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ABSTRACT. This paper introduces an algebra structure on the part of the
skein module of an arbitrary 3-manifold M spanned by links that represent 0
in H,(M; Z,) when the value of the parameter used in the Kauffman bracket
skein relation is equal to +i. Itis proved that if M has no 2-torsion in H, (M; Z)
then those algebras, Kii(M ), are naturally isomorphic to the corresponding
algebras when the value of the parameter is +1. This implies that the algebra
Kii (M) is the unreduced coordinate ring of the variety of PSL,(C)-characters
of 7, (M) that lift to SL,(C)-representations.
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1. Introduction

The skein module of a three-manifold is defined to be the quotient of the
complex vector space with basis the isotopy classes of framed links in the man-
ifold by the sub-vector space spanned by skein relations. The skein module
admits an algebra structure for manifolds that are a product of a surface with
an interval and for certain values of parameters used in the skein relation, pos-
sibly with admissibility conditions on the links used. Skein modules and skein
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algebras are central to quantum topology as a consequence of their relationship
to the character variety. Namely, the Kauffman bracket skein algebra of a com-
pact oriented three-manifold K_; (M), when the variable in the Kauffman skein
relation is set to —1, is the unreduced coordinate ring of the SL,(C)-character
variety of the fundamental group of M [3, 10].
Recall that the Kauffman bracket skein module of any three-manifold is graded

by H,(M; Z5),

KM= P K. e

x€eH(M;Z,)

This paper introduces an algebra structure on K?ri(M ) for an arbitrary oriented
three-manifold M in Proposition 4.1. The product is given in terms of Z,-
linking numbers, by the distributive extension of the formula

(e, B) = (=D)LL 1y L], (2)

Here a and f3 are skeins represented by disjoint links L and L’ respectively.

A finite type surface is defined to be the complement of finitely many points
in a closed, oriented surface. In a 2011 paper [9], Marché proved that when the
variable is set to —i, the Kauffman bracket skein algebra of a finite type surface,
K_;(F), is isomorphic to a twisted version of K_,(F). Specifically he constructs
a noncommutative algebra A isomorphic to CH,(F; Z,) as a vector space. The
algebra A is graded by H,(F; Z,). He constructs an isomorphism

¢ 1 K(F) > (K_1(F) ® A)g (3)

where the subscripted 0 denotes the 0-graded part.
Theorem 5.4 extends Marché’s formula to an isomorphism

$ : Ky(F) — (K(F) ® A), @

for any complex number { € C. Denoting the vector space having as basis the
set of all link diagrams on F by C2D, we give the formula for a morphism

p:CD->CDRA (5)

that descends to ¢. The extension and the formula come from a proof analysis
of Marché’s work.

The main result of this paper is the theorem relating the algebras K?Li(M )to
the algebras where the value of the parameter is +1. -

Theorem 6.1 If M is a compact oriented three-manifold that has no 2-torsion
in H;(M; Z) then K° (M) is isomorphic to K9 | (M).

The isomorphism is canonical in the sense that it does not require addi-
tional data to determine it. This implies that K?ri(M ) is the unreduced coor-
dinate ring of the variety of PSL,(C)-characters of 7;(M) that lift to SL,(C)-
representations. Our proofis based on applying the formulas from Theorem 5.4
to study a presentation of Kgi(M ) coming from a generalized Heegaard splitting
of M.

There is related work by Sikora, [11]. If M is an oriented three-manifold that
can be embedded in a rational homology sphere that has no 2-torsion in its first
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homology, Sikora defines an algebra structure on K;(M) and then proves that it
isisomorphic to K;(M). The restriction of his algebra structure to K?(M ) agrees
with the algebra structure defined here. He remarks that his theorems cannot
be easily extended to all 3-manifolds since there are 3-manifolds that are not
sub-manifolds of a rational homology sphere. We note that although indeed the
algebra structure cannot be naturally defined for K, ;(M), the algebra structure
defined in this paper on Kgi(M ) works for any arbitrary oriented 3-manifold
and it is naturally defined.

The paper is structured as follows: Section 2 contains a review of the rel-
evant material about representation varieties and character varieties. Section
3 recalls the definitions and needed facts about the structure of the Kauffman
bracket skein algebras of surfaces and skein modules of three-manifolds. In
Section 4 the algebra structure on Kﬂi(M ) for any oriented three-manifold is
introduced. In Section 5 we present the results of Marché and give the formula
for his isomorphism on diagrams. Section 6 gives the proof of the isomorphism
between K° (M) and K° (M) for any closed oriented three-manifold having no
2-torsion in its first homology.

2. SL,(C)-character varieties

This section recalls some classical concepts of SL,(C) and PSL,(C) represen-
tation theory. Let 77 be a finitely generated group. There is a naturally defined
commutative algebra [8]

RSO () ®)

called the SL,(C)-representation ring of 7. The representation ring is con-
structed from the coordinate ring of the Cartesian product of copies of SL,(C),
one for each generator of 7z, by taking the quotient by the ideal generated by
the coefficients of formal matrices obtained from instantiating the relations of
7. Representations p : w — SL,(C) are in one-to-one correspondence with
algebra homomorphisms

¢ : RSLO(7) - C. (7)

There is a right action of PSL,(C) on R5/2(O)(7) coming from conjugation.
The fixed subalgebra
5L ) ®)

is the universal SL,(C)-character ring of 7. We say that two representations
P1, P2 . ™ — SL,(C) are trace equivalent if for every o € 7,

