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Building-block-flow model for LES
of high-speed flows

By R. Ma†, Y. Yuan†, G. Arranz†, Y. Ling†, R. Agrawal, M. P. Whitmore,
A. Elnahhas, C. Pederson‡ AND A. Lozano-Durán†¶

A wall model for large-eddy simulation (LES) is developed accounting for compress-
ibility and roughness e!ects in high-speed regimes. The model is implemented using
machine learning (ML) techniques and trained with a new direct numerical simulation
(DNS) database of compressible turbulent flow over rough walls for various wall rough-
ness topographies, Mach numbers, and Reynolds numbers. Information-theoretic dimen-
sionless learning is employed to determine the nondimensional inputs and outputs for
the wall model with the highest predictive power. The performance of the wall model
is assessed a-posteriori in compressible turbulent channel flows with both smooth and
rough walls, a high-speed compression ramp with roughness, and an entry, descent, and
landing (EDL)-like vehicle with roughness. The results demonstrate that the new wall
model can predict drag and heat flux for high-speed flows in hydraulically smooth, tran-
sitionally rough, and fully rough regimes with a typical accuracy ranging from 1% to 12%.

1. Introduction

Computational fluid dynamics (CFD) for EDL vehicles faces unique challenges due to
the complexity of the aerodynamics and thermodynamics involved (Hollis et al. 2014).
Some of the challenges include roughness-enhanced heat transfer and skin friction of
ablated thermal protection systems (TPS), flow separation behind blunt bodies, strong
shock waves, high-enthalpy e!ects, and laminar-to-turbulent transition (Dirling 1973;
Finson & Clarke 1980; Bowersox 2007; Gaitonde & Adler 2023). Hollis (2014) has high-
lighted the deficiency of current CFD closure models for predicting multiple aerother-
modynamic phenomena, particularly those involving strong compressibility e!ects and
roughness-enhanced heating and shearing.

Wall-modeled large-eddy simulation (WMLES) has emerged as a useful computational
technique for modeling the e!ects of the small-scale flow and surface geometries on the
outer flow, rather than resolving the near-wall region directly. It leads to substantial
cost savings over wall-resolved LES, which makes calculations of high-speed engineering
applications tractable. Recent works demonstrate the predictive capability of WMLES
for high-speed flows (Kawai & Larsson 2010; Yang et al. 2018; Iyer & Malik 2019; Mettu
& Subbareddy 2022; Gri”n et al. 2023). However, the current wall models are mostly
limited by the degraded performance in flows with strong compressibility e!ects and
complex geometries. Moreover, existing wall models fail to account for the impact of
surface roughness in amplifying shear forces and heat transfer in high-speed flows.

In this report, we address these limitations by developing a wall model for LES that
models compressibility and surface roughness e!ects. The approach, referred to as the
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Figure 1. Overview of the BFWM-highspeed: using flow state at the wall and the first control
volume o! the wall and roughness statistical parameters as the inputs to the wall model, and
the wall-shear stress and heat flux are the outputs. A feedforward neural network (FNN) is used
to construct the wall model.

building-block-flow wall model for high-speed flows (BFWM-highspeed), builds upon
our prior experience with low-speed flows over smooth and rough walls (Lozano-Durán
& Bae 2023; Arranz et al. 2024; Ma & Lozano-Durán 2024). Our focus is on aerospace
applications, such as blunt-body EDL vehicles at high speed in the presence of rough
surfaces, though the model is generally applicable to other engineering scenarios.

The report is organized as follows. An overview of the model, training data preparation,
simulation setup, and the method of dimensionless learning are provided in Section 2.
Results for a-posteriori testing of WMLES in turbulent channel flows, a compression
ramp, and an EDL vehicle are presented in Section 3. Finally, concluding remarks are
summarized in Section 4.

2. Methodology

2.1. Model overview

The main assumption of the BFWM is that a collection of simple canonical flows contains
the key physics necessary to predict the wall-shear stress and heat flux in more complex
flow scenarios. This approach was introduced by Lozano-Durán & Bae (2023) for low-
speed flows. An overview of the BFWM-highspeed is shown in Figure 1.

