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Abstract

Augmented Reality (AR) can enable shared virtual experi-

ences between multiple users. In order to do so, it is crucial

for multi-user AR applications to establish a consensus on

the “shared state” of the virtual world and its augmentations

through which users interact. Current methods to create and

access shared state collect sensor data from devices (e.g., cam-

era images), process them, and integrate them into the shared

state. However, this process introduces new vulnerabilities

and opportunities for attacks. Maliciously writing false data

to “poison” the shared state is a major concern for the secu-

rity of the downstream victims that depend on it. Another

type of vulnerability arises when reading the shared state: by

providing false inputs, an attacker can view hologram aug-

mentations at locations they are not allowed to access. In this

work, we demonstrate a series of novel attacks on multiple

AR frameworks with shared states, focusing on three pub-

licly accessible frameworks. We show that these frameworks,

while using different underlying implementations, scopes,

and mechanisms to read from and write to the shared state,

have shared vulnerability to a unified threat model. Our eval-

uations of these state-of-the-art AR frameworks demonstrate

reliable attacks both on updating and accessing the shared

state across different systems. To defend against such threats,

we discuss a number of potential mitigation strategies that

can help enhance the security of multi-user AR applications

and implement an initial prototype.

1 Introduction

AR technologies have enabled a large variety of applications

that use real-world data to create environments enriched with

overlaid virtual holograms. These virtual holograms can take

many forms, from face filters to virtual characters, and they

are typically placed relative to some point in the real world,

such as a table, face, or recognizable landmark. Although AR

has been around for several decades [4], the recent ubiquity

∗Equal contributors.

of mobile devices and the availability of commercial AR

headsets have made it possible for AR applications to reach

the mass market [59]. Recent AR applications even allow

multiple users to interact with the same AR holograms. For

example, in 2019, Pokémon Go enabled users to view the

same virtual creatures at the same time in some shared space

using a “Buddy Adventure” system [40]. In order for these

multi-user interactions to take place, some information about

the state of the real world (e.g., nearby flat planes, landmarks,

and virtual objects) must be sensed, processed, and shared

between users to provide a common frame of reference. We

call this information, together with the hologram information,

as the “shared state” of the AR application. Several multi-user

AR systems with cloud-based AR shared states exist and are

in use, including those by Google [12] and Meta [32]. Thus, a

natural question emerges after the rise of such systems: What

security threats can exist for AR frameworks involving

this shared state?

In this work, the attacks that we focus on relate to one of

the fundamental problems in AR: how to place a hologram ac-

curately in the real world and have it persist over time, space,

and across users. Successful manipulations of hologram lo-

cations could have serious impacts on both owners and users

of the system. As the number of users and businesses relying

on AR continues to increase, the incentives for attackers to

manipulate the shared state to their advantage also increase.

For example, suppose a construction company is using AR

to place and visualize markings in the environment. Con-

struction workers wearing AR glasses might visit the site and

visualize where a water pipe should be built or where to dig a

hole. A vulnerable AR construction application could cause

confusion, destruction of property, or danger to workers if

an attacker’s efforts result in a construction worker viewing

virtual demolition markers in unsafe real-world areas and

bulldozing those areas.

Our first goal is to identify the threat models that affect

the shared state. At a high level, interactions between users

and shared state in AR can be thought of as read and write

operations, which are provided by AR frameworks through





Non-curated Curated

Local

Scenario A: Cloud

Anchor

Commercial scenario

not found.

Keys: camera, IMU Keys: camera, IMU

Attacks: read, write Attacks: read

Global

Scenario C: Mapillary
Scenario B: Geospatial

Anchor

Keys: camera, IMU, GPS Keys: camera, IMU, GPS

Attacks: write Attacks: read

Table 1: Taxonomy of AR shared states.

with the shared state is needed. Abstractly, we can think of

viewing or placing the shared holograms as read and write

operations against the shared state, respectively, using key-

value pairs. The key is some piece of information relating to

the user’s physical location, which a user provides (details

later), and the value is the associated hologram’s coordinates

(and optionally its visual appearance). The cloud processes

these key-value pairs and updates (or retrieves information

from) the shared state accordingly. There are two operations

for users to communicate with the shared state: read and

write, as follows.

• Read: A user may read the shared state to determine

where she is on the map and render the appropriate holo-

grams. For instance, a user may go to a park where

virtual art is displayed and upload an image key of the

park to the cloud, captured by the phone’s camera, and

receive back the value of the hologram’s coordinates,

and then render the virtual art on her display.

