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Abstract—While resistive random access memory (RRAM)
based deep neural networks (DNN) are important for low-power
inference in IoT and edge applications, they are vulnerable to
the effects of manufacturing process variations that degrade their
performance (classification accuracy). However, to test the same
post-manufacture, the (image) dataset used to train the associated
machine learning applications may not be available to the
RRAM crossbar manufacturer for privacy reasons. As such, the
performance of DNNs needs to be assessed with carefully crafted
dataset-agnostic synthetic test images that expose anomalies in the
crossbar manufacturing process to the maximum extent possible.
In this work, we propose a dataset-agnostic post-manufacture
testing framework for RRAM-based DNNs using Entropy Guided
Image Synthesis (EGIS). We first create a synthetic image dataset
such that the DNN outputs corresponding to the synthetic images
minimize an entropy-based loss metric. Next, a small subset
(consisting of 10-20 images) of the synthetic image dataset, called
the compact image dataset, is created to expedite testing. The
response of the device under test (DUT) to the compact image
dataset is passed to a machine learning based outlier detector for
pass/fail labeling of the DUT. It is seen that the test accuracy using
such synthetic test images is very close to that of contemporary
test methods.

I. INTRODUCTION

In recent years, resistive random access memory (RRAM)
based mixed-signal DNN accelerators have emerged as a
promising alternative to fully digital accelerators because of
low power consumption, high density and compatibility with
CMOS technology of RRAM crossbars [1], [2]. The RRAM
based DNN chips store DNN weights using conductances
of RRAM cells within crossbars. However, the conductances
of RRAM devices are vulnerable to manufacturing process
variations resulting in performance loss (as measured by
classification accuracy). This necessitates careful performance
screening of manufactured devices before field deployment.

Functional testing of DNN accelerators has been investi-
gated in the past [3]-[5]. Further, testing of process variation
induced performance (classification accuracy) degradation of
RRAM based DNN accelerators has been addressed in [6], [7].
A major limitation of these works is that the test frameworks
require access to the training/testing dataset of the DNN.

In this research, we ask a fundamental question: Is it
necessary to have access to the training or testing dataset
of a DNN to develop functional tests for DNN hardware?
Such access becomes difficult in privacy-critical applications
[8] such as in healthcare, robotics, and defense, where patient
data in healthcare for example, cannot be divulged to third
parties for privacy reasons. However, model information (such

as DNN weights) can be made available to the hardware manu-
facturer. In such scenarios, dataset-agnostic test methodologies
for DNNs are necessary for pass/fail manufacturing test of
DNNs without access to the DNN training/testing dataset.
We show in this research, that such dataset agnostic testing
methods of quality comparable to existing test techniques are
indeed possible and deployable using synthetic test datasets
(images).

We first create a set of purely synthetic images using entropy
guided image synthesis (EGIS). Next, we derive a compact
image dataset from the generated synthetic images using
image set compaction. During testing, a response signature
is extracted from each DNN by applying the compact image
dataset and the signature is passed to a trained outlier detector
for pass/fail prediction. While prior work has used generative
adversarial network (GAN) to augment test patterns [9] ,
training a GAN requires access to the DNN training dataset.
To the best of our knowledge, this is the first work that
develops test images without access to the original DNN
training or testing dataset. In summary, we make the following
contributions:

(1) We propose a novel dataset-agnostic image synthesis algo-
rithm called entropy guided image synthesis (EGIS), suitable
for privacy-critical applications, which generates synthetic
images for RRAM-based DNN testing.

(2) An image set compaction algorithm is developed that
allows DNN testing with 10-20 synthetic test images, signifi-
cantly reducing test cost.

(3) Experiments show that the proposed dataset-agnostic test-
ing framework achieves comparable test accuracy with respect
to the state-of-the-art test methodologies that require access to
the testing/training dataset of the DNN.

