
Tight Results for Online Convex Paging
Anupam Gupta

New York University

New York, USA

anupam.g@nyu.edu

Amit Kumar

IIT Delhi

New Delhi, India

amitk@cse.iitd.ac.in

Debmalya Panigrahi

Duke University

Durham, USA

debmalya@cs.duke.edu

Abstract
Online convex paging (Menache and Singh, 2015; Chiplunkar, Hen-

zinger, Kale, and Vötsch, 2023) models a broad class of cost functions

for the classical paging problem. In particular, it naturally captures

fairness constraints: e.g., that no specific page (or groups of pages)

suffers an “unfairly” high number of evictions by considering ℓ𝑝
norms of eviction vectors for 𝑝 > 1. The case of the ℓ∞ norm has

also been of special interest, and is called min-max paging.
We give tight upper and lower bounds for the convex pag-

ing problem for a broad class of convex functions. Prior to our

work, only fractional algorithms were known for this general set-

ting. Moreover, our general result also improves on prior works

for special cases of the problem. For example, it implies that the

randomized competitive ratio of the min-max paging problem is

Θ(log𝑘 log𝑛); this improves both the upper bound and the lower

bound given in prior work. It also shows that the randomized and

deterministic competitive ratios for ℓ𝑝 -norm paging are Θ(𝑝 log𝑘)
andΘ(𝑝𝑘) respectively; the randomized results are completely new,

as is the deterministic lower bound.

All previous algorithms we know for paging with non-linear

costs used fractional relaxations. We show a fundamental limitation

of this approach — we give integrality gap instances for the natural

relaxation used in these works. This shows that a generic relax-

and-round framework—solving the relaxation and then rounding

it—is insufficient for obtaining tight bounds for this problem.

To bypass this bottleneck, we work with the integer versions

of the problems directly. Somewhat surprisingly, we show how to

take an arbitrary online algorithm for the weighted paging prob-

lem (with linear costs), and convert it in a black-box way to an

online algorithm for convex paging, losing just an optimal factor in

this reduction. This reduction proves especially challenging in the

randomized case, where the underlying weighted paging algorithm

is randomized, and the analysis needs to proceed via a delicate

martingale argument. We believe this approach of lifting arbitrary

(weighted linear) online algorithms to convex objectives may be of

broader interest.

CCS Concepts
• Theory of computation→ Caching and paging algorithms;
Online algorithms.

This work is licensed under a Creative Commons Attribution 4.0 International License.

STOC ’25, Prague, Czechia
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1510-5/25/06

https://doi.org/10.1145/3717823.3718217

Keywords
Online Paging, Convex Objectives

ACM Reference Format:
Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. 2025. Tight Results

for Online Convex Paging. In Proceedings of the 57th Annual ACM Symposium
on Theory of Computing (STOC ’25), June 23–27, 2025, Prague, Czechia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3717823.3718217

1 Introduction
Paging/caching is perhaps the most well-studied problem in online

algorithms. Given a universe of 𝑛 pages and a cache that can only

hold any 𝑘 pages at any time, a paging algorithm must serve an

online sequence of page requests by ensuring that the currently

requested page is in the cache. Traditionally, the goal has been to

minimize the total number of page evictions, i.e., the ℓ1-norm of

the page eviction vector. For this problem, we have long known

tight 𝑘-competitive deterministic and 𝐻𝑘 -competitive randomized

algorithms.

In recent years, there has been increased focus on paging appli-

cations in decentralized settings, such as in cloud computing and

web caching. One key difference in these applications is that the

different pages (e.g., web pages) are owned/requested by different

agents. It is natural to ask that any paging algorithm be fair to
these agents, and not evict pages for any one agent too often (see

e.g. [24, 26]). Motivated by these considerations, Chiplunkar, Hen-

zinger, Kale, and Vötsch [11] defined the min-max paging problem.

Here the goal is to minimize the maximum number of evictions

suffered by any page, i.e., the ℓ∞-norm of the page eviction vector.

They gave an upper bound of 𝑂 (log2 𝑛 log𝑘) and a lower bound of

Ω(log𝑛) on the competitive ratio of min-max paging; this left an

𝑂 (log𝑛 log𝑘) gap between these upper and lower bounds.

Chiplunkar et al. [11] also considered the more general setting of

minimizing an arbitrary convex function 𝑔(x) of the 𝑛-dimensional

page eviction vector x (where the 𝑖𝑡ℎ coordinate represents the

eviction count for page 𝑖). They focused on the widely-studied

class of 𝑝-bounded of convex functions 𝑔, which contains the 𝑝𝑡ℎ

moments—i.e., the functions

∑
𝑖 𝑥

𝑝

𝑖
—as a special case. (See Sec-

tion 2.1 for a formal definition.) For such functions, they gave

(𝑂 (𝑝 log𝑘))𝑝 -competitive fractional paging algorithms. As a corol-

lary, this implied an 𝑂 (𝑝 log𝑘)-competitive algorithm for the frac-
tional ℓ𝑝 -norm paging problem, where the goal is to minimize ∥x∥𝑝 .
1
Prior to our work, no such results for the integral convex paging

problem were known.

It turns out that the extension of paging to ℓ𝑝 -norms had previ-

ously been studied from both theoretical and empirical standpoints

1
Since the ℓ𝑝 norms for 𝑛-dimensional space with values of 𝑝 ≥ ln𝑛 are within

constant factors of each other, we can restrict our attention to 𝑝 ≤ ln𝑛.

https://orcid.org/0000-0001-5579-3405
https://orcid.org/0000-0002-3965-6627
https://orcid.org/0000-0003-1799-6660
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3717823.3718217
https://doi.org/10.1145/3717823.3718217

STOC ’25, June 23–27, 2025, Prague, Czechia Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

by Menache and Singh [23]. They gave an 𝑂 (𝑝𝑘)-competitive de-
terministic algorithm for this problem, leaving open the question

of getting a matching lower bound for deterministic algorithms, as

well as better results for randomized algorithms.

Given these past results, the following question remains open:

Can we get tight results for the minmax paging and ℓ𝑝 -
norm paging problems, or the more general 𝑝-bounded
convex paging problem, both in the randomized and
deterministic cases?

1.1 Our Results
In this work, we resolve this question, giving matching upper bound

and lower bounds for all these problems using a broad new frame-

work.

1.1.1 Randomized Algorithms. Our main result shows a black-box

transformation from a randomized online algorithm for classical

weighted ℓ1 paging to a corresponding randomized online algorithm

for 𝑝-bounded convex paging.

Theorem 1.1 (Randomized Upper Bound). Suppose there is a
randomized online algorithm for weighted paging with competitive
ratio 𝛽 . Then, there is a randomized (𝑂 (𝑝𝛽))𝑝 -competitive online
algorithm for the 𝑝-bounded convex paging problem. Using known
randomized 𝑂 (log𝑘)-competitive weight paging algorithms, this im-
plies the following randomized online algorithms:

(1) an𝑂 (log𝑛 log𝑘)-competitive algorithm for the min-max pag-
ing problem, and

(2) an 𝑂 (𝑝 log𝑘)-competitive algorithm for the ℓ𝑝 -norm paging
problem.

Our min-max paging result improves on the 𝑂 (log2 𝑛 log𝑘)-
competitive algorithm given by [11]. No previous randomized algo-

rithm was known for the generalization to ℓ𝑝 -norms (and hence,

for 𝑝-bounded convex paging).

Next, we show our matching lower bounds. In fact, our lower

bounds hold for the most restrictive settings of min-max paging

and ℓ𝑝 -norm paging—and hence for 𝑝-bounded convex functions

as well.

