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Abstract

Logistic regression is a key method for modeling the probability of a binary outcome based
on a collection of covariates. However, the classical formulation of logistic regression relies
on the independent sampling assumption, which is often violated when the outcomes inter-
act through an underlying network structure, such as over a temporal/spatial domain or
on a social network. This necessitates the development of models that can simultaneously
handle both the network ‘peer-effect’ (arising from neighborhood interactions) and the ef-
fect of (possibly) high-dimensional covariates. In this paper, we develop a framework for
incorporating such dependencies in a high-dimensional logistic regression model by intro-
ducing a quadratic interaction term, as in the Ising model, designed to capture the pairwise
interactions from the underlying network. The resulting model can also be viewed as an
Ising model, where the node-dependent external fields linearly encode the high-dimensional
covariates. We propose a penalized maximum pseudo-likelihood method for estimating the
network peer-effect and the effect of the covariates (the regression coefficients), which, in
addition to handling the high-dimensionality of the parameters, conveniently avoids the
computational intractability of the maximum likelihood approach. Under various standard
regularity conditions, we show that the corresponding estimate attains the classical high-
dimensional rate of consistency. In particular, our results imply that even under network
dependence it is possible to consistently estimate the model parameters at the same rate
as in classical (independent) logistic regression, when the true parameter is sparse and
the underlying network is not too dense. Consequently, we derive the rates of consistency
of our proposed estimator for various natural graph ensembles, such as bounded degree
graphs, sparse Erdős-Rényi random graphs, and stochastic block models. We also develop
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an efficient algorithm for computing the estimates and validate our theoretical results in nu-
merical experiments. An application to selecting genes in clustering spatial transcriptomics
data is also discussed.

Keywords: High-dimensional inference, Ising models, logistic regression, Markov random
fields, network data, penalized regression, pseudo-likelihood, random graphs.

1. Introduction

Logistic regression (Hosmer et al., 2013; McCullagh and Nelder, 1989; Nelder and Wedder-
burn, 1972) is a very popular and widely used method for modeling the probability of a
binary response based on multiple features/predictor variables. It is a mainstay of modern
multivariate statistics that has found widespread applications in various fields, including
machine learning, biological and medical sciences, economics, marketing and finance indus-
tries, and social sciences. For example, in machine learning it is regularly used for image
classification and in the medical sciences it is often used to predict the risk of developing a
particular disease based on the patients’ observed characteristics, among others. To describe
the model formally, denote the vector of predictor variables (covariates) by Z1, . . . ,ZN ∈ R

d

and the independent response variables by X1, . . . , XN ∈ {−1, 1}. Then, the logistic regres-
sion model for the probability of a positive outcome conditional on the covariates is given
by

P(Xi = 1|Zi) =
eθ

>
Zi

eθ
>
Zi + e−θ

>
Zi

,

for 1 6 i 6 N , where θ = (θ1, θ2, . . . , θd)> ∈ R
d is the vector of regression coefficients.1 Us-

ing the independence of the response variables, the joint distribution of X := (X1, . . . , XN )
given Z := (Z1, . . . ,ZN ) ∈ R

d×N can be written as:

P(X|Z) =
N
∏

i=1

eXiθ
>
Zi

eθ
>
Zi + e−θ

>
Zi

=
1

ZN (θ,Z)
exp

{

N
∑

i=1

Xi(θ
>Zi)

}

, (1)

where ZN (θ,Z) =
∏N

i=1
1

eθ
>Zi+e−θ>Zi

is the normalizing constant. It is well-known from the

classical theory of generalized linear models that the parameter θ in (1) can be estimated
at rate O(1/

√
N) for fixed dimensions, using the maximum likelihood (ML) method (see,

for example, Lehmann and Romano (2005); McCullagh and Nelder (1989); Vaart (1998)).
The classical framework of logistic regression described above is, however, inadequate if

the independence assumption on the response variables is violated, which is often the case
if the observations are collected over a temporal or spatial domain or on a social network.
The recent accumulation of dependent network data in modern applications has accen-
tuated the need to develop realistic and mathematically tractable methods for modeling
high-dimensional distributions with underlying network dependencies (network peer-effect).
Towards this, the Ising model, initially proposed in statistical physics to model ferromag-
netism (Ising, 1925), has turned out to be a useful primitive for modeling such datasets,
which arise naturally in spatial statistics, social networks, epidemic modeling, computer vi-
sion, neural networks, and computational biology, among others (see Banerjee et al. (2015);

1. Note that we are parameterizing the outcomes as {−1, 1} instead of the more standard {0, 1} to integrate
this within the framework of the Ising model (defined in (2)), where the {−1, 1} notation is more common.
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Geman and Graffigne (1986); Green and Richardson (2002); Hopfield (1982); Montanari
and Saberi (2010) and references therein). This can be viewed as a discrete exponential
family with binary outcomes, wherein the sufficient statistic is a quadratic form designed
to capture correlations arising from pairwise interactions. Formally, given an interaction
matrix A := ((aij))16i,j6N and binary vector X = (X1, X2, · · · , XN ) ∈ CN = {−1, 1}N , the
Ising model with parameters β and h encodes the dependence among the coordinates of X
as follows:

Pβ,h(X) =
1

2NZN (β, h)
exp







β
∑

16i<j6N

aijXiXj + h

N
∑

i=1

Xi







, (2)

where the normalizing constant ZN (β, h) is determined by the condition
∑

X∈CN
Pβ,h(X) =

1 (so that Pβ,h is a probability measure). In statistical physics the parameters β and h are
referred to as the inverse temperature and the magnetic field, respectively.

This paper is motivated by applications where in addition to peer effects, arising from
an underlying network structure, there are other variables (covariates) associated with the
nodes of the network, which affect the outcome of the response variables. For example, in
the data collected by the National Longitudinal Study (Harris, 2007) students in grades 7–
12 were asked to name up to 10 friends and answer many questions about age, gender, race,
socio-economic background, personal and school life, and health, where it becomes imper-
ative to model the peer-effect and the effect of the covariates simultaneously. Another ex-
ample where high-dimensional covariates interact through an underlying network structure
arises in spatial transcriptomics. This is a relatively new direction in biology made possible
by technologies for massively parallelized measurement of cell transcriptomes/proteomes
in situ that, unlike standard single cell sequencing methods, retains information regarding
the spatial neighborhood of the cells. The spatial context of cells can be encoded into a
nearest-neighbor graph or a Voronoi neighborhood graph/Delaunay triangulation (de Berg
et al., 2008), where the nodes are cells and edges link cells that are situated proximal to
each other (Eng et al., 2019; Goltsev et al., 2018; Palla et al., 2022; Perkel, 2019). Each
node has a high dimensional feature set, encoding the measurements made for that cell, be
it gene expression or protein expression, depending on the experimental protocol. Then,
the goal is to understand how the spatial niche of a cell contributes to its phenotype (see
Section 5 for more details). For other examples of network peer-effect in the presence of
covariates, see Bertrand et al. (2000); Christakis and Fowler (2013); Duflo and Saez (2003);
Glaeser et al. (1996); Sacerdote (2001); Trogdon et al. (2008) and references therein.

In the aforementioned examples, it is natural to envisage a model that combines the
logistic model in (1) (which encodes the node-specific covariates) and the Ising model (2)
(for capturing the network dependency). Towards this, Daskalakis et al. (2020) recently
proposed the following model: Suppose for each node 1 6 i 6 N of a network GN on N
vertices, one observes a d-dimensional covariate Zi ∈ R

d. Then, the joint distribution of the
binary outcomes X = (X1, X2, . . . , XN ), conditioned on the network GN and the observed
covariates Z := (Z1,Z2, . . . ,ZN )> is given by:

P(X
∣

∣Z) ∝ exp

(

β

2
X>AX +

N
∑

i=1

Xi(θ
>Zi)

)

(3)
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where A = ((aij))16i,j6N is the (appropriately scaled) adjacency matrix of the network GN ,
the parameter β is a measure of the strength of dependence (the network ‘peer effect’), and
the parameter θ ∈ R

d measures the individual effects of the d-covariates. Specifically, as β
becomes more positive, the outcomes of the nodes tend to align with those of their neighbors.
On the other hand, when β is negative (which is also allowed in our theoretical framework),
every node receives negative influences from its neighbors, a phenomenon referred to as
antiferromagnetism in the statistical physics literature. Note that as in the classical Ising
model (2), the quadratic term captures the overall dependency in the network arising from
pairwise interactions, while the linear term θ>Zi encodes the strength of the covariates on
the outcome at the i-th node, for 1 6 i 6 N , as in the logistic model (1). Moreover, when
β = 0, which corresponds to the independent case, (3) reduces to (1); hence, (3) can be
viewed as a model for logistic regression with dependent observations.

The increasing relevance of models (2) and (3) for understanding covariate effects and
nearest-neighbor interactions in network data, has made it imperative to develop compu-
tationally tractable methods for estimating the model parameters and understanding the
statistical properties (rates of convergence) of the resulting estimates. A typical problem
of interest is estimating the parameters of the model given a single sample of binary out-
comes from an underlying network. For the classical Ising model as in (2), this problem
has been extensively studied, beginning with the classical results on consistency and opti-
mality of the maximum likelihood (ML) estimates for models where the underlying network
is a spatial lattice (Comets, 1992; Gidas, 1988; Guyon and Künsch, 1992; Pickard, 1987).
However, for general networks, parameter estimation using the ML method turns out to be
notoriously hard due to the presence of an intractable normalizing constant in the likeli-
hood. One approach to circumvent this issue that has turned out to be particularly useful,
is the maximum pseudolikelihood (MPL) estimator (Besag, 1974, 1975). This provides a
computationally efficient method for estimating the parameters of a Markov random field
that avoids computing the normalizing constant, by maximizing an approximation to the
likelihood function (a ‘pseudo-likelihood’), based on conditional distributions. This ap-
proach was originally explored in the seminal paper of Chatterjee (2007), where general
conditions for

√
N -consistency of the MPL estimate for the model (2) were derived.2 This

result was subsequently extended to more general models in Bhattacharya and Mukherjee
(2018); Daskalakis et al. (2020, 2019b); Ghosal and Mukherjee (2020); Mukherjee et al.
(2018); Mukherjee and Ray (2022); Mukherjee et al. (2022). In particular, for model (3)
Daskalakis et al. (2019b) showed that given a single sample of observations (Xi,Zi)16i6N

from (3), the MPL estimate of the parameters (β,θ) is
√
N -consistent, when the dimension

d is fixed, under various regularity assumptions on the underlying network and the param-
eters. This result has been subsequently extended to models with higher-order interactions
in Daskalakis et al. (2019b). The high-dimensional analogue of this problem under an `1
norm constraint on the regression parameter has been studied very recently in Kandiros
et al. (2021).

In this paper, we consider the problem of parameter estimation in model (3) in the high-
dimensional regime with sparsity constraints, that is, the number of covariates d grows with
the size of the network N , but there are only a few non-zero regression coefficients. In other

2. A sequence of estimators {β̂N}N>1 is said to be
√
N -consistent at β, if for every δ > 0, there exists

M := M(δ, β) > 0 such that P(
√
N |β̂N (X)− β| 6 M) > 1− δ, for all N large enough.
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words, we assume that the parameter vector θ is s-sparse, that is ||θ||0 :=
∑d

i=1 1{θi 6= 0} 6
s, because, despite the fact that many covariates are available, we only expect a few of them
to be relevant. Under this assumption, we want to estimate the parameters (β,θ) given a
single sample of dependent observations (Xi,Zi)16i6N from model (3). One of the main
reasons this problem is especially delicate, is that we only have access to a single (dependent)
sample from the underlying model. Consequently, classical results from the M -estimation
framework, which require multiple independent samples, are inapplicable. To deal with this
dependence (which leads to the intractable normalizing constant as mentioned before) and
the high-dimensionality of the parameter space, we propose a penalized maximum pseudo-
likelihood approach for estimating the parameters. To this end, note that the conditional
distribution of Xi given (Xj)j 6=i is:

P(Xi|(Xj)j 6=i,Z) =
eXiθ

>Zi+βXimi(X)

eθ>Zi+βmi(X) + e−θ>Zi−βmi(X)
, (4)

where, as before, mi(X) =
∑N

j=1 aijXj is the local-effect at node i, for 1 6 i 6 N . Therefore,
by multiplying (4) over 1 6 i 6 N and taking logarithms, we get the (negative) log-
pseudolikelihood (LPL) function

LN (β,θ) = − 1

N

N
∑

i=1

logP(Xi

∣

∣(Xj)j 6=i,Z)

= − 1

N

N
∑

i=1

{Xi(θ
>Zi + βmi(X))− log cosh(θ>Zi + βmi(X))}+ log 2. (5)

To encode the sparsity of the high-dimensional parameters, we propose a penalized maxi-
mum pseudo-likelihood (PMPL) estimator of (β,θ>), which, given a regularization (tuning)
parameter λ, is defined as:

(β̂, θ̂>) := arg min
(β,θ)
{LN (β,θ) + λ||θ||1}, (6)

where ||θ||1 :=
∑d

i=1 |θi|. Under various regularity assumptions, we prove that if λ is chosen
proportional to

√

log d/n, then with high probability,

‖(β̂, θ̂>)− (β,θ>)‖ .s

√

log d/N, (7)

whenever d → ∞ such that d = o(N) (Theorem 1). In particular, it follows from our
results that for bounded degree networks, the PMPL estimate attains the same rate as in
the independent logistic case (1), when d = o(N) and the sparsity is bounded. We also have
a more general result that quantifies the dependence on the network sparsity in the rate
(7), which allows us to establish consistency of the PMPL estimate beyond bounded degree
graphs (Proposition 7). Our results are fundamentally different from existing results on
parameter estimation in high-dimensional graphical models based on multiple i.i.d. samples
(see Section 1.1 for a review). Here, we only have access to a single sample from the model
(3), hence, unlike in the multiple samples case, one cannot treat the different neighborhoods
in the network as independent, which renders classical techniques for proving consistency
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inapplicable. Consequently, to handle the dependencies among the different neighborhoods
in the pseudo-likelihood function we need to use a different (non-classical) set of tools.
Specifically, our proofs combine a conditioning technique introduced in Dagan et al. (2021),
which tranforms a general Ising model to a model satisfying the Dobrushin condition (where
the dependence is sufficiently weak), and the concentration inequalities for functions of
dependent random variables in the Dobrushin regime, based on the method of exchangeable
pairs (Chatterjee, 2016).

Next, we study the effect of dependence on estimating the regression parameters θ.
Specifically, we want to understand how the presence of dependence through the underlying
network structure effects the rate of estimation of the high-dimensional regression coefficient
under sparsity constraints. While there have been several recent attempts to understand
the implications of dependence in high-dimensional inference, most of them have focused
on Gaussian models. Going beyond Gaussian models, Mukherjee, Mukherjee, and Yuan
(2018) and Deb et al. (2020) considered the problem of testing the global null hypothesis
(that is, θ = 0) against sparse alternatives in a special case of model (3) (where d = N
and the design matrix Z = IN is the identity). However, to the best of our knowledge, the
effect of dependence on parameter estimation in Ising models with covariates has not been
explored before. In the sequel, we establish that the PMPL estimate for θ in model (3),
given a dependence strength β and the sparsity constraint ‖θ‖0 = s, attains the classical
O(
√

s log d/N) rate, despite the presence of dependence, in the entire high-dimensional
regime (where d can be much larger than N) and also recovers the correct dependence on
the sparsity s (see Theorem 2). As a consequence, we establish that the PMPL estimate
is O(1/

√
N)-consistent (up to logarithmic factors) for the model (3) in various natural

sparse graph ensembles, such as Erdős-Rényi random graphs and inhomogeneous random
graphs that include the popular stochastic block model (Theorem 3 and Corollary 5). We
also develop a proximal gradient algorithm for efficiently computing the PMPL estimate
and evaluate its performance in numerical experiments for Erdős-Rényi random graphs,
inhomogeneous random graph models, such as the stochastic block model and the β-model,
and the preferential attachment model (Section 4). Finally, in Section 5, we illustrate the
effectiveness of the proposed model in selecting relevant genes for clustering spatial gene
expression data.

1.1 Related Work

The asymptotic properties of penalized likelihood methods for logistic regression and gen-
eralized linear models in high dimensional settings have been extensively studied (see, for
example, Bach (2010); Bunea (2008); Kakade et al. (2010); Meier et al. (2008); Salehi et al.
(2019); van de Geer (2008); van de Geer et al. (2014) and references therein). These results
allow d to be much bigger than N and provide rates of convergence for the high-dimensional
parameters under various sparsity constraints. The performance of the ML estimate in the
logistic regression model when the dimension d scales proportionally with N has also been
studied in a series of recent papers (Candès and Sur, 2020; Sur and Candès, 2019; Sur et al.,
2019). However, as discussed earlier, ML estimation is both computationally and mathe-
matically intractable in model (3), because of the dependency induced by the underlying
network. That we are able to recover rates similar to those in the classical high-dimensional
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logistic regression, in spite of this underlying dependency, using the PMPL method, is one
of the highlights of our results.

The problem of estimation and structure learning in graphical models and Markov ran-
dom fields is another related area of active research. Here, the goal is to estimate the
model parameters or learn the underlying graph structure given access to multiple i.i.d.
samples from a graphical model. For more on these results refer to Anandkumar et al.
(2012); Bresler (2015); Bresler and Karzand (2020); Chow and Liu (1968); Guo et al. (2011);
Hamilton et al. (2017); Klivans and Meka (2017); Ravikumar et al. (2010); Santhanam and
Wainwright (2012); Vuffray et al. (2016) and references therein. In particular, Ravikumar
et al. (2010) and Xue et al. (2012) use a regularized pseudo-likelihood approach to learn
the structure of the interaction A given multiple i.i.d. samples from an Ising model. In
a related direction, Daskalakis et al. (2019a) studied the related problems of identity and
independence testing, and Cao et al. (2022); Neykov and Liu (2019) considered problems
in graph property testing, given access to multiple samples from an Ising model.

