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Abstract

We study Jost solutions of Schrodinger operators with potentials which decay
with respect to a local H~! Sobolev norm; in particular, we generalise to this
setting the results of Christ—Kiselev for potentials between the integrable and
square-integrable rates of decay, proving existence of solutions with WKB
asymptotic behaviour on a large set of positive energies. This applies to new
classes of potentials which are not locally integrable, or have better decay
properties with respect to the H~! norm due to rapid oscillations.
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1. Introduction
One-dimensional Schrodinger operators — d‘i—zz + V with decaying potentials V are often studied

by comparison with the free Schrédinger operator (case V = 0). In particular, Jost solutions are
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eigensolutions which asymptotically behave similarly to eigensolutions of the free Schrodinger
operator. More precisely, let £ > (0 and

k=+E.

If V is compactly supported, there are solutions of —u’’ 4 Vu = Eu such that u(x) = e'** for all
large enough x, and if V € L!((0,00)), there are solutions of —u’’ + Vu = Eu with asymptotic
behaviour

u(x)=e*+o(1), X — +o0.

Note that the L' condition serves two purposes: local integrability of V is a common assump-
tion on the potential, affecting everything from self-adjointness on [38, 48]; moreover, the
global L' condition serves as a fast decay assumption. To allow slower decay at infinity without
imposing stronger local assumptions, one often uses the spaces

o (L9) = {fl > Xl < OO} :

n=0

For weaker decay assumptions on V, existence of modified Jost solutions with the WKB
asymptotic behaviour

u(x,E)zeik“%kfgv(’)d’—l—o(l), X — 400 (1.1)

was studied by Kiselev [29, 30], Remling [42-44], Christ—Kiselev [5, 7-9], Poltoratski [40]. In
particular, if V € 7(L") for some p € (1,2), eigensolutions obeying (1.1) exist for Lebesgue-
a.e. E >0 [8]. Moreover, with some power law decay in the form of a condition (1 4+ x)V &
(L") with v >0 and p € (1,2], there is a bound on the Hausdorff measure of the bad set of
positive energies without the WKB asymptotic behaviour [7].

Jost solutions are bounded, so through subordinacy theory [17, 18, 20, 25, 47], they imply
absolute continuity of the spectral measure on the corresponding set of energies. They are used
in one-dimensional scattering theory to show existence and completeness of wave operators
[1,9, 21, 28, 41], see also [2, 3, 13, 14]. They are also the basis for inverse scattering on the
line [12], and they are related to Szeg6 asymptotics [10, 11]. The generalised Jost solutions in
this paper can serve as the basis for further investigations in all these directions.

In this paper, we study Schrodinger operators with locally H~! potentials, which is
more general than the local L' assumption mentioned above. Their study was initiated by
Hryniv—Mykytyuk [22, 23] in the full-line setting, within a long literature on operators with
singular coefficients including [15, 45, 49]. In particular, Weidmann [49] and Savchuk—
Shkalikov [45] gave general treatments based on the notion of quasiderivative, and Eckhardt—
Gesztesy—Nichols—Teschl [15] systematically studied four-coefficient Sturm-Liouville oper-
ators, including their Weyl theory and eigenfunction expansions.

Hryniv—Mykytyuk [22] used an explicit molifier ¢ € H'(R) with suppp = [—1,1] such
that }°, ., #(- —n) = 1; a potential V is locally H~" if V¢(- —n) € H~'(R) for all n. They
constructed a decomposition

V=0o'+71 (1.2)

with o € L} (R), 7 € L{ . (R). This decomposition is local, in the sense that values of o, on

(a, b) only depend on the action of the distribution V on test functions ¢ € C3°((a —¢,b+c¢))
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for some universal constant ¢ > 0, and obeys

Chsupl| Vo (- = n)ll 1) < sup (lox s nll2 + 17X 1)

< Csup||Vo (- — n)[|g-1(m) (1.3)

for some universal constant C. If these quantities are finite, V is said to be locally uniformly
H~'. For particular choices of V, one does not have to use the exact o, 7 constructed by [22],
and relevant statements are independent of the choice of decomposition.

This level of generality obviously allows a greater family of potentials to be studied, includ-
ing Dirac delta terms §,, at internal points xo and Coulomb singularities |x —xo|~! at an end-
point xq. There are also other motivations for the locally H~! setting. The decomposition (1.2)
is related to the Miura transformation and the Riccati representation [26, 32] for periodic V;
however, the non-periodic, infinite interval setting requires two functions o, T, where 7 takes
the role of a local average, and o’ contains the less smooth part of the potential. The represent-
ation (1.2) was observed to be useful even for V € LlloC [13], and can be motivated also through
the connection to a square of a Dirac operator.

The final motivation is that the H~! norm is less sensitive to rapid oscillations; thus, rapidly
oscillating potentials can seem decaying with respect to a local H~! norm, even if they are not
classically decaying, or they can seem to be decaying at a faster rate. We will illustrate this
below with example 1.5.

The half-line setting is natural for the goals of this paper, so we consider half-line distri-
butions V € D’(R ) of the form (1.2) for some o € Lf,. ,i¢(Ry ), T € Liy, (R ). We have
previously studied the corresponding half-line operators in joint work with Sukhtaiev [39].
In particular, we described general criteria for different spectral types for this class of half-
line operators, including a more general Carmona’s formula and a pointwise eigenfunction
estimate which allows us to generalise Last—Simon criteria; as an application, we presented a
dichotomy of spectral type for sparse decaying potentials. Our current paper is thematically
a continuation of [39], shares its reliance on the transfer matrix formalism, and uses some
general results from [39]. We will now review the necessary background.

The quasiderivative [45, 49] of a locally absolutely continuous function u is

ull:=u' — ou,
and the formal action of the Schrédinger operator is defined on the local domain

D= {u € ACie (R ) : ull € AC), (R+)} (1.4)
by

u— (um)’_(mm +(r—o?)u. (1.5)

Half-line self-adjoint Schrodinger operators H on the Hilbert space L?(R ) are obtained [22,
39] by restricting ¢ to the domains

dom (H) := {u CL2(Ry)|ue®, fucL®(Ry), u(0)cos(a)+ul) (0)sin(a) = o}
where « labels the boundary condition at 0. Likewise, a formal eigensolution of H at energy
E is a function u € D such that fu = Eu in the sense of equality of L], functions. Although

o, T are prominent in these definitions, different choices of decomposition (1.2) lead to the

3
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same operator H up to a change of the value of o [39, remark 2.2]; the Dirichlet operator
«=0is unchanged. As in the L] . setting, these half-line operators have simple spectrum and
a canonical spectral measure . General criteria for spectral type were studied in [39].