Theorem 1.2 (Randomized Lower Bound). There exists a con-
stant 𝐶 > 0 such that for any 𝑝 ≤ 𝐶 ln𝑛, any randomized algorithm
(that is even allowed to produce a fractional solution) for ℓ𝑝 -norm
paging has an Ω(𝑝 log𝑘) competitive ratio against an optimal in-
teger solution. This result implies an Ω(log𝑛 log𝑘) lower bound for
randomized min-max paging.

This lower bound improves and generalizes a lower bound of

Ω(log𝑛) given by [11] for the integral min-max paging problem.

Moreover, it shows that for min-max paging, both our randomized

(integral) algorithm from Theorem 1.1, as well as the𝑂 (log𝑘 log𝑛)-
competitive (fractional) algorithm of [11] are asymptotically tight.

For ℓ𝑝 -norm paging, to our knowledge, this is the first lower bound

result.

1.2 Integrality Gap
Before we present the analogous reductions for deterministic al-

gorithms, let us address a question that immediately arises when

faced with these problems:

Could we get the randomized algorithm of Theorem 1.1,
by applying the relax-and-round framework, e.g., for the
special case of min-max paging? In particular, could we
take the𝑂 (log𝑘 log𝑛)-competitive fractional solutions
from [11] (or Theorem 1.4), and round these online with
only a constant factor loss?

Indeed, relax-and-round has been the dominant paradigm for pag-

ing problems, as well as for generalizations such as weighted paging

and 𝑘-server. However, we show a significant barrier: starting with

a generic fractional solution to the natural convex relaxation and

rounding it must lose a nearly-logarithmic factor to get from frac-

tional to integer solutions. Indeed, the integrality gap of the natural

linear programming formulation is nearly logarithmic.

Theorem 1.3 (Integrality Gap). There exist instances of min-
max paging where the natural linear program has an integrality gap
of Ω(log𝑛/log log𝑛). Further, for any 𝑝 , 2 ≤ 𝑝 ≤ ln𝑛, there exist
instances of ℓ𝑝 -norm paging where the natural convex program has
an integrality gap of Ω(𝑝/log 𝑝).

Observe that Theorem 1.2 and Theorem 1.3 together imply lower

bounds on the relax-and-round framework— any (randomized)

online algorithm for min-max paging using the relax-and-round

framework must have Ω(log𝑘 log2 𝑛/log log𝑛)-competitive ratio

(and similarly, Ω(log𝑘𝑝2/log 𝑝) competitive ratio for ℓ𝑝 -norm pag-

ing). We manage to bypass the challenge of overcoming this inte-

grality gap in Theorem 1.1 by avoiding working with fractional

solutions entirely, and using a direct reduction between integral

paging algorithms.

1.3 Deterministic Algorithms
Finally, we show that our techniques also extend to deterministic

algorithms: we give a black-box transformation from a deterministic

(fractional or integral) online algorithm for the ℓ1 weighted paging

problem to a corresponding online algorithm for the 𝑝-bounded

convex paging objective.

Theorem 1.4 (Deterministic Upper Bound). Suppose there is
a deterministic 𝛼-competitive online algorithm A for the weighted
paging problem. Then there is an (𝑂 (𝑝𝛼))𝑝 -competitive deterministic
online algorithm for the 𝑝-bounded convex paging problem. This
algorithm yields a fractional or an integral solution depending on
whether A is fractional or integral.

Given deterministic fractional 𝑂 (log𝑘)-competitive [6] and in-

tegral 𝑂 (𝑘)-competitive [12] algorithms for weighted paging, we

recover two known results for ℓ𝑝 -norm paging:

(1) an 𝑂 (𝑝 log𝑘)-competitive fractional algorithm [11], and

(2) an 𝑂 (𝑝𝑘)-competitive integral algorithm [23].

The first result is tight by Theorem 1.2. We also give a new lower

bound matching the second result.

Theorem 1.5 (Deterministic Lower Bound). There exists a
constant 𝐶 > 0, such that for any 𝑝 ≤ 𝐶 ln𝑛, any deterministic
integral online algorithm for ℓ𝑝 -norm paging must have Ω(𝑝𝑘) com-
petitive ratio. This implies an Ω(𝑘 ln𝑛) lower bound for deterministic
min-max paging.

Tight Results for Online Convex Paging STOC ’25, June 23–27, 2025, Prague, Czechia

For general 𝑝 , we are not aware of any prior lower bound. For

(integral) min-max paging, the best previous deterministic lower

bound was Ω(𝑘 log𝑛/log𝑘) [11], which we improve by log𝑘 .

1.4 Our Techniques
Algorithms. First, we describe the deterministic reduction of The-

orem 1.4, given in Section 3. Recall that we want to reduce paging

with a convex objective𝑔 to a series of weighted ℓ1 paging instances.

A natural idea is to define the weight of page 𝑖 as the marginal cost

of evicting a single page given the current situation, i.e., the gradi-

ent ∇𝑔(x) w.r.t. the page eviction vector x. This allows the weighted
paging objective to locally track the growth of the convex objective.

However, if we strictly implemented this, we would have to update

page weights after every eviction, and run a new weighted paging

instance which terminates upon a single eviction. Clearly, this is

infeasible because we would not be able to account for the (additive)

cost incurred by the black-box weighted paging algorithm, e.g., for

resetting its initial state. To avoid this, we need to let the weighted

paging instance run until its additive cost can be charged to the

cost of an optimal solution with the same set of page weights. But,

this means that the page weights determined at the beginning of

an instance do not accurately reflect the growth of 𝑔(·) later on in

the same instance.

To reconcile these differences, we need two ideas. For any page,

there is an initial period of time where we do not maintain explicit

control over how the gradient changes within a weighted paging

instance. Instead, we ensure that the total weighted cost of evictions

of the page in this initial time period is bounded. Once a page crosses

this initial threshold, we switch to maintaining explicit control

over the change in gradient within a weighted paging instance; in

particular, the gradient at the end is at most twice the gradient at

the beginning of the instance. These phases for different pages are

asynchronous, which makes the analysis more subtle. Moreover we

need to introduce extra lags in this process to control the number

of phases; we give these details in Section 3.

The randomized reduction (Theorem 1.1) is more involved. Ide-

ally, wewould like to use the same strategy as above, while replacing

the deterministic weighted paging algorithm with a randomized

one. However, each weighted paging instance is a function of the

algorithm’s choices in the previous instances, i.e., is itself random.

Moreover, the bound on the cost of a weighted paging instance only

holds in expectation, and with some probability an instance can

generate an expensive solution. Crucially, this can have a cascading

effect, raising the (optimal) cost of later instances. We counter this

by terminating an instance if the weighted paging cost exceeds a

set threshold. The key idea is to show that this extra termination

condition does not increase the total number of instances signifi-

cantly, since the latter would make the additive cost of the instances

unacceptable. We use a careful martingale argument to bound the

probability of this bad event, which allows us to restart the algo-

rithm every time this bad event happens, i.e., if the algorithm is

creating too many weighted paging instances. The details of the

randomized reduction appear in Section 4.

Lower Bounds. We outline the main ideas for the randomized

lower bound for fractional min-max paging (Theorem 1.2); the

ideas for the deterministic lower bound are similar. We start off

with 𝑛 ≫ 𝑘 pages, which are grouped arbitrarily into disjoint

groups of 𝑘 + 1 pages each. In the first epoch, we iterate over all the

𝑛
𝑘+1 groups. For each group we give some𝑀 requests for the 𝑘 + 1
pages in the group, each request for a uniformly random page in

the group. Each such request causes an eviction with probability

1/𝑘+1, and hence any algorithm pays ≈ 𝑀/𝑘2 for each page during

all these requests. Now a random half of the pages in each group

are deactivated, and the remaining half of the pages survive to the

next epoch. There are log
2
(𝑛/(𝑘 + 1)) ≈ log𝑛 such epochs.

