Stereocode: A Tool for Automatic Identification of
Method and Class Stereotypes for Software Systems

Ali F. Al-Ramadan
Department of Computer Science
Kent State University
Kent, Ohio, USA
aalramad@kent.edu

Joshua A. C. Behler
Department of Computer Science
Kent State University
Kent, Ohio, USA

jbehler] @kent.edu

Michael L. Collard
Department of Computer Science
The University of Akron
Akron, OH, USA
collard@uakron.edu

Abstract— We present Stereocode, a static analysis tool
engineered to automatically identify, and re-document software
systems written in C++, C#, and/or Java with method and class
stereotypes. A stereotype is a simple abstraction that encapsulates
the high-level behavior of a method or a class. The tool is built
around the srcML infrastructure, an XML representation of
source code. Stereocode annotates the srcML input with the
computed stereotypes as XML attributes to the function and class
tags. We showcase Stereocode’s efficiency in conducting large-
scale analysis of software systems, which involves using 1050
repositories from GitHub across C++, C#, and Java. The results
provide valuable insights into the distribution of stereotypes. A
demo video is available at: https://youtu.be/D9oxwUIPbOI.

Keywords—Stereocode, class

stereotypes, static analysis

srcML, method stereotypes,

I. INTRODUCTION

Software systems are becoming increasingly complex and
understanding their design is critical for maintenance and
evolution. Method and class stereotypes [1-3] have emerged as
powerful abstractions in the context of class design. A
stereotype is a concise statement that captures the intrinsic
atomic behavior of a method or a class at a much lower level
than high-level abstractions such as design patterns. An example
of a method stereotype is an accessor (e.g., getter) or a mutator
(e.g., setter) to indicate a method that gets or sets a data member
in an object. Similarly, common examples of class stereotypes
are boundary, entity, and controller.

Stereotype information has been shown to be useful in a
variety of applications related to program comprehension,
documentation, and maintenance activities [4—14]. Despite their
importance, there is a lack of an accurate and usable tool that can
automatically identify stereotype information from source code
at scale. Previous research relied on tools with very simplistic
analysis techniques to identify stereotypes in C++ or Java
systems. Furthermore, manually documenting and maintaining
stereotype information in large software is costly.

Michael J. Decker
Department of Computer Science
Bowling Green State University
Bowling Green, OH, USA

mdecke@bgsu.edu

Natalia Dragan
Department of Information
Systems and Business Analytics
Kent State University
Kent, Ohio, USA

ndragan@kent.edu

Jonathan I. Maletic
Department of Computer Science
Kent State University
Kent, Ohio, USA

jmaletic@kent.edu

To address these challenges, we introduce a public release of
Stereocode. This tool is designed to reliably and accurately
compute stereotypes for software systems written in C++, C#,
and Java (or a combination of these languages), at a large scale
by leveraging the srtcML infrastructure format [15, 16] allowing
for direct access to the syntactic information to support static
analysis. Stereocode begins by extracting detailed program
information (e.g., classes, methods, data members, etc.) from the
sccML input. This information is used to build a complete
symbol table for the entire software system. Once the symbol
table is constructed, Stereocode then uses it to identify
stereotypes. First, the stereotype of each method is computed
using a set of predefined rules [1]. Then, the stereotypes of
classes are identified using the frequency distribution of the
computed method stereotypes [3]. Some of the features that
Stereocode offers include:

e The ability to identify stereotypes for both individual
source files and complete software systems.

e Supports the identification of stereotypes for C++, C#,
and/or Java programming languages.

e Provides output in various formats.

Stereocode can contribute to the field of software
engineering by providing a more effective tool for software
analysis and design recovery. The tool is publicly available at
https://github.com/srcML/Stereocode and licensed under GPL3.