A potential V is said to be H~!-decaying if
Vo (- —n)||g—1 — O, n— oo.

Due to (1.3), we think of ||ox (v x41)[[2 4 [|7X (x,x+1) |1 as the local size of the potential, and for
an H~'-decaying potential, we assume that o, 7 are chosen so that

”UX(x,x-‘rl)HZ—'_||TX(x,x+l)H1 —0, X — 0.

By a quadratic form argument [39], if V is H~!-decaying, oes(H) = [0,00). Finally, to
describe rates of decay, we define spaces of half-line distributions

eHY)={c"+7|cer(L?),Ter(L")}.

Definition 1.1. For an H~!-decaying potential V, we say an eigensolution u of Hy at energy
E = k* has WKB asymptotic behaviour if

i[x

u(x) =" mhOI L o(1),  x— +oo, (1.6)
ull (x) = ike®™ =2 b7 L 5(1) x5 4. (1.7)

We explain in lemma 2.1 in what sense this is independent of decomposition.
This regime was not previously studied in the literature, so even the following short range
result is new (although its spectral consequences were described in [39]):

Theorem 1.2. If V€ (' (H™"), then for every E > 0, there is an eigensolution with the WKB
asymptotic behaviour.

The main results of this paper are two theorems for potentials which decay at a slower rate;
these are generalisations of results of Christ—Kiselev to the locally #~! norm. The first works
with potentials in an 7 (H~!) space:

Theorem 1.3. If V€ ?(H™") for some p € (1,2), then for Lebesgue-a.e. E > 0, there is an
eigensolution with the WKB asymptotic behaviour. In particular, the absolutely continuous
part of the Schrodinger operator H is unitarily equivalent to the half-line Dirichlet Laplacian.

Combining this with some power law decay also bounds the Hausdorff dimension of the
set of positive energies without WKB behaviour:

Theorem 1.4. Let p € (1,2], v>0 with yp’ < 1, where 1/p+1/p’ =1. If (1+x)7V(x) €
P(H™Y), there exists a set A of Hausdorff dimension dimy A < 1 —~p’ such that for all
E € (0,00) \ A, there exists an eigensolution Hu= Eu with the WKB asymptotic behaviour.
In particular, the singular part of the spectral measure of H is supported on a set of Hausdorff
dimension at most 1 —yp’'.

We note that by Holder’s inequality, if (1 +x)?V(x) € #(H"'), then V € ¢"(H~!) for all
r > p/(1 4 p7).In particular, conclusions of theorem 1.3 apply to the potentials of theorem 1.4.
Moreover, the case yp’ > 1 is already covered by theorem 1.2, since then V € ¢!(H~!) by
Holder’s inequality.

The first part of the analysis is pointwise in energys; it is a rewriting of the 2nd order ODE
as a first-order vector ODE, with a change of variables accounting for the WKB asymptotics.

4
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This results in an initial value problem with an initial condition at infinity. The resulting ODE
has LlloC coefficients but a more complicated form than the classical case, with o, 7 appearing
in different places and a nonlinearity in the form of a o> term. An effective term replacing V (x)

in this initial value problem turns out to be the complex-valued, energy-dependent expression

O(x,E)=7(x)— 0 (x)* +2iVEs(x),

which complicates further analysis.

The main part of the proof of theorems 1.3 and 1.4 combines the original proof of Christ—
Kiselev [5] with technical extensions introduced by Christ—Kiselev [7] in order to study linear
combinations of terms with different decay properties; in our work, these extensions are used to
handle energy-dependent linear combinations stemming from the effective potential Q(x, E).
Note that whereas [7] allows slowly decaying terms whose derivative is in an L” space, our
work goes in the opposite direction and allows the potential to be a derivative. We also use
some contributions of Liu [34], who studied perturbations of periodic Schrédinger operators.

One motivation for theorems 1.3 and 1.4 are potentials consisting of terms which are not
locally integrable. For instance, the above theorems apply to combinations of J-functions

o0
V= Za,,én
n=1

with a suitably decaying sequence of a,. Another motivation is that fast oscillations make a
potential appear smaller in H~! norm. For instance, a suitable potential of the form

V(x) = g (x)sin (x") (1.8)
where g(x) behaves roughly as x%, may appear to behave roughly as x**!'~? in local H~' norm,
which is an improvement if b > 1. We make this precise in the following example. Recall that a
functionf: (0,00) — (0, 00) is said to be regularly varying (at co) of order p if f{\x) /f(x) — A?
as x — oo for every A > 0.

Example 1.5. Let V be of the form (1.8), where g € ACjoc((0,00)) and g’ is a regularly varying
function of order a — 1. Denote c =b —a — 1.

(a) if ¢ >0, then V is H~!-decaying, s0 oess(H) = [0,00).

(b) if ¢ > 4, then V€ ¢?(H™") for p € (1/c,2), so by theorem 1.3, o,c (H) = [0,00).

(c) if § <c<1, then (1+x)7V(x)€*(H") for v € (0,c—1/2), so by theorem 1.4,
dimgy(S) <2 —2c.

(d) if ¢> 1, then V€ ¢'(H™'), so H has purely a.c. spectrum on (0, 0).

In the special case g(x) = x?, more was already proved, by an approach which required g
to be infinitely differentiable with decay conditions on derivatives of all orders [50] (see also
references therein).

Another example is the potential defined piecewise by

V)= (D" 1<y <n, n=1273,..., (1.9)
sometimes used as an example of a potential not decaying in a classical sense but having related
properties [16, 39]. We obtain its spectral properties:

Example 1.6. The Schrodinger operator with potential given by (1.9) has a.c. spectrum on
[0,00) and the singular part of its spectral measure is zero-dimensional.