II. OVERVIEW

In this section, we explain the dataset privacy model as-
sumed in this work and the overall testing approach.
Dataset privacy model: We assume that the end user and the
DNN (RRAM crossbar) manufacturer are different entities.
The end user has access to the training and testing datasets
and is responsible for training the DNN. In our methodology,
the end user or organization responsible for training the DNN
needs to label D RRAM based manufactured DNNs as “pass”
or “fail” and needs to provide the labels to the RRAM man-
ufacturer. This could be from use of prior test algorithms [3].
The RRAM manufacturer independently designs a compact
image dataset which is applied to a manufactured device under
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Fig. 1: Overall Framework

test (DUT) during post-manufacture test. The RRAM crossbar
manufacturer also uses the labeled DUTs to design an outlier
detector for pass/fail classification of a DUT. Since labeling
of DUTs can be expensive, the proposed test framework is
developed with only 1000 labeled DUTs, which is 3-4 orders
fewer than the number of weights of the DNN (typically 1-100
million weights).

Overall testing approach: In the presence of manufacturing
process variations, the accuracy of every manufactured DUT
varies from its nominal accuracy. For a fixed acceptable
accuracy threshold A.,.ofy and a DUT with accuracy A, the
test framework aims at predicting whether A > A.y40¢f. The
overall test framework, as shown in Fig. 1 involves three steps:
(1) A synthetic image dataset consisting of N images is
generated using a generator neural network, which is trained
using an entropy based loss functions to promote diversity
within the synthetic image dataset.

(2) To enable post-manufacture testing using fewer images, we
down-select K images from the IV images above and create a
compact image dataset () << ). The image set compaction
is achieved using simulated annealing

(3) During testing, a signature is extracted from the DUT by
applying the compact image dataset to the DUT. The signature
is passed to an outlier detector which predicts whether the
DUT is “pass” (A > Acutofs) or “fail” (A < Acutof )

Steps (1) and (2) are executed offline before real time testing
and the outlier detector used in step (3) is trained using the D
labeled DUTs provided by the end user.

III. RRAM VARIABILITY MODEL

DNNs consist of convolution, dense, maxpool and batch-
normalization layers. Convolution and dense layers involve
matrix vector multiplication and general matrix multiplication,
which can be accelerated using RRAM crossbars. Within a
crossbar, the (p, ¢)-th element of a weight matrix W € RF*@,
wpq is mapped to the (p, ¢)-th RRAM cell and its conductance
is programmed to g,,. We refer the reader to [10] for details
about how DNNs are accelerated using analog crossbars.

Accurate inference of RRAM based DNNs relies on the
assumption that a DNN weight can be precisely mapped to
the target conductance within the crossbar. However, mea-
surements from manufactured RRAM crossbars show that
programmed conductance within a crossbar deviates from its

target conductance due to device-to-device and cycle-to-cycle
variations [11]. Our goal is to model the forward pass of a
DNN in presence of RRAM conductance variations.

For variability modeling, we replace the ideal weight matrix
of each layer of the DNN W with an equivalent non-ideal
weight matrix W™, which is calculated as: (1) We first flatten
th_g weight matrix W € R”*? into a flattened weight vector
Wil ¢ RP i (2) We cﬂculate a non-ideal flattened weight
vector as: W/bmt = Wi(1 + ?) Here, the non-ideality
coefficient vector € € RF? models the impact of conductance
variations on the weights of a DNN. (3) Finally, we convert
the non-ideal flattened weight vector into a non-ideal weight
matrix W™ € RFPXQ, The weight matrix is flattened into a
vector for spatial correlation modeling as discussed in the next
paragraph.

