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Abstract: (1) Background: With technological advancements, the integration of wireless
sensing and artificial intelligence (AI) has significant potential for real-time monitoring
and intervention. Wireless sensing devices have been applied to various medical areas
for early diagnosis, monitoring, and treatment response. This review focuses on the
latest advancements in wireless, Al-incorporated methods applied to clinical medicine.
(2) Methods: We conducted a comprehensive search in PubMed, IEEEXplore, Embase,
and Scopus for articles that describe Al-incorporated wireless sensing devices for clinical
applications. We analyzed the strengths and limitations within their respective medical
domains, highlighting the value of wireless sensing in precision medicine, and synthesized
the literature to provide areas for future work. (3) Results: We identified 10,691 articles and
selected 34 that met our inclusion criteria, focusing on real-world validation of wireless
sensing. The findings indicate that these technologies demonstrate significant potential
in improving diagnosis, treatment monitoring, and disease prevention. Notably, the use
of acoustic signals, channel state information, and radar emerged as leading techniques,
showing promising results in detecting physiological changes without invasive procedures.
(4) Conclusions: This review highlights the role of wireless sensing in clinical care and
suggests a growing trend towards integrating these technologies into routine healthcare,
particularly patient monitoring and diagnostic support.

Keywords: wireless sensing; artificial intelligence; early diagnosis; healthcare monitoring

1. Introduction

In healthcare, chronic diseases such as diabetes, heart disease, and respiratory illness
require continuous dynamic monitoring to prevent complications and manage symptoms.
Chronic medical conditions currently account for 75% of U.S. healthcare costs, demonstrat-
ing the need for reliable at-home health monitoring solutions for personalized care and
improved quality of life [1]. Currently, traditional healthcare is not equipped to provide
24/7 oversight to patients, especially outside of clinical environments. To improve health
outcomes and facilitate proactive health management, wireless sensing has emerged as a
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technological frontline, enabling not only dynamic symptom monitoring but also proactive
outcome management. In this context, artificial intelligence (AI)-driven wireless sensing
has significant potential to transform healthcare monitoring and interventions, making
healthcare more accessible and responsive to patient needs.

Over the years, medical researchers have tried to develop patient-centered methods
for health monitoring outside clinical settings [2]. Advances in computing power, data
processing, and ultra-high-powered microchips have made wireless sensing a promising
tool for various applications. Broadly, wireless sensing involves devices that emit and /or
receive wireless signals to detect physiological data. Wearable sensors, such as smart
watches, are widely used to monitor vital signs like heart rate, respiratory rate, and oxygen
saturation [3]. Other applications include ambulatory blood pressure monitoring, mobile
cardiac telemetry, and smartphone blood glucose monitoring.

Al plays a crucial role in healthcare wireless sensing by facilitating data processing,
analysis, and interpretation. Through predictive modeling, it identifies trends that enable
personalized, proactive care. The growing demand for contactless healthcare solutions,
especially post-pandemic, has led to Al applications beyond simple vital sign monitoring,
encompassing clinical decision support systems capable of predicting disease exacerbations
or life-threatening events. However, the effectiveness of these approaches is limited by
patient health literacy, compliance, and the need for cumbersome wearable sensors. These
challenges have paved the way for more convenient and reliable contactless methods for
ambulatory health monitoring.

Several review articles have explored wireless sensing methods for health monitoring
and clinical decision-making. Bhatt et al. focused on Al-incorporated mobile health, specif-
ically smartphone applications and mobile sensors [4]. Similarly, Baig et al. conducted a
systematic review of wearable systems, while Kaidi et al. analyzed technical aspects of
wireless sensing system designs [5,6]. Other reviews have covered mental health monitor-
ing with wearables, radar-based vital sign detection methods, and contactless sensors in
hospitals and home settings [7-9].

In this review, we provide a novel and clinically relevant analysis of recent advances
in wireless Al-integrated sensing technologies. We focus on studies that evaluate disease-
specific wireless sensing applications tested in clinical settings. Unlike previous reviews, we
exclude general applications (i.e., vital sign monitoring) of wireless sensing and wearable
devices requiring patient input (i.e., smartphone applications). By synthesizing the latest
developments in the field, we aim to highlight the limitations of current methods and
identify areas for further research, envisioning a future where wireless sensing leads to
precise, efficient, and data-driven patient care.

2. Materials and Methods

A comprehensive search of the literature was performed by accessing PubMed, IEE-
EXplore, Embase, and Scopus. The following inclusion criteria were used to identify the
most clinically relevant studies: (i) integration of Al for signal processing or data analy-
sis; (ii) designed specifically for diagnosing, prognosing, or monitoring patients with a
medical condition or disease; and (iii) tested or validated in real-world clinical scenarios
with patients affected by a specific disease, rather than laboratory environments or using
healthy subjects mimicking disease states. Simulated conditions were only considered
when ethical or logistical constraints prevented real-world testing (e.g., simulated falls in
elderly patients). The search was limited to the last ten years (2014 to 2024) to reflect recent
advancements in the field.

Papers focused on general vital sign monitoring without demonstrated healthcare
application or on clinical applications of wireless sensing without disease-specific use were
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excluded. Moreover, given that “wireless sensing” is defined broadly, we restricted this
review to studies incorporating radar, WiFi channel state information (CSI), radio frequency
identification (RFID), and acoustic signals. Articles from conference proceedings were
excluded due to insufficient information for study eligibility assessment.

The search strategy included the following keywords and combinations: “(“wireless
sens*” OR “wireless” OR “wireless devic*” OR “wireless technolog*” OR “remote sensing
technolog*” OR “wearable electronic device*”) AND (“healthcare” OR “health” OR “medi-
cal” OR “monitor*” OR “diagnostic” OR “prognostic” OR “therapeutic”) AND (“radar”
OR “rfid” OR “radio frequency identification device” OR “radio frequency” OR “acoustic”
OR “csi” OR “channel state information”)”.

Covidence was used as the primary screening tool [10]. Duplicates were manually
removed during screening. Initial title and abstract screening were conducted by M.D.T.,
with article eligibility independently confirmed by V.S. Secondary abstract screening was
independently performed by M.D.T and V.S. Conflicts were resolved throughout the
screening process through mutual agreement and/or consultation with H.B.

3. A Brief Overview of Wireless Sensing Technology

Wireless sensing refers to technology capable of emitting and receiving signals without
the need for wearable hardware. The most utilized wireless signals in healthcare are radar,
WiFi CSI, RFID, and acoustic signals. The technical considerations of these wireless signals
have been extensively covered by one of the co-authors (X.W.) in prior work (Table 1) [11].

Table 1. Summary of wireless sensing techniques (adapted with permission from Wang and Shao
2022) [11].

Sensing Techniques Sensing Features Pros Cons
Continuous wave (CW),
frequency-modulated Doppler shift Large bandwidth;
Radar continuous wave (FMCW), Phase directional High cost
impulse radio ultra-wideband Distance performance
(IR-UWB)
WiFi orthogonal frequency CSI amplitude High C.SI Sus'c eptible to
CSI oL A . resolution; environmental
division multiplexing (OFDM) CSI phase L .
ubiquitousness influence
Directional
RFID CW RFID phase performance; low Channel hopping
cost
CW Acoustic phase Susceptible to the
Acoustic FMCW nep High resolution environment; small
Acoustic distance
OFDM coverage
3.1. Radar

Radar signals are utilized for a wide range of healthcare applications, including
movement detection, vital sign monitoring, and sleep apnea assessment. The three primary
radar signal techniques are CW, FMCW, and IR-UWB. Radar devices emit signals that
bounce off a target, and the receiver detects changes in frequency or phase shifts in the
reflected signal. The key advantage of radar technology lies in its large bandwidth (e.g.,
FMCW and IR-UWB) and high directional performance, which can be further enhanced
using directional antennas to amplify signal strength. However, limitations include their
relatively higher cost, as available devices are often expensive and not yet widely accessible
for broader clinical use.
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3.2. CSI

CSI relies on WiFi, using OFDM at the physical layer, where the amplitude or phase
of the CSI is used as a sensing feature. Many standard WiFi network interface cards
can be modified to extract CSI, which captures propagation effects such as shadowing,
power distortion, multipath, and reflections. The main advantages of CSI include its high
resolution and relatively low cost. However, environmental factors can impact its accuracy.