5
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2. Observations about the decomposition of the potential

A technicality of the H~! setup is that certain claims about the Schrodinger operators ostens-
ibly depend on the choice of decomposition. We explain that WKB asymptotic behaviour is
only affected by a asymptotically constant phase shift, which can be factored out:

Lemma 2.1. IfV is H !-decaying and
V=o]+mn, k=1,2,

are two distinct decompositions with the decay condition

Jj+1 j+1
/ \ak(x)\zdx—i—/ |7k (x)|dx — 0, j— o0,
J J

then

is convergent. In particular, if u satisfies WKB asymptotic behaviour with respect to o1, T,
then e/ 0y satisfies WKB asymptotic behaviour with respect to o, 7.

Proof. Due to (0, — 01)’ = 71 — 7, the difference § = o, — o is locally absolutely continu-
ous. Since fj.j+1|9(x)|2dx — 0 and fj’H |6/ (x)|dx — 0, by a Sobolev inequality, #(x) — 0 as
x — 00. Convergence of the limit follows from [;(71(¢) — 2(¢)) dz = 6(x) — 6(0). Thus,

en i (MO—mO)d — o3t 4 5(1),  x— 00,
and multiplying by WKB asymptotics for u gives the final claim. O
Lemma 2.2. Iff€ (*(L?), then f,f*> € ¢°(L").
Proof. For any j, by the Cauchy—Schwarz inequality,

JH1 1 V2 /i 12 J1 12
/ v<x>|dx<<, v<x>|2dx> (/ 1dx> :</ lf(x)ﬁdx) .

Taking pth powers and summing in j proves f € ¢ (L").
By the well-known inclusion ¢ C ¢4 for g > p, f € ¢?(L?) implies f € ¢*’(L?). Note that
f €% (L%)if and only if f2 € /7 (L"), since they both correspond to the convergence condition

J+1 P 1 »
lf(X)lde> = ( V(X)Ide> < 00.
S (/ vera) (/] :

J
Lemma 2.3. Letp> 1,7 >0, and (1+x)"V e P (H™"). Then V has a decomposition V =
o'+ 1 such that

(1+x) o€ (L?), (I+x)"ree(L').
Moreover, for this decomposition, (1 +x)Y (1 — o?) € P (L).

6
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Proof. By definition, there exist a € //(L?*) and b € ¢(L") such that
(14+x)"V=a"+b = V=(1+x)""(a’+b).
Let o(x) = (1 +x) a, then (1 +x)Y0 = a € ¢?(L*); moreover,
1

o' =(1+x)""a —y(1+x)7" aq,

and

V=0'+T1, 7(x) = (1+x)7(11xa(x)+b(x)>.
By lemma 2.2, a € /(L?*) implies a € #?(L"), and by the pointwise estimate

a(x)
1+x

< la(x)l,

this implies (1 +x)~'a € ¢°(L"). Moreover, b € /7 (L"), so (1 +x)Y7 € P (L").
Applying lemma 2.2 to (1 4+ x)7c implies

(1+x)"ocee (L), (l+x)2702€€p(Ll).

Then a pointwise estimate (1 +x)Yo? < (1 +x)*/o? implies (1 +x)Yo? € ¢P(L'). O

3. A pointwise condition for WKB asymptotic behaviour

We provide a condition for the existence of a solution with WKB asymptotic behaviour at a
fixed energy E. The eigensolution equation fu = Eu can be written as a first-order matrix ODE
with L} coefficients,

loc
UM —0 17—0?—E\ (ulll
()= ) @

and the proof consists of transforming this ODE into another one.

Theorem 3.1. Fix o, 7 and fix E > 0. Denote k = \/E and

0(x)=7(x)—0c(x)’,  O(xE)=0(x)+2iko (x)

h(x,E)szx—/onk(t)dt, w(E)z—zik 3.2)
F(x,E)=w(E)e "B (x,E).
If the system
Y (x) =D(x,E)Y(x), D(x,E)= ( = (2, 5 4 %’E)> (3.3)

¥(x) = (é) +o(l), x—oo (3.4)
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then there is an eigensolution u obeying the asymptotic behaviour
u(x) :eikx*ﬁf(f(f—“z)(’)d’—i—o(l), X — 400, (3.5)
ull) (x) = ik w o (7= )Od Loy x5 foo, (3.6)

In particular, if o € (*(L*) = L*((0,00)), then there is an eigensolution obeying the WKB
asymptotic behaviour (1.6) and (1.7).

Proof. With the substitution

eh/2
= < 0 e-in2 Y,

we obtain u#, which obeys the ODE

,_ (k20 ez 0 ez 0 0 F
”2_< 0 ih’/2)(0 2 )Y o e J\F o)

_(in')2 eF
“\e*F —in'j2)"

and with the further substitution

ik —ik
uy = 1 1 uz

where k = \/E, this gives u; which obeys the ODE

. (ik —ik\ (/2 T\ (ik —ik)
T\ ) \e ™ F o—inr2)\1 1) "

By direct calculations, this gives
LT ¢ ' | 1pad
= (e, i),
o T 5z ReQ 5 ImQ
(-0 Q-
(7 )

and we recognise this as the matrix ODE for eigenfunctions (3.1). 4
Moreover, from the asymptotic behaviour ¥ = ({) + o(1), since [e//?| = 1 we obtain

- | 2 Y— ! —0 —
u 0 = 0 y X o0

(% =*) is a fixed invertible matrix, we obtain

ike" 2\ || || ik —ik eih/?
=\ ein/2 S 1 1 U2 =\ gin/2

= ike"/? +o(1) s oo
1= eih/2+0<1) ) .

and then, since

‘—>O, X — 00

and therefore

8
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This is equivalent to (3.5) and (3.6). If o € EZ(LZ), this can be transformed to (1.6) and (1.7)
as in the proof of lemma 2.1. 0

If o ¢ (?(H™'), the appearance of o in the exponents in (3.5) and (3.6) is of interest.
Potentials decaying slower than L? may have empty a.c. spectrum [31, 33], so no WKB-type
behaviour can be expected in general, but in some slowly decaying settings, such as Wigner—
von Neumann type potentials with decay slower than L? [19, 24, 35-37, 46], precise asymptot-
ics with additional correction terms are obtained, and those additional terms are of quadratic
and higher orders in the potential.

At this point, the ‘short-range’ case V € ¢! (H~") follows immediately (see also [39]):

Corollary 3.2. If V< (' (H™"), then for every E > 0, there exists an eigensolution with WKB
asymptotic behaviour.