The model uses flow information at the wall and at the first control volume o! the wall
y1 as inputs. This includes the density ω1, wall-parallel velocity u1, temperature T1, wall
temperature Tw, dynamic viscosity µ1, thermal conductivity ε, and specific heat capacity
cp of the flow. The model operates in two modes: smooth wall (BFWM-smooth) and
rough wall (BFWM-rough). In the latter, the mean geometric properties of the surface
roughness are also provided as inputs. These include the root-mean-square roughness
height krms, the first-order roughness height fluctuations Ra, and the e!ective slope ES.
The definitions of these roughness parameters are given by Ma & Lozano-Durán (2024).
These three parameters are considered to su”ciently represent the geometrical features
of Gaussian roughness (Ma et al. 2021). To ensure the generalization of the wall model,
the input features are nondimensional combinations of the variables described above.
Information-theoretic dimensionless learning is used to discover the most informative
dimensionless input features, and this is discussed in Section 2.3.

The DNS and WMLES presented here are conducted with an explicit, unstructured,
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Figure 2. Instantaneous streamwise velocity for DNS of a minimal-span channel flow over a
rough wall. The zoom-in view shows the grid in the near-wall region. The wetted rough surfaces
are colored in dark yellow.

finite-volume solver, charLES, which solves compressible Navier-Stokes equations (Fu
et al. 2021). The meshes are generated based on the Voronoi tessellation. The Vreman
subgrid-scale model (Vreman 2004) is used for a-posteriori testing of BFWM-highspeed
in WMLES.

2.2. Training database

The training database comprises new DNS of turbulent channel flows over smooth and
rough surfaces. We generated 15 irregular, multiscaled rough surfaces by prescribing the
probability density function of a Gaussian distribution and the power spectra of isotropic
self-a”ne fractals (Pérez-Ràfols & Almqvist 2019). The naming convention we used for
these 15 rough surfaces is RS#, and the range of their key roughness parameters are
krms/Ra = 1.17 → 1.33 and ES = 0.12 → 0.71. The simulations are driven with uniform
volumetric momentum and energy source terms to achieve Mc =

Uc→
ωRTw

= 0.5, 1, 2, 4 and

Rec =
εcUcϑ

µw
= 4000, 8000, 16000, where ωc and Uc are the mean density and velocity at

the channel centerline, respectively; Tw and µw are the mean temperature and dynamic
viscosity at the wall, respectively; and ϑ is the channel half-height. The mean is referred
to the average in all homogeneous directions (i.e., streamwise, spanwise) and time. The
values of Mc and Rec were chosen to cover both transitionally and fully rough regimes, as
well as typical flow conditions in high-speed flow applications (Hollis 2014). As a result,
the present DNS database comprises a total of 180 rough cases and 12 smooth cases. The
simulation details of the reference cases are summarized in Table 1.

A minimal-span channel simulation approach is used (MacDonald et al. 2017) to al-
leviate the computational cost of generating the DNS database. This is justified as only
mean flow data in the near-wall region are required to train the wall model. A prelimi-
nary comparison between the minimal- and full-span smooth channel flows showed that
errors for the mean velocity and temperature profiles are within 2% at y = 0.1ϑ. As
such, the wall model was trained using DNS mean flow data within 0 < y ↑ 0.1ϑ. The
domain size is Lx = 3ϑ, Ly = 2ϑ, and Lz = ϑ, following the criteria proposed by Mac-
Donald et al. (2017). A visualization of the flow field and meshes in the near-wall region
is shown in Figure 2. Uniform grids are used in the streamwise and spanwise directions,
while stretched grids based on a hyperbolic tangent function are used in the wall-normal
direction.
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Case Mc Rec Mb Reω Re
→
ω ↑Bq !x