Since the algorithm does not know the identity of the pages to be

deactivated, a random page suffers approximately𝑀/𝑘2 evictions,
and hence pages that survive all the epochs suffer approximately

(𝑀/𝑘2) log𝑛 evictions. However, an optimal solution can save on

two fronts. First, it can ensure that the
𝑘+1
2

pages that remain active

in the following epoch are always kept in cache and hence suffer a

constant number of evictions in this epoch. In other words, a page is

subjected to a substantial number of evictions only in its final epoch;

in this case, the
𝑘+1
2

such pages in its group vie for
𝑘−1
2

slots in the

cache. The instance now behaves like a paging lower bound with

≈ 𝑀/2 requests and 𝑘+1
2

pages: using a coupon-collector argument

we know that the optimal solution suffers ≈ 𝑀/2
(𝑘/2) log(𝑘/2) evictions

overall, and hence a random page suffers ≈ 𝑀/(𝑘2 log𝑘) evictions
in the optimal solution. Since a random page suffers ≈ (𝑀/𝑘2) log𝑛
evictions in the online algorithm, this gives the gap ofΩ(log𝑘 log𝑛).
The formal argument for this lower bound, along with its extension

to ℓ𝑝 -norm paging, appears in Section 5; the modification to the

deterministic case (Theorem 1.5) is deferred to the full version.

1.5 Other Related Works
In classical paging, Bélády’s offline algorithm (Farthest in Future)

is known to be optimal for minimising the number of evictions [9].

We know deterministic 𝑘-competitive and randomized 𝑂 (log𝑘)-
competitive algorithms for the caching problem; both are opti-

mal [18, 25]. Weighted paging is equivalent to the 𝑘-server prob-

lem on a weighted star, so deterministic 𝑘-competitiveness follows

from a 𝑘-server algorithm on trees [12]. Bansal et al. [6] gave a

randomized 𝑂 (log𝑘)-competitive algorithm for weighted paging,

illustrating the power of the relax-and-round framework for these

problems. They used an interval covering IP given by [8, 13], which

also extends to the setting of ℓ𝑝 norms.

Azar et al. [3] give an algorithm for solving online covering

LPs with supermodular convex objective functions 𝑓 ; their ap-

proximation factor depends upon bounds on the derivatives of

𝑓 . These ideas were extended by Chiplunkar et al. [11] to solve

fractional ℓ𝑝 -norm paging, where the natural LP also has box con-

straints. (Alternatively, we can write the stronger covering-only

LP given in Section 2 and directly use the algorithm from [3] to

get an 𝑂 (𝑝 log𝑘)-competitive algorithm for the fractional ℓ𝑝 -norm

paging problem.) Menache and Singh [23] used KKT conditions on

the natural convex program to obtain deterministic algorithms for

paging with convex objectives.

The use of ℓ𝑝 norms and other convex objectives to capture the

notions of fairness and balance is widespread in both offline and

online algorithms. E.g., see [1, 2, 4, 5, 7, 10, 14, 15, 17, 19–22].

STOC ’25, June 23–27, 2025, Prague, Czechia Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

Roadmap. We now give an overview of the rest of the paper.

In Section 2, we give some preliminaries and notations, includ-

ing formally defining the class of 𝑝-bounded convex functions.

We prove Theorem 1.4 giving our deterministic algorithms for 𝑝-

bounded convex functions in Section 3; this allows us to develop

many of our ideas. In Section 4, we prove Theorem 1.1 by extending

our ideas to randomized algorithms. We prove the lower bound

result Theorem 1.2 for randomized online algorithms in Section 5;

Theorem 1.5 for deterministic online algorithms apears in the full

version of the paper. The integrality gap result Theorem 1.3 is also

deferred to the full version. All missing proofs appear in the full

version.

2 Preliminaries
We start with a formal definition of the paging problem. We have a

universe𝑈 of 𝑛 pages, and a cache of size 𝑘 . At any given time, at

most 𝑘 of the 𝑛 pages can be in the cache. Let the cache contents at

time 𝑡 be𝐶𝑡 . Requests for pages arrive online: the page requested at

timestep 𝑡 is denoted 𝜎𝑡 , and it must belong to the cache 𝐶𝑡 at the

end of time 𝑡 . W.l.o.g., we assume that the algorithm does nothing

if 𝜎𝑡 ∈ 𝐶𝑡−1, and hence 𝐶𝑡 ← 𝐶𝑡−1. Otherwise, if |𝐶𝑡−1 | = 𝑘 and

𝜎𝑡 ∉ 𝐶𝑡−1, the algorithm must evict some page 𝜎′𝑡 ∈ 𝐶𝑡−1 and

replace it with page 𝜎𝑡 ; i.e., 𝐶𝑡 ← (𝐶𝑡−1 ∪ {𝜎𝑡 }) \ {𝜎′𝑡 }. Let 𝑥𝑡𝑖
denote the number of times that the page 𝑖 ∈ 𝑈 is evicted from the

cache by the algorithm until the end of time 𝑡 , and let the eviction

vector be x𝑡 := (𝑥𝑡
1
, . . . , 𝑥𝑡𝑛).

We consider the convex paging problem, that of minimizing

𝑔(x𝑡) for a convex function 𝑔 : R𝑛 → R≥0. This captures the un-
weighted (ℓ1-norm paging) problems [18, 25], where 𝑔(x𝑡) := ∑

𝑖 𝑥
𝑡
𝑖
,

and the min-max paging problem [11] where 𝑔(x𝑡) := ∥x𝑡 ∥∞ =

max𝑖 𝑥
𝑡
𝑖
. Moreover, we may have the ℓ𝑝 -norm paging problem,

where 𝑔(x𝑡) := ∥x𝑡 ∥𝑝 =

(∑
𝑖 (𝑥𝑡𝑖)

𝑝
)
1/𝑝

for any 𝑝 ∈ [1,∞]. As
mentioned in footnote 1, we focus our attention on values of 𝑝 ≤
𝑂 (log𝑛), and the result for 𝑝 = 𝑂 (log𝑛) gives us min-max paging.

The ℓ𝑝 -norm paging problem can be further generalized to the

weighted versions with 𝑔(x𝑡) :=
(∑

𝑖 𝑤𝑖 (𝑥𝑡𝑖)
𝑝
)
1/𝑝

. In particular,

the weighted ℓ1-norm paging problem is 𝑔(x𝑡) := ∑
𝑖 𝑤𝑖𝑥

𝑡
𝑖
, and is

well-studied in the literature [6, 12]. Secondly, the pages can be

partitioned into 𝑐 groups and the weighted ℓ𝑝 -norm is now defined

on the groups: 𝑔(x𝑡) :=
(∑

𝑐 𝑤𝑐 (
∑
𝑖∈𝑐 𝑥

𝑡
𝑖
)𝑝

)
1/𝑝

. The intuition is

that each group represents a separate entity such a client in a cloud

service, and the goal is to achieve fairness across these groups [23].

