That Doesn’t Go There: Attacks on Shared State in
Multi-User Augmented Reality Applications

Carter Slocum” !, Yicheng Zhang"!, Erfan Shayegani!, Pedram Zaree', Nael Abu-Ghazaleh', Jiasi Chen?
YUniversity of California, Riverside
2University of Michigan

Abstract

Augmented Reality (AR) can enable shared virtual experi-
ences between multiple users. In order to do so, it is crucial
for multi-user AR applications to establish a consensus on
the “shared state” of the virtual world and its augmentations
through which users interact. Current methods to create and
access shared state collect sensor data from devices (e.g., cam-
era images), process them, and integrate them into the shared
state. However, this process introduces new vulnerabilities
and opportunities for attacks. Maliciously writing false data
to “poison” the shared state is a major concern for the secu-
rity of the downstream victims that depend on it. Another
type of vulnerability arises when reading the shared state: by
providing false inputs, an attacker can view hologram aug-
mentations at locations they are not allowed to access. In this
work, we demonstrate a series of novel attacks on multiple
AR frameworks with shared states, focusing on three pub-
licly accessible frameworks. We show that these frameworks,
while using different underlying implementations, scopes,
and mechanisms to read from and write to the shared state,
have shared vulnerability to a unified threat model. Our eval-
uations of these state-of-the-art AR frameworks demonstrate
reliable attacks both on updating and accessing the shared
state across different systems. To defend against such threats,
we discuss a number of potential mitigation strategies that
can help enhance the security of multi-user AR applications
and implement an initial prototype.

1 Introduction

AR technologies have enabled a large variety of applications
that use real-world data to create environments enriched with
overlaid virtual holograms. These virtual holograms can take
many forms, from face filters to virtual characters, and they
are typically placed relative to some point in the real world,
such as a table, face, or recognizable landmark. Although AR
has been around for several decades [4], the recent ubiquity

*Equal contributors.

of mobile devices and the availability of commercial AR
headsets have made it possible for AR applications to reach
the mass market [59]. Recent AR applications even allow
multiple users to interact with the same AR holograms. For
example, in 2019, Pokémon Go enabled users to view the
same virtual creatures at the same time in some shared space
using a “Buddy Adventure” system [40]. In order for these
multi-user interactions to take place, some information about
the state of the real world (e.g., nearby flat planes, landmarks,
and virtual objects) must be sensed, processed, and shared
between users to provide a common frame of reference. We
call this information, together with the hologram information,
as the “shared state” of the AR application. Several multi-user
AR systems with cloud-based AR shared states exist and are
in use, including those by Google [12] and Meta [32]. Thus, a
natural question emerges after the rise of such systems: What
security threats can exist for AR frameworks involving
this shared state?

In this work, the attacks that we focus on relate to one of
the fundamental problems in AR: how to place a hologram ac-
curately in the real world and have it persist over time, space,
and across users. Successful manipulations of hologram lo-
cations could have serious impacts on both owners and users
of the system. As the number of users and businesses relying
on AR continues to increase, the incentives for attackers to
manipulate the shared state to their advantage also increase.
For example, suppose a construction company is using AR
to place and visualize markings in the environment. Con-
struction workers wearing AR glasses might visit the site and
visualize where a water pipe should be built or where to dig a
hole. A vulnerable AR construction application could cause
confusion, destruction of property, or danger to workers if
an attacker’s efforts result in a construction worker viewing
virtual demolition markers in unsafe real-world areas and
bulldozing those areas.

Our first goal is to identify the threat models that affect
the shared state. At a high level, interactions between users
and shared state in AR can be thought of as read and write
operations, which are provided by AR frameworks through

an APIL. One can write a new virtual hologram to the shared
state and read others’ virtual holograms in order to render
them on the device. Direct manipulation of the shared state is
impossible since it’s typically stored on cloud/edge servers
controlled by the AR service and is well-secured, requiring
physical or software exploitation not unique to AR. Instead,
we investigate exploits that allow attackers to remotely manip-
ulate the shared state using only the basic read/write API calls
available to users. Calls to the API typically involve associ-
ated location data consisting of one or more of the following:
Global Positioning System (GPS) coordinates, camera im-
ages, and/or Inertial Measurement Unit (IMU) sensor data.
This information allows the attacker to map the read or write
operation to a location within the AR space.

We seek to understand these threats and develop end-to-end
attacks on commercial systems, in order to demonstrate how
they work and inform designers and develop mitigations. We
develop a range of attacks targeting write or read operations
on the Google’s Cloud Anchor API [12], Google’s ARCore
Geospatial API [15], and Meta’s Mapillary system [32]. We
focus on these because they are major commercial players,
and their multi-user APIs work on many common AR devices.
‘We show that malicious reads and writes are possible on the
three systems despite the substantial differences in how they
perform these operations. We are able to write information
to different, potentially inaccessible, locations on the map,
as well as falsify our own location to access information at
potentially private or inaccessible locations. These end-to-end
attacks rely on known image and GPS spoofing methods; our
contribution lies in combining these methods with multi-user
AR, which brings unique challenges in that the interactions be-
tween the real world, virtual world, and downstream victims
must be accounted for in a successful attack.

In summary, we make the following contributions:

e We create a taxonomy of existing commercial AR frame-
works with shared state and identify their common vul-
nerabilities regarding the read and write operations. We
form a unified threat model that covers these current and
prospective AR applications.

e We demonstrate attacks on shared state in the novel AR
domain on three frameworks using real devices (smart-
phones), and quantify their success. To the best of our
knowledge, this is the first documented demonstration of
such attacks on AR using these frameworks.

o We repeat the attacks of these three scenarios in various
environments (e.g., different locations, lighting, clutter) to
demonstrate the attack’s robustness.

e We propose and evaluate a defense strategy that uses multi-
modal sensors (depth and visible light cameras) available
on some AR devices. The source code and dataset are
available online.'

Ihttps://sites.google.com/view/multi-ar-defense/

AR device AR shared state

Point cloud map

AR
processing
(e.q., feature
extraction)

Augmentation

Figure 1: AR processing pipeline. An AR device senses
the environment, processes the sensed data, and uploads in-
formation to the shared state. The shared state returns an
augmentation overlaid onto the user’s display.

Disclosures and ethics. We disclosed our findings to
Google and Meta. We performed all experiments either in
sandboxes or in our own local sessions, so no external public
users were affected by our experiments.

2 Background

In this section, we first introduce the background of shared
state in AR (Section 2.1). We then describe the current land-
scape of shared state in commercial AR systems (Section 2.2).
Finally, we define the general threat model (Section 2.3).

2.1 Shared State in Augmented Reality

To facilitate interactions between multiple users in AR, a
mutually agreed-upon model of the reality to augment, and
the augmentations within it, is needed between users [44,
57]. Ideally, this model should be consistent across devices
and thus is typically stored in the cloud, providing a central
access point. In such a model, multiple users interact with
the shared augmentations (e.g., other participants in a remote
meeting app). They also fuse spatial information about the
real environment using the collected sensor data. We call this
shared model of reality the shared state.

The shared state commonly contains a “map” of 3D points
(an example is shown on the right side of Fig. 1). The points
in this map are features extracted from images (e.g., [29,
48]). Each feature contains an estimate of its 3D position
and a descriptor of its visual neighborhood for use in finding
and correlating the same feature in other images. To give
augmentations the appearance of blending in with the real
world, they are described by their 3D coordinates. Thus,
the AR shared state consists of the map of visual features
combined with the augmentations placed on the map. Fig. |
shows the processing pipeline of an AR device accessing the
shared state in the cloud, including communicating with the
shared state to receive augmentations and render them onto
the display.

Communication with the shared state. For a user to view
or place shared holograms/augmentations, communication

Non-curated {

Curated ‘

Commercial scenario
not found.

Scenario A: Cloud
Anchor

Local Keys: camera, IMU Keys: camera, IMU
Attacks: read, write Attacks: read
Scenario C: Mapillary Scenario B: Geospatial
Anchor
Global

Keys: camera, IMU, GPS
Attacks: write

Keys: camera, IMU, GPS
Attacks: read

Table 1: Taxonomy of AR shared states.

with the shared state is needed. Abstractly, we can think of
viewing or placing the shared holograms as read and write
operations against the shared state, respectively, using key-
value pairs. The key is some piece of information relating to
the user’s physical location, which a user provides (details
later), and the value is the associated hologram’s coordinates
(and optionally its visual appearance). The cloud processes
these key-value pairs and updates (or retrieves information
from) the shared state accordingly. There are two operations
for users to communicate with the shared state: read and
write, as follows.

* Read: A user may read the shared state to determine
where she is on the map and render the appropriate holo-
grams. For instance, a user may go to a park where
virtual art is displayed and upload an image key of the
park to the cloud, captured by the phone’s camera, and
receive back the value of the hologram’s coordinates,
and then render the virtual art on her display.

e Write: Users may write holograms at specific locations
in the map in the shared state. For instance, a user may
place their own virtual art for other users to view by
uploading a key consisting of a short image sequence
near the art and the associated GPS coordinates alongside
a value of the virtual art’s coordinates.

Keys consist of information used to identify locations
within the shared state. Keys are usually derived from three
main types of sensors commonly used in AR applications:
GPS, camera, and IMU. GPS data provides information
about the user’s geographical location and typically consists
of latitude, longitude, altitude, and time. Camera data in
AR applications can take the form of video or a sequence of
timestamped images. IMU data refers to the measurements
collected by sensors such as accelerometers, gyroscopes, and
magnetometers. This data provides information about the
device’s orientation, acceleration, and rotation. The IMU may
not be strictly necessary for these applications to work but is
often included to assist in speed and accuracy [24].