Now we explain, how 7 is calculated. Prior work has
shown that device-to-device variation can be inter-chip or intra-
chip [12]. Inter-chip variation (also called systematic variation)
affects all RRAM cells of a crossbar equally whereas intra-chip
variation affects RRAM cells differently. Further, the research
of [13] has shown that RRAM cells which are physically
close to each other have correlated intra-chip variation profile.
As a result intra-chip variation can be modeled as a sum of
spatially correlated variation and independent random variation
[13]. Cycle-to-cycle variation can be modeled as independent
random variation. Based on these observations, we model the
non-ideality coefficient vector as a sum of systematic (?sys),
spatially correlated (€ ") and random (€"*"?) non-ideality
coefficient vectors, i.e.,

? — ?sys + ?)cor + ?)rand 1)
By definition, systematic variation affects all RRAM cells of
a DNN equally [12]. As a result, we sample ¢ ~ N(0,02,,)
and set ?iys =1 for 1 < a < PQ. Following [14], we sam-
ple all elements of ¢rand independently from N(0,02, ).
Here 02,, (07,,4) refers to the variance in the elements of
non-ideality coefficient vector caused by systematic (random)
variation. Calculation of € involves the following steps:
(1) We compute the spatial correlation matrix I' € RFP@*FQ
where the (a, b)-th element of T, -y, is the correlation between
a-th and b-th element of W/!. Within a crossbar, if wj:l and
wl{l are dgp distance apart, then we set v, = exp(—Adgp),
where A is a proportionality constant [15]. (2) The spatial
covariance matrix is calculated as ¥ = I' ® 02, where o2 .
represents the variance corresponding to spatial correlation. (3)
Finally, we sample € from .
We refer the reader to [11]-[15] for more details about RRAM

variability modeling.

IV. IMAGE SYNTHESIS

The goal of the synthetic image dataset (SID) generation is
to synthesize a set of images for post-manufacture test without
any access to training and testing dataset of the DNN. The key
intuition is that when a DNN is used to classify the images
from its testing dataset, the DNN outputs produce a constant
entropy independent of the individual images. The proposed
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Fig. 2: Generator neural network training

entropy guided image synthesis (EGIS) approach trains a
generator neural network (GeNN) which maps a set of input
noise vectors to images such that when the synthetic images
are applied to the DNN, the DNN outputs produce an entropy
equal to the entropy corresponding to the original testing
dataset. In Section IV-A, we first introduce definitions of class
entropy and sample entropy. We show that sample entropy is
approximately zero and class entropy scales logarithmically
with respect to the number of classes in the testing dataset,
irrespective of the pixel values of individual images. Next, in
Section IV-B, we explain how the GeNN is trained to create the
SID, which has similar class and sample entropies compared
to the original testing dataset.

A. Sample and Class Entropy

Assume that an ideal DNN (used as a classifier) is trained
for an image dataset 7 = {z,,lab,}_,, with N images
from total M classes. The true label of the n-th image x,, is
lab,. When we apply z,, to the ideal DNN, the DNN’s final
layer neuron outputs consist of M real numbers {y” }M_,.
These DNN outputs undergo softmax operation to generate
normalized class probabilities as {p” }M_,, where p?, is the
probability that the image belongs to class m. The softmax
operation is defined as, p]y, = %. By definition of
an ideal DNN (used as a classiﬁelrjz1

1 if m=Ilab
o n 2
Pm {0 otherwise. @

In the rest of this subsection, we first introduce the concept of
entropy in machine learning. Next, we will use Equation (2)
to derive class entropy and sample entropy. Intuitively, class
entropy is a measure of the confidence with which a DNN
classifies a set of images. A lower class entropy implies that
the images are classified with high confidence. On the other
hand, a high value of sample entropy indicates that the dataset
has a diverse set of images.