• Write: Users may write holograms at specific locations

in the map in the shared state. For instance, a user may

place their own virtual art for other users to view by

uploading a key consisting of a short image sequence

near the art and the associated GPS coordinates alongside

a value of the virtual art’s coordinates.

Keys consist of information used to identify locations

within the shared state. Keys are usually derived from three

main types of sensors commonly used in AR applications:

GPS, camera, and IMU. GPS data provides information

about the user’s geographical location and typically consists

of latitude, longitude, altitude, and time. Camera data in

AR applications can take the form of video or a sequence of

timestamped images. IMU data refers to the measurements

collected by sensors such as accelerometers, gyroscopes, and

magnetometers. This data provides information about the

device’s orientation, acceleration, and rotation. The IMU may

not be strictly necessary for these applications to work but is

often included to assist in speed and accuracy [24].

2.2 AR Shared State Taxonomy

We studied the current landscape of multi-user AR and found

three major examples of shared state: Cloud Anchor [12],

Geospatial Anchor [15], and Mapillary [32], which we pri-

marily focus on in this work. Cloud Anchor and Geospatial

Anchor are part of Google ARCore, which is Google’s AR

Software Development Kit (SDK) for Android devices. Map-

illary is a crowd-sourced mapping service acquired by Meta

in 2020. These frameworks abstract away low-level details

so that developers can more easily build AR applications

on top, so vulnerabilities in the underlying frameworks will

affect many AR applications. The design of these frame-

works can be dissected along two dimensions: global/local

and curated/non-curated, as summarized in Table 1. Next, we

describe each of these dimensions.

Global vs. local shared state. AR applications can run in

local or global geographic areas; for example, a treasure hunt

may take place locally within a building, while Pokémon Go

takes place globally. Consequently, they can have larger or

smaller maps in their shared state, which we categorize as a

global or local shared state. AR frameworks with the global

shared state tend to utilize GPS coordinates plus camera im-

ages as the key to writing into the shared state. Specifically,

each writer uploads local images tagged with GPS coordinates

to the shared state, where the cloud merges all data to create

a global shared state. Users seeking to read from the shared

state may use a combination of GPS, camera, and, optionally,

IMU data as a key into the database. Global shared states

tend to be persistent without a clear expiry time, typically

persisting for years.

AR frameworks with local shared states are typically

smaller in geographic scope and lack global positioning

(GPS). The key typically consists of just camera images

and optional IMU data, without GPS. Local shared states

tend to be ephemeral in that they have a configurable lifetime,

typically of less than one year [12].

Curated vs. non-curated shared state. The maps con-

tained in the shared state can be either curated or non-curated.

Curated maps are constructed by “high trust” users or “cura-

tors”. These curators have elevated write permissions to the

shared state and usually have the incentive to avoid malicious

behavior. Most commonly, these curators are paid employees,

contract workers, or trusted research groups. An example is

the Street View Car [17], where company employees drive a

car around and capture camera images to upload to the cloud,

which processes them and inserts them into the shared state’s

map. Non-curators can still read the curated shared state but

cannot otherwise manipulate it.

AR frameworks with non-curated (i.e., crowd-sourced)

shared states allow all users to read and write to the map

in the shared state. These users are low trust but come with





generate these keys, our investigation focuses on three attack

scenarios outlined in Table 1.

In Scenario A, the attacker’s goal is to perform both read

and write attacks on the shared state. It aims to read or write

holograms to locations where they are not physically present.

By doing so, it deceives other users by providing false or

manipulated information. Since AR applications in such

a scenario run in local areas only, the attacker only needs

camera and IMU data as keys to read or write from the shared

state, and not any global information (GPS), making this

attack easier to realize. We assume that the attacker can

participate as a regular user in the AR session, which can be

protected by API credentials and a room code. API credentials

are commonly hard coded into the app, so the attacker does

not need to learn it, and the room code is an integer that by

default starts at 1 and increments every session, making it

feasible for the attacker to find through brute force [12].