All the aforementioned results, however, are in contrast with the present work, where
the underlying graph structure is assumed to be known and the goal is to derive rates of
estimation for the parameters given a single sample from the model. This is motivated by
the applications mentioned above where it is often difficult, if not impossible, to generate
many independent samples from the model within a reasonable amount of time. More
closely related to the present work are results of Li and Zhang (2010) and Li et al. (2015)
on Bayesian methods for variable selection in high-dimensional covariate spaces with an
underlying network structure, where an Ising prior is used on the model space for incor-
porating the structural information. Recently, Kim et al. (2021) developed a variational
Bayes procedure using the pseudo-likelihood for estimation based on a single sample in
a two-parameter Ising model. Convergence of coordinate ascent algorithms for mean field
variational inference in the Ising model has been recently analyzed in Plummer et al. (2020).

For continuous response with an underlying network/spatial dependence structure, a
related model is the well-known spatial autoregressive (SAR) model and its variants, where
likelihood estimation based on conditional distributions have been used as well (see Huang
et al. (2019); Lee (2004); Lee et al. (2010); Zhu et al. (2020) and the references therein).

1.2 Notation

The following notation will be used throughout the remainder of the paper. For a vector

a := (a1, . . . , as) ∈ R
s and 0 < p < ∞, ‖a‖p := (

∑s
i=1 |ai|p)

1
p denotes its p-th norm and

‖a‖∞ := max16i6s |as| its maximum norm, respectively. Moreover, ‖a‖0 :=
∑s

i=1 1{ai 6= 0}
denote the ‘zero-norm’ of a, which counts the number of non-zero coordinates of a.

For a matrix M := ((Mij))16i6s,16j6t ∈ R
s×t we define the following norms:

• ‖M‖F :=
√

∑s
i=1

∑t
j=1M

2
ij ,

• ‖M‖∞ := max16i6s
∑t

j=1 |Mij | ,

• ‖M‖1 := max16j6t
∑s

i=1 |Mij |,

• ‖M‖2 := σmax(M), where σmax(M) denotes the largest singular value of M .
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Note that if M is a square matrix, then ‖M‖2 = max{|λmin(M)|, |λmax(M)|}, where
λmax(M) and λmin(M) denote the maximum and minimum eigenvalues of M , respectively.

For positive sequences {an}n>1 and {bn}n>1, an = O(bn) means an 6 C1bn, an = Ω(bn)
means an > C2bn, and an = Θ(bn) means C2n 6 an 6 C1bn, for all n large enough and
positive constants C1, C2. Similarly, an . bn means an = O(bn), an & bn means an = Ω(bn).
Moreover, subscripts in the above notations, for example .�, O� and Ω� denote that
the hidden constants may depend on the subscripted parameters �. Finally, we say that
an = Õ(bn), if an 6 C1(log n)r1bn and an = Θ̃(bn), if C2(log n)r2bn 6 an 6 C1(log n)r1bn,
for all n large enough and some positive constants C1, C2, r1, r2.

1.3 Organization

The remainder of the paper is organized as follows. The rates of consistency of the estimates
are presented in Section 2. In Section 3, we apply our results to various common network
models. The algorithm for computing the estimates and simulation results are presented in
Section 4. The proofs of the technical results are given in the Appendix.

2. Rates of Consistency

Next, we present our results on rates of convergence of the PMPL estimator. In Section 2.1,
we present the rates of convergence of the PMPL estimates (β̂, θ̂>). The rate for estimating
the regression parameters is presented in Section 2.2.

2.1 Consistency of the PMPL Estimate

We begin by stating the relevant assumptions:

Assumption 1 The interaction matrix A in (3) satisfies the following comdition:

sup
N>1
‖A‖∞ <∞.

Assumption 2 The design matrix Z := (Z1, . . . ,ZN )> satisfies

lim inf
N→∞

λmin

(

1

N
Z>Z

)

> 0.

Assumption 3 The signal parameters θ and the covariates {Zi}16i6N are uniformly bounded,
that is, there exist positive constants Θ and M such that ‖θ‖∞ < Θ and ‖Zi‖∞ < M , for
all 1 6 i 6 N .

Under the above assumptions we establish the rate of convergence of the PMPL estimate
(6) given a single sample of observations from the model (3), when the parameter vector
is sparse, that is, ‖(β,θ>)>‖0 = s. For notational convenience, we henceforth denote the
(d + 1)-dimensional vector of parameters by γ := (β,θ>)> and the (d + 1)-dimensional

vector of PMPL estimates obtained from (6) by γ̂ = (β̂, θ̂
>

)>.
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Theorem 1 Suppose that Assumptions 1, 2, 3 hold, and lim infN→∞
1
N ‖A‖2F > 0. Then,

there exists a constant δ > 0 such that by choosing λ := δ
√

log(d+ 1)/N in the objective
function in (22) we have,

‖γ̂ − γ‖2 = Os

(

√

log d

N

)

and ‖γ̂ − γ‖1 = Os

(

√

log d

N

)

, (8)

with probability 1− o(1), as N →∞ and d→∞ such that d = o(N).

The conditions in Theorem 1 combined aim to strike a balance between the signal from
the peer-effects to that from the covariates, to ensure consistent estimation for all β. In
particular, a control on ‖A‖∞ is required to ensure that the peer effects coming from
the quadratic dependence term in the probability mass function (3) do not overpower the
effect of the signal θ coming from the linear terms θ>Zi, thereby hindering joint recovery
of the correlation term β and the signal term θ. At the same time, we also require the
interaction matrix to be not too sparse, and its entries to be not too small, in order to
ensure that the effect of the correlation parameter β is not nullified. This is guaranteed
by the condition ‖A‖2F = Ω(N). For example, when A is the scaled adjacency of a graph
GN , then Assumption 1 together with the condition ‖A‖2F = Ω(N) implies that GN has
bounded maximum degree (see Section 3). In fact, in the proof we keep track of the
dependence on ‖A‖F in the error rate (see Proposition 7 in Section A), which allows us to
establish consistency of the PMPL estimate beyond bounded degree graphs (see Section 3.3
for details).

Remark 1 It is worth noting that it may be impossible to estimate (β,θ) consistently
without any diverging lower bound on ‖A‖2F = Ω(N) or, in other words, if the graph GN is
too dense. This phenomenon is observed in the Curie-Weiss Model (where the interaction
matrix aij = 1/N , for 1 6 i 6= j 6 N) (Comets and Gidas, 1991). In this example, each
entry of A is O(1/N), and hence, ‖A‖2F = O(1), and even when d = 1 (and Z1 = . . . = ZN )
consistent estimation of the parameters β and θ is impossible (see Theorem 1.13 in Ghosal
and Mukherjee (2020)).

The proof of Theorem 1 is given in Section A. As mentioned before, this is a consequence
of a more general result which gives rates of convergence for the PMPL estimate in terms
of the ‖A‖F (Proposition 7). Broadly speaking, the proof involves the following two steps:

• Concentration of the gradient: The first step in the proof of Theorem 1 is to show
that the gradient of the logarithm of the pseudo-likelihood function LN (recall (5))
is concentrated around zero in the `∞ norm. For this step, we use the conditioning
trick introduced in Dagan et al. (2021), which reduces a general Ising model to an
Ising model in the high-temperature regime, where exponential concentration inequal-
ities for functionals of Ising models are available (Chatterjee, 2016). The details are
formalized in Lemma 24.

• Strong-concavity of the pseudo-likelihood: In the second step, we show that the log-
arithm of the pseudo-likelihood function is strongly concave with high probability.
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This entails showing that the lowest eigenvalue of the Hessian of LN is bounded away
from zero with high probability. Towards this, the minimum eigenvalue condition in
Assumption 2, which is standard in the high-dimensional literature (see Loh (2017);
Ravikumar et al. (2010)), is crucial. In particular, this condition holds with high
probability, if the covariates Z1, . . . ,ZN are i.i.d. realizations from a sub-Gaussian
distribution on R

d (see Theorem 2.1 in Daskalakis et al. (2019b)). Under Assumption
2 and using lower bounds on the variance of linear projections of X developed in Da-
gan et al. (2021) and concentration results from Adamczak et al. (2019), we establish
the strong-concavity of the pseudo-likelihood in Lemma 9.

Remark 2 Note that the rate in (8) suppresses the dependence on the sparsity parameter
s in the order term. From the proof of Theorem 1, it will be seen that the dependence
is, in general, exponential in s. However, if one replaces Assumption 3 with the stronger
assumption that the `2 norms of the parameters and the covariates are bounded, that is,
‖θ‖2 < Θ and ‖Zi‖2 < M , for all 1 6 i 6 N , then our proof can be easily modified to
recover the standard high-dimensional O(

√

s log d/N) rate (see Remark 16). In fact, this
stronger assumption has been used recently in Kandiros et al. (2021) to derive rates of the
pseudo-likelihood estimate under `1 sparsity. Specifically, (Kandiros et al., 2021, Theorem
2) showed that if ‖γ‖1 6 s and the parameters and the covariates are `2-bounded, their
estimate γ̃ under Assumption 1 satisfies:

‖γ̃ − γ‖2 = O

(

(

s log d

N

)
1
6

)

,

with high probability. Note that the dependence on N in the RHS above is worse than the
expected 1/

√
N -rate. Moreover, the `2-boundedness of the covariates is quite restrictive in

the high-dimensional setup. On the other hand, this work derives rates under `0 sparsity and
a more realistic `∞-bounded condition (Assumption 3). Under this condition, we are able to
derive the correct dependence on N and d (and also on s, if the stronger `2-boundedness is
imposed as mentioned above) in the regime where d = o(N). An exponential dependence on
d also appears in Daskalakis et al. (2019b) (see footnote in page 4), where the convergence
rate of the MPL estimate is derived in the fixed d regime. This rate can be improved
to O(

√

d/N) under the `2- boundedness assumption (see, for example, Daskalakis et al.
(2020)). Our results show that this can be further improved to O(

√

log d/N) in the regime
of constant sparsity.

2.2 Estimation of the Regression Coefficients

In this section, we consider the problem of estimating the regression coefficients θ, for fixed
β. The goal is to understand how network dependence may affect our ability to estimate the
high-dimensional regression coefficient under sparsity constraints. Towards this, we study
the properties of the following PMPL estimator for the regression coefficients θ:

θ̂ := arg min
θ

{Lβ,N (θ) + λ||θ||1}, (9)

10
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where λ is a regularization parameter and (recalling (5))

Lβ,N (θ) = − 1

N

N
∑

i=1

{Xi(θ
>Zi + βmi(X))− log cosh(θ>Zi + βmi(X))}+ log 2. (10)

To handle the high-dimensional regime, we need to make the following assumption on
the design matrix Z := (Z1, . . . ,ZN )>. To this end, we define the Rademacher complexity
of the {Zi}16i6N as:

RN := E

(∥

∥

∥

∥

∥

1

N

N
∑

i=1

εiZi

∥

∥

∥

∥

∥

∞

)

, (11)

where {εi}16i6N is a sequence of i.i.d. Rademacher random variables and the expectation
in (11) is taken jointly over the randomness of {Zi}16i6N and {εi}16i6N .

Assumption 4 Suppose the covariates Z1,Z2, . . . ,ZN are drawn i.i.d. from a distribution
with mean zero and satisfying the following conditions:

(1) There exist positive constants κ1, κ2 such that

E
(

〈η,Z1〉2
)

> κ1 and E
(

〈η,Z1〉4
)

6 κ2,

for all η ∈ R
d such that ‖η‖2 = 1.

(2) RN = O(
√

log d/N).

(3) There exists a constant C > 0 such that max16j6d
1
N

∑N
i=1 Z

2
ij 6 C holds with proba-

bility 1.

These types of conditions are standard in the high-dimensional statistics literature
(see Bickel et al. (2009); Candes and Tao (2007); Meinshausen and Yu (2009); Negah-
ban et al. (2012); Raskutti et al. (2011); van de Geer and Bühlmann (2009) and references
therein), which are known to hold for many natural classes of design matrices. For example,
if Z1,Z2, . . . ,Zn are i.i.d. sub-Gaussian random variables with mean zero, then Wainwright
(2019, Exercise 9.8) implies that RN = O(

√

log d/N).

Remark 3 As mentioned before, when Z1,Z2, . . . ,Zn are i.i.d Gaussian with mean zero
and covariance matrix Σ, then Assumption 4 (2) holds (by Wainwright (2019, Exercise 9.8)).
To understand when Assumption 4 (1) holds, note that for η ∈ R

d such that ‖η‖2 = 1 we
have

E
(

〈η,Z〉2
)

= E(N(0,η>Ση)2) = η>Ση > λmin(Σ)

and
E
(

〈η,Z〉4
)

= E(N(0,η>Ση)4) = 3(η>Ση)4 6 3λ2max(Σ),

where λmin(Σ) and λmax(Σ) are the minimum and maximum eigenvalues of Σ, respectively.
Therefore, Assumption 4 (1) holds, if we assume that there exist positive constants c∗, c

∗,
such that the covariance matrix Σ satisfies c∗ 6 λmin(Σ) 6 λmax(Σ) 6 c∗.

11
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Under the above assumptions, we now show in the following theorem that one can
consistently estimate the regression parameters of the model (3) at the same rate as the
classical (independent) logistic regression model (1).

Theorem 2 Fix β ∈ R. Suppose the interaction matrix A in (3) satisfies Assumptions 1
and the covariates Z1,Z2, . . . ,ZN satisfy Assumption 4. Moreover, assume that there exists
a positive constant Θ such that ‖θ‖2 6 Θ. Then, there exists a constant δ > 0 such that by
choosing λ := δ

√

log d/N in the objective function in (9) we have,

‖θ̂ − θ‖2 = O

(

√

s log d

N

)

and ‖θ̂ − θ‖1 = O

(

s

√

log d

N

)

,

with probability 1− o(1), as N, d→∞ such that s
√

log d/N = o(1).

The proof of Theorem 2 is given in Section B in the Appendix. We follow the strat-
egy outlined in Wainwright (2019, Chapter 9) for showing rates of consistency for high-
dimensional generalized linear models. In particular, we show that the pseudo-likelihood
loss function satisfies the restricted strong concavity condition (Proposition 19) under As-
sumption 4. Consequently, we can establish the consistency of the PMPL estimate of the
regression parameters in the entire high-dimensional regime (where d can be much larger
than N) and also recover the correct dependence on the sparsity s.

Remark 4 Note that, unlike in Theorem 1, the Frobenius norm assumption ‖A‖2F = Ω(N),
is not required in Theorem 2. In particular, the only assumption on A one needs in Theorem
2 is ‖A‖∞ < 1 (Assumption 1). For example, when A is the scaled adjacency matrix of a
graph GN , the assumption ‖A‖∞ < 1 is equivalent to the maximum degree of GN being of
the same order as the average degree of GN (see (13)). This is expected because when β is
known, the parameter θ can be estimated at the classical high-dimensional rate, irrespective
of the total edge density of the network, as long as the peer effects coming from the quadratic
dependence term do not overshadow effect of the linear term θ>Z, which is ensured by the
condition ‖A‖∞ < 1. This condition, in particular, implies that no node of the network has
an unduly large effect on the corresponding model, and is satisfied by most Ising models
that are commonly studied in the literature.

3. Application to Various Network Structures

In this section, we apply Theorem 1 to establish the consistency of the PMPL estimator (22)
for various natural network models. To this end, let GN = (V (GN ), E(GN )) be a sequence of
graphs with V (GN ) = [N ] := {1, 2, . . . , N} and adjacency matrix A(GN ) = ((aij))16i,j6N .
We denote by dv the degree of the vertex v ∈ V (Gn). To ensure that the model (3) has
non-trivial scaling properties, one needs to chose the interaction matrix A as the scaled
adjacency matrix of GN . In particular, define

AGN
:=

N

2|E(GN )| · A(GN ) (12)

Throughout this section, we consider model (3) with A = AGN
as above. We also assume

that the number of non-isolated vertices in GN (that is, the number of vertices in GN with

12
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degree at least 1) is Ω(N). Note that this implies, |E(GN )| & N . Finally, we also assume
that the sparsity s = O(1) and consequently, absorb the dependence on s in the O-terms
(recall Remark 2).

3.1 Bounded Degree Graphs

A sequence of graphs {GN}N>1 is said to have bounded maximum degree if its maximum
degree is uniformly bounded, that is, supN>1 dmax < ∞, where dmax := maxv∈V (Gn) dv is
the maximum degree of GN . Note that if GN has bounded maximum degree and has Ω(N)
non-isolated vertices, then |E(GN )| = Θ(N).

Networks arising in certain applications, especially those with an underlying spatial or
lattice structure generally have bounded degree. These include planar maps which encode
neighborhood relations (Batra et al., 2010; Johnson et al., 2016), lattice models for captur-
ing nearest-neighbor interactions between image pixels, and demand-aware networks (Avin
et al., 2020) among others. It is easy to check that the conditions in Assumption 1 are
satisfied for bounded degree graphs. Towards this, note that, under the scaling in (12), the
condition supN>1 ‖A‖∞ < ∞ is equivalent to ‖AGN

‖∞ = N
2|E(GN )| maxv∈V (Gn) dv. Hence,

under the scaling in (12), the assumption supN>1 ‖AGN
‖∞ <∞ is equivalent to

dmax := max
v∈V (Gn)

dv = O

( |E(G)|
N

)

, (13)

that is, the maximum degree of GN is of the same order as its average degree. Moreover,
the condition lim infN→∞

1
N ‖AGN

‖2F > 0 is equivalent to

lim sup
N→∞

|E(GN )|
N

<∞, (14)

that is, the average degree of GN is bounded. Therefore, (13) and (14) are together equiv-
alent to the condition that GN has bounded maximum degree. Hence, the PMPL estimate
is
√

log d/N -consistent for any sequence of graphs of bounded maximum degree, whenever
the assumptions in Theorem 1 hold.

