
Helix: A RAN Slicing Based Scheduling Framework for
Massive MIMO Networks
QING AN, Rice University, USA
DIVYANSHU PANDEY, Rice University, USA
RAHMAN DOOST-MOHAMMADY, Rice University, USA
ASHUTOSH SABHARWAL, Rice University, USA
SRINIVAS SHAKKOTTAI, Texas A&M University, USA

An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept
wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored
to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various
enterprises’ service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLA-
aware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource
allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same
time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably,
certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation,
denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing
with others in the public network to maintain network performance while minimizing capital expenditure.
Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different
slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of
our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive
MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead
up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit
significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive
greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement.

CCS Concepts: • Networks→ Network resources allocation.

Additional Key Words and Phrases: RAN slicing, Resource scheduling, Massive MIMO networks

ACM Reference Format:
Qing An, Divyanshu Pandey, Rahman Doost-Mohammady, Ashutosh Sabharwal, and Srinivas Shakkottai.
2024. Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks. Proc. ACM Netw. 2,
CoNEXT4, Article 27 (December 2024), 24 pages. https://doi.org/10.1145/3696399

1 INTRODUCTION
Massive MIMO has been an important part of the 5th Generation (5G) mobile network rollout,
which has been in progress since the early 2020s. This technology significantly enhances overall
network throughput by leveraging large-order multi-user MIMO (MU-MIMO) enabled through
advanced beamforming techniques. However, the capital expenditure (CAPEX) associated with

Authors’ Contact Information: Qing An, qa4@rice.edu, Rice University, USA; Divyanshu Pandey, dp76@rice.edu, Rice
University, USA; Rahman Doost-Mohammady, doost@rice.edu, Rice University, USA; Ashutosh Sabharwal, ashu@rice.edu,
Rice University, USA; Srinivas Shakkottai, sshakkot@tamu.edu, Texas A&M University, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2834-5509/2024/12-ART27
https://doi.org/10.1145/3696399

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

https://doi.org/10.1145/3696399
https://doi.org/10.1145/3696399

27:2 Qing An et al.

deploying Massive MIMO arrays is considerably higher than the lower-order MIMO base stations
(BS) used in 4G and earlier 5G networks. This increased CAPEX necessitates meticulous planning
by mobile network operators (MNOs) to ensure a balanced cost-benefit ratio for Massive MIMO
deployment. Therefore, meeting as many user service requirements as possible with limited physical
infrastructure is a critical challenge for MNOs. Standing at the customers’ points, based on their
required types of services, such as throughput, latency or massive connectivity, they have diverse
bandwidth demands. Meeting their network needs with the least amount of resources and costs
is their top concern. Network slicing emerges as a solution to this challenge by enabling the
partitioning and sharing of network resources across multiple slices or enterprises on a single
physical infrastructure. Each enterprise typically has distinct use cases. For instance, entities with
critical infrastructure or mission-critical applications, such as hospital and army networks, prioritize
security and prefer not to share radio resources with others. These enterprises opt for private
networks, which are accessible only to a specific set of devices. Furthermore, in order to save costs,
most enterprises choose dependent private networks [45], wherein MNOs allocate spectrum to the
enterprise based on cost and spectrum availability and are responsible for network deployment and
maintenance. Conversely, enterprises in sectors such as retail and home networks, which do not
have significant security concerns, are more willing to share radio resources with others to fulfill
their service-level agreements (SLAs) cost-effectively. Such enterprises can be deployed in public
networks, where they share the same resource blocks (RBs) with users from multiple enterprises.

Previous work [36, 43] proposed the allocation of different RBs in LTE and 5G to various slices.
Recent advancements, such as RadioSaber [18], have introduced a channel-aware allocation of RBs
to each slice to maximize network throughput. RadioSaber’s architecture includes an inter-slice
scheduler that polls different slices about their channel quality on each resource block and allocates
them to slices that can achieve the highest rates. This approach separates the user allocation
decision-making from the overall slice decision-making, allowing each intra-slice scheduler to
manage its own users on the allocated RBs. However, Designing channel-aware RAN slicing for
massive MIMO networks presents significantly greater challenges than Single-Input Single-Output
(SISO) systems considered in earlier works, such as RadioSaber. These challenges are two-fold:
First, beamforming for multiple users must account for channel correlation to avoid high inter-user
interference and degraded throughput. Consequently, schedulers must consider user correlation
and cannot rely solely on the best channel quality within each slice. Second, the computational
complexity of separate inter- and intra-slice scheduling grows exponentially with the number of
RBs, slices, and UEs, making it infeasible to meet 5G’s sub-millisecond latency requirements. Thus, a
scheduling framework is much needed wherein the intra- and inter-slice scheduling are performed
jointly while still maintaining each individual slice’s SLA guarantees and privacy requirements.
In addition to being channel-aware, the scheduler must also be SLA-aware. This implies that the
allocation of RBs should be guided by the specific SLAs of the enterprise to utilize the minimal
number of RBs necessary to satisfy the enterprise’s SLA requirements. By minimizing RB usage to
meet SLA requirements, additional resources are freed for more users or other transmission needs,
such as control and sensing signals. This approach benefits both enterprises and network operators.
In this paper, we present Helix, a RAN slicing-based scheduling framework for massive MIMO

networks which is both SLA-aware and channel-aware. The framework architecture is depicted
in Fig. 1. Helix not only allocates RBs to slices and users in an SLA-aware and channel-aware
manner but also extends the allocation to spatial resources (beams), thereby going beyond the
frequency-time resources considered in earlier works. Helix exploits the opportunity to allocate
the same RB to multiple UEs simultaneously by leveraging multiple spatial dimensions available in
massive MIMO. Two distinct use-case scenarios emerge in such cases. First, when each slice does
not want an RB allocated to itself to be shared with UEs of other slices, such as in private networks

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:3

where data security and privacy are crucial. Second, when slices only want assurance of their SLAs
being met while being acceptable of resource sharing across slices, such as in public networks.
Henceforth, we refer to the former as the RB-orthogonal case and the latter as the RB-sharing
case. The orthogonality of RBs ensures that any given RB is allocated exclusively to a specific slice
in any scheduling instant, and multiple UEs within that same slice can only use it. RB sharing
ensures that UEs from multiple slices can simultaneously be allocated the same RB. In this work, we
propose scheduling algorithms for both RB orthogonal and RB sharing. Since our primary objective
is cost-saving for operators and enterprises, the scheduling problem posed in this work aims to
minimize the number of resource blocks required to meet the SLA guarantees of each slice. The
main contributions of the paper are as follows:
• First framework for massive MIMO RAN slicing with SLA guarantees with the goal of
optimizing resource usage, e.g. RBs.
• RB-orthogonal and sharing algorithms are proposed with different levels of slice autonomy.
• The proposed algorithms offer near-optimal performance with significantly lower complexity
compared to exhaustive search methods, meeting 5G latency requirements.
• An exhaustive evaluation of the proposed schedulers on a real-world massive MIMO channel
dataset under different network size configurations, correlation cases, mobility scenarios,
and SLA constraints highlights the trade-offs between different schemes.

Fig. 1. RAN Slicing based scheduling architecture in massive MIMO networks.

2 BACKGROUND AND RELATEDWORK
In this section, we provide a brief background on massive MIMO and its adoption in the 5G standard.
We also discuss the problem of RAN slicing and its challenge as it pertains to massive MIMO. A
literature review of RAN slicing and massive MIMO resource scheduling is also presented.

Massive MIMO beamforming. In theory, massive MIMO is referred to a cellular base station
with an unlimited number of antennas. In [7], it is shown that with𝑀 antennas at the base station
and 𝑁 single-antenna users, as the ratio𝑀/𝑁 goes to infinity, and when the channel is considered
Gaussian, the beamforming matrix that maps the users’ data to antenna is simply the conjugate
of the𝑀 × 𝑁 channel matrix H to a scale. In practice, however, there is a limit to the number of
antennas at a massive MIMO base station. The current deployment of massive MIMO in 5G is
limited to 64 to 128 antennas [12]. The beamforming operation is typically done through Zero
Forcing (ZF) or its regularized variant. The ZF beamformer is calculated as: W = H(H𝐻H)−1. The
channel matrix is estimated through uplink pilot signals transmitted by each UE to the base station.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:4 Qing An et al.

In the time-division duplex (TDD) regime, the same estimated channel matrix is often used for both
uplink and downlink due to channel reciprocity.

Numerology of 5G Frame Structure. 5G cellular networks operate based on OFDM signaling,
where data is transmitted across frequency subcarriers. The 5G frame format includes 10 ms frames
with slots of typically 1 ms length and 14 OFDM symbols [40]. The number of subcarriers in each
OFDM symbol is a function of the system bandwidth. The subcarriers across all OFDM symbols of a
slot are grouped into resource blocks (RB), each containing 12 subcarriers. For e.g., in a 100 MHz 5G
system, there are 273 resource blocks. A special pilot signal known as the sounding reference signal
(SRS) is used to obtain the channel estimate for beamforming in massive MIMO [34]. Through the
channel estimate obtained from the SRS pilots, the massive MIMO 5G base station can schedule
multiple users in each RB for data transmission or reception through multi-user beamforming.
Thus, resources are scheduled across all time, frequency, and spatial domains.

Massive MIMO Resource Scheduling. The resource scheduling problem in massive MIMO
is significantly more complex than in SISO systems. In the SISO case, the scheduler can allocate
an RB to a user with the highest rate. In massive MIMO, however, the rate-optimal allocation
of multiple users to each RB depends on how much rate the groups of users can collectively
achieve. Therefore, a rate-optimal scheduler should solve a combinatorial problem that considers
all combinations of users. The same goes with the proportional-fair or max-min fair algorithms
that try to provide fairness along with maximizing rate. Such combinatorial problems are provably
NP-hard and clearly not feasible to run in massive MIMO networks of 5G, which require very
low latency in scheduling decisions [17]. Many related works propose sub-optimal heuristic-based
MU-MIMO schedulers [4, 13, 24, 25, 41]. While they try to strike a balance between complexity and
performance, their complexity does not scale to large networks or they significantly underperform
the optimal scheduling policies. With the aid of prompt inference of AI models, several ML-models
are proposed [10, 14, 15, 26, 30, 42, 47], which leverage deep reinforcement learning for optimal
user selection, yet their applicability across diverse traffic scenarios remains limited. This limitation
arises from the need for extensive training datasets to ensure the model can generalize effectively
across varying environments and conditions [53]. Traditional schedulers focus on individual user
requirements, often overlooking groups with similar QoS needs. In 5G, there is increasing emphasis
on addressing enterprise-level QoS [48]. Unlike conventional uniform resource allocation, Helix
enables network customization for different service types, supporting RB orthogonality or sharing
to meet diverse 5G performance demands.