Proof. By lemma 2.3, there exists a decomposition such that 0,7 — 0> € ¢! (L!) = L' ((0,0))
so F(x,E) € L'((0,00)). Thus, for any E > 0, there is a solution Y of (3.3) and (3.4) given by
a classical Volterra series. O

WKB asymptotic behaviour provides further information about the eigensolutions:

Lemma 3.3. If at some E > 0 there is an eigensolution u which obeys (1.6) and (1.7), then u
and U are linearly independent, and all eigensolutions at E are bounded.

Proof. The Wronskian of two eigensolutions u, v is
W (u,v) (x) = u (x) v (x) =l () v (x) .

The Wronskian of u,u is independent of x, and from (1.6), (1.7), it follows that
W (u,u) (x) =2ik+o0(1), X — 00

so W(u,u) = 2ik. In particular, u, u are linearly independent.
Any eigensolution at energy E is a linear combination of u, u, so it is bounded. 0

Transfer matrices T(x,z) are obtained as the matrix solution of the initial value problem

o= ("0 T T 1, 10 =1= () )

derived from (3.1). This is intended as the unique solution which is locally absolutely continu-
ous in x for every z.

A nontrivial eigensolution u is called subordinate if for every eigensolution v linearly inde-
pendent to u,

Nu (1) de
fim Jo [P
oo [y (r) Pt

Next, we note the very general statement that boundedness of solutions implies absence of
subordinate solutions and absolute continuity of the spectral measure. In the classical setting,
this is a combination of results of Stolz [47] with the subordinacy theory of Gilbert—Pearson
[18]; in the lecl setting, this follows from the arguments of [39], and we provide the steps of

the proof not explicitly stated there:
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Lemma 3.4. Assume o € (*(L?), 7 € (>°(L"). If all eigensolutions are bounded at some
energy E € R, then there are no subordinate solutions at energy E.

In particular, if eigensolutions are bounded for all E in a Borel set S and p denotes the
canonical spectral measure of H, then xsdu is mutually absolutely continuous with xsdm,
where m is Lebesgue measure.

Proof. In [39, Proof of theorem 1.3], it was proved that existence of a subordinate solution
implies

l1m /HTxE)||2dx 0.

However, boundedness of eigensolutions implies boundedness of their quasiderivatives by the
eigensolution estimates [39, lemma 2.7], so it implies sup, | T(x, E)|| < co. Combining the two,
we see that boundedness of eigensolutions implies that there is no subordinate solution.

By subordinacy theory ([17, 20] in this generality), the set N C R of energies at which there
is no subordinate solution is, up to a set of measure zero, equal to the set of energies E € R at
which

hfnm (E+ie) e Cy.

By the general properties of the Herglotz representation, it follows that yydu is mutually
absolutely continuous with xydm, with m the Lebesgue measure. O

4. Martingale structures and operator estimates

Before we proceed to the proofs of theorems 1.3 and 1.4, we need some preliminary notions
and results. Let us start by introducing the martingale structure:

Definition 4.1. A collection of subintervals {E;“ im € Zy,1<j<2™}is called a martingale
structure on R if the following is true [8, 34]:

e Vm, R, = UJ-E;";

o Vi #j, E'NE" =0

o Ifi<j,x€E" and x’ EET, then x < x’;
o Vm, E' = EjH  UESH.

Given a martingale structure {E’"} let xj' := x B the martingale structure is said to be adapted
(in 7 (L)) to f if for all m,j:

A1y < 27" 1A 00,

Lemma 4.2 ([8, p 433]). For any function f € (L"), there exists a martingale structure {E;”}
adapted to f.

Next, we introduce the 3, semi-norm which will be an important object throughout the
section.
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Definition 4.3. For s > 0, let 5; be the Banach space consisting of all C-valued sequences
a=a(m,j),m € Z; and 1 <j < 2™, for which
1/2

o
llalls, = Z m’* Z|a (m,j)|? < 0. 4.1
j=I

meZ4

Definition 4.4. Forf€ L\ (R, ) and a martingale structure {E]"}, define a sequence

{ [ 1 dx} —{ [y dx}. 42)

By abusing the notation, we denote

oo 2" 2\ /2
A—H{/ﬂx)dx} =3 |3 ‘ @y
E B, m=l j=1
Lemma 4.5. |-||g, is a semi-norm on the set
By = {f € Lioc (R+)
Proof. This follows from the Minkowski’s inequality. O

Note that ||f]| 5, always assumes some underlying martingale structure {E]’”}, though it is
not necessarily adapted to f.

Definition 4.6. Let P; : ¢°(L') — L%(J,dE), i = 1,2 be linear or sub-linear bounded operators,
where J C R is a closed interval. For s >0 and a martingale structure {E7'}, define

om 1/2
Gy (B) = [{P (A") (B)} I, = Zm Z|P1 (A ( ,
and
o porair (B) = [[{P1 (X)) (E) + P2 (f:x]") (E) P},
S 2w
=>om [ 1P (Axg) (B)+ P (X)) (B)
m=1 j=1

Upon assuming boundedness of P;, i = 1,2, it can be shown that G;f;)( 0 and G;f;)( £),P2 (1) €
all in L1(J,dE):

Lemma 4.7 ([8, proposition 3.3]). Assume that P;, i = 1,2 are bounded linear or sublinear
operators from {7 (L") to L(J,dE), where p < 2 < g and J C R is a closed interval. Then,

(a) for any f € P(L") and any martingale structure {E}"} adapted to f,

1G5 (B)llesr) < C (.., 1P - Wler oy

(b) for any f; € (L"), i = 1,2, and any martingale structure {E]'} adapted to |fi| + |fa,

1G) 1 oty (B sy < C oo, 1P P2 - (Wfi vy + Wfallercary)

1
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where C < 0o depends only on p, q and the operator norm of P, or of P;, P, respectively.

For an integral operator P given by
POE = [ pnE)f) &
+

for some measurable function p(x, E) on R4 x J, we define the maximal operator P* as

P* () (E) = sup

yeRy

[mﬂmﬂﬂ@w+

Lemma 4.8 ([8, lemma 3.4]). The mapping (f\.f2) — Gpx(s,).ps(y,) also satisfies the conclu-
sion of lemma 4.7.