Most healthcare applications of CSI use amplitude or phase difference data for mon-
itoring vital signs. For instance, CSI amplitude has been used to monitor respiration,
sleep posture [12], and heart rate [13]. While CSI phase data cannot directly detect vital
signs, various techniques, such as phase difference, have been developed to overcome this
limitation and improve its utility in healthcare monitoring [14,15].

3.3. RFID

Originally designed for identifying objects or people, RFID has evolved into a powerful
tool over the past few decades for obtaining and detecting relevant health information,
such as heart rate variability [16], sleep apnea and changes in respiration [17,18], and body
temperature [19]. RFID relies on CW signals, with phase data typically used for sensing. In
practice, the patient wears a “tag” or “smart label”, and the distance between the tag and
an antenna is measured using phase data, allowing the system to capture physiological
information such as chest wall motion.

RFID offers several advantages, including low cost, easy integration into existing
infrastructure, long battery life, low maintenance, and high directional performance [20].
However, it is also subject to limitations, such as susceptibility to channel hopping and
variability in performance due to environmental factors.

3.4. Acoustic Sensing

Acoustic sensing, both passive and active, has emerged as a powerful method for
extracting clinically relevant information. In passive sensing, microphones capture sounds
from the surrounding environment and data processing techniques are applied to analyze
the captured sound. For instance, smartphone microphones have been used to record
nocturnal breathing sounds for respiration analysis [21]. In active sensing, a device gen-
erates sonar signals that bounce off the target and are reflected to the microphone. The
system then assesses differences in acoustic phase and/or distance. Acoustic sensing offers
the advantages of high resolution and convenience. However, it is susceptible to back-
ground noise and has a small effective coverage range, limiting its application in certain
environments.

4. Results
4.1. Characteristics of Individual Studies

The search identified 10,691 articles from Scopus, Embase, IEEEXplore, and PubMed.
After removing duplicates and non-relevant studies, 945 articles were selected for further
evaluation. Of these, 34 articles met the inclusion criteria (Figure 1) and were analyzed
within the context of their respective medical fields (Table 2).

Although the literature search covered articles from 2014 to 2024, most publications
(n = 22) appeared after 2020, compared to 12 published in 2020 or before (n = 12) (Figure 2A).
Regarding the primary author’s research institution, the majority of studies originated
from China (11, 32.4%), the United States (5, 14.7%), and the United Kingdom (5, 14.7%),
followed by Italy (4, 11.8%), Korea (2, 5.9%), Jordan (1, 2.9%), Taiwan (1, 2.9%), Belgium (1,
2.9%), Poland (1, 2.9%), Australia (1, 2.9%), Hong Kong (1, 2.9%), and Thailand (1, 2.9%)
(Figure 2B).
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v
Studies screened for title | Studies excluded (n = 7,838)
and abstract (n = 8,783) (not relevant)
Studies sought for retrieval | ._...... Studies not retrieved (n = 12)
(n=945) (malfunctioning link or inaccessible DOI)

v

Studies assessed for
eligibility (n = 933)

-------- Studies excluded (n = 899)

Articles not in English (n = 4)

Articles for hospital workflow (n = 10)

Articles with no Al integration (n = 178)

Articles with no wireless sensing methods (n= 58)
Articles on technical aspects of design (n=72)

Articles on very broad areas of healthcare (n= 133)
Articles not related to healthcare/patients directly (n = 43)
Article type (i.e. reviews, clinical trials) (n = 354)

Articles with no testing in real clinical scenarios (n=45)
Articles with insufficient details to match criteria (n = 2)

Article Selection

\4
Articles included in the
review (n = 34)

Included

Figure 1. Literature search and selection process in this study.

In terms of methodology, 15 of the 34 articles employed deep learning, 16 used
machine learning, and 3 utilized both approaches. The majority of the articles were
considered clinical or conceptual validation studies for validation of the technology; only a
select few articles were feasibility or pilot patient studies or validated through an external
dataset (Table 2). The most frequently used wireless sensing method was acoustic (35.3%),
followed by CSI (29.4%), radar (23.5%), RFID (5.9%), RF near-infrared spectrometry (2.9%),
and mechano-acoustic (2.9%). The articles were categorized into seven distinct areas:
fall detection (32.4%), sleep medicine (23.5%), cardiopulmonary (20.6%), neurology and
psychology (14.7%), endocrinology (2.9%), dermatology (2.9%), and nephrology (2.9%)
(Figure 3).
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Table 2. Study characteristics. DL = deep learning; ML = machine learning.

. Level of Wireless Sensing . . Al
Article Year Purpose Research Data Type Subject Number Subject Type Algorithm Outcomes of the Model
Still’s murmur—sensitivity 91.9%,
specificity 92.6%, overall
. Detecting Still’s murmur Clinical . . accuracy 92.2%
Arjoune etal. [22] 2023 and wheezes validation Acoustic 120+ Patients DL Wheeze detection—sensitivity 83.7%,
specificity 84.4%, overall
accuracy 84.0%
Howard-Quijano 2023 Measuring left ventricular Clinical A H 81 (63 with cardiac Patients and control DL and AUC 0.974 for detecting EF < 35%
etal. [23] ejection fraction validation coustie pathology) auents and controls traditional ML AUC 0.916 for detecting EF < 50%
Dataset analysis 128 (64 with Precision 0.97, recall 1.0, F1-score 0.98,
Lalouani et al. [24] 2022 Detectl.ng breathing and conceptual Acoustic COPD) (from Patients and controls DL accuracy 0.98 for patients with COPD
B anomalies and COPD validation dataset) (exact values not given, inferred from
o Figure 7 [24])
g 18 patients Maximum probability of correct
E‘_ Al-Momani and 2014 Detecting and classifying Clinical A . (hospital); Pati d 1 Traditional ML Cla§51fg§§0rlolf69géo fat sslérﬁl-tlo—n'ofl'se
5 Garaibeh [25] asthma attacks validation coustic 144 controls atients and controls raditiona ratio ( )= or classifier
3§ (dataset) and 86% at SNR = 17 dB for
S HMM classifier.
Classifying normal and Clinical 50 (32 with “bad” Participants with
Tseng et al. [26] 2016 abnormal respiratory validation Radar respiratory abnormal respiratory Traditional ML Classification accuracy 73.3%
function function) function and controls
. . . . . . Median detection accuracy of 66.5%
Zhang et al. [27] 2022 Detect'mg myocardlal Cl'lmc'a ! Radar 60 (30 patients, Patients with Traditional ML when users are not stationary, and
infarction validation 30 healthy) controls o !
81.2% when the users are stationary.
Subject-dependent setting: accuracy
97.3% for CAP diagnosis, 97.16% for
CAP prognosis (sensitivity, specificity
Diagnosing and >96% for both diagnosis and
prognosticating pediatric Clinical . . . prognosis)
Huang etal. [25] 2023 community-acquired validation Acoustic 198 (all with CAP) Patients DL Subject-independent setting: accuracy
pneumonia (CAP) 60.50% for CAP diagnosis, 42.18% for
CAP prognosis (sensitivity, specificity
>50% for CAP diagnosis and >39% for
CAP prognosis)
1 1 1 v 0,
Van de Vel et al. [29] 2016 Detectmg'toru'c clonic and Pilot patient study Radar 2 Patients Traditional ML Mean sensitivity of 66.87% e.md false
clonic seizures detection rate of 1.16/night.
I . . . . . Average predictive probability of
o O'Brien et al. [30] 2021 Classifying c.lysphagla Con'cep'tual Mechano-acoustic 19 (9 patients and Patients and Traditional ML 52 8% for mild
£ severity validation sensor 10 controls) controls . o .
9 severity, 53.8% for moderate severity.
% Classifying healthy and angatsai:iltnd Combined voice sample Sensitivity 82.9%, specificity 86.2%,
> Verde et al. [31] 2019 &, Y 4 Acoustic P . Traditional ML precision 85.7%, F-measure 84.3%,
& pathological voices conceptual datasets (796 healthy and 1207 pathological) AUC 091 84.5%
N validation 71, accuracy 0.0
53 : o
2 . . , . Highest accuracy of 99.7% for FOG
5] Tahir et al. [32] 2019 Detec_tmg Parl‘<1nson S Cl_lmc_a 1 WiFi CSI 15 Patients DL detection; 94.3% for voluntary stop,
freezing of gait (FOG) validation ¥ stop
3 97.6% for walking slow
Z Detecting speech as a Sensitivity 94.6%, specificity 87.4%,
magrkgr of Feasibility and 58 (29 patients and Patients and 93.8% accuracy for speech detection
Little et al. [33] 2021 ) arker of ) astority Acoustic p matched DL Sensitivity 90.3%, specificity 86.2%,
social functioning in late-life validation study 29 controls) 1 89.95%
depression controls accuracy 89.95% for wearer vs
non-wearer speech detection
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Table 2. Cont.