Massive MIMO RAN Slicing. RAN slicing has emerged as a prominent strategy for virtualizing
radio resources, enhancing cost and power efficiency by accommodating multiple service slices
within the network [37]. Network Virtualization Substrate (NVS) [36] allocates all RBs within a TTI
to a single slice, employing a weighted round-robin approach to meet each slice’s target throughput
requirements specified in the SLA. However, NVS lacks channel awareness, leading to suboptimal
resource allocation decisions. Advanced RAN virtualization frameworks like Orion and Scope
[9, 23] build upon NVS, aiming to enhance resource allocation efficiency. RadioSaber [18] further
refines this approach by incorporating channel awareness into the slice-level scheduler, optimizing
RB allocation based on users’ Channel Quality Indicators (CQIs). Ensuring slice-level service quality
is a primary concern across various RAN slicing proposals [5, 11, 39]. Recent efforts, such as
Zipper [6], a ML-based algorithm to compute SLA-compliant schedules in real-time, albeit with a
focus on application-level service assurance. Despite these advancements, existing RAN slicing
frameworks predominantly focus on single-antenna systems and commonly employ slot-based
and RB-based slicing methodologies [18, 23, 36]. In summary, the slicing management framework
guarantees SLA compliance by allocating resources such as slots or RBs to different slices based
on metrics like average throughput or latency. Similar concepts can be used in massive MIMO

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:5

RAN slicing. However, spatial streams represent a third dimension, alongside time and frequency
dimensions. While allocating spatial streams in each RB to different slices enhances cost/power
efficiency by resource reuse, spatial stream slicing is less effective than slot and RB slicing due to
residual inter-user interference based on the effectiveness of the beamforming procedure. This
interference can impact operator services. Additionally, slices utilizing spatial streams in shared
RBs must employ a common precoder, conceding some functionality to the slice management
framework. In §3, we discuss massive MIMO RAN slicing and the design space in more detail.
Schedulers in Other Domains.While extensive research exists on scheduler design in areas

such as cloud services [16, 20, 28, 54] and AI/ML model training [29, 44, 52], scheduling in 5GMIMO
networks faces unique challenges due to the dynamic nature of wireless channels, affected by
fading, interference, and mobility. 5G must also accommodate diverse traffic types (eMBB, URLLC,
mMTC) with varying QoS needs and make real-time decisions under strict sub-millisecond latency.
In contrast, cloud and AI/ML schedulers operate in controlled environments with flexible timing
constraints (several milliseconds to seconds) [19]. Thus, the latency requirements make Helix
design more challenging as opposed to the schedulers used in other domains.

3 PROBLEM OVERVIEW
Based on the enterprises’ policy regarding sharing of radio resources and the types of services they
request, RB allocation can be classified into two mechanisms: RB-orthogonal and RB-sharing. In
the RB-orthogonal, slices prefer exclusive use of radio resource blocks without sharing, a scenario
typically encountered in private networks. Conversely, the RB-sharing involves slices that are
willing to share RBs with others to fulfill SLAs cost-effectively, which is common in public networks.
MNOs allocate spectrum to these two sets of slices based on cost considerations and radio resource
availability. The Helix framework provides scheduling solutions for both allocation mechanisms,
thus it supports the operation of both private and public 5G network functionalities on a single
base station by employing either cooperative or exclusive resource allocation across slices.

3.1 RB-Orthogonal: Problem Formulation
In this case, any given RB can only be allocated to users from the same slice. This constraints the
optimal usage of each RB; however, it might be necessary due to security and privacy issues that
stem from resource sharing across different slices.

Inter- and Intra-slice scheduler :Within the RB-Orthogonal case, we can have two situations:
First, separate inter- and intra-slice schedulers make decisions at slice and user levels, respectively.
To do this, the intra-slice scheduler needs to let the inter-slice scheduler know which user it
intends to serve if given a certain RB, depending on its own private policy. The inter-slice scheduler
allocates RBs to various slices, while the intra-slice scheduler assigns these RBs to individual users
within each slice. Second, where there is a single scheduler that directly takes decisions at the
user level while maintaining the slice SLAs. Note that having a separation between inter- and
intra-slice schedulers allows a level of private autonomy for each slice (enterprise) to decide its
own scheduling policy. The intra-slice scheduler can select users based on any customizable policy
such as Proportional Fairness (PF) or Maximum Rate (MR). The inter-slice scheduler only schedules
a slice depending on the response to its query from the slice and does not dictate the scheduling at
the user level. However, responding to inter-slice queries often requires an exhaustive intra-slice
search. Thus, computationally, it is more efficient to let a single scheduler directly take a decision at
the user level. The latter approach can also accommodate various scheduling policies concurrently.

Let B,S denote the set of RBs and slices respectively. Every slice 𝑠 ∈ S contains a distinct set of
users denoted asK𝑠 such that

∑
𝑠 |K𝑠 | = 𝑁 , where 𝑁 is total number of users. Let us denote 𝑥𝑏,𝑡

𝑘
and

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:6 Qing An et al.

𝑥
𝑏,𝑡
𝑠 as the user-level and slice-level binary decision variables for user 𝑘 on RB 𝑏 respectively, such
that 𝑥𝑏,𝑡𝑠 = 1, ∃ 𝑘 ∈ K𝑠 , s.t. 𝑥𝑏,𝑡𝑘 = 1. Subsequently, the scheduling problem for the RB-orthogonal
case can be written as the following optimization problem:

min
𝑥∈{0,1}

E𝑡

[∑︁
𝑠∈S

∑︁
𝑏∈B

𝑥𝑏,𝑡𝑠

]
s.t.

∑︁
𝑠∈S

𝑥𝑏,𝑡𝑠 ≤ 1,∀𝑏,∀𝑡 and E𝑡

[∑︁
𝑏∈B

𝑟𝑏,𝑡𝑠

]
≥ 𝛾𝑠 ,∀𝑠 (1)

where the optimization variable 𝑥 denotes 𝑥𝑏,𝑡𝑠 if we have a separate inter- and intra-slice scheduler,
and 𝑥 denotes 𝑥𝑏,𝑡

𝑘
when there is a single scheduler taking decisions at the user level. The objective

function remains the same in both cases. The entity 𝑟𝑏,𝑡𝑠 is the achieved data rate of slice 𝑠 on RB
𝑏 at TTI 𝑡 (detailed derivation is given in Appendix A) and 𝛾𝑠 is the SLA in terms of minimum
throughput guarantee for slice 𝑠 on average across several TTIs. The notation E𝑡 [·] denotes average
across 𝑡 . Further, at any given TTI instant 𝑡 ′, SLA deficit of slice 𝑠 can be computed as:

Δ𝑡
′
𝑠 =


𝛾𝑠 , if 𝑡 ′ = 0

max

{
0, (𝑡 ′ + 1)𝛾𝑠 −

𝑡 ′−1∑︁
𝑡=0

∑︁
𝑏∈B

𝑟𝑏,𝑡𝑠

}
, if 𝑡 ′ > 0

(2)

The objective function in Eq. (1) is to minimize the average allocated resource blocks to all the
slices across time. The first constraint in Eq. (1) imposes the orthogonality of RB allocation, and
the second constraint ensures that the SLA requirement is met for all slices. This optimization
problem can be abstracted as binary integer programming (BIP), which is NP-complete. Heuristic
methods like Branch and Bound (B&B)[31] have been proposed, but they face high computational
complexity, especially with increasing binary variables and constraints[49].

3.2 RB-Sharing: Problem Formulation
RB-sharingmaximizes the utilization of RBs by sharing it with users frommultiple slices. Thus, there
is no notion of a separation between inter- and intra-slice schedulers in this case. The corresponding
optimization problem for the RB-sharing case can be formulated as:

min
𝑥
𝑏,𝑡

𝑘
∈{0,1}

E𝑡

[∑︁
𝑏∈B

min(1,
𝑁∑︁
𝑘=1

𝑥
𝑏,𝑡

𝑘
)
]

s.t. E𝑡

[∑︁
𝑏∈B

𝑟𝑏,𝑡𝑠

]
≥ 𝛾𝑠 ,∀𝑠 . (3)

This objective function is also a combinatorial problem and NP-hard. It is more computationally
complicated than RB-orthogonal because user selection on each RB extends from users within the
slice to all users in the network, which makes the search space exponentially larger.

Note that in this work we consider two extreme cases of resource sharing - one where each slice
wants exclusivity of resources allocated (RB orthogonal), and another where all slices can share the
resources (RB sharing). However, in practice, a subset of slices being served by an MNO may allow
sharing while another subset may want exclusive access to resources. Thus, the MNO can employ a
mix of RB sharing and orthogonal approaches depending on the policies of the enterprises it serves.

4 HELIX DESIGN
To minimize the cost for both operators and enterprises, we align the objectives of scheduler
design in both RB-orthogonal and RB-sharing scenarios to focus on fulfilling SLAs of slices while
minimizing the consumption of resource blocks. Consequently, the scheduler must be both channel-
aware and SLA-aware, as discussed in §1. Additionally, maintaining low computational complexity
is another design criterion, as emphasized in §3, such that the scheduler can be implemented
within each TTI. Consequently, we propose Helix that includes scheduling algorithms for both

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:7

RB-orthogonal and RB-sharing. An overview of implemented scheduler algorithms in this work is
depicted in Fig. 2. Notably, resource allocation in SISO networks relies on RB-orthogonality, as each
RB is only occupied by a single user. Therefore, in §5, we adapt [18] for MIMO networks, utilizing
it as a baseline in the RB-orthogonal scenario.

Fig. 2. Overview of implemented scheduling algorithms.

4.1 User Grouping (UG)
Since Helix aims to schedule multiple users on the same RB simultaneously by using different
spatial streams, an appropriate grouping of users based on inter-user correlation is required to
guide the scheduler design. Thus, as a prelude to our proposed scheduling algorithms, we first
present a user-grouping approach. SupposeN denotes the set of all users. In that case, the objective
of user-grouping is to partition N into disjoint sets {N1,N2, . . . ,N𝜂} such that 𝜂 is minimum and
users within any N𝑖 have low correlation. The inter-user correlation between user 𝑖 and 𝑗 can be
calculated using the CSI vectors as stated in [50]. Accordingly, a size 𝑁 ×𝑁 binary user correlation
matrix G can be generated by defining a correlation threshold 𝑐𝑡ℎ [50]. The determination of the
threshold is discussed in §5.1. If 𝑐𝑖, 𝑗 > 𝑐𝑡ℎ , the (𝑖, 𝑗)th element of the correlation matrix, G𝑖, 𝑗 = 1
otherwise, G𝑖, 𝑗 = 0. The diagonal values of this matrix are all set to 0. This binary user correlation
matrix can then be represented as a graph where each vertex represents a user and a 1 in the (𝑖, 𝑗)𝑡ℎ
index of the correlation matrix corresponds to an edge between the 𝑖th and 𝑗th vertices of the
graph. Since we want to form groups of users with low correlation, the graph representation allows
us to solve user grouping as a graph coloring problem [33]. Graph coloring involves assigning
colors to the vertices of a graph using a minimum number of colors such that no two adjacent
vertices share the same color. The vertices (users) with the same colors can be grouped together, the
number of colors denote the number of user groups 𝜂. Graph coloring is a well-researched topic for
which several algorithms are proposed in the literature [8, 46]. With the help of parallel computing
techniques, these algorithms are efficient and scalable to handle thousands of vertices. Since user
grouping is a function of correlation statistics, it may not significantly vary across different 𝑏
and 𝑡 specially with slow time-varying channels. Hence, depending on practical considerations,
computing such user grouping only once, or updating it only after several TTIs should suffice.

