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Abstract: (1) Background: With technological advancements, the integration of wireless

sensing and artificial intelligence (AI) has significant potential for real-time monitoring

and intervention. Wireless sensing devices have been applied to various medical areas

for early diagnosis, monitoring, and treatment response. This review focuses on the

latest advancements in wireless, AI-incorporated methods applied to clinical medicine.

(2) Methods: We conducted a comprehensive search in PubMed, IEEEXplore, Embase,

and Scopus for articles that describe AI-incorporated wireless sensing devices for clinical

applications. We analyzed the strengths and limitations within their respective medical

domains, highlighting the value of wireless sensing in precision medicine, and synthesized

the literature to provide areas for future work. (3) Results: We identified 10,691 articles and

selected 34 that met our inclusion criteria, focusing on real-world validation of wireless

sensing. The findings indicate that these technologies demonstrate significant potential

in improving diagnosis, treatment monitoring, and disease prevention. Notably, the use

of acoustic signals, channel state information, and radar emerged as leading techniques,

showing promising results in detecting physiological changes without invasive procedures.

(4) Conclusions: This review highlights the role of wireless sensing in clinical care and

suggests a growing trend towards integrating these technologies into routine healthcare,

particularly patient monitoring and diagnostic support.

Keywords: wireless sensing; artificial intelligence; early diagnosis; healthcare monitoring

1. Introduction

In healthcare, chronic diseases such as diabetes, heart disease, and respiratory illness

require continuous dynamic monitoring to prevent complications and manage symptoms.

Chronic medical conditions currently account for 75% of U.S. healthcare costs, demonstrat-

ing the need for reliable at-home health monitoring solutions for personalized care and

improved quality of life [1]. Currently, traditional healthcare is not equipped to provide

24/7 oversight to patients, especially outside of clinical environments. To improve health

outcomes and facilitate proactive health management, wireless sensing has emerged as a
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technological frontline, enabling not only dynamic symptom monitoring but also proactive

outcome management. In this context, artificial intelligence (AI)-driven wireless sensing

has significant potential to transform healthcare monitoring and interventions, making

healthcare more accessible and responsive to patient needs.

Over the years, medical researchers have tried to develop patient-centered methods

for health monitoring outside clinical settings [2]. Advances in computing power, data

processing, and ultra-high-powered microchips have made wireless sensing a promising

tool for various applications. Broadly, wireless sensing involves devices that emit and/or

receive wireless signals to detect physiological data. Wearable sensors, such as smart

watches, are widely used to monitor vital signs like heart rate, respiratory rate, and oxygen

saturation [3]. Other applications include ambulatory blood pressure monitoring, mobile

cardiac telemetry, and smartphone blood glucose monitoring.

AI plays a crucial role in healthcare wireless sensing by facilitating data processing,

analysis, and interpretation. Through predictive modeling, it identifies trends that enable

personalized, proactive care. The growing demand for contactless healthcare solutions,

especially post-pandemic, has led to AI applications beyond simple vital sign monitoring,

encompassing clinical decision support systems capable of predicting disease exacerbations

or life-threatening events. However, the effectiveness of these approaches is limited by

patient health literacy, compliance, and the need for cumbersome wearable sensors. These

challenges have paved the way for more convenient and reliable contactless methods for

ambulatory health monitoring.

Several review articles have explored wireless sensing methods for health monitoring

and clinical decision-making. Bhatt et al. focused on AI-incorporated mobile health, specif-

ically smartphone applications and mobile sensors [4]. Similarly, Baig et al. conducted a

systematic review of wearable systems, while Kaidi et al. analyzed technical aspects of

wireless sensing system designs [5,6]. Other reviews have covered mental health monitor-

ing with wearables, radar-based vital sign detection methods, and contactless sensors in

hospitals and home settings [7±9].

In this review, we provide a novel and clinically relevant analysis of recent advances

in wireless AI-integrated sensing technologies. We focus on studies that evaluate disease-

specific wireless sensing applications tested in clinical settings. Unlike previous reviews, we

exclude general applications (i.e., vital sign monitoring) of wireless sensing and wearable

devices requiring patient input (i.e., smartphone applications). By synthesizing the latest

developments in the field, we aim to highlight the limitations of current methods and

identify areas for further research, envisioning a future where wireless sensing leads to

precise, efficient, and data-driven patient care.

2. Materials and Methods

A comprehensive search of the literature was performed by accessing PubMed, IEE-

EXplore, Embase, and Scopus. The following inclusion criteria were used to identify the

most clinically relevant studies: (i) integration of AI for signal processing or data analy-

sis; (ii) designed specifically for diagnosing, prognosing, or monitoring patients with a

medical condition or disease; and (iii) tested or validated in real-world clinical scenarios

with patients affected by a specific disease, rather than laboratory environments or using

healthy subjects mimicking disease states. Simulated conditions were only considered

when ethical or logistical constraints prevented real-world testing (e.g., simulated falls in

elderly patients). The search was limited to the last ten years (2014 to 2024) to reflect recent

advancements in the field.