2.2 AR Shared State Taxonomy

We studied the current landscape of multi-user AR and found
three major examples of shared state: Cloud Anchor [12],
Geospatial Anchor [15], and Mapillary [32], which we pri-
marily focus on in this work. Cloud Anchor and Geospatial
Anchor are part of Google ARCore, which is Google’s AR
Software Development Kit (SDK) for Android devices. Map-
illary is a crowd-sourced mapping service acquired by Meta
in 2020. These frameworks abstract away low-level details
so that developers can more easily build AR applications
on top, so vulnerabilities in the underlying frameworks will
affect many AR applications. The design of these frame-
works can be dissected along two dimensions: global/local
and curated/non-curated, as summarized in Table 1. Next, we
describe each of these dimensions.

Global vs. local shared state. AR applications can run in
local or global geographic areas; for example, a treasure hunt
may take place locally within a building, while Pokémon Go
takes place globally. Consequently, they can have larger or
smaller maps in their shared state, which we categorize as a
global or local shared state. AR frameworks with the global
shared state tend to utilize GPS coordinates plus camera im-
ages as the key to writing into the shared state. Specifically,
each writer uploads local images tagged with GPS coordinates
to the shared state, where the cloud merges all data to create
a global shared state. Users seeking to read from the shared
state may use a combination of GPS, camera, and, optionally,
IMU data as a key into the database. Global shared states
tend to be persistent without a clear expiry time, typically
persisting for years.

AR frameworks with local shared states are typically
smaller in geographic scope and lack global positioning
(GPS). The key typically consists of just camera images
and optional IMU data, without GPS. Local shared states
tend to be ephemeral in that they have a configurable lifetime,
typically of less than one year [12].

Curated vs. non-curated shared state. The maps con-
tained in the shared state can be either curated or non-curated.
Curated maps are constructed by “high trust” users or “cura-
tors”. These curators have elevated write permissions to the
shared state and usually have the incentive to avoid malicious
behavior. Most commonly, these curators are paid employees,
contract workers, or trusted research groups. An example is
the Street View Car [17], where company employees drive a
car around and capture camera images to upload to the cloud,
which processes them and inserts them into the shared state’s
map. Non-curators can still read the curated shared state but
cannot otherwise manipulate it.

AR frameworks with non-curated (i.e., crowd-sourced)
shared states allow all users to read and write to the map
in the shared state. These users are low trust but come with

{ key ,value}

i

o AR shared state
(a) Read attack.

poisoned Write S

@ {@ { key , value}

\
/
E e «)
N o - !

~—

AR sha@d state
110

(b) Write attack.

Figure 2: Attacks on AR shared state. Read attack: A private
hologram is read outside the area it was written to (beach
instead of office). Write attack: A hologram is written to an
area where the attacker is not present (pipes instead of field).

the advantage of increased numbers, allowing rapid construc-
tion and updating of the shared state compared to curators. An
example is Mapillary’s crowd-sourced street mapping model,
where public users can upload camera images to the cloud,
which processes them and inserts them into the map.

The write permissions for the shared state maps and the
shared state holograms may be separate. For our purposes,
a curator has permission to write both shared state map and
hologram data to the shared state, while a non-curator can only
read map data from the shared state but may be able to both
read and write holograms. In the future, applications with
more granular permissions may become more common [8].

2.3 Threat Model

We assume an attacker engages in AR experiences with shared
states using an unmodified AR application. The attacker only
possesses the same read/write permissions as normal users.
The primary objective of the attacker is to compromise the
integrity or confidentiality of the multi-AR shared state. We
identify two classes of attacks in this context (see Fig. 2): (a)
read attack and (b) write attack.

Read attack. Such an attack focuses on extracting sensi-
tive information stored within the shared state created by
other users. For example, suppose a victim user has created
a hologram of a whiteboard and written sensitive company

secrets onto it. The whiteboard is uploaded to the shared state
and is only supposed to be viewable from the private office.
Thus, in Fig. 2a, the shared state contains the {key=office
image, value=confidential whiteboard document} entry. The
objective of the attacker is to retrieve and access this private
document, thereby breaching confidentiality, by providing a
forged {key=office image} to retrieve the associated value
(the private hologram). The attacker benefits from retriev-
ing confidential information, which is a serious concern in
multi-user AR [49]. It is assumed that the attacker can gain
temporary physical access to the office in order to obtain im-
ages to use later during the attack, or is able to find publicly
available images of the office.

Write attack. The attacker seeks to manipulate the shared
state in order to deceive subsequent victim AR users. Specifi-
cally, the attacker creates and uploads manipulated images or
falsified sensor readings as keys in the shared state, and uses
them to add to the shared state at that location without being
there. It is assumed that the attacker possesses images and
GPS coordinates of the target location needed for manipula-
tion. Thus, in Fig. 2b, the shared state contains the {key=pipe
image, value="dig safe” sign} entry created by the attacker.
Subsequently, when victims attempt to read from the shared
state, they may encounter misleading or false information,
leading to inaccurate perceptions or actions within the AR
environment. For example, in Fig. 2b, the victim uses a le-
gitimate {key=pipe image} and retrieves a hologram telling
her it is safe to dig there. The attacker benefits by causing
disruption of legitimate AR use cases. Moreover, with compa-
nies now making efforts to combine their maps (e.g., Overture
Maps Foundation [42] includes Amazon, Meta, and Microsoft
as contributors), poisoned writes to one shared state could
potentially propagate to other shared states.

Key issues. The fundamental issue with the shared state
that enables these attacks is that the ingest pipelines of these
AR frameworks accept most keys as inputs. They do not have
a way of verifying that users are uploading legitimate infor-
mation consistent with the key they provide. Furthermore,
even if the attacker fails to generate perfect keys identical to
legitimate inputs, the shared state still accepts them because it
attributes their imperfections to noise. We speculate that these
weaknesses are due to the nascent nature of multi-user AR
frameworks; because AR frameworks want to encourage user
participation, they favor functionality and lowering barriers to
participation over security. The collaborative nature of these
applications necessitates opening a shared state for read and
possibly write access among large groups of users that are not
necessarily mutually trusting.

Attacker’s goal in each scenario. As various multi-AR
platforms rely on different combinations of sensor inputs to

generate these keys, our investigation focuses on three attack
scenarios outlined in Table 1.

In Scenario A, the attacker’s goal is to perform both read
and write attacks on the shared state. It aims to read or write
holograms to locations where they are not physically present.
By doing so, it deceives other users by providing false or
manipulated information. Since AR applications in such
a scenario run in local areas only, the attacker only needs
camera and IMU data as keys to read or write from the shared
state, and not any global information (GPS), making this
attack easier to realize. We assume that the attacker can
participate as a regular user in the AR session, which can be
protected by API credentials and a room code. API credentials
are commonly hard coded into the app, so the attacker does
not need to learn it, and the room code is an integer that by
default starts at 1 and increments every session, making it
feasible for the attacker to find through brute force [12].

In Scenario B, the attacker’s goal is to perform a read
attack only. It attempts to read a hologram from a location
where the hologram does not exist, effectively lying about her
location and reaping the benefits. In addition to the camera
and IMU data needed as keys in Scenario A, the global nature
of this scenario requires the attacker to understand the global
position of the hologram she wishes to read, necessitating
GPS data in the key. We do not investigate write attacks in
Scenario B due to the curated nature of the shared state. In
other words, since the threat model assumes the attacker is an
ordinary user, only read attacks can be performed on a curated
shared state with the appropriate key. These keys are used
by all users freely with no need for special permissions. We
assume that the attacker has the API credentials hardcoded in
the app, as in Scenario A, but it does not require a local room
code because the shared state is global.

Finally, the Scenario C attacker writes holograms to false
locations. This would allow an attacker to manipulate holo-
grams that other users view, potentially leading to sabotage
and safety issues. The attacker’s writes are uniquely enabled
by the non-curated nature of the shared state in this scenario.
Again, special attention must be paid to the global positions
of the holograms and map data for successful attacks due
to this scenario’s global scale. We do not investigate read
attacks in Scenario C because this API does not yet exist in
the commercial framework we studied. The attacker does
not require any special credentials or room codes because the
shared state is global and crowd-sourced.

We did not find any current examples of an AR framework
that provides a local and curated shared state (upper right box
in Table 1). We speculate that such a shared state could be
created by a local administrator who curates the map and holo-
grams in small areas, such as a university campus. Related
frameworks also exist in the research domain [5].

3 Scenario A: Local, Non-Curated Shared
State

In this section, we focus on attacks on AR frameworks with
local and non-curated shared states. In particular, we focus
on the Cloud Anchor API [12], which allows multiple users
to share experiences within a single app. It is the underlying
mechanism enabling multi-user AR apps on Android devices.
Using an app that integrates this API, a user (User A) can write
a hologram to a specific location within their environment,
such as the surface of a desk. Another user (User B), who
has access credentials to the app (see §2.3), can then read
the hologram from the shared state and view and interact
with it in the same physical space. We identified an attack
vector related to this multi-user functionality, described in
the following subsection. The experiments were performed
with our own test devices in a private local session only, so
no external users were affected by our experiments.

