4 Estimation of Reference Policy and Values

Lemma 21. On Egood we have that:
∣∣∣∣∣

H∑

h=1

〈r̃ℓ,h,πh(δ̃
π
ℓ,h − δ̂πℓ,h)〉

∣∣∣∣∣ ≤ ǫℓ and
H∑

h=1

|〈r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h〉| ≤ ǫℓ. (C.5)

Proof. From Lemma 12 we have:

δ̃πℓ,h+1 − δ̂πℓ,h+1

=

h−2∑

i=0




h∏

j=h−i+1

Mℓ,j+1Pjπj


 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
.

A sufficient condition for (C.5) is that, for each i:

∣∣∣∣

〈
π⊤
h r̃ℓ,h,




h∏

j=h−i+1

Mℓ,j+1Pjπj


 (Ph−i − P̂ℓ,h−i)

Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]〉∣∣∣∣ ≤ ǫℓ.

On Egood, and in particular Eℓ,hest (Lemma 15), we can bound the left-hand side of this as:

≤ βℓ

√√√√√∑

s,a

[
Mℓ,h−i

(
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

) ]2
(s,a)

Nℓ,h−i(s, a)

≤ βℓ

√
ǫ2ℓ/H

4β2
ℓ

≤ ǫℓ/H
2

where the second inequality holds on Egood (in particular Eℓ,h−i
exp ). This proves the first inequality.

On Eℓ,hest we can also bound

|〈r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h〉|

≤ βℓ

√√√√√∑

s,a

[
Mℓ,h

(
(πh − π̄ℓ,h′)ŵπ̄

ℓ,h + πhδ̂
π
ℓ,h

) ]2
(s,a)

Nℓ,h(s, a)

≤ ǫℓ/H
2.
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This proves the second inequality.

Lemma 22. On event Egood, for any timestep h, policies π, π′, and action a, we have:

Eπ′ [|Q̂π
ℓ,h(sh, a)−Qπ

h(sh, a)|] ≤ H2S3/2

√
A log

24S2AHℓ2

δ
· ǫ1/3ℓ + 64H2Sǫℓunif . (C.6)

Proof. By Lemma E.15 of [10], we have that:

Q̂π
ℓ,h(s, a)−Qπ

h(s, a)

= Eπ

[
H∑

h′=h

∑

s′

(P̂ℓ,h′(s′ | sh′ , ah′)− Ph(s
′ | sh′ , ah′))V̂ π

ℓ,h′+1(sh′) | sh = s, ah = a

]
.

On Egood, in particular Eℓ,h′

est , we can bound, for s ∈ Skeepℓ,h′ and any a:

∣∣∣∣∣
∑

s′

(P̂ℓ,h′(s′ | s, a)− Ph(s
′ | s, a))V̂ π

ℓ,h′+1(s
′)

∣∣∣∣∣

≤ SH

√
log 24S2AHℓ2

δ

Nℓ,h′(s, a)
≤ SH

√
SA log 24S2AHℓ2

δ

Kℓ
unifǫ

ℓ
unif

and where the last inequality follows on Eℓ,h′

exp . By our choice of Kℓ
unif and ǫℓunif , we can further

bound this as

≤ SH

√
SA log

24S2AHℓ2

δ
· ǫ1/3ℓ .

For s 6∈ Skeepℓ,h′ , we can bound |∑s′(P̂ℓ,h′(s′ | s, a)− Ph(s
′ | s, a))V̂ π

ℓ,h′(sh′)| ≤ 2H. We therefore have
that

Eπ′ [|Q̂π
ℓ,h(sh, a)−Qπ

h(sh, a)|]

≤ Eπ′

[
Eπ

[ H∑

h′=h

SH

√
SA log

24S2AHℓ2

δ
· ǫ1/3ℓ · I{sh′ ∈ Skeepℓ,h′ }

+ 2HI{sh′ 6∈ Skeepℓ,h′ } | sh = s, ah = a

]]

=

H∑

h′=h

Eπ̃

[
SH

√
SA log

24S2AHℓ2

δ
· ǫ1/3ℓ · I{sh′ ∈ Skeepℓ,h′ }+ 2HI{sh′ 6∈ Skeepℓ,h′ }

]

≤ H2S3/2

√
A log

24S2AHℓ2

δ
· ǫ1/3ℓ + 64H2Sǫℓunif ,

where the last inequality follows by definition of Skeepℓ,h′ , and π′ is the policy which plays π̄ℓ for the
first h steps and then plays π. This proves the result.

Lemma 23. On event Egood, for all h and any π and π′, we have that

|Ûℓ,h(π, π
′)− Uh(π, π

′)| ≤ 9H3S3/2

√
A log

24S2AHℓ2

δ
· ǫ1/3ℓ + 576H3Sǫℓunif .
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Proof. We have

Ûℓ,h(π, π
′) = Eπ′,ℓ

[(
Q̂π

ℓ,h(sh, πh(sh))− Q̂π
ℓ,h(sh, π

′
h(sh))

)2]

where Eπ′,ℓ denotes the expectation induced playing policy π′ on the MDP with transition P̂ℓ. We

can think of this as simply a value function for policy π on the reward řh(s, a) =
(
Q̂π

ℓ,h(s, πh(s))− Q̂π
ℓ,h(s, a)

)2
.

Let V̌ denote the value function on this reward on P̂ℓ, and note that V̌h(s) ∈ [0,H2] for all (s, h).
By Lemma E.15 of [10], we then have that

∣∣∣∣Ûℓ,h(π, π
′)− Eπ′

[(
Q̂π

ℓ,h(sh, πh(sh))− Q̂π
ℓ,h(sh, π

′
h(sh))

)2]∣∣∣∣

= Eπ′

[
H∑

h=1

∑

s′

(P̂ℓ,h(s
′ | sh, ah)− Ph(s

′ | sh, ah))V̌h+1(s
′)

]

≤ H2
H∑

h=1

Eπ′

[
∑

s′

|P̂ℓ,h(s
′ | sh, ah)− Ph(s

′ | sh, ah)|
]
.

Note that we always have
∑

s′ |P̂ℓ,h(s
′ | sh, ah)−Ph(s

′ | sh, ah)| ≤ 2. Furthermore, on Egood we also

have
∑

s′ |P̂ℓ,h(s
′ | sh, ah)−Ph(s

′ | sh, ah)| ≤ S

√
log 24S2AHℓ2

δ
Nℓ,h(sh,ah)

. We can therefore bound the above as

≤ H2
H∑

h=1

Eπ′


min



2, S

√
log 24S2AHℓ2

δ

Nℓ,h(sh, ah)








≤ H2
H∑

h=1

Eπ′


2 · I{sh 6∈ Skeepℓ,h }+ S

√
log 24S2AHℓ2

δ

Nℓ,h(sh, ah)
· I{sh ∈ Skeepℓ,h }


 .

For s ∈ Skeepℓ,h , on Egood we have Nℓ,h(sh, ah) ≥ Kℓ
unifǫ

ℓ
unif

SA = ǫ
2/3
ℓ /SA, and we also have for sh 6∈ Skeepℓ,h

that W ⋆
h (s) ≤ 32ǫℓunif . Putting this together we can bound the above as

≤ H2
H∑

h=1

[
64Sǫℓunif + S

√
SA log

24S2AHℓ2

δ
· ǫ1/3ℓ

]

≤ 64SH3ǫℓunif +H3S3/2

√
A log

24S2AHℓ2

δ
· ǫ1/3ℓ .
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Furthermore,

∣∣∣∣Eπ′

[(
Q̂π

ℓ,h(s, πh(s))− Q̂π
ℓ,h(s, π

′
h(s))

)2]
− Eπ′

[
(Qπ

h(s, πh(s))−Qπ
h(s, π

′
h(s)))

2
]∣∣∣∣

=

∣∣∣∣Eπ′

[(
Q̂π

ℓ,h(s, πh(s))−Qπ
h(s, πh(s)) +Qπ

h(s, π
′
h(s))− Q̂π

ℓ,h(s, π
′
h(s))

)2]

+ Eπ′

[(
Q̂π

ℓ,h(s, πh(s))−Qπ
h(s, πh(s)) +Qπ

h(s, π
′
h(s))− Q̂π

ℓ,h(s, π
′
h(s))

)

(Qπ
h(s, πh(s))−Qπ

h(s, π
′
h(s)))

]∣∣∣∣

≤ 4HEπ′ [|Q̂π
ℓ,h(s, πh(s))−Qπ

h(s, πh(s))|] + 4HEπ′ [|Qπ
h(s, π

′
h(s))− Q̂π

ℓ,h(s, π
′
h(s))|]

≤ 8H3S3/2

√
A log

24S2AHℓ2

δ
· ǫ1/3ℓ + 512H3Sǫℓunif

where the final inequality follows from Lemma 22. Combining this with the above bound completes
the argument.