In Scenario B, the attacker’s goal is to perform a read

attack only. It attempts to read a hologram from a location

where the hologram does not exist, effectively lying about her

location and reaping the benefits. In addition to the camera

and IMU data needed as keys in Scenario A, the global nature

of this scenario requires the attacker to understand the global

position of the hologram she wishes to read, necessitating

GPS data in the key. We do not investigate write attacks in

Scenario B due to the curated nature of the shared state. In

other words, since the threat model assumes the attacker is an

ordinary user, only read attacks can be performed on a curated

shared state with the appropriate key. These keys are used

by all users freely with no need for special permissions. We

assume that the attacker has the API credentials hardcoded in

the app, as in Scenario A, but it does not require a local room

code because the shared state is global.

Finally, the Scenario C attacker writes holograms to false

locations. This would allow an attacker to manipulate holo-

grams that other users view, potentially leading to sabotage

and safety issues. The attacker’s writes are uniquely enabled

by the non-curated nature of the shared state in this scenario.

Again, special attention must be paid to the global positions

of the holograms and map data for successful attacks due

to this scenario’s global scale. We do not investigate read

attacks in Scenario C because this API does not yet exist in

the commercial framework we studied. The attacker does

not require any special credentials or room codes because the

shared state is global and crowd-sourced.

We did not find any current examples of an AR framework

that provides a local and curated shared state (upper right box

in Table 1). We speculate that such a shared state could be

created by a local administrator who curates the map and holo-

grams in small areas, such as a university campus. Related

frameworks also exist in the research domain [5].

3 Scenario A: Local, Non-Curated Shared

State

In this section, we focus on attacks on AR frameworks with

local and non-curated shared states. In particular, we focus

on the Cloud Anchor API [12], which allows multiple users

to share experiences within a single app. It is the underlying

mechanism enabling multi-user AR apps on Android devices.

Using an app that integrates this API, a user (User A) can write

a hologram to a specific location within their environment,

such as the surface of a desk. Another user (User B), who

has access credentials to the app (see §2.3), can then read

the hologram from the shared state and view and interact

with it in the same physical space. We identified an attack

vector related to this multi-user functionality, described in

the following subsection. The experiments were performed

with our own test devices in a private local session only, so

no external users were affected by our experiments.

3.1 Methodology

The normal process of writing a hologram to the shared state

involves User A pointing her AR device at the desired location

of the hologram (e.g., a desk) and moving around it to capture

the required keys (camera images and IMU readings), which

are uploaded to the shared state along with the hologram. If

User B wants to read the hologram uploaded by the previous

user, she points her device at the same location, captures a

key, and sends it to the shared state. If the key matches an

entry in the shared state, the corresponding value (hologram

uploaded by User A) is retrieved from the cloud, and User B

can view it. If there is no matching key, the API rejects User

B’s read request.

Normally, successful reads and writes require the user to

be physically present in the environment where the hologram

was placed in order to generate the correct corresponding key.

However, our attack disrupts this workflow and demonstrates

that attackers can remotely launch read and write attacks.

Specifically, we show that the attacker can perform these ac-

tions using only an image of the environment (e.g., printed on

a photograph or displayed on a computer monitor). By point-

ing the camera at the image, the attacker deceives the API

into believing that it is physically located in the environment,

even though it is not actually present. Next, we describe three

sub-types of this general attack: read, write, and triggered

write. We focused on read and write because they are funda-

mental primitives, and triggered write is an advanced version

with more targeted attack timing. Further technical details

on the methodology of this attack and others are provided in

Appendix B.

Remote read attack. In this attack, an attacker can re-

motely read a hologram, different from where a victim origi-

nally placed the hologram. The attacker benefits because it
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Figure 11: Effect of poisoned write to the shared state’s map.

Holograms are read at the wrong locations; in this example, a

“safe to dig” sign is placed next to an underground pipe.

the geo-fenced area. The images were taken at different times

of day, ranging from early morning to early evening, facing

different directions, and at different locations (e.g., streets,

and grass fields without roads). These images were captured

on iPhone 12 at 1080p and uploaded in PNG format. We veri-

fied through the Mapillary web interface that all the attacker’s

write requests with spoofed GPS data were successfully in-

gested by the Mapillary pipeline, uploading, processing, and

displaying the spoofed imagery. This shows that the funda-

mental write attack mechanic works. The main reason this

works is that while Mapillary does check for basic undesir-

able content, it does not check whether crowd-sourced images

indeed correspond to the claimed GPS locations.