Papers focused on general vital sign monitoring without demonstrated healthcare

application or on clinical applications of wireless sensing without disease-specific use were
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excluded. Moreover, given that ªwireless sensingº is defined broadly, we restricted this

review to studies incorporating radar, WiFi channel state information (CSI), radio frequency

identification (RFID), and acoustic signals. Articles from conference proceedings were

excluded due to insufficient information for study eligibility assessment.

The search strategy included the following keywords and combinations: ª(ªwireless

sens*º OR ªwirelessº OR ªwireless devic*º OR ªwireless technolog*º OR ªremote sensing

technolog*º OR ªwearable electronic device*º) AND (ªhealthcareº OR ªhealthº OR ªmedi-

calº OR ªmonitor*º OR ªdiagnosticº OR ªprognosticº OR ªtherapeuticº) AND (ªradarº

OR ªrfidº OR ªradio frequency identification deviceº OR ªradio frequencyº OR ªacousticº

OR ªcsiº OR ªchannel state informationº)º.

Covidence was used as the primary screening tool [10]. Duplicates were manually

removed during screening. Initial title and abstract screening were conducted by M.D.T.,

with article eligibility independently confirmed by V.S. Secondary abstract screening was

independently performed by M.D.T and V.S. Conflicts were resolved throughout the

screening process through mutual agreement and/or consultation with H.B.

3. A Brief Overview of Wireless Sensing Technology

Wireless sensing refers to technology capable of emitting and receiving signals without

the need for wearable hardware. The most utilized wireless signals in healthcare are radar,

WiFi CSI, RFID, and acoustic signals. The technical considerations of these wireless signals

have been extensively covered by one of the co-authors (X.W.) in prior work (Table 1) [11].

Table 1. Summary of wireless sensing techniques (adapted with permission from Wang and Shao

2022) [11].

Sensing Techniques Sensing Features Pros Cons

Radar

Continuous wave (CW),
frequency-modulated

continuous wave (FMCW),
impulse radio ultra-wideband

(IR-UWB)

Doppler shift
Phase

Distance

Large bandwidth;
directional

performance
High cost

CSI
WiFi orthogonal frequency

division multiplexing (OFDM)
CSI amplitude

CSI phase

High CSI
resolution;

ubiquitousness

Susceptible to
environmental

influence

RFID CW RFID phase
Directional

performance; low
cost

Channel hopping

Acoustic
CW

FMCW
OFDM

Acoustic phase
Acoustic distance

High resolution
Susceptible to the

environment; small
coverage

3.1. Radar

Radar signals are utilized for a wide range of healthcare applications, including

movement detection, vital sign monitoring, and sleep apnea assessment. The three primary

radar signal techniques are CW, FMCW, and IR-UWB. Radar devices emit signals that

bounce off a target, and the receiver detects changes in frequency or phase shifts in the

reflected signal. The key advantage of radar technology lies in its large bandwidth (e.g.,

FMCW and IR-UWB) and high directional performance, which can be further enhanced

using directional antennas to amplify signal strength. However, limitations include their

relatively higher cost, as available devices are often expensive and not yet widely accessible

for broader clinical use.
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3.2. CSI

CSI relies on WiFi, using OFDM at the physical layer, where the amplitude or phase

of the CSI is used as a sensing feature. Many standard WiFi network interface cards

can be modified to extract CSI, which captures propagation effects such as shadowing,

power distortion, multipath, and reflections. The main advantages of CSI include its high

resolution and relatively low cost. However, environmental factors can impact its accuracy.

Most healthcare applications of CSI use amplitude or phase difference data for mon-

itoring vital signs. For instance, CSI amplitude has been used to monitor respiration,

sleep posture [12], and heart rate [13]. While CSI phase data cannot directly detect vital

signs, various techniques, such as phase difference, have been developed to overcome this

limitation and improve its utility in healthcare monitoring [14,15].

3.3. RFID

Originally designed for identifying objects or people, RFID has evolved into a powerful

tool over the past few decades for obtaining and detecting relevant health information,

such as heart rate variability [16], sleep apnea and changes in respiration [17,18], and body

temperature [19]. RFID relies on CW signals, with phase data typically used for sensing. In

practice, the patient wears a ªtagº or ªsmart labelº, and the distance between the tag and

an antenna is measured using phase data, allowing the system to capture physiological

information such as chest wall motion.

RFID offers several advantages, including low cost, easy integration into existing

infrastructure, long battery life, low maintenance, and high directional performance [20].

However, it is also subject to limitations, such as susceptibility to channel hopping and

variability in performance due to environmental factors.