Lemma 24. On event Egood, for all epochs ℓ, we have that

∣∣∣∣∣

H∑

h=1

〈r̃ℓ,h,πh(δ
π
ℓ,h − δ̃πℓ,h)〉+ 〈r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)〉
∣∣∣∣∣ ≤ ǫℓ. (C.7)

Proof. We first bound |〈Mℓ,hrh,πh(δ
π
ℓ,h − δ̃πℓ,h)〉|. By Lemma 17 we have that

δπℓ,h+1 − δ̃πℓ,h+1

=

h−2∑

i=0




h∏

j=h−i+1

Mℓ,j+1Pjπj


Mℓ,h−i+1Ph−i(πh−i − π̄ℓ,h−i)(w

π̄
h−i − ŵπ̄

ℓ,h−i) + ∆π
ℓ,h+1

for some ∆π
ℓ,h ∈ R

S with ‖∆π
ℓ,h‖2 ≤ 32SHǫℓunif . Furthermore, note that

H∑

h=1

h−2∑

i=0

〈
r̃ℓ,h,πh




h∏

j=h−i+1

Mℓ,j+1Pjπj


Mℓ,h−i+1Ph−i(πh−i − π̄ℓ,h−i)(w

π̄
h−i − ŵπ̄

ℓ,h−i)

〉

=

H∑

h=1

h∑

k=2

〈
r̃ℓ,h,πh




h∏

j=k+1

Mℓ,j+1Pjπj


Mℓ,k+1Pk(πk − π̄ℓ,k)(w

π̄
k − ŵπ̄

ℓ,k)

〉

=

H∑

k=2

H∑

h=k

〈
r̃ℓ,h,πh




h∏

j=k+1

Mℓ,j+1Pjπj


Mℓ,k+1Pk(πk − π̄ℓ,k)(w

π̄
k − ŵπ̄

ℓ,k)

〉

=
H∑

k=2

〈P⊤
k Mℓ,k+1Ṽℓ,k+1, (πk − π̄ℓ,k)(w

π̄
k − ŵπ̄

ℓ,k)〉.

39



It follows that

H∑

h=1

〈r̃ℓ,h,πh(δ
π
ℓ,h − δ̃πℓ,h)〉+ 〈r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
h − ŵπ̄

ℓ,h)〉

=

H∑

h=2

〈P⊤
h Mℓ,h+1Ṽℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)〉+∆

for some ∆ satisfying |∆| ≤ 32S3/2H2ǫℓunif . On Egood (specifically Ēℓest), we can bound

H∑

h=2

|〈P⊤
h Mℓ,h+1Ṽℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)〉|

≤
H∑

h=2

√
2Es∼wπ̄

ℓ,h
[〈P⊤

h Mℓ,h+1Ṽ
π
ℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)es〉2]
n̄ℓ

· log 60Hℓ2|Πℓ|
δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

We can also bound

Es∼wπ̄
ℓ,h
[〈P⊤

h Mℓ,h+1Ṽ
π
ℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)es〉2]

≤ 2Es∼wπ̄
ℓ,h
[〈P⊤

h V π
h+1 + rh, (πh − π̄ℓ,h)es〉2] + 2HEs∼wπ̄

ℓ,h
[|[π⊤

h P
⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|]

+ 2HEs∼wπ̄
ℓ,h
[|[π̄⊤

ℓ,hP
⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|] + 4Es∼wπ̄
ℓ,h
[sup

a
|rh(s, a)− r̃ℓ,h(s, a)|]

Furthermore,

Es∼wπ̄
ℓ,h
[|[π⊤

h P
⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|]

=
∑

s

|[π⊤
h P

⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|wπ̄
ℓ,h(s)

≤
√
S‖(Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)
⊤Phπhw

π̄
ℓ,h‖2

≤
√
S‖(Ṽ π

ℓ,h+1 − V π
h+1)

⊤Phπhw
π̄
ℓ,h‖2 +

√
S‖(Mℓ,h+1Ṽ

π
ℓ,h+1 − Ṽ π

ℓ,h+1)
⊤Phπhw

π̄
ℓ,h‖2

≤ 64S2H2ǫℓunif

where the last inequality follows from the definition of Ṽ and Lemma 17. A similar bound can be
shown for Es∼wπ̄

ℓ,h
[|[π̄⊤

ℓ,hP
⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|]. In addition, by definition of r̃ℓ,h we have

Es∼wπ̄
ℓ,h
[sup

a
|rh(s, a)− r̃ℓ,h(s, a)|] ≤ Es∼wπ̄

ℓ,h
[I{s 6∈ Skeepℓ,h }] ≤ 32Sǫℓunif .
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Thus, we have

H∑

h=2

|〈P⊤
h Mℓ,h+1Ṽℓ,h+1 + rh, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)〉|

≤
H∑

h=2

√
2Es∼wπ̄

ℓ,h
[〈P⊤

h Mℓ,h+1Ṽ
π
ℓ,h+1 + rh, (πh − π̄ℓ,h)es〉2]
n̄ℓ

· log 60Hℓ2|Πℓ|
δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

≤
H∑

h=2

√
4Uh(π, π̄ℓ) + 384S2H3ǫℓunif

n̄ℓ
· log 60Hℓ2|Πℓ|

δ
+

2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

.

By Lemma 23 and Jensen’s inequality, this can be further bounded as

≤
H∑

h=2

c

√√√√ Ûℓ−1,h(π, π̄ℓ) + S3/2H3

√
A log 24S2AHℓ2

δ · ǫ1/3ℓ + S2H3ǫℓunif

n̄ℓ
· log 60Hℓ2|Πℓ|

δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

≤ c

√√√√HÛℓ−1(π, π̄ℓ) + S3/2H4

√
A log 24S2AHℓ2

δ · ǫ1/3ℓ + S2H4ǫℓunif

n̄ℓ
· log 60Hℓ2|Πℓ|

δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

.

The result then follows from this, our choice of n̄ℓ and ǫℓunif , and the bound on ∆ above.

Lemma 25. On Egood, we can bound

infπexp maxπ∈Πℓ
‖Mℓ,h((πh − π̄ℓ,h)ŵ

π̄
ℓ,h + πhδ̂

π
ℓ,h)‖2Λh(πexp)−1

ǫℓexp

≤
infπexp maxπ∈Πℓ

4‖π̄ℓ,hw
π̄
ℓ,h − πhw

π
h‖2Λh(πexp)−1

ǫℓexp

+
(8S2A+ 32S3AH2)ǫ

5/3
ℓ + 2S2AHβℓǫ

ℓ
exp + 4096S3AH2(ǫℓunif)

2

ǫℓunifǫ
ℓ
exp

.

Proof. We can bound:

inf
πexp

max
π∈Πℓ

‖Mℓ,h((πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h)‖2Λh(πexp)−1

≤ inf
πexp

max
π∈Πℓ

4‖Mℓ,h((πh − π̄ℓ,h)w
π̄
ℓ,h + πhδ

π
ℓ,h)‖2Λh(πexp)−1

+ inf
π′
exp

max
π∈Πℓ

[
8‖Mℓ,h(πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)‖2Λh(π′
exp)

−1

+ 8‖Mℓ,hπh(δ
π
ℓ,h − δ̂πℓ,h)‖2Λh(π′

exp)
−1

]
.
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We can write

‖Mℓ,h(πh − π̄ℓ,h)(w
π̄
ℓ,h − ŵπ̄

ℓ,h)‖2Λh(π′
exp)

−1

=
∑

s,a

(πh(a | s)− π̄ℓ,h(a | s))2(wπ̄
ℓ,h(s)− ŵπ̄

ℓ,h(s))
2

[Λh(π′
exp)]sa,sa

· I{(s, a) ∈ Skeepℓ,h }

≤
∑

s,a

(wπ̄
ℓ,h(s)− ŵπ̄

ℓ,h(s))
2

[Λh(π′
exp)]sa,sa

· I{(s, a) ∈ Skeepℓ,h }.