+ !y
+
min !ymax/ϑ !z

+

Mc0.5Rec4000 0.5 4000 0.43 278 267 0.004 2.1 0.04 0.009 1.7
Mc0.5Rec8000 0.5 8000 0.43 496 478 0.004 3.7 0.07 0.009 3.0
Mc0.5Rec16000 0.5 16000 0.43 921 889 0.004 6.9 0.13 0.009 5.6
Mc1.0Rec4000 1.0 4000 0.85 288 251 0.016 2.2 0.04 0.009 1.8
Mc1.0Rec8000 1.0 8000 0.86 523 456 0.015 4.0 0.08 0.009 3.2
Mc1.0Rec16000 1.0 16000 0.87 960 842 0.014 7.3 0.14 0.009 5.9
Mc2.0Rec4000 2.0 4000 1.69 328 202 0.06 2.5 0.05 0.009 2.0
Mc2.0Rec8000 2.0 8000 1.71 597 370 0.05 4.5 0.09 0.009 3.7
Mc2.0Rec16000 2.0 16000 1.72 1068 685 0.05 8.1 0.15 0.009 6.5
Mc4.0Rec4000 4.0 4000 3.25 450 117 0.19 3.4 0.06 0.009 2.7
Mc4.0Rec8000 4.0 8000 3.39 772 229 0.16 5.8 0.11 0.009 4.7
Mc4.0Rec16000 4.0 16000 3.44 1320 421 0.16 10.0 0.19 0.009 8.1

Table 1. Simulation details of the reference smooth cases in the DNS database. The fric-
tion Reynolds number Reω = ωwuωε/µw, where uω =

√
ϑw/ωw, and the transformed fric-

tion Reynolds number is Re→ω = ωc
√

ϑw/ωcε/µc (Coleman et al. 1995), where the subscript
c denotes the mean flow quantity at the channel centerline. The wall heat transfer rate is
Bq = qw/(ωwcpuωTw). The + denotes the viscous unit based on uω and ϖw, where ϖw is the
kinematic viscosity at the wall.

2.3. Information-theoretic dimensionless learning

We introduce an information-theoretic, data-driven dimensionless learning method that
identifies the best-performing dimensionless inputs to predict the nondimensional quan-
tity of interest. Consider the vector of dimensional input variables q = [q1, q2, . . . , qn], and
the dimensional output qo. The goal is to discover p nondimensional inputs, denoted by
! = [#1, . . . ,#p], that provide the highest predictive capabilities of the nondimensional
output #o. The method consists of two steps:

Step 1: First, the Buckingham-# theorem is used to construct dimensionless candi-
dates !. The i-th dimensionless number has the form #i =

∏
n

j=1 q
aij

j
= q

ai , where

ai = [ai1, ai2, . . . , ain]
T is the vector of exponents for #. The input candidate ! is

then obtained from the solution to Dai = 0, where D is the dimension matrix con-
taining the powers of the fundamental units for q, D = [d1,d2, . . . ,dn], and di is the
dimensional vector for the physical quantity qi. For example, the velocity q1 = u =
[length]1[mass]0[time]↑1[temperature]0 has d1 = [1, 0,↓1, 0] and so on. The solution ai

can be expressed as ai =
∑

n↑k

j=1 cijwj = Wci, where W = [w1,w2, . . . ,wn↑k] is the

matrix of basis vectors of the null space of D, and ci =
[
ci1, ci2, . . . , ci(n↑k)

]
is the co-

e”cient vector corresponding to wi. In conclusion, nondimensional inputs are obtained
by !(C) = q

WC =
[
q
Wc1 ,qWc2 , . . . ,qWcp

]
, where the constant in C = [c1, c2, . . . , cp]

can be chosen arbitrarily.
Step 2: An infinite number of nondimensional inputs exist; however, not all are useful

for predicting the nondimensional output. Here, we identify the dimensionless input with

the highest predictive capabilities. Let us denote by ϖ
(
!, f̂

)
=

∥∥∥#o ↓ #̂o

∥∥∥
2
the error of

a model f̂ aiming to predict #o using the inputs !, i.e., #̂o = f̂(!). It can be shown
that the minimum error across all possible models f̂ is bounded by,