2.1 𝑝-Bounded Convex Functions
All the cases above are modeled by the class of 𝑝-bounded convex

functions. These were previously studied by [3, 11] (and called nice
functions in [3]):

(i) 𝑔 is convex, differentiable, monotone, with 𝑔(0) = 0;

(ii) 𝑔 is supermodular, which implies that ∇𝑔 are monotone, and

(iii) the linear approximation ⟨∇𝑔(x), x⟩ is within a factor of 𝑝

of the function value 𝑔(x): formally,

⟨∇𝑔(x), x⟩ ≤ 𝑝 𝑔(x) for all x. (1)

Note that all the paging objectives considered above satisfy the

properties of a 𝑝-bounded convex function, where the value of 𝑝

coincides with the index of the ℓ𝑝 -norm. The following properties

hold for 𝑝-bounded convex functions (see [3, Lemma 4(a,d)]):

Lemma 2.1. For a 𝑝-bounded convex function 𝑔:

𝑔(𝛿x) ≤ 𝛿𝑝 · 𝑔(x) for any 𝛿 ≥ 1 (2)

𝑔(x + y) ≤ 2
𝑝 · 𝑔

(x+y
2

)
≤ 2

𝑝−1 (𝑔(x) + 𝑔(y)) . (3)

2.2 Weighted ℓ1-Norm Paging
Our main contribution is to reduce convex paging to weighted ℓ1-

norm problem. In an instance I of the weighted ℓ1-norm problem,

each page 𝑖 has a weight𝑤𝑖 , and the goal is to minimize the total

weighted eviction cost of the pages. We will use algorithms for the

weighted ℓ1-norm problem in a black-box fashion, and assume one

of the two below:

(i) An 𝛼-competitive deterministic algorithm A: given an in-

stance I of weighted ℓ1-norm paging with page weight vector

w and optimal solution x∗, and an arbitrary starting config-

uration, the algorithm A produces an integral solution with

objective value at most 𝛼 ⟨w, x∗⟩ +𝑤max · 𝛾𝑛 , where𝑤max is

the maximum weight, and the term 𝛾𝑛 depends only on the

number of pages 𝑛 and not on the input sequence.

(ii) A randomized algorithm B with expected competitive ratio

𝛽 , i.e., in the same setting as above, it produces a solution

with expected objective value at most 𝛽 ⟨w, x∗⟩ +𝑤max · 𝛾𝑛 .

2.3 Assumptions on opt

Given an instance I of the convex paging problem, we denote the op-

timal solution by opt(I), or opt when the instance is unambiguous.

We assume that the algorithm knows the optimal objective function

value 𝑔(opt), and that 𝑔(opt) ≥ 𝐵(𝑛) for some large enough func-

tion of 𝑛 that we will define later. Both assumptions are without

loss of generality (see full version for details).

3 Deterministic Online Algorithm for Convex
Paging

We now present our reduction for deterministic algorithms. This al-

lows us to develop some of our techniques, which will subsequently

be useful for the reduction for randomized algorithms.

3.1 The Intuition for Our Algorithm
Consider an instance I of 𝑝-bounded convex paging. Our algorithm
divides time into stages. It maintains a solution x, where 𝑥𝑖 denotes
the number of evictions of page 𝑖 . Observe that if x is the final

solution produced by the algorithm, then

𝑔(x) =
∫
𝑡

∇𝑔(x𝑡) · 𝑑x ≈
∑︁
𝑠

∇𝑔(x(𝑠)
init
) · ∆x(𝑠) ,

where x𝑡 denotes the solution x at time 𝑡 , x(𝑠)
init

the solution x at

the beginning of stage 𝑠 , and ∆x(𝑠) the change in x during this

stage. In other words, the cost incurred during a stage can be ap-

proximated by the weighted ℓ1 paging cost with weight of page 𝑖

given by (∇𝑔(x(𝑠)
init
))𝑖 . Hence it is natural for the algorithm to run

the following greedy procedure: in each stage 𝑠 , run the weighted

Tight Results for Online Convex Paging STOC ’25, June 23–27, 2025, Prague, Czechia

paging algorithmA with weights given by the gradient of function

𝑔 at the beginning of this stage.
However, there is an inherent trade-off in this approach: On one

hand, if a stage 𝑠 runs for too long, (∇𝑔(x)) may differ significantly

from the gradient ∇𝑔(x(𝑠)
init
) at the beginning of the stage, and hence

the weighted paging cost with fixed weights may not reflect the

true costs incurred during this stage. On the other hand, there is an

initial set-up cost (and an additive term in the competitive ratio of

A) each time we start a new stage. If there are many stages, these

set-up costs can be large fraction of the overall cost incurred by the

algorithm. The challenge lies in finding the right balance between

these two factors.

We adopt the following approach: each page 𝑖 goes through two

conceptual “phases”. In the initial phase (for page 𝑖), we do not

control how fast (∇𝑔(x))𝑖 grows within a stage, but ensure that

the total weighted paging cost (over all stages so far) incurred for

page 𝑖 forms a small fraction of 𝑔(opt) (at most 𝑝/𝑛 · 𝑔(opt) to be

precise). Once this initial phase for page 𝑖 is over, we ensure that

(∇𝑔(x))𝑖 at most doubles during a stage. Formally, a stage ends due

to one of two reasons: (i) the total weighted paging cost of a page

𝑖 reaches the threshold 𝑝/𝑛 · 𝑔(opt), or (ii) the gradient of 𝑔 along

page 𝑖 , i.e., (∇𝑔(x))𝑖 , doubles during this stage. There are at most

𝑛 stages of the first type, and we show that the doubling process

cannot happen too many times, thereby bounding the number of

stages.

The algorithmhas to overcome several additional technical issues

to get our claimed guarantee: (i) Due to the factor 𝑝 in (3) and

the competitive ratio 𝛼 of A, we maintain a scaled down version

z := 𝜀 ·x, where 1/𝜀 ≈ 𝑝𝛼), and the weights of pages must be defined

with respect to ∇𝑔(z). (ii) It is possible that 𝑥𝑖 does not change a
lot during a stage (and hence the change is small compared to the

stage set-up cost), but (∇𝑔(𝑥))𝑖 changes by almost a factor of two.

In such cases, we do not want to change the weight of page 𝑖 . To

ensure this, we change 𝑧𝑖 , which dictates the weight of page 𝑖 , only

when 𝑥𝑖 changes by a quantity greater than some threshold. We

now present the formal description, which pins down these and

other subtleties.

3.2 Algorithm Description
The page eviction vector is denoted x ∈ R𝑛+, i.e., 𝑥𝑖 is the total

number of evictions of page 𝑖 . We define an auxiliary vector z,
which is essentially an 𝜀-scaled version of x, but which omits some

of the page evictions. The pages in [𝑛] are partitioned into two

subsets 𝐽𝐿 and 𝐽𝑆 , loosely corresponding to pages whose 𝑥𝑖 values

are “large” and “small”, respectively. Let

𝜀 := 1/(𝑐𝑝𝛼)

for some suitably large constant 𝑐 ≥ 8.

(1) The input is divided into stages, where stage 1 begins at the
first timestep. Let z(𝑠)

init
denote the vector z at the beginning

of stage 𝑠 . Define the weight 𝑤
(𝑠)
𝑖

:= (∇𝑔(z(𝑠)
init
))𝑖 of page 𝑖

for stage 𝑠 . Initialize the vectors x = x(1)
init

= 𝜂 · 1 for some

parameter 𝜂 = 8𝑝2𝑛𝛾𝑛 ; set z = z(1)
init

= 𝜀 x(1)
init

. (Recall that the

parameter 𝛾𝑛 is in the additive term of the competitive ratio

guarantee of algorithm A.) All the pages initially belong to

𝐽𝑆 .

(2) Within each stage 𝑠 , we run the black-box algorithm A with

page weights𝑤
(𝑠)
𝑖

. Without loss of generality, this algorithm

is lazy and evicts at most one page at each time.

(3) Whenever a page 𝑖 is evicted in some stage 𝑠 by algorithm A,
we add 1 to 𝑥𝑖 . Since 𝑧𝑖 is a scaled down version of 𝑥𝑖 , one

expects 𝑧𝑖 to increase by 𝜀. This is almost the case, with two

differences. First, we increase 𝑧𝑖 after an initial lag. In other

words, at any time during a phase 𝑠 , we ideally want 𝑧𝑖 to

equal

(z(𝑠)
init
)𝑖 + 𝜀 ·max(0, 𝑥𝑖 − (x(𝑠)

init
)𝑖 − 𝜆), (4)

for some lag parameter 𝜆 = 4𝑝𝑛𝛾𝑛 . Second, after each evic-

tion we increase 𝑧𝑖 continuously, until it either reaches the

value in (4), or else the stage ends—the condition for which

we describe in the next bullet point. Hence the only case

when 𝑧𝑖 does not satisfy (4) is at the end of the stage.