3.2 Sparse Inhomogeneous Random Graphs

Although Theorem 1 requires that the maximum degree of GN has to be of the same order
as the average degree (see (13)), our proofs can be easily adapted to establish similar rates
of consistency of the PMPL estimate (up to polylog(N) factors), if the maximum degree
GN grows poly-logarithmically with respect to the average degree, which, in particular, is
the case for sparse inhomogeneous random graphs. This is summarized in the following
result. The proof is given in Section C.1 of the Appendix.

Theorem 3 Suppose {GN}N>1 is a sequence of graphs with |E(GN )| = O(N), dmax =

Õ(1), and Ω(N) non-isolated vertices. Then for λ = Θ̃
(

√

log d/N
)

,

‖γ̂ − γ‖2 = Õ

(

1√
N

)

with probability 1− o(1) as N, d→∞ such that d = o(N).
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Theorem 3 can be applied to obtain rates of convergence in sparse inhomogeneous ran-
dom graph models.

Definition 4 (Bollobás et al., 2007) Given a symmetric matrix P (N) = ((puv)) ∈ [0, 1]N×N

with zeroes on the diagonal, the inhomogeneous random graph G(N,P (N)) is the graph
with vertex set [N ] := {1, 2, . . . , N} where the edge (u, v) is present with probability puv,
independent of the other edges, for every 1 6 u < v 6 N .

The class of inhomogeneous random graph models defined above includes several pop-
ular network models, such as the Chung-Lu model (Chung and Lu, 2002), the β-model
(Chatterjee et al., 2011), random dot product graphs (Young and Scheinerman, 2007; Tang
et al., 2017), and stochastic block models (Holland et al., 1983; Lei, 2016). Next, we consider
the sparse regime wherein

max
16u,v6N

puv = O

(

1

N

)

. (15)

In this regime, the expected degree remains bounded, although the maximum degree can
diverge at rate O(logN) (Benaych-Georges et al., 2019; Krivelevich and Sudakov, 2003).
We will also assume that there exists ε ∈ (0, 1) and Ω(N) vertices u ∈ GN , such that

lim sup
N→∞

N
∏

v=1

(1− puv) < ε. (16)

This will ensure G(N,P (N)) has Ω(N) non-isolated vertices. Under these assumptions we
have the following result:

Corollary 5 Suppose GN is a realization of the inhomogeneous random graph G(N,P (N)),

where P (N) satisfies the conditions in (15) and (16). Then for λ = Θ̃
(

√

log(d+ 1)/N
)

,

‖γ̂ − γ‖2 = Õ

(

1√
N

)

,

with probability 1− o(1) as N, d→∞ such that d = o(N).

Corollary 5 is proved in Section C.2 of the Appendix. In the following example, we
illustrate how it can be applied to sparse stochastic block models, in particular, sparse
Erdős-Rényi random graphs.

Example 1 (Sparse stochastic block models) Fix K > 1, a vector of community pro-
portions λ := (λ1, . . . , λK) ∈ (0, 1)K , such that

∑K
j=1 λj = 1, and a symmetric probability

matrix B := ((bij))16i,j6K , where bij ∈ [0, 1], for all 1 6 i, j 6 K and bij > 0 for some
1 6 i, j 6 K. The (sparse) stochastic block model with proportion vector λ and probability
matrix B is the inhomogeneous random graph G(N,P (N)), with P (N) = ((puv))16u,v6N

where

puv =
bij
N

for (u, v) ∈ Bi ×Bj , (17)
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where Bj := (N
∑j−1

i=1 λi, N
∑j

i=1 λi]
⋂

[N ], for j ∈ {1, . . . ,K}. In other words, the set of
vertices is divided into K blocks (communities) B1, B2, . . . , BK , such that the edge between
vertices u ∈ Bi and v ∈ Bj occurs independently with probability bij/N . Clearly, in this
case (15) holds. Next, to check that (16) holds, choose 1 6 i, j 6 K such that bij > 0. Then
for all u ∈ Bi,

lim sup
N→∞

N
∏

v=1

(1− puv) 6 lim sup
N→∞

∏

v∈Bj

(

1− bij
N

)

= exp(−λjbij) < 1,

which verifies (16), since |Bj | = Ω(N). Hence, by Corollary 5, the PMPL estimate (6) is
Õ(1/

√
N)-consistent in this example. As a consequence, the PMPL estimate is Õ(1/

√
N)-

consistent for sparse Erdős-Rényi random graphs G(N, c/N), which corresponds to setting
bij = c, for all 1 6 i, j 6 K in (17).

3.3 Beyond Bounded Degree Graphs

We can also establish the consistency of the PMPL estimate beyond bounded degree graphs
using Proposition 7, which provides error rates in terms of ‖A‖F . To this end, note that
when A = AGN

is the scaled adjacency matrix of GN as in (12), then

‖A‖F = Θ

(

N
√

|E(GN )|

)

.

Hence, whenever (13) holds, Proposition 7 implies,

‖γ̂ − γ‖2 = Os

(
√

|E(GN )|2 log d

N3

)

with probability 1− o(1), whenever d = o(N2/|E(GN )|). This shows that the PMPL esti-
mate is consistent whenever |E(GN )| = o(N3/2) (up to log-factors) and d = o(N2/|E(GN )|).
In particular, if GN is ∆-regular (that is, all vertices have of GN has degree ∆), then the
rate of convergence becomes Os(∆

√

log d/N), if d = o(N/∆).

4. Computation and Experiments

Next, we discuss an algorithm for computing the PMPL estimates (Section 4.1) and evaluate
its performance in numerical experiments using synthetic data (Section 4.2).

4.1 Computation of the PMPL Estimates

A classical method developed for solving sparse estimation problems is the proximal descent
algorithm (Friedman et al., 2010). We employ this algorithm to the optimization problem
(9). To describe the algorithm, let

f(z) := LN (z) + λ||z||1, (18)
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for z ∈ R
d+1, with LN (·) as defined in (5). Also, for t ∈ R and x ∈ R

d+1 define

Gt(x) =
1

t
(x− proxt(x− t∇LN (x))) ,

where

proxt(x) := arg min
z∈Rd+1

{

1

2t
‖x− z‖22 + λ||z||1

}

=

(

xi

(

1− tλ

|xi|

)

+

)

16i6d+1

,

is minimized by the soft thresholding estimator. To chose the step size in the proximal de-
scent algorithm, we employ a backtracking line search, which is commonly used in gradient-
based as well as in lasso-type problems (Qin et al., 2013). To justify this we invoke the
following result applied to the function f defined in (18):

Proposition 6 (Vandenberghe, 2022) Fix s > 1 and a step size t > 0. Suppose at the s-th
iteration the following bound holds:

LN (γ(s) − tGt(γ
(s))) 6 LN (γ(s))− t∇LN (γ(s))>Gt(γ

(s)) +
t

2
‖Gt(γ

(s))‖22. (19)

Then for all γ ∈ R
d+1,

f(γ(s) − tGt(γ
(s))) 6 f(γ) +Gt(γ

(s))>(γ(s) − γ)− t

2
‖Gt(γ

(s))‖22. (20)

Note that setting γ = γ(s) in (20) gives,

f(γ(s) − tGt(γ
(s))) 6 f(γ(s))− t

2
‖Gt(γ

(s))‖22.

This shows that whenever the line-search condition (19) holds, the descent of the objective
function is guaranteed by setting

γ(s+1) ← γ(s) − tGt(γ
(s)) = proxt(γ

(s) − t∇LN (γ(s))).

Therefore, the proximal gradient descent algorithm for optimization problem (9), with step
size chosen by backtracking line search, proceeds in the following two steps: We initialize
with γ(0) = 0 ∈ R

d+1 and t(0) = 1.

• If, at the s-th iteration (γ(s), t(s)) satisfies the line-search condition (19), then we
update the estimates

γ(s+1) ← proxt(s)(γ
(s) − t(s)∇LN (γ(s)))

=
(

γ(s) − t(s)∇LN (γ(s))
)

(

1− t(s)λ
∣

∣γ(s) − t(s)∇LN (γ(s))
∣

∣

)

+

, (21)

and keep the step size unchanged, that is, t(s+1) ← t(s).
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Algorithm 1

Fix a value of τ ∈ (0, 1) and δ > 0. Initialize with γ(0) = 0 ∈ R
d+1 and t(0) = 1.

while ‖γ(s+1) − γ(s)‖1 > δ do

if LN (γ(s)−t(s)Gt(s)(γ
(s))) 6 LN (γ(s))−t(s)∇LN (γ(s))>Gt(s)(γ

(s))+ t(s)

2 ‖Gt(s)(γ
(s))‖22

then

γ(s+1) ← proxt(s)(γ
(s) − t(s)∇LN (γ(s))) and t(s+1) ← t(s).

end if
if LN (γ(s)−t(s)Gt(s)(γ

(s))) > LN (γ(s))−t(s)∇LN (γ(s))>Gt(s)(γ
(s))+ t(s)

2 ‖Gt(s)(γ
(s))‖22

then

γ(s+1) ← γ(s) and t(s+1) ← τt(s).

end if
end while

• If at the s-th iteration (γ(s), t(s)) does not satisfy the line-search condition (19) we
shrink the step size by a factor of τ ∈ (0, 1), that is, t(s+1) ← τt(s), and keep the
estimates unchanged, that is, γ(s+1) ← γ(s).

The procedure is summarized in Algorithm 1.
Note that the smooth part of the objective function LN is differentiable and its gradient

∇LN is Lipschitz (by Lemma 24). Hence, Algorithm 1 reaches ε-close to the optimum value
in O(1/ε) iterations (Vandenberghe, 2022).

4.2 Numerical Experiments

We evaluate the performance of the PMPL estimator using Algorithm 1 on synthetic data.
The first step is to develop an algorithm to sample from model (3). As mentioned before,
direct sampling from the model (3) is computationally challenging due to the presence of
an intractable normalizing constant. To circumvent this issue, we deploy a Gibbs sampling
algorithm which iteratively updates each outcome variable Xi, for 1 6 i 6 N , based on
the conditional distribution P(Xi|(Xj)j 6=i,Z) (recall (4)). Formally, the sampling algorithm
can be described as follows:

• Start with an initial configuration X(0) := (X
(0)
i )16i6N ∈ {−1,+1}N .

• At the (s+ 1)-th step, for s > 1, choose a vertex of GN uniformly at random. If the

vertex 1 6 i 6 N is selected, then update X
(s)
i to

X
(s+1)
i =

{

+1, with probability P(X
(s)
i = 1|(X(s)

j )j 6=i,Z)

−1, with probability P(X
(s)
i = −1|(X(s)

j )j 6=i,Z)
,

and keep X
(s+1)
j = X

(s)
j , for j 6= i. Define X(s+1) := (X

(s+1)
i )16i6N .

The Markov chain {X(s+1)}s>0 has stationary distribution (3) and, hence, can be used to
generate approximate samples from (3).
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For the numerical experiments, we consider β = 0.3 and choose the first s regression
coefficients θ1, θ2, . . . , θs independently from Uniform([−1,−1

2 ]∪ [12 , 1]), while the remaining
d− s regression coefficients θs+1, θs+2, . . . , θd are set to zero. The covariates Z1,Z2, . . . ,ZN

are sampled i.i.d. from a d-dimensional multivariate Gaussian distribution with mean vector
0 and covariance matrix Σ = ((σij))16i,j6d, with σij = 0.2|i−j|. With the aforementioned
choices of the parameters and the covariates, we generate a sample from the model (3) by
running the Gibbs sampling algorithm described above for 30000 iterations. We then apply
Algorithm 1 by setting ε = 0.001, τ = 0.8, and consider the solution paths of the PMPL
estimator as a function of log(λ), when the network GN is selected to be the Erdős-Rényi
(ER) model and the stochastic block model (SBM). We set the range of λ to be a geometric
sequence of length 100 from 0.001 to 0.1.

• Figure 1 depicts the solution paths of the PMPL estimate when GN is a realization
of the Erdős-Rényi random graph G(N, 5/N). Figure 1 (a), corresponds to a setting
N = 1200, d = 200, s = 5, while Figure 1 (b) to N = 1200, d = 600, s = 600.
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Figure 1: Solution paths of the PMPL estimates in the Erdős-Rényi model G(N, 5/N): (a) N =
1200, d = 200, s = 5, and (b) N = 1200, d = 600, s = 10.

• Figure 2 shows the solution paths of the PMPL estimate when GN is a realization of a
SBM with K = 2, λ1 = λ2 = 1

2 , p11 = p22 = 4/N , and p12 = 8/N (that is, a SBM with
2 equal size blocks with within block connection probability 4/N and between block
connection probability 8/N (recall Example 1)). In Figure 2 (a) we have N = 1200,
d = 200, s = 5, and in Figure 2 (b) N = 1200, d = 600, s = 10.

From the plots in Figures 1 and 2, it is evident that the first 5 signal (non-zero) coefficients
remain non-zero throughout the range of tuning parameters λ considered. Moreover, as
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Figure 2: Solution paths of the PMPL estimates in the stochastic block model: (a) N = 1200,
d = 200, s = 5, and (b) N = 1200, d = 600, s = 10.

expected, λ needs to be larger when d = 600 for the non-signal (zero) coefficients to shrink
to zero exactly.

Next, we investigate the estimation errors by varying the size N of the network GN .
To select the regularization parameter λ, we use a Bayesian Information Criterion (BIC).
Specifically, we define

BIC(λ) = LN (β̂λ, θ̂λ) + df(λ) logN,

where β̂λ, θ̂λ = (θ̂λ,i)16i6d are the PMPL estimates obtained from (6) for a fixed value of

λ and df(λ) = |{1 6 i 6 d : θ̂λ,i 6= 0}|. We choose λ̂ by minimizing BIC(λ) over a grid

of values of λ and denote the corresponding PMPL estimates by γ̃ = (β̂λ̂, θ̂
>
λ̂

). Figure 3

shows the average `1 and `2 estimation errors ‖γ̃ − γ‖1 and ‖γ̃ − γ‖2 and their 1-standard
deviation error bars (over 200 repititions) for the Erdős-Rényi (ER) model and the SBM. We
refer to these by IsingL1 and IsingL2 in Figure 3, respectively. For comparison purposes,
we also show the `1 and `2 estimation errors for the classical penalized logistic regression
(with no interaction term, that is, β = 0), denoted by LogisticL1 and LogisticL2 in
Figure 3, respectively. The parameters in the numerical experiment are set as follows:
β = 0.3, d = 50, the first s = 5 regression coefficients θ1, θ2, . . . , θ5 are independent samples
from Uniform([−1,−1

2 ] ∪ [12 , 1]) and the remaining 45 regression coefficients θ6, θ7, . . . , θ50
are set to zero. As before, the covariates Z1,Z2, . . . ,ZN are sampled i.i.d. from a 50-
dimensional multivariate Gaussian distribution with mean vector 0 and covariance matrix
Σ = ((σij))16i,j6100, with σij = 0.2|i−j|.

• Figure 3 (a) shows the estimation errors when GN is a realization of the Erdős-Rényi
random graph G(N, 1/N), as N varies from 200 to 1200 over a grid of 6 values.

19



Mukherjee, Niu, Halder, Bhattacharya, and Michailidis

200 400 600 800 1000 1200

0
1

2
3

4
5

Error Comparison in the ER Model with d=50 and c=1

N

E
rr

o
r

Ising L1

Logistic L1

Ising L2

Logistic L2

(a)

200 400 600 800 1000 1200

0
1

2
3

4
5

Error Comparison in the SBM with d=50 and c=1

N

E
rr

o
r

Ising L1

Logistic L1

Ising L2

Logistic L2

(b)

200 400 600 800 1000 1200

0
1

2
3

4
5

Error Comparison in the β−model with d=50

N

E
rr

o
r

Ising L1

Logistic L1

Ising L2

Logistic L2

(c)

200 400 600 800 1000 1200

0
1

2
3

4
5

Error Comparison in the preferential attachment model with d=50

N

E
rr

o
r

Ising L1

Logistic L1

Ising L2

Logistic L2

(d)

Figure 3: Estimation errors of the PMPL and the penalized logistic regression estimates in the (a)
Erdős-Rényi model and (b) the stochastic block model, (c) the β-model, and (d) the
preferential attachment model.

• Figure 3 (b) shows the estimation errors when GN is a realization of a SBM with
K = 2, λ1 = λ2 = 1

2 , p11 = p22 = 0.5/N , and p12 = 1/N , with N varying as before.

• Figure 3 (c) shows the estimation errors when GN is a realization from a β-model
(Chatterjee et al., 2011). The β-model is an inhomogeneous random graph model
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where each edge (i, j), for 1 6 u < v 6 N , is present independently with probability

puv =
eβu+βv

1 + eβu+βv
,

with (β1, . . . , βN ) ∈ R
n. In Figure 3 (c) we chose βu = −c · u log(log(u + 1)), for

1 6 u 6 N , where c = 200/N and N varies from 200 to 1200 over a grid of 6 values.

• Figure 3 (d) shows the estimation errors when GN is a realization from the linear
preferential attachment model with one edge added each time, with N varying as
before. The linear preferential attachment graph evolves sequentially one vertex at
a time, where each new vertex connects to an existing vertex with probability pro-
portional to their degrees (see Bollobas et al. (2003); Krapivsky and Redner (2001)).
Consequently, the model exhibits the ‘rich gets richer’ phenomenon and the degree
sequence follows a power law distribution (Barabási and Albert, 1999).