In machine learning, if an image z,, is applied to a DNN
for classification and the normalized class probabilities (soft-
max outputs) are {p" }M_,, then the entropy is defined as
— fo:lp’,; log p» . Using this, we define class entropy H.
and sample entropy H as follows:

Class Entropy: We derive class entropy as:

1 N M
He=—+> > pnlog()) 3)

n=1m=1

N
1 7 n i n
=52l D plos(pl) + ;b Pl log(pp,)]

=0 “4)

n=1 m=lab,

In the above derivation, when m = lab,,, we have log(pl,) =
log(1) = 0. When m # lab,,, we have p], = 0.
Sample Entropy: We define sample entropy as:

M 1 N 1 N
Ho==3 (g m)los(5 > mh) O
m=1 n=1 n=1

If there are N,,, images in 7 with label m, we can calculate:

I RN | . 0
Pn= 2 Pm=rl D Pt D Pl
n=1

m=lab,, m##laby,
1 N,,
DRI EE
m=lab,, m#laby,

If all classes have equal number of images in 7, we have
N, = % and p,, = ﬁ Finally, we derive

M M
1 1
H,=—=Y P,logp, =— Y —-log— =logM (6)
m=1 m=1 M M

From Equation (6) and (4), we have:
exp(Hs — H.) = exp(logM —0) = M @)
If 7 is applied to a practical DNN (instead of ideal DNN),

Equation (2) holds true approximately (instead of exact equal-
ity). As a result, Equation (4),(6) and (7) can be modified as:

H.~0 ®)
H, ~log M O]
exp(Hs — H.) =~ M (10)

B. Generator Neural Network Training

We want to create a SID X = {x1,29--- ,2y} such that
when images from X are applied to a DNN with nominal
weights (which are mapped to RRAM crossbars), it satisfies
Equation (8),(9) and (10). To achieve this, we use a GeNN
with weights 6, which takes a © dimensional noise € R® as
its input and maps the noise to an image gg(n). The weights
of the GeNN (0) are trained using backpropagation as shown
in Fig. 2.

Before training, we fix the probability density function of the
noise as P(n) = NM(0,I). At every iteration of the optimization,
B (B refers to batch size) noise vectors {n,}£_, are sampled
from P(7). During forward pass (as shown by solid arrows in
Fig. 2), the GeNN generates B images {z;}2_, corresponding
to the noise vectors {m)}f:l. The images are then passed
to a DNN with trained weights (used in end application).
The DNN maps an input image x; to outputs {y® }_,. The
DNN outputs are passed to the softmax function to calculate
normalized class probabilities {p? }M_,. We calculate class
entropy H. and sample entropy H, from the softmax outputs.

In order to reduce uncertainty in classification (minimize
class entropy) and promote diversity of images (maximize
sample entropy), we set the loss as £ = — exp(H; — H,.). The
goal of GeNN training is to minimize £ by updating 6, i.e.,
ming L. During backward pass (as shown by dotted arrows in
Fig. 2), the gradient of £ with respect to 6 is calculated using
chain rule of differentiation. Finally, 6 is updated using Adam
optimizer.



C. Synthetic Image Dataset

Once the generator neural network is trained, we perform
inference using it to create a synthetic image dataset. The
synthetic image dataset is created in two steps:

(1) We sample N noise vectors {n1,72, - , 7N}

(2) Each sampled noise vector is applied to the generator neural
network. Corresponding to the input noise 7, the generator
creates a synthetic image z,, (for 1 <n < N).

V. IMAGE SET COMPACTION

The SID is a set of N (= 10) images that can be potentially
used for post manufacture test. However, for practical utility
during volume production, it is important to test DUTSs using as
few images as possible. We develop an image set compaction
algorithm to create a compact image dataset (CID) of K im-
ages (K << N), which are used for efficient post-manufacture
test. While it is possible to generate only /K images using the
approach mentioned in Section IV and use them for testing,
such an approach leads to unpredictable post-manufacture test
performance because the generated images depend highly on
the randomly sampled noises for image generation. On the
other hand, the image set compaction algorithm uses signatures
from DUTs to down-select images from the SID, leading to
reliable performance during post-manufacture test.

The image set compaction algorithm requires D DUTSs
which are known to be either “pass” or “fail”. The goal is
to choose K images which, when used for predicting the D
DUTs as “pass” or “fail”, are most effective. In this work, we
use simulated annealing to pick the compact image dataset.

