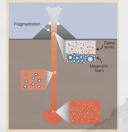
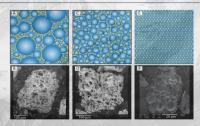


From the ashes of VEI:

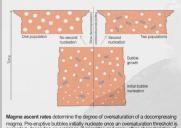
Decoding explosivity, mass eruption rate and hazards in real time

Dork L. Sahagian^{1*}; Hripsime Gevorgyan²; Gianna Greger¹; Leslie Tintle¹; Candace Wygel¹; Megan Clark¹

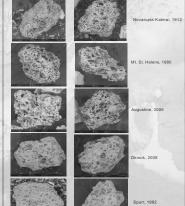

1. Lehigh University, *dos204@lehigh.edu; 2. Technische Universität Bergakademie Freiberg

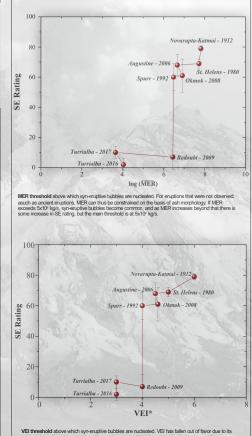

The Problem: The well-known Volcano Explosivity Index (VEI) has been used in the literature and popular media for decades but suffers from subjectivity and has fallen out of favor in the scientific community. Further, it is normally only assigned for major exploris after the volume erupted has been measured, often long after eruption has coased. Mass eruption rate (MEPR) better reflects eruption energy of inferest to volcanologists.

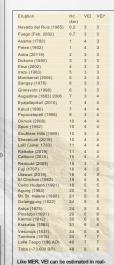
Our Solution: Determine a measure for MER in real time for observed eruptions and from eruption products for ancient eruptions. The morphology of erupted ash establishes a threshold between low and high MER as well as VEI.


Background: VEI, established by Newhall and Self (1982), involves qualitative descriptions, volume of ejecta, column height, emption duration, and several other description bear of between column height in our forestant of order of 5 in description bear of the other columns height in our forestant of order of 5 in the columns of 5 in the column

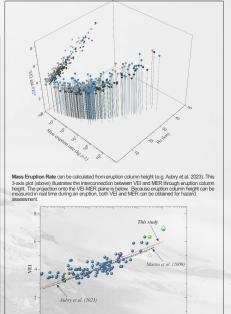
Bubbles nucleate at depth and grow during regions ascent by decompression and diffusion of dissolved volatiles (primarily water) for ostering bubbles. This drives acceleration upward and if sufficiently rapid near the vert, can trigger a second phase of nucleation, creating a population of syn-engitive bubbles with a much smaller modal size than the pre-engitive bubbles that drove the support. Explosive decompression leads to fragmentation at or near the vert, conventing a bubbly liquid him a gasey stray consisting of bubble well and Pfattenu border fragments that could be become simple and compound safe particles. The entire process understanding nucleation mechanism set ultimately control Mass Equation Rate.




Nucleation controls the subsequent bubble growth that drives explosive eruptions. One would expect that the presence of microlities triggers heterogeneous nucleation at low oversaturation resulting in low bubble number density and broad bubble size distribution as in All above (Noventupa-Natima ash). Hetrogeneous nucleation (C.D.) should result in a more All above (Noventupa-Natima ash). Enterene oversaturation (only possible in the homogeneous case) leads to the most uniform spatial distribution (C.E.) and thus bubble size distribution (M.E.). Helens ash), in this case, bubble valls have sub-equal strength and thus break simultaneously (explosively) during fragmentation. We are lesting these parameters or samples of known composition, water content and crystallinly in order to elucidate the mechanisms of undestinnin near class, and relate them tack to ashes from natural explores.


magnia abbent vises children in the register to vice statistication to substitute magnia. Pre-implies bubbles intelligible uncelled none an oversaturation threshold is exceeded, depending on presention of microtiles and many other instructivestics of the magnia. Bubble growth by diffusion and decompression the nucelled control of the properties of the magnia bubbles of the properties of

Ash from a few eruptions



VEI threshold above which syn-eruptive bubbles are nucleated. VEI has fallen out of favor due to its subjectivity and weak association with eruption energy. Yet, I is commonly otted in the popular press and governmental organizations. The SE straing can sol orientify a sharp threshold at VEI = A Note that on the basis of total mass erupted, the "traditional" VEI for Redoubt is 3, but on the basis of column height. It is 4.

Like MER, VEI can be estimated in realtime during an eruption merely on the basis of eruption column height for energetic eruptions (VEI>3) using VEI = 18,725 Although this empirical formulation is not mechanistic, it works remarkably well for a wide range of eruptions.

CONCLUSIONS

The ability to determine both VEI and MER in real time may enable better hazard management, particularly for air traffic. Although VEI has failen out of flaor amongs the volcanological research community (for some good reasons), it is still used by the general public, so being able to obtain both in real time during an enuplion can be useful. For past enupliors whose column heights were not observed, ash morphology can partially constrain both MER and VEI on the basis of the SE rating reflecting throubstation of synamphological partially constrain both MER and VEI on the basis of the SE rating reflecting throubstation of synamphological partially constrain both MER and VEI on the basis of the SE rating reflecting throughout the second section of the second section of the second section of the second section of the section of the second section of the section of t

Acknowledgements

We are grateful to Tamara Carley, Ed Llewellin, Jim Gardner, Larry Mastin and Anlonio
Costa for helpful discussions and suggestions. This research is partially supported by NSF
6C0-NERC grant #2211680