3.4. Acoustic Sensing

Acoustic sensing, both passive and active, has emerged as a powerful method for

extracting clinically relevant information. In passive sensing, microphones capture sounds

from the surrounding environment and data processing techniques are applied to analyze

the captured sound. For instance, smartphone microphones have been used to record

nocturnal breathing sounds for respiration analysis [21]. In active sensing, a device gen-

erates sonar signals that bounce off the target and are reflected to the microphone. The

system then assesses differences in acoustic phase and/or distance. Acoustic sensing offers

the advantages of high resolution and convenience. However, it is susceptible to back-

ground noise and has a small effective coverage range, limiting its application in certain

environments.

4. Results

4.1. Characteristics of Individual Studies

The search identified 10,691 articles from Scopus, Embase, IEEEXplore, and PubMed.

After removing duplicates and non-relevant studies, 945 articles were selected for further

evaluation. Of these, 34 articles met the inclusion criteria (Figure 1) and were analyzed

within the context of their respective medical fields (Table 2).

Although the literature search covered articles from 2014 to 2024, most publications

(n = 22) appeared after 2020, compared to 12 published in 2020 or before (n = 12) (Figure 2A).

Regarding the primary author’s research institution, the majority of studies originated

from China (11, 32.4%), the United States (5, 14.7%), and the United Kingdom (5, 14.7%),

followed by Italy (4, 11.8%), Korea (2, 5.9%), Jordan (1, 2.9%), Taiwan (1, 2.9%), Belgium (1,

2.9%), Poland (1, 2.9%), Australia (1, 2.9%), Hong Kong (1, 2.9%), and Thailand (1, 2.9%)

(Figure 2B).
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Figure 1. Literature search and selection process in this study.

In terms of methodology, 15 of the 34 articles employed deep learning, 16 used

machine learning, and 3 utilized both approaches. The majority of the articles were

considered clinical or conceptual validation studies for validation of the technology; only a

select few articles were feasibility or pilot patient studies or validated through an external

dataset (Table 2). The most frequently used wireless sensing method was acoustic (35.3%),

followed by CSI (29.4%), radar (23.5%), RFID (5.9%), RF near-infrared spectrometry (2.9%),

and mechano-acoustic (2.9%). The articles were categorized into seven distinct areas:

fall detection (32.4%), sleep medicine (23.5%), cardiopulmonary (20.6%), neurology and

psychology (14.7%), endocrinology (2.9%), dermatology (2.9%), and nephrology (2.9%)

(Figure 3).
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Table 2. Study characteristics. DL = deep learning; ML = machine learning.

Article Year Purpose
Level of

Research Data
Wireless Sensing

Type
Subject Number Subject Type

AI
Algorithm

Outcomes of the Model

C
ar

d
io

p
u

lm
o

n
ar

y

Arjoune et al. [22] 2023
Detecting Still’s murmur

and wheezes
Clinical

validation
Acoustic 120+ Patients DL

Still’s murmurÐsensitivity 91.9%,
specificity 92.6%, overall

accuracy 92.2%
Wheeze detectionÐsensitivity 83.7%,

specificity 84.4%, overall
accuracy 84.0%

Howard-Quijano
et al. [23]

2023
Measuring left ventricular

ejection fraction
Clinical

validation
Acoustic

81 (63 with cardiac
pathology)

Patients and controls
DL and

traditional ML
AUC 0.974 for detecting EF < 35%
AUC 0.916 for detecting EF < 50%

Lalouani et al. [24] 2022
Detecting breathing

anomalies and COPD

Dataset analysis
and conceptual

validation
Acoustic

128 (64 with
COPD) (from

dataset)
Patients and controls DL

Precision 0.97, recall 1.0, F1-score 0.98,
accuracy 0.98 for patients with COPD
(exact values not given, inferred from

Figure 7 [24])

Al-Momani and
Garaibeh [25]

2014
Detecting and classifying

asthma attacks
Clinical

validation
Acoustic

18 patients
(hospital);

144 controls
(dataset)

Patients and controls Traditional ML

Maximum probability of correct
classification of 90% at signal-to-noise
ratio (SNR) = 16 dB for SVM classifier

and 86% at SNR = 17 dB for
HMM classifier.

Tseng et al. [26] 2016
Classifying normal and
abnormal respiratory

function

Clinical
validation

Radar
50 (32 with ªbadº

respiratory
function)

Participants with
abnormal respiratory
function and controls

Traditional ML Classification accuracy 73.3%

Zhang et al. [27] 2022
Detecting myocardial

infarction
Clinical

validation
Radar

60 (30 patients,
30 healthy)

Patients with
controls

Traditional ML
Median detection accuracy of 66.5%
when users are not stationary, and

81.2% when the users are stationary.