. Level of Wireless Sensing . . Al
Article Year Purpose Research Data Type Subject Number Subject Type Algorithm Outcomes of the Model
e Accuracy 88.8%, Cohen’s kappa
Mlynczak et al. [34] 2017 Classifying normal and Conceptual Acoustic 16 Healthy DL 0.7775, specificity 95.0%, sensitivity
snoring episodes validation volunteers o S
76.8%, Fl1-score 82.4%
Averaged accuracy of sleep scoring
84.08 £ 1.42%
Monitoring sleep and Clinical validation Strong correlation of 0.89 + 0.03 with
N - . : . . Healthy gold-standard PSG
guyen et al. [35] 2023 producing auditory and separate pilot Acoustic 377 DL o
. . . . volunteers 87.8% agreement of sleep stage
stimulation for sleep quality patient study ; . .-
scoring with sleep technicians.
Shortens duration of falling asleep by
24.1 min
. Clinical Healthy Accuracy 82.6 £ 6.7%,
Kwon etal. [36] 2021 Classifying sleep stage validation Radar 65 volunteers DL Cohen’s kappa coefficient 0.73 & 0.11
o 2 Short-term controlled
3 _g experiments—detection accuracy
B 3 S Clinical - Healthy e 95.65%, false negative rate 2.16%
s Guetal. [37] 2020 Monitoring sleep validation WiFi RSS and CSI 7 volunteors Traditional ML 60 min real sleep studies—detection
accuracy 98.22%, false negative
rate 0%
N/A (for sleep apnea). For different
Ren et al. [38] 2019 Monitoring sleep and detect Coqcep_tual Acoustic 9 Healthy Traditional ML sleep events, "l;P around 80-90% and
apnea validation volunteers FP less than 10% (exact values are not
given, inferred from Figure 16 [38]).
. Monitoring sleep turnover Conceptual _— Healthy Mean accuracy 94.59% for turnover
Gui etal. [39] 2022 activities and breathing rate validation Wiki CSI 15 volunteers DL activities; 95.83% for sleep posture
Yu et al. [40] 2021 Monitoring and classifying Clinical WiFi CSI 12 Healthy DL Accuracy 81.8%
sleep stage validation volunteers
Classification accuracy of 97% for
Rossi et al. [41] 2023 Detecting sleep events Concep_tual Acoustic 20 Healthy DL sleep apnea
validation volunteers

and 73% for snoring
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(compared to glucometer values).

Article Year Purpose Res]::cell\?;ata W1rele]sﬂ}s]§:nsmg Subject Number Subject Type Alg:ﬁ;thm Outcomes of the Model
. . E 0 1e 0,
Torres et al. [42] 2017 DeFecFmg bec} and chair Cl'lmc'a ! RFID 26 Geriatric patients Traditional ML Overall recall 81.4%, precsion 66.8%
exits in hospital rooms validation and Fl-score 72.4%
actcitaiiisiy(lxilili;guﬁ?;g Dataset analysis Healthy, elderl DL and traditional Accuracy 95.3% for the best
Taylor et al. [43] 2021 . S oo and conceptual Radar 99 (from a dataset) Y Y Y oo
standing, picking up objects, validation volunteers ML performing model
drinking water, and falling)
Detecting real-time fall
Garripoli et al. [44] 2015 events and classifying Co?fiel:;'tual Radar 16 Healthy volunteers Traditional ML Sensitivity 100%, no false positives
movement validation
SVM—average classification
0,
Wang et al. [45] 2022 Fall Detection Con'cep‘_rual WiFi CSI 4 Healthy volunteers Traditional ML accuracy 91'67: /f) .
validation XGB—average classification
accuracy 90.00%
SVM: average detection precision
Conceptual 90%, average false alarm rate 15%
Wang et al. [46] 2017 Fall Detection vali d:ﬁcion WiFi CSI 10 Healthy volunteers Traditional ML Random forest—average detection
_g precision 94%, average false alarm
B rate 13%
ko No false positives or false negatives
A (TP: 40, FP: 0, TN: 117000, EN: 0) for
£ Detecting and localizin Conceptual fall detection
Mercuri et al. [47] 2023 g fall & lid l:; Radar 6 Healthy volunteers Traditional ML Maximum mean absolute errors of 3.8
avs validation cm and maximum root-mean-square
error of 7.5 cm (for measuring
person’s absolute distance)
Chu et al. [48] 2023 Fall Detection Conceptual WiFi CSI 2 Healthy volunteers DL Accuracy > 96% accuracy in all lab
validation environments
Recognition accuracies of 90%, 91%,
o .
Ding and Wang [49] 2020 Fall Detection Cv(;?ifieal:;it;all WiFi CSI 10 Healthy volunteers DL an(?aai?’;g;;i?gz;rggrr;r;g:;ts
respectively)
Dataset analysis
He et al. [50] 2024 Fall Detection and conceptual WiFi CSI DARMS dataset (21 volunteers) [51] Traditional ML Accuracy of >95.25%
validation
. . Conceptual - Accuracy, precision, and F1-score of
Xia and Chong [52] 2023 Fall Detection validation WiFi CSI 3 Healthy volunteers DL 92% for detecting falls.
Conceptual Recall 98.8%, precision 100%, false
Zhang et al. [53] 2023 Fall Detection vali d£cion Radar 15 Healthy volunteers Traditional ML discovery rate (FDR) 0%,
F1-score 0.994
&
% Root mean square error 21.06 mg/dL,
é Sun et al. [54] 2023 Monitoring glucose levels Cl}mcIa 1 RF near-infrared 5 Healthy volunteers Traditional ML mean aobsolute relative dlffey ence
g validation spectrometry 7.31% for glucose prediction
"g
3
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fistulas

. Level of Wireless Sensing . . Al
Article Year Purpose Research Data Type Subject Number Subject Type Algorithm Outcomes of the Model
>
88
S
o o . . .
'g Kalasin et al. [55] 2022 Classﬁylngstw;v go:snd healing Cv(:llifieal:;itssl RFID 10 i?;er::j:l:ll(tl}; DL Classification accuracy 94.6%
g
&
% Predicting significant Clinical AUROC 0.98 for EfficientNetB5 and
k= Park et al. [56] 2022 stenosis of arteriovenous validation Acoustic 40 Patients DL 0.99 for Resnet50 for predicting >50%
g AVF stenosis.
Z.
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A. Frequency of Publications by Year B. Frequency of Publications by Country
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Figure 2. Study characteristics. (A) Distributions of publication year of the studies. (B) Distributions
of country of origin of the first author in included studies.