ϖmin (!) = min
f̂

ϖ
(
!, f̂

)
↔ 1↗

2eϱ
eh(”o)↑I(”o;!), (2.1)

where h(#o) is the di!erential entropy of #o, and I (#o;!) is the mutual information
measuring the information shared between #o and ! (Cover 1999). The mutual infor-
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(a) (b)

Figure 3. The dimensionless (a) wall-shear stress and (b) wall heat flux as a function of the
optimized dimensionless inputs. The lines represent DNS mean flow data of di!erent cases for
y < 0.1ε. The surface corresponds to the prediction from the neural network wall model.

mation is I (#o;!) =
∫
ω”,”o (ω,ϱo) log

(
ε!,!o (ω,ϖo)
ε!(ω)ε!o (ϖo)

)
dωdϱo, where ω”,”o is the joint

probability distribution of ! and #o, and ω” and ω”o are the marginal probabilities of !
and #o, respectively. For a given #o, the value of h(#o) is fixed and the nondimensional
input with the best predictive capabilities is that maximizing I (#o;!),

!(C) = argmax
!

I (#o;!(C)) = argmax
C

I (#o;!(C)) . (2.2)

The optimization problem can be e!ectively solved using the covariance matrix adapta-
tion evolution strategy (CMA-ES) introduced by Hansen et al. (2003).

The dimensionless forms of the outputs are ϱwy1

µ1u1
for the wall-shear stress and qwy1

ς(T1↑Tw)

for the wall heat flux. The input variables are q = [y1, u1, ω1, T1, Tw, µ1, k, cp, krms, Ra, ES]T .
Here, we show the results for BFWM-rough. The results for BFWM-smooth are omit-
ted for brevity. For both wall-shear stress and heat flux, the number of inputs is set to
p = 2, as it was found that increasing the number of inputs beyond this provides only
marginal improvements in the maximization of the mutual information I (#o;!). The
CMA-ES algorithm is run with a population size of 50, lower and upper bounds for cij
set to [↓2, 2], and a maximum of 50,000 iterations. The algorithm was initialized with
a standard deviation of 0.5. The optimal dimensionless inputs discovered for predicting
wall-shear stress are

!ϱw = argmax
!

I

(
ςwy1
µ1u1

;!

)
=





(
T1
Tw

)0.1
·Re0.431 ·M0.04

1 · Pr11 ·
(

y1

Ra

)0.43

(
y1

krms

)0.56
· ES0.03

,
Re0.671 ·M0.13

1 · Pr0.391 ·
(

y1

krms

)0.06

(
T1
Tw

)0.06
·
(

y1

Ra

)1 · ES0.69



 ,

and the optimal dimensionless inputs discovered for predicting wall heat flux are

!qw = argmax
!

I

(
qwy1

ε(T1 ↓ Tw)
;!

)
=





(
T1
Tw

)0.05
·M1.1

1 · Pr0.331 ·
(

y1

krms

)0.65

Re0.681 ·
(

y1

Ra

)0.56 · ES0.04
,

(
T1
Tw

)1
·Re1.311 · Pr0.441

M0.08
1 ·

(
y1

krms

)0.09
·
(

y1

Ra

)0.33 · ES0.04



 ,

where M1, P r1, and Re1 is the local Mach, Prandtl, and Reynolds number at the first
grid point o! the wall. Using the identified optimal dimensionless inputs, we train two
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(a) (b)

Figure 4. The probability mass function (PMF) of a-posteriori error for (a) the wall-shear
stress and (b) the wall heat flux of WMLES using BFWM-highspeed over all 180 cases. The
a-posteriori error in wall-shear stress, ϱωw , is defined as ϱωw = ω̂w↑ωw

ωw
, where ϑw is the wall-shear

stress obtained from DNS, and ϑ̂w is the value predicted by WMLES. Similar definitions for the
heat flux error.

