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The Problem: The well-known Volcano Explosivity Index (VEI) has been used in the
literature and popular media for decades but suffers from subjectivity and has fallen out of
favor in the scientific covrmunny Further, itis mmally only assigned for major eruptions
after the volume erupted has been measured, often long after eruption has ceased. Mass
eruption rate (MER) better reﬂects eruption energy of interest to volcanologists.

Our Solution: Determine a measure for MER in real time for observed eruptions and from

eruption products for ancient eruptions. The morphology of erupted ash establishes a
threshold between low and high NER as well as VEI.

Background: VEI, established by Newhall and Self (1982), involves qualitative
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Decoding explosivity, mass eruption rate and hazards in real time

From the ashes of VEI:
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leads to a bimodal bubble size distribution preserved in observable ash.

Ash from a few eruptions

Novarupta-Katmai, 1912

Mt St. Helens, 1980

Augustine, 2006

Okmok, 2008

Spurr, 1992

Redoubt, 2009
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MER threshold above which syn-eruptive bubbles are nucleated. For eruptions that were not observed,
asuch as ancient eruptions, MER can thus be constrained on the basis of ash morphology. If MER
exceeds 5x10° kg/s, syn-eruptive bubbles become common, and as MER increases beyond that there is
some increase in SE rating, but the main threshold is at 5x10¢ kg/s.
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nudeeted VEI has fallen out of favor due to its

suqedn\My and weak assouanon wvlh eruption energy. Yet, | is eommxiy cited in the popular press
organizati TheSEranrgmmalsmdemﬂya hold at VEI = 4. Note that
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nucleation in each case, and relate them bsck to ashes from natural eruptions.
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Eyajallajokull 2010) 7 4 4
Kelud (1990) 7 4 4
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Okmok (2008) 10 4 4
Spurr (1992) 0 4 4
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Sheveluch (2019) 10 4 4
Laki (June: 1783) 1oo4 4
Raikoke (2019) 1 4 4 Mass Eruption Rate can be calculated from eruption column height (e.g. Aubry et al. 2023). This
Calbuco (2015) T S-axls pIut (above) ilustrates the interconnection between VEI and MER through eruption column
Redoubt (2009) 16 3 4 height. The projection onto the VEI-MER plane is below. Because eruption column height can be
Fuiji (1707) 16 4 5 measured in real fime during an eruption, both VEI and MER can be of
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nucleation of syn-eruptive bubbles.
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