We note that the proof to lemma 4.8 is identical to that of lemma 4.7 upon showing that the
maximal operator P* of a bounded linear or sublinear operator P is also bounded.

For suitable functions ¢ : Ry x Ry — C, we will consider the operator S¢ and its maximal
operator S¢ on {7 (L"), given by

Sc(NE)= | C(x,E)e ™™ Bf(x) dx,
R 4.5)
(Se)* (N (E) = sup / ¢ (x,E) e "B (x) d
yeRy IJy

Lemma4.9. Letp € [1,2] andp’~= p%l be the conjugate of p (p’ = co whenp=1). If] C R,
is a compact interval and J C intJ a compact interval, and ( obeys

2
sup > |0iC (%, E)[ < Cy, (4.6)
x€EREET ;1

for some constant C < oo, then S¢,S; (LYY — I (J,dE) given by (4.5) are well-defined
bounded operators; for any f € (L"),

IS¢ DNl g.ae) < ClAle @y 1S D e .02y < CI]

where C depends on J,j,p, and C; is as in (4.6).

o), 4.7)

Proof. The definition of i(x,E) in (3.2) is exactly as that in [34], i.e. Q € /(L'), and so the
result of [34, theorem 4.1] holds. Then, the claim follows [34, theorem 4.1] with h=h and
w=_(. O

In our application in sections 6 and 7, ((E) = ((x,E) will be of the form ak’ for some
constanta € C and b € R; thus, the condition (4.6) will always hold for a fixed compact interval
JCR,.

Finally, we introduce the multilinear operator technique considered in [7, 8]. The multi-
linear operator will be used to define the series solution to the system (3.3), so the following
results are essential in later proofs of the WKB asymptotics of eigensolutions.
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Definition 4.10. A multilinear operator M, acts on n functions f;(x, E) by

n

My(fy, o) (' E) :/ [T .E) dss.

< oS G

Of particular importance are estimates in cases whenfi, .. .,f, are all equal to the same function
f orits complex conjugate. Previous works on this subject use the notation M, (f)(x,x’,E) in
this special case, regardless of which f; are equal to f and which to f. In particular, the alternating
choice

Moy (f) (x,x" E) = Moy (L1 1o - o) (%, E)
M2n+1 (f) (X,XI,E) = M2n+1 (ﬁfaﬁfaﬁ cee afaj‘) (X,X,,E)
will be used below.

Definition 4.11. The corresponding maximal operators are defined as

M::( lavfn)(E): sup |Mn(f17"'a ”)(X,XI,E)|
x<x/eRy

and

My (N(E)= sup  [M,(f)(x,x",E)|.
0<x<x’/ <00

Theorem 4.12 (Christ—Kiselev [6]). There exists a universal constant Cy < oo such that for
every martingale structure {E}'} on R,

M (oo S) (B) < GO T I ) s,
j=1

and
G, E)
M, (f)(E) < Ci————=——. 4.8
Remark 4.13. The notations ||f]| 5, and Gl(,s])( 1.P2(f,) Will always assume a certain underlying

martingale structure {E]}.

5. A series solution and summary of proof

By theorem 3.1, in order to show theorems 1.3 and 1.4, it suffices to produce a solution Y(x)
of the system in (3.3) satisfying (3.4) on some appropriate subset O C R, .
We solve the system in (3.3) by solving the corresponding integral system:
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By iterations, we obtain a series solution:
o)/ P (s)o [ ]
0 . y
1 o0 o0 o0
o)/ p(o)or+ [ /D ()dfdy
X y
/’ D

_ / /, V)D(1)D(s) ¥ (s) dsdrdy

o0

= D(y Y (¢) dedy

Y(x)

Y(x)= <1> + k_l / /<11\ e D(t;)---D(#) <(1)> dy---dry.

5.1
Note that for even number of multiplications,

(FF ) F ) F o) 0
D)D) = (PO FOT T R F o)

and for odd number of multiplications,

D(t1)+D(ta+1)
_ ( _ 0 _ f<n>f<tz>f<r3>---f<r2k>f<tzk+1>),
F (1) F(t2) F (t3) - F (tax) F (taxs1) 0 ’

thus, using the multilinear operator notation from definition 4.10,

D 1 Moy (F) (x,x",E
// D(t;)---D(tx) (())dtZk"'dh—( 2k ( )O(xx ))7
<K Ky K/

1 0
t)---DI(t dr ...dfy = ,
/ /<ll< <I')‘+]<X ( 1) ( 2k+1) <O) 2 : (M2k+1 (‘F) (x,x/,E)>

So, the series solution (5.1) becomes

o 1 Z;O:I Moy, (]:) (x7oo7E)
= () + (— S Mo (F) <x,oo,E>> | e

Now, it suffices to show that, on some appropriate subset O of R, the series in (5.2) is
well-defined and gives an actual solution to (3.3) which satisfies (3.4).

For theorem 1.3, the goal is to show that O C R is a full Lebesgue measure set; as for
theorem 1.4, we will show that O =R \ A for some A with Hausdorff dimension less or
equal to 1 — yp’. The proofs will rely on the following general theorem:

Theorem 5.1. Assume thatforj =1,...,n,f; € LllOC (R.). Suppose that there exists a constant
C (does not depend on 1) such that for any closed interval I C R,

fixills < C, (5.3)
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and suppose
M—o0

Then, the limit

V1 Y2
Bn (fl? afn) ( ': ll}{n_> / / / H.); tj dtldtZ dtn (55)
n—r 00 tae ¥

is well-defined, and
Tim B, (£, fy) (x) = 0. (5.6)
Moreover, B,(fi,....fu) € ACioc(Ry) and for almost every x,

dBn(fl’T’fn)(X) :_len—l( 2a~--7fn) (x) (.7

Proof. All of the above claims, except for the claim B,(fi,...,f,) € ACic(Ry), are expli-
citly stated in [34, theorem 2.5]. The claim that B, (f;,...,fn) € ACic(R4) can be proved by
induction in . Follow along the lines of the proof of [34, theorem 2.5], for any 0 < x < y,