Huang et al. [28] 2023

Diagnosing and
prognosticating pediatric

community-acquired
pneumonia (CAP)

Clinical
validation

Acoustic 198 (all with CAP) Patients DL

Subject-dependent setting: accuracy
97.3% for CAP diagnosis, 97.16% for

CAP prognosis (sensitivity, specificity
>96% for both diagnosis and

prognosis)
Subject-independent setting: accuracy
60.50% for CAP diagnosis, 42.18% for
CAP prognosis (sensitivity, specificity
>50% for CAP diagnosis and >39% for

CAP prognosis)

N
eu

ro
lo

g
y

/
P

sy
ch

o
lo

g
y

Van de Vel et al. [29] 2016
Detecting tonicclonic and

clonic seizures
Pilot patient study Radar 2 Patients Traditional ML

Mean sensitivity of 66.87% and false
detection rate of 1.16/night.

O’Brien et al. [30] 2021
Classifying dysphagia

severity
Conceptual
validation

Mechano-acoustic
sensor

19 (9 patients and
10 controls)

Patients and
controls

Traditional ML
Average predictive probability of

52.8% for mild
severity, 53.8% for moderate severity.

Verde et al. [31] 2019
Classifying healthy and

pathological voices

Dataset
analysis and
conceptual
validation

Acoustic
Combined voice sample

datasets (796 healthy and 1207 pathological)
Traditional ML

Sensitivity 82.9%, specificity 86.2%,
precision 85.7%, F-measure 84.3%,

AUC 0.91, accuracy 84.5%

Tahir et al. [32] 2019
Detecting Parkinson’s
freezing of gait (FOG)

Clinical
validation

WiFi CSI 15 Patients DL
Highest accuracy of 99.7% for FOG
detection; 94.3% for voluntary stop,

97.6% for walking slow

Little et al. [33] 2021

Detecting speech as a
marker of

social functioning in late-life
depression

Feasibility and
validation study

Acoustic
58 (29 patients and

29 controls)

Patients and
matched
controls

DL

Sensitivity 94.6%, specificity 87.4%,
93.8% accuracy for speech detection
Sensitivity 90.3%, specificity 86.2%,

accuracy 89.95% for wearer vs
non-wearer speech detection
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Table 2. Cont.

Article Year Purpose
Level of

Research Data
Wireless Sensing

Type
Subject Number Subject Type

AI
Algorithm

Outcomes of the Model

S
le

ep

M
ed

ic
in

e

Mlynczak et al. [34] 2017
Classifying normal and

snoring episodes
Conceptual
validation

Acoustic 16
Healthy

volunteers
DL

Accuracy 88.8%, Cohen’s kappa
0.7775, specificity 95.0%, sensitivity

76.8%, F1-score 82.4%

Nguyen et al. [35] 2023
Monitoring sleep and
producing auditory

stimulation for sleep quality

Clinical validation
and separate pilot

patient study
Acoustic 377

Healthy
volunteers

DL

Averaged accuracy of sleep scoring
84.08 ± 1.42%

Strong correlation of 0.89 ± 0.03 with
gold-standard PSG

87.8% agreement of sleep stage
scoring with sleep technicians.

Shortens duration of falling asleep by
24.1 min

Kwon et al. [36] 2021 Classifying sleep stage
Clinical

validation
Radar 65

Healthy
volunteers

DL
Accuracy 82.6 ± 6.7%,

Cohen’s kappa coefficient 0.73 ± 0.11

Gu et al. [37] 2020 Monitoring sleep
Clinical

validation
WiFi RSS and CSI 7

Healthy
volunteers

Traditional ML

Short-term controlled
experiments±detection accuracy
95.65%, false negative rate 2.16%

60 min real sleep studies±detection
accuracy 98.22%, false negative

rate 0%

Ren et al. [38] 2019
Monitoring sleep and detect

apnea
Conceptual
validation

Acoustic 9
Healthy

volunteers
Traditional ML

N/A (for sleep apnea). For different
sleep events, TP around 80±90% and
FP less than 10% (exact values are not
given, inferred from Figure 16 [38]).

Gui et al. [39] 2022
Monitoring sleep turnover

activities and breathing rate
Conceptual
validation

WiFi CSI 15
Healthy

volunteers
DL

Mean accuracy 94.59% for turnover
activities; 95.83% for sleep posture

Yu et al. [40] 2021
Monitoring and classifying

sleep stage
Clinical

validation
WiFi CSI 12

Healthy
volunteers

DL Accuracy 81.8%

Rossi et al. [41] 2023 Detecting sleep events
Conceptual
validation

Acoustic 20
Healthy

volunteers
DL

Classification accuracy of 97% for
sleep apnea

and 73% for snoring
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Table 2. Cont.