II. RELATED WORK

The initial version of a stereotyping tool [1-3, 17] was
developed as a research prototype to support the automatic
identification of method and class stereotypes for C++ systems.
This tool applies the stereotype rules as transformation in XSLT
to the srcML input of the source code. The resulting stereotypes
are applied to the function and class tags in the header files.
However, this version of Stereocode does not account for all
information in the class (e.g., inherited data) and only works on
C++ systems. Another similar tool, JStereocode, was introduced

mailto:aalramad@kent.edu
mailto:jbehler1@kent.edu
mailto:mdecke@bgsu.edu
mailto:ndragan@kent.edu
mailto:collard@uakron.edu
mailto:jmaletic@kent.edu
https://youtu.be/D9oxwUlPbOI
https://github.com/srcML/stereocode

by Moreno and Marcus [18]. This tool worked as an Eclipse
plug-in and supports the identification of method and class
stereotypes for Java-based systems. Nevertheless, JStereoCode
also has numerous limitations. It only supports the Java
programming language and is difficult to use or install. Other
research has explored the use of machine learning to
automatically classify class stereotypes in Java [19, 20], and to
examine the development of class role stereotypes and anti-
patterns in software systems [21]. These approaches often
struggle to accurately detect stereotypes, especially less
common ones.

Stereocode differentiates itself from prior work in several
ways. The approach employed is not limited to a single
language, and it supports a more comprehensive, efficient, and
accurate stereotyping for both methods and classes at a large
scale covering C++, C#, and/or Java systems. A key strength of
the new Stereocode is its ability to build a comprehensive
symbol table that captures detailed information about all classes
and their relationships. This in-depth static analysis provides a
far more complete picture of the whole system, something that
previous work did not consider.

III. ARCHITECTURE

Stereocode is built using the srceML! infrastructure [15, 16].
srcML is a robust and highly scalable infrastructure used for
transforming source code into a structured XML representation
without any loss of lexical information. srcML provides access
to this information to support a wide range of tasks, including
analysis, exploration, and manipulation of source code.
Stereocode utilizes the srcML format to extract detailed
information from the source code needed to compute
stereotypes.

Stereotyping using Stereocode involves three primary steps:
collection of program information using static analysis,
stereotype identification using a rule engine, and stereotype
annotation (as shown in Fig. 1). We cover these activities in
detail in the following three subsections.

A. Collection of Program Information

The stereotyping process begins by scanning the units (i.e.,
source files) in the srcML format input to collect all the classes.
For each class, the class name, parent class names, data
members, specifiers, and methods are gathered and stored for
further analysis. For every method, information, including the
method name, return type, parameters, specifiers, local
variables, return expressions, and calls (including method,
function, and constructor calls), are collected. The tool utilizes
various XPath expressions to collect the necessary information
from the input. Moreover, Stereocode can detect the language
of each unit to handle language-specific information correctly,
such as friend functions (C++), partial classes (C#), properties
(C#), structs (C# and C++), interfaces (C# and Java), enums
(Java), and unions (C++), among others. In addition, Stereocode
maintains a list of language-specific primitives (e.g., int,
double, etc.) to distinguish between primitive and non-
primitive datatypes. Users can also provide a list of user-defined
primitives if desired.

I'See www.srcML.org

Source Code
(C++, C#, or Java)

Static
Information
Extraction/Analysis

Classes

<xpath> Methods

Data Members

Method

Stereotype
Rules R
Stereotype
Identification
Class (Rule Engine)
Stereotype
Rules
Stereotype Source Code
Annotation (Stereotyped)
Fig 1. Overview of the stereotyping process using Stereocode

B. Stereotype Identification

After collection, the information is statically analyzed by
Stereocode to derive the necessary data needed to identify
stereotypes. This includes determining whether the method uses,
changes, or returns data members, local variables, or parameters.
In addition, Stereocode also checks if the method is empty, is
constant, i.e., const (C++ only), and whether it modifies
parameters passed by reference. Furthermore, Stereocode filters
all calls to determine stateless calls (i.e., calls that do not
read/change the state of the object). A list of calls (e.g.,
assert, println)isprovided to ignore certain calls from
the analysis, and users have the option to expand this list.
Method stereotypes are then identified by directly mapping the
extracted data to a list of predefined rules. To illustrate, a method
is classified as a get if it contains at least one return of a data
member (e.g., return dm;), where dm is a data member of
the class. Class stereotypes are then identified from the ratio of
the totals of method stereotypes