4.2 Scheduler for RB-Orthogonal case
In this section, we propose two algorithms: Greedy Plus (GP) and Delta Algorithm for the RB-
Orthogonal (DRO). Greedy Plus (GP) is an inter-slice scheduler that operates separately from the
intra-slice scheduler. DRO directly takes scheduling decisions at the user level without separating
inter- and intra-slice schedulers, thereby avoiding an exhaustive search by any intermediary. Note
that since Eq. (1) can be formulated as a binary integer programming (BIP) problem, we employ
Gurobi optimizer [27] to numerically provide an optimal solution using the Branch and Bound
(B&B) [31]. The complexity of solvers such as Gurobi is too high to meet the stringent latency
requirements of 5G networks. Consequently, we will use the optimal solution generated by Gurobi
only to evaluate our algorithm in §5 as a benchmark method.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:8 Qing An et al.

4.2.1 Greedy and Greedy Plus (GP) Approaches . To make the scheduling process channel-aware,
the intra-slice scheduler responds to the following query by the inter-slice scheduler: which user
will receive a given RB if it is allocated to the slice by the inter-slice scheduler? Based on the response
from such a query, the inter-slice scheduler in [18] greedily allocates RBs while prioritizing slices
with favorable channel quality and ceases allocation once the RB quota is met. Such a greedy
inter-slice scheduler, as proposed in [18], makes locally optimal decisions at each step, which may
fail to satisfy the long-term SLAs.

An improvement of the Greedy approach, which we refer as Greedy Plus (GP), recognizes average
SLA deficits in Eq. (2) and allocate the most suitable RBs to each slice to meet SLAs. Thus GP is
cognizant of scenarios where assigning the RB that greedily provides the highest data rate to a user
is not recommended if the corresponding SLA deficit is too small. GP sorts RBs based on achievable
data rates within each slice rather than globally and starts allocation with the slice with the largest
SLA deficits. After each RB allocation, it updates the SLA deficits using Eq. (2) and removes the
allocated RB to a slice from the sorting lists of other slices. The scheduling of a slice will conclude
once its SLA is met. An illustrative example is presented in Fig 3 showing that Greedy approach
can fail to meet the SLA of each slice while over-serve a few slices with good channel. GP ensures
no SLA violations, and performs similar to Gurobi.

Fig. 3. Illustrative Example Comparing Greedy, Greedy Plus, and Gurobi: Consider 3 slices and 5 RBs. The
achieved data rates by intra-slice schedulers are shown in circles. Greedy - 𝑅𝐵5→ 𝑆1, 𝑅𝐵1→ 𝑆3, 𝑅𝐵4→ 𝑆1,
after which 𝑆1 has exceeded its SLA. Then, 𝑅𝐵3→ 𝑆3, 𝑅𝐵2→ 𝑆2. GP - Sort RBs in descending order within
each slice, then serve the slice with largest SLA, thus 𝑅𝐵5→ 𝑆1, remove RB5 from lists of other slices and
update SLA deficit of S1. Next S3 has largest deficit, thus 𝑅𝐵1→ 𝑆3. Further, 𝑅𝐵4→ 𝑆1, completing S1’s SLA
requirement. Further, 𝑅𝐵5→ 𝑆1, 𝑅𝐵3→ 𝑆2, and 𝑅𝐵2→ 𝑆3. Gurobi-employs Branch and Bound method.

4.2.2 Delta RB Orthogonal (DRO). Performace of any scheduling scheme with separate inter- and
intra-slice schedulers depends on how quickly the intra-slice scheduler can respond to inter-slice
scheduler’s query regarding the best user. In SISO networks, this is feasible within a short time
since the best user can be found using CQI [18]. However, in MIMO networks, CQI is not as reliable
because CQI acquisitions for beamformed users are independent, meaning each user may not be
aware of the number of other MU-MIMO layers being used. Consequently, CQI feedback lacks
context, which is even more problematic in massive MIMO networks [2]. To accurately estimate the
achieved data rate of each potential user set on an individual RB, Shannon capacity formula [51]
can be used. We propose a low-complexity method that identifies the user combination with the
highest potential to achieve the maximum rate on each RB without any exhaustive search.

Our proposed approach selects a user set by evaluating user channel gain and inter-user correla-
tion, ensuring that RBs are allocated to users with low correlation and good channel quality. To
this end, user-grouping proposed in §4.1 can be used. Additionally, we prioritize scheduling for
slices with larger SLA deficits. Let us refer to the set of all slices with non-zero SLA deficit as active

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:9

slice, denote it as S𝑡𝑎𝑐𝑡 , and the union of the set of all users in S𝑡𝑎𝑐𝑡 as K𝑎𝑐𝑡 . Then we partition this
set into two sub-sets of users K𝑡𝑎𝑐𝑡 = 𝐺𝑡𝑙 ∪𝐺

𝑡
𝑠 defined as:

𝐺𝑡
𝑙
= {𝑖 : Δ𝑡

𝑠𝑙𝑖𝑐𝑒 (𝑖) ≥ Δ𝑡𝑎𝑣𝑔} and 𝐺𝑡𝑠 = { 𝑗 : Δ𝑡𝑠𝑙𝑖𝑐𝑒 (𝑗) < Δ𝑡𝑎𝑣𝑔}, where Δ𝑡𝑎𝑣𝑔 =
∑
𝑠∈S𝑎𝑐𝑡 Δ

𝑡
𝑠

|S𝑡𝑎𝑐𝑡 |
. (4)

The function 𝑠𝑙𝑖𝑐𝑒 (𝑖) denotes the slice of user 𝑖 , and the quantity Δ𝑡𝑎𝑣𝑔, denotes the average of all
non-zero Δ𝑡𝑠 from Eq. (2). Further, 𝐺𝑡

𝑙
and 𝐺𝑡𝑠 denote subset of slices with more than and less than

average SLA deficit respectively, making the users within 𝐺𝑡
𝑙
the higher priority set of users. From

𝐺𝑡
𝑙
, we pick the user-RB (𝑘 ′, 𝑏′) pair with the highest channel gain as:

(𝑘 ′, 𝑏′) = arg max
𝑘∈𝐺𝑡

𝑙
,𝑏∈B

| |h𝑏,𝑡
𝑘
| |2. (5)

This allows us to initiate allocation from RB 𝑏′ and user 𝑘 ′ ∈ 𝐺𝑡
𝑙
where 𝑠𝑙𝑖𝑐𝑒 (𝑘 ′) = 𝑠′. Given that this

resource allocation occurs in massive MIMO networks, and we want to ensure RB orthogonality,
we must also select other users from the same slice 𝑠′. As discussed in [7], increasing the number of
scheduled users 𝐾 in massive MIMO is not always beneficial, and there is an optimal𝑀/𝐾 ratio for
maximizing spectral efficiency. While our proposed algorithm applies to any generic 𝐾 < 𝑁 value,
for implementation, 𝐾 can be determined following the guidelines in [7]. Thus, after finding a user
𝑘 ′ in slice 𝑠′ to be served, we need to find 𝐾 − 1 additional users, which should have a low inter-user
correlation from slice 𝑠′ to schedule with user 𝑘 ′ on RB 𝑏′. Therefore, we group users into clusters
where users exhibit low correlation with each other using the technique proposed in §4.1. We then
identify the group containing user 𝑢′ and select the top 𝐾 − 1 users with the highest channel gain
from the same slice 𝑠′ for scheduling. If the group contains less than 𝐾 users, we find user 𝑗 with
the highest channel gain on RB 𝑏′ from other groups and continue selecting uncorrelated users
from user 𝑗 ’s group until we have total 𝐾 users or all users in slice 𝑠′ are selected. This approach
may introduce some inter-user interference, but increasing the number of scheduled users (as long
as it remains below 𝐾) will compensate with higher data rates. After selecting the user set for
scheduling on RB 𝑏′, we estimate the total achieved rate of slice 𝑠′ using the Shannon capacity
equation [51] and update Δ𝑡

𝑠′ . The scheduler continues updating SLA deficits to allocate RBs and
user sets until all slice SLAs are fulfilled. A flowchart illustration of Helix algorithm is shown in
Fig. 4 and the detailed algorithmic implementation is provided in Appendix B.

Fig. 4. Flowchart illustration of Helix.

4.3 RB Sharing Case
RB-Orthogonal does not provide an efficient solution when the users of a single slice are high-
correlated. For example, in cluttered environments where users from the same slice are concentrated
in a single location, such as in a crowded shopping mall, high inter-user interference occurs due
to their strong correlation, leading to reduced system performance. Besides, in scenarios with
sparse slices that contain very few active users (i.e., the number of users is fewer than 𝐾), such as
resident networks in late night hours, exclusively assigning RB to these slices results in inefficient

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:10 Qing An et al.

resource utilization. The RB sharing approach addresses these issues by enabling radio resources
to be shared among users from all slices, thus enhancing RB utilization. This method operates in
a fully centralized manner and collaboratively determines the optimal user combination across
slices. While RB sharing can achieve superior resource saving compared to the RB-orthogonal
approach, it incurs a higher computational overhead due to the increased complexity of user and
RB combinations as outlined in §3. Consequently, an exhaustive search for the optimal solution in
a large-size network is impractical, so we propose a scheduler with low computational complexity.

4.3.1 Delta RB Sharing (DRS). Building on the principles of DRO, we introduce a low-complexity
approach tailored for the RB sharing scenario. The core concept involves prioritizing slices with
substantial SLA deficits and allocating RBs to users with high channel quality and low correlation.
Initially, we classify slices based on the average SLA deficit Δ𝑎𝑣𝑔 of active slices, similar to the
RB-orthogonal scenario. Next, we identify the user-RB pair with the highest channel gain to initiate
the allocation process. We group users as explained in §4.1 and identify the user group containing
the selected user and pick additional 𝐾 − 1 users in descending order of channel gain. Unlike the
RB-orthogonal scenario, where users must be selected from the same slice, RB-sharing allows
users to be selected from any slice. However, users from slices with larger deficits are given higher
priority, and users from slices with smaller deficits are only selected if insufficient users are available
in the larger deficit group. SLA deficit update follows the same procedure as in the RB-orthogonal
scenario, with sequential RB allocation continuing until all SLAs are met, as detailed in Algorithm 1.

4.3.2 Exhaustive search in RB-Sharing (RS_ES). To compare the performance of DRS in RB sharing
with a benchmark method, we implement a near-optimal method known as RS_ES, which performs
a user-level exhaustive search. Specifically, RS_ES first identifies the initial (𝑘 ′, 𝑏′) user-RB pair,
similar to DRS. However, for selecting the remaining 𝐾 − 1 scheduled users on the same RB, unlike
selecting for a fixed user group, RS_ES conducts an exhaustive search among all users to find the
optimal set of UEs. It then updates the SLA deficit following the same procedure as in DRS, picks
the next best RB-user pair, and continues the process till all SLAs are met. Note that performing an
exhaustive search without picking an initial user-RB pair would be a computationally infeasible
approach even for small-scale networks since the search space increases exponentially with both
the number of resource blocks and the number of users. Thus, RS_ES provides a near-optimal
solution by partly introducing user-level exhaustive search within the DRS approach.