With the write attack mechanics validated on Mapillary,

we next sought to show the impact on a victim AR user. To

showcase this, we had the attacker write two image sequences

(a grass scene and a pipe scene), containing five images each,

to the shared state. We reserved one additional image per

sequence for use by the victim. The holograms (a “dig safe”

sign and a “danger: underground gas line” sign) included

in the write request were associated with locations 5 meters

in front of the first image in each sequence. After running

through the pipeline in Fig. 10, the final display to the victim

is shown in Fig. 11. The first row shows the AR display seen

by a victim without our attack. The “dig safe” hologram is

displayed in the grass field, and the “danger” hologram is

displayed near the pipes, as intended. The bottom row shows

that with our attack, the wrong hologram (“dig safe”) is shown

near an underground gas line, leading to serious safety issues.

5.2 Poisoned Write of Shared Holograms

In this subsection, we discuss another vulnerability through

modifications to the image sequence part of the key. Some

AR shared states (e.g., Mapillary) perform object detection on

the images uploaded by users to their service [33]. When an

image sequence is uploaded, these detected objects are added

to the shared state map at the positions they were detected.

This presents attackers with the opportunity to tamper with

(a) Real-world ground truth. (b) Tampered image.

Figure 12: Poisoned write to the shared state’s holograms. A

fake stop sign has been inserted into a sequence of images in

order to fool the shared state’s object detector, resulting in a

fake stop sign hologram being added to the shared state.

the images and introduce fake holograms into the shared

state. For example, the attacker could create a fake stop sign

hologram overlaid onto an otherwise empty street, causing an

AR navigation app to provide wrong directions to the user.

Methodology. We used Photoshop to edit a sequence of

images to add a stop sign and write them to the shared state.

For the attack to be successful, the stop sign’s size had to

be proportional to the user’s distance from it, and the octag-

onal shape preserved using transparency layers. Mapillary

required photo-realistic stop signs in order for the fakes to be

successfully ingested and recognized. The fake object also

had to be present in at least 3 images in order for Mapillary

to place it accurately, which requires multiple photographs of

the stop sign with appropriate scaling. Without these changes,

the Mapillary pipeline rejected the write request.

Evaluation. Fig. 12 shows an example of a successful at-

tack. Fig. 12a shows the real-world ground truth. Fig. 12b

shows the tampered image, with a photograph of a stop sign

taken from public sources cropped and overlaid on top of it.

The small subfigure in the bottom left of Fig. 12b shows a

screenshot of Mapillary’s web interface where the stop sign

hologram is accepted into Mapillary’s shared state. We expect

that attackers could also write other false holograms into the

shared state; any of Mapillary’s pre-defined object detection

classes (e.g., traffic signs, lamp posts) could work.

6 Shared State Attack Mitigations

The fundamental question at issue for these attacks is how to

accurately establish the true location of an AR device. All of

these attacks involve deceiving the shared state about the at-

tacker’s location to read or write data maliciously. We discuss

multiple potential mitigation strategies related to this and our

defense prototype utilizing additional sensor modalities.

Additional sensor modalities. The risk of shared state at-

tacks on AR devices can be reduced by leveraging multiple





sensitive information. However, none of these investigate

attacks on the shared state in multi-user AR as we do.

Computer vision attacks. AR uses computer vision tech-

niques as part of its foundation, and thus such attacks could

apply. Such work includes software [6,19,20,26,58] and hard-

ware [61, 64, 66] based attacks on machine learning models.

While our work uses photographs, screens, manipulated im-

ages, and GPS to trick computer vision systems, attacks using

additional hardware like lasers have also been explored [60].

SLAM attacks also exist [21, 41, 52] and could impact AR

systems. Our work takes inspiration from these to show com-

puter vision attacks can cascade into interesting behaviors

in the AR domain rather than general object detectors or au-

tonomous vehicles.

Sensor spoofing and confusion. Our work uses GPS spoof-

ing by simply altering the metadata stored in plain text. While

not necessary for our attacks, more sophisticated GPS spoof-

ing has reached widespread use [54]. Tricking IMU sen-

sors was not done in this work but is possible with acoustic

waves [23, 50] and is an interesting future direction.

AR/VR threat mitigation. Defenses against user-

manipulated input data, such as image manipula-

tion [1, 27, 28, 65], have become sophisticated in recent

years. GPS spoofing mitigation [22] focuses on real-time

mitigation, but frameworks like Mapillary provide the ability

to upload batched imagery at later times for user convenience,

and thus such mitigations may not be directly applicable.

The most effective mitigation is likely to come in the form

of permissions systems like in [8], but these will require

non-curated shared states to become curated.