Cardiopulmonary Neurology/Psychology Sleep Medicine

Still's murmur and wheeze

( Snoring episode detection )
detection

Seizure detection

Sleep quality improvement )

Dysphagia severity
quantification

C )
( )
[ P ]
( )

Left ventricular ejection
detection measurement

C
( Sleep stage classification )

Obstructive sleep apnea (0SA)
detection

Parkinson's Disease freeze of

detection h : .
gait (FOG) quantification

8 articles

Community acquired
pneumonia detection

Social functioning Fall Detection
quantification in late-life

depression through speech

(
(
C COPD detection
(
(

( Detecting bed and chair exits )

Abnormal respiratory function )

(Myocardial Infarction detection

( Fall event detection )

7 articles 5 articles 11 articles

Endocrinology Dermatology Nephrology

( Glucose level monitoring ) (Wound healing stage classiﬁcation) ( AVF stenosis prediction )

1 article 1 article 1 article

Total: 34 articles

Figure 3. Medical areas of selected studies.

According to our inclusion criteria, we selected studies that validated their wire-
less sensing methods using real-world clinical scenarios involving patients with specific
medical conditions. Most studies successfully utilized patient data with the targeted dis-
ease [22-24,26-28,30-33,42,55,56]. For fall detection studies in the geriatric population,
however, healthy volunteers were often recruited to simulate falls due to ethical concerns
related to patient safety [43-50,52,53]. An exception was Torres et al., who were able to
recruit hospitalized patients in a geriatric evaluation and management unit to detect bed
and chair exits, aiming to prevent falls in hospital settings [42]. Of note, many studies
focused on wireless sensing methods in sleep medicine utilized healthy volunteers, as a
specific pathology was not always required [34-41,51]. These studies typically investigated
snoring episodes, monitored sleep quality, and classified sleep stages.

Recruitment of participants was a common bottleneck for most studies included in this
review due to the stringent protocols required. The majority of studies (22, 65%) had fewer
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than 50 participants. Six studies had participant numbers ranging from 50 to 100 [23,26,27,
33,36,43], while six studies recruited more than 100 participants [22,24,25,28,31,35]. Some
studies utilized pre-existing datasets to increase their participant numbers [24,25,31,43,50].
These included hospital voice recordings for asthma attack detection, combined datasets of
healthy and pathological voice samples, and the Device-Free Human Activity Recognition
and Monitoring System (DARMS) dataset, which consists of CSI signals [51].

4.2. Findings of Wireless Sensing Studies in Personal Health
4.2.1. Cardiopulmonary

Wireless monitoring in cardiology and pulmonology has the potential for earlier detec-
tion of critical events such as myocardial infarction, and thus offers benefits of minimizing
further complications, facilitating early management, extending patient care to the home,
and reducing hospital visits and costs. Currently, wireless sensing for early detection
and disease monitoring in cardiology includes efforts to detect myocardial infarction and
automatic prediction of left ventricular ejection fraction, such as the Health-Radio model,
to reduce time to treatment [23,27]. Al-powered digital stethoscopes have also been devel-
oped to support disease diagnosis, provide active noise cancelation, and enhance telehealth
services. Examples include the StethAid to detect Still’s murmur and wheezes in pediatric
patients and a deep learning-based bilateral pulmonary audio-auxiliary model for detect-
ing community-acquired pneumonia [22,28]. Other studies for pulmonary function using
wireless sensing have focused on detecting chronic obstructive pulmonary disease, asthma,
and other pulmonary diseases [24-26].

4.2.2. Neurology and Psychiatry

With many neurological and psychiatric diagnoses relying on subjective observations
or self-reports, wireless sensing has been utilized to obtain automated and objective mea-
surements of movement and speech. Various wireless sensing applications have been
explored in movement disorders, swallowing and speech dysfunctions, and seizure detec-
tion. Wireless sensing has been extensively applied to Parkinson’s disease, allowing remote
monitoring of motor and non-motor symptoms, objective analysis of gait parameters, and
seizure detection [32,57-59]. Such non-invasive detection and monitoring approaches in-
clude a CNN-based model, WiFreeze, to quantify and detect freezing of gait in Parkinson’s,
and an SVM model for seizure detection using video accelerometry and radar sensing
data [29,32]. For other applications, such as in speech detection and swallowing impair-
ment, acoustic wireless sensing has primarily been utilized [30,31,33]. Wireless sensing
applications also extend to psychiatry, with one study in our search focusing on detecting
speech as a marker for social functioning in late-life depression using acoustic sensing [33].
These studies highlight the potential of wireless sensing technologies to provide objective
and accurate assessments of neurological and psychiatric disorders, enabling more precise
monitoring and early intervention.

4.2.3. Sleep Medicine

Wireless sensing offers a non-invasive approach for real-time sleep monitoring without
needing intrusive equipment that can otherwise interfere with sleep quality. Several sleep
monitoring devices for sleep detection or sleep stage classification have been developed,
including the Sleepy system, WiFi-Sleep, and an impulse-radio ultra-wideband radar
system by Kwon et al. [36,37,40]. Wireless sensing, primarily acoustic sensing, has been
used to detect and classify respiratory-related sleep events such as snoring and sleep apnea
with high accuracies [34,38,41]. There has also been a growing interest in understanding
and improving sleep quality. Gui et al. proposed a WiFi CSl-based system with a CNN
model to quantify and analyze sleep turnover events and breathing rates, and Nguyen et al.
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aimed to not only capture real-time vital signs and sleep posture information and predict
sleep stages but also provide auditory stimuli feedback to improve sleep quality [35,39].

4.2.4. Fall Detection for Geriatrics

All included articles in geriatrics were for fall detection. Falls are a significant con-
cern in the geriatric population, with more than one in four older adults experiencing a
fall globally [60]. Current fall detection strategies include medication management, gait
and balance exercises, patient room hazard assessment, and fall risk assessment tools like
STRATIFY [61,62]. However, these approaches are limited by a lack of continuous monitor-
ing and accessibility, and thus wireless sensors offer a promising solution for continuous
non-intrusive monitoring, providing rapid assistance and real-time alerts. Most of the
fall detection studies either used radar sensing [43,44,47,53] or WiFi CSI sensing [45,46,48—
50,52] technologies, with one study utilizing RFID [42]. Most of these studies focused on
classifying general daily activity, including falls of elderly individuals, with few approaches
incorporating more novel features such as post-fall localization, mobile app integration for
alerts and management actions, and identification of critical life-threatening falls [47,49,53].

4.2.5. Endocrinology

Wireless sensing can be used to track key physiological parameters, such as blood
glucose and insulin levels. Less invasive, continuous monitoring enables the extraction
and analysis of trends using Al, allowing predictive analytics to prevent emergencies by
detecting hypo- and hyperglycemic events, diabetic ketoacidosis, or thyroid storms. One
notable example is glucose detection utilizing near-infrared and RF sensing technologies
combined with a random forest model for continuous glucose monitoring [54].