On Egood, for each (s, a) ∈ Skeepℓ,h we have W ⋆
h (s) ≥ ǫℓunif . Let πsh denote the policy which achieves

wπsh

h (s) = W ⋆
h(s), and then plays actions uniformly at random at (s, h). Let π′

exp = unif({πsh}s).
Then we have [Λh(π

′
exp)]sa,sa ≥W ⋆

h(s)/SA ≥ ǫℓunif/SA for each (s, a) ∈ Skeepℓ,h , so we can bound the
above as

≤ SA

ǫℓunif

∑

s,a

(wπ̄
ℓ,h(s)− ŵπ̄

ℓ,h(s))
2 =

SA

ǫℓunif
‖wπ̄

ℓ,h − ŵπ̄
ℓ,h‖22 ≤

8S2Aǫ
5/3
ℓ

ǫℓunif
,

where the last inequality follows from Lemma 19.
We can obtain a bound on ‖Mℓ,hπh(δ

π
ℓ,h − δ̂πℓ,h)‖2Λh(π′

exp)
−1 using a similar argument but now

applying Lemma 18 to get that:

‖Mℓ,hπh(δ
π
ℓ,h − δ̂πℓ,h)‖2Λh(π′

exp)
−1 ≤

2S2AHβℓǫ
ℓ
exp

ǫℓunif
+

32S3AH2ǫ
5/3
ℓ

ǫℓunif
+ 4096S3AH2ǫℓunif .

Finally, note that

‖Mℓ,h((πh − π̄ℓ,h)w
π̄
ℓ,h + πhδ

π
ℓ,h)‖2Λh(πexp)−1 = ‖Mℓ,h(π̄ℓ,hw

π̄
ℓ,h + πhw

π
h)‖2Λh(πexp)−1

≤ ‖π̄ℓ,hw
π̄
ℓ,h − πhw

π
h‖2Λh(πexp)−1

where the equality holds by definition, and the inequality by simply manipulations. Combining
these bounds gives the result.

C.5 Correctness and Sample Complexity

Lemma 26. On the event Egood, for all π ∈ Πℓ+1, we have V ⋆
0 (Π)− V π

0 ≤ 16ǫℓ, and π⋆ ∈ Πℓ.
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Proof. Recall Dπ̄ℓ
(π) = V π

0 − V π̄ℓ
0 . For π ∈ Πℓ, we have

|D̂π̄ℓ
(π)−Dπ̄ℓ

(π)|

=

∣∣∣∣∣

H∑

h=1

[
〈r̂ℓ,h,πhδ̂

π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h〉 − 〈rh,πhδ

π
ℓ,h + (πh − π̄ℓ,h)w

π̄
ℓ,h〉
]∣∣∣∣∣

≤
H∑

h=1

|〈r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h〉|

︸ ︷︷ ︸
(a)

+
H∑

h=1

|〈r̃ℓ,h,πh(δ̃
π
ℓ,h − δ̂πℓ,h)〉|

︸ ︷︷ ︸
(b)

+

∣∣∣∣∣

H∑

h=1

〈r̃ℓ,h,πh(δ
π
ℓ,h − δ̃πℓ,h)〉+ 〈rh, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)〉
∣∣∣∣∣

︸ ︷︷ ︸
(c)

+

H∑

h=1

|〈r̃ℓ,h − rh,πhδ
π
ℓ,h + (πh − π̄ℓ,h)w

π̄
ℓ,h〉|

︸ ︷︷ ︸
(d)

.

By Lemma 21, on Egood we have (a) ≤ ǫℓ and (b) ≤ ǫℓ, and by Lemma 24, (c) ≤ ǫℓ. To bound (d),
we note that πhδ

π
ℓ,h + (πh − π̄ℓ,h)w

π̄
ℓ,h = πhw

π
h − π̄ℓ,hw

π̄
ℓ,h, and so, on Egood and by definition of r̃ℓ,h,

(d) ≤
H∑

h=1

∑

s 6∈Skeep
ℓ,h

(wπ
h(s) + wπ̄

ℓ,h(s)) ≤ 64HSǫℓunif ≤ ǫℓ.

Note that we only eliminate policy π ∈ Πℓ at round ℓ if maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) > 8ǫℓ. Assume
that π⋆ ∈ Πℓ. By what we have just shown, if policy π is eliminated, we then have

8ǫℓ < max
π′∈Πℓ

Dπ̄ℓ
(π′)−Dπ̄ℓ

(π) + 8ǫℓ = V ⋆
0 − V π

0 + 8ǫℓ =⇒ V π
0 < V ⋆

0 .

It follows that π⋆ will not be eliminated at round ℓ, as long as π⋆ ∈ Πℓ. By a simple inductive
argument, since π⋆ ∈ Π0, it follows that on Egood, π⋆ ∈ Πℓ for all ℓ.

Furthermore, for each π ∈ Πℓ+1, we have maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) ≤ 8ǫℓ. Which, again by what
we have just shown, implies that

8ǫℓ ≥ max
π′∈Πℓ

Dπ̄ℓ
(π′)−Dπ̄ℓ

(π)− 8ǫℓ = V ⋆
0 − V π

0 − 8ǫℓ =⇒ V ⋆
0 − V π

0 ≤ 16ǫℓ.

Theorem 1. There exists an algorithm (Algorithm 1) which, with probability at least 1− 2δ, finds
an ǫ-optimal policy and terminates after collecting at most

H∑

h=1

inf
πexp

max
π∈Π

H4‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} · ιβ2 +max
π∈Π

HU(π, π⋆)

max{ǫ2,∆(π)2} log
H|Π|ι

δ +
Cpoly

max{ǫ 5
3 ,∆

5
3
min}

episodes, for Cpoly := poly(S,A,H, log 1/δ, ι, log |Π|), β := C
√
log(SH|Π|

δ · 1
∆min∨ǫ) and

ι := log 1
∆min∨ǫ .
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Proof. First, by Lemma 20, we have that P[Egood] ≥ 1 − 2δ. For the remainder of the proof we
assume we are on Egood.

By Lemma 26, we have that on Egood, for every π ∈ Πℓ+1, V
⋆
0 − V π

0 ≤ 16ǫℓ, and that π⋆ ∈ Πℓ

for all ℓ. It follows that, since we run for ℓǫ = ⌈log2 16/ǫ⌉ epochs, when we terminate each policy
π ∈ Πℓǫ satisfies V ⋆

0 − V π
0 ≤ 16ǫℓǫ = 16 · 2−ℓǫ ≤ ǫ. Furthermore, if we terminate early on Line 20,

then we know that |Πℓ+1| = 1, and since π⋆ ∈ Πℓ+1, we have that the algorithm returns π⋆. Thus,
the policy returned by Algorithm 2 is always ǫ-optimal.

It therefore remains to bound the sample complexity of Algorithm 2. At round ℓ of Algorithm 2,
we collect n̄ℓ samples plus the number of samples collected from OptCov. On Egood, we have that
the number of samples collected by OptCov at round ℓ step h is bounded by

C ·
infπexp maxπ∈Πℓ

‖M ℓ
h((πh − π̄ℓ,h)ŵ

π̄
ℓ,h + πhδ̂

π
ℓ,h)‖2Λh(πexp)−1

ǫℓexp

+
Cℓ
fw

(ǫℓexp)
4/5

+
Cℓ
fw

ǫℓunif
+ log(Cℓ

fw) ·Kℓ
unif

(a)

≤ C ·
infπexp maxπ∈Πℓ

‖π̄ℓ,hw
π̄
ℓ,h − πhw

π
h‖2Λh(πexp)−1

ǫℓexp
+

Cℓ
fw

(ǫℓexp)
4/5

+
Cℓ
fw

ǫℓunif
+ log(Cℓ

fw) ·Kℓ
unif

+
(8S2A+ 32S3AH2)ǫ

5/3
ℓ + 2S2AHβℓǫ

ℓ
exp + 4096S3AH2(ǫℓunif)

2

ǫℓunifǫ
ℓ
exp

(b)

≤ C ·
infπexp maxπ∈Πℓ

‖π̄ℓ,hw
π̄
ℓ,h − πhw

π
h‖2Λh(πexp)−1

ǫ2ℓ
·H4β2

ℓ +
Cℓ
poly

ǫ
5/3
ℓ

(c)

≤ C ·
infπexp maxπ∈Πℓ

‖π⋆
hw

π⋆

h − πhw
π
h‖2Λh(πexp)−1

ǫ2ℓ
·H4β2

ℓ +
Cℓ
poly

ǫ
5/3
ℓ

(d)