4.4 RB Parallelism
In both DRO and DRS, RB allocation occurs sequentially because the outcomes of previous RB
allocations adjust the SLA deficits, thereby affecting the priority of slices in subsequent allocations.
This process determines whether a slice is categorized into a large or small delta group for the
next allocation round. However, this sequential allocation mechanism leads to increased execution
time, potentially violating the stringent latency requirements of 5G networks, particularly in RB-
demanding cases (i.e. tight SLA constraints). However, because we use average SLA deficits to do
slice classification, a single RB allocation result most often doesn’t significantly impact the average
deficits, and thus, the slice classification remains unchanged. This allows us to allocate multiple RBs
using the same slice classification. This observation enables us to perform multiple RB allocations
in parallel, thereby reducing execution time.

More specifically, in Algo 1, by finding multiple user-RB pairs (𝑘 ′, 𝑏′) in step 7, steps 8 to 24 can
be parallelly executed for all such pairs. The number of user-RB pairs we pick would determine the
number of parallel threads required. One possible way to pick this degree of parallelism can be
determined by the ratio of total SLA deficits of the current TTI to the average achieved data rate per

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:11

RB in the previous TTI. The degree of parallelism can be dynamically adapted as per changing SLA-
deficits and execution time requirements. We will evaluate the effectiveness of RB parallelism in §5,
demonstrating its impact on reducing running time with only a minor performance degradation.

4.5 Helix Choice of Algorithms
Depending on the use case, Helix will choose one of its core algorithms, DRS or DRO, to minimize
the number of used RBs while satisfying the SLAs. All three proposed algorithms for both RB-
orthogonal (GP and DRO) and RB-sharing cases (DRS) are SLA-aware extensions of a greedy
approach, wherein at their core lies greedy allocation of RBs. In all three, we assign the most
suitable RBs that achieve the largest possible rate, thereby lowering the SLA deficit by employing
as few RBs as possible, which is our objective function as outlined in Eq. (1). This is done while
being cognizant of the SLA deficit of each slice. Due to the use of exhaustive search, GP clearly
does not scale well in massive MIMO networks and can only be considered in small-scale MIMO or
SISO networks. Therefore, we primarily present it here as a baseline for performance comparison.
In contrast, the DRO and DRS algorithms are specifically designed for massive MIMO networks.
DRO is applied in RB-orthogonal cases, while DRS is tailored for RB-sharing cases.

5 EXPERIMENTS
In this section, we comprehensively evaluate Helix in massive MIMO-based trace-driven simulation
under various network configurations. The highlights of our evaluation are as follows:

• In RB-orthogonal case, GP’s performance is near-optimal and better than the Greedy algo-
rithm (§5.2) in small and medium-size networks.
• DRO achieves comparable performance to GP and is scalable to real-world networks. (§5.2).
• DRS provides near-optimal solution and consumes fewer RBs than any orthogonality-based
schedulers due to the cooperative sharing of resources (§5.2).
• The benefits of our proposed scheduler hold in different network configurations (small,
medium, and real-world size) and scenarios (static and mobility) (§5.2).
• Our proposed schedulers can support diverse scheduling policies and SLAs (§5.2.5).
• DRO andDRS canmeet 5G sub-millisecond latency requirements through RB parallelism.(§5.2.6).

5.1 Experimental Setup
To evaluate our schemes under realistic massive MIMO deployments, we leverage a publicly
available real-world channel dataset [22] from the RENEW wireless testbed [21]. This dataset
encompasses practical considerations such as multipath reflections, hardware impairments, and
noise. The raw traces, collected on the 2.4 GHz Wi-Fi ISM band with a 20 MHz bandwidth and
52 OFDM subcarriers, contain received 802.11 Long Training Symbols (LTS). Channel matrices
were subsequently extracted through channel estimation. The dataset represents a scenario with
a BS equipped with 64 antennas serving 225 single-antenna UEs positioned at various locations.
Channel measurements were conducted for both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)
propagation conditions. The LOS component comprises four clusters, while the NLOS component
comprises five clusters. Each cluster approximates a circular shape with a diameter of approximately
4 meters. The specific locations of the massive MIMO BS and user clusters are depicted Fig. 9a
in Appendix C. Within each cluster, user channels were measured at 25 uniformly distributed
locations and Fig. 9b shows the average inter-user correlation among clusters. It is obvious that
users within the same cluster exhibit high correlation, whereas those in different clusters show
low correlation, particularly in LoS clusters. The correlation threshold for user grouping in §4.1
is a critical factor in managing the complexity of the grouping process, as it directly impacts the

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:12 Qing An et al.

Table 1. Overview of implemented experiment configurations. (LC is static low-correlated scenario, HC is
static high-correlated scenario, SM is slow-mobility, FM is fast-mobility and PF is Proportional Fairness)

Network Size Scenario BS RB UE (Physical Clusters) Slice K

Small Size LC 64 52 16 (4 LoS) 4 3, 8
HC 64 52 16 (4 LoS) 4 3, 8

Medium Size
LC 64 52 80 (4 LoS) 8 8, 16
HC 64 52 80 (4 LoS) 8 8, 16

HC + PF 64 52 80 (2 LoS + 2 NLoS) 8 16

Real-World Size

LC 64 52 200 (4 LoS + 4 NLoS) 8 16
HC 64 52 200 (4 LoS + 4 NLoS) 8 16
SM 64 52 200 (4 LoS + 4 NLoS) 8 16
FM 64 52 200 (4 LoS + 4 NLoS) 8 16

Network Size SLA Stringency Throughput SLA (Mbps)

Small-size network Loose [51.9, 46.2, 50, 53.8]
Tight [90.4, 84.6, 88.5, 92.3]

Medium and
Real-world size network

Loose [16.7, 46.4, 42.3, 51.7, 19.2, 50.5, 48.1, 53.6]
Tight [55.8, 84.2, 80.8, 91.2, 57.7, 88.3, 86.5, 92.4]

number of resulting groups. A stricter threshold increases the number of user groups but provides
better assurance that users with high correlation are not scheduled simultaneously. In our Helix
evaluations, we adopt a threshold of 0.5, which is commonly employed in prior works [22, 50]. In
our comparative evaluation, we consider all schedulers introduced in §4: the Greedy algorithm,
Greedy Plus (GP), optimal solution through Gurobi, DRO, DRS, and RS_ES. For the RB-orthogonal
case, the Greedy algorithm serves as a baseline adopted by state-of-the-art (SOTA) work [18],
while the Gurobi optimizer provides the upper performance bound. For RB-sharing, since the
exponential combinatorial space associated with UEs, slices, and RBs makes it infeasible to obtain
an optimal solution in large-size networks, RS_ES serves as the baseline method for comparison.
All experiment configurations are listed in Table. 1. We establish two static channel correlation
scenarios: high-correlated (HC) and low-correlated. In the high-correlated scenario, users within
a slice are deliberately chosen from the same LoS cluster, resulting in high inter-user correlation
(reported to exceed 0.8 in [22]). Conversely, for the low-correlated (LC) scenario, users are positioned
in distinct clusters within a slice, which ensures that inter-user correlation remains below 0.2 in
the low-correlated case. To comprehensively assess performance, we also define two distinct sets
of SLAs (loose and tight) corresponding to each scenario. For mobility channels, we consider
both slow-mobility (SM) such as pedestrian speed and fast-mobility (FM) scenarios. Following
the methodology outlined in [22], since channels of different spots in each cluster are measured
continuously, it allows us to simulate a user moving randomly at low speed within a cluster.
Similarly, channels across different clusters can be used to emulate high-speed mobility.

5.2 Performance Evaluation
We evaluate the performance of our proposed schedulers through various network sizes, differing
stringencies of SLAs, and diverse correlation scenarios. In 5G, SLAs are negotiated by enterprise
and service-provider based on radio resource availability, CAPEX and type of services. We set loose
and tight SLAs based on channel dataset following the instructions of [35]. For a fair comparison,
all algorithms receive identical channels generated from real-world traces as input. We assess
scheduler performance using the average number of allocated RBs across all TTIs while meeting
SLAs. This metric indicates an algorithm’s ability to satisfy SLAs with minimal RB utilization.
Error bars are also incorporated into each plot to visualize the standard deviation in allocated
RBs across TTIs. First, we employ throughput as the SLA to evaluate scheduler performance in a
static scenario. Subsequently, we demonstrate our scheduler’s superiority to support a variety of

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:13

(a) (b) (c) (d)

Fig. 5. Scheduler performance in small-size network (a) static high-correlated and loose SLA (b) static high-
correlated and tight SLA (c)static low-correlated and loose SLA (d) static low-correlated and tight SLA.

scheduling policies and SLAs, while achieving strong performance in mobility scenarios. Finally,
we evaluate the running time of the proposed schedulers, highlighting the ability of DRO and DRS
to deliver scheduling decisions within milliseconds.

5.2.1 Small-Size Network. We consider a massive MIMO network with 64 BS antennas, serving
16 users distributed across 4 slices, utilizing 52 RBs. Fig. 5a and 5b illustrate the number of RBs
consumed under loose and tight SLA constraints within the high-correlated scenario. Evidently,
GP outperforms Greedy in terms of RB utilization while being very close to the optimal solution
obtained through B&B. DRO exhibits slightly worse performance than GP (i.e. consuming one
additional RB per TTI), but avoids the exhaustive search required by GP. This difference stems
from the fact that B&B identifies a globally optimal solution by accounting for both inter-slice
and intra-slice scheduling. In contrast, GP applies a greedy algorithm for inter-slice scheduling
and utilizes exhaustive searches for intra-slice scheduling to achieve near-optimal performance,
whereas DRO adopts a sub-optimal intra-slice scheduling approach to mitigate computational
complexity. As a result, both GP and B&B incur substantial latency due to their computational
overhead (see §5.2.6), while DRO, despite its faster execution, allocates more RBs than GP and B&B
when satisfying SLAs. Notably, DRS obtains near-optimal performance compared to RS_ES and
consumes much fewer RBs than any RB-orthogonal schedulers due the RB sharing opportunities
among slices. Specifically, when 𝐾 = 3, DRS achieves the best performance with a reduction in
RB consumption of 25% and 19.2% for loose and tight SLAs, respectively, compared to the Greedy
algorithm. This advantage is further amplified to 58.9% and 57.6% when 𝐾 = 8. This behavior can be
attributed to large 𝐾 emulating a user-sparse scenario (K𝑠 < 𝐾), where DRS can effectively share
redundant resources with users from other slices, maximizing the utilization. Fig. 5c and 5d depict
the performance of schedulers in the low-correlated scenario. In this case as well, DRS and DRO are
able to achieve near-optimal performance in their respective scenarios. However, the advantage of
RB sharing among slices is less pronounced compared to the high-correlated case. This is because,
with low-correlated users, the impact of selecting users from the same slice (RB-orthogonality)
or different slices (RB-sharing) is minimal. In contrast, for the high-correlated scenario, imposing
RB-orthogonality introduces significant inter-user interference, leading to performance degradation.

5.2.2 Medium-Size Network. We configure the network with 64 BS antennas, 52 RBs, and 80 users
distributed into 8 slices, with each slice containing 10 users. However, RS_ES is not implementable
in this scale because of high complexity (i.e. O(

(80
𝐾

)
)). Fig. 6 shows similar trends as in the small-size

network: (1) GP performs near optimally and consistently outperforms the Greedy algorithm across
all 𝐾 , SLA constraints, and correlation conditions. (2) DRO, though slightly below GP due to its

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:14 Qing An et al.