(a) (b)

(c) (d)

Figure 5. The mean velocity and mean temperature profiles of WMLES (red) using
BFWM-rough wall model and DNS (blue solid) of a compressible channel flow over rough sur-
face RS2 at (a) Mc = 2, Rec = 8000, (b) Mc = 4, Rec = 8000, (c) Mc = 2, Rec = 16000, (d)
Mc = 4, Rec = 16000.

separate artificial neural networks: one for the shear stress model and another for the
heat flux model. Each network follows a feedforward architecture with four hidden layers,
each comprising 15 neurons, and is trained using gradient descent with momentum and
an adaptive learning rate. To control overfitting, an L2 regularization factor of 0.9 is
employed. The data is partitioned into training, validation, and testing sets, with allo-
cations of 70%, 15%, and 15%, respectively. The correlation between the predicted and
actual values for both wall-shear stress and heat flux of the overall dataset exceeds 99%.
Figure 3 displays the dimensionless wall- shear stress and heat flux as functions of the
optimized dimensionless inputs, illustrating the continuous relationship predicted by the
neural networks and providing a smooth approximation of the underlying data.

3. Results

3.1. Compressible turbulent channel flow

The performance of BFWM-rough is tested in compressible turbulent channel flows. The
WMLES is driven with uniform volumetric forcing to achieve the same Mc and Rec as
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the corresponding DNS in Table 1, following Gri”n et al. (2023). The cases are run on
a domain with streamwise, wall-normal, and spanwise lengths of (4ϱ ↘ 2 ↘ ϱ

↗
3)ϑ and

feature periodic boundary conditions in the streamwise and spanwise directions. The grid
resolution is dx = (ϱ/16)ϑ, dy = (1/24)ϑ, and dz = (

↗
3ϱ/48)ϑ. The wall model matching

location is the first control volume adjacent to the wall. For each Mach and Reynolds
number, the WMLES is tested using 15 di!erent rough surfaces, resulting in a total of
180 cases.

The a-posteriori error distribution of the BFWM-highspeed is shown in Figure 4. The
mean a-posteriori relative errors for the wall-shear stress and heat flux are 11% and 12%,
respectively. The mean velocity and temperature profiles for selected cases are shown in
Figure 5.

3.2. Turbulent compression ramp over a rough wall

We assess the performance of BFWM-rough on a compression ramp with roughness at a
hypersonic Mach number. The setup, shown in Figure 6(a), is similar to the experiments
performed by Prince et al. (2005). The angle of the flap is 30↓, the Mach number, based
on the free-stream conditions, is M↔ = 8.2, and the Reynolds number, based on the plate
length L (defined as the distance from the leading edge to the start of the flap), and the
free-stream conditions, is Re = 1.44 ↘ 106. In the experiment, roughness is introduced
by covering the plate and flap with sandpaper, and the roughness in the simulations is
modeled using the parameters ES = 0.4 and krms/Ra = 1.24. A uniform inflow is imposed
at the inlet, a sponge zone is imposed at the outlet, and periodic boundary conditions are
applied along the spanwise direction. The grid size in the farfield is constant and equal to
$ = 0.1L. Close to the solid walls, the mesh is refined using 7 levels where the grid size
for each level is reduced by 50%, leading to approximately 30 grids per boundary layer
thickness at the hinge. A refinement window with a constant grid size of $ ≃ 30↘10↑4L
is included over the plate to capture the shock wave that develops at the leading edge.

Figure 6(b) shows the evolution of the heat transfer coe”cient, CH = qw

ε↑U↑Cp↑(Tw↑Tr)
,

as a function of the streamwise position, where Tr is the recovery temperature. The re-
sults obtained with BFWM-rough are compared against the experimental measurements
from Prince et al. (2005). The model accurately predicts the increase in heat flux at the
flap, yielding good agreement with the experiments.