Algorithm 1 outlines the overall image set compaction
algorithm. As inputs, it requires the SID &, initial and final
temperatures 7" and T/ and D DUTs which are known
to be “pass” or “fail”. The algorithm starts with /& images ran-
domly selected from X. At every iteration of the optimization:
(1) We replace each image in the current solution with a ran-
domly chosen image from & with probability 0.5 to generate
a new solution. (line 5-12)

(2) To calculate the reward for the new solution, the D DUTs
with known label are split into a training set of DUTs Dy, and
a validation set of DUTs D,,; (line 16). The ratio of IIIIDD;‘JI
is set as 4. Each image of the new solution is applied to all
the D DUTs to generate a signature (defined in Section VI)
corresponding to each DUT (line 17). A binary classifier is
trained to predict the label of a DUT from its signature using
a training set of DUTs Dy, (line 18). The trained classifier
then predicts the labels of the validation DUTs D, and A,y
refers to the percentage of DUTs correctly classified by the
binary classifier (line 19-20). The value of A, is calculated
for I random trials, where in each trial, training and validation
DUTs are picked randomly. The reward for the new solution
is set to the average value of A,,; over I random trials.

(3) If the new reward is better than the current reward,
the current solution is updated (line 25-26). Otherwise the
new solution is accepted or rejected based on the derived
acceptance probability (line 29). The annealing temperature
is reduced at the end of each iteration, where p is the cooling

Algorithm 1 Image Set Compaction

1: Input: Synthetic Image Dataset X', number of images in X = NV,
number of images in compact image dataset K, initial temper-
ature 7%, final temperature 7" and D DUTs which are
known to be “pass” or “fail”

2: Initialize Randomly pick an initial solution C®" =
{c5¥7 c§", -+ ¢§¥"} C X and set best reward r’**' = —oo,
current reward r°“" = —oo, temperature 74" = T"i

3: while 7" > T/ do

4:  // Step 1: Pick a new solution

5: Set CTL@'I.U — C(,‘u?"

6: for k =1 upto K do

7: Sample a random variable @ ~ Bernoulli(0.5)

8: if « =1 then

9: Randomly pick j € {1,2,---, N} such that z; ¢ C"*"

10: Set ¢ = x;

11: end if

12 end for

13:  // Step 2: Evaluate a reward with new solution

14: r"* =0

15 for ¢ =1 upto I do

16: Randomly split D DUTs into Dy, and D,q DUTs

17: Generate signatures of all D DUTs by applying C™“*

18: Train a binary classifier with Dy, DUTs which predicts a
DUT as “pass” or “fail” from its signature

19: Predict D4 DUTs using the classifier

20: Set validation accuracy A,q; = w x 100%

21: P = Y 4 Ay o

22:  end for

23: "V = Tnew

24: /I Step 3: Accept or reject new solution

25:  if ™" > r°"" then

26: CC’LLT — CTLE’U)’ rcur — rnew

27:  else e cur

28: Calculate acceptance probability p = exp (r e )

29: Set C“", r““" based on the derived probability as

with probability 1 — p

new new
crevor

o o CCUT ,',,Cu’l‘
C{,’U/’ , r(,u’l — ) ) o
with probability p

30:  end if

31 if 7" > %" then
32 Cbest — Cnew

33: rbest — prew

34:  end if

350 Set TU" = pTeur
36: end while
37: Return C**

rate (line 35). At the end, when the temperature reaches below
TFinal the solution which achieves the best reward is set as
the compact image dataset for post-manufacture test.