≤ C · inf
πexp

max
π∈Π

‖π⋆
hw

π⋆

h − πhw
π
h‖2Λh(πexp)−1

max{ǫ2ℓ ,∆(π)2} ·H4β2
ℓ +

Cℓ
poly

ǫ
5/3
ℓ

where the initial bound holds from Lemma 14, the (a) follows from Lemma 25, and (b) follows
plugging in our choice of ǫℓunif and ǫℓexp, and with Cℓ

poly = poly(S,A,H, log ℓ/δ, log 1/ǫ, log |Π|), (c)
holds by the triangle inequality and since π̄ℓ ∈ Πℓ, and (d) holds because, for all π ∈ Πℓ, we have
∆(π) ≤ 32ǫℓ. Furthermore, we can bound n̄ℓ as

n̄ℓ = min
π̄∈Πℓ

max
π∈Πℓ

c · HÛℓ−1(π, π̄) +H4S3/2
√
A log SAHℓ2

δ · ǫ1/3ℓ + S2H4ǫℓunif
ǫ2ℓ

· log 60Hℓ2|Πℓ|
δ

(a)

≤ min
π̄∈Πℓ

max
π∈Πℓ

c · HU(π, π̄) +H4S3/2
√
A log SAHℓ2

δ · ǫ1/3ℓ + S2H4ǫℓunif
ǫ2ℓ

· log 60Hℓ2|Πℓ|
δ

(b)

≤ max
π∈Π

c · HU(π, π⋆)

max{ǫ2ℓ ,∆(π)2} · log
60Hℓ2|Πℓ|

δ
+

Cℓ
poly

ǫ
5/3
ℓ

where (a) follows from Lemma 23, and (b) since π⋆ ∈ Πℓ, and by a similar argument as above.
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Thus, if we run for a total of L rounds, the sample complexity is bounded as

L∑

ℓ=1

(
C ·

H∑

h=1

inf
πexp

max
π∈Π

‖π⋆
hw

π⋆

h − πhw
π
h‖2Λh(πexp)−1

max{ǫ2ℓ ,∆(π)2} ·H4β2
ℓ

+max
π∈Π

c · HU(π, π⋆)

max{ǫ2ℓ ,∆(π)2} · log
60Hℓ2|Πℓ|

δ

)
+

LCL
poly

ǫ
5/3
L

.

By construction, we have that L ≤ ⌈log2 16/ǫ⌉. However, we terminate early if |Πℓ+1| = 1, and
since each π ∈ Πℓ+1 satisfies ∆(π) ≤ ǫℓ, it follows that we will have |Πℓ+1| = 1 once ǫℓ < ∆min,
which will occur for ℓ ≥ ⌈log2 1

∆min
⌉+ 1. Thus, we can bound

L ≤ min{⌈log2 16/ǫ⌉, ⌈log2 1/∆min⌉+ 1},

and so for all ǫℓ, ℓ ≤ L, we have ǫℓ ≥ c ·max{ǫ,∆min}. Plugging this into the above gives the final
complexity.

D Tabular Contextual Bandits: Upper Bound

Setting and notation. We study stochastic tabular contextual bandits, denoted by the tuple
(C,A, µ⋆, ν). At each episode, a context c ∼ µ⋆ arrives, the agent chooses an action a ∈ A, and
receives reward r(c, a) ∼ ν(c, a) in R. Note that this is a special case of the Tabular MDP when
H = 1. In this setting, we use the terminology “contexts” instead of “states” to highlight that the
agent has no impact on these. The vector µ⋆ plays the same role as the state visitation vectors
wπ
h previously, except this is now policy-independent. The notation for policy matrix π, values V π,

features φπ(c, a) are inherited directly from the general case.
Define θ⋆ ∈ R|C|A as the vector of reward means, so that [θ⋆](c,a) = Eν [r(c, a)]. Then, we can

write the value of π as:

Eν,µ⋆ [r(c, π(c))] =
∑

c,a

θ⋆c,a[µ
⋆]c[π(c)]a = (θ⋆)⊤πµ⋆

For any (θ, µ) define OPT(θ, µ) := argmaxπ∈Π θ⊤πµ, where θ is any hypothetical vector of reward-
means and µ ∈ ∆|C| is a hypothetical context distribution.

Recall that we use π ∈ R
|C|A×|C| to refer to the policy matrix. The vector πµ ∈ R

|C|A

contains context-action visitations for policy π under context distribution µ. Define function
G(µ, π) = Eµ,π[(πµ)(πµ)

⊤] which returns the expected covariance matrix of policy π under context
distribution µ. For shorthand, we refer to Â(π) = G(µ̂ℓ, πexp) and A(π) = G(µ⋆, πexp) for any π.

Lemma 27. Define the experimental design objective

F (πexp, µ, π, π
′) = ‖(π′ − π)µ‖2G(µ,πexp)−1 .

Then, for any µ ∈ ∆C,

min
πexp

max
π,π′∈Πℓ

F (πexp, µ, π, π
′) = max

π,π′∈Πℓ

min
πexp

F (πexp, µ, π, π
′)
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Proof. We can rewrite the maximization problem to be over the simplex ∆Πℓ×Πℓ
instead:

min
πexp

max
λ∈∆Πℓ×Πℓ

∑

π,π′∈Πℓ×Πℓ

λπ,π′F (πexp, µ, π, π
′) (D.1)

This does not change the objective value. To see this, note that for any selection (π1, π2) in
the original problem, the same objective value can be obtained by setting λ = eπ1,π2 ; hence, the
modification to the optimization cannot reduce the value. Further if F (πexp, µ, π, π

′) is maximized
by (π1, π2), setting λ as anything other than eπ1,π2 cannot increase the objective value.

Now, note that both the minimization and maximization problems are over simplices, which
are compact and convex sets. The objective is linear in the maximization variable, and hence
concave. The objective can be rewritten as

∑

c∈S

∑

a∈A

(π − π′)⊤ea,ce⊤a,c(π − π′)

pc,a
.

Here, pc,a as the probability that πexp plays action a, given that we are in context c. From this
representation, we can clearly see that the objective is convex in each pc,a. Hence, since we are
optimizing over finite-dimensional spaces (|A| and |C| are finite), Von Neumann’s minimax theorem
applies and the proof is complete.

Lemma 28. For the contextual bandit problem, define the experimental design objective

F (πexp, µ, π, π
′) = ‖(π′ − π)µ‖2G(µ,πexp)−1 .

Then, for any µ and assuming that all policies in Πℓ are deterministic, we have:

min
πexp

max
π,π′∈Πℓ

F (πexp, µ, π, π
′) = max

π,π′∈Πℓ

Ec∼µ[4I[π(c) 6= π′(c)]], (D.2)

Proof. Below, we refer to pc,a as the probability that πexp plays action a, given that we are in
context c. We have:

min
πexp

max
π,π′∈Πℓ

‖(π′ − π)µ‖2G(µ,πexp)−1

= max
π,π′∈Πℓ

min
πexp

‖(π′ − π)µ‖2G(µ,πexp)−1

= max
π,π′∈Πℓ

min
p1...pC∈∆A

∑

a,c

µ2
c

(π − π′)⊤ea,ce⊤a,c(π − π′)

µcpc,a

= max
π,π′∈Πℓ

∑

c

µcmin
pc

∑

a∈A

(π − π′)⊤ea,ce⊤a,c(π − π′)

pc,a

= max
π,π′∈Πℓ

∑

c

µc

(
∑

a∈A

√
(π − π′)⊤ea,ce⊤a,c(π − π′)

)2

.

Here the first equality follows from Lemma 27, and the last from Lemma D.6 of [30].
We have assumed that the policies in Πℓ are deterministic. Hence, the only two actions in the

summation over A above that are relevant are π(c) and π′(c). For all other a ∈ A, the term in the

46



square root evaluates to 0. If π(c) = π′(c), then the entire summation over A evaluates to 0; else,
the terms indexed by π(c) and π′(c) are both 1, and the summation evalutes to 2. Hence, we can
simplify the expression to exactly the form of Equation (D.2) from the lemma statement, and the
proof is complete.