Tr(p1(a)) = Tr(p,(a)), )

where Tr : SL,(C) — Cisthe standard trace of a matrix. The homomorphisms
from the universal character ring to the complex numbers are in one-to-one cor-
respondence with trace equivalence classes of representations of 7 into SL,(C).
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Since 7 is finitely generated the algebras R5%2(©)(7r) and A5%2(©)(7r) are affine
over the complex numbers. Consequently algebra morphisms from these alge-
bras to the complex numbers are in one-to-one correspondence with the max-
imal ideals of the algebras via identifying a morphism with its kernel. The set
of all maximal ideals of an algebra is called its maximal spectrum. The max-
imal spectrum of an affine algebra can be realized as an algebraic subset of C"
for some n. Define the SL,(C)-representation variety, denoted RS2(O)(r),
and SL,(C)-character variety, X52(O(r), to be affine algebraic sets having
the maximal spectra of RS2(O)(7r) and A5L2(O)(77) as their points respectively.
These sets are unique up to isomorphism of affine algebraic sets. In general, the
representation variety (and the character variety) may not in fact be varieties,
only affine algebraic sets, but it is traditional to use the word “variety” when
referring to these spaces.

Recall PSL,(C) is the quotient of SL,(C) by its center Z(SL,(C)) = (+Id). A
representation

p . m— PSL,(C) (10)
lifts to a representation

p:m— SL,(C) (11)
if g followed by the quotient map from SL,(C) to PSL,(C) is equal to p.

Definition 2.1. There is an action of H(rr; Z,) on X512(O(7r) by twisting. If
p . m — SL,(C) represents a trace equivalence class of representations [p] and
a € H'(rr; Z,) then a.[p] is the trace equivalence class of the representation that
sends eachy € 7 to a(y)p(y).

The fixed subalgebra of X5%2(®)(7) under the action of H!(rr; Z,),

APSLAO) () = ( A SLAO) (n_))H1(7f;Zz) 12)
is called the ring of PSL,(C)-characters that lift to SL,(C)-characters. The max-
imal spectrum of XFSL2(O)(7r) is denoted XPSL2(O)(rr). It is called the variety of
PSL,(C)-characters of PSL,(C)-representations of 7 that lift to SL,(C)-represen-
tations.

The map
XSLz(C)(n-) — XPSLz(C)(n-) (13)
that takes the character of p : w — SL,(C) to the characterof p : 7 — PSL,(C)
is a regular branched cover of its image. The group of deck transformations is

HY(m;Z,) ={a . m = (1)}, (14)

where the maps o are homomorphisms to the multiplicative group (+1).

3. Kauffman bracket skein module

In this section the definition and properties of skein modules are recalled,
and the relationship between a skein module of a compact oriented 3-manifold
and the unreduced coordinate ring of PSL,(C)-characters of its fundamental
group that lift to SL,(C)-characters is explicated.
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Let M be a connected oriented three-manifold, and { € C — {0}. A framed
link in M is a collection of disjoint annuli embedded in M. The Kauffman
bracket skein module of M is the quotient of the complex vector space with
basis the isotopy classes of framed links in M by the subvector space spanned
by the Kauffman bracket skein relations:

N =< =-¢G (15)
OUL+(¢2+¢2)L. (16)

The relations are linear combinations of framed links that are identical outside
the ball where the diagrams reside. Assume that the framed link intersects the
ball in strips that are parallel to the arcs in the diagram, so that if the two strips
come from the same component, the same side of the annulus is up.

Since the relations (15) and (16) preserve the Z,-homology class, there is a
H,(M; Z,)-grading of K¢(M):

K= @ K, (17)

ueH,(M;Z,)

where K?(M ) is the subspace spanned by framed links « € M such that the
core of a represents u € H,(M; Z,).

Definition 3.1. There is an action of H'(M; Z,) on K¢(M) described as follows.
Given ¢ : H{(M;Z,) — (x1), it acts as multiplication by c(u) on the subspace
K? (M). The subalgebra fixed by this action is K?(M ).

In general, ng(M ) is not an algebra. However, in some cases it is.

Fact 3.2. For any oriented 3-manifold M the module K (M) has an algebra
structure with the product coming from perturbing framed links so that they are
disjoint and then taking their union [3].

When M = F x [0, 1] for a surface F then K¢(M) has an algebra structure that
comes from placing one link above the other in the direction of the interval and
extending bilinearly to skeins.

When { = +1 the stacking product and disjoint union products on K¢(F X
[0, 1]) coincide.

In [10], it is proved that the algebra K_;(M) is naturally isomorphic to the
universal SL,(C)-character ring of 7;(M). Given a choice of a spin structure on
M there is an isomorphism K¢(M) — K_¢(M), [2]. Consequently the algebras
K_;(M) and K, (M) are both isomorphic to X5 (7, (M)).

The action of H'(M; Z,) on K, (M) intertwines with the action of H!(M; Z,)
on XSO (M),

Theorem 3.3. The ring Kil(M ) is the unreduced coordinate ring of the charac-
ter variety of PSL,(C)-representations of w;(M) that lift to representations into
SL,(C).
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Proof. The action of H'(M; Z,) on K, (M) preserves grading by H'(M; Z,).
Therefore K31(M ) is isomorphic to the fixed ring under this action, which is
XPSLAO) (7, (M)) as in Equation (12). O

By contrast, the disjoint union does not yield an algebra structure on a mod-
ule K, ;(M) since a crossing change in a framed link changes the skein of the
link by a sign.