TABLE I and TABLE II show the taxonomies for method
and class stereotypes identified by Stereocode as introduced by
Dragan et al. [1-3]. The project's GitHub wiki page details the
definitions and rules used. Method stereotypes (TABLE 1) are
separated into five distinct categories, and each category
includes a set of specific stereotypes that indicate a finer-grained
definition of a method’s basic behavior. For example, mutator
stereotypes modify an object’s state, but the stereotype set
specifically indicates a modification of a single data member,
while the command stereotype performs a more complex change
(e.g., modifying multiple data members). Methods and classes
may be labeled with one or more stereotypes. For example, a
predicate collaborator is a predicate method that uses an object
of another class.

C. Stereotype Annotation

Stereocode generates the stereotyped output by re-
annotating the srcML input with the identified stereotypes.
These stereotypes are incorporated as XML attributes into the

http://www.srcml.org/

respective function and class tags in srcML. Fig. 2 illustrates a
basic getter method represented in the srcML format with its
stereotype annotated as an attribute in a function tag.
Additionally, Stereocode has an option to annotate the
stereotypes as a comment inserted before the function or class
definition, as shown in Fig. 3. The first method, GetValueRaw,
is stereotyped as get collaborator since it returns a data member
value of non-primitive type, and the second method setModule
is stereotyped as set collaborator since it modifies a single data
member Module of a non-primitive type. The class PSVariable
is stereotyped as a boundary using the distribution of stereotypes
of all its methods. Moreover, Stereocode can generate optional
report files in various formats, including .csv and .txt.

TABLE L. TAXONOMY OF METHOD STEREOTYPES
Stereotype Ao
typ Stereotype | Description
Category
get Returns a data member
. Returns a Boolean value that is not a
predicate
data member
Structural - -
Accessors ronert Returns information about data
property members (non-Boolean)
void- Returns information about data
accessor members through method parameters
set Modifies a data member
Structural command
- Performs a complex change to the
Mutators non-void- .
object’s state
command
constructor
copy-
Creational constructor | Creates and/or destroys objects
destructor
factory
Works with objects belonging to
classes other than itself (parameter,
collaborator .
local variable, data member, or return
value
Collaborational) —
Changes only an external object’s state
controller .
(not this)
Does not change an object’s state. Has
wrapper .
at least one free function call
Does not read/change an object’s state.
incidental No calls to other class methods or to
free functions
Degenerate Does not read/change an object’s state.
stateless Has at least one call to other class
methods or to a free function
empty Has no statements
<function

st:stereotype="get"><type><name>int</name></type>
<name>getID</name><parameter list>()</parameter 1
ist> <block>{<block content>
<return>return<expr><name>id </name></expr>;</ret
urn>

</block content>}</block></function>

Fig2. Example of getter method with stereotype (highlighted) inserted as

an attribute in the srcML format.

TABLE IL TAXONOMY OF CLASS STEREOTYPES
Class A
Stereotype Description
iy Encapsulates data and behavior. Keeper of data

model and/or business logic
Special case of Entity. Consists only of get, set, and
command methods

minimal-entity

data-provider Encapsulates data and consists mainly of accessors

Encapsulates behavior and consists mainly of

commander
mutators
Communicator with a large percentage of
boundar collaborational methods and a low percentage of
y controller methods. It also does not have many
factory methods
factory Creator of objects and has mostly factory methods
(aka control) Provides functionality to control
controller external objects. Consists mostly of controller and

factory methods

A special case of controller. Consists only of
controller and factory methods

Contains a large number of methods that combine
multiple roles, such as Data Provider, Commander,
Controller, and Factory

Consists mostly of get, set, and degenerate methods.

pure-controller

large-class

lazy-cl. .

azy-class Occurrence of other methods is low

desenerate Consists mostly of degenerate methods that do not
g read/write to the object's state

data-class Consists only of get and set methods

small-class Consists only of one or two methods

empty Has no methods

// @stereotype boundary
public class PSVariable
IHasSessionStateEntryVisibility {

public PSModuleInfo Module
{ get; private set; }
private object value;

// Q@stereotype get collaborator
internal virtual object GetValueRaw ()
{ return value; }

// Q@stereotype set collaborator
internal void SetModule (PSModuleInfo module)
{ Module = module; }

Fig3. Example of a C# class PSVariable from PowerShell with stereotype

information annotated as a comment.