Lemma 29. For the contextual bandits problem, we have that

max
π∈Π

Ec∼µ⋆ [Eν⋆ [(r(c, π(c)) − r(c, π⋆(c)))2|c]] ≤ inf
πexp

max
π∈Π
‖φ⋆ − φπ‖2Λ(πexp)−1

Proof. Observe that r(c, π(c)) − r(c, π⋆(c)) = 0 if π(c) = π⋆(c); else, |r(c, π(c)) − r(c, π⋆(c))| ≤ 2.
Then, it follows that

max
π∈Π

Ec∼µ⋆ [Eν⋆ [(r(c, π(c)) − r(c, π⋆(c)))2|c]]

≤ max
π∈Π

4Ec∼µ⋆I(π(c) 6= π⋆(c))

= inf
πexp

max
π∈Π
‖φ⋆ − φπ‖2Λ(πexp)−1 ,

where the equality follows from Lemma 28.

Now, we state our main upper bound for contextual bandits.

Corollary 1. For the setting of tabular contextual bandits, there exists an algorithm such that with
probability at least 1 − 2δ, as long as Π contains only deterministic policies, it finds an ǫ-optimal
policy and terminates after collecting at most the following number of samples:

inf
πexp

max
π∈Π

‖φ⋆ − φπ‖2Λ(πexp)−1

max{ǫ2,∆(π)2} · β
2 log

1

∆min ∨ ǫ
+

Cpoly

max{ǫ5/3,∆5/3
min}

,

for Cpoly = poly(|S|, A, log 1/δ, log 1/(∆min ∨ ǫ), log |Π|) and β = C
√

log(S|Π|
δ · 1

∆min∨ǫ).

Proof. In the special case of contextual bandits, U(π, π⋆) defined in Theorem 1 can be written more
simply as Ec∼µ⋆[Eν⋆ [(r(c, π(c)) − r(c, π⋆(c)))2|c]]. Then, by Lemma 29, we have that:

U(π, π⋆)

max{ǫ2,∆(π)2,∆2
min}

≤ inf
πexp

max
π∈Π

‖φ⋆ − φπ‖2Λ(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

Plugging this into Theorem 1 completes the proof.

E MDPs with Action-Independent Transitions

We consider here a special class of MDPs where the transitions only depend on the states and are
independent of the actions selected i.e all Ph are such that Ph(s, a) = Ph(s, a

′) for all (a, a′) ∈ A. In
this special case, we prove in this subsection that the (leading order) complexity of Perp reduces
to O(ρΠ).

Lemma 30. For the ergodic MDP problem,

min
πexp

max
π∈Π
‖φπ

h − φ⋆
h‖2Λh(πexp)−1 = max

π∈Π
min
πexp

‖φπ
h − φ⋆

h‖2Λh(πexp)−1
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Proof. We can rewrite the maximization problem to be over the simplex ∆Π instead:

min
πexp

max
λ∈∆Π

∑

π∈Π
λπ‖φπ

h − φ⋆
h‖2Λh(πexp)−1 (E.1)

This does not change the objective value. To see this, note that for any selection π ∈ Π in the
original problem, the same objective value can be obtained by setting λ = eπ in Equation (E.1);
hence, the modification to the optimization cannot reduce the value. Further if ‖φπ

h−φ⋆
h‖2Λh(πexp)−1

is maximized by π for any fixed πexp, setting λ as anything other than eπ cannot increase the
objective value.

Now, note that both the minimization and maximization problems are over simplices, which
are compact and convex sets. The objective is linear in the maximization variable, and hence
concave. The objective can be rewritten as

∑

a

(πh − π⋆
h)

⊤es,ae⊤s,a(πh − π⋆
h)

ps,a

Here, ps,a is the probability that πexp plays action a, given that it is in context s. From this
representation, we can clearly see that the objective is convex in each ps,a. Hence, Von Neumann’s
minimax theorem applies and the proof is complete.

Lemma 31. For the setting of ergodic MDPs,

min
πexp

max
π∈Π
‖φπ

h − φ⋆
h‖2Λh(πexp)−1 = max

π∈Π
2Es∼w⋆

h
I[πh(s) 6= π′

h(s)], (E.2)

Proof. Below, we refer to ps,a as the probability that πexp plays action a, given that it is in context
s. The second equality follows from Lemma 30.

min
πexp

max
π∈Π
‖φπ

h − φ⋆
h‖2Λh(πexp)−1

= min
πexp

max
π∈Π
‖(πh − π⋆

h)w
⋆
h‖2Λh(πexp)−1

= max
π∈Π

min
πexp

‖(πh − π⋆
h)w

⋆
h‖2Λh(πexp)−1

= max
π∈Π

min
p1...pS∈∆A

∑

s,a

(w⋆
h(s))

2 (πh − π⋆
h)

⊤es,ae⊤s,a(πh − π⋆
h)

w⋆
h(s)ps,a

= max
π∈Π

∑

s

w⋆
h(s) min

ps∈∆A

∑

a

(πh − π⋆
h)

⊤es,ae⊤s,a(πh − π⋆
h)

ps,a

= max
π∈Π

∑

s

w⋆
h(s)

(
∑

a

√
(πh − π⋆

h)
⊤es,ae⊤s,a(πh − π⋆

h)

)2

The optimization problems in the final line were solved using KKT conditions. We assume that the
two policies are deterministic. Hence, the only two actions in the summation over A above that
are relevant are πh(s) and π′

h(s). For all other a ∈ A, the term in the square root evaluates to 0.
If πh(s) = π′

h(s), then the entire summation over A evaluates to 0; else, the terms indexed by π(c)
and π′(c) are both 1, and the summation evalutes to 2. Hence, we can simplify the expression to
exactly the form of Equation (E.2) from the lemma statement, and the proof is complete.
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Lemma 32. For the ergodic MDP problem, we have that

max
π∈Π

HU(π, π⋆)

max{ǫ2,∆(π)2,∆2
min}

≤ 2H4
H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

Proof. Recall the definition of U(π, π⋆)

U(π, π⋆) =
H∑

h=1

Esh∼wπ⋆
h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2].

Then, we have that

max
π∈Π

HU(π, π⋆)

max{ǫ2,∆(π)2,∆2
min}

= max
π∈Π

H
∑H

h=1 Esh∼wπ⋆
h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2]

max{ǫ2,∆(π)2,∆2
min}

≤ H
H∑

h=1

max
π∈Π

Esh∼wπ⋆
h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2]

max{ǫ2,∆(π)2,∆2
min}

≤ H

H∑

h=1

max
π∈Π

2H2
Es∼w⋆

h
I[πh(s) 6= π′

h(s)]

max{ǫ2,∆(π)2,∆2
min}

= H4
H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2,∆2
min}

.

The final equality follows from Lemma 31.

Corollary 2. Assume that all Ph are such that Ph(s
′|s, a) = Ph(s

′|s, a′) for all (a, a′) ∈ A. Then,
with probability at least 1− 2δ, Perp (Algorithm 2) finds an ǫ-optimal policy and terminates after
collecting at most the following number of episodes:

H∑

h=1

inf
πexp

max
π∈Π

‖φ⋆
h − φπ

h‖2Λh(πexp)−1

max{ǫ2,∆(π)2} · ιH4β2 +
Cpoly

max{ǫ5/3,∆5/3
min}

for Cpoly, β as defined in Theorem 1.

Proof. The proof follows directly from Theorem 1 and Lemma 32.

F Tabular Franke Wolfe

Theorem 2. Fix parameters Kunif > 0, ǫexp > 0, and consider some Φ ⊆ R
SA and set S0 ⊆ S.