4. Skein algebras at +i.

Although the modules K;(M) are not generically algebras, there is an alge-
bra structure on K9 (M).
Given a three-manifold M denote the intersection pairing on Z,-homology
by
« . Hi(M; Z,) @ Hy(M; Z,) — Z,. (18)
Define
R(M) =(x € Hi(M;Z,) |Vy € Hy(M;Z,)x » y = 0). (19)

By Poincaré duality R(M) is the image of H;(0M; Z,) by the inclusion M C M.
If M is closed the intersection pairing is nondegenerate, that is, R(M) = (0) for
closed 3-manifolds. If M is not closed then R(M) can be nontrivial. In partic-
ular, if F is a surface then R(F X [0,1]) = H,(F X [0,1]; Z,). Any handlebody
can be seen as a cylinder over a surface, consequently when H is a handlebody
R(H) = H\(H; Z,).

If L and L’ are disjoint links such that L represents 0 in H;(M; Z,) and L’
represents an element of R(M), define the Z,-linking number lk,(L, L") € (0, 1)
as follows: If U is any surface in M transverse to L’ such that U = L the Z,-
linking number is

Iky(L,L') = |[UNL'| (mod 2). (20)
If L and L’ both represent 0 in H,(M; Z,) then 1k,(L, L") = 1k,(L’, L). Define
r — X
Ky (M) = &b K} (M). (21)
XER(M)

Proposition 4.1. Suppose a € K?Li(M )anda' € K',.(M) are represented by dis-
joint framed links L and L' respectively. The skein of (~1)"&-LOL UL’ in K" (M)
is independent of the choice of L and L. Consequently the assignment

(@, p) = [(-1) "L L] (22)
extends bilinearly to a well-defined product
u: Kii(M) ® K',(M) — K, (M). (23)

The restriction of u to K (M) @ K9.(M) makes K .(M) into a commutative alge-
bra. In addition, u gives K’ {(M) the structure of a module over Kgi(M ). O
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If there is a homeomorphism between M and F X [0, 1], the product structure
allows us to define a second product on Kf’ri(M ) from stacking (discussed in Fact
3.2). The two products coincide. Further, if N ¢ M then the map induced by
the inclusion of N into M induces a morphisms of algebras

inc : Kgi(N) N Kii(M). (24)

5. Understanding a theorem of Marché

This section presents the isomorphism constructed in [9], relating skein al-
gebras of surfaces at { equal to —i and —1. We prove an extension of the theorem
that gives an isomorphism between skein algebras of surfaces when the value
of the parameter ¢ is twisted by i and derive a formula for computing the value
of the isomorphism on the skein induced by a diagram.

Recall that a finite type surface is a closed oriented surface with a finite num-
ber of points removed from it. In the whole section we are working with three-
manifolds that are a product of a finite type surface F with an interval. Since the
algebra structure depends on how a 3-manifold is presented as such a product,
we emphasize it by shortening the notation to K¢(F X [0, 1]) = K, (F).

In order to define Marché’s isomorphism we need to introduce an algebra .A.
To start, given a finite type surface F consider the vector space .A over the field
of complex numbers that has basis {[y] € H,(F; Z)}, where the closed braces
denote the homology class represented by the cycle y.

The pairing

T H(F;Z2)QH(F;Z2) = Z, ([yl,[nD = v - n, (25)

given by the algebraic intersection number, is bilinear and antisymmetric. There

exists an associative product on A given by the distributive extension of the for-
mula

[Y1n] =17y +nl. (26)

Definition 5.1. Define the algebra A to be the quotient of A by the two sided ideal
generated by the relations
[yI?=l2y]=1 (27)
forall|y] € H{(F; Z).
The algebra A is graded by H,(F; Z,). Any choice of representatives of the

elements of H,(F; Z,) forms a basis of A.
If [y],[n] € H,(F; Z) represent the same element of H;(F; Z,) then

[y]—[n]=1[28] (28)
for some cycle § € H,(F; Z). From the formula (26)
[¥] = [n + 28] = "2 [n][B]* = "% [n]. (29)

In the algebra A we then have [n] = +[y] since 7 - 28 is even. Using the facts
that# - n = 0 and y = n + 2 the formula becomes

[y]=1i"7[n]. (30)
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The tensor product
K_,(F)®c A (31)
is an algebra under the coordinate-wise product. Since both algebras K_;(F)
and A are graded by H,(F; Z,) their tensor product is graded by the sum of the
gradings on the two factors. Marché defines the diagonal subalgebra to be
the 0-graded part of K_;(F) ®¢ A. Note that

(K_1(F) ®c A), (32)

is spanned by tensors where both factors represent the same element of H, (F; Z,).

Let CD denote the vector space with basis equal to the set of isotopy classes
of link diagrams on F. A diagram is simple if it has no crossings and no com-
ponent of the diagram bounds a disk in F. Let § denote the set of isotopy classes
of simple diagrams on F. Let CS be the vector space having § as basis. For any
value of { # 0, the underlying vector space of K¢(F) is CS. There is a map
8 — A defined as follows. Given a € 8 orient the components of « to get a
1-cycle a, then

a— [al. (33)

This map is well defined since any two ways of orienting the components of
differ by a cycle that has zero intersection with both.

Theorem 5.2 ([9]). Let F be a finite type surface and CS the vector space with
basis given by the set of simple diagrams on F up to isotopy. For any a € 8 let
n(a) denote the number of components of a and a denote an arbitrary choice of
orientations of the components of a. The map ¢ : CS — CS ® A defined by

$(@) = (-1)"Va @ [a] €D)

yields a well defined isomorphisms of algebras
¢ : K ;(F)—> (K_;(F) ®c A)O. (35)
O

We want to extend the formula from Theorem 5.2 to a formula that has linear
combinations of arbitrary link diagrams as its domain. If D is a link diagram, a
state of D is a choice of smoothing for each crossing. Each smoothing is positive
or negative as shown in Figure 1.