Article Year Purpose
Level of

Research Data
Wireless Sensing

Type
Subject Number Subject Type

AI
Algorithm

Outcomes of the Model

F
al

l
D

et
ec

ti
o

n

Torres et al. [42] 2017
Detecting bed and chair
exits in hospital rooms

Clinical
validation

RFID 26 Geriatric patients Traditional ML
Overall recall 81.4%, precision 66.8%

and F1-score 72.4%

Taylor et al. [43] 2021

Classifying six human
activities (walking, sitting,

standing, picking up objects,
drinking water, and falling)

Dataset analysis
and conceptual

validation
Radar 99 (from a dataset)

Healthy, elderly
volunteers

DL and traditional
ML

Accuracy 95.3% for the best
performing model

Garripoli et al. [44] 2015
Detecting real-time fall
events and classifying

movement

Conceptual
validation

Radar 16 Healthy volunteers Traditional ML Sensitivity 100%, no false positives

Wang et al. [45] 2022 Fall Detection
Conceptual
validation

WiFi CSI 4 Healthy volunteers Traditional ML

SVMÐaverage classification
accuracy 91.67%

XGBÐaverage classification
accuracy 90.00%

Wang et al. [46] 2017 Fall Detection
Conceptual
validation

WiFi CSI 10 Healthy volunteers Traditional ML

SVM: average detection precision
90%, average false alarm rate 15%
Random forestÐaverage detection
precision 94%, average false alarm

rate 13%

Mercuri et al. [47] 2023
Detecting and localizing

falls
Conceptual
validation

Radar 6 Healthy volunteers Traditional ML

No false positives or false negatives
(TP: 40, FP: 0, TN: 117000, FN: 0) for

fall detection
Maximum mean absolute errors of 3.8
cm and maximum root-mean-square

error of 7.5 cm (for measuring
person’s absolute distance)

Chu et al. [48] 2023 Fall Detection
Conceptual
validation

WiFi CSI 22 Healthy volunteers DL
Accuracy > 96% accuracy in all lab

environments

Ding and Wang [49] 2020 Fall Detection
Conceptual
validation

WiFi CSI 10 Healthy volunteers DL

Recognition accuracies of 90%, 91%,
and 93% in indoor environments

(laboratory, office, dormitory,
respectively)

He et al. [50] 2024 Fall Detection
Dataset analysis
and conceptual

validation
WiFi CSI DARMS dataset (21 volunteers) [51] Traditional ML Accuracy of >95.25%

Xia and Chong [52] 2023 Fall Detection
Conceptual
validation

WiFi CSI 3 Healthy volunteers DL
Accuracy, precision, and F1-score of

92% for detecting falls.

Zhang et al. [53] 2023 Fall Detection
Conceptual
validation

Radar 15 Healthy volunteers Traditional ML
Recall 98.8%, precision 100%, false

discovery rate (FDR) 0%,
F1-score 0.994

E
n

d
o

cr
in

o
lo

g
y

Sun et al. [54] 2023 Monitoring glucose levels
Clinical

validation
RF near-infrared

spectrometry
5 Healthy volunteers Traditional ML

Root mean square error 21.06 mg/dL,
mean absolute relative difference

7.31% for glucose prediction
(compared to glucometer values).
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Table 2. Cont.

Article Year Purpose
Level of

Research Data
Wireless Sensing

Type
Subject Number Subject Type

AI
Algorithm

Outcomes of the Model

D
er

m
at

o
lo

g
y

Kalasin et al. [55] 2022
Classifying wound healing

stages
Conceptual
validation

RFID 10
Patients with
inflamed skin

DL Classification accuracy 94.6%

N
ep

h
ro

lo
g

y

Park et al. [56] 2022
Predicting significant

stenosis of arteriovenous
fistulas

Clinical
validation

Acoustic 40 Patients DL
AUROC 0.98 for EfficientNetB5 and

0.99 for Resnet50 for predicting ≥50%
AVF stenosis.
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Figure 2. Study characteristics. (A) Distributions of publication year of the studies. (B) Distributions
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Figure 3. Medical areas of selected studies.

According to our inclusion criteria, we selected studies that validated their wire-

less sensing methods using real-world clinical scenarios involving patients with specific

medical conditions. Most studies successfully utilized patient data with the targeted dis-

ease [22±24,26±28,30±33,42,55,56]. For fall detection studies in the geriatric population,

however, healthy volunteers were often recruited to simulate falls due to ethical concerns

related to patient safety [43±50,52,53]. An exception was Torres et al., who were able to

recruit hospitalized patients in a geriatric evaluation and management unit to detect bed

and chair exits, aiming to prevent falls in hospital settings [42]. Of note, many studies

focused on wireless sensing methods in sleep medicine utilized healthy volunteers, as a

specific pathology was not always required [34±41,51]. These studies typically investigated

snoring episodes, monitored sleep quality, and classified sleep stages.