Let ǫunif > 0 be some value satisfying

W ⋆
h (s) > ǫunif ,∀s ∈ S0, and Kunif ≥ ǫ−1

unif .
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Algorithm 3 Online Experiment Design (OptCov)

1: input: directions Φ, tolerance ǫexp, confidence δ, minimum reachability ǫunif , minimum explo-
ration Kunif , pruned states S0, step h

2: i← 1
3: while TiKi ≤ poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|) · ǫ−1

exp do
4: D

i
unif ← UnifExp(ǫunif ,KiTi +Kunif , δ/8i

2)
5: Λi

0 ← 1
TiKi

diag(vi) where [vi]sa =
∑

(s′,a′)∈Di
unif

I{(s′, a′) = (s, a)} for s ∈ S0, and TiKi

otherwise
6: Run iteration i of Algorithm 4 of [43] on objective

fi(Λ)← 1

ηi
log


∑

φ∈Φ
e
ηi‖φ‖2

A(Λ)−1


 for A(Λ) = Λ+Λi

0, ηi = 22i/5

to obtain data D
i

7: if Algorithm 4 reaches termination condition then
8: return D

i ∪D
i
unif

9: end if
10: i← i+ 1
11: end while

12: D← UnifExp(ǫunif ,
8S2A2C2

φ

ǫexp
+ (8S2A2C2

φ + 1)Kunif , δ/4)
13: return D

Assume that |[φ](s,a)| ≤ Cφ · (W ⋆
h (s) +

√
ǫφ) for all s ∈ S0, φ ∈ Φ, and some Cφ > 0, and that

[φ](s,a) = 0 for s 6∈ S0. Additionally, let the parameters be such that ǫφ/(Kunifǫunif) ≤ ǫexp. Then
with probability at least 1− δ, algorithm Algorithm 3 run with these parameters will collect at most

min

{
C · infΛ∈Ωh

maxφ∈Φ ‖φ‖2Λ−1

ǫexp
+

Cfw

ǫ
4/5
exp

, Cfw(
1

ǫexp
+Kunif)

}
+

Cfw

ǫunif
+ log(Cfw) ·Kunif

episodes, for C a universal constant and Cfw = poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|), and

will produce covariates Σ̂ such that

max
φ∈Φ
‖φ‖2

Σ̂−1 ≤ ǫexp (F.1)

and, for all s ∈ S0,

[Σ̂](s,a) ≥
ǫunif
2SA

·Kunif . (F.2)

Proof. To prove this result, we apply Lemma 37 combined with Lemma 36.
Let E iexp denote the success event of running Algorithm 4 at epoch i, as defined in Lemma 36.

On this event, and under the assumption that W ⋆
h (s) > ǫunif for each s ∈ S0, we have that

[Σi](s,a) ≥ W ⋆
h (s)

2SA · (TiKi +Kunif) for each (s, a) with s ∈ S0 and Σi the covariates induced by D
i
unif ,

which implies that

[Λi
0](s,a) ≥

1

TiKi

W ⋆
h (s)

2SA
· (TiKi +Kunif) ≥

W ⋆
h (s)

2SA
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for each (s, a) with s ∈ S0, and, furthermore, Algorithm 4 collects at most

TiKi +Kunif + poly(S,A,H, log
TiKii

2

δǫunif
) · 1

ǫunif
(F.3)

episodes. Furthermore, by Lemma 36, we have P[E iexp] ≥ δ/2i2, so it follows that

P[∪i≥1(E iexp)c] ≤
∞∑

i=1

δ

8i2
≤ δ/4.

Henceforth, we therefore assume that E iexp holds for each i. This immediately implies that (F.2)
holds.

It remains to show that (F.1) is satisfied, and that our sample complexity guarantee is met.

To this end we apply Lemma 37 with Λ0 a diagonal matrix, with [Λ0](s,a) =
W ⋆

h (s)
2SA for s ∈ S0, and

otherwise [Λ0](s,a) = 1. Note that with this choice of Λ0, by what we just showed above, we have
Λi

0 � Λ0, as required by Lemma 37.
We next turn to bounding the smoothness constants, β and M . First, note that by Lemma 34,

at epoch i we have that all iterates of FWRegret live in the set Ω̂h,TiKi
(δ/8i2) with probability

1− δ/8i2. Union bounding over this event for all i, with probability at least 1− δ/4, we have that
for each i all iterates of FWRegret live in the set Ω̂h,TiKi

(δ/8i2). By Lemma 35, since we have
assumed that |[φ](s,a)| ≤ Cφ · (W ⋆

h (s)+
√
ǫφ) for all (s, a) with s ∈ S0 and otherwise [φ](s,a) = 0 for

all φ ∈ Φ, we can then bound

Mi ≤ max
s∈S0

(
2SAC2

φ

C ′ +
2SAC2

φǫφ

C ′ ·W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′TiKiW ⋆
h (s)

· log SAH

δ

)

βi ≤ max
s∈S0

(2ηi + 2)

(
2SAC2

φ

C ′ +
2SAC2

φǫφ

C ′ ·W ⋆
h (s)

)2

·
(

2

C ′ +
2

C ′TiKiW
⋆
h (s)

· log SAH

δ

)2

On the event E iexp, as noted above we have [Λi
0](s,a) ≥

W ⋆
h (s)

2SA (1 + Kunif
TiKi

) for s ∈ S0, so we can take

C ′ = 1
2SA(1 +

Kunif
TiKi

). We can then bound

max
s∈S0

(
2SAC2

φ

C ′ +
2SAC2

φǫφ

C ′ ·W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′TiKiW ⋆
h (s)

· log SAH

δ

)

≤
(
4S2A2Cφ +

4S2A2C2
φǫφ · TiKi

Kunifǫunif

)
·
(
4SA+

4SA

Kunifǫunif
log

SAH

δ

)

where we have used that W ⋆
h (s) ≥ ǫunif for all s ∈ S0, by assumption. By assumption we have

ǫφ
Kunifǫunif

≤ ǫexp. Note that by construction, the while statement on Line 3 will ensure that we

always have TiKi ≤ poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|) · ǫ−1
exp, so we can bound

ǫexp · TiKi ≤ poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|).

It follows that it suffices to take

β,M ≤ poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|).
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We now consider two cases. In the first case, when the termination criteria on Line 7 is met,
we can apply Lemma 37, to get that with probability at least 1− δ/4 we have that the procedure
terminates after running for at most

max

{
min
N

16N s.t. inf
Λ∈Ω

max
φ∈Φ

φ⊤(NΛ+Λ0)
−1φ ≤ ǫexp

6
,

poly(β,R, d,H,M, log 1/δ, log 1/ǫexp, log |Φ|)
ǫ
4/5
exp

}

≤ max

{
min
N

16N s.t. inf
Λ∈Ω

max
φ∈Φ

φ⊤(NΛ+Λ0)
−1φ ≤ ǫexp

6
,

poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|)
ǫ
4/5
exp

}

episodes, and returns data Σ̂N such that

f̂i(N
−1Σ̂N ) ≤ Nǫexp,

where î is the index of the epoch on which it terminates. By Lemma D.1 of [42], we have

max
φ∈Φ
‖φ‖2

A(N−1Σ̂N )−1 ≤ f̂i(N
−1Σ̂N ) ≤ Nǫexp

which implies

max
φ∈Φ
‖φ‖2

(Σ̂N+Σ
î
)−1 ≤ ǫexp,

which proves (F.1). Furthermore, (F.2) holds since as noted [Σi](s,a) ≥ W ⋆
h (s)

2SA · (TiKi + Kunif) for
each (s, a) with s ∈ S0, and since W ⋆

h (s) ≥ ǫunif for all s ∈ S0.
In the second case, when the while loop on Line 3 terminates since

TiKi ≤ poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|) · ǫ−1
exp,

we can bound the total number of episodes collected within the calls to Algorithm 4 of [43] within
the while loop by poly(S,A,H,Cφ, log 1/δ, log 1/ǫexp, log |Φ|) · ǫ−1

exp. Furthermore, by Lemma 36,
with probability at least 1 − δ/4, we have that the call to UnifExp on Line 12 terminates after
running for at most

8S2A2C2
φ

ǫexp
+ (8S2A2C2

φ + 1)Kunif + poly(S,A,H, log
TiKii

2

δǫunif
) · 1

ǫunif

episodes, and that the returned data satisfies Nh(s, a) ≥ W ⋆
h (s)

2SA · (
8S2A2C2

φ

ǫexp
+8S2A2C2

φKunif +Kunif).

Since |[φ](s,a)| ≤ Cφ · (W ⋆
h (s) +

√
ǫφ) and ǫφ/(Kunifǫunif) ≤ ǫexp by assumption, some manipulation

shows that

[φ]2(s,a)

Nh(s, a)
≤

C2
φ · (W ⋆

h (s) +
√
ǫφ)

2

W ⋆
h (s)

2SA · (
8S2A2C2

φ

ǫexp
+ 8S2A2C2

φKunif +Kunif)
≤ ǫexp

SA
.
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It follows then that, letting Σ̂ denote the covariance obtained by the call to UnifExp on Line 12,

max
φ∈Φ
‖φ‖2

Σ̂−1 ≤ ǫexp

as desired. Furthermore, it is straightforward to see that [Σ̂](s,a) ≥ ǫunif
2SA ·Kunif for s ∈ S0 as well.

To complete the proof, we union bound over these events holding, and take the minimum of
the sample complexity bounds from either case.