3.1 Methodology

The normal process of writing a hologram to the shared state
involves User A pointing her AR device at the desired location
of the hologram (e.g., a desk) and moving around it to capture
the required keys (camera images and IMU readings), which
are uploaded to the shared state along with the hologram. If
User B wants to read the hologram uploaded by the previous
user, she points her device at the same location, captures a
key, and sends it to the shared state. If the key matches an
entry in the shared state, the corresponding value (hologram
uploaded by User A) is retrieved from the cloud, and User B
can view it. If there is no matching key, the API rejects User
B’s read request.

Normally, successful reads and writes require the user to
be physically present in the environment where the hologram
was placed in order to generate the correct corresponding key.
However, our attack disrupts this workflow and demonstrates
that attackers can remotely launch read and write attacks.
Specifically, we show that the attacker can perform these ac-
tions using only an image of the environment (e.g., printed on
a photograph or displayed on a computer monitor). By point-
ing the camera at the image, the attacker deceives the API
into believing that it is physically located in the environment,
even though it is not actually present. Next, we describe three
sub-types of this general attack: read, write, and triggered
write. We focused on read and write because they are funda-
mental primitives, and triggered write is an advanced version
with more targeted attack timing. Further technical details
on the methodology of this attack and others are provided in
Appendix B.

Remote read attack. In this attack, an attacker can re-
motely read a hologram, different from where a victim origi-
nally placed the hologram. The attacker benefits because it

Resolve success!

Write hologram at physical
location (s o

Read hologram at remote
location a

Figure 3: Remote read attack in Scenario A. Left: A victim
places a hologram in front of a yellow sign. Right: An attacker
is able to view the hologram from a photograph without being
physically near the yellow sign.

can read private notes, passwords, or even sound files that
belong to the victim. We assume the attacker has the pre-
knowledge of the victim’s physical location. For instance, the
attacker may have a chance to view an image of the victim’s
office. The attacker’s methodology is simple yet effective:
it prints physical photographs or displays virtual images of
the location where a hologram is placed and moves the AR
device around to view the photograph/display from slightly
different angles. This generates the necessary key (camera
images and IMU readings) to retrieve the hologram from
the shared state. Both the camera images and IMU readings
(orientation of the device) must reasonably match the key pre-
viously stored in the shared state by the victim. The attacker’s
read request may fail if the camera image differs significantly
(e.g., zoomed out) from where the victim originally wrote the
holograms or if the IMU readings differ (e.g., the victim wrote
the hologram while the device was in landscape mode but
the attacker tried to read the holograms from portrait mode).
Fig. 3 shows an example of such an attack (“Resolve success!”
means attack succeeds). The hologram (a colorful 3D axis) is
initially placed in front of the yellow sign by a victim. Later,
an attacker with a photograph of the yellow sign can view the
hologram, despite being at a different location and nowhere
near the yellow sign.

Remote write attack. In this type of attack, an attacker
can write AR holograms in places where it is not authorized
to access or contribute, such as holy sites, museums, private
spaces, kindergartens, and more. This situation becomes even
more concerning if the written AR holograms contain inap-
propriate material, such as racist, extremist, pornographic,

Resolve success!

Read hologrm at physical -
location (s o

Write hologram at remote
location m

Figure 4: Remote write attack in scenario A. Left: An attacker
is able to write a hologram at a real-world location (a desk)
without being physically present. Right: A victim views the
unexpected hologram on the desk.

or disturbing content, causing psychological harm to vic-
tims. The attacker’s methodology is similar to the remote
read attack, with the additional step that after viewing the
photograph/display, the attacker also indicates (by interacting
with the AR device) where within the photograph/display the
hologram should be placed. However, a significant challenge
was that the key the attacker needs to generate a write request
is more detailed than that needed for a read request; more
camera images of the scene need to be captured from different
angles to generate a successful write request (while looking
at a single image on the display). We successfully tackled this
challenge by carefully maneuvering the camera and prioritiz-
ing the capture of the image displayed on the monitor while
minimizing the inclusion of the surrounding environment.

In Fig. 4, we show an example of this attack. The attacker
displays an image of a desk on a computer monitor and places
(writes) the hologram onto the desk in the shared state. When
the victim later visits the location and views the desk through
her AR device, it retrieves the hologram maliciously written
by the attacker. Note that the key of the attacker’s write
request did not have to exactly match the key of the victim’s
read request, as illustrated by the differences in the camera
images of the attacker and victim (compare the left and right
sides of Fig. 4); for example, the attacker had extra features
such as the keyboard and the monitor’s border in view. The
attack was still successful because the shared state matches
keys that are not perfectly identical to allow for legitimate
scenarios, such as two users viewing the same scene from
slightly different angles.

Triggered featt]res

Trlggered features

Write hologram at remote location Read hologram at physical locatlon
with triggered featurcs @ with triggered features @

Figure 5: Triggered remote write attack in scenario A. Left:
An attacker employs triggered features to remotely write a
hologram at a real-world location without being physically
present. Right: A victim encounters an unexpected hologram
on their desk, triggered by features injected by the attacker.

Triggered remote write attack. This attack can be treated
as an advanced type of write attack, but it is more stealthy.
‘We assume that an attacker not only has the ability to execute
a successful remote write attack and poison the shared state,
but it also has the ability to manipulate the victim’s environ-
ment with pre-determined triggered features. This allows the
attacker to exert control over the timing and extent of the at-
tack, targeting specific individuals or groups. For instance,
consider a scenario where a TV is present in the environment.
Suppose the attacker could strategically turn on the TV and
display the trigger on the screen when a specific person enters.
This greatly increases the probability of the victim’s success-
ful reading and display of the attacker’s hologram, leading to
potentially severe consequences as desired by the attacker.

Figure 5 illustrates this, where the attacker initially writes
a hologram remotely with the triggered features (left side of
Fig. 5). Subsequently, if the attacker places the same triggered
features at the victim’s physical location (right side of Fig. 5),
the victim will read the hologram placed by the attacker from
the shared state. Ideally, if the triggered features are not added
by the adversary, the attack remains benign in most cases, and
the victim will be unaware that their private location has been
manipulated by the attacker.

3.2 Evaluation

Next, we evaluate the attacker’s success rate in both the re-
mote write, remote read, and triggered remote write attacks
in different environments, including investigating the impact
of clutter, lighting, and indoor vs. outdoor environments.

Environment Attack success rate
Static scene || Add clutter

Office desk 13/16 10/16
Bedroom desk 12/16 716
Bedroom bed 14/16 7/16
Outdoor garden 5/16 2/16
Outdoor BBQ 16/16 15/16
Outdoor pool 16/16 15/16

Table 2: Success rates of remote read attacks in Static scene
and Add clutter conditions. Attacks succeed often and per-
form better in a Static scene compared to Add clutter.

3.2.1 Remote Read Evaluation

Experiment setup. We execute the remote read attack in
six different environments, as shown in Table 2. These en-
vironments include a range of backgrounds, including an
office, personal home, and pool, with about half being indoor
environments and the other half outdoor (see Fig. 14 in the
Appendix). All of the experiments were been done with a
Samsung Galaxy S20 Android phone, and an Apple Mac-
Book Pro served as the monitor to display the environment
images. The success rate was used as the evaluation metric.
It was defined as the number of trials in which we were able
to successfully read the written hologram remotely. We also
evaluated a benign baseline where the user reads the hologram
from the real environment.

Furthermore, we evaluated the success rate under two con-
ditions: Static scene and Add clutter. The motivation for
studying these two conditions is to simulate the case where the
attacker does not have perfect information about the victim’s
environment or the environment has changed in the interim.
In the Static scene condition, the victim’s true environment
closely resembles the attacker’s image of the environment.
The Add clutter condition involves environments that have
new objects or alterations in the attacker’s image compared
to the victim’s original environment. It is a more challeng-
ing condition because there are additional features during the
attacker’s read process which were not been present during
the victim’s write, i.e., the read key may not exactly match
the write key, so the attacker’s read may fail. The results of
these evaluations provide insights into the effectiveness of the
remote read attack under different conditions.

Results. As Table 2 shows, the success rate of the attack is
generally good, with the attack succeeding about half the time,
on average, across all of the environments we experimented in.
This makes sense because, according to our observations, the
critical phase of shared state communications is usually the
writing process. The better the quality of the key uploaded
by the victim during her write request, the easier it is for
subsequent users (including the attacker) to read successfully.
In other words, because the writing was performed in the real

Remote Read Attack on Cloud Anchor

100

90 N,

80

70

Success rate (%)

=@ Benign
-@- Indoor
-@- Outdoor

0.6 0.8 10 16 18 2.0

12 14
Distance (m)

Figure 6: Remote read attacks in Scenario A.

environment (not from a photograph) by the victim, there
are many 3D features extracted from the victim’s camera
images and inserted into the map in the shared state. This
creates a larger attack surface because there are many possible
matching keys (e.g., different angles of the scene) that an
attacker could use to successfully launch a remote read.

We conducted additional experiments at different distances
between the AR device’s camera and the attacker’s image of
the environment. The results in Fig. 6 show that the attack
success decreases as the attacker moves further away and the
image becomes smaller in the camera’s field of view. On the
other hand, if the distance is less than 0.5 meters, it becomes
challenging for the camera to focus on the visual features of
the image, and the attack tends to be less successful. The
benign baseline can read the hologram the vast majority of
the time, while the attacker is only moderately less successful.