The plots in Figure 3 show that the estimation errors of PMPL estimates exhibit a
decreasing trend as N increases, validating the consistency results established in Section 2.
Although the `2 errors of the PMPL and penalized logistic regression estimates are similar
for small N , the PMPL errors are better as N increases. Also, the difference between the
`1 errors of the PMPL and penalized logistic regression estimates is significant. While the
`1 errors of PMPL estimates show consistent decreasing trends in all four settings, those
for the penalized logistic regression estimates are much higher. Moreover, as expected, the
empirical variances of the `1 and `2 errors for the penalized logistic regression estimate
are significantly larger than those for the PMPL estimate. These findings illustrate the
effectiveness of the proposed method for modeling dependent network data for range of
network models, encompassing different network topologies, such as community structure
and degree distribution.

We also investigate how the PMPL estimate performs with respect to the density of
the network. To this end, we consider the Erdős-Rényi random graph G(N, c/N), with
N = 600, and vary c. Figure 4 shows the estimation errors as c increases, with dependence
parameter (a) β = 0.15 and (b) β = 0.3 in the respective sub-plots. As expected, the error
curves for the PMPL estimates are generally better than those for the penalized logistic
regression estimates. Moreover, the estimation errors are relatively small to begin with
(when c is small), but starts to show an increasing trend with c after a while. This is
expected because as the network density increases the rate of convergence slows down and,
as a result, consistent estimation becomes harder (recall the discussion in Section 3.3).

5. Application to Spatial Transcriptomics

In this section, we illustrate how the proposed model can be useful in selecting relevant genes
in spatial gene expression data. As mentioned in the Introduction, spatial transcriptomics
is a new direction in molecular biology where, in addition to measuring the gene expression
levels of individual cells, one also has information about the spatial location of the cells
(Eng et al., 2019; Goltsev et al., 2018; Palla et al., 2022; Perkel, 2019). To understand how
the spatial location of a cell affects its phenotype, it is natural to consider a model as in (3)
with a nearest neighbor graph of the cell locations as the underlying network.
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Figure 4: Estimation errors of the PMPL and the penalized logistic regression estimates in the
Erdős-Rényi model G(N, c/N), with N = 600, as c varies, where (a) β = 0.15 and (b)
β = 0.3.

We consider the Visium spatial gene expression data set for human breast cancer
(see https://www.10xgenomics.com/spatial-transcriptomics for details about the spa-
tial capture technology) available in the Python package scanpy. The data set is avail-
able at https://support.10xgenomics.com/spatial-gene-expression/datasets and
can be loaded using the Python command:

scanpy.datasets.visium_sge(sample_id=‘V1_Breast_Cancer_Block_A_Section_1’)

The data consists of 36601 genes and 3798 cells along with their spatial locations. To
obtain the cell labels, we first filter out the top 50 highly variable genes, that is, the genes
whose expression variance is within the top 50 among all genes. Subsequently, we cluster
the cells based on the expression levels of these 50 gene into 2 types (clusters) using the
Leiden algorithm (Tragg, 2019). The output of the clustering algorithm visualized using the
Python command sc.pl.spatial is shown in Figure 5 (a). Using the cell labels obtained
as above and the first 100 highly variable genes as the covariates, we then fit the model
(3) with the 1-nearest neighbor graph of the spatial location of the cells as the underlying
network, using the PMPL method. The optimal λ is chosen using the BIC criterion.

The PMPL method with the BIC chosen regularization parameter, selects 6 genes among
the top 100 highly variable genes. Among the selected ones, four of them are actually in the
top 50 highly variable gene set obtained in the first filtering step. These genes are shown in
Table 1. Next, we re-cluster the cells based on only the 6 selected genes (see Figure 5 (b)).
Interestingly, just using the 6 selected genes we can recover the clustering result obtained
with the top 50 variable genes with high accuracy. This illustrates how incorporating spatial
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information can significantly reduce dimensionality for clustering single cell data and the
usefulness of our method in selecting relevant genes.

Selected genes among top 100 Estimated coefficients Selected genes among top 50
S100A9 0.0087 S100A9
CPB1 -0.0330 CPB1
SPP1 0.0123 SPP1

CRISP3 0.1465 CRISP3
SLITRK6 0.1276

IGLC2 -0.0392

Table 1: Names of the selected genes and the estimates of the corresponding regression
coefficients. The estimate of β is β̂ = 0.1203.

(a) (b)

Figure 5: Clustering results using the Leiden algorithm: (a) with the top 50 highly variable genes,
(b) with the 6 selected genes.

To capture the spatial dependence one can, more generally, consider the K-nearest
neighbor graph (instead of the 1-nearest neighbor graph as above) of the spatial locations
of the cells in the model (3). To understand the sensitivity of the PMPL method on the
choice of the number of nearest neighbors, we repeat the experiment with K = 1, K = 2,
and K = 3. The genes selected by the PMPL method and the estimates of the corresponding
regression coefficients for each of these settings are shown in Table 2. It turns out that for
K = 1 and K = 2 the genes selected are the same, and for K = 3 the genes selected match
except one (the gene SPP1 is no longer selected). This shows that the PMPL method is
quite robust to choice of the underlying nearest-neighbor graph as long as K is not too
large. While one can incorporate more distant spatial dependencies by increasing K, this
makes the graph denser and, as a result, the rate of estimation becomes slower (as shown
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in Section 3.3). In practice, especially for spatial problems, where the dependence often
decreases with distance, choosing a small value of K should suffice.

Selected genes among top 100 Estimated coefficients Selected genes among top 50

K = 1

S100A9 0.0087 S100A9
CPB1 -0.0330 CPB1
SPP1 0.0123 SPP1

CRISP3 0.1465 CRISP3
SLITRK6 0.1276

IGLC2 -0.0392

K = 2

S100A9 0.0047 S100A9
CPB1 -0.0250 CPB1
SPP1 0.0037 SPP1

CRISP3 0.1121 CRISP3
SLITRK6 0.1131

IGLC2 -0.0317

K = 3

S100A9 0.0034 S100A9
CPB1 -0.0177 CPB1

CRISP3 0.0805 CRISP3
SLITRK6 0.0845

IGLC2 -0.0241

Table 2: Names of the selected genes and the estimates of the corresponding regression
coefficients for the K-nearest-neighbor graph, with K = 1, K = 2, and K = 3.
The estimates of β are β̂ = 0.1203, β̂ = 0.2434, and β̂ = 0.2870 for K = 1, K = 2,
and K = 3, respectively.

6. Conclusion

Understanding the effect of dependence in high-dimensional inference tasks for non-Gaussian
models is an emerging research direction. In this paper, we develop a framework for effi-
cient parameter estimation in a model for dependent network data with binary outcomes and
high-dimensional covariates. The model combines the classical high-dimensional logistic re-
gression with the Ising model from statistical physics to simultaneously capture dependence
from the underlying network and the effect of high-dimensional covariates. This dependence
makes the model different and the analysis more challenging compared to existing results
based on independent samples. In the this paper we develop an efficient algorithm for jointly
estimating the effect of dependence and the high-dimensional regressions parameters using
a penalized maximum pseudo-likelihood (PMPL) method and derive its rate of consistency.
To understand which of the covariates have an effect on the outcome under the presence
of network dependence, we also consider the problem of estimation given a fixed (known)
level of dependence. Towards this, we show that using the PMPL method the regression
parameters can be estimated at the classical high-dimensional rate, despite the presence
of dependence, in the entire high-dimensional regime. We expect the model to be broadly
useful in network econometrics and spatial statistics for understanding dependent binary
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data with an underlying network geometry. As an application, we apply the proposed model
to select genes in spatial transcriptomics data.

Various questions remain and future directions emerge. Theoretically, it would be in-
teresting to see if the conditions for joint estimation can be relaxed. Computationally, it
would be interesting to explore more efficient sampling schemes for Ising models with co-
variates. Incorporating dependence in other generalized linear models and high-dimensional
distributions, through the lens of the Ising and more general graphical models, is another
interesting direction for future research.
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Henri Poincaré, Probabilités et Statistiques, 58 (1): 164–187, February 2022.

Rajarshi Mukherjee, Sumit Mukherjee, and Ming Yuan. Global testing against sparse alternatives
under Ising models. The Annals of Statistics, 46 (5): 2062–2093, October 2018.

29



Mukherjee, Niu, Halder, Bhattacharya, and Michailidis

Somabha Mukherjee, Jaesung Son, and Bhaswar B Bhattacharya. Estimation in tensor Ising models.
Information and Inference: A Journal of the IMA, June 2022.

Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A Unified Framework
for High-Dimensional Analysis of $M$-Estimators with Decomposable Regularizers. Statistical
Science, 27 (4): 538–557, November 2012.

J. A. Nelder and R. W. M. Wedderburn. Generalized Linear Models. Journal of the Royal Statistical
Society. Series A (General), 135 (3): 370, 1972.

Matey Neykov and Han Liu. Property testing in high-dimensional Ising models. The Annals of
Statistics, 47 (5): 2472–2503, October 2019.

Giovanni Palla, Hannah Spitzer, Michal Klein, David Fischer, Anna Christina Schaar, Louis Benedikt
Kuemmerle, Sergei Rybakov, Ignacio L. Ibarra, Olle Holmberg, Isaac Virshup, Mohammad Lot-
follahi, Sabrina Richter, and Fabian J. Theis. Squidpy: a scalable framework for spatial omics
analysis. Nature Methods, 19: 171–178, January 2022.

Jeffrey M. Perkel. Starfish enterprise: finding RNA patterns in single cells. Nature, 572 (7770):
549–551, August 2019.

David K. Pickard. Inference for discrete Markov Fields: The simplest nontrivial case. Journal of
the American Statistical Association, 82 (397): 90–96, March 1987.

Sean Plummer, Debdeep Pati, and Anirban Bhattacharya. Dynamics of coordinate ascent variational
inference: A case study in 2D Ising models. Entropy, 22 (11): 1263, November 2020.

Zhiwei Qin, Katya Scheinberg, and Donald Goldfarb. Efficient block-coordinate descent algorithms
for the Group Lasso. Mathematical Programming Computation, 5 (2): 143–169, June 2013.

Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Minimax rates of estimation for high-
dimensional linear regression over `q-balls. IEEE Transactions on Information Theory, 57 (10):
6976–6994, October 2011.

Pradeep Ravikumar, Martin J. Wainwright, and John D. Lafferty. High-dimensional Ising model
selection using `1-regularized logistic regression. The Annals of Statistics, 38 (3): 1287–1319, June
2010.

B. Sacerdote. Peer effects with random assignment: results for Dartmouth roommates. The Quarterly
Journal of Economics, 116 (2): 681–704, May 2001.

Fariborz Salehi, Ehsan Abbasi, and Babak Hassibi. The impact of regularization on high-dimensional
logistic regression, arXiv:1906.03761, November 2019.

Narayana P. Santhanam and Martin J. Wainwright. Information-theoretic limits of selecting binary
graphical models in high dimensions. IEEE Transactions on Information Theory, 58 (7): 4117–
4134, July 2012.

Pragya Sur and Emmanuel J. Candès. A modern maximum-likelihood theory for high-dimensional
logistic regression. Proceedings of the National Academy of Sciences, 116 (29): 14516–14525, July
2019.

Pragya Sur, Yuxin Chen, and Emmanuel J. Candès. The likelihood ratio test in high-dimensional
logistic regression is asymptotically a rescaled Chi-square. Probability Theory and Related Fields,
175(1-2): 487–558, October 2019.

30



Logistic Regression Under Network Dependence

Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince Lyzinski, and Carey E. Priebe. A nonpara-
metric two-sample hypothesis testing problem for random graphs. Bernoulli, 23 (3): 1599–1630,
August 2017.

V. Traag, L. Waltman, and N. van Eck, From Louvain to Leiden: guaranteeing well-connected
communities. Scientific Reports. 9, 5233, 2019.

Justin G. Trogdon, James Nonnemaker, and Joanne Pais. Peer effects in adolescent overweight.
Journal of Health Economics, 27 (5): 1388–1399, September 2008.

A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, 1998. ISBN 9780521784504.
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Appendix A. Proof of Theorem 1

Theorem 1 is a consequence of the following more general result which provides rates of
consistency for the PMPL estimate in terms of ‖A‖2F .

Proposition 7 Suppose that Assumptions 1, 2, and 3 hold. Then, there exists a constant
δ > 0 such that by choosing λ := δ

√

log(d+ 1)/N in the objective function in (22) we have,

‖γ̂ − γ‖2 = Os

(√

log d

‖A‖4F /N

)

and ‖γ̂ − γ‖1 = Os

(√

log d

‖A‖4F /N

)

,

with probability 1 − o(1), as N → ∞ and d → ∞ such that d = o(‖A‖2F ) and log d =
o(‖A‖4F /N).

Note that when lim infN→∞
1
N ‖A‖2F > 0, then rates in Theorem 7 is an immediate

consequence of Proposition 7.
The rest of this section is devoted the proof of Proposition 7. To this end, recall from

(6) that our PMPL estimator is defined as:

(β̂, θ̂
>

) := argmin
(β,θ>)∈Rd+1

LN (β,θ) + λ ‖θ‖1 (22)

where λ > 0 is a tuning parameter and

LN (β,θ) =
1

N

N
∑

i=1



log cosh



β

N
∑

j=1

AijXj + θ>Zi



−Xi



β
N
∑

j=1

AijXj + θ>Zi







 ,

is as defined in (5) (where we have dropped the additive factor of log 2). To begin with,
note that since Assumption 1 holds, by scaling the interaction matrix and the covariate
vectors by ‖A‖∞ we can assume without loss of generality,

sup
N>1

‖A‖∞ 6 1. (23)

The first step towards the proof of Theorem 1 is to establish the concentration of the pseudo-
likelihood gradient vector ∇LN (γ̂) in the `∞ norm. This is formalized in the following
lemma which is proved in Section A.1.

Lemma 8 (Concentration of the gradient) For γ̂ and any λ > 0,

‖∇LN (γ̂)‖∞ 6 λ. (24)

Moreover, there exists δ > 0 such that with λ := δ
√

log(d+ 1)/N the following holds:

P

(

‖∇LN (γ)‖∞ >
λ

2

)

= o(1), (25)

where the o(1)-term goes to infinity as d→ ∞.
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The next lemma shows that the pseudo-likelihood function is strongly concave with high
probability. The proof of this lemma is given in Section A.2.

Lemma 9 (Strong concavity of pseudo-likelihood) Suppose the assumptions of The-
orem 1 hold. Then, there exists a constant κ := κ(s,M, β,Θ) > 0, such that

LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ) > κ
‖A‖2F ‖γ̂ − γ‖22

N
,

with probability 1 − o(1).

The proof of Theorem 1 can now be easily completed using the above lemmas. Towards
this define:

S := {1 6 i 6 d : θi 6= 0}.
Moreover, for any vector a ∈ R

p and any set Q ⊆ {1, . . . , p}, we denote by aQ the vector
(ai)i∈Q. Now, for the constant κ as in Lemma 9, consider the event

EN :=
{

X ∈ CN : ‖∇LN (γ)‖∞ 6 λ
2

and LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ) > κ
‖A‖2F ‖γ̂ − γ‖22

N

}

.

Clearly, from Lemma 8 and Lemma 9, P(Ec
N ) = o(1).

Next, suppose X ∈ EN . From the definition of γ̂ it follows that

LN (γ̂) + λ‖θ̂‖1 6 LN (γ) + λ‖θ‖1. (26)

Hence,

λ(‖θ‖1 − ‖θ̂‖1) > LN (γ̂) − LN (γ)

= ∇LN (γ)>(γ̂ − γ) + (LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ))

> −‖∇LN (γ)‖∞‖γ̂ − γ‖1 + (LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ))

> −λ‖γ̂ − γ‖1
2

+ (LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ)), (27)

where the last step uses ‖∇LN (γ)‖∞ 6 λ
2 , for X ∈ EN . Next, note that

‖θ̂‖1 = ‖θS + (θ̂ − θ)S‖1 + ‖(θ̂ − θ)Sc‖1 > ‖θS‖1 − ‖(θ̂ − θ)S‖1 + ‖(θ̂ − θ)Sc‖1
= ‖θ‖1 − ‖(θ̂ − θ)S‖1 + ‖(θ̂ − θ)Sc‖1.

This implies,
‖(θ̂ − θ)S‖1 − ‖(θ̂ − θ)Sc‖1 > ‖θ‖1 − ‖θ̂‖1. (28)

Combining (27) and (28) it follows that

λ

(

‖(θ̂ − θ)S‖1 − ‖(θ̂ − θ)Sc‖1 +
‖γ̂ − γ‖1

2

)

> LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ)

> κ
‖A‖2F ‖γ̂ − γ‖22

N
, (29)
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where the last inequality uses LN (γ̂) − LN (γ) − ∇LN (γ)>(γ̂ − γ) > κ
‖A‖2F ‖γ̂−γ‖2

2

N , for

X ∈ EN . Using ‖γ̂ − γ‖1 = ‖(θ̂ − θ)S‖1 + ‖(θ̂ − θ)Sc‖1 + |β̂ − β| in the LHS of (29) now
gives,

‖γ̂ − γ‖22 6
λN

κ‖A‖2F

(

3‖(θ̂ − θ)S‖1
2

− ‖(θ̂ − θ)Sc‖1
2

+
|β̂ − β|

2

)

.κ
λN

‖A‖2F

(

‖(θ̂ − θ)S‖1 + |β̂ − β|
)

.κ
λN

‖A‖2F
√
s+ 1

√

∑

i∈S

(θ̂i − θi)2 + (β̂ − β)2

.
λN

‖A‖2F
√
s‖γ̂ − γ‖2.

This implies, for X ∈ EN ,

||γ̂ − γ||2 = Oκ,δ

(

N

‖A‖2F

√

s log d

N

)

.

This completes the proof of the `2 error rate in Theorem 1, since P(EN ) = 1 − o(1). The
bound on the `1 error ||γ̂ − γ||1 is shown in Lemma 15.

A.1 Proof of Lemma 8

First, we establish that ||∇LN (γ̂)||∞ 6 λ. Fix 1 6 i 6 d and define the univariate function:

f(x) := LN (β̂, θ̂1, . . . , θ̂i−1, x, θ̂i+1, . . . , θ̂d).