Recruitment of participants was a common bottleneck for most studies included in this

review due to the stringent protocols required. The majority of studies (22, 65%) had fewer
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than 50 participants. Six studies had participant numbers ranging from 50 to 100 [23,26,27,

33,36,43], while six studies recruited more than 100 participants [22,24,25,28,31,35]. Some

studies utilized pre-existing datasets to increase their participant numbers [24,25,31,43,50].

These included hospital voice recordings for asthma attack detection, combined datasets of

healthy and pathological voice samples, and the Device-Free Human Activity Recognition

and Monitoring System (DARMS) dataset, which consists of CSI signals [51].

4.2. Findings of Wireless Sensing Studies in Personal Health

4.2.1. Cardiopulmonary

Wireless monitoring in cardiology and pulmonology has the potential for earlier detec-

tion of critical events such as myocardial infarction, and thus offers benefits of minimizing

further complications, facilitating early management, extending patient care to the home,

and reducing hospital visits and costs. Currently, wireless sensing for early detection

and disease monitoring in cardiology includes efforts to detect myocardial infarction and

automatic prediction of left ventricular ejection fraction, such as the Health-Radio model,

to reduce time to treatment [23,27]. AI-powered digital stethoscopes have also been devel-

oped to support disease diagnosis, provide active noise cancelation, and enhance telehealth

services. Examples include the StethAid to detect Still’s murmur and wheezes in pediatric

patients and a deep learning-based bilateral pulmonary audio-auxiliary model for detect-

ing community-acquired pneumonia [22,28]. Other studies for pulmonary function using

wireless sensing have focused on detecting chronic obstructive pulmonary disease, asthma,

and other pulmonary diseases [24±26].

4.2.2. Neurology and Psychiatry

With many neurological and psychiatric diagnoses relying on subjective observations

or self-reports, wireless sensing has been utilized to obtain automated and objective mea-

surements of movement and speech. Various wireless sensing applications have been

explored in movement disorders, swallowing and speech dysfunctions, and seizure detec-

tion. Wireless sensing has been extensively applied to Parkinson’s disease, allowing remote

monitoring of motor and non-motor symptoms, objective analysis of gait parameters, and

seizure detection [32,57±59]. Such non-invasive detection and monitoring approaches in-

clude a CNN-based model, WiFreeze, to quantify and detect freezing of gait in Parkinson’s,

and an SVM model for seizure detection using video accelerometry and radar sensing

data [29,32]. For other applications, such as in speech detection and swallowing impair-

ment, acoustic wireless sensing has primarily been utilized [30,31,33]. Wireless sensing

applications also extend to psychiatry, with one study in our search focusing on detecting

speech as a marker for social functioning in late-life depression using acoustic sensing [33].

These studies highlight the potential of wireless sensing technologies to provide objective

and accurate assessments of neurological and psychiatric disorders, enabling more precise

monitoring and early intervention.

4.2.3. Sleep Medicine

Wireless sensing offers a non-invasive approach for real-time sleep monitoring without

needing intrusive equipment that can otherwise interfere with sleep quality. Several sleep

monitoring devices for sleep detection or sleep stage classification have been developed,

including the Sleepy system, WiFi-Sleep, and an impulse-radio ultra-wideband radar

system by Kwon et al. [36,37,40]. Wireless sensing, primarily acoustic sensing, has been

used to detect and classify respiratory-related sleep events such as snoring and sleep apnea

with high accuracies [34,38,41]. There has also been a growing interest in understanding

and improving sleep quality. Gui et al. proposed a WiFi CSI-based system with a CNN

model to quantify and analyze sleep turnover events and breathing rates, and Nguyen et al.
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aimed to not only capture real-time vital signs and sleep posture information and predict

sleep stages but also provide auditory stimuli feedback to improve sleep quality [35,39].

4.2.4. Fall Detection for Geriatrics

All included articles in geriatrics were for fall detection. Falls are a significant con-

cern in the geriatric population, with more than one in four older adults experiencing a

fall globally [60]. Current fall detection strategies include medication management, gait

and balance exercises, patient room hazard assessment, and fall risk assessment tools like

STRATIFY [61,62]. However, these approaches are limited by a lack of continuous monitor-

ing and accessibility, and thus wireless sensors offer a promising solution for continuous

non-intrusive monitoring, providing rapid assistance and real-time alerts. Most of the

fall detection studies either used radar sensing [43,44,47,53] or WiFi CSI sensing [45,46,48±

50,52] technologies, with one study utilizing RFID [42]. Most of these studies focused on

classifying general daily activity, including falls of elderly individuals, with few approaches

incorporating more novel features such as post-fall localization, mobile app integration for

alerts and management actions, and identification of critical life-threatening falls [47,49,53].

4.2.5. Endocrinology

Wireless sensing can be used to track key physiological parameters, such as blood

glucose and insulin levels. Less invasive, continuous monitoring enables the extraction

and analysis of trends using AI, allowing predictive analytics to prevent emergencies by

detecting hypo- and hyperglycemic events, diabetic ketoacidosis, or thyroid storms. One

notable example is glucose detection utilizing near-infrared and RF sensing technologies

combined with a random forest model for continuous glucose monitoring [54].