K
\

/  \
pX¢ =
-\
+1 -1
FIGURE 1. Positive and Negative Smoothings

The sum of +1 over all the smoothings of a state s, where the positive smooth-
ings contribute +1 and the negative smoothings —1, is denoted c(s). The num-
ber of components of s that bound disks is t(s). Let s’ denote the simple diagram
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obtained from s by deleting all the trivial components. The Kauffman bracket
is the map
() :CD->CS8 (36)

given by

(Dye = D, §EO(=¢2 — )0y, (37)

s state

The Kauffman bracket cannot see isotopies and the Reideimeister 1T and IIT
moves. It gives rise to a convenient alternative definition of the Kauffman
bracket skein algebra of an oriented surface.

Remark 5.3. Given an oriented surface F define the algebra K (F) to be the vector
space C8 with product defined by the bilinear extension of the operation given by
stacking two simple diagrams and then applying the bracket { ); to the result.

Given a diagram D let D denote an oriented diagram coming from choosing
an orientation for each component of D. Further denote by n(D) the number
of components of D, cr(D) the number of crossings and w(D) the writhe of D.
Recall that the Seifert smoothing of an oriented crossing is such that the local
orientations fit together after smoothing as shown in Figure 2.

'
4
/ N\
o X
~\
FIGURE 2. The Seifert smoothing is on the left

Given any state s of D let ns(s) be the number of non-Seifert smoothings and
ss(s) be the number of Seifert smoothings that were performed to obtain s from

D. 1t is worth noting that
ss(s) + ns(s) = cr(D). (38)

If the sign of a crossing is positive then the Seifert smoothing is the positive
smoothing. Analogously, if the sign of a crossing is negative so is the Seifert
smoothing, thus

l-c(s)+w(5) — (_1)ss(s). (39)

The following is an extension of Marché’s theorem that follows from his
proof.

Theorem 5.4. Let F be an oriented finite type surface. For any { € C — {0} the
mapping ¢ given in equation (34) induces an isomorphism of algebras

¢ Kig(F) > (K:(F) ® A)O. (40)

Let CD be the vector space with basis equal to the set of all isotopy classes of link di-
agrams on F and CS8 the vector space with basis given by the set of simple diagrams
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on F up toisotopy. Given a link diagram D let & denote the diagram obtained from
D by applying Seifert smoothing at each crossing. Ifp : CD — CD ® A is the
linear extension of

Y(D) = (-1y"®i~*®p @ [=] (41)
then the diagram
P
CD —— (CD® A,
< >i§l < >§®Idl (42)

cs — (©s®A),
commiutes.

Proof. We focus on the commutativity of Diagram (42). Since the product in
the Kauffman bracket skein algebra comes from stacking and projecting, the
commutativity of the Diagram (42) implies that ¢ is an algebra morphism. The
fact that it is an isomorphism follows from the fact that it takes a basis to a basis.
Thus the theorem will follow once we establish that the diagram commutes.
Suppose that D is a diagram. Any state of D will be denoted s, and the simple
diagram corresponding to a state will be denoted s’. We follow the notation
established earlier in this section: overline for choosing orientations, n(D) is
the number of components of D, t(s) is the number of components bounding
disks of the state s, cr(D) is the number of crossings of the diagram D, w(D) is
writhe of the oriented diagram D, c(s) is the sum of signs of smoothings of the
state s, ns(s) is the number of non-Seifert smoothings of the state s with respect
to D , ss(s) is the number of Seifert smoothings of the state s with respect to D.
To prove the theorem we need to show

()¢ ® Id) o3p(D) = $p({D)i¢)- (43)

First we expand the equation by using the formula (34) for ¢, formula (41) for
¥, and (36) for the bracket with variables ¢ and i respectively.

(_Dn(D)i—w(ﬁ) Z ;c(s)(_gz _ §_z)t(s)s’ ® [E]
= D (DGO + O @ [5]. (44)

This equality holds if it is true term by term, so it is enough to check that for
any state s,

(_1)n(D)i—w(5)§C(S)(_§2 _ )0y @ [E]
= (=1)"VE) (L2 4 ¢y @ [5]. (45)
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3[=] we see that this is equivalent to checking

[SH N

Using the fact that [s] = (1)
that

(_1)n(D)i—w(ﬁ)§c(s)(_§2 _ S«-z)t(s)sr ® [E]

= (C1P A2 4+ ¢ 2O @ [E]. (46)

Since the images of simple diagrams under ¢ form a basis of (CS ® A), it is
enough to see that the coefficients on both sides agree. That means we are
checking if

(—1 @D (g2 — g2 = (1PEFOE? +¢2O(1):5 47)

is true. If (¢2 4+ ¢72)% # 0 we divide both sides by (¢2 + ¢2)/¢¢®), If not then
we just divide by ¢¢®). In any case we are left to check whether

(_1)n(D)i—w(5)(_1)t(S) = (_1)n(S’)iC(S)(_1)§5'§. (48)
Moving i~*®) to the right hand side yields

(—1)H DY (—1YO) = (=1 )r)jeHwdD)(_1)355, (49)
Using the fact that ()°®*+@® = (—1)*®) and moving everything to one side we

get

! Ing
(_1)n(D)+t(s)+n(s )+ss(s)+5_ s _ 1 (50)

Note t(s) + n(s") = n(s), so we are really asking if

1 —
(_1)n(D)+n(s)+ss(s)+E:.-s -1 (51)

In order to show that this quantity is equal to 1 we use the following Lemma.