IV. DEMONSTRATION AND SCALABILITY

To demonstrate the usefulness and scalability of Stereocode,
we apply the tool to determine the stereotype information across
a large number of open-source software systems. We collected
1,050 repositories from GitHub, with 350 each for C#, C++, and
Java, to ensure a variety of systems with different sizes and
domains. The selection of the repositories is based on their
popularity determined by their star ranking. We collect only the
default branch (e.g., main or master) for each repository.
Repositories that are empty or archived are excluded from the
selection. We then convert each system into the srcML format

using srcml. For most systems, the conversion process takes less
than a second (on a typical laptop). Following this, Stereocode
generates stereotype information for each system with most
systems finishing in under six seconds. It is worth noting that
structs, interfaces, enums, and unions are also stercotyped to
provide a more complete picture of each system’s design. In
addition, we stereotype the entire system, including all test files.
We do not currently stereotype static methods, static classes (C#
and Java), or free functions (C++) (i.e., functions defined outside
of classes or structs) as they are not covered in the current
stereotype taxonomy. The entire process is automated using a
Python script.

The stereotyped data is stored in an artifact® that offers a
complete view of the stereotype distributions across the
analyzed software systems. This includes a breakdown of
individual stereotypes (e.g., get, set, etc.) and unique stereotypes
(e.g., command collaborator) for both methods and classes.

Fig. 5 presents a chart showing a concise overview of the
prevalence of different method stereotypes within all the
stereotyped systems organized by language. We observe a large
number of collaborators, commands, and properties in all
systems. This suggests that these systems heavily rely on
methods that provide access to information derived from data
members (property), interact with other classes (collaborators),
or perform a complex change the state of the system
(commands).We also observe a significant number of stateless
methods in all three languages. Many of these stateless methods
indicate the existence of utility methods that carry out general
tasks (e.g., unit testing or providing an external service) without
altering the state of the object. It is worth noting that there are
no destructors in Java as in C# and C++. The unclassified
stereotype in Fig. 5 refers to any method that did not satisfy any
of the method stereotypes shown in TABLE 1.

This information can be leveraged as building blocks for
more advanced forms of code analysis and knowledge
extraction. For instance, consider a method from the stereotyped
data that is stereotyped as a property set, as shown in Fig. 4. The
method changes the value of seed, a data member of the object.
It then creates and returns a local variable refId using
information about data members (i.c., seed). At first glance, this
label might seem counterintuitive as the method is both an
accessor and a mutator. However, this explicit labeling provides
a clearer understanding of the method’s behavior, in which case,
it could be a possible code smell [4]. In other words, the
method’s behavior of modifying a data member and returning a
property might be an indicator of poor design since the method
is doing more than it should.

empty24034(1.04%)). cified 8227 (0.35%) C++
stateless 141270(6.09%) get 133784 (5.77%)
incidental 69495 (3.00%) predicate 115337
factory 12409 (0.54%) (4.97%)
destructor 39430 (1.70%)
copy-constructor 12742 property 261712
(0.55%) (11.29%)
constructor 148835
(6.42%)
void-accessor
15470(0.67%)
wrapper 128544
(5.54%)
controller 113830
(4.91%)

command 267769
(11.55%)

non-void-command
178631 (7.70%)

collaborator
546809 (23.58%)

empty34780(1.08%) nclassified 875 (0.03%)

get 244477 (7.59%)

JAVA

stateless 251748 (7.81%)
incidental 56334 (1.75%)
factory 87586 (2.72%)
copy-constructor 3949 (0.12%)
destructor0(0.00%)

predicate 64331
(2.00%)

property 332128
(10.31%)

constructor 162925
(5.06%)

void-accessor 1826
(0.06%)

wrapper 149796
(4.65%)

controller 189352
(5.88%)

command 467223
(14.50%)

collaborator
674905 (20.94%) non-void-command

349583 (10.85%)

// @stereotype property set

private UInt64 GetNewReferenceId() {
UInt64 refld = seed++;
return refld;

Fig4. Potential code smell indicated by both property and set stereotypes
in a method from the PowerShell system.