By (f1) (y) —Bi(fi)( / fi(t dfl—/ fi(t)dy =— /f1 f) dry

where f; € LL_(R.) and thus B; (f;) € ACioc(R). Next, consider

Bn( lv'“vfn)(y)_Bn( 1> ?ﬁl /f1 h dll/ / ]:[fj"(tj)dtZ"'dtn
1 i

—/’fl (t1) Bu—1 (fos-- o) (1) dty,

where f; € Ll (R}) and B,—1(fs, .- ,f,) € ACioc(R4) by induction hypothesis; in particular,
B, 1(f5,.--s f,,) is locally bounded, so

—fiBu—1 ( 290> afn) € Llloc (R-i‘)
and therefore B, (f,-..,fn) € ACic(R4). O

We followed the approach in [34] to define the multilinear operators as iterations as opposed
to the Christ—Kiselev’s approach in [8, proposition 4.2], which relies only on the existence of
a weaker limit

yli)l’élo// / [17 @) dnde--- s,

lj 1

in comparison to the limit in (5.5).
To illustrate how to use theorem 5.1 to prove theorems 1.3 and 1.4, note that these follow
by applying the following criterion for a large enough set of positive energies E:

Lemma 5.2. If for some E > 0,
11msup||F(aE)X[M7oo)HB| =0, (5.8)
M—o0

then there exists an eigensolution at energy E with WKB asymptotic behaviour.

15
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Proof. Note that [34] assumes a second condition that
|7 (- E) xulls, < C(E) (5.9)

for every interval I, with a constant C(E) independent of I. However, (5.8) implies existence
of C| such that for every x > Cy,

||‘F(7E)X[x,oo)||81 <L

Since ||-|| 5, is a seminorm, this implies for every interval I = [x,y] C [Cy, 00) that (5.9) holds,
with an explicit constant C(E) = 2. The rest of this proof can be done on the interval [C},0);
the eigensolution then extends to [0, 00), and if u obeys

u(x):eik(x_cl)_zikfél T(l)dtJro(l), X — 00

then the eigensolution e%u, ¢ = kCj — 5; OC‘ 7(t) dt, obeys (1.6), and similarly (1.7).
Note that the conditions (5.9) and (5.8) correspond respectively to the assumptions (5.3)

and (5.4) in theorem 5.1. Firstly, (5.5) applied to the current scenario implies that the limit

M, (F)(x,00,E) = lim M, (F)(x,x",E)

X' =00

is well-defined. Then, by theorem 4.12 and (5.9),

c(e)"
M, (F)(x,00,E)| < C} . 5.10
M, (F) ( ) <G i (5.10)
Thus, the two series
ZMZm (]:) (X,OO,E), _ZM2W!+1 (]:) (.X,OO,E)
m=1 m=0

converge absolutely. Thus, the series in (5.2) is well-defined.

On the other hand, let us see that the claimed WKB asymptotic behaviour (3.4) follows
from (5.6): by Lebesgue dominated convergence theorem with the counting measure and the
dominating sequence given in (5.10), the pointwise decay (5.6) implies decay of the series:

lim > Moy (F) (x,00,E) = ngngoMZm (F) (x,00,E) =0, (5.11)

m=1 m=1

and similarly for the other series, so Y(x) — (é) as x — 00.
Finally, we verify that the series in (5.2) gives an actual solution to the differential system
in (3.3). In order to show that

d oo oo
a (ZMZM (}—) (vaOvE)> = _]:(xaE) : ZM2m+1 (}—) (x,oo,E),
m=1 m=0
it suffices to check for 0 < x <y,

(iMzm(]:) (t,oo,E)> _ / ' (if(t,E)M2m+l(f) (t,oo,E)) dr. (5.12)
m=1 X

m=0

y

X

16
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By theorem 5.1, My,,,(F)(x,00,E) € ACjoc (R4 ) for any m € N, and thus

(Mo (F) (x,00,E))

y y
= / —F (t,E) May—, (t,00,E) dr.
Since the series

ZMZW, (F) (x,00,E)
m=1

is absolutely convergent for E € O, it follows that

(iMzm (F) (&, oo,E)>

m=1

y

=3 (Mo (F) (1,00,E)) ||

X

?

x m=1

on the other hand,

i/y —F(l‘,E)Mzm_1 (l‘,OO,E) dr = /y (i —.F(I,E)Mzm_l (l‘,OO,E)) dr
m=1"%* x

m=1

_ / ’ (i —F (t,E) My 1 (F) (t,oo,E)> dr,

m=0

where the first equality follows from Lebesgue dominated convergence with the dominating
function (5.10) and the fact that 7 € Ll (R ).

loc
Similar reasoning can be applied to the odd summation {My,,1} to conclude that

m=1

% <_ZM2m+| (F) (vaO’E)> :‘F(x’E)+]:(x’E)'ZM2’”(]:) (x,00,E),
=0

where we also used the fact that

%Ml (F) (x,00,E) = ;x/xoo}"(t,E)dt —FE).

Thus,

Lo —F (5, E) - >0 oMoyt (F) (x,00,E)
! (X) B <‘7:(X7E)+]:(X7E)'OZ:::O_—I~_M2M (]:) (x7OO7E)>.

On the other side of the system in (3.3), direct computation gives

penr=(zem 7o) (o) + (CEAEn))
() + (LB Tt P 1))

F (x,E) F(x,E) > Moy, (F) (x,00,E)

Thus, the series in (5.2) indeed gives a solution to the system (3.3) which satisfies the WKB
asymptotic in (3.4). Thus, theorem 3.1 applies at this energy. O

17
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6. Proof of theorem 1.3
Lemma 6.1. Assume 0,7 — o> € ?(L") and fix a martingale structure
{E' CR,:meZi 1<j<2"} (adaptedin’(L'))t0 |r—o°|+|o]. (6.1)
Then, for Lebesgue-a.e. E € R
limsup||f(-,E)X[M7m)|\Bl =0. (6.2)
M—oco

Proof. For readability, in this proof we write B = I3;. We fix a compact K C R and prove
that (6.2) holds for Lebesgue-a.e. E € K. We estimate

I F (- E)Xm,00) I8 = H{ . f(M@X[Mm)(X)G‘X}
j B

- H {/ W(E>eih("’E)Q<x,E>xw,m>(x)x;”mdx}

= [ {Sw(QXir1,00)X]") (E) + S1(0X (1,000 X)) (E) } |5

= GSH’(QX[M,OC))7SI(UX[M‘OO))(E)7

B

where S,,, S refers to operators in (4.5) with { = w and { = 1, respectively.
By lemma 4.9, the operators S,,, S| are bounded since K C R is compact. Thus, by lemma
4.8,