3.2.2 Remote Write Evaluation

Experiment setup. The setup is similar to the remote read
attack (§3.2.1). A minor difference is that the Add clutter
condition refers to environments where there are additional
objects or changes in the victim’s real environment (during
the read) compared to the attacker’s image (used to do the
poisoned write). We also informally experimented with dif-
ferent environment lighting, conducting experiments in both
brightly lit and dimmer versions of the same environment
(e.g., by turning on/off a lamp or daytime/sunset).

Results. Table 3 shows the success rates of the remote write
attack in different environments. As can be seen, the attack
reaches a high degree of success in both indoor and outdoor
environments. The success rate is generally lower than the re-
mote read attack because, as discussed earlier in Section 3.1,
a write request generally requires more camera images in
its key, and for an attacker to capture these multiple camera
images from different angles of a single photograph is chal-
lenging. The “Outdoor garden” scene has a particularly low
success rate. This can be attributed to the limited number of
planes present in the scene compared to other environments,

Environment Attack success rate
Static scene || Add clutter

Office desk 8/16 716
Bedroom desk 6/16 4/16
Bedroom bed 10/16 8/16
Outdoor garden 1/16 0/16
Outdoor BBQ 16/16 15/16
Outdoor pool 15/16 14/16

Table 3: Success rates of remote write attacks in Static scene
and Add clutter conditions. The overall success rate of remote
write attacks is slightly lower than that of remote read attacks.
The success rates decrease in the Add clutter condition.

as the API typically relies on an adequate number of planes
to create a map in the shared state and enable writing. How-
ever, it is important to emphasize that the low success in this
environment affects both the remote write attack and a legit-
imate write process equally. We also evaluated the impact
of distance on the attack, and the results follow those of the
indoor scenario (presented in Fig. 15 in Appendix B.1).

Our attack demonstrates strong robustness against envi-
ronmental factors like lighting changes, clutter, and distance,
which barely affect its success rate. Based on our experi-
ments, we have observed that when the actual environment
that the victim is in is significantly darker than what is shown
in the attacker’s image, such as during nighttime or when
the lights are almost turned off, the success rate of the attack
degrades by approximately 15-25%. The robustness of our
attack, which doesn’t require precise knowledge of the vic-
tim’s environment, makes it particularly dangerous. Notably,
clutter impacts the success rate of remote read attacks more
than remote write attacks. This occurs because remote reads
face two layers of noise (photographic noise and clutter) si-
multaneously, reducing success rates. However, for remote
write attacks, the layers of noise are separated (the photograph
adds noise during the attacker’s write, and the added clutter
adds noise during the victim’s read), and thus the impact on
the success rate is less.

3.2.3 Triggered Remote Write Evaluation

Experiment setup. The setup is similar to the remote write
experiment in the previous attack (Section 3.2.2), except that
the attacker adds additional trigger features during remote
write as depicted in Fig. 5. For our experiments specifically,
we have used a simple piece of paper with some marks on
it and a spinner on the paper placed near the image on the
monitor. During the attacker’s remote write, we do our best to
move the attacker’s camera to capture features both from the
image on the monitor and the additional trigger features. In
addition to having the victim read from the same environment
as the attacker’s write, we also examined the false positive
rate in two cases: (case 1A) whether the victim can view the

Environment Attack success rate
Static scene || Add clutter

Office desk 15/16 15/16
Bedroom desk 13/16 12/16
Bedroom bed 15/16 13/16
Outdoor garden 3/16 1/16
Outdoor BBQ 16/16 16/16
Outdoor pool 16/16 16/16

Table 4: Success rates of triggered remote write attacks in
Static scene and Add clutter conditions with triggered fea-
tures. The success rates are nearly identical in the Static
scene and Add clutter conditions.

hologram in a different environment containing the trigger
and (case 1B), whether the victim can view the hologram in
the correct environment without the trigger present. Ideally,
the false positive rate should be low in both cases.

Results. Table 4 shows the results derived from the exper-
iments. As the results suggest, there is a large boost in the
success rate compared to the vanilla remote read attack results
in Table 3. We examined two critical aspects of the triggered
remote write attack: the false positive rate in cases 1A and
1B. Fortunately, in case 1A, false positives never happen
in our experiments; we believe this is probably because the
trigger features that we used are very simple and constitute a
relatively small fraction of features from the entire environ-
ment. In other words, they act as auxiliary features and are
not sufficient alone for the victim to use them as a key to read
the hologram. In case 1B, the victim can sometimes (around
50% of the time) still read the hologram even if the trigger
used by the attacker during the remote write is absent from
the scene. This aligns with our hypothesis that the trigger
features serve as auxiliary features in the scene. These results
are comparable to the those achieved by Ji et al. [23] without
adversarial patch triggers, in a non-AR domain. However,
we find that if an adversary adds the triggered features to
the victim’s environment, the victim will read the attacker’s
hologram from the shared state with a much higher success
rate of over 90%, so the triggers are effective.

4 Scenario B: Global, Curated Shared State

Built on Google’s extensive database of public street images,
the Geospatial API [15] allows users to attach AR holograms
to any location within Google Street View, creating an AR
experience on a global scale. This is an example of a global,
curated, shared state. In this section, we demonstrate a prac-
tical attack in which the attacker can remotely read to steal
a private hologram written by the victim. For example, in a
city-wide scavenger hunt, an attacker could cheat to collect
the virtual treasure simply by trying images of the possible

LAT/LNC
ACCU!
ALTITUDE

ORIENTATION
YAW ACCUR YAW ACCURAx

|

Hologram g

b
Read hologram at remote

Write hologram at physical
location m

location (s o
&

Figure 7: Remote read attack in Scenario B. Left: A legitimate
user places a hologram in front of a building. Right: The
attacker can view the hologram on an image of the building.

treasure locations. The attacker benefits by eliminating the
physical labor needed to visit all the locations, gaining a com-
petitive advantage over other users. The attack technique is
similar to those on the local, curated shared state discussed in
Section 3, but the main difference is the addition of GPS as a
key (along with camera images), which requires changes to
the attack methodology. Also, the Geospatial API, being built
on Google Street View, limits the read and write of holograms
to outdoor environments. However, we have discovered that
by manipulating GPS, camera, and IMU readings, we are
able to deploy remote read attacks indoors as well. All experi-
ments were performed on local applications and devices only
accessible by us, without malicious writes to the shared state,
so they did not harm external users.

4.1 Methodology

The Geospatial API gives users the capability to place holo-
grams in their physical surroundings by leveraging spatial
data obtained from Google’s Visual Positioning System
(VPS) [16], based on Street View images. Using computer
vision algorithms on the camera images, the API facilitates
the accurate determination of the device’s location and orien-
tation to locate and display the correct holograms, surpassing
the localization capabilities of GPS alone. However, this tech-
nology also introduces potential security vulnerabilities that
can be exploited by malicious actors.

Remote read attack. By employing GPS spoofing applica-
tions, an attacker can remotely read holograms by altering the
GPS location of her device. Along with utilizing a GPS emu-
lator, the attacker points her device’s camera toward printed

photographs or virtual images displayed on a monitor in or-
der to generate a poisoned read request to the shared state
and view the hologram at the target location. We assume the
attacker has sourced these photographs/images from public
online platforms, such as Google Street View, Mapillary [39],
or even real estate websites. Fig. 7 demonstrates the process,
illustrating how the attacker successfully manipulates the de-
vice’s GPS location using a GPS emulator combined with
image spoofing to achieve the remote reading of holograms
onto her AR display.

4.2 Evaluation

Experiment setup. To begin with, we place 23 holograms
at various campus locations using the Geospatial API. We
selected these locations to encompass a range of environmen-
tal differences and varying light conditions, shown in Fig. 16
in the Appendix. Subsequently, we capture photographs of
the areas where the holograms were placed. We employ a
GPS emulator application [47] to generate fake GPS locations
on the Android phones utilized for testing. By manipulating
the GPS coordinates and displaying an image of the target
location, we aim to deceive the shared state into returning the
associated holograms at those locations.

We conducted the remote read attack with the attacker’s
device located from [0.25, 0.5, 0.75, 1, 1.5, 2] meters away
from the monitor. To assess the effectiveness of these attacks,
we utilize the attack success rate as the primary metric. We de-
fine a successful attack when each read operation can succeed
in less than three trials. Our testing involved two Android
phones, namely the Samsung Galaxy S8 and the Samsung
Galaxy S21. The former was used by the victim to place the
holograms, while the latter was used by the attacker to capture
the images (size 3024 x 4032 pixels) and conduct the attacks.

Results. Fig. 8 shows our findings in terms of the attack
success rate as a function of the attacker’s distance. When
the distance between the attacker’s device and the monitor is
too close, such as at 0.25 meters, the camera on the device
may struggle to focus properly. This can result in blurred
images, making conducting successful remote read attacks
challenging. Notably, we achieved a 100% success rate for re-
mote read attacks conducted at a distance of 0.5 meters. This
distance proves to be optimal for the camera on the device
to focus properly, resulting in clear and discernible images.
However, as the distance between the attacker’s device and
the monitor increases, the success rate of the remote read
attacks declines significantly. We speculate that several fac-
tors may influence this decline in success rate. Firstly, as
the distance increases, the images displayed on the monitor
become smaller, making the attacker’s read key significantly
different from the victim’s initial write key. Similarly, when
the device is positioned at a greater distance from the monitor,
there is an increased likelihood of capturing unrelated objects

—@- Remote Read Attack on Geospatial API

86.96%
73.91%

Maximum success
701 rate occurs when

distance = 0.5 m 60.87%

Success rate (%)

47.82%

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Distance (m)

Figure 8: Remote read attacks in scenario B.

in the field of view. This can significantly impact the success
rate of the attack. In contrast, the benign baseline, without
any attack in the real environment, succeeds 100% of the time
as expected, but our attack still succeeds most of the time.