4.2.6. Dermatology

Wireless sensing offers significant value in dermatology, particularly for monitoring
skin moisture, quantifying itch, and evaluating wound healing and medication response.
Kalasin et al. developed a smart bandage that uses RFID sensing and deep neural networks
to monitor wound healing across three stages (inflammation, proliferation, and remodeling)
after the application of corticosteroid cream [55].

4.2.7. Nephrology

For tracking kidney function markers (i.e., creatinine and glomerular filtration rate)
and managing fluid balance and dialysis, wireless sensing is a practical avenue. One
such example is the study by Park et al., where hemodialysis patients with dysfunctional
native arteriovenous fistulas were monitored. Shunt sounds before and after their percuta-
neous transluminal angioplasty were used to predict AVF stenosis with EfficientNetB5 and
ResNet50 models [56].

4.3. Benefits and Limitations of Wireless Sensing Approaches

We have identified and evaluated several common benefits and limitations of Al-
integrated wireless sensing approaches in their respective medical fields. One of the most
frequently cited limitations in these studies was the small number of patients included for
training and testing models and wireless sensing devices [27,29,30,33,35,36,38,48,49,53,54,56].
Limited study size, data collection methods, and variability in human activities posed chal-
lenges to the generalizability of many wireless sensing approaches [24,28-30,32,35,36,45,
46,48,54-56]. Only a subset of surveyed papers included clinical validation of model pre-
dictions with commonly used or gold-standard assessments, such as polysomnography
sleep studies [23,26,30,35,36,38,40,54,56]. While model performance overall correlated well
with clinical assessments, limited inclusion of clinical validation in wireless sensing studies
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restricts real-world implementation. Additional limitations involved the influence of en-
vironmental factors and normal physiological processes on data recording. These factors
affected both data quality and collection, with examples including breathing or movement
impacting recordings, background noise reducing recording quality, and obstructions like
furniture interfering with signal transmission [23,24,27,28,34,37,38,41,42,44-46,50,53]. There
were also concerns regarding patient data privacy and security issues, including the possibil-
ity of an untrusted node in the network [31,39], along with the possibility of understanding
the basis of Al predictions due to their “black box” nature [23]. Some other limitations
included the limited compatibility of these systems due to software or operating systems [22]
and the reliability of the communication channels due to signal degradation [25].

While these challenges are significant, several studies highlighted the notable benefits
of their wireless sensing approaches in enhancing medical care. Most of these wireless
sensors can be used to provide telehealth, improving healthcare access in areas where
it is not possible to see a clinician as soon as possible or when there are mobility issues
for the patient [22,24,31]. Due to the objective and automatic data collection techniques
and the Al integration, some of these wireless sensing methods achieved high diagnostic
and monitoring accuracy [22-24,29,30,32,33,36,41,56]. Furthermore, these approaches are
non-invasive and safer avenues compared to the gold standard [23,30,37-41,54,56], allow
for remote monitoring of conditions [23,34,54,55], and provide timely notification to im-
prove clinical outcomes [25,29,44,47,49,52,53]. Wireless sensing additionally enables early
detection, such as diagnosing MI in high-risk patients, improving clinical outcomes [27].
The ability to continuously monitor medical conditions or physiological parameters, along
with the convenience of these sensing methods due to their low cost and non-invasive
nature, were additional benefits highlighted in the studies.

4.4. Ethical Considerations

In addition to the technical and clinical considerations, ethical implications are also
a significant focus in evaluating wireless sensing technologies due to patient privacy, in-
formed consent, and data security issues. Van de Vel et al. highlighted concerns about
patient privacy, given that their approach involves continuous video monitoring of pa-
tients, which poses risks to patient confidentiality and the security of patient medical
information [29]. Collection, storage, and transmission of data are additionally vulnerable
to security breaches and data leakage [31]. A few studies, however, addressed the privacy-
preserving aspects in their designs, such as Zhang et al. and Wang et al. [45,53]. Such
design elements underscore the necessity of building trust in these devices by embedding
ethical safeguards in wireless sensing infrastructures and can play a role in the deployment
of such technologies in medical settings.

5. Discussion

This systematic review of 34 research articles emphasizes the role of Al-integrated
wireless sensing in healthcare, demonstrating its potential in real-time monitoring, diag-
nosis, and disease management. This review shows recent improvements and identifies
several research gaps in the field, including limited sample size in studies, limitations
of such technologies (i.e., battery life), lack of extensive clinical validation, and barriers
in integration into clinical workflows. Furthermore, additional insights include shifting
towards multimodal health monitoring and individualized patient algorithms as future
directions for research. These points are discussed, with suggestions to improve these
Al-based wireless sensing systems in healthcare, below.
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5.1. Shift from Disease-Specific to Multimodal Monitoring

Most studies use wireless sensing to monitor specific conditions, such as Parkinson’s
disease, MI, or sleep apnea. However, future systems could integrate data from multiple
physiological parameters to create a more holistic picture of patient health. For instance,
combining cardiopulmonary metrics with sleep patterns and movement data could enable
earlier detection of complex health conditions, such as heart failure exacerbations or the
onset of neurodegenerative diseases. This multimodal approach could be further enhanced
by incorporating predictive Al algorithms to anticipate health events before they occur,
moving healthcare towards a more preventive model.

5.2. Personalization for Improved Accuracy

Another well-suited area is the role of these models in individualized medicine. Most
of the current Al systems rely on generalized algorithms, which may not account for indi-
vidual variations in patient physiology or behavior. Personalization of these approaches—
where models adapt to unique baseline data—could improve the accuracy of wireless
sensing technologies. One such example is an Al system that learns the patient’s typical
vital signs and offers more precise alerts for deviations that may indicate health risks. This
individualized approach can improve trust in the technology by reducing false alarms and
enhancing patient compliance.

5.3. Clinical Validation

The above studies consistently point out the lack of extensive clinical validation as
a major limitation. Along with expanding clinical trials, future work should facilitate
rapid validation of these technologies and improve the deployment of Al technologies.
One innovative approach could be decentralized clinical trials (DCTs) [63], which utilize
telemedicine, remote monitoring, and digital tools to collect data from patients in real-world
settings. DCTs could allow for more inclusive and diverse populations along with reducing
the time and cost of validating studies across multiple sites. This would be particularly
effective for testing wireless sensing devices in various environmental conditions, which is
a major challenge we identified.

5.4. Integration with Healthcare Systems and Interoperability

There is a need to address the lack of integration with existing healthcare systems. Most
current wireless sensing technologies operate independently, which makes it hard for them
to be integrated in clinical settings and with electronic health record (EHR) systems [64].
Future work should focus on developing interoperable systems that can integrate wireless
sensing data with EHRs, allowing providers to access real-time patient data. Using Al
to analyze these real-time data could additionally improve the decision-making process,
reducing medical errors and enhancing healthcare delivery.

5.5. Sustainability and Device Lifespan

Due to battery life and device durability, sustainable and energy-harvesting technolo-
gies are potential avenues to extend device lifespan. Future research can explore the use of
energy harvesting from ambient sources, including body heat, motion, and environmental
light [65]. These advancements could lead to more autonomous and long-lasting solutions,
which can be particularly helpful in low-resource settings where device recharging could
be challenging.

5.6. Ethical Considerations and Data Privacy

Beyond technical limitations, ethical considerations regarding data ownership, privacy,
and consent are becoming critical due to the increasing amounts of personal data that are
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being generated by these models. Current frameworks, including HIPAA, might not
address the complexities of new developments in Al. A potential avenue for further
research is blockchain-based solutions for securing patient data [66,67]. This can provide
a tamper-proof record of data transactions, ensuring that patients can retain control over
their health information while still allowing for data sharing for clinical use. Exploring
such secure data-sharing approaches can significantly increase patient trust and help with
the adaptation of wireless sensing technologies in healthcare.