(4) The stage 𝑠 ends when one of the following conditions is

true:

(∇𝑔(z))𝑖 ≥ 2 · (∇𝑔(z(𝑠)
init
))𝑖 for some page 𝑖 ∈ 𝐽𝐿 (5)

or, (∇𝑔(z))𝑖 · (z)𝑖 ≥ 𝑝/𝑛 · 𝑔(opt) for some page 𝑖 ∈ 𝐽𝑆 . (6)

We stop the stage as soon as one of these conditions happens.

Since we raise 𝑧𝑖 continuously, it follows that the condition

above that triggers the end of the stage holds with equality.

Moreover, if page 𝑖 satisfies condition (6), it is moved from 𝐽𝑆
to 𝐽𝐿 . (We show in Claim 3.2 that none of the pages satisfies

condition (6) initially, i.e., all pages are initially in 𝐽𝑆).

(5) When the stage ends, we evict all pages from the cache and

start a new stage. To account for this last eviction for every

page, we add 1 to each 𝑥𝑖 , but keep 𝑧𝑖 unchanged. This incurs

a further discrepancy between x and z.

3.3 Analysis
We now give an overview of the analysis.

Recall the definition of page weights w(𝑠) := ∇𝑔(z(𝑠)
init
). Also,

z ≤ 𝜀x, where x is our actual (integer) solution.

(1) We first show that due to the properties of the algorithm A,
the weighted eviction cost incurred by our algorithm during

a stage is within a factor 𝛼 of that incurred by the optimal

solution opt with the same weights, plus additive terms.

(2) Recall that the page weights are defined by the gradients

of our z solution at the beginning of each phase. Hence the

cost incurred by the optimal solution using our weights may

have nothing to do with our algorithm and these weights.

Nonetheless, we show that the total weighted paging cost

of this optimal solution (using our weights) can be upper

bounded by 𝑔(opt) + 𝑝 · 𝑔(z) (using Claim 3.1). Hence, this

implies the same bound for our algorithm with an additional

𝛼 factor (details in Claim 3.4).

(3) Next, we bound the final value of 𝑔(z) by half the total

weighted paging cost of our algorithm, which uses the fact

that the gradient does not change significantly in a stage

and the convexity of the function 𝑔(z) (Claim 3.4 and Corol-

lary 3.5).

STOC ’25, June 23–27, 2025, Prague, Czechia Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

One difficulty in carrying out this step is that the additive

term involved in the guarantee of A (or the set-up cost for

each stage) can accumulate over all the stages to give a large

error. Therefore, we show that the number of stages 𝑇 is

𝑂 (𝑝𝑛) (see Lemma 3.6). Using this fact, we show that the

total weighted set-up cost over all the stages is also bounded

(see Claim 3.3).

Let us now proceed with the details of the sketch above. The first

simple but crucial claim uses the 𝑝-boundedness of the gradients

to show an approximate sub-additivity-type property for 𝑔.

Claim 3.1. For any non-negative convex function 𝑔 that satisfies (1)

⟨∇𝑔(z), v⟩ ≤ 𝑔(v) + 𝑝 · 𝑔(z) .

Proof. For a convex function

𝑔(v) ≥ 𝑔(z) + ⟨∇𝑔(z), v − z⟩.

Now rearrange, use the non-negativity of 𝑔 to drop 𝑔(z), and use

the upper bound from (1) on ⟨∇𝑔(z), z⟩ to complete the proof. □

In the following, we will instantiate v with the optimal solution,

and zwith the algorithm’s solution, to infer that the weighted ℓ1 cost

of the optimal solution with respect to the algorithm’s weights is at
most𝑔(opt)+𝑝 ·𝑔(z). The following claim shows somemonotonicity

conditions, and that if the initial solution has small cost relative to

𝑔(opt), all pages initially satisfy the condition of belonging to the

set 𝐽𝑆 .

(In this claim and in the subsequent analysis, we assume that

𝑔(z(1)
init
) < 1/𝑛 · 𝑔(opt) . (7)

This is due to 𝑔(opt) being at least some large enough function of

𝑛—see Section 2.3. We will make this function precise later in (14).)

Claim 3.2 (Initialization and Monotonicity). Suppose 𝑔(z(1)
init
) <

1/𝑛 · 𝑔(opt), then none of the pages satisfy (6) initially. If a page
satisfies (6) at some time, it continues to do so from then onward.

Let x(𝑠)
final

, z(𝑠)
final

denote the vectors x, z at the end of any stage 𝑠;

define ∆x(𝑠) := x(𝑠)
final
− x(𝑠)

init
and ∆z(𝑠) analogously. Let 𝐽 (𝑠)

𝐿
and

𝐽
(𝑠)
𝑆

denote the sets 𝐽𝐿 and 𝐽𝑆 respectively during stage 𝑠 . The next

claim shows that as long as the number of stages is not too large,

the algorithm can account for the additive terms (i.e., about 𝛾𝑛
evictions for each page) in each of the stages.

Claim 3.3 (Additive Term). Suppose we run the algorithm for 𝑇 ≤
4𝑝𝑛 stages. Then for any page 𝑖 ,

2𝛾𝑛 ·
∑︁
𝑠≤𝑇

𝑤
(𝑠)
𝑖
≤

∑︁
𝑠≤𝑇

𝑤
(𝑠)
𝑖
(∆x(𝑠))𝑖 + 𝑔 (opt)/𝑛.

Proof Sketch. As long as a page 𝑖 does not satisfy property (6),

the quantity 𝛾𝑛𝑤
(𝑠)
𝑖

summed over all stages can be upper bounded

by 𝑝/𝑛 · 𝑔(opt). Once condition (6) is satisfied, the page weight

𝑤𝑖 changes after a stage 𝑠 only when 𝑥𝑖 changes by a significant

amount during this stage: this is due to the lag term in (4) built into

each stage. In this case, the quantity 𝛾𝑛𝑤
(𝑠)
𝑖

can be charged to the

weighted change in 𝑥𝑖 . □

We can now relate the cost incurred by the algorithm to the cost

of an optimal solution. This uses the competitive ratio of A and the

fact that the additive terms corresponding to 𝛾𝑛𝑤𝑖 for each page 𝑖

during each of the stages can be bounded using Claim 3.3.

Claim 3.4 (Linearized Scaled Cost). Suppose we run the algorithm
for 𝑇 stages and 𝑇 ≤ 4𝑝𝑛. Then, if 𝑐 ≥ 8, we have∑︁
𝑠≤𝑇

∑︁
𝑖

(∇𝑔(z(𝑠)
final
))𝑖 · (∆z(𝑠))𝑖 ≤ (1/2) · 𝑔(z(𝑇)

final
) + (𝑝 + 1) 𝑔(opt) .

Proof Sketch. Note that the LHS in the claim is closely related

to the total weighted eviction cost over all stages—it would pre-

cisely be the 𝜀-scaled weighted cost if ∇𝑔(z(𝑇)
final
) were replaced by

∇𝑔(z(𝑇)
init
). The weighted paging algorithm A gives a bound on the

weighted eviction cost of a single stage; adding/telescoping this

bound over all the stages gives∑︁
𝑠≤𝑇

∑︁
𝑖

∇𝑔(z(𝑠)
init
) · (∆z(𝑠))𝑖

=
∑︁
𝑠≤𝑇

∑︁
𝑖

𝑤
(𝑠)
𝑖
· (∆z(𝑠))𝑖 ≤ 2𝜀𝛼 · ⟨w(𝑇) , x̄(𝑇+1) ⟩ + 𝜀/2 · 𝑔(opt),

(8)

where x̄(𝑇+1) is any feasible solution and w(𝑇) is any upper bound

on the weights in the individual stages. The first term on the right

comes from the multiplicative loss of 𝛼 in A and the second term

1/2 ·𝑔(opt) bounds the cumulative effect of the additive losses across

all stages.