VI. OUTLIER DETECTION

In this section, we explain the training procedure of the
outlier detector (shown in Fig. 1), which is used to label a
DUT as “pass” or “fail” from the response of the DUT to
the CID. The outlier detector is implemented using a binary
classifier. Each image of the CID C = {¢1, ¢z - - - ¢k } is applied
to the D DUTs with known “pass”/“fail” labels. When the k-th
image in C, ¢y is applied to the d-th DUT, the DUT output is
a vector of M real numbers 5, = [yF y5 y%,]. The
DUT outputs corresponding to all images in C are stacked to

generate the DUT signature, i.e., sigqg = [?1 Ty e ?K]
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Each DUT has a label labg € {0,1}, where 1 indicates a
“pass” DUT and 0 indicates a “fail” DUT. The overall training
data for the classifier is D signatures with associated labels.
The goal of training is to fit a function f.;¢(-) : REM — {0,1}
such that fr(sigs) = labg. We use gradient boosting to fit
feiy, where an ensemble of weak learners represent f.r. We
refer the reader to [16] for further details on gradient boosting.

VII. RESULTS

A. Simulation Setup and Performance Metrics

We evaluate three DNNs: (1) VGG16 [17] trained on
CIFAR-10 [18] (nominal accuracy = 93.24%) (2) Mobilenet
[19] trained on CIFAR-10 (nominal accuracy = 91.72%)
and (3) VGGI16 trained on CIFAR-100 (nominal accuracy =
72.36%). For Variability modeling, we define total variance
ok, = Syg + 02, + 02, Following [12], we fix o2
0.5 x o,

rand —

We define percentage of systematic (spatially
2

sys

correlated) variation as GT ( mr) x100%. We simulate
for (a) typical variability: 35% ('55%) systematic (spatially
correlated) variation and (b) extreme systematic variability
50% (0%) systematic (spatially correlated) variation. Table
I outlines the layers of the GeNN. We sample each noise
vector from R0, After layer 1-4, we use batch normalization
and Relu activation. The final layer of the GeNN uses tanh
activation. The generator neural network is trained for 5000
iterations using Adam optimizer [20] with an initial learning
rate of 0.0003. We use (a) A = 0.001 (b) g4y = 0.3 for
VGGI16 and o4; = 0.15 for Mobilenet. (c) 7% = 2.0 (d)
Tfinal = 0.03 (e) cooling rate p = 0.98. (f) Number of images
in SID N = 2048 (g) Number of images in CID K = 2 — 16.

We use 1000 DUTS with known labels (“pass” or “fail”) to
train the outlier detector. We evaluate the test framework on
another 1000 DUTs. During testing, a DUT can fall in either
of the four cases: (a) True positive (TP): “pass” predicted as
“pass” (b) False negative (FN): “pass” predicted as “fail” (c)
False positive (FP): “fail” predicted as “pass” (d) True negative

TABLE I: Architecture of generator neural network

Input Output

Layer Type ‘ Channels | Channels Kernel Size
1 Transpose Convolution 100 256 2
2 Transpose Convolution 256 128 4
3 Transpose Convolution 128 64 4
4 Transpose Convolution 64 32 4
5 Transpose Convolution 32 32 4

(TN): “fail” predicted as “fail”.

We define test accuracy TA = % x 100%,
test escape as TE = TPJFTNFJFW x 100% and yield
loss as YL = zprmnrrpren X 100%. We categorize test
escapes into critical test escapes (CTE) and benign test escapes
(BTE). CTE is calculated as the percentage of DUTs which are
predicted as “pass” but their classification accuracy lies in the
range A < Acuiofs — 1%. BTE is calculated as the percentage
of DUTs which are predicted as “pass” but their classification
accuracy is in the range Acutorr — 1% < A < Acurors%.
We define A, as the p-th percentile classification accuracy
of the 1000 DUTs used for training the outlier detector. We
evaluate our test framework for Acuiorf = Aso, Aeo and Arg.
For example, for Acyiory = A7o, 70% DUTSs with highest
accuracy are referred as “pass”.