2 See https:/github.com/KSU-SDML/Stereocode-artifact

unclassified 1332 (0.07%) c#

2et60940(3.11%)
predicate 36425 (1.86%)

empty 15679 (0.80%)

stateless 225342(11.51%)

incidental 43783(2.24%) property 182143 (9.30%)
factory 45805 (2.34%)

destructor 751 (0.04%)

void-accessor 10774
(0.55%)

copy-constructor 9179

(0.47%)
constructor 152203
(7.77%) command 194958
(9.96%)
wrapper 160632
(8.20%)
non-void-command
190338 (9.72%)
controller127282
(6.50%)

collaborator408317 (20.85%)

Fig5. Distribution of method stereotypes for all systems used in the study.
The systems are divided in to the C++, C#, and Java. There are 1050
total systems and 350 each for C++, C#, and Java.

https://github.com/KSU-SDML/stereocode-artifact

V. RUNNING STEREOCODE

Stereocode is a command-line tool that runs on the srcML
format of source code (see www.srcML.org). Initially, the input
(either an individual source code file or an entire software
system) is converted to srcML using the sreML command-line
client. Then, Stereocode is run on that srcML:

srcml main.cpp -o main.cpp.xml
stereocode main.cpp.xml -o stereotypes.cpp.xml

There are downloadable executables for srcML at the
website. Stereocode needs to be compiled. Instruction to
compile and run are in the GitHub repo for the project (see
README). It is developed in C++ and built via CMake.
Stereocode runs on Mac, Windows, and Linux.

VI. CONCLUSION AND FUTURE WORK

Stereocode is a tool designed to automatically identify
method and class stereotypes in software systems across C++,
C#, and/or Java. It uses static analysis to do this automatically
and accurately. The tool assists developers to understand the
roles and behaviors of methods and classes in software systems.
We demonstrate Stereocode on 1,050 repositories from GitHub.
The results show that Stereocode can effectively analyze
software systems and is very scalable. In the future, we plan to
improve Stereocode by adding support for more programming
languages (e.g., Python). In addition, we plan to use Stereocode
to explore the stereotypes of free and static functions to provide
a more complete and holistic picture of the software system.
Other future work includes handling classes with the same
name, and adding proper support for nested structures (e.g.,
nested classes or nested functions).

ACKNOWLEDGMENT

This work was supported in part by a grant from the US
National Science Foundation: CNS 20-16465/16452

REFERENCES

[1] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse Engineering
Method Stereotypes,” in 22nd IEEE International Conference on
Software Maintenance (ICSM’06), 2006, pp. 24-34.

[2] N. Dragan, M. L. Collard, and J. I. Maletic, “Using Method
Stereotype Distribution as a Signature Descriptor for Software
Systems,” in 25th IEEE International Conference on Software
Maintenance (ICSM’09), 2009, pp. 567-570.

[3] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic Identification
of Class Stereotypes,” in /[EEE International Conference on Software
Maintenance (ICSM’10), 2010, pp. 1-10.

[4] M. J. Decker, C. D. Newman, N. Dragan, M. L. Collard, J. I. Maletic,
and N. A. Kraft, “Which Method-Stereotype Changes are Indicators
of Code Smells?,” in /8th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM’18), 2018, pp. 82—
91.

[5] N. Alhindawi, J. I. Maletic, N. Dragan, and M. L. Collard, “Improving
Feature Location by Enhancing Source Code with Stereotypes,” in
29th IEEE International Conference on Software Maintenance
(ICSM’13), 2013, pp. 1-10.