We now relate the two sides of (8) to the two sides of the inequal-

ity in the claim. On the right side, we set x̄(𝑇+1) to be (offline) opt

and w(𝑇) to be the page weights in the last stage of the algorithm.

Then, using Claim 3.1, we have

⟨w(𝑇) , x̄(𝑇+1) ⟩ = ⟨∇𝑔(z(𝑇)
init
), x̄(𝑇+1) ⟩

≤ 𝑔(x̄(𝑇+1)) + 𝑝 · 𝑔(z(𝑇)
init
) ≤ 𝑔(opt) + 𝑝 · 𝑔(z(𝑇)

final
). (9)

To relate the left side of (8) to the claim, we observe that

∇𝑔(z(𝑇)
final
)𝑖 ≤ 2∇𝑔(z(𝑇)

init
)𝑖 for each page 𝑖 ∈ 𝐽𝐿,

and ∇𝑔(z(𝑇)
init
)𝑖 · z𝑖 ≤ 𝑝/𝑛 · 𝑔(opt) for each page in 𝐽𝑆 . This lets us

infer ∑︁
𝑠≤𝑇

∑︁
𝑖

(∇𝑔(z(𝑠)
final
))𝑖 · (∆z(𝑠))𝑖

≤2
∑︁
𝑠≤𝑇

∑︁
𝑖

∇𝑔(z(𝑠)
init
) · (∆z(𝑠))𝑖 + 𝑝 · 𝑔(opt) . (10)

Substituting (9) and (10) into (8) and setting 𝑐 ≥ 8 gives the

claim. □

Corollary 3.5 (Scaled Cost Bound). Suppose we run the algorithm
for 𝑇 stages and 𝑇 ≤ 4𝑝𝑛. Moreover, suppose 𝑔(z(1)

init
) ≤ 1/𝑛 · 𝑔(opt).

Then for 𝑐 ≥ 8, we have 𝑔(z(𝑇)
final
) ≤ 2(𝑝 + 2) 𝑔(opt).

Proof. Since z(𝑠)
final

= z(𝑠+1)
init

, we can write 𝑔(z(𝑇)
final
) as a telescop-

ing sum to get

𝑔(z(𝑇)
final
) − 𝑔(z(1)

init
) =

∑︁
𝑠≤𝑇

(
𝑔(z(𝑠)

final
) − 𝑔(z(𝑠)

init
)
)

Tight Results for Online Convex Paging STOC ’25, June 23–27, 2025, Prague, Czechia

≤
∑︁
𝑠≤𝑇
⟨∇𝑔(z(𝑠)

final
),∆z(𝑠) ⟩ ≤ 1/2𝑔(z(𝑇)

final
) + (𝑝 + 1) 𝑔(opt) . (11)

The first inequality uses convexity, and the next one uses Claim 3.4.

Using 𝑛 ≥ 1 and our assumption on the initial function value, and

simplifying, we get the desired result. □

3.3.1 Bounding the Number of Stages. The previous results con-
sidered the situation at any stage 𝑇 ≤ 4𝑝𝑛. We now show that the

algorithm must stop after at most 2𝑝𝑛 stages, assuming we have a

correct assumption on the cost of the optimal solution. The main

idea is to show that once a page 𝑖 satisfies (6) and is added to 𝐽𝐿 , its

weight cannot double too many times. (The assumption is from (7),

which will follow from (14).)

Lemma 3.6. Suppose 𝑔(z(1)
init
) ≤ 1/𝑛 · 𝑔(opt). Then the total number

of stages is at most 2𝑝𝑛.

Proof. Suppose for the sake of contradiction that the algorithm

runs for more than 2𝑝𝑛 stages. We consider the first 𝑇 := 2𝑝𝑛

stages. The number of stages that end because of condition (6)

is at most 𝑛, since each time a page is moved from 𝐽𝑆 to 𝐽𝐿 , and

no page can move in the other direction. For a stage 𝑠 that ends

because of condition (5), there must be some page 𝑖𝑠 ∈ 𝐽
(𝑠)
𝐿

such

that (∇𝑔(z(𝑠)
final
))𝑖𝑠 = 2 · (∇𝑔(z(𝑠)

init
))𝑖𝑠 ; call this page responsible for

such a stage 𝑠 .

For sake of brevity, let 𝐽𝐿 denote the set 𝐽
(𝑇+1)
𝐿

. For a page 𝑖 ∈ 𝐽𝐿 ,

let 𝑛𝑖 be the number of times it has been responsible for some stage

𝑠 ending due to condition (5). Then

∑
𝑖∈ 𝐽𝐿 𝑛𝑖 ≥ 𝑇 −𝑛. For each such

page 𝑖 that is responsible at least once, let 𝑓𝑖 be the final stage 𝑠 in

which it belonged to 𝐽
(𝑠)
𝑆

. (Such a stage must exist, since a page is

responsible only if it belongs to 𝐽𝐿 .) Now,

𝑝 · 𝑔(z
final
)
(1)

≥ ⟨∇𝑔(z
final
), z

final
⟩ ≥

∑︁
𝑖∈ 𝐽𝐿
(∇𝑔(z

final
))𝑖 · (z(𝑓𝑖)

final
)𝑖

(†)
≥

∑︁
𝑖∈ 𝐽𝐿

2
𝑛𝑖 (∇𝑔(z(𝑓𝑖)

final
)𝑖 · (z(𝑓𝑖)

final
)𝑖
(‡)
≥ 𝑝/𝑛 · 𝑔(opt) ·

∑︁
𝑖∈ 𝐽𝐿

2
𝑛𝑖 , (12)

where inequality (†) uses that the gradient doubles each time the

page is responsible for the stage, and inequality (‡) uses the def-
inition of 𝑓𝑖 , and the criterion (6) for a page to move from 𝐽𝑆 to

𝐽𝐿 . Now, since the sum
∑
𝑖∈ 𝐽𝐿 𝑛𝑖 ≥ 𝑇 − 𝑛, the quantity

∑
𝑖∈ 𝐽𝐿 2

𝑛𝑖
is

minimized when all the 𝑛𝑖 ’s are equal and |𝐽𝐿 | = 𝑛, in which case it

is at least 𝑛 · 2𝑇 /𝑛−1. Substituting this into (12), we get

𝑔(z
final
) ≥ 2

𝑇 /𝑛−1 · 𝑔(opt) . (13)

The desired contradiction, i.e., 𝑇 < 2𝑝𝑛, now follows from Corol-

lary 3.5. □

3.3.2 Bounding the Competitive Ratio. Finally, suppose

𝑔(opt) ≥ max{𝜁𝑝,𝑛 𝑔(1), 𝑛 𝑔(z(1)
init
)}; (14)

this is wlog (proof deferred to full version). Given that the total

number of stages 𝑇 ≤ 2𝑝𝑛, we can bound the competitive ratio of

the algorithm. (Note that assumption follows from (14).)

Theorem 3.7 (Cost). Given 𝑔(z(1)
init
) ≤ 1/𝑛 · 𝑔(opt), the total cost

of the algorithm is at most

(𝑐1𝑝) (2𝑐𝑝𝛼)𝑝 · 𝑔(opt) + 𝜁𝑝,𝑛 · 𝑔(1),

for some 𝜁𝑝,𝑛 that depends only on 𝑝 and 𝑛, and not on the sequence.