B. Compact Image Dataset Generation

Fig. 3 shows the class and sample entropy during the
training of the GeNN for Mobilenet (CIFAR-10) and VGG16
(CIFAR-100). The class entropy approaches 0 whereas sample
entropy approaches log M (M = 10 for CIFAR-10 and
M = 100 for CIFAR-100) at the end of the training. Fig.
4a shows how the best reward varies over the iterations of
simulated annealing (VGG16, CIFAR-10). The best reward,
starts at 89 and reaches 91 at the end of the optimization.
Fig. 4b shows the final images in the compact image dataset
(VGGL16, CIFAR-10, K = 4).

C. Evaluation of the Test Framework

Fig. 5a shows the performance of the proposed test
framework for typical variation (VGG16, CIFAR-10). For
Acutof = Aso, we achieve test accuracy between 88.6-
89.9% depending on the number of images K in the CID.
For Acutorsf = Aso and Azg, the test accuracy lies between
90.9-93% and 91.8-93.1% respectively. For all simulation
conditions, critical test escape is less than 4.4%, yield loss
is less than 4.5% and benign test escape is less than 3.5%. As
shown in Fig. 5b and Fig. 5c, the proposed framework achieves
similar test accuracy for Mobilenet trained on CIFAR-10 and
VGG-16 trained on CIFAR-100. For extreme variability, (50%
systematic, 0% spatially correlated and 50% random) the test
framework achieves test accuracy in the range 95-98%, critical
and benign test escapes less than 2% and yield loss less than
2.4% (VGG16, CIFAR-10). For Mobilenet trained on CIFAR-
10 and VGG-16 trained on CIFAR-100, we observe similar
trends.

The key takeaways from these experiments are: (a) Test
accuracy is above 89% for all simulation conditions. (b) De-
pending on simulation conditions, 4-8 images are appropriate
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Fig. 5: Evaluation of the test framework for (a) VGG16 on CIFAR-10 (b) Mobilenet on CIFAR-10 (c) VGG16 on CIFAR-100,
with 25% systematic, 25% spatially correlated and 50% random variation () = number of images in the compact image dataset)

TABLE II: Comparison with dataset-aware test

Test Accuracy
systematic | correlated | Acyoff | ours [6]
Aso 89.9 87.7
25% 25% Aso 92.1 933
Ao 91.8 93.9
Aso 95.4 96.4
50% 0% Aso 96.4 97.4
Aqo 97.8 98.1

for testing. Using 16 images leads to highest test duration
whereas using 2 images leads to sub-optimal test accuracy.

D. Runtime Analysis and Comparison with State-of-the-art

GeNN training, image set compaction and outlier detection
take 94 seconds, 688 seconds and 9ms respectively using
NVIDIA A100 GPU (VGGI16, CIFAR-10, N = 2048 and
K = 4). Since the CID is created offline and real-time testing
of RRAM-based DNNs only involves outlier detection, the
proposed test framework requires 9ms to test a DUT.

We compare the proposed framework with the state-of-the-
art dataset aware test of [6] (VGG16, CIFAR-10, K = 4).
Two major differences between the proposed framework and
[6] are: the work of [6] assumes access to (a) all images in the

original testing dataset and (b) exact classification accuracy of
all 1000 DUTs used to train the outlier detector. The proposed
framework only assumes access to “pass”/“fail” labels of 1000
DUTs. Table II shows that despite lack of access to the original
testing dataset and exact accuracies of the 1000 DUTs, for
typical process variation the proposed dataset-agnostic test
achieves test accuracy within 2.1% of [6] for a wide range
of accuracy cutoff. For extreme systematic variation the test
accuracy of dataset-agnostic test is within 1% of [6]

VIII. CONCLUSION
We propose a dataset-agnostic post-manufacture test frame-
work for RRAM based DNNs, targeted for privacy criti-
cal applications. A novel methodology is proposed to train
a generator neural network for creating a synthetic image
dataset. An image set compaction algorithm is developed to
create a compact image dataset, reducing the test duration
during volume production. The proposed framework achieves
comparable test accuracy with respect to dataset-aware test.
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