5.7. Next-Generation Wireless Sensing Technologies

This review identifies radar, WiFi CSI, acoustic, and RFID as the primary wireless
sensing technologies in healthcare, but next-generation technologies, such as quantum
sensors [68,69] or 6G wireless networks [70,71], could offer new avenues for healthcare as
well. Quantum sensors, for instance, could provide unprecedented high resolution and
precision in detecting physiological signals at the molecular level, offering new applications
in fields like cancer detection or monitoring of metabolic diseases. Similarly, the emergence
of 6G networks, which promise ultra-low latency and high data throughput, could revolu-
tionize real-time, continuous monitoring by enabling faster data transmission and more
sophisticated Al algorithms that can operate in real time with minimal delays.

6. Conclusions

Al-driven wireless sensing technologies demonstrate promising potential in healthcare
by providing real-time, non-invasive monitoring and early detection of medical conditions.
However, to further improve the potential of these systems, future research must focus on
developing more multimodal approaches, personalized algorithms, and extensive clinical
validation. Addressing technical challenges such as background signal processing, envi-
ronmental interference, device costs and sustainability, data privacy, and interoperability
with existing systems is essential for facilitating widespread adoption and implementa-
tion into healthcare systems and patient homes; such challenges require further focused
investigation to improve signal processing techniques and algorithms, device material
and design, and health system software and data standardization. With advancements in
next-generation wireless technologies and secure data-sharing techniques, Al-powered
wireless sensing can reshape healthcare into a more personalized and accessible model.

Author Contributions: All authors had full access to the data and tables. M.D.T., V.S.,J.S., W.-C.H.,
GY,CM,KS,Y-WD., Z]., XW,, S.M. and H.B. contributed to the concept and design of the review.
M.D.T., V.S. and H.B. contributed to drafting the manuscript. M.D.T., V.S, J.S.,, W-C.H., G.Y.,, C M.,
KS.,Y-WD.,, Z]., XW., S.M. and H.B. contributed to the revision of the manuscript. M.D.T., V.S. and
H.B. accessed and verified the data included. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported in part by the National Science Foundation under grant
numbers I15-2306789, 11S-2306790, 1IS-2306791, and I1IS-2306792.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Hoffman, C; Rice, D.; Sung, H.Y. Persons with chronic conditions: Their prevalence and costs. JAMA 1996, 276, 1473-1479.
[CrossRef] [PubMed]

2. Guk, K, Han, G,; Lim, J.; Jeong, K.; Kang, T.; Lim, E.K,; Jung, J. Evolution of Wearable Devices with Real-Time Disease Monitoring
for Personalized Healthcare. Nanomaterials 2019, 9, 813. [CrossRef] [PubMed]

3. Kim, J.; Campbell, A.S.; de Avila, B.E.; Wang, ]. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389—-406.

[CrossRef] [PubMed]



Bioengineering 2025, 12, 244 16 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

Bhatt, P; Liu, J.; Gong, Y.; Wang, J.; Guo, Y. Emerging Artificial Intelligence-Empowered mHealth: Scoping Review. JMIR mHealth
uHealth 2022, 10, €35053. [CrossRef]

Baig, M.M.; Gholam Hosseini, H.; Mogeem, A.A ; Mirza, E; Linden, M. A Systematic Review of Wearable Patient Monitoring
Systems—Current Challenges and Opportunities for Clinical Adoption. J. Med. Syst. 2017, 41, 115. [CrossRef]

Kaidi, HM.; Izhar, M.A.M.; Dziyauddin, R.A.; Shaiful, N.E.; Ahmad, R. A Comprehensive Review on Wireless Healthcare
Monitoring: System Components. IEEE Access 2024, 12, 35008-35032. [CrossRef]

Haque, A.; Milstein, A.; Fei-Fei, L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature 2020, 585, 193-202.
[CrossRef]

Kang, M.; Chai, K. Wearable Sensing Systems for Monitoring Mental Health. Sensors 2022, 22, 994. [CrossRef]

Kebe, M.; Gadhafi, R.; Mohammad, B.; Sanduleanu, M.; Saleh, H.; Al-Qutayri, M. Human Vital Signs Detection Methods and
Potential Using Radars: A Review. Sensors 2020, 20, 1454. [CrossRef]

Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia. Available online: https://www.
covidence.org (accessed on 31 January 2025).

Wang, X.; Shao, D. Chapter 1—Human physiology and contactless vital signs monitoring using camera and wireless signals. In
Contactless Vital Signs Monitoring; Wang, W., Wang, X., Eds.; Academic Press: London, UK, 2022; pp. 1-24.

Liu, X;; Cao, J.; Tang, S.; Wen, ]J. Wi-Sleep: Contactless Sleep Monitoring via WiFi Signals. In Proceedings of the 2014 IEEE
Real-Time Systems Symposium, Rome, Italy, 2-5 December 2014; pp. 346-355.

Liu, J.; Wang, Y.; Chen, Y.; Yang, J.; Chen, X.; Cheng, ]J. Tracking vital signs during sleep leveraging off-the-shelf WiFi. In
Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2015:
Association for Computing Machinery, Hangzhou, China, 22-25 June 2015; pp. 267-276.

Wang, X.; Yang, C.; Mao, S. On CSI-Based Vital Sign Monitoring Using Commodity WiFi. ACM Trans. Comput. Healthc. 2020, 1,
1-27. [CrossRef]

Wang, X.; Yang, C.; Mao, S. PhaseBeat: Exploiting CSI Phase Data for Vital Sign Monitoring with Commodity WiFi Devices. In
Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5-8
June 2017.

Wang, C.; Xie, L.; Wang, W.; Chen, Y.; Bu, Y.; Lu, S. RF-ECG: Heart Rate Variability Assessment Based on COTS RFID Tag Array.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1-26. [CrossRef]

Yang, C.; Wang, X.; Mao, S. Respiration Monitoring With RFID in Driving Environments. IEEE . Sel. Areas Commun. 2021, 39,
500-512. [CrossRef]

Yang, C.; Wang, X.; Mao, S. Unsupervised Detection of Apnea Using Commodity RFID Tags With a Recurrent Variational
Autoencoder. IEEE Access 2019, 7, 67526—-67538. [CrossRef]

Wang, X.; Zhang, J.; Yu, Z.; Mao, S.; Periaswamy, S.C.G.; Patton, ]J. On Remote Temperature Sensing Using Commercial UHF
RFID Tags. IEEE Internet Things ]. 2019, 6, 10715-10727. [CrossRef]

Duroc, Y. From Identification to Sensing: RFID Is One of the Key Technologies in the IoT Field. Sensors 2022, 22, 7523. [CrossRef]
Ren, Y;; Wang, C.; Yang, J.; Chen, Y. Fine-grained sleep monitoring: Hearing your breathing with smartphones. In Proceedings of
the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April-1 May 2015.