(a) (b) (c) (d)

Fig. 6. Scheduler performance in medium-size network (a) static high-correlated and loose SLA (b) static
high-correlated and tight SLA (c)static low-correlated and loose SLA (d) static low-correlated and tight SLA.

approximation, offers significantly lower complexity. (3) DRS demonstrates the benefits of RB
sharing, especially as 𝐾 increases and in highly correlated scenarios.

5.2.3 Real-World-Size Network. To conduct a realistic evaluation, we expand the network size to
encompass 200 UEs with various channel conditions, originating from four LoS clusters and four
NLoS clusters, while keeping all other configurations unchanged. Following the established topology
of the clusters, we configure both high-correlated and low-correlated scenarios as previously applied
to different network sizes. To make it more realistic, unlike the previous even distribution of users
among slices, we generate a random set of numbers (i.e. [10, 12, 18, 20, 25, 33, 45, 37] with a mean
of 25) to determine the number of users in each slice. With 𝐾 = 16, our experiments include both
sparsely populated (|K𝑠 | < 𝐾) and densely populated (|K𝑠 | > 𝐾) slices. For this network size, the
Greedy algorithm, GP, and Gurobi are infeasible due to their high complexity. Consequently, as
depicted in Fig. 7a, we only present the performance of DRO and DRS to show its scalability.

5.2.4 Mobility Scenarios. A comparison of the schedulers’ performance in mobile scenarios is
illustrated in Fig. 7b. It is noteworthy that the results for the low-speed mobility scenario are similar
to the static high-correlated scenario in Fig. 7a, as users moving within the same cluster still remain
highly correlated. Similarly, the results for high-speed mobility are comparable to those in the static
low-correlated scenario, albeit with larger standard deviations than static scenario.

5.2.5 Diverse Scheduling Policies. As illustrated in §4, channel gain serves as a key indicator of
user channel quality and affects scheduling decisions to fulfill throughput SLAs. However, our
schedulers can accommodate a variety of scheduling policies and SLA types by substituting channel
gain with alternative performance metrics. In this evaluation, we utilize the proportional fairness
metric in place of channel gain to implement the PF scheduling policy, thereby ensuring SLAs
are met concerning both throughput and inter-user rate fairness. In this work, we employ Jain’s
Fairness Index (JFI) [32] to indicate rate fairness, which is a number between 0 to 1 and JFI=1
represents perfect fairness. PF metric is expressed as 𝑔𝑏,𝑡

𝑘
/𝑅𝑡
𝑘
, where 𝑔𝑏,𝑡

𝑘
denotes normalized channel

gain of user 𝑘 on RB 𝑏 at TTI 𝑡 and 𝑅𝑡
𝑘
indicates normalized accumulated rate of user 𝑘 by TTI

𝑡 . It is essential to note that the normalization factors are the maximum channel gain and the
maximum accumulated rate in 𝑠 where 𝑠𝑙𝑖𝑐𝑒 (𝑘) = 𝑠 . This is because only intra-slice fairness needs
to be ensured, as guaranteeing global user fairness is impractical due to the varying SLAs across
slices. To provide a thorough comparison, we conducted experiments in a medium-sized network
with 80 UEs, incorporating the Greedy algorithm, GP, the optimal solution generated by the Gurobi
optimizer (B&B), DRO, and DRS. As illustrated in Fig. 7c and 7d, after replacing MR policy with
PF, DRS is able to achieve an outstanding JFI but only uses additional 0.5 RBs in average per TTI
compared to DRS with MR scheduling policy. Similarly, to support a variety of SLAs, Helix can be

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:15

(a) (b) (c) (d)

Fig. 7. Scheduler Performance: (a) and (b) real-world-size network with static and mobility scenario respec-
tively. (c) Diverse scheduling polices in static medium-size network. (d) Jain’s Fairness Index for Diverse
scheduling polices in static medium-size network. (LCL:low-correlated with loose SLA, HCT: high-correlated
with tight SLA, SML: slow-mobility with loose SLA, FMT: fast-mobility with tight SLA)

adapted by replacing the channel gain with other performance metrics, such as buffer occupancy
for latency-sensitive SLAs, extending its functionality beyond just throughput.

5.2.6 Computational Complexity Analysis. As discussed in §3 and §4, both the Greedy algorithm
and GP necessitate an exhaustive search by the intra-slice scheduler. This approach is feasible
within SISO networks due to the availability of rate estimation via CQI utilizing a look-up table.
However, in MIMO networks, computing rate for all user combinations within each slice on each RB
is infeasible within a TTI. Conducting an exhaustive search for |S| slice across all |B| RBs (assuming
each slice contains the same |K𝑠 | users) incurs a time complexity of O(

(|K𝑠 |
𝐾

)
× |B|× |S|×𝐾) for rate

estimation. In contrast, approaches such as DRO or DRS compute rates only once for selected𝐾 users
after resource allocation decision have been made, thereby significantly reducing computational
overhead. The primary computational bottleneck lies in user grouping and the sorting of channel
gains within each user group, detailed in §4, with a time complexity logarithmically dependent
on the user group’s size. Furthermore, as delineated in §4.1 and §4.4, user grouping and slice
sorting require only periodic execution over multiple TTIs. Due to the inherent optimization
potential and flexibility of these methods, the computational complexity of DRO and DRS depends
on implementation details and adjustable parameters like user grouping thresholds and the degree
of RB parallelism. We show their competitive time efficiency through a detailed runtime analysis.
To evaluate the running time of proposed schedulers, we implement them using a single Intel

Xeon core. Fig. 8a shows the scheduling time of GP and Greedy algorithm increases exponentially
with the network size because of the exhaustive search that the intra-slice scheduler has to perform.
B&B does an exhaustive search at both inter-slice and intra-slice levels to find the optimal solution.
Even though it has been accelerated by the Gurobi optimizer, it still takes the longest time to obtain
scheduling decisions. In contrast, DRS and DRO grow linearly with the help of an approximate
approach. However, as discussed in 4, because the outcomes of previous RB allocations adjust the
SLA deficit, RB allocation in DRO and DRS occurs sequentially. It results in a scheduling time
of slightly more than 1 ms for both DRS and DRO, which is unfavorable in real-world networks.
Therefore, we adopt RB parallelism strategy as discussed in §4.4 with DRS and DRO (labelled as
DRS_Para and DRO_Para) to do allocation on multiple RBs in parallel. By doing this, DRS_Para
and DRO_Para will spend a little more radio resources than DRS and DRO (i.e. up to 1.1 and 0.7
more RBs per TTI in average) in various network sizes but can significantly reduce the running
time by 5 times so as to meet the stringent 5G latency requirement as Fig. 8 shown.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:16 Qing An et al.

(a) (b)

Fig. 8. (a) Scheduling latency comparison in various sizes of networks and (b) RB consumption comparison
between w/ and w/o RB parallelism.

6 DISCUSSION AND FUTUREWORK
Timely and comprehensive channel information. Helix operates under the premise of obtain-
ing precise and thorough channel data from users to do user grouping. This assumption is common
in channel-aware RAN slicing literature [6, 18, 36, 43], wherein, obtaining CSI is challenging,
especially in large networks with many users. However, Helix can achieve strong performance
even with partial and dynamic CSI, as its primary use is for user grouping. As long as the channel
remains relatively stable, user grouping is unaffected by minor fluctuations, as discussed in §4.1.
Thus, frequent CSI updates are unnecessary for Helix’s scheduling; they are only needed when
significant changes in user correlation occur. Future work will enhance Helix by incorporating
dynamic mechanisms to detect correlation changes and request CSI updates as required.
Heterogenous SLAs. Although Helix’s capability to support multiple scheduling policies and

different types of SLAs is outlined in §5.2.5, Helix in its current form, only addresses rate as the
main metric for the SLA of different slices. One particular future direction for the design of Helix,
could consider heterogeneous SLA parameters including rate, packet latency and buffer size.
Ultra-Large-Scale Networks. In practical scenarios, an urban macro 5G cell can support

hundreds to over a thousand active users concurrently [3, 38], which presents significant challenges
for resource scheduling due to increased complexity. To accommodate a higher number of users,
Helix leverages RB parallelism, as outlined in §4.4, enabling it to complete allocations within sub-
millisecond intervals. However, this approach requires additional computational resources. Future
work will focus on evaluating Helix’s performance in such large-scale network environments.

7 CONCLUSION
This paper introduces Helix, a RAN slicing framework for massive MIMO networks that opti-
mizes resource scheduling through spatial-time slicing via beamforming. Unlike traditional MIMO
schedulers maximizing throughput, Helix prioritizes enterprise-specific SLA with minimal RBs.
It supports cooperative and exclusive resource allocation, enabling operators to choose resource
sharing (DRS) or exclusive allocation (DRO) based on privacy and traffic needs. Evaluations using
real-world data demonstrate near-optimal performance and efficiency across various scenarios.

ACKNOWLEDGMENTS
We thank the anonymous CoNEXT reviewers and our shepherd for their invaluable feedbacks.
This work was funded in part by National Science Foundation Grant 2312978, 2120447, 1827940,
2120363, 2106993 and 2148313. All opinions and findings are of the authors.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:17

REFERENCES
[1] 2024. RENEW: Reconfigurable Eco-system for Next-generation End-to-end Wireless. https://renew.rice.edu/dataset-

iuc.html. Open Access.
[2] Qing An, Mehdi Zafari, Chris Dick, Santiago Segarra, Ashutosh Sabharwal, and Rahman Doost-Mohammady. 2023.

ML-Based Feedback-Free Adaptive MCS Selection for Massive Multi-User MIMO. In 2023 57th Asilomar Conference on
Signals, Systems, and Computers. 157–161. https://doi.org/10.1109/IEEECONF59524.2023.10476866

[3] Jeffrey G. Andrews, Stefano Buzzi, Wan Choi, Stephen V. Hanly, Angel Lozano, Anthony C. K. Soong, and
Jianzhong Charlie Zhang. 2014. What Will 5G Be? IEEE Journal on Selected Areas in Communications 32, 6 (2014),
1065–1082. https://doi.org/10.1109/JSAC.2014.2328098

[4] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar. 2001. Providing quality of service
over a shared wireless link. IEEE Communications Magazine 39, 2 (2001), 150–154. https://doi.org/10.1109/35.900644

[5] Sihem Bakri, Pantelis A. Frangoudis, Adlen Ksentini, and Maha Bouaziz. 2021. Data-Driven RAN Slicing Mechanisms
for 5G and Beyond. IEEE Transactions on Network and Service Management 18, 4 (2021), 4654–4668. https://doi.org/10.
1109/TNSM.2021.3098193

[6] Arjun Balasingam, Manikanta Kotaru, and Victor Bahl. 2024. Application-Level Service Assurance with 5G RAN
Slicing. In 2024 Networked Systems Design and Implementation. USENIX. https://www.microsoft.com/en-us/research/
publication/application-level-service-assurance-with-5g-ran-slicing/

[7] Emil Björnson, Erik G. Larsson, and Thomas L. Marzetta. 2016. Massive MIMO: ten myths and one critical question.
IEEE Communications Magazine 54, 2 (2016), 114–123. https://doi.org/10.1109/MCOM.2016.7402270

[8] Erik G. Boman, Doruk Bozdağ, Umit Catalyurek, Assefaw H. Gebremedhin, and Fredrik Manne. 2005. A Scalable
Parallel Graph Coloring Algorithm for Distributed Memory Computers. In Euro-Par 2005 Parallel Processing, José C.
Cunha and Pedro D. Medeiros (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 241–251.