4.2.6. Dermatology

Wireless sensing offers significant value in dermatology, particularly for monitoring

skin moisture, quantifying itch, and evaluating wound healing and medication response.

Kalasin et al. developed a smart bandage that uses RFID sensing and deep neural networks

to monitor wound healing across three stages (inflammation, proliferation, and remodeling)

after the application of corticosteroid cream [55].

4.2.7. Nephrology

For tracking kidney function markers (i.e., creatinine and glomerular filtration rate)

and managing fluid balance and dialysis, wireless sensing is a practical avenue. One

such example is the study by Park et al., where hemodialysis patients with dysfunctional

native arteriovenous fistulas were monitored. Shunt sounds before and after their percuta-

neous transluminal angioplasty were used to predict AVF stenosis with EfficientNetB5 and

ResNet50 models [56].

4.3. Benefits and Limitations of Wireless Sensing Approaches

We have identified and evaluated several common benefits and limitations of AI-

integrated wireless sensing approaches in their respective medical fields. One of the most

frequently cited limitations in these studies was the small number of patients included for

training and testing models and wireless sensing devices [27,29,30,33,35,36,38,48,49,53,54,56].

Limited study size, data collection methods, and variability in human activities posed chal-

lenges to the generalizability of many wireless sensing approaches [24,28±30,32,35,36,45,

46,48,54±56]. Only a subset of surveyed papers included clinical validation of model pre-

dictions with commonly used or gold-standard assessments, such as polysomnography

sleep studies [23,26,30,35,36,38,40,54,56]. While model performance overall correlated well

with clinical assessments, limited inclusion of clinical validation in wireless sensing studies
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restricts real-world implementation. Additional limitations involved the influence of en-

vironmental factors and normal physiological processes on data recording. These factors

affected both data quality and collection, with examples including breathing or movement

impacting recordings, background noise reducing recording quality, and obstructions like

furniture interfering with signal transmission [23,24,27,28,34,37,38,41,42,44±46,50,53]. There

were also concerns regarding patient data privacy and security issues, including the possibil-

ity of an untrusted node in the network [31,39], along with the possibility of understanding

the basis of AI predictions due to their ªblack boxº nature [23]. Some other limitations

included the limited compatibility of these systems due to software or operating systems [22]

and the reliability of the communication channels due to signal degradation [25].

While these challenges are significant, several studies highlighted the notable benefits

of their wireless sensing approaches in enhancing medical care. Most of these wireless

sensors can be used to provide telehealth, improving healthcare access in areas where

it is not possible to see a clinician as soon as possible or when there are mobility issues

for the patient [22,24,31]. Due to the objective and automatic data collection techniques

and the AI integration, some of these wireless sensing methods achieved high diagnostic

and monitoring accuracy [22±24,29,30,32,33,36,41,56]. Furthermore, these approaches are

non-invasive and safer avenues compared to the gold standard [23,30,37±41,54,56], allow

for remote monitoring of conditions [23,34,54,55], and provide timely notification to im-

prove clinical outcomes [25,29,44,47,49,52,53]. Wireless sensing additionally enables early

detection, such as diagnosing MI in high-risk patients, improving clinical outcomes [27].

The ability to continuously monitor medical conditions or physiological parameters, along

with the convenience of these sensing methods due to their low cost and non-invasive

nature, were additional benefits highlighted in the studies.

4.4. Ethical Considerations

In addition to the technical and clinical considerations, ethical implications are also

a significant focus in evaluating wireless sensing technologies due to patient privacy, in-

formed consent, and data security issues. Van de Vel et al. highlighted concerns about

patient privacy, given that their approach involves continuous video monitoring of pa-

tients, which poses risks to patient confidentiality and the security of patient medical

information [29]. Collection, storage, and transmission of data are additionally vulnerable

to security breaches and data leakage [31]. A few studies, however, addressed the privacy-

preserving aspects in their designs, such as Zhang et al. and Wang et al. [45,53]. Such

design elements underscore the necessity of building trust in these devices by embedding

ethical safeguards in wireless sensing infrastructures and can play a role in the deployment

of such technologies in medical settings.