Arjoune, Y.; Nguyen, T.N.; Salvador, T.; Telluri, A.; Schroeder, ].C.; Geggel, R.L.; May, ] W,; Pillai, D.K.; Teach, S.].; Patel, S.].; et al.
StethAid: A Digital Auscultation Platform for Pediatrics. Sensors 2023, 23, 5750. [CrossRef]

Howard-Quijano, K.; Saraf, K.; Borgstrom, P.; Baek, C.; Wasko, M.; Zhang, X.; Zheng, Y.; Saba, S.; Mukkamala, R.; Kaiser, W.; et al.
Evaluation of Wearable Acoustic Sensors and Machine Learning Algorithms for Automated Measurement of Left Ventricular
Ejection Fraction. Am. J. Cardiol. 2023, 200, 87-94. [CrossRef]

Lalouani, W.; Younis, M.; Emokpae, R.N., Jr.; Emokpae, L.E. Enabling effective breathing sound analysis for automated diagnosis
of lung diseases. Smart Health 2022, 26, 100329. [CrossRef]

Al-Momani, O.; Gharaibeh, K.M. Effect of wireless channels on detection and classification of asthma attacks in wireless remote
health monitoring systems. Int. J. Telemed. Appl. 2014, 2014, 816369. [CrossRef]

Tseng, S.T.; Kao, YH.; Peng, C.C,; Liu, ].Y.; Chu, S.C.; Hong, G.E; Hsieh, C.H.; Hsu, K.T.; Liu, W.T.; Huang, YH.; et al. A 65-nm
CMOS Low-Power Impulse Radar System for Human Respiratory Feature Extraction and Diagnosis on Respiratory Diseases.
IEEE Trans. Microw. Theory Tech. 2016, 64, 1029-1041. [CrossRef]

Zhang, J.; Wu, Y,; Chen, Y.; Chen, T. Health-Radio: Towards Contactless Myocardial Infarction Detection Using Radio Signals.
IEEE Trans. Mob. Comput. 2022, 21, 585-597. [CrossRef]

Huang, D.; Wang, L.; Wang, W. A Multi-Center Clinical Trial for Wireless Stethoscope-Based Diagnosis and Prognosis of Children
Community-Acquired Pneumonia. IEEE Trans. Biomed. Eng. 2023, 70, 2215-2226. [CrossRef] [PubMed]

Van de Vel, A.; Milosevic, M.; Bonroy, B.; Cuppens, K.; Lagae, L.; Vanrumste, B.; Van Huffel, S.; Ceulemans, B. Long-term
accelerometry-triggered video monitoring and detection of tonic-clonic and clonic seizures in a home environment: Pilot study.
Epilepsy Behav. Case Rep. 2016, 5, 66-71. [CrossRef]



Bioengineering 2025, 12, 244 17 of 18

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

O’Brien, M.K,; Botonis, O.K; Larkin, E.; Carpenter, J.; Martin-Harris, B.; Maronati, R.; Lee, K.; Cherney, L.R.; Hutchison, B.; Xu, S.;
et al. Advanced Machine Learning Tools to Monitor Biomarkers of Dysphagia: A Wearable Sensor Proof-of-Concept Study. Digit.
Biomark. 2021, 5, 167-175. [CrossRef] [PubMed]

Verde, L.; Pietro, G.D.; Alrashoud, M.; Ghoneim, A.; Al-Mutib, K.N.; Sannino, G. Leveraging Artificial Intelligence to Improve
Voice Disorder Identification Through the Use of a Reliable Mobile App. IEEE Access 2019, 7, 124048-124054. [CrossRef]

Tahir, A.; Ahmad, J.; Shah, S.A.; Morison, G.; Skelton, D.A.; Larijani, H.; Abbasi, Q.H.; Imran, M.A.; Gibson, R.M. WiFreeze:
Multiresolution Scalograms for Freezing of Gait Detection in Parkinson’s Leveraging 5G Spectrum with Deep Learning. Electronics
2019, 8, 1433. [CrossRef]

Little, B.; Alshabrawy, O.; Stow, D.; Ferrier, LN.; McNaney, R.; Jackson, D.G.; Ladha, K.; Ladha, C.; Ploetz, T.; Bacardit, J.; et al.
Deep learning-based automated speech detection as a marker of social functioning in late-life depression. Psychol. Med. 2021, 51,
1441-1450. [CrossRef]

Mtyniczak, M.; Migacz, E.; Migacz, M.; Kukwa, W. Detecting Breathing and Snoring Episodes Using a Wireless Tracheal Sensor—A
Feasibility Study. IEEE ]. Biomed. Health Inform. 2017, 21, 1504-1510. [CrossRef]

Nguyen, A.; Pogoncheff, G.; Dong, B.X.; Bui, N.; Truong, H.; Pham, N.; Nguyen, L.; Nguyen-Huu, H.; Bui-Diem, K.; Vu-Tran-
Thien, Q.; et al. A comprehensive study on the efficacy of a wearable sleep aid device featuring closed-loop real-time acoustic
stimulation. Sci. Rep. 2023, 13, 17515. [CrossRef]

Kwon, H.B.; Choi, S.H.; Lee, D.; Son, D.; Yoon, H.; Lee, M.H.; Lee, Y.J.; Park, K.S. Attention-Based LSTM for Non-Contact Sleep
Stage Classification Using IR-UWB Radar. IEEE ]. Biomed. Health Inform. 2021, 25, 3844-3853. [CrossRef]

Gu, Y,; Zhang, Y.; Li, J.; Ji, Y.; An, X,; Ren, E. Sleepy: Wireless Channel Data Driven Sleep Monitoring via Commodity WiFi Devices.
IEEE Trans. Big Data 2020, 6, 258-268. [CrossRef]

Ren, Y;; Wang, C.; Chen, Y.; Yang, J.; Li, H. Noninvasive Fine-Grained Sleep Monitoring Leveraging Smartphones. IEEE Internet
Things J. 2019, 6, 8248-8261. [CrossRef]

Gui, L.; Ma, C.; Sheng, B.; Guo, Z.; Cai, |.; Xiao, F. In-Home Monitoring Sleep Turnover Activities and Breath Rate via WiFi Signals.
IEEE Syst. ]. 2023, 17, 2355-2365. [CrossRef]

Yu, B.; Wang, Y.; Niu, K,; Zeng, Y,; Gu, T.; Wang, L.; Guan, C.; Zhang, D. WiFi-Sleep: Sleep Stage Monitoring Using Commodity
Wi-Fi Devices. IEEE Internet Things J. 2021, 8, 13900-13913. [CrossRef]

Rossi, M.; Sala, D.; Bovio, D.; Salito, C.; Alessandrelli, G.; Lombardi, C.; Mainardi, L.; Cerveri, P. SLEEP-SEE-THROUGH:
Explainable Deep Learning for Sleep Event Detection and Quantification From Wearable Somnography. IEEE |. Biomed. Health
Inform. 2023, 27, 3129-3140. [CrossRef]

Shinmoto Torres, R.L.; Visvanathan, R.; Abbott, D.; Hill, K.D.; Ranasinghe, D.C. A battery-less and wireless wearable sensor
system for identifying bed and chair exits in a pilot trial in hospitalized older people. PLoS ONE 2017, 12, €0185670. [CrossRef]
Taylor, W.; Dashtipour, K.; Shah, S.A.; Hussain, A.; Abbasi, Q.H.; Imran, M.A. Radar Sensing for Activity Classification in Elderly
People Exploiting Micro-Doppler Signatures Using Machine Learning. Sensors 2021, 21, 3881. [CrossRef]

Garripoli, C.; Mercuri, M.; Karsmakers, P.; Soh, PJ.; Crupi, G.; Vandenbosch, G.A.; Pace, C.; Leroux, P,; Schreurs, D. Embedded
DSP-based telehealth radar system for remote in-door fall detection. IEEE ]. Biomed. Health Inform. 2015, 19, 92-101. [CrossRef]
Wang, C.; Tang, L.; Zhou, M.; Ding, Y.; Zhuang, X.; Wu, J. Indoor Human Fall Detection Algorithm Based on Wireless Sensing.
Tsinghua Sci. Technol. 2022, 27, 1002-1015. [CrossRef]