HGSW(QX[M,DQ))7SI(UX[M‘OO))(E)HL”/(K,C[E) < C(||QX[M7OO) (LY =+ ||GX[M,OO) ZNL‘));

where C < oo depends only on p and the operator norm of S,,,S;. Then,

M— o0

, 1/p’
lim sup (/ 1 F (- E) X m,00) I dE)
K

= 1imsup | Gs, (. c0)),51 (ox 00,000 1" (k.0E)
M— o0

<C(K)- 1;;TISUP(||Q><[M,oo) vy + loXM,00) [ er (1)
— 00

=0.
By analogous arguments using maximal operators S;;, ST,
1/p
limsup (/ sup | F (-, E)X[y,00) % dE) =0.
M— oo Ky=>M

It follows that (6.2) holds for almost every E € K. O

Proof of theorem 1.3. If V€ /(H~!), by lemma 2.3 with v =0, there is a decomposition
V =o'+ 7 for some o, 7 such that o, 7 — o> € /7(L"). The proof is completed by lemmas 6.1
and 5.2. O
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7. Proof of theorem 1.4

We denote by H? the 3-dimensional Hausdorff measure on R.
Lemma 71. Letp € (1,2], v > 0 with yp’ < 1, where 1/p+1/p’ = 1. Assume that

()70 (), (1+%)7 (7 () — o0 (x)7) € 7 (1),

Fix a martingale structure {E}' C Ry :m € Z,1 <j < 2"} adapted in ¢ (L") to the function
(1+x) (|7 — 02|+ |o|). Denote

Ae={EE€ R, : | F(-,E)Xn,00)llB, > ¢ YN}

Then HP (A.) = 0 for every 3> 1 —p’.
Proof. For readability, in this proof we write B =8B, and G = G(®). Note that v € (0,1) and
define, for z € C, F,(x,E) := (1 4+ x)*F(x,E). Following the lines of argument in [7, section
8], it suffices to fix compacts K, J such that K C J C R and check that for Rez = 7,

17 (E) |5 € 1" (J,dE), (7.1
and forRez =~y —1,

|08 F, (- E) |5 € L” (K,dE). (7.2)

Proof of (7.1): we compute that

172 E) s = H{ W(E)e*"'("’E) (1+x)°Q(x,E) dx}
B

—||{S( +x)°0X") (E) + 81 (1 +x)7ox) (E)} |15
= Gs,((14+20), $1((1+x)0) (E)

where, as in Proof to Condition (6.2), the operators §,,,S; are bounded by lemma 4.9.
So, by lemma 4.7,

o))
ollewy)

1Gs,.((1-4x°0), 81((1+2°0) E) (1.0 < C (1 (1 +2)° Qllrwry + [ (1 +x)°0
=C(1(1+x)7Qllwwy + [ (1 +x)”

where C < oo depends only on p,p’ and the operator norms of S,,, Sy, through which it depends
on the interval J. Note that we use |(1+x)*| = |(1 +x)7| for Rez = in the last step. By
assumption, (1 +x)7Q, (1 +x)Yo € £/ (L").

Proof of (7.2): note that

OpF. (- E) = % (w(B)e ™8 (14270 (v, E) ).
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and the product rule will produce three terms, so we denote

m 0 —ih(x Z A
A= Jp gE O EDED (1400 E) dr
o 9 (i) ¥
B! _/ w(E) 5 (¢700) (1427 0 (. E) dx
¢ = [ wEe D (14 S (0 (1)) &

Since || - || 3 is a semi-norm by lemma 4.5,
10eF: (- E) |5 < 1A}l + 1B} 18 + || G'l| 5-

So, in order to show that ||0pF.(-,E)| s € I’ (K,dE), it suffices to show that
147", 1B} |5, G| s € L” (K. dE).

Firstly, let us consider {Aj’-"}, where O lands on w(E). We compute that

Then, using the operators Sy with f =i /(4k*) and S, with g = —1/(2k?),

P .
”A]mHB = H {/ ie—lh(x,E) (1 +X)ZQ(.X,E) dx}
o 3k

_ H 157 (1407 OX) (B) + 8¢ (1 +-x) o) (E))}

B

B
= Gs,((14x70), Se((1+x)0) (E)

By lemma 4.9, Sy, S, are bounded, and by lemma 4.7,

-1
1Gs((1+v70), s,((1+x7°0) (E) |1 (k,0m) < € (H (1+x)770

pany+I(1+x)7"o

(7.3)

Z”(L‘))

(*)
S C(1A+x)"Qlloay + (1 +x)7 ollww)

where C = C(p,p’, [|Sfl], ||S,]]) < oo and (x) holds since (1+x) > 1. So,

A5 € I (K,dE).

The same argument works for {C}”}, where 9 lands on the potential Q(x, E). Note that

20
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Then,

‘ o .
nch—H{ w(E)e ™8 (142 2 (O,
g

= [{Su (1 +x)"0) (E)} 5
= Gs,((14x)°0) (E) s

where u = %w and S, is bounded by lemma 4.9. By lemma 4.7,

y—1
<O +x)"" allpwy

1Gs.((1-+x70) (E) [l (x.a8) <

where C = C(p,p',||S.]|) < oc. Thus, [|C?"[|5 € L (K, dE).

in(x,E)

Finally, we consider {B;"}, where O lands on e~ . Since

Ope hE) — e=ih(E) (_igh(x,E)),

where
Ogh (x,E) = (

it follows that

] i) i

)ar)

B

<O (1 +x)"ollpw,

1 X
2k(E)3/o Q(t) dt,

B = / W (E) e ) (;E (h(x,E)) (1 +x)ZQ(x,E)> de ="+ K+ &+,

where, by abusing the notation,

Consider
- o 1/2
1Bl =D _m* (D IB}
m=1 j=1
Note that
1/2
oo 2m 0o
Domt | D18y <D m I (E
m=1 j=1 m=1

' (K,dE)