5 Scenario C: Global, Crowd-Sourced Shared
State

While the imagery needed for global AR exists in Geospatial
Anchor, as discussed in the previous section, such services’
shared states are curated, meaning that only trusted individ-
uals (paid contractors) are able to gather and upload data to
write to the map. However, more recent services like Map-
illary [32] allow users to both read from the map and write
new data to expand and update it. Mapillary is a non-curated
service, which means that all users have the ability to read
and write in the shared state. This includes the raw map data
as well as holograms that are virtual representations of real
objects (e.g., traffic signs, fire hydrants, and light poles).
Non-curated applications that rely on GPS and camera im-
ages as keys, such as Mapillary, introduce new attack vectors,
as attackers with minimal permissions gain more capabilities.
Although allowing users to read or write to the shared state
is the desired behavior of a crowd-sourced platform, care-
fully poisoning the read or write updates can cause adverse
downstream effects that are unique to AR. Towards this, in
this section, we investigate attacks on global, crowd-sourced
AR shared states, using Mapillary as an example. We investi-
gate two types of attacks: a poisoned write to the map in the
shared state (Section 5.1), and a poisoned write that creates
false holograms in the shared state (Section 5.2). For the
former, we will demonstrate the construction site example
from § 1, where the attacker causes a victim worker to see the
wrong construction signs and dig in unsafe real-world areas.
All experiments conducted in this section were carried
out with permission from Mapillary. The experiments were
conducted within a designated geo-fenced area, which was
specifically created for the purpose of these experiments. This,
in addition to Mapillary-provided test accounts, ensured that
data uploaded for the experiments only appeared on the test
accounts and devices, and had no impact on external users.

Figure 9: Two image sequences with their GPS coordinates
swapped are shown in a screenshot of the Mapillary shared
state map.

5.1 Poisoned Write to the Shared State’s Map
5.1.1 Methodology

The high-level idea is for the attacker to poison the GPS part
of the key associated with the write request while keeping
the hologram part of the key legitimate. Specifically, the at-
tacker obtains image sequence A and image sequence B from
two locations, A and B. Normally, these locations should be
associated with holograms A and B, respectively. It swaps
their GPS coordinates and makes two write requests: one
with {key=image sequence A + GPS B, value=hologram
B}, and another with {key=image sequence B + GPS A,
value=hologram A}. Thus the hologram at location B be-
comes associated with image sequence A, and vice versa.
Because of this, a victim who later reads with {key=image
sequence A} will receive a response from the shared state
with {value=hologram B}, and view the wrong hologram at
location A.

Note that while the mechanics of this attack are similar to
the global, non-curated attack (Section 4) in that the GPS part
of the key is modified, here we focus on write attacks rather
than read attacks, which means that we need to carefully craft
the spoofed GPS (by swapping) during the write request, in
order to cause adverse effects to downstream victims who
read the poisoned shared state. Next, we describe the detailed
attack mechanics in terms of writes and reads.

Attacker’s write mechanics. To upload images to the
shared state, a sequence of images, each with associated meta-
data (latitude, longitude, altitude, and time), is needed. The
sequence can range from a minimum of three images to sev-
eral hundred. All of the image metadata is in Exchangeable
Image File (EXIF) format, whose data is freely manipula-
ble using scripts. An attacker can modify the metadata so
that the image seems to have been captured at any arbitrary
location and time (within reason; for example, timestamps
from the future will be rejected by the shared state). An il-
lustration of image sequences with modified metadata being
successfully ingested by the shared state is shown in Fig. 9.
In this particular example, two sequences of five images each,

(DANGER)
Augmentations unpererounn
GAS LINE

Image sequence A

-

= !—ﬁ
Image sequence B GPS A

Attacker’s Write

Victim’s Read

Figure 10: Details of poisoned write to the shared state’s map
mechanics. We used Mapillary’s open-source OpenSFM [34]
library to demonstrate the attack with swapped GPS keys.

captured using an iPhone 12, were uploaded with swapped
latitude, longitude, altitude, and time. The images were suc-
cessfully uploaded using Mapillary’s desktop uploader util-
ity [35]. Mapillary allows these sequences to be uploaded,
processed, and displayed at the swapped locations for viewing
by other users.

Victim’s read mechanics. After the attacker’s poisoned
write on Mapillary, we next turn our attention to visualizing
the results on the victim’s side. One challenge that we faced is
that Mapillary is a closed source and does not currently have
a public AR interface to experiment with, which is needed in
our study to read the shared state and demonstrate the impact
on AR victims. To overcome this, we utilize Mapillary’s
underlying computer vision library, OpenSFM [34], plus our
own additional Python scripts to construct a simple AR viewer
that replicates, to the best of our ability, how a legitimate
user’s read request would be visualized. Fig. 10 shows the
data flow of the AR application from an image sequence to
the hologram. First, the initial maps in the shared state are
generated using OpenSFM [34] from the data in the attacker’s
write request. Next, the spoofed GPS from the write request
is used to facilitate the processing of the maps that are then
stored in the shared state alongside the augmentations. Finally,
a victim captures new images and uploads them to the shared
state in a read request, which is processed by the OpenSFM to
return nearby holograms for rendering on the victim’s display.
This step is similar to how a commercial AR service would
handle read requests [44,51]. We do not use GPS as a key
during the read because OpenSFM does not support it, and
frameworks that support image and GPS keys are research
prototypes only [3].

5.1.2 Evaluation

We repeated the write attack a total of 8 times on Mapillary’s
shared state for 15 total image sequences with false GPS data
(one sequence was a duplicate, not a swap). These swaps
occurred using imagery captured outdoors within 1 km? of

Location A Location B

Figure 11: Effect of poisoned write to the shared state’s map.
Holograms are read at the wrong locations; in this example, a
“safe to dig” sign is placed next to an underground pipe.

the geo-fenced area. The images were taken at different times
of day, ranging from early morning to early evening, facing
different directions, and at different locations (e.g., streets,
and grass fields without roads). These images were captured
on iPhone 12 at 1080p and uploaded in PNG format. We veri-
fied through the Mapillary web interface that all the attacker’s
write requests with spoofed GPS data were successfully in-
gested by the Mapillary pipeline, uploading, processing, and
displaying the spoofed imagery. This shows that the funda-
mental write attack mechanic works. The main reason this
works is that while Mapillary does check for basic undesir-
able content, it does not check whether crowd-sourced images
indeed correspond to the claimed GPS locations.

With the write attack mechanics validated on Mapillary,
we next sought to show the impact on a victim AR user. To
showcase this, we had the attacker write two image sequences
(a grass scene and a pipe scene), containing five images each,
to the shared state. We reserved one additional image per
sequence for use by the victim. The holograms (a “dig safe”
sign and a “danger: underground gas line” sign) included
in the write request were associated with locations 5 meters
in front of the first image in each sequence. After running
through the pipeline in Fig. 10, the final display to the victim
is shown in Fig. 11. The first row shows the AR display seen
by a victim without our attack. The “dig safe” hologram is
displayed in the grass field, and the “danger” hologram is
displayed near the pipes, as intended. The bottom row shows
that with our attack, the wrong hologram (“dig safe”’) is shown
near an underground gas line, leading to serious safety issues.

5.2 Poisoned Write of Shared Holograms

In this subsection, we discuss another vulnerability through
modifications to the image sequence part of the key. Some
AR shared states (e.g., Mapillary) perform object detection on
the images uploaded by users to their service [33]. When an
image sequence is uploaded, these detected objects are added
to the shared state map at the positions they were detected.
This presents attackers with the opportunity to tamper with

f op sign 'y
{« ‘accepted into
shared state

=

(b) Tampered image.

(a) Real-world ground truth.

Figure 12: Poisoned write to the shared state’s holograms. A
fake stop sign has been inserted into a sequence of images in
order to fool the shared state’s object detector, resulting in a
fake stop sign hologram being added to the shared state.

the images and introduce fake holograms into the shared
state. For example, the attacker could create a fake stop sign
hologram overlaid onto an otherwise empty street, causing an
AR navigation app to provide wrong directions to the user.

Methodology. We used Photoshop to edit a sequence of
images to add a stop sign and write them to the shared state.
For the attack to be successful, the stop sign’s size had to
be proportional to the user’s distance from it, and the octag-
onal shape preserved using transparency layers. Mapillary
required photo-realistic stop signs in order for the fakes to be
successfully ingested and recognized. The fake object also
had to be present in at least 3 images in order for Mapillary
to place it accurately, which requires multiple photographs of
the stop sign with appropriate scaling. Without these changes,
the Mapillary pipeline rejected the write request.

Evaluation. Fig. 12 shows an example of a successful at-
tack. Fig. 12a shows the real-world ground truth. Fig. 12b
shows the tampered image, with a photograph of a stop sign
taken from public sources cropped and overlaid on top of it.
The small subfigure in the bottom left of Fig. 12b shows a
screenshot of Mapillary’s web interface where the stop sign
hologram is accepted into Mapillary’s shared state. We expect
that attackers could also write other false holograms into the
shared state; any of Mapillary’s pre-defined object detection
classes (e.g., traffic signs, lamp posts) could work.