3.3. EDL vehicle

BFWM-rough is finally tested on a blunt-body entry vehicle. The WMLES corresponds
to the experiment conducted at the NASA Langley Research Center 20-Inch Mach 6 Air
Tunnel (Hollis 2014). The blunt-body model is a hemisphere with sand-grain roughness.
The radius of the actual model is RB = 0.0762m. BFWM-rough is validated against the
roughness case ‘20-Mesh’ in Hollis (2014) whose roughness height in viscous units, k+,
varies from 50 to 200 from the front center point to the trailing edge. The contour of
temperature variation from the WMLES is shown in Figure 7(a). The freestream velocity,
pressure, and temperature are set at the inflow boundary and domain boundaries in the y
and z directions. A characteristic boundary condition with a damping function is applied
in the volume near the outflow boundary (i.e., the sponge region) to minimize acoustic
reflections from the computational outflow boundary. The Voronoi mesh is generated
with a background grid size of $ = 0.6RB . The grids near the hemisphere are refined by
10 levels where the grid size for each level is reduced by 50% to ensure about 6 control
volumes resolve the boundary layer at the location x/RB = 0.4, and a refinement window
with 5 refined levels is applied at the shock wave locations.
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(a)

(b)

Figure 6. (a) Flow over the compression ramp. The magnitude shown is the instantaneous
Mach number. (b) Heat transfer coe”cient as a function of the streamwise direction. The origin
corresponds to the start of the flap. Results obtained with WMLES BFWM-rough (solid line)
are compared against experimental results from Prince et al. (2005) (dots).

(a)

(b)

(c)

zs(inch) xs(inch)

k(inch)

h
/h

F
R

x/RB

Figure 7. (a) Instantaneous flow field for WMLES of hemisphere with sand-grain distributed
surface roughness at Mach 6 across a free stream Reynolds number Re↓ = 2.74→ 107/m. The
contour shows the temperature variation at the plane z = 0. (b) A sample tile of the randomly
distributed sand-grain roughness corresponding to the roughness case 20-Mesh in Hollis (2014).
The contour shows the roughness elevation, and the unit is inch. (c) Heat distribution h/hFR

on the hemisphere, where h is the heat-transfer film coe”cient, and hFR is the heat-transfer
film coe”cient based on Fay-Riddell theory (Fay & Riddell 1958). The results of WMLES with
BFWM-rough for 20-Mesh (line) are compared with the experimental results from Hollis (2014)
for smooth (blue dots) and rough 20-Mesh (orange dots) surfaces.

The sand-grain roughness on the model is produced by applying an adhesive coating
to a bed of manufactured, spherical glass particles. To extract the roughness parameters
for BFWM-rough input, we generate a synthetic sand-grain roughness tile corresponding
to the 20-Mesh roughness in Hollis (2014) by randomly distributing hemispherical ele-
ments on a flat surface. The resulting sample tile is shown in Figure 7(b). The roughness
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parameters computed from the sample tile are krms/Ra = 1.13 and ES = 0.53. The
time-averaged heat augmentation from WMLES with BFWM-rough is shown in Figure
7(c) and compared to the experimental results for a smooth surface and a rough 20-Mesh
surface. For this problem, the flow over the hemisphere with a smooth surface remains
laminar, whereas the roughness induces transition, and a turbulent boundary layer devel-
ops over the surface. For the case of 20-Mesh roughness, the boundary layer transition is
induced by the roughness near the very front of the hemisphere. The heat augmentation
distribution shows good agreement with the experiment from Hollis (2014).

4. Conclusions

We have developed a wall model for LES of high-speed flows. The model, referred
to as BFWM-highspeed, is implemented via artificial neural networks that predict wall
shear and heat flux over both smooth and rough surfaces. The model includes two com-
ponents: BFWM-smooth and BFWM-rough. BFWM-smooth is trained using data from
turbulent channel and pipe flows documented in the literature. BFWM-rough is trained
with a new DNS database of high-speed turbulent channel flows over rough surfaces. An
information-theoretic dimensional learning approach is employed to identify the most
informative dimensionless inputs for predicting the nondimensionalized wall-shear stress
and heat flux. The performance of BFWM-highspeed has been assessed a-posteriori in
the WMLES of several validation cases, including turbulent channel flows, a compression
ramp, and an EDL vehicle. Overall, ‘BFWM-highspeed’ o!ers predictions with a typical
accuracy ranging from 1% to 12%. Future work will be devoted to improving the pre-
dictive capabilities of the model by expanding the training dataset and refining the SGS
models.
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