4 Randomized Algorithm for Convex Paging
In this section, we give a randomized online algorithm for the con-

vex paging problem. Ideally, we would like to adapt the algorithm

presented in Section 3 with the deterministic weighted paging al-

gorithm A replaced by the randomized one B, the latter having

(expected) competitive ratio 𝛽 . However, there are several issues in

this direct approach:

• Each stage now uses a randomized algorithm, and hence, the

start time of a stage depends on the coin tosses of the prior

stages. Hence, we cannot argue that the expected weighted

paging cost in this stage is at most 𝛽 times the optimal

weighted paging cost of this stage (because we can make

such statements only for fixed times).

• Since the number of stages can be Ω(𝑛), it is possible that in
some stage the algorithm B incurs a large weighted paging

cost, say Ω(𝛽𝑛) times the optimal cost in this stage. It is

difficult to directly bound the cost incurred in such stages.

• Unlike the deterministic setting, the number of stages need

not be 𝑂 (𝑝𝑛).
We address the above issues as follows: (i) We explicitly ensure

that the weighted ℓ1 cost incurred in every stage is not too large

by adding a third condition (besides (5) and (6)) for ending a stage,

(ii) we use martingale based tail bounds to show that with high

probability, the number of stages ending because of this third con-

dition cannot be too large, and finally, (iii) if the number of stages

becomes too large, we restart the algorithm on the remaining input.

We now describe the randomized algorithm. Its execution is

divided into phases. Each new phase runs the algorithm in Section 3

from scratch, i.e., it initializes the x and z variables, and runs on the

remaining input. The phase ends if the number of stages exceeds a

threshold 𝑇 ∗ which is 𝑂 (𝛽𝑝2𝑛).
We now give the details of any phase. For ease of notation, we

describe the first phase – every other phase is identical, the only

difference being the start times. Since the intuition for these steps

remains same as that in Section 3.2, we only give the technical

details for every step.

4.1 Algorithm
We maintain the page eviction vector x and an auxiliary vector z
which is roughly 𝜀 · x. Here 𝜀 = 1/𝑐𝑝𝛽, where 𝑐 is a large enough
constant. These variables are re-initialized at the beginning of every

phase; the actual page eviction vector across all phases is only

computed at the end as the sum of page eviction vectors in each

phase. Our algorithm uses an additional constant 𝑐1 satisfying

𝑐1 ≫ 𝑐 ≫ 1. (15)

We now set a limit𝑇 ∗ := 𝑐1𝑝
2𝛽𝑛 on the number of stages in a phase.

(1) As in the deterministic setting, the pages are partitioned into

two sets 𝐽𝐿 and 𝐽𝑆 ; all pages are in 𝐽𝑆 initially. The vector x is
initialized as x(1)

init
:= 𝜂 · 1 with the parameter 𝜂 = 2𝑐1𝑝𝛾𝑛𝑇

∗
,

and the vector z is initialized as 𝜀 · x.
(2) The input is divided into stages, where stage 1 begins at the

first timestep of the phase. Let z(𝑠)
init

denote the vector z at

STOC ’25, June 23–27, 2025, Prague, Czechia Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

the beginning of the stage 𝑠 . Define the weight𝑤
(𝑠)
𝑖

of page

𝑖 for stage 𝑠 to be:

𝑤
(𝑠)
𝑖

:= (∇𝑔(z(𝑠)
init
))𝑖 . (16)

Within the stage, we run the randomized algorithm B to

handle the input, with these page weights𝑤
(𝑠)
𝑖

remaining

unchanged. Whenever a page 𝑖 is evicted by B, we add 1 to

𝑥𝑖 . Again, 𝑧𝑖 is a scaled-down version of 𝑥𝑖 after an initial
lag. In other words, at any time during a phase 𝑠 , the ideal

value of 𝑧𝑖 is

(z(𝑠)
init
)𝑖 + 𝜀 ·max(0, 𝑥𝑖 − (x(𝑠)

init
)𝑖 − 𝜆), (17)

where 𝜆 = 2𝑐1𝑇
∗𝛾𝑛 is the lag parameter. We increase 𝑧𝑖

continuously until it reaches this value, or the stage ends (as

explained in the next bullet point).

(3) Let z(𝑠)
final

denote the vector z at the end of stage 𝑠 , and let

∆z(𝑠) denote z(𝑠)
final
− z(𝑠)

init
. The stage 𝑠 ends when one of the

conditions (5) or (6) used for the deterministic algorithm

hold, or if the following new condition holds:∑︁
𝑖

𝑤
(𝑠)
𝑖
((x(𝑠)

final
)𝑖 − (x(𝑠)

init
)𝑖) ≥

𝑔(opt)
𝑛

. (18)

We stop as soon as one of these conditions happen. As in

the deterministic algorithm (Section 3.2) we can assume that

if a stage ends due to either condition (5) or (6), then that

condition holds with equality. We cannot state the same

for the new condition (18), because 𝑥𝑖 variables change in

discrete unit-sized steps.
2

(4) When the stage ends, we evict all pages from the cache and

start a new stage. To account for this last eviction for every

page, we add 1 to each x𝑖 , but keep z𝑖 unchanged. This incurs
a further discrepancy between x and z.

(5) Finally, the phase ends when the number of stages within
the phase exceeds the threshold 𝑇 ∗ (or the input ends).

4.2 Analysis
We analyze the first phase; the same arguments would hold for

subsequence phases. However, for any particular phase, we would

condition on the coin tosses used by B in the previous phases. This

would ensure that the start time of the current phase is determinis-

tic.

We begin by stating the analog of Claim 3.2 justifying adding

all the pages to 𝐽𝑆 at the beginning of the phase. The proof follows

exactly in the same manner as that of Claim 3.2.

Claim 4.1. Suppose 𝑔(z(1)
init
) < 1/𝑛 · 𝑔(opt), then none of the pages

satisfy (6) initially. If a page satisfies (6) at some time, it continues to
do so from then onward.

Let 𝑇1,𝑇2,𝑇3 be the number of stages which terminate because

of conditions (5), (6) and (18) respectively.

2
One might wonder if this condition could also have been written in terms of 𝑧𝑖 vari-

ables, but the presence of the additive 𝛾𝑛 term relating 𝑧𝑖 and 𝑥𝑖 makes it challenging

if we state this condition in terms of 𝑧𝑖 ’s.

4.2.1 Bounding 𝑔(z(𝑇)
final
) in terms of 𝑇3. Next, we show that an up-

per bound on𝑇3 would lead to the desired upper bound on 𝑔(z(𝑇)
final
).

The intuition is that condition (18) ensures that z does not increase
a lot in a single stage, and hence the overall increase can be bounded

in terms of the number of such stages. We first upper bound ∆z(𝑠)

for a stage 𝑠 .

Claim 4.2. For a stage 𝑠 ,
∑
𝑖 𝑤
(𝑠)
𝑖
(∆z(𝑠))𝑖 ≤ 𝜀 ·𝑔 (opt)

𝑛 .

Proof. Since 𝑥𝑖 changes in steps of +1, we know from (18) that

for any stage 𝑠 ,∑︁
𝑖

𝑤
(𝑠)
𝑖
((x(𝑠)

final
)𝑖 − (x(𝑠)

init
)𝑖) ≤

𝑔(opt)
𝑛
+

∑︁
𝑖

𝑤
(𝑠)
𝑖

. (19)

It follows from inequality (18) that if ∆z(𝑠) is positive, then (note

that 𝜆 ≥ 1)

∆z(𝑠) ≤ 𝜀 (∆x(𝑠) − 1) .
The desired result now follows from (19). □

The following claim bounds 𝑔(z(𝑇)
final
) in terms of ∆z(𝑠) over all

stages 𝑠 .