Lemma 5.5. (Lemma 3.3. in [9]) Let G be a finite graph such that in the neigh-
borhood of any vertex, the edges incoming to that vertex have a cyclic order. We
decompose the edges of G in two parts:

E(G)=E, UE,,. (52)

The edges of Ej, will be said to be of type handle whereas the edges of E,, will be
of type Mobius. We construct a surface S from these data in the following way:
take a family of oriented discs parametrized by vertices of G. For all edges, we
attach a band to the corresponding discs such that the cyclic orientation of the
vertices is respected. The band should respect the orientations of the discs if the
edge has type handle and should not respect them if the edge has type Mdobius.
Orient the boundary of S in an arbitrary way. Let n be the number of boundary
components and m be the number of Mobius bands whose sides are oriented in
the same direction. Then the following formula holds:

n+m+ y(S)=0 (mod 2), (53)
where x(S) denotes the Euler characteristic of S.
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Given the diagram D form a surface S as follows. Choose an oriented disk
for each component of D so that the boundary orientation coincides with the
orientation of the component. Mark the crossings of the diagram on the bound-
aries of the disks. Add a band (rectangle) for every crossing, where the band
preserves orientation if s was obtained from D by a Seifert smoothing at this
crossing, and reverses it otherwise. The boundary components of the resulting
surface correspond to the components of s. Orient them corresponding to the
orientation on s.

We need to understand non-Seifert smoothings that contribute zero to -Z - s.
Any state can be obtained from the diagram D by 1-surgery. One can think
of this as gluing a rectangle to the diagram D near the crossing along two of
its opposite sides, and replacing the two arcs of D that the rectangle was glued
along by the other two edges of the rectangle. In Figure 3 we show on the left
a non-Seifert smoothing that contributes 0 to E - s. On the right we show a
rectangle that we have glued to the diagram D to get the state s. The two blue
arcs at the top and the bottom are the free edges of the rectangle and the red
arcs are where it is attached to D. The blue arcs have been oriented to agree
with the orientaiton on s. Notice that when you flatten the rectangle the arrows
on the blue sides point in the same direction. In fact, a non-Seifert smoothing
contributes zero to the algebraic intersection number %E - s only when the two

sides of the rectangle have the same direction in the orientation inherited from

S.
FIGURE 3. A non-Seifert smoothing that contributes zero to E - s.

From the discussion above, %E -s is the number of non-Seifert smoothings of

s where the two free arcs of the surgery rectangle are not oriented in the same
direction. Recalling cr(D) is the number of crossings of D and following the
notation for m from the lemma, note that
cr(D)+ss(s)+ =E-s=m (54)

is the number of non-Seifert smoothings where in the orientation of s the free

arcs of the surgery rectangle have the same direction. We add and subtract
cr(D) to the exponent on left hand side of Equation (51) to get

(_1)(n(D)—cr(D))+n(s)+m_ (55)
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The Euler characteristic of the surface S is n(D)—cr(D), and m is the number
of Mobius bands whose sides have the same direction. By Lemma 3.3 of [9], the
number in Equation (55) is equal to 1. O

Corollary 5.6. Themapp : CD — CDQA from Equation (41) descends to give
the isomorphism ¢ of Marché between the algebras K_;j(F) and (K_;(F) ®¢ A), -
Its restriction yields an isomorphism between Kgi(F ) and Kgl(F ). Therefore

K9,(F) = 2P0, (F)). (56)

Remark 5.7. It should be noted that although the map 1 descends to skein alge-
bras, it does not preserve skein relations for crossing involving the same component
of a diagram.

6. The isomorphism between Kfi(M ) and KEI(M ).

In this section we use the isomorphism ¢ from Corollary 5.6 to prove the
analogous result for 3-manifolds that are not necessarily a cylinder over a sur-
face. Given a compact oriented 3-manifold M recall that Kgi(M ) has an algebra
structure defined by the restriction of (23).

Theorem 6.1. Let M be a compact oriented 3-manifold such that H,(M; Z) has

no 2-torsion. The skein algebras Kgi(M ) and K?_LI(M ) are isomorphic.

We will focus on Kgi(M )and K_;(M). The proof in the other case follows by
substitution.

We prove that given a generalized Heegaard surface F for the 3-manifold M,
the restriction of ¢ : K_;(F) — (K_;(F) ® A), to

¢ KL(F) - (K2, (F)®A), (57)
descends to an isomorphism
¢+ K4(M) — (K2, (M) ® A)g = K2, (M). (58)

There are examples of three-manifolds with 2-torsion in H,(M; Z) for which
this isomorphism does not descend. An example of how this happens is shown
in Subsection 6.2.

The proof of Theorem 6.1 uses the concept of handle-slides. We begin by
explaining what these are.

Let M be a compact oriented three-manifold and let F be be a generalized
Heegaard surface for M. This means that M is homeomorphic to the result
of adding 2-handles to both sides of F X [0,1] and then perhaps capping off
some sphere boundary components with balls. Let f : M — [0, 3] be a self
indexing Morse function on M, that is all its critical points lie in the interior
of M, and f~1(i) is the set of critical points of index i. The existence of such a
function is guaranteed by standard results about Morse functions. The surface
f71(3/2) is a generalized Heegaard surface. A collar of the generalized Hee-
gaard surface is given by f~1([5/4,7/4]) = f~1(3/2)x[0, 1]. The 2-handles are
fattened up versions of part of ascending manifolds of 1-handles that lie below
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f71([5/4,7/4]) and the fattened up versions of the parts of descending mani-
folds of index 2-critical points that lie above f~1([5/4,7/4]). The balls come
from neighborhoods of the index 0 and index 3 critical points.