[9] Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso Melodia. 2021. SCOPE: an open and softwarized
prototyping platform for NextG systems. In Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services (Virtual Event, Wisconsin) (MobiSys ’21). Association for Computing Machinery, New York,
NY, USA, 415–426. https://doi.org/10.1145/3458864.3466863

[10] Gaojing Bu and Jing Jiang. 2019. Reinforcement Learning-Based User Scheduling and Resource Allocation for
Massive MU-MIMO System. In 2019 IEEE/CIC International Conference on Communications in China (ICCC). 641–646.
https://doi.org/10.1109/ICCChina.2019.8855949

[11] Chia-Yu Chang and Navid Nikaein. 2018. RAN Runtime Slicing System for Flexible and Dynamic Service Execution
Environment. IEEE Access 6 (2018), 34018–34042. https://doi.org/10.1109/ACCESS.2018.2847610

[12] Robin Chataut and Robert Akl. 2020. Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends,
Challenges, and Future Research Direction. Sensors 20, 10 (2020). https://doi.org/10.3390/s20102753

[13] Cheng-Ming Chen, Qing Wang, Abdo Gaber, Andrea P. Guevara, and Sofie Pollin. 2020. User Scheduling and Antenna
Topology in Dense Massive MIMO Networks: An Experimental Study. IEEE Transactions on Wireless Communications
19, 9 (2020), 6210–6223. https://doi.org/10.1109/TWC.2020.3001224

[14] Hongchao Chen, Yupu Liu, Zhe Zheng, Huiyang Wang, Xiaohui Liang, Yi Zhao, and Junwei Ren. 2021. Joint User
Scheduling and Transmit Precoder Selection Based on DDPG for Uplink Multi-User MIMO Systems. In 2021 IEEE 94th
Vehicular Technology Conference (VTC2021-Fall). IEEE, 1–5.

[15] Liang Chen, Fanglei Sun, Kai Li, Ruiqing Chen, Yang Yang, and Jun Wang. 2021. Deep Reinforcement Learning for
Resource Allocation in Massive MIMO. In 2021 29th European Signal Processing Conference (EUSIPCO). 1611–1615.
https://doi.org/10.23919/EUSIPCO54536.2021.9616054

[16] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PARTIES: QoS-Aware Resource Partitioning for
Multiple Interactive Services. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing
Machinery, New York, NY, USA, 107–120. https://doi.org/10.1145/3297858.3304005

[17] Yongce Chen, Yubo Wu, Y. Thomas Hou, and Wenjing Lou. 2021. mCore: Achieving Sub-millisecond Scheduling
for 5G MU-MIMO Systems. In IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. 1–10. https:
//doi.org/10.1109/INFOCOM42981.2021.9488684

[18] Yongzhou Chen, Ruihao Yao, Haitham Hassanieh, and Radhika Mittal. 2023. Channel-Aware 5G RAN Slicing with Cus-
tomizable Schedulers. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX
Association, Boston, MA, 1767–1782. https://www.usenix.org/conference/nsdi23/presentation/chen-yongzhou

[19] Arnab Choudhury, Yang Wang, Tuomas Pelkonen, Kutta Srinivasan, Abha Jain, Shenghao Lin, Delia David, Siavash
Soleimanifard, Michael Chen, Abhishek Yadav, Ritesh Tijoriwala, Denis Samoylov, and Chunqiang Tang. 2024. MAST:
Global Scheduling of ML Training across Geo-Distributed Datacenters at Hyperscale. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 563–580. https:
//www.usenix.org/conference/osdi24/presentation/choudhury

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

https://renew.rice.edu/dataset-iuc.html
https://renew.rice.edu/dataset-iuc.html
https://doi.org/10.1109/IEEECONF59524.2023.10476866
https://doi.org/10.1109/JSAC.2014.2328098
https://doi.org/10.1109/35.900644
https://doi.org/10.1109/TNSM.2021.3098193
https://doi.org/10.1109/TNSM.2021.3098193
https://www.microsoft.com/en-us/research/publication/application-level-service-assurance-with-5g-ran-slicing/
https://www.microsoft.com/en-us/research/publication/application-level-service-assurance-with-5g-ran-slicing/
https://doi.org/10.1109/MCOM.2016.7402270
https://doi.org/10.1145/3458864.3466863
https://doi.org/10.1109/ICCChina.2019.8855949
https://doi.org/10.1109/ACCESS.2018.2847610
https://doi.org/10.3390/s20102753
https://doi.org/10.1109/TWC.2020.3001224
https://doi.org/10.23919/EUSIPCO54536.2021.9616054
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1109/INFOCOM42981.2021.9488684
https://doi.org/10.1109/INFOCOM42981.2021.9488684
https://www.usenix.org/conference/nsdi23/presentation/chen-yongzhou
https://www.usenix.org/conference/osdi24/presentation/choudhury
https://www.usenix.org/conference/osdi24/presentation/choudhury

27:18 Qing An et al.

[20] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient and QoS-aware cluster management.
SIGPLAN Not. 49, 4 (feb 2014), 127–144. https://doi.org/10.1145/2644865.2541941

[21] Rahman Doost-Mohammady, Oscar Bejarano, Lin Zhong, Joseph R. Cavallaro, Edward Knightly, Z. Morley Mao,
Wei Wayne Li, Xuemin Chen, and Ashutosh Sabharwal. 2018. RENEW: Programmable and Observable Massive MIMO
Networks. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers. 1654–1658. https://doi.org/10.1109/
ACSSC.2018.8645391

[22] Xu Du and Ashutosh Sabharwal. 2022. Massive MIMO Channels With Inter-User Angle Correlation: Open-Access
Dataset, Analysis andMeasurement-Based Validation. IEEE Transactions on Vehicular Technology 71, 2 (2022), 1602–1616.
https://doi.org/10.1109/TVT.2021.3131606

[23] Xenofon Foukas, Mahesh K. Marina, and Kimon Kontovasilis. 2017. Orion: RAN Slicing for a Flexible and Cost-Effective
Multi-Service Mobile Network Architecture. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking (Snowbird, Utah, USA) (MobiCom ’17). Association for Computing Machinery, New York,
NY, USA, 127–140. https://doi.org/10.1145/3117811.3117831

[24] Mikael Gidlund and J.-C. Laneri. 2008. Scheduling Algorithms for 3GPP Long-Term Evolution Systems: From a Quality
of Service Perspective. In 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications.
118–123. https://doi.org/10.1109/ISSSTA.2008.28

[25] Mukesh Kumar Giluka, Nitish Rajoria, Ashish C. Kulkarni, Vanlin Sathya, and Bheemarjuna Reddy Tamma. 2014. Class
based dynamic priority scheduling for uplink to support M2M communications in LTE. In 2014 IEEE World Forum on
Internet of Things (WF-IoT). 313–317. https://doi.org/10.1109/WF-IoT.2014.6803179

[26] Xiaojun Guo, Ziyi Li, Pengyu Liu, Rudan Yan, Yingying Han, Xiaojun Hei, and Guohui Zhong. 2020. A Novel
User Selection Massive MIMO Scheduling Algorithm via Real Time DDPG. In GLOBECOM 2020 - 2020 IEEE Global
Communications Conference. 1–6. https://doi.org/10.1109/GLOBECOM42002.2020.9322383

[27] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https://www.gurobi.com
[28] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker,

and Ion Stoica. 2011. Mesos: a platform for fine-grained resource sharing in the data center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation (Boston, MA) (NSDI’11). USENIX Association,
USA, 295–308.

[29] Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and Tianwei Zhang. 2023. Lucid: A Non-intrusive, Scalable and
Interpretable Scheduler for Deep Learning Training Jobs. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 457–472. https://doi.org/10.1145/3575693.3575705

[30] Chih-Wei Huang, Ibrahim Althamary, Yen-Cheng Chou, Hong-Yunn Chen, and Cheng-Fu Chou. 2023. A DRL-Based
Automated Algorithm Selection Framework for Cross-Layer QoS-Aware Scheduling and Antenna Allocation in Massive
MIMO Systems. IEEE Access 11 (2023), 13243–13256. https://doi.org/10.1109/ACCESS.2023.3243068

[31] Lingying Huang, Xiaomeng Chen, Wei Huo, Jiazheng Wang, Fan Zhang, Bo Bai, and Ling Shi. 2021. Branch and Bound
in Mixed Integer Linear Programming Problems: A Survey of Techniques and Trends. arXiv:2111.06257 [cs.LG]

[32] R. Jain, D. Chiu, and W. Hawe. 1998. A Quantitative Measure Of Fairness And Discrimination For Resource Allocation
In Shared Computer Systems. arXiv:cs/9809099 [cs.NI]

[33] Tommy R Jensen and Bjarne Toft. 2011. Graph coloring problems. John Wiley & Sons.
[34] Alexander Kalachikov and Alexander Stenin. 2021. Performance Evaluation of the SRS BasedMIMOChannel Estimation

on 5G NR Open Source Channel Model. In 2021 IEEE 22nd International Conference of Young Professionals in Electron
Devices and Materials (EDM). 124–127. https://doi.org/10.1109/EDM52169.2021.9507598

[35] Evgenia Kapassa, Marios Touloupou, and Dimosthenis Kyriazis. 2018. SLAs in 5G: A Complete Framework Facilitating
VNF- and NS- Tailored SLAs Management. In 2018 32nd International Conference on Advanced Information Networking
and Applications Workshops (WAINA). 469–474. https://doi.org/10.1109/WAINA.2018.00130

[36] Ravi Kokku, Rajesh Mahindra, Honghai Zhang, and Sampath Rangarajan. 2012. NVS: A Substrate for Virtualizing
Wireless Resources in Cellular Networks. IEEE/ACM Transactions on Networking 20, 5 (2012), 1333–1346. https:
//doi.org/10.1109/TNET.2011.2179063

[37] Adlen Ksentini and Navid Nikaein. 2017. Toward Enforcing Network Slicing on RAN: Flexibility and Resources
Abstraction. IEEE Communications Magazine 55, 6 (2017), 102–108. https://doi.org/10.1109/MCOM.2017.1601119

[38] Erik G. Larsson, Ove Edfors, Fredrik Tufvesson, and Thomas L. Marzetta. 2014. Massive MIMO for next generation
wireless systems. IEEE Communications Magazine 52, 2 (2014), 186–195. https://doi.org/10.1109/MCOM.2014.6736761

[39] Junling Li, Weisen Shi, Peng Yang, Qiang Ye, Xuemin Sherman Shen, Xu Li, and Jaya Rao. 2020. A Hierarchical Soft
RAN Slicing Framework for Differentiated Service Provisioning. IEEE Wireless Communications 27, 6 (2020), 90–97.
https://doi.org/10.1109/MWC.001.2000010

[40] Shao-Yu Lien, Shin-Lin Shieh, Yenming Huang, Borching Su, Yung-Lin Hsu, and Hung-Yu Wei. 2017. 5G New Radio:
Waveform, Frame Structure, Multiple Access, and Initial Access. IEEE Communications Magazine 55 (2017), 64–71.