Note that f ′(θ̂i) = ∂
∂θi

∇LN (γ) |γ=γ̂ . Now, by the definition of γ̂ we have, f(θ̂i) + λ|θ̂i| 6
f(x) + λ|x|, which implies,

f(x) − f(θ̂i) > λ(|θ̂i| − |x|).
Then consider the following cases:

• θ̂i > 0: Then, for all x > θ̂i,

f(x) − f(θ̂i)

x− θ̂i
> λ

|θ̂i| − |x|
x− θ̂i

= −λ.

Similarly, for all 0 < x < θ̂i,
f(x)−f(θ̂i)

x−θ̂i
6 λ |θ̂i|−|x|

x−θ̂i
= −λ. This implies, f ′(θ̂i) = −λ.

• θ̂i < 0: Then, for all 0 > x > θ̂i,

f(x) − f(θ̂i)

x− θ̂i
> λ

|θ̂i| − |x|
x− θ̂i

= λ.

Similarly, x < θ̂i,
f(x)−f(θ̂i)

x−θ̂i
6 λ |θ̂i|−|x|

x−θ̂i
= λ. Hence, in this case, f ′(θ̂i) = λ.
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• θ̂i = 0: In this case, for all x > 0,

f(x) − f(0)

x
> −λ |x|

x
= −λ

and for all x < 0, f(x)−f(0)
x 6 −λ |x|

x = λ. Since f ′ exists, this implies that |f ′(0)| 6 λ.

Next, define
g(x) := LN (x, θ̂1, . . . , θ̂i−1, θ̂i, θ̂i+1, . . . , θ̂d).

Note that g′(β̂) = ∂
∂β∇LN (γ) |γ=γ̂ . By the definition of γ̂ we have, g(β̂) 6 g(x). This

implies that g′(β̂) = 0. Combining the above, it follows that

||∇LN (γ̂)||∞ = max
j∈[d]

|f ′(θ̂i)| 6 λ,

completing the proof of (24).
Next, we establish the concentration of ‖∇LN (γ)‖∞ as in (25). For this step, we require

the following definitions. For 1 6 i 6 N , denote

mi(X) :=
N
∑

j=1

aijXj .

Define functions φi : CN → R, for 1 6 i 6 N , as follows:

φi(x) := − 1

N

{

mi(x)
(

xi − tanh(βmi(x) + θ>Zi)
)}

, (30)

for x = (x1, x2, . . . , xn) ∈ CN . Similarly, define functions φi,s : CN → R, for 1 6 i 6 N and
1 6 s 6 d, as follows:

φi,s(x) := − 1

N

{

Zi,s

(

xi − tanh(βmi(x) + θ>Zi)
)}

. (31)

Note that ∇LN = (∂LN

∂β , ∂LN

∂θ1
, . . . , ∂LN

∂θd
)> where

∂LN

∂β
=

N
∑

i=1

φi(X) and
∂LN

∂θs
=

N
∑

i=1

φi,s(X), for 1 6 s 6 d.

To establish the concentration of ‖∇LN (γ)‖∞, we use the conditioning trick from Dagan
et al. (2021), which allows to reduce the model (3) to an Ising model in the Dobrushin
regime (where the correlations are sufficiently weak and the model approximately behaves
like a product measure), by conditioning on a subset of the nodes. To describe this, we
need the following definition:

Definition 10 Suppose that σ ∈ {−1, 1}N is a sample from the Ising model:

Pβ,h(σ) ∝ exp

(

σ>Dσ +
N
∑

i=1

hiσi

)

, (32)
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where h = (h1, h2, . . . , hn)> ∈ R
n and D is a symmetric matrix with zeros on the diagonal

with supN>1 ‖D‖∞ 6 R. Moreover, suppose that with probability 1,

min
16i6N

Var(σi|σ−i) > Υ,

for some Υ > 0. Then, the model (32) is referred to as an (R,Υ)-Ising model.

Recently, Dagan et al. (2021) developed a technique for reducing an (R,Υ)-Ising model
to an (η,Υ)-Ising model, for 0 < η < R, by conditioning on a subset of vertices. As a
consequence, by choosing η one can ensure that the conditional model is in the Dobrushin
high-temperature regime. Although the Ising model studied in Dagan et al. (2021) is dif-
ferent, the same proof extends to our model (3) as well. We formalize this in the following
lemma, which is proved in Appendix D.2.

Lemma 11 Fix R > 0 and η ∈ (0, R). Let X ∈ {−1, 1}N be a sample from an (R,Υ)-
Ising model. Then there exist subsets I1, . . . , I` ⊆ [N ] with ` . R2 logN/η2 such that:

1. For all 1 6 i 6 N ,
|{j ∈ [`] : i ∈ Ij}| = dη`/8Re

2. For all 1 6 j 6 `, the conditional distribution of XIj given XIcj
:= (Xu)u∈[N ]\Ij is an

(η,Υ)- Ising model.

Furthermore, for any non-negative vector a ∈ R
N , there exists j ∈ ` such that

∑

i∈Ij

ai >
η

8R

N
∑

i=1

ai. (33)

We will apply the above result to our model (3). Towards this, set D = β
2A and

hi = θ>Zi, for 1 6 i 6 N in (32). Under this parametrization, (3) is an (R,Υ)-Ising model
as shown below:

Lemma 12 The model (3) is a (R,Υ)-Ising model with R = |β|/2 and any Υ = e−4ΘMs−4|β|.

Proof Note that for every j ∈ [N ],

Var(Xj |X[N ]\{j}) = 4p(1 − p),

where p = P(Xj = 1|X[N ]\{j}). Now, denoting the elements of of the matrix D as
(dij)16i,j6N , note that

p =
exp

(

hj + 2
∑

v∈[N ]\{j} djvXv

)

2 cosh
(

hj + 2
∑

v∈[N ]\{j} djvXv

) .

Then using the inequality ex

2 cosh(x) >
1
2e

−2|x| gives,

min{p, 1 − p} >
1

2
exp



−2

∣

∣

∣

∣

∣

∣

hj + 2
∑

v∈[N ]\{j}

djvXv

∣

∣

∣

∣

∣

∣



 . (34)
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Next, using

∣

∣

∣

∣

∣

∣

hj + 2
∑

v∈[N ]\{j}

djvXv

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

θ>Zj + 2
∑

v∈[N ]\{j}

djvXv

∣

∣

∣

∣

∣

∣

6 |θ>Zj | + 2‖D‖∞ 6 ΘMs+ |β|,

it follows from (34) that

min{p, 1 − p} >
1

2
e−2ΘMs−2|β|.

Hence, we have:
Var(Xj |X[N ]\{j}) > e−4ΘMs−4|β|.

This completes the proof of the lemma, since ‖D‖∞ 6 |β| (since ‖A‖∞ 6 1 by (23)).

By the above lemma, model (3) is an (R,Υ)-Ising model, with R := |β|/2 and Υ =
e−4ΘMs−4|β|. Next, choose

η := min

{

1

16
,
|β|
2

}

,

and suppose I1, . . . , I` are subsets of [N ] as in Lemma 11. Then, defining `′ := dη`/Re we
get,

∣

∣

∣

∣

∣

N
∑

i=1

φi(X)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

`′

∑̀

r=1

∑

i∈Ir

φi(X)

∣

∣

∣

∣

∣

6
1

`′

∑̀

r=1

∣

∣

∣

∣

∣

∑

i∈Ir

φi(X)

∣

∣

∣

∣

∣

6
`

`′
max
r∈[`]

|Qr(X)| , (35)

where

Qr(X) :=
∑

i∈Ir

φi(X), (36)

for r ∈ [`]. Similarly, it follows that, for s ∈ [d],

∣

∣

∣

∣

∣

N
∑

i=1

φi,s(X)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

`′

∑̀

r=1

∑

i∈Ir

φi,s(X)

∣

∣

∣

∣

∣

6
1

`′

∑̀

r=1

∣

∣

∣

∣

∣

∑

i∈Ir

φi,s(X)

∣

∣

∣

∣

∣

6
`

`′
max
r∈[`]

|Qr,s(X)| , (37)

where

Qr,s(X) :=
∑

i∈Ir

φi,s(X). (38)

The following lemma shows that the functions Qr and Qr,s are Lipschitz in the Hamming
metric. The proof is given in Appendix D.1.

Lemma 13 For r ∈ [`] and s ∈ [d], let Qr and Qr,s be as defined in (36) and (38),
respectively. Then for any two vectors X,X ′ ∈ CN differing in just the k-th coordinate, the
following hold:

(1) For r ∈ [`],

|Qr(X) −Qr(X
′)| 6 2|β| + 6

N
.
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(2) Similarly, for r ∈ [`] and s ∈ [d],

|Qr,s(X) −Qr,s(X
′)| 6 2|Zk,s|

N
+

2|β|
N

N
∑

i=1

|Zi,saik| =: ck.

Using the above result together with Lemma 12, we can now establish the concentrations
of Qr(X) and Qr,s(X), conditional on XIcr . To this end, recalling the definition of φi(·)
from (30) note that E

(

Qr(X)|XIcr

)

= 0, for r ∈ [`]. Moreover, by Lemma 12, X|XIcr is
an (η,Υ)-Ising model, where η 6 1

16 . Therefore, since Qr is Oβ(1/N)-Lipschitz (by Lemma
13), applying Theorem 4.3 and Lemma 4.4 in Chatterjee (2016) gives, for every t > 0,

P

(

|Qr(X)| > t
∣

∣

∣XIcr

)

6 2e−Oβ(Nt2). (39)

Similarly, recalling (31), it follows that for each r ∈ [`] and s ∈ [d], E(Qr,s(X)|XIcr ) =

0. Then, since
∑N

k=1 c
2
k = OM (1) under Assumptions 1 and 4, Lemma 13 together with

Theorem 4.3 and Lemma 4.4 in Chatterjee (2016) gives, for every t > 0,

P

(

|Qr,s(X)| > t
∣

∣

∣XIcr

)

6 2e−Oβ,M (Nt2). (40)

Hence, combining (35), (39), (37), (40), and Lemma 11 (which implies that ` = O(logN))
gives,

P

(∣

∣

∣

∣

∣

N
∑

i=1

φi(X)

∣

∣

∣

∣

∣

> t

)

6 2e−Oβ(Nt2) and P

(∣

∣

∣

∣

∣

N
∑

i=1

φi,s(X)

∣

∣

∣

∣

∣

> t

)

6 2e−Oβ,M (Nt2), (41)

for each s ∈ [d]. It thus follows from (41) and a union bound, that

P (‖∇LN (γ)‖∞ > t) 6 2(d+ 1)e−KNt2 , (42)

for some constant K > 0, depending on β and M . Now, choosing t = λ
2 = 1

2δ
√

log(d+ 1)/N
in (42) above gives,

P

(

‖∇LN (γ)‖∞ >
λ

2

)

6 2(d+ 1)1−
Kδ2

4 = o(1),

whenever δ2 < 4/K. This completes the proof of Lemma 8.

A.2 Proof of Lemma 9

Define the following (d+ 1) × (d+ 1) dimensional matrix,

G :=
1

N

(

m>m m>Z

Z>m Z>Z

)

(43)

The key step towards proving Lemma 9 is to show that the lowest eigenvalue of ∇2LN is
bounded away from 0 with high probability.
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Lemma 14 There exists a constant C > 0 (depending only on s,Θ and M), such that

P

(

λmin(G) >
C‖A‖2F
N

)

> 1 − e−Ω(‖A‖4F /N), (44)

as N, d→ ∞, such that d = o(‖A‖2F ).

The proof of Lemma 14 is given in Section A.2.1. We first show it can be used to
complete the proof of Lemma 9. To this end, by a second order Taylor series expansion, we
know that there exists α ∈ (0, 1) and γ = (β,θ>)> = αγ + (1 − α)γ̂ such that

LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ) =
1

2
(γ̂ − γ)>∇2LN (γ)(γ̂ − γ)

=
1

2N

N
∑

i=1

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

cosh2(βmi(X) + θ>Zi)
, (45)

where Ui := (mi(X),Z>
i )>. Now, note that:

|βmi(X)| 6 |β||mi(X)| 6 |β|||A||∞ 6 |β| + |β̂ − β| 6 |β| + ‖γ̂ − γ‖1 (46)

and

|θ>Zi| 6 ‖θ‖1‖Zi‖∞ 6M (‖θ − θ‖1 + ‖θ‖1) 6M(‖γ̂ − γ‖1 + sΘ). (47)

Since cosh is an even function and increasing on the positive axis, we obtain

1

2N

N
∑

i=1

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

cosh2(βmi(X) + θ>Zi)
>

(γ̂ − γ)>G(γ̂ − γ)

2 cosh2(|β| + (M + 1)(‖γ̂ − γ‖1) + sMΘ)
, (48)

where m := (m1(X), . . . ,mN (X))>, Z = (Z1, . . . ,ZN )>, and G is as defined in (43).
Combining (45) and (48) gives,

LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ) =
1

2
(γ̂ − γ)>∇2LN (γ)(γ̂ − γ)

>
(γ̂ − γ)>G(γ̂ − γ)

2 cosh2(|β| + (M + 1)(‖γ̂ − γ‖1) + sMΘ)
. (49)

Next, we establish a high probability upper bound on ‖γ̂−γ‖1 whenever the conditions
of Theorem 1 are satisfied.

Lemma 15 Suppose (44) holds. Then, for λ := δ
√

log(d+ 1)/N as in Lemma 8,

‖γ̂ − γ‖1 = Os

(

N

‖A‖2F

√

log(d+ 1)

N

)

.

with probability 1 − o(1), whenever N, d→ ∞ such that log d = o(‖A‖4F /N),
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Proof By the convexity of the function LN it follows from (26) that

λ(‖θ‖1 − ‖θ̂‖1) > LN (γ̂) − LN (γ)

> ∇LN (γ)>(γ̂ − γ)

> −‖∇LN (γ)‖∞‖γ̂ − γ‖1

> −λ‖γ̂ − γ‖1
2

, (50)

where the last step uses ‖∇LN (γ)‖∞ 6 λ
2 , for X ∈ EN . Recall from (28) that ‖θ̂‖1−‖θ‖1 >

‖(θ̂ − θ)Sc‖1 − ‖(θ̂ − θ)S‖1. Therefore, from (50), we have:

‖(θ̂ − θ)Sc‖1 − ‖(θ̂ − θ)S‖1 6 ‖θ̂‖1 − ‖θ‖1 6
‖γ̂ − γ‖1

2

=
‖(θ̂ − θ)S‖1

2
+

‖(θ̂ − θ)Sc‖1
2

+
|β̂ − β|

2
.

This means, ‖(θ̂ − θ)Sc‖1 6 3(‖(θ̂ − θ)S‖1 + |β̂ − β|), and hence,

‖(γ̂ − γ)‖1 6 4(‖(θ̂ − θ)S‖1 + |β̂ − β|). (51)

Denote K := ‖(θ̂ − θ)S‖1 + |β̂ − β|. By the Cauchy-Schwarz inequality,

K 6
√
s+ 1

√

∑

i∈S

(θ̂i − θi)2 + (β̂ − β)2 6
√
s+ 1||γ̂ − γ||2. (52)

Next, for t ∈ [0, 1], let γt := tγ̂ + (1 − t)γ, and g(t) := (γ̂ − γ)>∇LN (γt). Then

|g(1)− g(0)| =
∣

∣(γ̂ −γ)>(∇LN (γ̂)−∇LN (γ))
∣

∣ 6 ‖γ̂ −γ‖1 · ‖∇LN (γ̂)−∇LN (γ)‖∞. (53)

Therefore,

g′(t) = (γ̂ − γ)>∇2LN (γt)(γ̂ − γ)

=
1

N

N
∑

i=1

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

cosh2(βtmi(X) + θ>
t Zi)

(where Ui := (mi(X),Z>
i )>)

>
(γ̂ − γ)>G(γ̂ − γ)

cosh2(|β| + (M + 1)‖γt − γ‖1 + sMΘ)
(by (46) and (47))

>
‖γ̂ − γ‖22 λmin(G)

cosh2(|β| + (M + 1)‖γt − γ‖1 + sMΘ)

&C
‖γ̂ − γ‖22‖A‖2F

N cosh2(|β| + 4|t|(M + 1)K +MsΘ)
,
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where the last step uses (44) (which holds with probability 1− o(1)), C is as in Lemma 14,
and ‖γt − γ‖1 = |t|‖(γ̂ − γ)‖1 6 4|t|K (by (51)). Hence,

|g(1) − g(0)| > g(1) − g(0) =

∫ 1

0
g′(t) dt

>

∫ min{1, 1/K}

0
g′(t) dt

&s
‖A‖2F
N

‖γ̂ − γ‖22 min{1, 1/K}. (54)

Combining (53) and (54) gives,

min{K, 1} .s
KN‖γ̂ − γ‖1
‖A‖2F ‖γ̂ − γ‖22

· ‖∇LN (γ̂) −∇LN (γ)‖∞

.
K2N

‖A‖2F ‖γ̂ − γ‖22
· ‖∇LN (γ̂) −∇LN (γ)‖∞ (by (51))

.
sN

‖A‖2F
‖∇LN (γ̂) −∇LN (γ)‖∞, (55)

using (52). Now, recall that, by Lemma 8, with probability 1 − o(1), ‖∇LN (γ)‖∞ .δ
√

log(d+ 1)/N and ‖∇LN (γ̂)‖∞ .
√

log(d+ 1)/N . Applying this in (55) shows that with
probability 1 − o(1),

min{K, 1} = Os

(

N

‖A‖2F

√

log(d+ 1)

N

)

.

This implies,

K = ‖(θ̂ − θ)S‖1 + |β̂ − β| = Os

(

N

‖A‖2F

√

log(d+ 1)

N

)

,

with probability 1 − o(1), whenever N, d → ∞ such that log d = o(‖A‖4F /N). Therefore,

by (51), ‖γ̂ − γ‖1 = Os

(

N
‖A‖2F

√

log(d+1)
N

)

with probability 1 − o(1).