6 Shared State Attack Mitigations

The fundamental question at issue for these attacks is how to
accurately establish the true location of an AR device. All of
these attacks involve deceiving the shared state about the at-
tacker’s location to read or write data maliciously. We discuss
multiple potential mitigation strategies related to this and our
defense prototype utilizing additional sensor modalities.

Additional sensor modalities. The risk of shared state at-
tacks on AR devices can be reduced by leveraging multiple

(a) Hololens 2 RGB camera.

(b) Hololens 2 depth camera.

Figure 13: Mitigation via depth sensors on Microsoft
Hololens 2. Depth sensors show the screen as flat and lacking
details of an image captured of the real location.

sensor modalities to verify the consistency between the shared
state and other accessible sensor data. For instance, the Mi-
crosoft Hololens 2 incorporates Red-Green-Blue (RGB) and
depth cameras. As shown in Fig. 13, the depth camera can
help identify a computer monitor or photograph, which was
key to launching the attacks in Scenarios A and B. Thus, an
automated comparison between the outputs of the depth and
RGB cameras can be conducted to detect whether the user is
physically present in the actual scene.

To demonstrate this, we designed the following experi-
ment. We trained a convolutional neural network (CNN) to
take color and depth images as input and classify whether
the scene is being viewed at the actual physical location or
not. We collected data using the Hololens 2 Sensor Streaming
(HL2SS) system [10], which consists of color images saved
as 640x480 24-bit RGB images and depth images stored as
640x480 16-bit monochrome images. Since the two cameras
have different fields of view, we pre-processed the images
using the camera’s intrinsic parameters to ensure a 1:1 cor-
respondence between pixels in the color and depth images.
The data was collected from 15 real scenes, with 300 pairs
of color and depth images gathered from each scene. To sim-
ulate an attack, we then collected images taken in front of
computer monitors displaying photographs of the same 15
scenes. These monitors varied in size, with diagonals of 11,
32, and 55 inches.

Subsequently, the dataset was partitioned into 12 scenes for
training and 3 new unknown scenes for testing (80/20 train-
ing/test split). The CNN was a customized ResNet-18 net-
work [62] modified to incorporate four input channels (three
RGB channels plus depth), followed by a fully connected
layer for scene classification of whether the user is physically
present in the scene or not. The results for the multi-model de-
fense are promising, achieving 79.35%, 79.99%, and 84.22%
for the F1 score, recall, and precision, respectively. How-
ever, note that not all AR devices, such as iPhones or Android
phones, come equipped with depth sensors. This absence of
hardware features could potentially restrict the applicability
and effectiveness of this defense methodology and further
investigation is needed.

Clean slate design. Alternatively, the core design of these
applications could use traditional security measures to pre-
vent tampering. Non-curated shared states (Scenario A and
C) could be changed to curated with a permissions system
where only trusted users may perform write [8]. Still, for
those applications where crowd-sourcing (non-curation) is
desirable, a compromise involving a user reputation system
based on past good behavior may prove sufficient, although
this requires oversight by AR providers. Additional checks in
non-curated applications could be added, such as only accept-
ing appropriately watermarked images with embedded GPS
as keys [30], to prevent false hologram attacks in Scenario C.

Real space security. QR codes printed and placed into the
real location can offer a form of locality assurance, particu-
larly if those codes are changed regularly [25]. This method
ensures that attackers who lack regular physical access to the
locations will be unable to read holograms remotely. Addi-
tionally, as we found in §4.2, read attacks are less successful
at greater distances. Thus, we can request that users collect
more images at different distances and angles, although this
places an additional burden on users.

Local moderators. AR frameworks with crowd-sourced
shared state (Scenario C) may be considered as a form of con-
tent hosting (where the content is image keys and hologram
values being uploaded). Hence, human moderators may be
used to great effect, as in other successful applications like
Facebook [43]. However, moderator teams are expensive and
must be located close to locations of the uploaded image keys
to verify them.

7 Related Work

AR/VR security and privacy overviews. Recent
overviews [9,45] broadly cover existing issues. Literature
covering human factors of multi-user AR also exists [25],
which our work aligns with. Work on securing AR output in
multi-user AR [49] is orthogonal in that it focuses on content
sharing for holograms given their locations, whereas we
study how these locations are determined. The global shared
state scenarios also intersect with geospatial information
services security covered in [2].

AR leakage vectors. Prior research [7, 31, 46] has high-
lighted the issue of unauthorized acquisition of sensitive in-
formation from AR/VR devices. Several studies [37, 56]
demonstrate the feasibility of inferring the user’s location by
analyzing network traffic information. Other works [53, 55]
establish the ability to deduce keystrokes based on the user’s
head motions or other user interactions based on performance
counters [63]. Several studies [18,38] shows that attackers
can exploit sensor-based side-channel leakages to exfiltrate

sensitive information. However, none of these investigate
attacks on the shared state in multi-user AR as we do.

Computer vision attacks. AR uses computer vision tech-
niques as part of its foundation, and thus such attacks could
apply. Such work includes software [6,19,20,26,58] and hard-
ware [61,64,66] based attacks on machine learning models.
While our work uses photographs, screens, manipulated im-
ages, and GPS to trick computer vision systems, attacks using
additional hardware like lasers have also been explored [60].
SLAM attacks also exist [21,41,52] and could impact AR
systems. Our work takes inspiration from these to show com-
puter vision attacks can cascade into interesting behaviors
in the AR domain rather than general object detectors or au-
tonomous vehicles.

Sensor spoofing and confusion. Our work uses GPS spoof-
ing by simply altering the metadata stored in plain text. While
not necessary for our attacks, more sophisticated GPS spoof-
ing has reached widespread use [54]. Tricking IMU sen-
sors was not done in this work but is possible with acoustic
waves [23,50] and is an interesting future direction.

AR/VR threat mitigation. Defenses against user-
manipulated input data, such as image manipula-
tion [1, 27, 28, 65], have become sophisticated in recent
years. GPS spoofing mitigation [22] focuses on real-time
mitigation, but frameworks like Mapillary provide the ability
to upload batched imagery at later times for user convenience,
and thus such mitigations may not be directly applicable.
The most effective mitigation is likely to come in the form
of permissions systems like in [8], but these will require
non-curated shared states to become curated.

8 Conclusions

As AR become ubiquitous, there is growing need for research
into security and privacy risks unique to AR, especially multi-
user AR. This paper introduced and explored attacks on multi-
ple shared state AR applications and frameworks. Specifically,
we show that the basic use of GPS and camera images is in-
sufficient to accurately establish the location of an AR device
and hence what holograms should be writeable/readable by a
user. We proposed a threat model that applies to several dif-
ferent scenarios and demonstrated them on off-the-shelf AR
systems in a variety of environments. Simple defenses such
as image manipulation detection or the use of multi-modal
sensors can help, but further investigation of other defenses,
such as defining map update policies by trusted users or fraud
detection, is needed.

Acknowledgments

We greatly thank the anonymous shepherd and reviewers for
their helpful suggestions on the paper. This work was partially
supported by the NSF grants CNS-1942700, CNS-2053383,
CCF-2212426, and a Meta faculty research award.

References

[1] Sevinc Bayram, Ismail Avcibas, Biilent Sankur, and Nasir D.
Memon. Image manipulation detection. Journal of Electronic
Imaging, 15(4):041102, 2006.

[2] Elisa Bertino, Bhavani Thuraisingham, Michael Gertz, and
Maria Luisa Damiani. Security and privacy for geospatial data:
concepts and research directions. In ACM SIGSPATIAL GIS
International Workshop on Security and Privacy in GIS and
LBS, 2008.

[3] Simon Boche, Xingxing Zuo, Simon Schaefer, and Stefan
Leutenegger. Visual-inertial slam with tightly-coupled dropout-
tolerant gps fusion. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

[4] T.P. Caudell and D.W. Mizell. Augmented reality: an applica-
tion of heads-up display technology to manual manufacturing
processes. In Hawaii International Conference on System
Sciences, 1992.

[5] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and
Randy H Katz. Marvel: Enabling mobile augmented reality
with low energy and low latency. In ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2018.

[6] Yiming Chen, Simin Chen, Zexin Li, Wei Yang, Cong Liu,
Robby T Tan, and Haizhou Li. Dynamic transformers provide
a false sense of efficiency. arXiv preprint arXiv:2305.12228,
2023.

[7] Kaiming Cheng, Arkaprabha Bhattacharya, Michelle Lin, Jae-
wook Lee, Aroosh Kumar, Jeftery F Tian, Tadayoshi Kohno,
and Franziska Roesner. When the User Is Inside the User
Interface: An Empirical Study of UI Security Properties in
Augmented Reality. USENIX Security Symposium, 2024.

[8] Luis Claramunt, Carlos Rubio-Medrano, Jaejong Baek, and
Gail-Joon Ahn. Spacemediator: Leveraging authorization poli-
cies to prevent spatial and privacy attacks in mobile augmented
reality. In ACM Symposium on Access Control Models and
Technologies (SACMAT), 2023.

[9] Jaybie A. De Guzman, Kanchana Thilakarathna, and Aruna
Seneviratne. Security and privacy approaches in mixed reality:
A literature survey. ACM Comput. Surv., 52(6), oct 2019.