Wang, Y.; Wu, K.; Ni, L.M. WiFall: Device-Free Fall Detection by Wireless Networks. IEEE Trans. Mob. Comput. 2017, 16, 581-594.
[CrossRef]

Mercuri, M.; Soh, PJ.; Mehrjouseresht, P.; Crupi, F.; Schreurs, D. Biomedical Radar System for Real-Time Contactless Fall Detection
and Indoor Localization. IEEE ]. Electromagn. RF Microw. Med. Biol. 2023, 7, 303-312. [CrossRef]

Chu, Y,; Cumanan, K.; Sankarpandi, S.K.; Smith, S.; Dobre, O.A. Deep Learning-Based Fall Detection Using WiFi Channel State
Information. IEEE Access 2023, 11, 83763-83780. [CrossRef]

Ding, J.; Wang, Y. A WiFi-Based Smart Home Fall Detection System Using Recurrent Neural Network. IEEE Trans. Consum.
Electron. 2020, 66, 308-317. [CrossRef]

He, J.; Zhu, W,; Qiu, L.; Zhang, Q.; Wang, C. An indoor fall detection system based on WiFi signals and genetic algorithm
optimized random forest. Wirel. Netw. 2024, 30, 1753-1771. [CrossRef]

Gu, Z.; He, T.; Wang, Z.; Xu, Y. Device-Free Human Activity Recognition Based on Dual-Channel Transformer Using WiFi Signals.
Wirel. Commun. Mob. Comput. 2022, 2022, 4598460. [CrossRef]

Xia, Z.; Chong, S. WiFi-based indoor passive fall detection for medical Internet of Things. Comput. Electr. Eng. 2023, 109, 108763.
[CrossRef]

Zhang, D.; Zhang, X.; Li, S.; Xie, Y.; Li, Y.; Wang, X.; Zhang, D. LT-Fall: The Design and Implementation of a Life-threatening Fall
Detection and Alarming System. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2023, 7, 40. [CrossRef]



Bioengineering 2025, 12, 244 18 of 18

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Sun, Y.; Cano-Garcia, H.; Kallos, E.; O’Brien, E; Akintonde, A.; Motei, D.E.; Ancu, O.; Mackenzie, R W.A.; Kosmas, P. Random
Forest Analysis of Combined Millimeter-Wave and Near-Infrared Sensing for Noninvasive Glucose Detection. IEEE Sens. ]. 2023,
23,20294-20309. [CrossRef]

Kalasin, S.; Sangnuang, P.; Surareungchai, W. Intelligent Wearable Sensors Interconnected with Advanced Wound Dressing
Bandages for Contactless Chronic Skin Monitoring: Artificial Intelligence for Predicting Tissue Regeneration. Anal. Chem. 2022,
94, 6842-6852. [CrossRef]

Park, ].H.; Park, I.; Han, K.; Yoon, J.; Sim, Y.; Kim, S.J.; Won, J.Y;; Lee, S.; Kwon, J.H.; Moon, S.; et al. Feasibility of Deep
Learning-Based Analysis of Auscultation for Screening Significant Stenosis of Native Arteriovenous Fistula for Hemodialysis
Requiring Angioplasty. Korean J. Radiol. 2022, 23, 949-958. [CrossRef]

Parati, M.; Gallotta, M.; Muletti, M.; Pirola, A.; Bellafa, A.; De Maria, B.; Ferrante, S. Validation of Pressure-Sensing Insoles in
Patients with Parkinson’s Disease during Overground Walking in Single and Cognitive Dual-Task Conditions. Sensors 2022, 22,
6392. [CrossRef] [PubMed]

Schlachetzki, J.C.M.; Barth, J.; Marxreiter, F.; Gossler, J.; Kohl, Z.; Reinfelder, S.; Gassner, H.; Aminian, K.; Eskofier, B.M.; Winkler,
J.; et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS ONE 2017, 12, e0183989. [CrossRef]
Yen, J.M.; Lim, J.H. A Clinical Perspective on Bespoke Sensing Mechanisms for Remote Monitoring and Rehabilitation of
Neurological Diseases: Scoping Review. Sensors 2023, 23, 536. [CrossRef] [PubMed]

Salari, N.; Darvishi, N.; Ahmadipanah, M.; Shohaimi, S.; Mohammadi, M. Global prevalence of falls in the older adults: A
comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 334. [CrossRef] [PubMed]

Appeadu, M.K.; Bordoni, B. Falls and Fall Prevention in Older Adults; StatPearls: Treasure Island, FL, USA, 2024.

Oliver, D.; Papaioannou, A.; Giangregorio, L.; Thabane, L.; Reizgys, K.; Foster, G. A systematic review and meta-analysis of
studies using the STRATIFY tool for prediction of falls in hospital patients: How well does it work? Age Ageing 2008, 37, 621-627.
[CrossRef]

Van Norman, G.A. Decentralized Clinical Trials: The Future of Medical Product Development? JACC Basic Transl. Sci. 2021, 6,
384-387. [CrossRef]

Turbow, S.; Hollberg, ].R.; Ali, M.K. Electronic Health Record Interoperability: How Did We Get Here and How Do We Move
Forward? JAMA Health Forum 2021, 2, €210253. [CrossRef]

Ali, A.; Shaukat, H.; Bibi, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Recent progress in energy harvesting systems for wearable
technology. Energy Strategy Rev. 2023, 49, 101124. [CrossRef]

Godawatte, K.; Branch, P; But, J. Use of blockchain in health sensor networks to secure information integrity and accountability.
Procedia Comput. Sci. 2022, 210, 124-132. [CrossRef]

Upadrista, V.; Nazir, S.; Tianfield, H. Secure data sharing with blockchain for remote health monitoring applications: A review. J.
Reliab. Intell. Environ. 2023, 9, 349-368. [CrossRef]

Das, S.; Mazumdar, H.; Khondakar, K.R.; Mishra, Y.K.; Kaushik, A. Review—Quantum Biosensors: Principles and Applications in
Medical Diagnostics. ECS Sens. Plus 2024, 3, 025001. [CrossRef]

Aslam, N.; Zhou, H.; Urbach, E.K.; Turner, M.].; Walsworth, R.L.; Lukin, M.D.; Park, H. Quantum sensors for biomedical
applications. Nat. Rev. Phys. 2023, 5, 157-169. [CrossRef]

Chataut, R.; Nankya, M.; Akl, R. 6G Networks and the AI Revolution-Exploring Technologies, Applications, and Emerging
Challenges. Sensors 2024, 24, 1888. [CrossRef] [PubMed]

Singh, PR; Singh, V.K,; Yadav, R.; Chaurasia, S.N. 6G networks for artificial intelligence-enabled smart cities applications: A
scoping review. Telemat. Inform. Rep. 2023, 9, 100044. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.



	Introduction 
	Materials and Methods 
	A Brief Overview of Wireless Sensing Technology 
	Radar 
	CSI 
	RFID 
	Acoustic Sensing 

	Results 
	Characteristics of Individual Studies 
	Findings of Wireless Sensing Studies in Personal Health 
	Cardiopulmonary 
	Neurology and Psychiatry 
	Sleep Medicine 
	Fall Detection for Geriatrics 
	Endocrinology 
	Dermatology 
	Nephrology 

	Benefits and Limitations of Wireless Sensing Approaches 
	Ethical Considerations 

	Discussion 
	Shift from Disease-Specific to Multimodal Monitoring 
	Personalization for Improved Accuracy 
	Clinical Validation 
	Integration with Healthcare Systems and Interoperability 
	Sustainability and Device Lifespan 
	Ethical Considerations and Data Privacy 
	Next-Generation Wireless Sensing Technologies 

	Conclusions 
	References