Using Lemma 14 and Lemma 15 in (49) it follows that, there exists κ (as the statement
of Lemma 9) such that

LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ) >
(γ̂ − γ)>G(γ̂ − γ)

2 cosh2(|β| + (M + 1)‖γ̂ − γ‖1 + sMΘ)

&β,M,κ
‖A‖2F ‖γ̂ − γ‖22

N

with probability 1 − o(1), as N, d → ∞ such that d = o(‖A‖2F ) and log d = o(‖A‖4F /N).
This completes the proof of Lemma 9.
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Remark 16 Note that if one assumes ||Zi||2 6M , for all 1 6 i 6 N , and ||θ||2 6 Θ (recall
the discussion in Remark 2) then, for θ as in (47), by the Cauchy-Schwarz inequality,

|θ>Zi| 6 ‖θ‖2‖Zi‖2 6M (‖θ − θ‖2 + ‖θ‖2) 6M(‖γ̂ − γ‖1 + Θ).

Using this bound and (46) we get,

1

2N

N
∑

i=1

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

cosh2(βmi(X) + θ>Zi)
>

(γ̂ − γ)>G(γ̂ − γ)

2 cosh2(|β| + (M + 1)(‖γ̂ − γ‖1) +MΘ)
.

Note that the bound in the RHS above does not have any dependence on s in the cosh term
(unlike in (48)). Hence, by the same arguments as before we can now get the following rate
where the dependence on s matches that in the classical high-dimensional logistic regression:

‖θ̂ − θ‖2 = O

(
√

s log d

N

)

,

with probability 1 − o(1), as N, d→ ∞ such that d = o(N).

A.2.1 Proof of Lemma 14

The first step towards proving Lemma 14 is to observe that:

det(G− λI) =

(

1

N
‖Fm‖22 − λ

)

· det

(

1

N
Z>Z − λI

)

,

where F := I −Z(Z>Z)−1Z>. Hence,

λmin(G) = min

{

λmin

(

1

N
Z>Z

)

,
1

N
‖Fm‖22

}

.

In view of Assumption 2, to prove Lemma 14 it suffices to show that there exists a constant
C > 0 (depending only on s,Θ and M), such that

P

(

1

N
‖Fm‖22 >

C‖A‖2F
N

)

= 1 − e−Ω(‖A‖4F /N). (56)

To this end, it suffices to prove the following conditional version of (56):

P

(

1

N
‖Fm‖22 >

C‖A‖2F
N

∣

∣

∣
XJc

)

= 1 − e−Ω(‖A‖4F /N) (57)

where J is a suitably chosen subset of [N ] and XJc := (Xi)i∈Jc . To this end, note that (3)
is a (|β|‖A‖∞/2,Υ)-Ising model (Lemma 12). Now, applying Lemma 11 with

η := min

{

1

16
,
|β|‖A‖∞

2

}

,
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gives subsets I1, . . . , I` ⊆ [N ] such that, for all 1 6 j 6 `, the conditional distribution of
XIj given XIcj

:= (Xu)u∈[N ]\Ij is an (η,Υ)-Ising model. Furthermore, for any vector a,

there exists j ∈ [`] such that

‖aIj‖1 >
η

4|β|‖A‖∞
‖a‖1. (58)

The proof of (57) now proceeds in the following two steps: First, we show that there exists
j ∈ [`] such that the expectation of N−1‖Fm‖22 conditioned on XIj is Ω(1). Subsequently,
we establish that conditioned on XIj , N

−1‖Fm‖22 concentrates around its conditional ex-
pectation. These steps are verified in Lemmas 17 and 18, respectively.

Lemma 17 Under the assumptions of Theorem 1, there exists J ∈ {I1, I2, . . . , I`} such that
for all N > 1,

E

(

1

N
‖Fm‖22

∣

∣

∣
XJc

)

>
C‖A‖2F
N

,

where C > 0 is a constant depending only on Θ,M and s.

Proof For any (d + 1) × n dimensional matrix M , we will denote the i-th row of M

by Mi and the i-th largest singular value of M by σi(M), for 1 6 i 6 d + 1. Also, for
J ⊆ [N ] denote (FA)i,J := ((FA)i,j)j∈J . Note that for any J ∈ {I1, I2, . . . , I`} ⊂ [N ],
since m = AX,

E

(

‖Fm‖22
∣

∣

∣XJc

)

=

N
∑

i=1

E

(

[(FA)iX]2
∣

∣

∣XJc

)

>

N
∑

i=1

Var
(

(FA)iX
∣

∣

∣XJc

)

=
N
∑

i=1

Var
(

(FA)i,JXJ

∣

∣

∣
XJc

)

&
Υ2

η

N
∑

i=1

‖(FA)i,J‖22, (59)

where the last step follows from Lemma 23. Now define a vector a = (a1, a2, . . . , aN )>,
with ai = ‖(FA)·,i‖22, where (FA)·,i denotes the i-th column of the matrix FA. Then by
(58) there exists J ∈ {I1, I2, . . . , I`} ⊆ [N ] such that

N
∑

i=1

‖(FA)i,J‖22 >
η

4|β|‖A‖∞

N
∑

i=1

‖(FA)·,i‖22.

Therefore, by (59),

E

(

‖Fm‖22
∣

∣

∣
XJc

)

&
Υ2

|β|‖A‖∞
‖FA‖2F &s,B,M ‖FA‖2F . (60)

By Theorem 2 in Wang and Xi (1997), we get

N
∑

t=1

σ2t (FA) >

N
∑

t=1

σ2t (F ) σ2N−t+1(A) (61)
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Since F is idempotent with trace N − d, it follows that σ1(F ) = . . . = σN−d(F ) = 1 and
σN−d+1(F ) = . . . = σN (F ) = 0. Hence, we have from (61),

‖FA‖2F =
N
∑

t=1

σ2t (FA) >
N−d
∑

t=1

σ2N−t+1(A) = ‖A‖2F −
d
∑

i=1

σ2i (A). (62)

where the last step uses σ2i (A) 6 1 for all 1 6 i 6 N , since ‖A‖2 6 ‖A‖∞ 6 1. Applying
the bound in (62) to (60) gives,

E

(

‖Fm‖22
∣

∣

∣XJc

)

& Υ2
(

‖A‖2F − d
)

. (63)

Lemma 17 now follows from the hypothesis d = o(‖A‖2F ).

Next, we show that ‖Fm‖22 concentrates around its conditional expectation E(‖Fm‖22|XJc),
for the set J as defined above.

Lemma 18 For any t > 0 and J ∈ {I1, I2, . . . , I`},

P

(

‖Fm‖22 < E(‖Fm‖22|XJc) − t
∣

∣

∣XJc

)

6 2 exp

(

−C · min

{

t2

8N
,
t

2

})

+ 2 exp

(

− t2

128N

)

, (64)

where C is a constant depending only on Θ,M and s.

Proof Denote W := FA and let H be the matrix obtained from W>W by zeroing out
all its diagonal elements. Moreover, throughout the proof we will denote I := Jc. Clearly,

‖Fm‖22 − E(‖Fm‖22|XI) = X>HX − E

(

X>HX|XI

)

.

By permuting the indices let us partition the vector X as (X>
I ,X

>
J )> and the matrix H

as:
(

HI,I HI,J

H>
I,J HJ,J

)

where for two subsets A,B of [N ], we define HA,B := ((Hij))i∈A,j∈B. Note that

X>HX − E

(

X>HX|XI

)

= X>
J HJ,JXJ − E

(

X>
J HJ,JXJ |XI

)

+ 2X>
I HI,JXJ − 2E

(

X>
I HI,JXJ |XI

)

. (65)

Since X|XI is an (η,Υ)-Ising model, Example 2.5 in Adamczak et al. (2019) implies (by
taking the parameters α and ρ in Adamczak et al. (2019) to be ΘMs + 1/16 and 7/8,
respectively),

P

(

X>
J HJ,JXJ < E

(

X>
J HJ,JXJ |XI

)

− t
∣

∣

∣
XI

)

6 2 exp

(

−c · min

{

t2

‖HJ,J‖2F + ‖E(HJ,JXJ)‖22
,

t

‖HJ,J‖2

})

, (66)
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where c is a constant depending only on Θ,M and s. Clearly, one has ‖HJ,J‖2F 6 ‖H‖2F
and, since the spectral norm of a matrix is always greater than or equal to the spectral
norm of any of its submatrices, ‖HJ,J‖2 6 ‖H‖2. Moreover, if

X>
0 := (0>,X>

J ),

then HJ,JXJ is a subvector of HX0, and hence,

‖E(HJ,JXJ)‖22 6 ‖E(HX0)‖22.

Combining all these, we have from (66)

P

(

X>
J HJ,JXJ < E

(

X>
J HJ,JXJ |XI

)

− t
∣

∣

∣
XI

)

6 2 exp

(

−c · min

{

t2

‖H‖2F + ‖E(HX0)‖22
,

t

‖H‖2

})

(67)

Next, note that, since H −W>W is a diagonal matrix,

‖H‖2F + ‖E(HX0)‖22 6 ‖H‖2F +
(

‖E(W>WX0)‖2 + ‖E[(H −W>W )X0]‖2
)2

6 2‖H‖2F + 2E‖[(H −W>W )X0]‖22 + 2‖E(W>WX0)‖22

= 2
∑

16i 6=j6N

(W>W )2ij + 2
N
∑

i=1

(W>W )2ii + 2‖E(W>WX0)‖22

= 2‖W>W ‖2F + 2‖E(W>WX0)‖22. (68)

We also have ‖H‖2 6 ‖W>W ‖2, since for any vector a ∈ R
N ,

a>Ha = a>W>Wa−
N
∑

i=1

(W>W )iia
2
i 6 a>W>Wa.

Hence, it follows from (67) and (68) that

P

(

X>
J HJ,JXJ < E

(

X>
J HJ,JXJ |XI

)

− t
∣

∣

∣
XI

)

6 2 exp

(

−c′ · min

{

t2

‖W>W ‖2F + ‖E(W>WX0)‖22
,

t

‖W>W ‖2

})

(69)

where c′ := c/2. Next, recall that for any two matrices U and (γ̂ − γ) such that U(γ̂ − γ)
exists, we have ‖U(γ̂ − γ)‖F 6 ‖U‖2 ‖γ̂ − γ‖F . This implies,

‖W>W ‖2F 6 ‖W ‖22 ‖W ‖2F , (70)

Moreover, by the submultiplicativity of the matrix `2 norm,

‖W>W ‖2 6 ‖W>‖2‖W ‖2 = ‖W ‖22 (71)

and
‖E(W>WX0)‖22 = ‖W>

E(WX0)‖22 6 ‖W ‖22 · ‖E(WX0)‖22. (72)
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It follows from (69), (70), (71) and (72), that:

P

(

X>
J HJ,JXJ < E

(

X>
J HJ,JXJ |XI

)

− t
∣

∣

∣XI

)

6 2 exp

(

− c′

‖FA‖22
· min

{

t2

‖FA‖2F + ‖E [WX0] ‖22
, t

})

. (73)

Since ‖FA‖22 6 ‖F ‖22‖A‖22 6 1, ‖FA‖2F 6 N‖FA‖22 6 N , and ‖E [WX0] ‖22 6 E‖WX0‖22 6
‖FA‖22 E‖X0‖22 6 N , we can conclude from (73) that:

P

(

X>
J HJ,JXJ < E

(

X>
J HJ,JXJ |XI

)

− t
∣

∣

∣
XI

)

6 2 exp

(

−c′ · min

{

t2

2N
, t

})

. (74)

Next, let us define y := H>
I,JXI . Then,

X>
I HI,JXJ − E

(

X>
I HI,JXJ |XI

)

= y>XJ − E(y>XJ |XI).

By Lemma 4.4 in Chatterjee (2016), Dobrushin’s interdependence matrix for the model
XJ |XI is given by 8D, where D denotes the interaction matrix for the Ising model XJ |XI .
Since ‖8D‖2 6 1

2 , by Theorem 4.3 in Chatterjee (2016),

P

(

y>XJ < E(y>XJ |XI) − t
∣

∣

∣
XI

)

6 2 exp

(

− t2

8‖y‖22

)

. (75)

Using the submultiplicativity of the matrix `2 norm and the fact that the spectral norm
of a matrix is always greater than or equal to the spectral norm of any of its submatrices
gives,

‖y‖22 = ‖H>
I,JXI‖22 6 ‖H>

I,J‖22 · ‖XI‖22 6 N‖H‖22 6 N‖W ‖42 = N‖FA‖42 6 N. (76)

Combining (75) and (76),

P

(

y>XJ < E(y>XJ |XI) − t
∣

∣

∣
XI

)

6 2 exp

(

− t2

8N

)

. (77)

Finally, combining (74), (77), and (65) gives,

P

(

X>HX < E

(

X>HX|XI

)

− t
∣

∣

∣
XI

)

6 2 exp

(

−c′ · min

{

t2

8N
,
t

2

})

+ 2 exp

(

− t2

128N

)

.

This completes the proof of Lemma 18.

To complete the proof of (57), we choose J as in Lemma 17 and apply Lemma 18 with
t = 1

2E(‖Fm‖22|XJc). This implies, there exists a constant C, depending only on Θ,M and
s, such that

P

(

1

N
‖Fm‖22 >

C‖A‖2F
N

∣

∣

∣XJc

)

= 1 − e−Ω(‖A‖4F /N).

This proves (57) and completes the proof of Lemma 14. �
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Appendix B. Proof of Theorem 2

Recall the definition of the log-pseudo-likelihood function Lβ,N (·) from (10). As before, the
proof of Theorem 1 entails showing the following: (1) concentration of the gradient of Lβ,N

and (2) restricted strong concavity of Lβ,N .

The concentration of the gradient ∇Lβ,N follows by arguments similar to Lemma 8.
Towards this, recall the definition of the functions φi,s : CN → R, for 1 6 i 6 N and

1 6 s 6 d, from (31). Note that ∇Lβ,N = (
∂Lβ,N

∂θ1
, . . . ,

∂Lβ,N

∂θd
)>, where

∂Lβ,N

∂θs
=
∑N

i=1 φi,s(X)
for 1 6 s 6 d. For k ∈ [N ], recall from Lemma 13 the definition of

ck :=
2|Zk,s|
N

+
2|β|
N

N
∑

i=1

|Zi,saik| ,

where s ∈ [d]. Therefore, for s ∈ [d],

N
∑

k=1

c2k .
1

N2

N
∑

k=1

Z2
k,s +

β2

N2

N
∑

k=1

(

N
∑

i=1

|Zi,saik|
)2

6
1

N
max
16s6d

1

N

N
∑

k=1

Z2
k,s +

β2

N2

N
∑

k=1

(

N
∑

i=1

Z2
i,s|aik|

N
∑

i=1

|aik|
)

(by the Cauchy-Schwarz inequality)

6
1

N
max
16s6d

1

N

N
∑

k=1

Z2
k,s +

(

max
16k6N

N
∑

i=1

|aik|
)

β2

N2

N
∑

i=1

Z2
i,s

N
∑

k=1

|aik|

6
1

N

{

max
16s6d

1

N

N
∑

k=1

Z2
k,s + β2‖A‖21 max

16s6d

1

N

N
∑

i=1

Z2
i,s

}

.β,C
1

N
,

where the last holds with probability 1 under Assumptions 1 and 4. Then by analogous
arguments as in Lemma 8 it follows that there exists δ > 0 such that with λ := δ

√

log d/N
the following holds:

P

(

‖∇Lβ,N (θ)‖∞ >
λ

2

)

= o(1), (78)

where the o(1)-term goes to infinity as d→ ∞.

To establish the strong concavity of Lβ,N we consider the second-order Taylor expansion:
For any η ∈ R

d,

Lβ,N (θ + η) − Lβ,N (θ) −∇Lβ,N (θ)>η =
1

2
η>∇2Lβ,N (θ + tη)η,
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for some t ∈ (0, 1). Computing the Hessian matrix ∇2Lβ,N (θ + tη) gives,

Lβ,N (θ + η) − Lβ,N (θ) −∇Lβ,N (θ)>η

=
1

2N

N
∑

i=1

η>ZiZ
>
i η

cosh2(βmi(X) + (θ + tη)>Zi)

>
1

2N

N
∑

i=1

η>ZiZ
>
i η

cosh2(|β|‖A‖∞ + (θ + tη)>Zi)

(using |βmi(X)| 6 |β|||A||∞)

=
1

2N

N
∑

i=1

〈η,Zi〉2
1

cosh2(|β|‖A‖∞ + (θ + tη)>Zi)

=
1

2N

N
∑

i=1

〈η,Zi〉2ψ(〈θ,Zi〉 + t〈η,Zi〉), (79)

where ψ(x) := sech2(|β|‖A‖∞ + x).

Proposition 19 Suppose the assumptions of Theorem 2 hold. Then there exists positive
constants ν, c0 (depending on κ1, κ2, β, and Θ) such that for all t ∈ (0, 1),

1

N

N
∑

i=1

〈η,Zi〉2ψ(〈θ,Zi〉 + t〈η,Zi〉) > ν‖η‖22 − c0RN‖η‖21,

with probability at least 1 − o(1), for all η ∈ R
d with ‖η‖2 6 1.

The proof of Proposition 19 is given in Section B.1. Here we use it to complete the proof
of Theorem 2. Note that by (79) and Proposition 19, for any η ∈ R

d with ‖η‖2 6 1,

Lβ,N (θ + η) − Lβ,N (θ) −∇Lβ,N (θ)>η & ν‖η‖22 − c0RN‖η‖21

This establishes the restricted strong convexity (RSC) property for pseudo-likelihood loss
function Lβ,N (·). Therefore, by Wainwright (2019, Corollary 9.20), whenever RNs =

s
√

log d/n = o(1), then when the event {‖∇LN (θ̂)‖∞ 6 λ
2} happens,

‖θ̂ − θ‖22 .ν sλ
2 .ν,δ

s log d

n
and ‖θ̂ − θ‖1 .ν sλ .ν,δ s

√

log d

n
. (80)

Since the event {‖∇LN (θ̂)‖∞ 6 λ
2} happens with probability 1 − o(1) by (78) (jointly over

the randomness of the data and the covariates), the bounds in (80) hold with probability
1 − o(1), which completes the proof of Theorem 2.