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1109/ACSSC.2018.8645391
https://doi.org/10.1109/ACSSC.2018.8645391
https://doi.org/10.1109/TVT.2021.3131606
https://doi.org/10.1145/3117811.3117831
https://doi.org/10.1109/ISSSTA.2008.28
https://doi.org/10.1109/WF-IoT.2014.6803179
https://doi.org/10.1109/GLOBECOM42002.2020.9322383
https://www.gurobi.com
https://doi.org/10.1145/3575693.3575705
https://doi.org/10.1109/ACCESS.2023.3243068
https://arxiv.org/abs/2111.06257
https://arxiv.org/abs/cs/9809099
https://doi.org/10.1109/EDM52169.2021.9507598
https://doi.org/10.1109/WAINA.2018.00130
https://doi.org/10.1109/TNET.2011.2179063
https://doi.org/10.1109/TNET.2011.2179063
https://doi.org/10.1109/MCOM.2017.1601119
https://doi.org/10.1109/MCOM.2014.6736761
https://doi.org/10.1109/MWC.001.2000010

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:19

https://api.semanticscholar.org/CorpusID:1660972
[41] Haijing Liu, Hui Gao, Shaoshi Yang, and Tiejun Lv. 2017. Low-Complexity Downlink User Selection for Massive MIMO

Systems. IEEE Systems Journal 11, 2 (2017), 1072–1083. https://doi.org/10.1109/JSYST.2015.2422475
[42] Victor Hugo L Lopes, Cleverson Veloso Nahum, Ryan M Dreifuerst, Pedro Batista, Aldebaro Klautau, Kleber Vieira

Cardoso, and Robert W Heath. 2022. Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO.
IEEE Access 10 (2022), 125509–125525.

[43] Akihiro Nakao, Ping Du, Yoshiaki Kiriha, Fabrizio Granelli, Anteneh Atumo Gebremariam, Tarik Taleb, and Miloud
Bagaa. 2017. End-to-end Network Slicing for 5G Mobile Networks. Journal of Information Processing 25 (2017), 153–163.
https://doi.org/10.2197/ipsjjip.25.153

[44] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee, and Matei Zaharia. 2020.
{Heterogeneity-Aware} cluster scheduling policies for deep learning workloads. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 481–498.

[45] Samsung Technical White Paper. 2021. Private Networks Vol.2 Architectures and Features for Industrial Scenarios. White
Paper. Samsung. https://images.samsung.com/is/content/samsung/assets/global/business/networks/insights/white-
papers/1026-private-networks-vol-2-architectures-and-features-for-industrial-scenarios/Private_Network_Vol.2_
Network_Architecture_and_Features_for_Industrial_Scenarios.pdf

[46] Georgios Rokos, Gerard Gorman, and Paul H J Kelly. 2015. A Fast and Scalable Graph Coloring Algorithm for Multi-core
and Many-core Architectures. arXiv:1505.04086 [cs.DC]

[47] Junchao Shi, Wenjin Wang, Jiaheng Wang, and Xiqi Gao. 2018. Machine Learning Assisted User-scheduling Method
for Massive MIMO System. In 2018 10th International Conference on Wireless Communications and Signal Processing
(WCSP). 1–6. https://doi.org/10.1109/WCSP.2018.8555722

[48] Prashant Subedi, Abeer Alsadoon, P. W. C. Prasad, Sabih Rehman, Nabil Giweli, Muhammad Imran, and Samrah Arif.
2021. Network slicing: a next generation 5G perspective. EURASIP J. Wirel. Commun. Netw. 2021, 1 (apr 2021), 26 pages.
https://doi.org/10.1186/s13638-021-01983-7

[49] Ninad Thakoor, Venkat Devarajan, and Jean Gao. 2009. Computation complexity of branch-and-bound model selection.
In 2009 IEEE 12th International Conference on Computer Vision. 1895–1900. https://doi.org/10.1109/ICCV.2009.5459420

[50] Hong Yang. 2018. User Scheduling in Massive MIMO. In 2018 IEEE 19th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC). 1–5. https://doi.org/10.1109/SPAWC.2018.8445907

[51] Hong Yang and Thomas L. Marzetta. 2017. Massive MIMO With Max-Min Power Control in Line-of-Sight Propagation
Environment. IEEE Transactions on Communications 65, 11 (2017), 4685–4693. https://doi.org/10.1109/TCOMM.2017.
2725262

[52] Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-grained GPU sharing primitives for deep learning applications.
Proceedings of Machine Learning and Systems 2 (2020), 98–111.

[53] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep Learning in Mobile and Wireless Networking: A Survey.
IEEE Communications Surveys and Tutorials 21, 3 (2019), 2224–2287. https://doi.org/10.1109/COMST.2019.2904897

[54] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou. 2021. Sinan: ML-based and
QoS-aware resource management for cloud microservices. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for
Computing Machinery, New York, NY, USA, 167–181. https://doi.org/10.1145/3445814.3446693

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

https://api.semanticscholar.org/CorpusID:1660972
https://doi.org/10.1109/JSYST.2015.2422475
https://doi.org/10.2197/ipsjjip.25.153
https://images.samsung.com/is/content/samsung/assets/global/business/networks/insights/white-papers/1026-private-networks-vol-2-architectures-and-features-for-industrial-scenarios/Private_Network_Vol.2_Network_Architecture_and_Features_for_Industrial_Scenarios.pdf
https://images.samsung.com/is/content/samsung/assets/global/business/networks/insights/white-papers/1026-private-networks-vol-2-architectures-and-features-for-industrial-scenarios/Private_Network_Vol.2_Network_Architecture_and_Features_for_Industrial_Scenarios.pdf
https://images.samsung.com/is/content/samsung/assets/global/business/networks/insights/white-papers/1026-private-networks-vol-2-architectures-and-features-for-industrial-scenarios/Private_Network_Vol.2_Network_Architecture_and_Features_for_Industrial_Scenarios.pdf
https://arxiv.org/abs/1505.04086
https://doi.org/10.1109/WCSP.2018.8555722
https://doi.org/10.1186/s13638-021-01983-7
https://doi.org/10.1109/ICCV.2009.5459420
https://doi.org/10.1109/SPAWC.2018.8445907
https://doi.org/10.1109/TCOMM.2017.2725262
https://doi.org/10.1109/TCOMM.2017.2725262
https://doi.org/10.1109/COMST.2019.2904897
https://doi.org/10.1145/3445814.3446693

27:20 Qing An et al.

A ACHIEVABLE DATA RATE DERIVATION
Consider a massive MIMO base station (BS) with𝑀 antennas, serving 𝑁 single-antenna users. The
BS employs OFDM and performs Multi-User MIMO transmission and reception to 𝐾 users, where
𝐾 < 𝑀 and 𝐾 ≤ 𝑁 . For the uplink transmission, the signal model can be specified as

y = Hu + n, (6)
where y represents the𝑀 × 1 received signal vector at the base station. The matrix H is the𝑀 × 𝐾
channel matrix, and u denotes the 𝐾 × 1 vector of symbols transmitted by the users. Additionally,
n is the 𝑀 × 1 received noise vector, which follows a circularly symmetric complex Gaussian
distribution, n ∼ CN(0, 𝜎2I), where 𝜎2 is the noise variance and I is the identity matrix. It is
important to note that the value of𝐾 can vary in each TTI depending on the channel conditions and
is bounded by a maximum value 𝐾max [7]. We assume the BS uses zero-forcing for beamforming,
for which the beamformer matrix is specified as

W = H(H𝐻H)−1. (7)
If the set of available resource blocks is denoted by B, the BS performs receive beamforming on
the received signal at each resource block 𝑏 ∈ B to estimate the transmit symbol vector on RB 𝑏 at
TTI 𝑡 , denoted as û𝑏,𝑡 , and calculated using

û𝑏,𝑡 =
(
W𝑏,𝑡

)𝐻
y𝑏,𝑡 . (8)

The entitiesW𝑏,𝑡 and y𝑏,𝑡 denote the receive beamformer matrix and the received signal correspond-
ing to resource block 𝑏 at TTI 𝑡 . Based on Eq. 8, the output of the receive beamformer corresponding
to the transmit signal by user 𝑘 on RB 𝑏, can be expressed as

û𝑏,𝑡
𝑘

=

(
w𝑏,𝑡
𝑘

)𝐻
y𝑏,𝑡 = (w𝑏,𝑡

𝑘
)𝐻h𝑏,𝑡

𝑘
𝑥
𝑏,𝑡

𝑘
𝑢
𝑏,𝑡

𝑘
+

𝐾∑︁
𝑖=1,𝑖≠𝑘

(w𝑏,𝑡
𝑘
)𝐻h𝑏,𝑡

𝑖
𝑥
𝑏,𝑡
𝑖
𝑢
𝑏,𝑡
𝑖
+ (w𝑏,𝑡

𝑘
)𝐻n (9)

where (w𝑏,𝑡
𝑘
)𝐻 is the 1 ×𝑀 complex beamforming vector of user 𝑘 on RB 𝑏 at TTI 𝑡 , h𝑏,𝑡

𝑘
is the

𝑀 × 1 complex channel vector of user 𝑘 on RB 𝑏 at TTI 𝑡 , 𝑢𝑏,𝑡
𝑘

is the transmitted symbol of user 𝑘
on RB 𝑏 at TTI 𝑡 and 𝑥𝑏,𝑡

𝑘
∈ {0, 1} is a binary variable indicating whether or not RB 𝑏 is scheduled

to user 𝑘 by the BS at TTI 𝑡 . The first term (w𝑏,𝑡
𝑘
)𝐻h𝑏,𝑡

𝑘
𝑥
𝑏,𝑡

𝑘
𝑢
𝑏,𝑡

𝑘
in Eq. (9) is desired signal for user

𝑘 on RB 𝑏 at TTI 𝑡 , the second term
∑𝐾
𝑖=1,𝑖≠𝑘 (w

𝑏,𝑡

𝑘
)𝐻h𝑏,𝑡

𝑖
𝑥
𝑏,𝑡
𝑖
𝑢
𝑏,𝑡
𝑖

represents the interference from
other concurrently scheduled users and the last term is noise. Accordingly, assuming the CSI is
known and the signals transmitted by different users are independent and with unit power, we can
obtain signal-to-interference-plus-noise ratio (SINR) of user 𝑘 on RB 𝑏 at TTI 𝑡 as follows:

SINR𝑏,𝑡
𝑘

=

���(w𝑏,𝑡
𝑘
)𝐻h𝑏,𝑡

𝑘
𝑥
𝑏,𝑡

𝑘

���2∑𝐾
𝑖=1,𝑖≠𝑘

���(w𝑏,𝑡
𝑘
)𝐻h𝑏,𝑡

𝑖
𝑥
𝑏,𝑡
𝑖

���2 + ���w𝑏,𝑡
𝑘
𝜎2
���2 (10)

Plugging Eq. (10) into Shannon’s capacity formula, the achievable data rate of user 𝑘 on RB 𝑏 at
TTI 𝑡 is obtained by:

𝑟
𝑏,𝑡

𝑘
= BW𝑏,𝑡 log2 (1 + SINR

𝑏,𝑡

𝑘
) (11)

where BW𝑏,𝑡 is bandwidth of RB 𝑏 and total achievable data rate of slice 𝑠 on RB 𝑏 at TTI 𝑡 is
𝑟𝑏,𝑡𝑠 =

∑︁
𝑘∈K𝑠

𝑟
𝑏,𝑡

𝑘
(12)

where K𝑠 denotes the set of users corresponding to slice 𝑠 .