F.1 Data Conditioning

Lemma 33. Consider running any algorithm for K episodes. Let Kh(s, a) denote the number of
visits to (s, a, h). Then with probability at least 1− δ, for all (s, a, h) simultaneously, we have

Kh(s, a) ≤W ⋆
h (s)K +

√
2W ⋆

h (s)K · log
SAH

δ
+ log

SAH

δ
.

Proof. By definition, we have

sup
π

wπ
h(s) = W ⋆

h (s).

This implies that any policy will reach (s, h) with probability at most W ⋆
h (s). We can therefore

think of this as the sum of Bernoullis with parameter at most W ⋆
h (s), so the bound follows by

applying Bernstein’s inequality and a union bound.

Lemma 34. Consider the set

Ω̂h,K(δ) :=

{
diag(v) : v ∈ R

SA
+ , [v](s,a) ≤W ⋆

h (s) +

√
2W ⋆

h (s)

K
· log SAH

δ
+

1

K
log

SAH

δ

}
.

Consider running some set of policies for K episodes, and let Λ̂ be defined as

Λ̂h = diag(v̂), [v](s,a) =
Kh(s, a)

K
.

Then with probability at least 1− δ, we have that Λ̂h ∈ Ω̂h,K(δ) for all h ∈ [H] simultaneously.

Proof. This is an immediate consequence of Lemma 33.

We will denote Ω̂h,K := Ω̂h,K(δ) when the choice of δ is clear from context.

Lemma 35. Consider the function

f(Λ) =
1

η
log



∑

φ∈Φ
e
η‖φ‖2

A(Λ)−1


 for A(Λ) = Λ+Λ0

Assume that for all φ ∈ Φ we have

max
φ∈Φ
|[φ](s,a)| ≤ Cφ · (W ⋆

h (s) + ǫ), ∀s ∈ S0
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for some S0 and some Cφ, ǫ > 0, and otherwise [φ](s,a) = 0. Assume that Λ0 = diag(v) for some
v satisfying

[v](s,a) ≥ C ′ ·W ⋆
h (s), ∀s ∈ S0

and otherwise [v](s,a) ≥ λ, for some C ′, λ > 0. Then we can bound

sup
Λ̂,Λ̂′∈Ω̂h,K

|∇Λf(Λ)|
Λ=Λ̂

[Λ̂′]|

≤max
s∈S0

(
2SAC2

φ

C ′ +
2SAC2

φǫ
2

C ′ ·W ⋆
h(s)

)
·
(

2

C ′ +
2

C ′KW ⋆
h(s)

· log SAH

δ

)

and

sup
Λ̂,Λ̂′,Λ̂′′∈Ω̂h,K

|∇2
Λf(Λ)|

Λ=Λ̂
[Λ̂′, Λ̂′′]|

≤ max
s∈S0

(2 + 2η)

(
2SAC2

φ

C ′ +
2SAC2

φǫ
2

C ′ ·W ⋆
h (s)

)2

·
(

2

C ′ +
2

C ′KW ⋆
h(s)

· log SAH

δ

)2

.

Proof. By Lemma D.5 of [42], we have that

∇Λf(Λ)|
Λ=Λ̂

[Λ̂′] = −


∑

φ∈Φ
e
η‖φ‖2

A(Λ̂)−1


 ·

∑

φ∈Φ
e
η‖φ‖2

A(Λ̂)−1φ⊤A(Λ̂)−1Λ̂′A(Λ̂)−1φ.

We have

φ⊤A(Λ̂)−1Λ̂′A(Λ̂)−1φ =
∑

s,a

[φ]2(s,a) · [Λ̂′](s,a)

[A(Λ̂)]2(s,a)
=
∑

s∈S0

∑

a

[φ]2(s,a) · [Λ̂′](s,a)

[A(Λ̂)]2(s,a)

where the last equality follows since, for s 6∈ S0, we have assumed [φ](s,a) = 0.
Now consider some s ∈ S0. By assumption we have [φ]2(s,a) ≤ 2C2

φ · (W ⋆
h (s)

2 + ǫ2) and by our

assumption on Λ0 we can lower bound [A(Λ̂)](s,a) ≥ C ′ ·W ⋆
h (s). Furthermore, since Λ̂′ ∈ Ω̂h,K, we

have

[Λ̂′](s,a) ≤W ⋆
h (s) +

√
2W ⋆

h (s)

K
· log SAH

δ
+

1

K
log

SAH

δ

≤ 2W ⋆
h (s) +

2

K
log

SAH

δ
.

Putting this together, we have

[φ]2(s,a) · [Λ̂′](s,a)

[A(Λ̂)]2(s,a)
≤

4C2
φ · (W ⋆

h (s)
2 + ǫ2) · (W ⋆

h (s) +
1
K log SAH

δ )

(C ′ ·W ⋆
h (s))

2

≤
(
2C2

φ

C ′ +
2C2

φǫ
2

C ′W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′KW ⋆
h(s)

log
SAH

δ

)
.
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It follows that

∑

s∈S0

∑

a

[φ]2(s,a) · [Λ̂′](s,a)

[A(Λ̂)]2(s,a)
≤ max

s∈S0

(
2SAC2

φ

C ′ +
2SAC2

φǫ
2

C ′W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′KW ⋆
h(s)

log
SAH

δ

)
.

The second bound follows in an analogous fashion, using the expression for the second derivative
given in Lemma D.5 of [42].

Algorithm 4 Uniform Exploration (UnifExp)

input: tolerance ǫunif , reruns K, confidence δ, step h
D← ∅
for (s, a) ∈ S ×A do

// Learn2Explore is as defined in [46]

{(Xj ,Πj , Nj)}⌈log2 1/ǫunif⌉j=1 ← Learn2Explore({(s, a)}, h, δ
2SA ,

δ
2KSA , ǫunif)

if ∃jsa such that (s, a) ∈ Xjsa then
Rerun every policy in Πjsa Ksa := ⌈ K

SA|Πjsa |
⌉ times, store observed transitions in D

end if
end for
return D

Lemma 36. With probability at least 1− δ, Algorithm 4 will terminate after running for at most

K + poly(S,A,H, log
K

δǫunif
) · 1

ǫunif

episodes and will collect at least
W ⋆

h (s)K
2SA samples from each (s, a) such that W ⋆

h (s) > ǫunif .

Proof. By Theorem 13 of [46], with probability at least 1− δ/2SA, for any (s, a):

• Learn2Explore will run for at most poly(S,A,H, log K
δǫunif

) · 1
ǫunif

episodes.

• Rerunning every policy in Πjsa once, with probability at least 1 − δ/K we will collect N =
2−jsa |Πjsa | samples from (s, a), for |Πjsa | = O(2jsa · S3A2H4 log3 1/δ).

• We have that W ⋆
h (s) ≤ 2−jsa+1.

• IF (s, a) 6∈ Xj for all j = 1, 2, . . . , ⌈log 1/ǫunif⌉, then W ⋆
h (s) ≤ ǫunif .

By the above conclusions, rerunning policies in Πjsa on Line 7, with probability at least 1− δ/2SA
we will collect

N ·Ksa ≥ N · K

SA|Πjsa |
=

2−jsaK

SA

samples from (s, a). As noted, W ⋆
h (s) ≤ 2−jsa+1, so this implies that we will collect at least

W ⋆
h (s)K
2SA

samples from (s, a). Union bounding over this holding for all (s, a), and noting that we only fail to
collect this many samples if W ⋆

h (s) ≤ ǫunif gives the collection guarantee.
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To bound the total number of episodes, we note that the procedure on Line 7 will, in total
collect at most

∑

s,a:jsa exists

|Πjsa |⌈Ksa⌉ ≤
∑

s,a:jsa exists

|Πjsa |+
∑

s,a

K

SA
=
∑

s,a

|Πjsa |+K

episodes. IF jsa exists, this implies that |Πjsa | ≤ O(2jsa · S3A2H4 log3 1/δ), and since jsa ∈
{1, 2, . . . , ⌈log 1/ǫunif⌉}, this implies that the above is bounded by

K +O(ǫ−1
unif · S3A2H4 log3 1/δ).

Combining this with our bound on the total number of episodes collected by Learn2Explore, we
have that the number of episodes collected by Algorithm 4 is bounded by

K + poly(S,A,H, log
K

δǫunif
) · 1

ǫunif
.