21

[ (7.4)
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where
12 (E) 11;’ (K,dE)
o 2 q/2
A 9 _
:/ > / w(E) e HE) ((h(x7E))(1+x)zQ(x,E))dx dE
K\j=1 /& OF
) ey [ e . ) ) i’
2 gnlp'/2- )/Z / W (E) e htE) (aE(h(x,E))(ler)ZQ(x,E))dx dE
Koy |/
2" 9 4
:2'"(1”/2*1)2/ / w(E)e k) ((h(x,E))(l—i-x)ZQ(x,E))dx dE
=1 K E/'." 3E
and in the step () we used the consequence of Holder’s inequality
N v N
(£0) v Sr o
n=1 n=1
Since
0 g
/ / w (E) e hwE) ((h(x,E))(1+x)ZQ(x,E)>dx dE

k|/g OFE

_ m|p’ mp’ mp’ mp’ mp’

= /KIBJ " dE < |l U (kaE) T 117 HU’(K,dE) +§ v (kaE) T 145 1 (KdE)’

it suffices to check that each of the four terms above are finite. Indeed, consider

p/
1’ (K,dE)

||"7]m||p;’([<’dE) = HS"'] (x(l +‘x)ZQij)
(4.7) Z mup
< CHX(I +x) QX]’ ||£P(L1)

= Cl (1 4+ X = (1+2)° 0]l

/

P
<C (11407 O oy + 11 (1+ 0 0l

/

_ m P
= (10427 0 llo + 11+ 0 o)

<l (1+2)7 0x)

p/
(L)
Thus,

”T].ImHZI(K,dE) <c-a +x)7QX;'n”ZP(U)’

where C = C(||S,||) < oo varies from line to line, but it only depends on the operator norm
||IS;,]| in the sense of (4.7), and through that, depends on the interval K.

22
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Similarly,
myp o m P/ m)p
|7 Z/(KdE) =Sk (x(1+x)°ox]")| v kapy SC 10 +2)7 o} iy
where C = C(||Sx||) < oo.
Next,
p/

)

L (K,dE)

e = |5 ([ e ar) a7 0)

where by lemma 2.3, Q = 7 — 0% € ?(L"); thus,

1€

j—oo )

j+1 X
lim/J 0 di=0 — /Q(t)dtzO(x), x5 00
J 0

and so there exists C < oo independent of x such that

/OXQ(t) dr
' </OXQ<I> df) (14 Oy

for any x > 0. This pointwise inequality implies inequality of #’(L') norms,

H ([ ewa)a+rroy

<C(1+4x)

and therefore

< C‘(l er)ZH QXJ’"’

= cl1+x" x|

<C-||(1+x)70xf'

’ep(L])?

er(LY)
and so we have
/ x P/
m||P — : "
51 = 5 ([ e00r) 0 0w0) [
X Pl
<C- H </ o) dt) (14+x)"0x}"

0 er(LY)

<carxr o,

where C = C(||S¢||) < oo varies from line to line, but it only depends on the operator norm
||S¢|| in the sense of (4.7), and through that, depends on the interval K.

Similarly,
, X I’l
19 ey = |50 (( [ Q@) o)
0 L' (K,dE)
m P’
<C||(1<FX)FYUXJ oLy’
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where C = C(||Sy||) < o0
Thus, we have

r

e (B, dE

”
m(p’/2—1
7 <2 [

j=1

/E",W(E)e*ih(x,E) (d%? (h(x,E)) (1 +x)ZQ(x7E)) dx

o
m(p’/2—1 »’ KM |P m||P r
<200 S (1) gy VT ety IO )
i=

2"
<cC. om(p’/2—1) Z(”(l+x QX, /z:(u +H (14+x)7 ox; Hmu ),
j=1

where the constant C = C(||S, ||, [|S« ||, [|Sell; ISy []) < oo.
Recall that we fixed a martingale structure {E}" } adapted to

(I+x)7 (0l +ol) = [(1+x)" 0+ [(1+x)" 0]

Following the lines of the proof in [8, proposition 3.3], we continue as

2m
It )y gy < €20 2703 (Il +27 07

j=1

(LY + H 1 +x UXJ Hzp(Ll )
<2 WS (1) (10 + o)y
which, when plugged into the original step (7.4), implies that

1/2
” /

o0
2 m|2
> m*| X8
m=1 j=1
L’ (K,dE)

Z m* ||t (E)|| (K,dE)

m=1

<C-[(1+x)7 (|0 + o) ||W)Zm m(1/p=1/2)

<C- (11497 Qllpy + 11+ ) )

where C < oo varies from line to line. Therefore, ||BY'||5 € I’ (K,dE).
We have just shown that [|A7 ||, |B}"]|5, | C}||5 € ¥ (K,dE). Finally, by (7.3), it follows
that ||0gF.(-,E)||s € I (K,dE), and thus the claim (7.2) holds. O

Proof of theorem 1.4. Using the decomposition o, 7 provided by lemma 2.3 and applying
lemma 7.1, the rest of the proof follows line-by-line the arguments presented in [34, Proof
of theorem 1.2]. O
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8. Examples of rapidly oscillating potentials

Proof of example 1.5. The given potential V can be expressed as V= o’ + 7 where

o(x)= —lg(x)xl_bcos "),  T@)=

; (g(x)x'") "cos (")

S =

(this is motivated by an integration by parts, and checked by a direct calculation). Since g’
is regularly varying of index a — 1, by Karamata’s theorem [27] (see also [4]), g is regularly
varying of index a. Then g(x)x!'~? is regularly varying of index ¢ and

(8(x)x'?) = ¢" ()" + (1 -b) g (x)x"

is regularly varying of index ¢ — 1. In particular, for any € > 0, it follows that o = o(x"¢),
7 = o(x*~ 7€) pointwise as x — oo. It immediately follows that

(/Hla(t)2 dt)

From this, (a), (b), and (d) follow immediately. For (c), note that we obtain dimy(S) < 1 — 2~y
for all v € (0,¢ — 1/2), so taking the supremum over such ~ gives dimg(S) < 2 — 2¢. O

V2
+/ |7 (t)|dr =0 (j7°), j — oo0.
J

Proof of example 1.6. Itis easily obtained that o'(x) = [; V(¢) dr obeys o (x) = O(1 /x) as x —
00. Thus, with 7 =0, theorem 1.3 applies with any p > 1, and theorem 1.4 applies with p =2
and any « € (0,1/2), so the claims follow. O

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).
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