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:21

B HELIX ALGORITHM

Algorithm 1 Helix: Algorithmic Description of DRO and DRS approaches
Input: RB set B; Slice set S; Channel H𝑏,𝑡 ; Users 𝐾 ; TTIs 𝑇 ; Decision to run DRO or DRS.
Output: Average number of allocated RBs
1: 𝑅𝐵_𝑎𝑙𝑙𝑜𝑐_𝑡𝑜𝑡𝑎𝑙 ← 0 ⊲ Total number of allocated RBs;
2: for 𝑡 = 0; 𝑡 < 𝑇 ; 𝑡 + + do
3:

{
N1,N2, ...N𝜂

}𝑏,𝑡 ←− 𝑢𝑠𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔(H𝑏,𝑡) ⊲ user grouping as per §4.1
4: Update Δ𝑡𝑠 ,∀𝑠 using Eq. (2) and B𝑡 ← B ⊲ update SLA deficits
5: while (∃Δ𝑡𝑠 > 0) and (𝑙𝑒𝑛(B𝑡) > 0) do
6: sel_UE← [] ⊲ Empty selected UE list
7: Find 𝐺𝑡

𝑙
,𝐺𝑡𝑠 , and (𝑘 ′, 𝑏′) using Eq. (4) and (5) ⊲ large, small Δ groups, best User-RB pair

8: Identify N𝑏′,𝑡
𝑖

such that 𝑘 ′ ∈ N𝑏′,𝑡
𝑖

⊲ set of low-correlated users with user 𝑘 ′
9: if DRO then
10: 𝐺𝑡

𝑙
← {𝑘 : 𝑠𝑙𝑖𝑐𝑒 (𝑘) = 𝑠𝑙𝑖𝑐𝑒 (𝑘 ′)} ⊲ change 𝐺𝑡

𝑙
to set of all users in slice with user 𝑘 ′

11: end if
12: while 𝑙𝑒𝑛(sel_UE) < 𝐾 do
13: Set K𝑙𝑎𝑟𝑔𝑒 ← {𝑘 : 𝑘 ∈ (N𝑏′,𝑡

𝑖
∩𝐺𝑡

𝑙
)} ⊲ set of low-correlated users within 𝐺𝑡

𝑙

14: Sort K𝑙𝑎𝑟𝑔𝑒 in descending order of channel gain
15: sel_UE.𝑎𝑝𝑝𝑒𝑛𝑑

(
K𝑙

[
0 : min(𝐾 − 𝑙𝑒𝑛(sel_UE), 𝑙𝑒𝑛(K𝑙𝑎𝑟𝑔𝑒)) − 1

])
16: if (𝑙𝑒𝑛(sel_UE) < 𝐾 & DRS) then
17: K𝑠𝑚𝑎𝑙𝑙 ← {𝑘 : 𝑘 ∈ (N𝑏′,𝑡

𝑖
∩𝐺𝑡𝑠 } ⊲ Pick from small delta group if DRS

18: Sort K𝑠𝑚𝑎𝑙𝑙 in descending order of channel gain
19: sel_UE.𝑎𝑝𝑝𝑒𝑛𝑑 (K𝑠 [0 : min(𝐾 − 𝑙𝑒𝑛(sel_UE), 𝑙𝑒𝑛(K𝑠𝑚𝑎𝑙𝑙)) − 1])
20: end if
21: if 𝑙𝑒𝑛(sel_UE) < 𝐾 then
22: Find 𝑘 ′ ← arg max

𝑘∈𝐺𝑡
𝑙
,𝑘∉N𝑏′,𝑡

𝑖

| |h𝑏
′,𝑡
𝑘
| |, and set N𝑏′,𝑡

𝑖
← N𝑏′,𝑡

𝑗
s.t. 𝑘 ′ ∈ N𝑏′,𝑡

𝑗

23: end if
24: end while
25: Update Δ𝑡𝑠 using Eq. (2)
26: 𝑅𝐵_𝑎𝑙𝑙𝑜𝑐_𝑡𝑜𝑡𝑎𝑙 + +
27: B𝑡 ← B𝑡 − {𝑏′} ⊲ remove selected RB 𝑏′ from available RB set at TTI 𝑡
28: end while
29: end for
30: return 𝑅𝐵_𝑎𝑙𝑙𝑜𝑐_𝑡𝑜𝑡𝑎𝑙/𝑇

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

27:22 Qing An et al.

C TOPOLOGY AND INTER-USER CORRELATION HEATMAP OF REAL-WORLD
DATASET

(a) (b)

Fig. 9. (a) Topology of real-world dataset collection [1, 22] and (b) Average inter-user channel correlation
among clusters reproduced from [22].

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

Helix: A RAN Slicing Based Scheduling Framework for Massive MIMO Networks 27:23

D ARTIFACT APPENDIX
D.1 Abstract
This section provides a concise summary of the artifacts accompanying this paper. We offer tools
for conducting follow-up experiments, along with raw data and analysis scripts, enabling the
reproduction of the results and figures presented herein.

D.2 Artifact Check-list (meta-information)
• Algorithm: B&B, Greedy, Greedy Plus (GP), DRO, DRS, DRO_para and DRS_para
• Data set: RENEWMulti-User MIMO Dataset
• Run-time environment: Python (We also provide C++ codes)
• Metrics: Number of allocated RBs and running time
• How much time is needed to complete experiments (approximately)?: 30 mins
• Publicly available?: Yes

D.3 Description
D.3.1 How to access. All artifacts are available via the following public repository:

https://github.com/qinganrice/Helix_CoNEXT24

D.3.2 Hardware dependencies. Intel Xeon CPU cores

D.3.3 Software dependencies. The minimal requirements to reproduce our figures are Python with
Numpy, h5py, and Matplotlib. For C++ codes, g++ 8.0, gcc 8.0 or higher are required.

D.3.4 Data sets. Dataset used in this work is uploaded in Google drive:
https://drive.google.com/drive/folders/1whLRTUP45xOK6VDah8BsqVsyQHyqCyfB?usp=sharing
The original dataset can be downloaded from RENEW Dataset website:
https://renew.rice.edu/dataset-iuc.html

D.4 Code Structure
We now provide a detailed overview of the repository’s structure.

RB_orthgonal:
• BB.py: Branch and bound algorithm for small-size and medium-size networks
• BB_PF.py: Proportional fairness policy based B&B
• GP.py: Greedy Plus algorithm for small-size and medium-size networks
• GP_PF.py: Proportional fairness policy based GP
• Greedy.py: Greedy algorithm for small-size and medium-size networks
• Greedy_PF.py: Proportional fairness policy based Greedy
• DRO.py: DRO algorithm for small-size and medium-size networks
• DRO_PF.py: Proportional fairness policy based DRO
• DRO_real.py: DRO algorithm for real-world-size network and mobility scenario
• DRO_para.py: RB parallelism based DRO algorithm for real-world-size network
• max_rate.py: functions of MR policy for exhaustive research
• prop_fairness.py: functions of PF policy for exhaustive research

RB_sharing:
• DRS.py: DRS algorithm for small-size and medium-size networks
• DRS_PF.py: Proportional fairness policy based DRS
• DRS_real.py: DRS algorithm for real-world-size network and mobility scenario
• DRS_para.py: RB parallelism based DRS algorithm for real-world-size network
• RS_ES.py: Exhaustive search based RB sharing algorithm

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

https://github.com/qinganrice/Helix_CoNEXT24
https://drive.google.com/drive/folders/1whLRTUP45xOK6VDah8BsqVsyQHyqCyfB?usp=sharing
https://renew.rice.edu/dataset-iuc.html

27:24 Qing An et al.

C_CODE: C++ codes of DRO and DRS for real-world platform integration

D.5 Evaluation Workflow and Expected Results
In this subsection, we will provide implementation details for reproducing all plots of this work.

Figure 5
• Set the right file path to load dataset
• Set config = 16 for small-size network experiment
• Set SEL_UE = 3 (or 8) for different K
• uncorr = 1 is low-correlated case and uncorr = 0 is high-correlated case
• loose_sla = 1 is loose SLA and loose_sla = 0 is tight SLA
• Run B&B, Greedy, GP, DRO, DRS and RS_ES to reproduce Fig.5 in the paper

Figure 6
• Set the right file path to load dataset
• Set config = 80 for medium-size network experiment
• Set SEL_UE = 8 (or 16) for different K
• uncorr = 1 is low-correlated case and uncorr = 0 is high-correlated case
• loose_sla = 1 is loose SLA and loose_sla = 0 is tight SLA
• Run B&B, Greedy, GP, DRO, and DRS to reproduce Fig.6 in the paper

Figure 7 (a)
• Set static = 1 to load static scenario dataset
• Set config = 200 for real-world-size network experiment
• uncorr = 1 is low-correlated case and uncorr = 0 is high-correlated case
• loose_sla = 1 is loose SLA and loose_sla = 0 is tight SLA
• Run DRO_real, and DRS_real to reproduce Fig.7 (a) in the paper

Figure 7 (b)
• Set static = 0 (or 2) to load slow (high) mobility scenario dataset
• Set config = 200 for real-world-size network experiment
• Set uncorr = 0 high-correlated case
• loose_sla = 1 is loose SLA and loose_sla = 0 is tight SLA
• Run DRO_real, and DRS_real to reproduce Fig.7 (b) in the paper

Figure 7 (c) and (d)
• Set the right file path to load dataset
• Set config = 80 for medium-size network experiment
• Run DRO_PF and DRS_PF to reproduce results of Proportional Fair Fig.7 (c) and (d) in
the paper
• ForMax Rate results, it can be obtained from previous evaluations

Figure 8
• Set the right file path to load dataset
• Set config = 200 for real-world-size network experiment (Take the most complicated case as
example)
• new_rb_para = 1 is RB parallelism and new_rb_para = 0 is non-RB-parallelism
• Run DRO_para and DRS_para to reproduce Scheduling latency and Num. of allocated
RBs in Fig. 8
• Other results of smaller size networks can be obtained similarly or from previous evaluations

Received June 2024; revised September 2024; accepted October 2024

Proc. ACM Netw., Vol. 2, No. CoNEXT4, Article 27. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Problem Overview
	3.1 RB-Orthogonal: Problem Formulation
	3.2 RB-Sharing: Problem Formulation

	4 Helix Design
	4.1 User Grouping (UG)
	4.2 Scheduler for RB-Orthogonal case
	4.3 RB Sharing Case
	4.4 RB Parallelism
	4.5 Helix Choice of Algorithms

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Evaluation

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Achievable Data Rate Derivation
	B Helix Algorithm
	C Topology and inter-user correlation heatmap of real-world dataset
	D Artifact Appendix
	D.1 Abstract
	D.2 Artifact Check-list (meta-information)
	D.3 Description
	D.4 Code Structure
	D.5 Evaluation Workflow and Expected Results