B.1 Proof of Proposition 19

Consider a fixed vector η ∈ R
d with ‖η‖2 = r ∈ (0, 1] and set L = L(r) := Kr, for a

constant K > 0 to be chosen. Since the function φL(u) := u2I{|u| 6 2L} 6 u2 and ψ is
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positive,

1

N

N
∑

i=1

〈η,Zi〉2ψ(〈θ,Zi〉 + t〈η,Zi〉) >
1

N

N
∑

i=1

ψ(〈θ,Zi〉 + t〈η,Zi〉)φL(〈η,Zi〉)1 {|〈θ,Zi〉| 6 T} ,

where T is second truncation parameter to be chosen. Note that on the events {|〈η,Zi〉| 6
2L} and {|〈θ,Zi〉| 6 T} one has,

|〈θ,Zi〉 + t〈η,Zi〉| 6 T + 2L 6 T + 2K,

since t, r ∈ [0, 1]. This implies,

1

N

N
∑

i=1

〈η,Zi〉2ψ(〈θ,Zi〉 + t〈η,Zi〉)

>
1

N

N
∑

i=1

ψ(〈θ,Zi〉 + t〈η,Zi〉)φL(〈η,Zi〉)1 {|〈θ,Zi〉| 6 T}

>
γ

N

N
∑

i=1

φL(〈η, Zi〉)1 {|〈θ,Zi〉| 6 T} , (81)

where γ := min|u|6T+2K ψ(u) > 0. Based on this lower bound, to prove Proposition 19 it is

sufficient to show that for all r ∈ (0, 1] and for η ∈ R
d with ‖η‖2 = r,

1

N

N
∑

i=1

φL(r)(〈η,Zi〉)1 {|〈θ,Zi〉| 6 T} > c1r
2 − c2RN‖η‖1r, (82)

holds with probability 1 − o(1), where L(r) = Kr and some positive constants c1, c2. This
is because when (82) holds by substituting ‖η‖2 = r and using (81) gives,

1

N

N
∑

i=1

〈η,Zi〉2ψ(〈θ,Zi〉 + t〈η,Zi〉) > ν‖η‖22 − c0RN‖η‖21,

where the constants (ν, c0) depend on (c1, c2, γ) and we use the inequality ‖η‖2 6 ‖η‖1. In
fact, it suffices to prove (82) for r = 1, that is,

1

N

N
∑

i=1

φK(〈η,Zi〉)1 {|〈θ,Zi〉| 6 T} > c1 − c2RN‖η‖1, (83)

holds with probability 1 − o(1). This is because given any vector in R
d with ‖η‖2 = r > 0,

we can apply (83) to the rescaled unit-norm vector η/r to obtain

1

N

N
∑

i=1

φK(〈η/r,Zi〉)1 {|〈θ,Zi〉| 6 T} > c1 − c2RN
‖η‖1
r

. (84)

Noting that φK(u/r) = φL(1)(u/r) = (1/r)2φL(r)(u) and multiplying both sides of (84) by
r2 gives (82).
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B.1.1 Proof of (83)

Define a new truncation function:

φ̄K(u) = u21 {|u| 6 K} + (u− 2K)21 {K < u 6 2K} + (u+ 2K)21 {−2K 6 u < −K} .

Note this function is Lipschitz with parameter 2K. Moreover, since φK > φ̄K , to prove (83)
it suffices to show that for all vectors η ∈ R

d of unit norm,

1

N

N
∑

i=1

φ̄K(〈η,Zi〉)1 {|〈θ,Zi〉| 6 T} > c1 − c2RN‖η‖1, (85)

holds with probability 1 − o(1). To this end, for a given `1 radius b > 1, define the random
variable

Yn(b) := sup
‖η‖2=1

b
2
6‖η‖16b

∣

∣

∣

∣

∣

1

N

N
∑

i=1

φ̄K(〈η,Zi〉)1 {|〈θ,Zi〉| 6 T} − E
(

φ̄K(〈η,Z〉)1 {|〈θ,Z〉| 6 T}
)

∣

∣

∣

∣

∣

.

Lemma 20 Under the assumptions of Theorem 2 the following hold:

(1) By choosing K2 = 8κ2/κ1 and T 2 = 8κ2Θ
2/κ1,

E
(

φ̄K(〈η,Z〉)1 {|〈θ,Z〉| 6 T}
)

>
3

4
κ1.

(2) There exist a positive constant c2 such that

P

(

Yn(b) >
1

2
κ1 +

1

2
c2RNb

)

6 e−Oκ1,κ2
(n).

Lemma 20 implies that with probability 1−e−Oκ1,κ2
(n) for all η ∈ R

d such that ‖η‖2 = 1
and b

2 6 ‖η‖1 6 b, we have

1

N

N
∑

i=1

φ̄K(〈η,Zi〉)1 {|〈θ,Zi〉| 6 T} > E
(

φ̄K(〈η,Z〉)1 {|〈θ,Z〉| 6 T}
)

− 1

2
κ1 −

1

2
c2RNb

>
1

4
κ1 − c2RN‖η‖1. (86)

This establishes the bound (85) with c1 = κ1/4 for all vectors η ∈ R
d with ‖η‖2 = 1 and

b
2 6 ‖η‖1 6 b, with probability 1 − e−Oκ1,κ2

(n).

We first prove Lemma 20. Then we will extend the bound in (85) for all vectors η ∈ R
d

with ‖η‖2 = 1 using a peeling strategy to complete the proof.
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Proof of Lemma 20 (1)

To show Lemma 20 (1) it suffices to show that

E
(

φ̄K(〈η,Z〉)
)

>
7

8
κ1 and E

(

φ̄K(〈η,Z〉)1 {|〈θ,Z〉| > T}
)

6
1

8
κ1. (87)

Indeed, if these two inequalities hold, then

E
(

φ̄K(〈η,Z〉)1 {|〈θ,Z〉| 6 T}
)

= E
(

φ̄K(〈η,Z〉)
)

− E
(

φ̄K(〈η,Z〉)1 {|〈θ,Z〉| > T}
)

>
7

8
κ1 −

1

8
κ2 =

3

4
κ1.

To prove first inequality in (87), note that

E
(

φ̄K(〈η,Z〉)
)

> E
(

〈η,Z〉21 {|〈η,Z〉| 6 K}
)

= E
(

〈η,Z〉2
)

− E
(

〈η,Z〉21 {|η,Z| > K}
)

> κ1 − E
(

〈η,Z〉21 {|〈η,Z〉| > K}
)

. (88)

To lower bound the second term, applying the Cauchy-Schwarz inequality yields,

E
(

〈η,Z〉21 {|〈η,Z〉| > K}
)

6
√

E (〈η,Z〉4)
√

P (|〈η,Z〉| > K)

6
E(〈η,Z〉4)

K2
(by Markov’s inequality)

6
κ2
K2

,

using the assumption E(〈η,Z〉4) 6 κ2, for all η such that ‖η‖2 6 1. Therefore, setting
K2 = 8κ2/κ1 and using (88) proves the first inequality in (87).

Now, we turn to prove the second inequality in (87). For this note that φ̄K (〈η,Z〉) 6

〈η,Z〉2 and by Markov’s inequality,

P (|〈θ,Z〉| > T ) 6
κ2‖θ‖42
T 4

.

Then the Cauchy-Schwarz inequality implies,

E
(

φ̄K (〈η,Z〉)1 {|〈θ,Z〉| > T}
)

6
κ2‖θ‖22
T 2

6
κ2Θ

2

T 2

Thus setting T 2 = 8κ2Θ
2/κ1 shows the second inequality in (87).

Proof of Lemma 20 (2)

We begin by recalling the functional Hoeffding’s inequality. Towards this, let F be a sym-
metric collection of functions from R

d to R, that is, if f ∈ F , then −f ∈ F . Suppose
X1, X2, . . . , XN are i.i.d. from a distribution supported on X ⊆ R

d and let

Z := sup
f∈F

{

1

N

N
∑

i=1

f(Xi)

}

.

Then we have the following result:

51



Mukherjee, Niu, Halder, Bhattacharya, and Michailidis

Lemma 21 ((Wainwright, 2019, Theorem 3.26)) For each f ∈ F assume that there
are real numbers af 6 bf such that f(x) ∈ [af , bf ] for all x ∈ X . Then for all δ > 0,

P (Z − E(Z) > δ) 6 exp

(

−nδ
2

4L2

)

where L2 := supf∈F

{

(bf − af )2
}

.

For η ∈ R
d such that ‖η‖2 = 1 and ‖η‖1 6 b, define

fη(Z) := φ̄K(〈η,Z〉)1 {|〈θ,Z〉| 6 T} − E
(

φ̄K(〈η,Z〉)1 {|〈θ,Z〉| 6 T}
)

Note that

Yn(b) = sup
‖η‖2=1

b
2
6‖η‖16b

{∣

∣

∣

∣

∣

1

N

N
∑

i=1

fη(Zi)

∣

∣

∣

∣

∣

}

.

Since |fη(z)| 6 K2, for any positive constant c3 by Lemma 21,

P

(

Yn(b) − E(Yn(b)) > c3RNb+
1

2
κ1

)

6 e−c4nR2
N b2−c4n 6 e−c4n, (89)

where c4 is a positive constant depending on K and c3. Now, suppose {εi}ni=1 be a se-
quence of i.i.d. Rademacher variables. Then a symmetrization argument (Wainwright,
2019, Proposition 4.11) implies that

E (Yn(b)) 6 2EZ,ε









sup
‖η‖2=1

b
2
6‖η‖16b

∣

∣

∣

∣

∣

1

N

N
∑

i=1

εiφ̄K (〈η,Zi〉)1 {|〈θ,Zi〉| 6 T}
∣

∣

∣

∣

∣









.

Since 1 {|〈θ,Zi〉| 6 T} 6 1 and φ̄K is Lipschitz with parameter 2K, the contraction principle
yields

E (Yn(b)) 6 8KEZ,ε









sup
‖η‖2=1

b
2
6‖η‖16b

∣

∣

∣

∣

∣

1

N

N
∑

i=1

εi〈η,Zi〉
∣

∣

∣

∣

∣









6 8KbEZ,ε

(

sup
‖η̄‖161

∣

∣

∣

∣

∣

〈

η̄,
1

N

N
∑

i=1

εiZi

〉∣

∣

∣

∣

∣

)

(where η := η/‖η‖1)

= 8KbE

(∥

∥

∥

∥

∥

1

N

N
∑

i=1

εiZi

∥

∥

∥

∥

∥

∞

)

= 8KbRN ,

where the final step follows by applying Hölder’s inequality. Then choosing c2 = 32K gives,

P

(

Yn(b) >
1

2
κ1 +

1

2
c2RNb

)

6 P

(

Yn(b) − E(Yn(b)) >
1

2
κ1 + 8KbRN

)

6 e−Oκ1,κ2
(n),

using (89) with c3 = 8K. This proves Lemma 20 (2).
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Final Details: Peeling Strategy

Recall from (86) that we have proved (85) holds for any fixed b such that b
2 6 ‖η‖1 6 b and

‖η‖2 6 1. The final step in the proof of Proposition 19 is to remove the restriction on the
`1 norm of η. For this, we apply a peeling strategy as in the proof of Wainwright (2019,
Theorem 9.34). To this end, consider the set

S` :=

{

η ∈ R
d : 2`−1 6

‖η‖1
‖η‖2

6 2`
}

∩
{

η ∈ R
d : ‖η‖2 6 1

}

,

for ` = 1, . . . , dlog2(
√
d)e. Then for η ∈ R

d ∩ S` by (86),

1

N

N
∑

i=1

〈η,Zi〉2ψ(〈θ,Zi〉 + t〈η,Zi〉) > ν‖η‖22 − c0RN‖η‖21,

with probability at least 1 − e−Oκ1,κ2
(n). Then by a union bound,

1

N

N
∑

i=1

〈η,Zi〉2ψ(〈θ,Zi〉 + t〈η,Zi〉) > ν‖η‖22 − c0RN‖η‖21,

for all η ∈ R
d such that ‖η‖2 6 1, with probability at least 1−dlog2(d)ee−Oκ1,κ2

(n) = 1−o(1).
This completes the proof of Proposition 19.

Appendix C. Proofs from Section 3

In this section, we prove the results stated in Section 3. We begin with the proof of Theorem
3 in Section C.1. Corollary 5 is proved in Section C.2.

C.1 Proof of Theorem 3

The proof of Theorem C.1 follows along the same lines as in Theorem 1, so to avoid repetition
we sketch the steps and highlight the relevant modifications. As in the proof of Theorem
C.1, the first step is to show the concentration of ∇LN (γ). Towards this, following the
proof of Lemma 13 shows that Qr (as defined in (36)) is Oβ(poly(dmax)/N)-Lipschitz, for
each r ∈ [`]. Therefore, by arguments as in Lemma 13,

P

(∣

∣

∣

∣

∣

N
∑

i=1

φi(X)

∣

∣

∣

∣

∣

> t

)

6 P

(

max
r∈[`]

|Qr(X)| > t`′

`

)

. e−Oβ,M (Nt2/poly(dmax)).

since ` = O(logN) and `′/` = Θ(1). In this case, following the notations in the proof of
Lemma 8, we have `/`′ = Θ(dmax). Similarly, for s ∈ [d],

P

(∣

∣

∣

∣

∣

N
∑

i=1

φi,s(X)

∣

∣

∣

∣

∣

> t

)

. e−Oβ,M (Nt2/poly(dmax)).
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Hence, choosing λ := δpoly(dmax)
√

log(d+ 1)/N and t := λ/2 gives, for some constant C
depending only on β and M ,

P

(∣

∣

∣

∣

∣

N
∑

i=1

φi(X)

∣

∣

∣

∣

∣

>
λ

2

)

6 (d+ 1)−Cδ2/4 and P

(∣

∣

∣

∣

∣

N
∑

i=1

φi,j(X)

∣

∣

∣

∣

∣

>
λ

2

)

6 (d+ 1)−Cδ2/4,

for all j ∈ [s]. A final union bound over the (d+ 1) coordinates now shows that

P

(

‖∇LN (γ)‖∞ >
λ

2

)

= o(1), (90)

where λ := δpoly(dmax)
√

log(d+ 1)/N as above and the o(1)-term goes to infinity as d →
∞. This establishes the concentration of the gradient.

Next, we need to show the strong concavity of the Hessian. To this end, first note that
since |E(GN )| = O(N) and the number of non-isolated vertices of GN is Ω(N), there exist
constants L1, L2 > 0, such that |E(GN )| 6 L1N , and the number of non-isolated vertices
of GN is larger than L2N , for all N large enough. For D > 1 define,

VN (D) := {v ∈ V (GN ) : dv ∈ [1, D]}.

Note that

|VN (D)| > N(1 − (2L1/D)) −N(1 − L2) = N(L2 − (2L1/D)),

since GN has at least N(1−(2L1/D)) vertices with degree not exceeding D, among which at
mostN(1−L2) are isolated. Hereafter, we chooseD := d4L1/L2e, so that |VN (D)| > L2N/2.
Then, with notations as in (45) we have,

LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ)

=
1

2
(γ̂ − γ)>∇2LN (γ)(γ̂ − γ)

=
1

2N

N
∑

i=1

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

cosh2(βmi(X) + θ>Zi)

>
1

2N

∑

i∈VN (D)

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

cosh2(βmi(X) + θ>Zi)

>
1

2N

∑

i∈VN (D)

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

cosh2(|β|D + (D +M)‖γ̂ − γ‖1 + sMΘ)
, (91)

where the last step uses the bound in (47) and the bound |βmi(X)| 6 |β||mi(X)| 6 |β|D 6

|β|D +D‖γ̂ − γ‖1. Next, using the bound |VN (D)| > L2N/2 in (91) gives,

LN (γ̂) − LN (γ) −∇LN (γ)>(γ̂ − γ)

>
L2

4 cosh2(|β|D + (D +M)‖γ̂ − γ‖1 + sMΘ)
· 1

|VN (D)|
∑

i∈VN (D)

(γ̂ − γ)>UiU
>
i (γ̂ − γ)

=
L2

4 cosh2(|β|D + (D +M)‖γ̂ − γ‖1 + sMΘ)
(γ̂ − γ)>G̃(γ̂ − γ), (92)
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where

G̃ :=
1

|VN (D)|

(

m̃>m̃ m̃>Z̃

Z̃>m̃ Z̃>Z̃

)

,

with m̃ := (mi(X))>i∈VN (D) and Z̃ = (Zi)
>
i∈VN (D). The calculation in (92) implies that in

order to establish the strong concavity of the Hessian in the setting of Theorem 3, we need
to show λmin(G̃) & 1 with probability going to 1, where λmin(G̃) denotes the minimum
eigenvalue of G̃. For this step, we follow the steps of Lemma 14 with the matrix F replaced
by F̃ := I − Z̃(Z̃>Z̃)−1Z̃>. Then, repeating the proof of (63) in Lemma 17, with A

replaced by Ã := A|VN (D)×[N ], we can find a set J ⊆ [N ] such that

E

(

‖F̃ m̃‖22

∣

∣

∣
XJc

)

& Υ2
(

‖Ã‖2F − d · polylog(N)
)

,

since ‖Ã‖2 6 ‖A‖∞ = O(polylog(N)). This implies,

E

(

‖F̃ m̃‖22

∣

∣

∣
XJc

)

& N, (93)

since ‖Ã‖2F > |VN (D)| & N (because every vertex in VN (D) has degree at least 1) and

d = o(N). The final step is to establish that ‖F̃ m̃‖ concentrates around ‖F̃ m̃‖22

∣

∣

∣
XJc ,

conditional on XJc . This follows by repeating the proof of Lemma 18, which introduces an
extra 1/polylog(N) factor in each of the two exponential terms in the RHS of (64), since
‖Ã‖2 6 ‖A‖∞ = O(polylog(N)). This, combined with (93), shows

P(λmin(G̃) > C) > 1 − e−Ω(N/polylog(N)), (94)

for some constant C > 0. The proof of Theorem 3 can be now completed using (90) and
(94), as in Theorem 1.