F.2 Online Frank-Wolfe

Lemma 37. Let

fi(Λ) =
1

ηi
log


∑

φ∈Φ
e
ηi‖φ‖2

Ai(Λ)−1


 , Ai(Λ) = Λ+

1

TiKi
Λ0,i

for some Λ0,i satisfying Λ0,i � Λ0 for all i, and ηi = 22i/5. Let (βi,Mi) denote the smoothness and
magnitude constants for fi. Let (β,M) be some values such that βi ≤ ηiβ,Mi ≤ M for all i, and
R the diameter of the domain of possible values of Λ.

Then, if we run Algorithm 4 of [43] on (fi)i with constraint tolerance ǫ and confidence δ and
Ki = Ti = 2i, we have that with probability at least 1− δ, it will run for at most

max

{
min
N

16N s.t. inf
Λ∈Ω

max
φ∈Φ

φ⊤(NΛ+Λ0)
−1φ ≤ ǫ

6
,
poly(β,R, d,H,M, log 1/δ, log |Φ|)

ǫ4/5

}
.

episodes, and will return data {φτ}Nτ=1 with covariance Σ̂N =
∑N

τ=1φτφ
⊤
τ such that

f̂i(N
−1Σ̂N ) ≤ Nǫ,

where î is the iteration on which OptCov terminates.

Proof. Our goal is to simply find a setting of i that is sufficiently large to guarantee the condition
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fi(Λ̂i) ≤ KiTiǫ is met. By Lemma C.1 of [43], we have with probability at least 1− δ/(2i2):

fi(Λ̂i) ≤ inf
Λ∈Ω

fi(Λ) +
βiR

2(log Ti + 3)

2Ti
+

√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

≤ 3max

{
inf
Λ∈Ω

fi(Λ),
βiR

2(log Ti + 3)

2Ti
,

√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

}
.

So a sufficient condition for fi(Λ̂i) ≤ KiTiǫ is that

KiTi ≥
3

ǫ
max

{
inf
Λ∈Ω

fi(Λ),
βiR

2(log Ti + 3)

2Ti
,

√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

}
.

(F.4)

Recall that

fi(Λ) =
1

ηi
log



∑

φ∈Φ
e
ηi‖φ‖2

Ai(Λ)−1


 , Ai(Λ) = Λ+

1

TiKi
Λ0,i.

By Lemma D.1 of [42], we can bound

max
φ∈Φ
‖φ‖2

Ai(Λ)−1 ≤ fi(Λ) ≤ max
φ∈Φ
‖φ‖2

Ai(Λ)−1 +
log |Φ|
ηi

.

Thus,

inf
Λ∈Ω

fi(Λ) ≤ inf
Λ∈Ω

max
φ∈Φ
‖φ‖2

Ai(Λ)−1 +
log |Φ|
ηi

= inf
Λ∈Ω

max
φ∈Φ

TiKiφ
⊤(TiKiΛ+Λ0,i +Λoff)

−1φ+
log |Φ|
ηi

By our choice of ηi = 22i/5, and Ki = 2i, Ti = 2i, we can ensure that

KiTi ≥
6

ǫ

log |Φ|
ηi

as long as i ≥ 2
5 log2[

6 log |Φ|
ǫ ]. To ensure that

TiKi ≥
6

ǫ
inf
Λ∈Ω

max
φ∈Φ

TiKiφ
⊤(TiKiΛ+Λ0,i)

−1φ
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it suffices to take

i ≥ argmin
i

i s.t. inf
Λ∈Ω

max
φ∈Φ

φ⊤(23iΛ+Λ0,i)
−1φ ≤ ǫ

6
.

Since we assume that we can lower bound Λ0,i � Λ0 for each i, so this can be further simplified to

i ≥ argmin
i

i s.t. inf
Λ∈Ω

max
φ∈Φ

φ⊤(23iΛ+Λ0)
−1φ ≤ ǫ

6
. (F.5)

We next want to show that

TiKi ≥
3

ǫ
· βiR

2(log Ti + 3)

2Ti
.

Bounding βi ≤ ηiβ, a sufficient condition for this is that

i ≥ 2

5

(
log2(12βR

2i) + log2
1

ǫ

)
.

By Lemma A.1 of [43], it suffices to take

i ≥ 6

5
log2(9βR

2 log2
1

ǫ
) +

2

5
log2

1

ǫ
(F.6)

to meet this condition (this assumes that 12βR2 ≥ 1 and 2
5 log2

1
ǫ ≥ 1—if either of these is not the

case we can just replace them with 1 without changing the validity of the final result).
Finally, we want to ensure that

TiKi ≥
3

ǫ

(√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

)
.

To guarantee this, it suffices that

25i/2 ≥ c

ǫ

√
M2d4H4i3 log3(iH/δ), 23i ≥ c

ǫ
·Md4H3i7/2 log7/2(iH/δ).

or

i ≥ 4

5
log2(cMdHi log(H/δ)) +

2

5
log2

1

ǫ
, i ≥ 4

3
log2(cMdH log(H/δ)) +

1

3
log2

1

ǫ
.

By Lemma A.1 of [43], it then suffices to take

i ≥ 12

5
log(cMdH log(H/δ) log2 1/ǫ) +

2

5
log2

1

ǫ
,

i ≥ 4 log2(cMdH log(H/δ) log2 1/ǫ) +
1

3
log2

1

ǫ

(F.7)

Thus, a sufficient condition to guarantee (F.4) is that i is large enough to satisfy (F.5), (F.6),

and (F.7) and i ≥ 2
5 log2[

6 log |Φ|
ǫ ].
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If î is the final round, the total complexity scales as

î∑

i=1

TiKi =

î∑

i=1

22i ≤ 2 · 22̂i.

Using the sufficient condition on i given above, we can bound the total complexity as

max

{
min
N

16N s.t. inf
Λ∈Ω

max
φ∈Φ

φ⊤(NΛ+Λ0)
−1φ ≤ ǫ

6
,
poly(β,R, d,H,M, log 1/δ, log |Φ|)

ǫ4/5

}
.

F.3 Pruning Hard-to-Reach States

Algorithm 5 Prune: Prune Hard-to-Reach States

input: tolerance ǫunif , confidence δ
Skeep ← ∅
for h ∈ [H] do

for s ∈ S do
// Learn2Explore is as defined in [46]

{(Xj ,Πj , Nj)}
⌈log2 1

32ǫunif
⌉

j=1 ← Learn2Explore({(s, a)}, h, δ
SH , 12 , 32ǫunif) for any a ∈ A

if ∃js such that (s, a) ∈ Xjs then
Skeep = Skeep ∪ {(s, h)}

end if
end for

end for
return Skeep

Lemma 38. With probability at least 1− δ, Algorithm 5 will terminate after running for at most

poly(S,A,H, log
1

δǫunif
) · 1

ǫunif

episodes and will return a set Skeep such that, for every (s, h) ∈ Skeep, we have W ⋆
h (s) ≥ ǫunif , and,

if (s, h) 6∈ Skeep, then W ⋆
h (s) ≤ 32ǫunif .

Proof. As in Lemma 36, by Theorem 13 of [46], with probability at least 1− δ/SH, for any (s, h):

• Learn2Explore will run for at most poly(S,A,H, log 1
δǫunif

) · 1
ǫunif

episodes.

• Rerunning every policy in Πjs once, with probability at least 1/2 we will collect N = 2−js |Πjs |
samples from (s, a, h).

• If (s, a) 6∈ Xj for all j = 1, 2, . . . , ⌈log 1/ǫunif⌉, then W ⋆
h (s) ≤ 32ǫunif .
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We union bound over this event holding for all (s, h), which occurs with probability at least 1− δ.
It is immediate by the last property that, if (s, h) 6∈ Skeep then W ⋆

h (s) ≤ 32ǫunif .
We next show that if (s, h) ∈ Skeep, then this implies that W ⋆

h (s) ≥ ǫunif . Let X be a random
variable denoting the total number of samples we collect from (s, a, h) when rerunning all policies
in Πjs . Then by Markov’s Inequality, by the above properties we have

1

2
≤ P[X ≥ Njs/2] ≤

2E[X]

Njs

≤ 2|Πjs |W ⋆
h (s)

Njs

= 8 · 2jsW ⋆
h (s).

It follows that

W ⋆
h (s) ≥

1

16 · 2js ≥
1

16 · 2⌈log2
1

32ǫunif
⌉ ≥

1

32 · 2log2
1

32ǫunif

= ǫunif .

This completes the proof.
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