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K.
Vijay-Shanker, “Automatic Generation of Natural Language
Summaries for Java Classes,” in 21st International Conference on
Program Comprehension (ICPC’13),2013, pp. 23-32.

O. Andriyevska, N. Dragan, B. Simoes, and J. I. Maletic, “Evaluating
UML Class Diagram Layout based on Architectural Importance,” in
3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT’05), 2005, pp. 14-20.

N. Dragan, M. L. Collard, M. Hammad, and J. I. Maletic,
“Categorizing Commits Based on Method Stereotypes,” presented at
the 27th IEEE International Conference on Software Maintenance
(ICSM’11), 2011, pp. 520-523.

L. F. Cortes-Coy, M. Linares-Vasquez, J. Aponte, and D.
Poshyvanyk, “On Automatically Generating Commit Messages via
Summarization of Source Code Changes,” presented at the 14th IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM’14), 2014, pp. 275-284.

J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On Automatic
Summarization of What and Why Information in Source Code
Changes,” in 2016 I[EEE 40th Annual Computer Software and
Applications Conference (COMPSAC), 2016, vol. 1, pp. 103—112.

C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and J. I. Maletic,
“Lexical Categories for Source Code Identifiers,” in 2017 [EEE 24th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2017, pp. 228-239.

B. Li, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk, “Aiding
comprehension of unit test cases and test suites with stereotype-based
tagging,” in Proceedings of the 26th Conference on Program
Comprehension, New York, NY, USA, 2018, pp. 52-63.

P. Andras, A. Pakhira, L. Moreno, and A. Marcus, “A Measure to
Assess the Behavior of Method Stereotypes in Object-Oriented
Software,” in 2013 4th International Workshop on Emerging Trends
in Software Metrics (WETSoM), 2013, pp. 7-13.

R. Gokmen, D. Heidrich, A. Schreiber, and C. Bichlmeier,
“Stereotypes as Design Patterns for Serious Games to Enhance
Software Comprehension,” in 2021 IEEE Conference on Games
(CoG), 2021, pp. 1-3.

M. L. Collard, M. J. Decker, and J. 1. Maletic, “Lightweight
Transformation and Fact Extraction with the srcML Toolkit,” in 2071
IEEE 11th International Working Conference on Source Code
Analysis and Manipulation, 2011, pp. 173—184.

M. L. Collard, M. J. Decker, and J. 1. Maletic, “srcML: An
Infrastructure for the Exploration, Analysis, and Manipulation of
Source Code: A Tool Demonstration,” in 2013 IEEE International
Conference on Software Maintenance, Eindhoven, Netherlands, 2013,
pp. 516-519.

D. Guarnera, M. L. Collard, N. Dragan, J. 1. Maletic, C. Newman, and
M. Decker, “Automatically redocumenting source code with method
and class stereotypes,” in 2018 IEEE Third International Workshop
on Dynamic Software Documentation (DySDoc3), 2018, pp. 3—4.

L. Moreno and A. Marcus, “JStereoCode: automatically identifying
method and class stereotypes in Java code,” in 27th IEEE/ACM
International Conference on Automated Sofiware Engineering, Essen,
Germany, 2012, pp. 358-361.

A. Nurwidyantoro, T. Ho-Quang, and M. R. V. Chaudron,
“Automated Classification of Class Role-Stereotypes via Machine
Learning,” in Proceedings of the 23rd International Conference on
Evaluation and Assessment in Software Engineering, New York, NY,
USA, 2019, pp. 79-88.

T. Ho-Quang, A. Nurwidyantoro, S. A. Rukmono, M. R. Chaudron, F.
Froding, and D. N. Ngoc, “Role stereotypes in software designs and
their evolution,” J. Syst. Sofiw., vol. 189, p. 111296, 2022.

D. Nguyen Ngoc and F. Fréding, “The Evolution of Role-Stereotypes
and Related Design (Anti) Patterns,” 2020.

http://www.srcml.org/