Hence M = H; U H, where H; N H, = F and H; and H, are the results
of adding 2-handles to different sides of a collar of F and maybe capping off
some sphere boundary components. This can be visualized as a diagram on
the surface F, which consists of a collection of disjoint red curves R that are
attaching curves for the 2-handles on one side and a collection of disjoint blue
curves B that are attaching curves on the other side. Imagine the red curves as
lying over and the blue curves as lying under the surface F in a collar of F. We
can ignore the balls used to cap sphere boundary components.

Let CL(M) denote the vector space whose basis is the set of isotopy classes
of framed links in M. There is a surjective linear map

inc : CL(F) - CL(M) (59)

induced by the inclusion F X [0,1] — M coming from identifying a collar of F
in M with F x [0, 1].

Given a framed link L representing an element of £(F), a handle-slide is the

difference between L and a band sum of L with one of the curves in R or B. The
following is a consequence of the theory of singularities of smooth mappings

Fact 6.2. The kernel of inc : CL(F) —» CL(M) is spanned by handle-slides.

~ D

/A\/\ \/§\)

FIGURE 4. Elementary handle-slide

We will view blackboard framed links in a collar of F in M as link diagrams
on the surface F. In order to prove that the skein algebras K?Li(M ) and Kgl(M )
are isomorphic we will use the map ¥ from Equation (41) defined on the set of
isotopy classes of link diagrams on F, denoted CD . Hence we will interpret the
map of Equation (59) as

inc : CD - L(M) (60)
and we want to describe handle slides in terms of diagrams.

In the language of diagrams on F, an elementary handle-slide is built as
follows. Let s be a diagram and let a be an arc in F with one endpoint in s and
another endpoint on simple closed curve c that belongs to R or B. The diagram
of the arc a may have over- or under- crossings with s and c in its interior. In the
left side of Figure 4 the green arc a joins one of the red curves with the diagram
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s depicted in black. Replace a by an embedding of a strip N(a) that intersects
each of s and c in a single arc and passes over or under s at all the points of
intersection of the arc with s in its interior. The strip always passes over (or
under) c at each point of intersection of a with ¢, depending on whether c is
in B (or R respectively). The strip N(a) that replaces a can be chosen to be
blackboard framed. This can be seen by making the strip arbitrarily short to
start with, but then stretching it out so that it becomes a blackboard framed arc
on F. Also all crossings that involve only the diagram can be resolved, so we
can assume that we are only working with simple diagrams [4]. Form a new
diagram, D, by taking the union of s with the boundary of the strip N(a) and
removing the arcs where the N(a) Nn's. The diagram D is pictured on the right
in Figure 4. The difference

s—D (61)

in the vector space CD is an elementary handle-slide.

A compound handle-slide consists of performing several elementary handle-
slides in succession, with their respective arcs a; diagrammatically missing one
another by passing over or under. For subsequent slides, the arc a; does not
necessarily have to pass over (resp. under) the blue (resp. red) curves, in case
these were involved in one of the previous slides. A compound slide that in-
volves multiple slides over the same 2-handle is realized by having parallel
copies of each of the attaching curves. A compound handle-slide is the dif-
ference L — L' € CD(F) where L is the starting diagram of a framed link and
L’ is the result of the sequence of elementary handle-slides.

The homology class in H;(F x[0, 1]; Z,) of the compound handle slide L — L'
is the sum of all the curves in R and B, counted with multiplicities, that are
involved in the sequence of elementary handle slides comprising L — L’. We
call this class the homology class of the compound handle slide.

The proof of Theorem 6.1 uses the following lemma.

Lemma 6.3. Let A be a finitely generated free abelian group and let
Wi AQA-Z (62)

be an antisymmetric bilinear pairing on A. Suppose that L,L' < A are subgroups
with the property that the restrictions of w to L ® L and L' ® L' are zero. Further
assume that A/(L + L') has no 2-torsion. For any a € L and a' € L', such that
a + a’ = 2p for some 8 € A the value of w(a, &') is divisible by 4.

Proof. The bilinear form w descends to a pairing on (L + L')/(L N L’). The
group (L+L")/(LNL’)is the direct sum of im(L) and im(L") under the quotient
map,

(L+1)/(LNL)=im(L) @ im(L)). (63)

Since A/(L + L') has no 2-torsion the fact that « + o’ = 23 for some 8 € A
implies that 8 € L + L’. That means the image a + o’ of & + o’ is divisible by
2in(L+L")/(LNL"). There are y € L and § € L’ such that their images y and
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5in (L +L")/(L n L") have the property that

T+a =27 +90). (64)

By (63) we have that a = 2y, and o’ = 28,50
w(a,a') = w@,a') = w(27,26) = 4w(¥, 6. (65)
Hence w(a, a’) is divisible by 4. O

We proceed with the proof of Theorem 6.1.

Proof. As discussed above, choose a generalized Heegaard surface F for the
3-manifold M, with a collar of F in M identified with F X [0,1]. Let R U B be
a complete set of attaching curves for 2-handles for the generalized Heegaard
surface with the curves in R lying in F X {1} and the curves in B lying in F X {0}.
The Mayer-Vietoris sequence implies that

H\(M; Z) = H\(F; Z2)/((R) + (B)) (66)

where (R) and (B) denote the subgroups of H,(F; Z) spanned by oriented ver-
sions of the curves in R and B.
Recall the map from Theorem 5.6,

¢ KLEFEXD - (KFXD®A), (67)
and the map from Equation (41)
P CD - (CDQRA),, (68)

where D denoted the set of framed link diagrams on F.