8 Conclusions

As AR become ubiquitous, there is growing need for research

into security and privacy risks unique to AR, especially multi-

user AR. This paper introduced and explored attacks on multi-

ple shared state AR applications and frameworks. Specifically,

we show that the basic use of GPS and camera images is in-

sufficient to accurately establish the location of an AR device

and hence what holograms should be writeable/readable by a

user. We proposed a threat model that applies to several dif-

ferent scenarios and demonstrated them on off-the-shelf AR

systems in a variety of environments. Simple defenses such

as image manipulation detection or the use of multi-modal

sensors can help, but further investigation of other defenses,

such as defining map update policies by trusted users or fraud

detection, is needed.
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Appendix

A Additional Scenario A results

Fig. 14 shows examples of the environments where we con-

ducted our experiments in Scenario A. Fig. 15 shows the

remote write attack as a function of the distance between the

AR device’s camera and the attacker’s image. It also includes

a benign baseline where the attacker writes the hologram

while actually being present in the real environment. Similar

to the results in indoor environments (Fig. 6), the attack suc-

cess rate is lower than the benign baseline, as expected, but is

still above 60% in the worst case.

B Details on experimental procedure

In this section, we provide additional technical details on the

experimental procedure for each scenario. We mention the

specific APIs called by the applications, although our attack

methodologies apply broadly to AR devices that read and

write from shared state.
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Figure 16: Examples of three outdoor scenes where we con-

ducted our attacks in scenario B.

hologram (all automatically determined by the location of

the user’s tap) into an Anchor object. Subsequently, the GPS

coordinates in the Anchor can be recorded and preserved in

the shared state.

(2) Attacker reads hologram from the remote location.

The attacker first employs a GPS emulator [47] to fabricate

GPS locations on the mobile device corresponding to the loca-

tions in step (1) above. At the same time, the attacker utilizes

a monitor to display an image of the desired location from

step (1) and directs the mobile device’s camera towards it.

To ensure optimal focus, the attacker may need to adjust the

device’s position, moving forward or backward as necessary.

(In our attack, we find that when the distance between the

monitor and the phone is 50 centimeters, our attack succeeds

100% of the time.) Together, the GPS and the camera frames

help mislead the shared state into believing the attacker is

physically present at the target location. This is done by

the Geospatial API’s Earth object, which makes calls to the

shared state to determine and track the device’s location on

Earth. After the device localization is successful (i.e., the

Earth’s tracking state is not null), the hologram correspond-

ing to the target location will be rendered on the monitor in

the device’s display, effectively deceiving the shared state into

supplying holograms to be read remotely.

B.3 Scenario C

(1) Image capture. The attacker uses a smartphone (iPhone

12 at 2532 × 1170 pixels in our experiments) to capture photos

of a location that is desired to appear somewhere else. These

photos are automatically geo-tagged with latitude, longitude,

time and elevation by the mobile device’s operating system.

The user then transfers the photos from the mobile device

onto a computer with the ability to run Mapillary’s desktop

client [35] as well as simple scripts written by the attacker.

(2) GPS spoofing. There are two convenient ways to de-

termine the desired GPS data to spoof. The simplest for the

attacker is to physically go to the target location that she

wishes to write the fake data to, and take real images in a

manner similar to the image capture step above. Then, the

attacker can swap the EXIF metadata between the two image

sets (from the image capture step and from the GPS spoofing

step) to perform the spoof. This can done using a Python

script or through manual edits to the image metadata. For the

second set of images, It is important to take the same number

of images while moving or walking in the same direction

as the first set. This helps the GPS coordinates match up

between the two sets of images.

The second method to determine the desired GPS data is

to overwrite the EXIF image metadata manually, using a

program like Windows Photo Viewer or a custom script. This

is tedious as it requires the attacker to guess the change in

GPS coordinates for each image in the set.

(3) Upload. Finally, the attacker uploads the altered image

set to the shared state servers using a desktop client (e.g., [35]).

Under the hood [36], This follows a standard upload proce-

dure including the image file, metadata, and account informa-

tion. In our experiments, we did this using special accounts

that uploaded data to a private sandbox, thus avoiding any im-

pact on regular public users. Care must be taken that no other

EXIF data was removed during any of the previous image

capture or GPS spoofing steps, as otherwise the upload may

fail. For example, we found that during the image transfer

process between mobile devices and desktops, the timestamps

did not transfer and had to be re-added manually. Each step

in this process also keeps the images as PNG to avoid lossy

compression.
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