C.2 Proof of Corollary 5

To prove Corollary 5 we verify that the hypotheses of Theorem 3 are satisfied. Note that
we can write

|E(GN )| =
∑

16u<v6N

Buv,

where Buv ∼ Ber(puv), and {Buv}16u<v6N are independent. This implies, E|E(GN )| =
O(N) and Var(|E(GN )|) = O(N), since sup16i,j6N pij = O(1/N) by (15). Hence, by
Chebyshev’s inequality,

|E(GN )| 6 E|E(GN )| +N = O(N),

with probability 1 − o(1).
Next, we will show that dmax = Õ(1) holds with high probability. To this end, define

ηu =
∑

v 6=u puv, for 1 6 u 6 N . Clearly, by assumption (15), max16u6N ηu = O(1). Next,
we establish that max16u6N ηu = Ω(1). Towards this, note that by assumption (16) there
exists ε ∈ (0, 1) and u ∈ V (GN ) such that,

lim sup
N→∞

N
∑

v=1

log (1 − puv) < log ε.
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Next, using the inequality log(1−x) > −x/(1−x), for all x < 1, and taking N large enough
such that supu,v puv < 1/2, gives

lim sup
N→∞

(

−2

N
∑

v=1

puv

)

6 log ε =⇒ lim inf
N→∞

ηu >
1

2
log

(

1

ε

)

.

This shows that max16u6N ηu = Ω(1). Therefore, by Proposition 1.11 in Benaych-Georges
et al. (2019), dmax 6 O(logN) with probability 1 − o(1).

Finally, we show that the number of non-isolated vertices of GN is Ω(N) with high
probability. To this end, for each v ∈ V (GN ), define Yv := 1{dv = 0}. Then, IN :=
∑N

v=1 Yv is the total number of isolated vertices of GN . Note that Yv ∼ Ber(
∏N

u=1(1−puv)).
Therefore, by (16),

E(IN ) =

N
∑

u=1

N
∏

v=1

(1 − puv) 6 αN,

for some α ∈ (0, 1) and all large N enough. Next, note that for any two distinct vertices
u, v ∈ V (GN ),

Cov(Yu, Yv) = puv (1 − puv)
∏

w/∈{u,v}

[(1 − puw) (1 − pvw)] 6 puv = O

(

1

N

)

.

Similarly, it can be checked that Var(Yv) = O(1), for 1 6 v 6 N . This implies, Var(IN ) =
O(N). Hence, by Chebyshev’s inequality,

P

(

IN >

(

1 + α

2

)

N

)

6 P

(

IN > E(IN ) +

(

1 − α

2

)

N

)

6
Var(IN )
(

1−α
2

)2
N2

= O

(

1

N

)

.

This shows that the number of non-isolated vertices of GN is at least (1 − α)N/2 with
probability 1 − o(1). This completes the verification of the hypotheses of Theorem 3 and
hence, Corollary 5 follows from Theorem 3.

Appendix D. Proofs of Technical Lemmas

In this section we collect the proofs of various technical lemmas. The section is organized as
follows: In Appendix D.1 we prove Lemma 13. The proof of Lemma 11 is given in Appendix
D.2. In Appendix D.3 we prove a variance lower bound for linear functions.

D.1 Proof of Lemma 13

To begin with, recall from (36) that

Qr(X) = −
1

N

∑

i∈Ir

mi(X)
[

Xi − tanh(βmi(X) + θ>Zi)
]

.

Hence, for any two X,X ′ ∈ {−1, 1}N ,

|Qr(X) −Qr(X
′)| = T1 + T2, (95)
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where

T1 =
1

N

∣

∣

∣

∣

∣

∑

i∈Ir

{

mi(X)Xi −mi(X
′)X ′

i

}

∣

∣

∣

∣

∣

T2 =
1

N

∣

∣

∣

∣

∣

∑

i∈Ir

{

mi(X) tanh(βmi(X) + θ>Zi) −mi(X
′) tanh(βmi(X

′) + θ>Zi)
}

∣

∣

∣

∣

∣

. (96)

Now, assume that X and X ′ differ only in the k-th coordinate, for some k ∈ [N ]. Then

T1 =

∣

∣

∣

∣

∣

∣

∑

i∈Ir

N
∑

j=1

aij(XiXj −X ′
iX

′
j)

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∑

i∈Ir

aik(XiXk −X ′
iX

′
k)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

N
∑

j=1

akj(XkXj −X ′
kX

′
j)

∣

∣

∣

∣

∣

∣

6 2
∑

i∈Ir

|aik| + 2

N
∑

j=1

|akj |

6 4

∣

∣

∣

∣

∣

N
∑

i=1

aik

∣

∣

∣

∣

∣

6 4‖A‖1 6 4 (by (23)). (97)

Next, we proceed to bound T2. Towards this note that

T2 6 T21 + T22, (98)

where

T21 :=

∣

∣

∣

∣

∣

∑

i∈Ir

mi(X)
{

tanh(βmi(X) + θ>Zi) − tanh(βmi(X
′) + θ>Zi)

}

∣

∣

∣

∣

∣

T22 :=

∣

∣

∣

∣

∣

∑

i∈Ir

aik(Xk −X ′
k) tanh(βmi(X

′) + θ>Zi)

∣

∣

∣

∣

∣

,

since mi(X) −mi(X
′) = aik(Xk −X ′

k). Hence, using | tanhx− tanh y| 6 |x− y| gives,

T21 6 |β|
∑

i∈Ir

|mi(X)|
∣

∣mi(X) −mi(X
′)
∣

∣ 6 2|β|
∑

i∈Ir

|mi(X)||aik| 6 2|β|‖A‖∞‖A‖1 6 2|β|.

(99)

and using tanhx 6 1 gives,

T22 6 2
∑

i∈Ir

|air| 6 2‖A‖1 6 2. (100)

Combining (95), (96), (97), (98), (99), (100) the result in Lemma 13 (1) follows.
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Next, we prove (2). To begin with, recall from (38) that

Qr,s(X) = −
1

N

∑

i∈Ir

Zi,s

[

Xi − tanh(βmi(X) + θ>Zi)
]

.

Hence, for any two X,X ′ ∈ {−1, 1}N differing in the k-th coordinate only,

|Qr,s(X) −Qr,s(X
′)| 6

1

N

∣

∣

∣

∣

∣

∑

i∈Ir

Zi,s(Xi −X ′
i)

∣

∣

∣

∣

∣

+
1

N

∣

∣

∣

∣

∣

∑

i∈Ir

Zi,s

[

tanh(βmi(X) + θ>Zi) − tanh(βmi(X
′) + θ>Zi)

]

∣

∣

∣

∣

∣

6
2|Zk,s|

N
+

|β|

N

∣

∣

∣

∣

∣

∑

i∈Ir

Zi,s(mi(X) −mi(X
′))

∣

∣

∣

∣

∣

6
2|Zk,s|

N
+

2|β|

N

N
∑

i=1

|Zi,saik| ,

as desired.

D.2 Proof of the Lemma 11

Suppose that X comes from the model:

Pβ,h(X) ∝ exp

(

N
∑

i=1

hiXi + X>DX

)

, (101)

which is assumed to be (R,Υ)-Ising.We will apply Lemma 17 in Dagan et al. (2021) on the
matrix

D := ((dij))16i,j6N := A/R ,

where A is the interaction matrix corresponding to the distribution of X. Note that D

satisfies the hypotheses of Lemma 17 in Dagan et al. (2021). For η ∈ (0, R), define η′ := η/R.
This ensures that η′ ∈ (0, 1). By Lemma 17 in Dagan et al. (2021), there exist subsets
I1, . . . , I` ⊆ [N ] with ` . R2 logN/η2, such that for all 1 6 i 6 N , |{j ∈ ` : i ∈ Ij}| =
dη`/8Re, and for all j ∈ `,

‖D|Ij×Ij‖∞ 6 η′ =⇒ ‖A|Ij×Ij‖∞ 6 η, (102)

where for a matrix M = ((mij)) ∈ R
s×t and for sets S ⊆ {1, . . . , s}, T ⊆ {1, . . . , t}, we

define M |S×T := ((mij))i∈S,j∈T ∈ R
|S|×|T |.

Now, for j ∈ [`],

P(XIj = y|XIcj
= x−Ij )

P(XIj = y′|XIcj
= x−Ij )

=
exp

(

y>
Ij
D|Ij×IjyIj +

∑

u∈Ij ,v /∈Ij
duvyuxv +

∑

i∈Ij
hiyi

)

exp
(

y>
Ij
D|Ij×IjyIj +

∑

u∈Ij ,v /∈Ij
duvy′uxv +

∑

i∈Ij
hiy′i

) . (103)
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Observe that the RHS of (103) is the probability mass function of an Ising model µ on
{−1, 1}|Ij | with interaction matrix D|Ij×Ij and external magnetic field term at site i given
by

h′i =
∑

v/∈Ij

Divxv + hi.

Recall from (102) that ‖A|Ij×Ij‖∞ 6 η. The next step is to show that if Y ∼ µ, then

min
16u6|Ij |

Var(Yu|Y−u) > Υ .

Towards this, note that for any 1 6 u 6 |Ij |,

P(Yu = 1|Y−u = y−u) = P(XIuj
= 1|XIj\{Iuj }

= y−u,X−Ij = x−Ij )

where Iuj is the u-th smallest element of Ij . Hence,

Var(Yu|Y−u = y−u) = Var(XIuj
|XIj\{Iuj }

= y−u,X−Ij = x−Ij ) > Υ,

since (101) is a (R,Υ)-Ising model. This implies that XIj |XIcj
is (η,Υ)-Ising model, for

j ∈ [`].
To prove (33), let us pick j ∈ [`] uniformly at random, and note that for any vector a,

E





∑

i∈Ij

ai



 =

N
∑

i=1

aiP(Ij 3 i) =

N
∑

i=1

ai
dη`/8Re

`
>

η

8R

N
∑

i=1

ai.

This means that there is a fixed sample point j, such that

∑

i∈Ij

ai >
η

8R

N
∑

i=1

ai.

This completes the proof of Lemma 11.

D.3 Variance Lower Bound for Linear Functions

In this section we derive a variance lower bound for linear functions in (R,Υ)-Ising models.
This follows the proof of Lemma 10 in Dagan et al. (2021) adapted to our setting. We begin
with the following definition: For two probability measures µ and ν, the `1-Wasserstein
distance is defined as:

W1(µ, ν) := min
π∈Cµ,ν

E(U ,V )∼π‖U − V ‖1,

where Cµ,ν denotes the set of all couplings of the probability measures µ and ν.

Lemma 22 Let X ∈ {−1, 1}N be a sample from an (R,Υ)- Ising model for some R < 1/8.
Then, for each i ∈ [N ],

W1

(

PX−i|Xi=1, PX−i|Xi=−1

)

6
16R

1 − 8R
.
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Proof It follows from Lemma 4.9 in Dagan et al. (2019), that there exists a coupling π of
the conditional measures PX−i|Xi=1 and PX−i|Xi=−1, such that:

E(U ,V )∼π [dH(U ,V )] 6
α

1 − α
, (104)

where dH denotes the Hamming distance and α the Dobrushin coefficient. By Lemma 4.4
in Chatterjee (2016), we know that Dobrushin’s interdependence matrix is given by 8D.
Hence, it follows from (104) that (Dobrushin’s coefficient in Theorem 2.3 in Dagan et al.
(2019) is given by α = 8‖D‖2, see Theorem 4.3 in Chatterjee (2016)),

W1

(

PX−i|Xi=1, PX−i|Xi=−1

)

6 2 E(U ,V )∼π [dH(U ,V )] 6
16‖D‖2

1 − 8‖D‖2
6

16R

1 − 8R
.

which completes the proof of the lemma.

Using the above lemma, we now prove the desired variance lower bound:

Lemma 23 Let X be a sample from an (R,Υ)-Ising model for some R > 0. Then for any
vector a ∈ R

N ,

Var(a>X) &
‖a‖22Υ

2

R
.

Proof First, consider the case R 6 Υ/32 6 1/32. In this case, 1 − 8R > 3/4, so

8R

1 − 8R
6

Υ

3
(105)

Now, it follows from Lemma 22 that for every i,

∑

j∈[N ]\{i}

|E (Xj |Xi = 1) − E (Xj |Xi = −1)| 6
∑

j∈[N ]\{i}

W1

(

PXj |Xi=1,PXj |Xi=−1)
)

6W1

(

PX−i|Xi=1, PX−i|Xi=−1

)

6
16R

1 − 8R
. (106)

Next, note that:

Cov(Xi, Xj) = E[(Xi − EXi)Xj ]

= E [(Xi − EXi)E(Xj |Xi)]

= P(Xi = 1)(1 − EXi)E(Xj |Xi = 1) − P(Xi = −1)(1 + EXi)E(Xj |Xi = −1)

=
1 + EXi

2
(1 − EXi)E(Xj |Xi = 1) −

1 − EXi

2
(1 + EXi)E(Xj |Xi = −1)

=
1

2
[1 − (EXi)

2] [E(Xj |Xi = 1) − E(Xj |Xi = −1)]

6
1

2
[E(Xj |Xi = 1) − E(Xj |Xi = −1)] (107)
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Combining (105), (106) and (107), we have for every i,

∑

j∈[N ]\{i}

|Cov(Xi, Xj)| 6
8R

1 − 8R
6

Υ

3
. (108)

Hence, we have by (108),

Var(a>X) >
N
∑

i=1

a2i Var(Xi) −
∑

i 6=j

|aiajCov(Xi, Xj)|

>

N
∑

i=1

a2i Var(Xi) −
∑

i 6=j

(a2i + a2j ) |Cov(Xi, Xj)|

2

=
N
∑

i=1

a2i



Var(Xi) −
∑

j∈[N ]\{i}

|Cov(Xi, Xj)|





>

N
∑

i=1

a2i

(

Υ −
Υ

3

)

=
2Υ

3
‖a‖22 >

‖a‖22Υ
2

R
·

2R

3
&

‖a‖22Υ
2

R
. (109)

Now consider the case R > Υ/32. By Lemma 11, we choose a subset I of [N ] such that
conditioned on XIc , XI is a (Υ/32,Υ)- Ising model, and

‖aI‖
2
2 >

Υ

256R
‖a‖22. (110)

Hence, we have from (109) and (110),

Var
(

a>X|XIc

)

= Var
(

a>
I XI |XIc

)

>
2Υ‖aI‖

2
2

3
>

Υ2‖a‖22
384R

. (111)

Lemma 23 now follows from (111) on observing that Var(a>X) > E
[

Var
(

a>X|XIc
)]

.

D.4 Lipschitz Condition for the Gradient of LN

In this section we show that ∇LN , the gradient of the pseudo-likelihood loss function LN

defined in (5), is Lipschitz.

Lemma 24 Suppose the design matrix Z := (Z1, . . . ,ZN )> satisfies λmax

(

1
NZ>Z

)

=
O(1). Then there exists a constant L > 0 such that for any two γ1,γ2 ∈ R

d+1,

||∇LN (γ1) −∇LN (γ2)||2 6 L||γ1 − γ2||2.

Proof For any two γ1,γ2 ∈ R
d+1, there exists γ∗ ∈ R

d+1 such that

∇LN (γ1) −∇LN (γ2) = (γ1 − γ2)
>∇2LN (γ∗).
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Therefore,

||∇LN (γ1) −∇LN (γ2)||2 6 sup
γ∗∈Rd+1

λmax(∇2LN (γ∗))||γ1 − γ2||2, (112)

where λmax(∇2LN (γ∗)) is the largest eigenvalue of the Hessian matrix ∇2LN (γ∗). Recall
from (45) that

∇2LN (γ∗) =
1

N

N
∑

i=1

UiU
>
i

cosh2(β∗mi(X) + (θ∗)>Zi)
,

where γ∗ = (β∗, (θ∗)>)> and Ui := (mi(X),Z>
i )>, for 1 6 i 6 N . Using sech2(x) 6 1 it

follows that

sup
γ∗∈Rd+1

λmax(∇2LN (γ∗)) 6 λmax

(

1

N

N
∑

i=1

UiU
>
i

)

, (113)

Now, suppose w = (u,v>)> ∈ R
d+1 be such that ||w||2 = 1. Then

1

N

N
∑

i=1

w>UiU
>
i w =

1

N

N
∑

i=1

(w>Ui)
2 =

1

N

N
∑

i=1

(umi(X) + v>Zi)
2

.
1

N

N
∑

i=1

{

u2(mi(X))2 + (v>Zi)
2
}

6
1

N

N
∑

i=1

mi(X)2 +
1

N

N
∑

i=1

v>ZiZ
>
i v.

Note that, since |mi(X)| 6 ||A||∞ 6 1 (by (23)), for 1 6 i 6 N , we have 1
N

∑N
i=1mi(X)2 6

1. Moreover, 1
N

∑N
i=1 v

>ZiZ
>
i v = 1

N v>Z>Zv 6 λmax( 1
NZ>Z) = O(1). This implies

λmax(
1

N

N
∑

i=1

UiU
>
i ) = O(1),

hence by (112) and (113), there exists a constant L > 0 such that

||∇LN (γ1) −∇LN (γ2)||2 6 L||γ1 − γ2||2.

This completes the proof of Lemma 24.
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