Letting CDP denote the isotopy classes of framed link diagrams that repre-
sent 0 in H,(F x [0,1]; Z,) and C£L°(M) the isotopy classes of framed links in
M that represent 0 in H,(M; Z,), the restriction of the inclusion

inc : CP° - CLOY(M) (69)

is onto. If a framed link L represents 0 in H;(M; Z,), it bounds a compact sur-
face. Isotope that surface into F X [0, 1]. Its boundary is a link in F x [0, 1] that
represents 0 in H,(F X [0, 1]; Z,) and is isotopic to L. The kernel of the map in
equation (69) is spanned by compound handle-slides L—L’ such that L—L" =0
in H,(F x[0,1]; Z,). One can always choose the diagrams representing the ele-
mentary handle-slides involved in L — L’ so that the strips are parallel to F x {0}
(i.e., blackboard framed). There is a commutative diagram

inc
CP® —— CLM) —— 0
< >_il < >_il . (70)

KO.(F) —— K°.(M) —— 0

Here we are using the braces to denote the Kauffman bracket. Although we
defined the bracket on diagrams, it gives rise to a map on framed links by rep-
resenting each framed link as a diagram and then applying the bracket.
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If S is the linear span of the compound handle-slides where the starting di-
agram is simple, the bands are blackboard framed and the homology class cor-
responding to the compound handle-slide is zero in H;(F X [0, 1]; Z,) then

(S)_i = ker (inc : K°,(F x[0,1]) - K°,(M)). (71)
This argument follows the same reasoning as in [4]. Hence
KSI(M) = KEI(F)/<S>—1 (72)
Similarly, there is a commutative diagram
cp® 2, cooM) —— 0
< >_1l < >_ll (73)
K° (F) —— K° (M) —— 0.

It is easy to see that

(S)_; = ker (inc : K° (Fx[0,1]) - K°,(M)). (74)
Hence,
K2, (M) = K2 (F)/(S)-1. (75)
The theorem will be proved by showing that the map from Equation (41),
p:CD - (CDRA),, (76)
has the property that
P(S) =S ®[0], (77)

which, along with Equations (72) and (75), shows that K° (M) and K° (M) are
isomorphic.

Let s be a simple diagram on F and let D be the result of a compound handle-
slide on s whose homology class is 0 in H; (F %[0, 1]; Z,). Let s and D be choices
of orientation on s and on D that agree up to isotopy. Since s has no crossings,
s is the 1-cycle corresponding to smoothing its crossings. Let E denote the 1-
cycle coming from smoothing the crossings of D. Since s and D have the same
number of components, we denote

n = n(D) = n(s). (78)

The compound handle-slide has the endpoints of all the arcs lying on s. We
can choose the strips involved in the handle-slide to have blackboard framing
as discussed above. Hence in the computation of writhe of D we can ignore the
contributions of the sides of the strips as they come in canceling pairs. There-
fore the writhe of D is equal to the writhe of the diagram s U 7 U b, where r is
the union of copies of curves in R, and b is the union of copies of curves in B,
involved in the compound handle-slide. Note that the r and b curves are placed
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above and below s respectively, moreover r + b = 0 € H,(F; Z,) and the orien-
tations on r and b are chosen to agree with D. Letting w denote the intersection
pairing on H,(F; Z) we have that the writhe is

w(D) = w(7,5) + @, b) + w, b). (79)

We are using the fact that the diagrams s, b and r are simple hence there are no
self crossings. Since the intersection pairing is bilinear and antisymmetric,

w(D) = w(,b —7) + w(F, b). (80)

The fact that b+7 represents 0in H,(F; Z,) implies that b—7 does also. Hence

there is a 1-cycle f such that 2f differs from b — r by a boundary. Similarly, as
s represents 0 in H,(F; Z,), there is a 1-cycle g such that 2g differs from s by a
boundary. Hence

w(,b —7) = w(2g, 2f) = 4w(g, f). (81)

This means the first term on the right in Equation (80) is divisible by 4.

Let A = H{(F;Z),L = (R)and L’ = (B). The fact that H,(M; Z) has no 2-
torsion allows us to apply Lemma 6.3 to see that w(r, b) is divisible by 4. There-
fore

w(D)=0 mod 4 (82)
and B
iv®@ =1, (83)

Recall the map 3 : CD — (CD ® A), from Equation (41). Since s has no
crossings, w(s) = 0, and

P =D)= (1" [s] - i“”peg [ED =(-D"(s® [s] -D®[E]). (84)

Finally, since the cycles s and E represent 0 in H,(F; Z,),

(s —D) =(-1)"(s—D) @ [0]. (85)
Hence the linear extension of ¢ to linear combinations of diagrams satisfies
P(S) =S @ [0]. (86)
Therefore 1 gives rise to an isomorphism
K%, (M) — K° (M), (87)
O

6.1. Independence from the Heegaard splitting. In thissubsection we show
that the isomorphism from Theorem 6.1 does not depend on the choice of a
Heegaard splitting of a 3-manifold.

Proposition 6.4. The isomorphism ¢ : K).(M) — K, (M) is independent of
the choice of Heegaard splitting of the 3-manifold M.
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Proof. We only prove the proposition in the case of —i and —1. The other case
follows by substitution.

Recall that the map ¢ is a descent of the map ¢ defined on a Heegaard surface
for M,

¢p 1 KO(FxI) - (K2 (FXI)QA) o (88)
Any two Heegaard surfaces of a 3-manifold become isotopic after a finite num-

ber of stabilizations, that is adding of a trivial handle. We show a trivial handle
inside a ball in Figure 5.

FIGURE 5. A trivial handle with standard meridians shown in
red and blue

Suppose that the surface F’ C F x [0, 1] is the result of adding a single trivial
handle to the surface F x {1/2} C F x [0, 1].