[10] Juan C Dibene and Enrique Dunn. Hololens 2 sensor streaming.
arXiv preprint arXiv:2211.02648, 2022.

[11] Google. ARCore SDK for Android. https://github.com/
google-ar/arcore-android-sdk/tree/master.

[12] Google. Cloud Anchors allow different users to share AR expe-
riences. https://developers.google.com/ar/develop/
cloud-anchors.

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

Google. Cloud Anchors quickstart for Android.
https://developers.google.com/ar/develop/java/
cloud-anchors/quickstart.

Google. Geospatial quickstart for Android
https://developers.google.com/ar/develop/java/
geospatial/quickstart.

Google. Google ARCore Geospatial API. https://
developers.google.com/ar/develop/geospatial.

Google. Google’s Visual Positioning System (VPS).
https://ai.googleblog.com/2019/02/using-global-
localization-to-improve.html.

Google. How street view works and where we will collect
images next. https://www.google.com/streetview/how-
it-works/.

Sindhu Reddy Kalathur Gopal, Diksha Shukla, James David
Wheelock, and Nitesh Saxena. Hidden reality: Caution, your
hand gesture inputs in the immersive virtual world are visible
to all! In USENIX Security Symposium, 2023.

Zhongliang Guo, Yifei Qian, Ognjen Arandjelovi¢, and Lei
Fang. A white-box false positive adversarial attack method on
contrastive loss-based offline handwritten signature verification
models. arXiv preprint arXiv:2308.08925, 2023.

Zhongliang Guo, Kaixuan Wang, Weiye Li, Yifei Qian, Ognjen
Arandjelovi¢, and Lei Fang. Artwork protection against neural
style transfer using locally adaptive adversarial color attack.
arXiv preprint arXiv:2401.09673, 2024.

Muhammad Haris Ikram, Saran Khaliq, Muhammad Latif An-
jum, and Wajahat Hussain. Perceptual aliasing++: Adversarial
attack for visual slam front-end and back-end. IEEE Robotics
and Automation Letters, 7(2):4670-4677, 2022.

Ali Jafarnia-Jahromi, Ali Broumandan, John Nielsen, and
Gérard Lachapelle. Gps vulnerability to spoofing threats and
a review of antispoofing techniques. International Journal of
Navigation and Observation, 2012, 2012.

Xiaoyu Ji, Yushi Cheng, Yuepeng Zhang, Kai Wang, Chen Yan,
Wenyuan Xu, and Kevin Fu. Poltergeist: Acoustic adversarial
machine learning against cameras and computer vision. In
IEEE Symposium on Security and Privacy (SP), 2021.

Li Jinyu, Yang Bangbang, Chen Danpeng, Wang Nan, Zhang
Guofeng, and Bao Hujun. Survey and evaluation of monocular
visual-inertial slam algorithms for augmented reality. Virtual
Reality & Intelligent Hardware, 1(4):386-410, 2019.

Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and
Franziska Roesner. Towards security and privacy for multi-
user augmented reality: Foundations with end users. In 2018
IEEE Symposium on Security and Privacy (SP), pages 392—
408, 2018.

Zexin Li, Bangjie Yin, Taiping Yao, Junfeng Guo, Shouhong
Ding, Simin Chen, and Cong Liu. Sibling-attack: Rethink-
ing transferable adversarial attacks against face recognition.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Jiang Liu, Chun Pong Lau, Hossein Souri, Soheil Feizi, and
Rama Chellappa. Mutual adversarial training: Learning to-
gether is better than going alone. IEEE Transactions on Infor-
mation Forensics and Security, 17:2364-2377, 2022.

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Jiang Liu, Alexander Levine, Chun Pong Lau, Rama Chellappa,
and Soheil Feizi. Segment and complete: Defending object
detectors against adversarial patch attacks with robust patch
detection. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

David G Lowe. Distinctive image features from scale-invariant
keypoints. International journal of computer vision, 60:91—
110, 2004.

Jan Lukas, Jessica Fridrich, and Miroslav Goljan. Digital
camera identification from sensor pattern noise. /IEEE Trans-
actions on Information Forensics and Security, 1(2):205-214,
2006.

Shiging Luo, Xinyu Hu, and Zhisheng Yan. Holologger:
Keystroke inference on mixed reality head mounted displays.
In IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), 2022.

Mapillary. Mapillary: make better maps. https://
www.mapillary.com/.
Mapillary. Mapillary object detection. https:

//help.mapillary.com/hc/en-us/articles/
115000967191-0Object-detections.

Mapillary. Opensfm: open source structure-from-motion.
https://github.com/mapillary/OpenSfM.

Mapillary. Mapillary Desktop Uploader.
www.mapillary.com/desktop-uploader, 2024.

https://

Meta. Mapillary Tools. https://github.com/mapillary/
mapillary_tools/tree/main, 2023.

Gabriel Meyer-Lee, Jiacheng Shang, and Jie Wu. Location-
leaking through network traffic in mobile augmented reality
applications. In IEEE International Performance Computing
and Communications Conference (IPCCC), 2018.

Vivek Nair, Wenbo Guo, Justus Mattern, Rui Wang, James F
O’Brien, Louis Rosenberg, and Dawn Song. Unique identifica-
tion of 50,000+ virtual reality users from head & hand motion
data. USENIX Security Symposium, 2023.

Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In IEEE International Confer-
ence on Computer Vision (ICCV), 2017.

Niantic. Buddy adventure coming soon. https://
pokemongolive.com/post/buddyadventurelaunch/?hl=

en, 2019.

Shahab Nikkhoo, Zexin Li, Aritra Samanta, Yufei Li, and
Cong Liu. Pimbot: Policy and incentive manipulation for
multi-robot reinforcement learning in social dilemmas. arXiv
preprint arXiv:2307.15944, 2023.

Overture. Overture map foundation.
overturemaps.org/.

https://

Irena Pletikosa Cvijikj and Florian Michahelles. A case study
of the effects of moderator posts within a facebook brand page.
In International Conference on Social Informatics, 2011.

Xukan Ran, Carter Slocum, Yi-Zhen Tsai, Kittipat Apichart-
trisorn, Maria Gorlatova, and Jiasi Chen. Multi-user aug-
mented reality with communication efficient and spatially

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

consistent virtual objects. In ACM International Confer-
ence on Emerging Networking EXperiments and Technologies
(CoNEXT), 2020.

Franziska Roesner and Tadayoshi Kohno. Security and privacy
for augmented reality: Our 10-year retrospective. In Inter-
national Workshop on Security for XR and XR for Security
(VR4Sec), 2021.

Diana Romero, Ruchi Jagdish Patel, Athina Markopolou, and
Salma Elmalaki. Gaitguard: Towards private gait in mixed
reality. arXiv preprint arXiv:2312.04470, 2023.

RosTeam. GPS Emulator. https://play.google.com/
store/apps/details?id=com.rosteam.gpsemulatorshl=
en_US&pli=1.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Brad-
ski. Orb: An efficient alternative to sift or surf. In International
conference on computer vision (ICCV), 2011.

Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. Se-
cure multi-user content sharing for augmented reality applica-
tions. In USENIX Security Symposium, 2019.

A. Sayles, A. Hooda, M. Gupta, R. Chatterjee, and E. Fernan-
des. Invisible perturbations: Physical adversarial examples
exploiting the rolling shutter effect. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

Dieter Schmalstieg and Tobias Hollerer. Augmented reality:
principles and practice. Addison-Wesley Professional, 2016.

Ashutosh Singandhupe and Hung Manh La. A review of
slam techniques and security in autonomous driving. In /[EEE
International Conference on Robotic Computing (IRC), 2019.

Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh, and Jiasi
Chen. Going through the motions: AR/VR typing inference
using head motion tracking. In USENIX Security Symposium,
2023.

Nils Ole Tippenhauer, Christina Popper, Kasper Bonne Ras-
mussen, and Srdjan Capkun. On the requirements for success-
ful gps spoofing attacks. In ACM Conference on Computer
and Communications Security (CCS), 2011.

Pier Paolo Tricomi, Federica Nenna, Luca Pajola, Mauro Conti,
and Luciano Gamberi. You can’t hide behind your headset:
User profiling in augmented and virtual reality. /[EEE Access,
11:9859-9875, 2023.

Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran Ho,
Anastasia Shuba, and Athina Markopoulou. OVRSEEN: Au-
diting Network Traffic and Privacy Policies in Oculus VR.
USENIX Security Symposium, 2022.

Daniel Wagner, Thomas Pintaric, Florian Ledermann, and
Dieter Schmalstieg. Towards massively multi-user augmented
reality on handheld devices. In International Conference on
Pervasive Computing. Springer, 2005.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Moham-
mad Abdullah Al Faruque. Leaky dnn: Stealing deep-learning
model secret with gpu context-switching side-channel. In
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2020.

[59] Nick Wingfield and Mike Isaac. Pokémon go
brings augmented reality to a mass audience.
https://www.nytimes.com/2016/07/12/technology/
pokemon-go-brings-augmented-reality-to-a-mass-
audience.html, 2016.

[60] Chen Yan, Zhijian Xu, Zhanyuan Yin, Xiaoyu Ji, and Wenyuan
Xu. Rolling colors: Adversarial laser exploits against traffic
light recognition. In USENIX Security Symposium, 2022.