5. Discussion

This systematic review of 34 research articles emphasizes the role of AI-integrated

wireless sensing in healthcare, demonstrating its potential in real-time monitoring, diag-

nosis, and disease management. This review shows recent improvements and identifies

several research gaps in the field, including limited sample size in studies, limitations

of such technologies (i.e., battery life), lack of extensive clinical validation, and barriers

in integration into clinical workflows. Furthermore, additional insights include shifting

towards multimodal health monitoring and individualized patient algorithms as future

directions for research. These points are discussed, with suggestions to improve these

AI-based wireless sensing systems in healthcare, below.
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5.1. Shift from Disease-Specific to Multimodal Monitoring

Most studies use wireless sensing to monitor specific conditions, such as Parkinson’s

disease, MI, or sleep apnea. However, future systems could integrate data from multiple

physiological parameters to create a more holistic picture of patient health. For instance,

combining cardiopulmonary metrics with sleep patterns and movement data could enable

earlier detection of complex health conditions, such as heart failure exacerbations or the

onset of neurodegenerative diseases. This multimodal approach could be further enhanced

by incorporating predictive AI algorithms to anticipate health events before they occur,

moving healthcare towards a more preventive model.

5.2. Personalization for Improved Accuracy

Another well-suited area is the role of these models in individualized medicine. Most

of the current AI systems rely on generalized algorithms, which may not account for indi-

vidual variations in patient physiology or behavior. Personalization of these approachesÐ

where models adapt to unique baseline dataÐcould improve the accuracy of wireless

sensing technologies. One such example is an AI system that learns the patient’s typical

vital signs and offers more precise alerts for deviations that may indicate health risks. This

individualized approach can improve trust in the technology by reducing false alarms and

enhancing patient compliance.

5.3. Clinical Validation

The above studies consistently point out the lack of extensive clinical validation as

a major limitation. Along with expanding clinical trials, future work should facilitate

rapid validation of these technologies and improve the deployment of AI technologies.

One innovative approach could be decentralized clinical trials (DCTs) [63], which utilize

telemedicine, remote monitoring, and digital tools to collect data from patients in real-world

settings. DCTs could allow for more inclusive and diverse populations along with reducing

the time and cost of validating studies across multiple sites. This would be particularly

effective for testing wireless sensing devices in various environmental conditions, which is

a major challenge we identified.

5.4. Integration with Healthcare Systems and Interoperability

There is a need to address the lack of integration with existing healthcare systems. Most

current wireless sensing technologies operate independently, which makes it hard for them

to be integrated in clinical settings and with electronic health record (EHR) systems [64].

Future work should focus on developing interoperable systems that can integrate wireless

sensing data with EHRs, allowing providers to access real-time patient data. Using AI

to analyze these real-time data could additionally improve the decision-making process,

reducing medical errors and enhancing healthcare delivery.

5.5. Sustainability and Device Lifespan

Due to battery life and device durability, sustainable and energy-harvesting technolo-

gies are potential avenues to extend device lifespan. Future research can explore the use of

energy harvesting from ambient sources, including body heat, motion, and environmental

light [65]. These advancements could lead to more autonomous and long-lasting solutions,

which can be particularly helpful in low-resource settings where device recharging could

be challenging.

5.6. Ethical Considerations and Data Privacy

Beyond technical limitations, ethical considerations regarding data ownership, privacy,

and consent are becoming critical due to the increasing amounts of personal data that are
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being generated by these models. Current frameworks, including HIPAA, might not

address the complexities of new developments in AI. A potential avenue for further

research is blockchain-based solutions for securing patient data [66,67]. This can provide

a tamper-proof record of data transactions, ensuring that patients can retain control over

their health information while still allowing for data sharing for clinical use. Exploring

such secure data-sharing approaches can significantly increase patient trust and help with

the adaptation of wireless sensing technologies in healthcare.

5.7. Next-Generation Wireless Sensing Technologies

This review identifies radar, WiFi CSI, acoustic, and RFID as the primary wireless

sensing technologies in healthcare, but next-generation technologies, such as quantum

sensors [68,69] or 6G wireless networks [70,71], could offer new avenues for healthcare as

well. Quantum sensors, for instance, could provide unprecedented high resolution and

precision in detecting physiological signals at the molecular level, offering new applications

in fields like cancer detection or monitoring of metabolic diseases. Similarly, the emergence

of 6G networks, which promise ultra-low latency and high data throughput, could revolu-

tionize real-time, continuous monitoring by enabling faster data transmission and more

sophisticated AI algorithms that can operate in real time with minimal delays.

6. Conclusions

AI-driven wireless sensing technologies demonstrate promising potential in healthcare

by providing real-time, non-invasive monitoring and early detection of medical conditions.

However, to further improve the potential of these systems, future research must focus on

developing more multimodal approaches, personalized algorithms, and extensive clinical

validation. Addressing technical challenges such as background signal processing, envi-

ronmental interference, device costs and sustainability, data privacy, and interoperability

with existing systems is essential for facilitating widespread adoption and implementa-

tion into healthcare systems and patient homes; such challenges require further focused

investigation to improve signal processing techniques and algorithms, device material

and design, and health system software and data standardization. With advancements in

next-generation wireless technologies and secure data-sharing techniques, AI-powered

wireless sensing can reshape healthcare into a more personalized and accessible model.
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