A collar of F’ in F is homeomorphic to F/ x [0,1]. Since F’ is a Heegaard
surface for F x [0,1] the inclusion map F’ x [0,1] C F x [0,1] induces an
isomorphism

d: K (F)— K_(F")/S (89)

where S is the submodule of K_;(F”) spanned by handleslides, and the map d
comes from isotoping framed links in F X [0, 1] into the collar of F’ in F. The
restriction of this map, which we denote by the same name, is an isomorphism

d:K%(F)— K% (F)/s°. (90)

Here S° denotes the intersection of S with the 0-graded part of K_;(F). Analo-
gously, on the level of framed links, the inclusion F’ x[0,1] C F x[0, 1] induces
an isomorphism

d:K° (F)—K° (F)/s° (91)

If J is a simple diagram on F then there is an almost vertical deformation of
J which is a simple diagram on F’ that is isotopic to J and avoids the trivial
handle. One-cycles on F can be deformed to one cycles on F’ that miss the triv-
ial handles. Recall that Marché’s algebra .A was defined for a specific surface.
We indicate this by using the notation A(F). The deformation above gives an
injective algebra morphism

7. AF) - A(F"). (92)



1094 CHARLES FROHMAN, JOANNA KANIA-BARTOSZYNSKA AND THANG LE

Theorem 6.1 implies that the map ¢ : K°,(F') — (K2 ,(F") ® AF"))
defines a map K°.(F")/S° — (K°,(F")/S° ® A(F')),. We abuse notation by
denoting it also by ¢. We need to show that the following diagram commutes.

KOLF) —2 (KO,(F) ® A(F)),
dl d®fl (93)
bpr

KO(F")/S* —— (K°,(F")/S° ® A(F")),

Suppose that s is a simple diagram on F and s’ is a simple diagram on F’ that is
an almost vertical deformation of s. Let sand 5 be oriented versions of the two
diagrams such that the deformation between the two diagrams preserves orien-
tation. Let n be the number of components of each of the two diagrams. Both

diagrams s and 5 have writhe 0 as they are simple. To see that (93) commutes
we need to show that

¢ (d(s)) = d @ T($p(s))- (94)
Following the definitions
¢ (d(s)) = ppr(s) = (-1’ @ [5 ] (95)
and
d@t(pp(s) =d @7 ((-1)"'s @ [5]) = (-1)"s' @ [ ], (96)

which yields the desired result.

It is worth noting that (K_,(F) ® A(F)), = K° (F)®[0], and (K° (F)/S° ®
A(F")o = K2, (F")/S° ® [0] = K_;(F).

Suppose now that F is a surface yielding a generalized Heegaard splitting
of an oriented three-manifold M and T < K_;(F) and (by abuse of notation)
T < K_;(F) are the submodules spanned by handleslides corresponding to M.
Let T° denote their intersection with the zero graded parts of the skein algebras.
Let F’ be a Heegaard surface for M obtained from F by adding a single trivial

handle. Finally let T" and T’ % be the corresponding submodules of K_;(F’) (or

K_;(F")). It is easy to see that S° + T° = T’ ° Hence taking quotients we get
that the diagram

KO(F)/T —2 (RO,(F)/T ® A(F)),

dl d®rl 97)

KO(F /T =2 (k0 (F)/T° ® A",
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is commutative. Therefore the induced diagram
KO.(M) —2 KO (M)
a| | (98)
b
K%,(M) —— K%, (M)

is commutative.

This can be iterated through multiple stablizations. After finitely many sta-
bilizations any two generalized Heegaard surfaces of a three-manifold become
isotopic, so the isomorphism of skein modules is independent of the general-
ized Heegaard surface. O

Corollary 6.5. If M is a compact oriented three-manifold with no 2-torsion in
H,(M; Z) then the algebra K?Li(M ) is naturally isomorphic to the unreduced coor-
dinate ring of characters of PSL,(C)-representations of r,(M) that lift to SL,(C)-
representations of 7w, (M).

Proof. This follows from Theorem 3.3 in the case of Kgi(M ). In the case of

K?(M) the identification of K; (M) with 2” SL(©)(7r,(M)) depends on the choice
of a spin structure. However all those isomorphisms agree when restricted to
Ko(M). O

Remark 6.6. In the case of i the morphism is not natural until you choose a spin
structure for M.

Scholium 6.7. If M is a compact oriented three-manifold such that H{(M; Z)
has no 2-torsion, then for all{ € C — {0} the vector spaces ng (M) and K?(M )are

isomorphic.

6.2. A counterexample. As was remarked earlier, the map ¢ used to con-
struct the isomorphism between Kgi(M ) and KSI(M ) does not necessarily de-
scend from diagrams on a generalized Heegaard surface to skeins in the 3-
manifold when there is 2-torsion in H;(M; Z). The reason for this is there could
be a compound handleslide where the writhe (mod 4) of the diagram after a
handleslide is equivalent to 2 while the original diagram has writhe 0.

In Figure 6 we show a configuration in a punctured torus that lies inside a
generalized Heegaard surface. The top edge is identified with the bottom edge
and the left edge is identified with the right edge. The red and blue curves are
attaching curves of 2-handles on opposite sides of the Heegaard surface. This
pair of curves causes H,(M; Z) to have 2-torsion. The pair of black arcs are parts
of a simple diagram that pass through the punctured torus, and the two green
arcs are the strips used to form the handleslide. Notice the writhe of the result
of surgering the diagram along the green arcs is equivalent to 2 (mod 4).

Note that the counterexample above implies that our proof of Corollary 6.5
does not work for 3-manifolds M with 2-torsion in H;(M; Z); it is not a coun-
terexample to the Corollary.
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FIGURE 6. A counterexample when H,(M; Z) has 2-torsion
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