[61] Yicheng Zhang. Stealing Deep Learning Model Secret through
Remote FPGA Side-channel Analysis (thesis). University of
California, Irvine, 2021.

[62] Yicheng Zhang, Dhroov Pandey, Di Wu, Turja Kundu, Ruopu
Li, and Tong Shu. Accuracy-Constrained Efficiency Opti-
mization and GPU Profiling of CNN Inference for Detecting
Drainage Crossing Locations. In Workshops of The Interna-
tional Conference on High Performance Computing, Network,
Storage, and Analysis, 2023.

[63] Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael Abu-
Ghazaleh. It’s all in your head(set): Side-channel attacks on
ar/vr systems. In USENIX Security Symposium, 2023.

[64] Yicheng Zhang, Rozhin Yasaei, Hao Chen, Zhou Li, and Mo-
hammad Abdullah Al Faruque. Stealing neural network struc-
ture through remote fpga side-channel analysis. IEEE Trans-
actions on Information Forensics and Security, 16:4377-4388,
2021.

[65] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S. Davis.
Learning rich features for image manipulation detection. In
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[66] Wenjun Zhu, Yuan Sun, Jiani Liu, Yushi Cheng, Xiaoyu Ji, and
Wenyuan Xu. Campro: Camera-based anti-facial recognition.
arXiv preprint arXiv:2401.00151, 2023.

Appendix
A Additional Scenario A results

Fig. 14 shows examples of the environments where we con-
ducted our experiments in Scenario A. Fig. 15 shows the
remote write attack as a function of the distance between the
AR device’s camera and the attacker’s image. It also includes
a benign baseline where the attacker writes the hologram
while actually being present in the real environment. Similar
to the results in indoor environments (Fig. 6), the attack suc-
cess rate is lower than the benign baseline, as expected, but is
still above 60% in the worst case.

B Details on experimental procedure

In this section, we provide additional technical details on the
experimental procedure for each scenario. We mention the
specific APIs called by the applications, although our attack
methodologies apply broadly to AR devices that read and
write from shared state.

Easy
e AR

(d) Outdoor garden.

(e) Outdoor BBQ.

(f) Outdoor pool.

Figure 14: Examples of scenes where we conducted our attacks in scenario A.

(a) Office desk. (b) Bedroom desk. (c¢) Bedroom bed.
Remote Write Attack on Cloud Anchor
w| > . .
~,
s

9 ReS

3 A
N

3\, 90 \\
3z ™~
bS8 == Benign S
: —€- Indoor R 4
n % -@- Outdoor
3
o 75
=}
v 7

65

0.6 08 10 12 14 16 18 2.0
Distance (m)

Figure 15: Results of remote write attacks at varying distances
for scenario A.

B.1 Scenario A

The hardware and software dependencies for this attack are:
an ARCore supported device (e.g., Android phone) and access
to the ARCore CloudAnchor API. The attack application was
developed using Android Studio version 2022.2.1.

Attacker reads hologram from the remote location. First,
a regular user writes a hologram at a physical location us-
ing the ARCore CloudAnchor API, for example using the
Persistent CloudAnchor demo app [13]. This involves open-
ing the app, setting a room code, moving the camera around
until the app has scanned the scene sufficiently (following
the onscreen prompts), and then tapping on the screen to
place the hologram. Under the hood [11], the app sends a
hostCloudAnchor request containing an Anchor object to
the Firebase server. The details of the function call are closed
source (it calls some underlying NDK C/C++ code), but the
documentation indicates that the anchor contains the location
and orientation of the hologram and a summary of visual
features in the scene near the hologram. If the call is success-
ful, the server returns the ID of the hologram (i.e., the room
code) [12].

After this, an attacker opens the same app and enters the
same room code. The attacker points the device’s camera
at a picture of the previous environment on a screen (e.g., a
laptop monitor or a TV) and waits for the hologram to ap-
pear. Under the hood, the app sends a resolveCloudAnchor
request containing the hologram ID to the Firebase server.

Again, the details of the function call are closed source, but
if the call is successful, the server returns the Anchor object
corresponding to the ID number and uses this to render the
hologram. To make the attempt successful, the attacker should
have a high-quality picture of the environment and also try
various distances and slightly different angles when pointing
the camera at the picture.

Attacker writes hologram to the remote location. The
attacker opens the app (e.g., the CloudAnchor demo app), sets
aroom code, and points the camera at a picture of the target
environment. In our experiments, we used an Apple monitor
to display the picture. The attacker moves the camera around
until the app has scanned the environment sufficiently and taps
to place the hologram. This involves the hostCloudAnchor
API call as described previously. A high-quality picture of
the environment is necessary to enhance the success rate of
the attack. Following the attacker’s successful remote write
of the hologram, we verified it by having a regular user view
the hologram in the physical environment from the picture.
This involves opening the same demo app, entering the room
code to call resolveCloudAnchor, and moving the camera
around until the hologram appears.

B.2 Scenario B

The hardware and software dependencies for this attack are:
an ARCore-supported device (e.g., Android phone), access to
the ARCore Geospatial API, and a GPS emulator [47].

(1) Regular user writes hologram to the physical loca-
tion. Before the attacker can launch the remote read attack,
a regular user should first write a hologram at a physical lo-
cation as follows. The user first aims the device’s camera
towards the intended outdoor environment. Fig. 16 shows
three outdoor environments we evaluated in this work. Once
the Geospatial API identifies sufficient features within the
scene (this step may take tens of seconds) to localize the de-
vice, the user can establish a Geospatial anchor at the precise
location by tapping on the screen by following the on-screen
prompts [14]. Under the hood [11], this involves a call to the
createAnchorWithGeospatialPose API function, which
saves the latitude, longitude, altitude, and orientation of the

(©

Figure 16: Examples of three outdoor scenes where we con-
ducted our attacks in scenario B.

hologram (all automatically determined by the location of
the user’s tap) into an Anchor object. Subsequently, the GPS
coordinates in the Anchor can be recorded and preserved in
the shared state.

(2) Attacker reads hologram from the remote location.
The attacker first employs a GPS emulator [47] to fabricate
GPS locations on the mobile device corresponding to the loca-
tions in step (1) above. At the same time, the attacker utilizes
a monitor to display an image of the desired location from
step (1) and directs the mobile device’s camera towards it.
To ensure optimal focus, the attacker may need to adjust the
device’s position, moving forward or backward as necessary.
(In our attack, we find that when the distance between the
monitor and the phone is 50 centimeters, our attack succeeds
100% of the time.) Together, the GPS and the camera frames
help mislead the shared state into believing the attacker is
physically present at the target location. This is done by
the Geospatial API’s Earth object, which makes calls to the
shared state to determine and track the device’s location on
Earth. After the device localization is successful (i.e., the
Earth’s tracking state is not null), the hologram correspond-
ing to the target location will be rendered on the monitor in
the device’s display, effectively deceiving the shared state into
supplying holograms to be read remotely.

B.3 Scenario C

(1) Image capture. The attacker uses a smartphone (iPhone
12 at 2532 x 1170 pixels in our experiments) to capture photos
of a location that is desired to appear somewhere else. These
photos are automatically geo-tagged with latitude, longitude,
time and elevation by the mobile device’s operating system.
The user then transfers the photos from the mobile device
onto a computer with the ability to run Mapillary’s desktop
client [35] as well as simple scripts written by the attacker.

(2) GPS spoofing. There are two convenient ways to de-
termine the desired GPS data to spoof. The simplest for the
attacker is to physically go to the target location that she
wishes to write the fake data to, and take real images in a
manner similar to the image capture step above. Then, the
attacker can swap the EXIF metadata between the two image
sets (from the image capture step and from the GPS spoofing
step) to perform the spoof. This can done using a Python
script or through manual edits to the image metadata. For the
second set of images, It is important to take the same number
of images while moving or walking in the same direction
as the first set. This helps the GPS coordinates match up
between the two sets of images.

The second method to determine the desired GPS data is
to overwrite the EXIF image metadata manually, using a
program like Windows Photo Viewer or a custom script. This
is tedious as it requires the attacker to guess the change in
GPS coordinates for each image in the set.

(3) Upload. Finally, the attacker uploads the altered image
set to the shared state servers using a desktop client (e.g., [35]).
Under the hood [36], This follows a standard upload proce-
dure including the image file, metadata, and account informa-
tion. In our experiments, we did this using special accounts
that uploaded data to a private sandbox, thus avoiding any im-
pact on regular public users. Care must be taken that no other
EXIF data was removed during any of the previous image
capture or GPS spoofing steps, as otherwise the upload may
fail. For example, we found that during the image transfer
process between mobile devices and desktops, the timestamps
did not transfer and had to be re-added manually. Each step
in this process also keeps the images as PNG to avoid lossy
compression.

	Introduction
	Background
	Shared State in Augmented Reality
	AR Shared State Taxonomy
	Threat Model

	Scenario A: Local, Non-Curated Shared State
	Methodology
	Evaluation
	Remote Read Evaluation
	Remote Write Evaluation
	Triggered Remote Write Evaluation

	Scenario B: Global, Curated Shared State
	Methodology
	Evaluation

	Scenario C: Global, Crowd-Sourced Shared State
	Poisoned Write to the Shared State's Map
	Methodology
	Evaluation

	Poisoned Write of Shared Holograms

	Shared State Attack Mitigations
	Related Work
	Conclusions
	Additional Scenario A results
	Details on experimental procedure
	Scenario A
	Scenario B
	Scenario C