Claim 4.3. Assume 𝑔(z(1)
init
) ≤ 1/𝑛 · 𝑔(opt) . Then

𝑔(z(𝑇)
final
) ≤ 2

∑︁
𝑠≤𝑇
⟨𝑤 (𝑠) ,∆z(𝑠) ⟩ + (𝑝 + 1/2) · 𝑔(opt)

≤
(
2𝜀 (𝑇1 +𝑇3)

𝑛
+ 2𝑝

)
· 𝑔(opt) .

Proof. By telescoping sum and convexity,

𝑔(z(𝑇)
final
) − 𝑔(z(1)

init
) =

∑︁
𝑠≤𝑇

𝑔(z(𝑠)
final
) − 𝑔(z(𝑠)

init
)

≤
∑︁
𝑠≤𝑇
⟨∇𝑔(z(𝑠)

final
),∆z(𝑠) ⟩.

In a stage 𝑠 , if a page 𝑖 ∈ 𝐽
(𝑠)
𝐿

, then (5) ensures that (∇𝑔(z(𝑠)
final
)𝑖 ≤

2(∇𝑔(z(𝑠)
init
)𝑖 = 2𝑤

(𝑠)
𝑖

. For a page 𝑖 , let 𝑓𝑖 be the last stage such that

𝑖 ∈ 𝐽
(𝑓𝑖)
𝑆

. Then the r.h.s. above is at most

2

∑︁
𝑠≤𝑇
⟨𝑤 (𝑠) ,∆z(𝑠) ⟩ +

∑︁
𝑖

∑︁
𝑠 :𝑖∈ 𝐽 𝑠

𝑆

⟨∇𝑔(z(𝑠)
final
),∆z(𝑠) ⟩

≤2
∑︁
𝑠≤𝑇
⟨𝑤 (𝑠) ,∆z(𝑠) ⟩ +

∑︁
𝑖

(∇𝑔(z(𝑓𝑖)
final
))𝑖 (z(𝑓𝑖)

final
)𝑖 ,

The first inequality in the claim now follows from condition (6) and

Claim 4.1.

Now, Claim 4.2 shows that∑︁
𝑠≤𝑇
⟨𝑤 (𝑠) ,∆z(𝑠) ⟩ ≤ 𝜀𝑇 · 𝑔(opt)

𝑛
.

The second inequality in the claim now follows from the fact that

𝑇 = 𝑇1 +𝑇2 +𝑇3 and 𝑇2 ≤ 𝑛. □

Now we upper bound 𝑇1.

Lemma 4.4. Assume that 𝑔(z(1)
init
) ≤ 1/𝑛 ·𝑔(opt) . Then𝑇1 ≤ 𝑇3+2𝑛𝑝 .

Tight Results for Online Convex Paging STOC ’25, June 23–27, 2025, Prague, Czechia

Proof. Consider a stage 𝑠 that ends with (5). We know that there

is a page 𝑖𝑠 ∈ 𝐽
(𝑠)
𝐿

such that (∇𝑔(z(𝑠)
final
))𝑖𝑠 = 2 · (∇𝑔(z(𝑠)

init
))𝑖𝑠 . For a

page 𝑖 , let 𝑛𝑖 be the number of times it appears as 𝑖𝑠 for some stage

𝑠 . We know that 𝑇1 =
∑
𝑖 𝑛𝑖 . For sake of brevity, let zfinal denote

z(𝑇)
final

.

For each page 𝑖 , let 𝑓𝑖 be the final stage in which it appears as a

small page. Now,

𝑝 · 𝑔(z
final
)
(1)

≥ ⟨∇𝑔(z
final
), z

final
⟩ ≥

∑︁
𝑖

(∇𝑔(z
final
))𝑖 · (z(𝑓𝑖)

final
)𝑖

≥
∑︁
𝑖

2
𝑛𝑖 (∇𝑔(z(𝑓𝑖)

final
)𝑖 · (z(𝑓𝑖)

final
)𝑖 ≥ 𝑝/𝑛 · 𝑔(opt) ·

∑︁
𝑖

2
𝑛𝑖 .

Now, conditioned on

∑
𝑖 𝑛𝑖 = 𝑇1, the sum

∑
𝑖 2

𝑛𝑖
is minimized when

each of the 𝑛𝑖 ’s is equal to 𝑇1/𝑛. Substituting this above, we get

𝑔(z
final
) ≥ 2

𝑇1/𝑛 · 𝑔(opt) .
Using Claim 4.3 we get

2
𝑇1/𝑛 ≤ 2𝜀 (𝑇1 +𝑇3) + 2𝑛𝑝

𝑛
≤ 𝑇1 +𝑇3 + 2𝑛𝑝

𝑛
(20)

If 𝑇1 ≤ 2𝑛𝑝 , there is nothing to prove. So assume 𝑇1 ≥ 2𝑛𝑝 . Then,

2
𝑇1/𝑛 ≥ 2𝑇1/𝑛. Substituting in the above, we get the desired result.

□

Combining the above two results, we get:

Corollary 4.5. Assume that 𝑔(z(1)
init
) ≤ 1/𝑛 ·𝑔(opt) . Then 𝑔(z(𝑇)

final
) ≤(

4𝜀 ·𝑇3
𝑛 + 4𝑝

)
· 𝑔(opt)

4.2.2 Defining good and bad stages. Corollary 4.5 shows that an

upper bound on𝑇3 would lead to an upper bound on 𝑔(z(𝑇)
final
). If the

optimal solution were also incurring high cost in stages ending with

condition (18), then we would be done. However, the algorithm B
is randomized and hence, it is possible that in some stages, it incurs

high cost whereas the optimal weighted paging cost in this stage is

small. The crux of the analysis in this section lies in showing that

such events are not frequent. Observe that we cannot use Markov’s

inequality on the expected cost incurred in a stage directly because

the time at which a stage ends is a random variable.

Let 𝑥 denote the optimal solution to the convex paging instance

I. Here 𝑥𝑖 denotes the number of evictions of page 𝑖 by this solution.

Let 𝑥 (𝑠) denote the solution 𝑥 at the beginning of stage 𝑠 (of the

current phase). We now give a crucial definition:

Definition 4.6. We say that a stage 𝑠 (in the current phase) is a

bad stage if it ends with condition (18) and

⟨𝑤 (𝑠) ,∆x̄(s) ⟩ ≤ 1

4𝛽

(
𝑔(opt)

𝑛
− 4𝛾𝑛

∑︁
𝑖

𝑤
(𝑠)
𝑖

)
(21)

A stage is said to be good if it is not a bad stage.

We now show that a stage is good with constant probability. For

technical reasons, if 𝑇 < 𝑇 ∗, we add null stages at the end so that

there are exactly 𝑇 ∗ stages. These null stages are classified as good

stages.

Claim 4.7. Let 𝑠 ≤ 𝑇 ∗ be a stage (in the current phase). Condition
on the coin tosses (of B) in the first 𝑠 − 1 stages. Then stage 𝑠 is good

with probability at least 3/4 (where the probability is over the coin
tosses of B in stage 𝑠).

Proof. Let 𝑡𝑠 be the start time of stage 𝑠 (which is deterministic

since we have conditioned on the first 𝑠 − 1 stages). Consider the
weighted paging instance I(𝑠) obtained from the original request in-

stance I by considering requests from time 𝑡𝑠 onward (with weights

of pages given by 𝑤 (𝑠)). Let 𝐴(𝑠) denote the r.h.s. of (21). Let 𝑡𝑒
be the first time after 𝑡𝑠 such that ⟨𝑤 (𝑠) ,∆x̄(s) ⟩ reaches 𝐴(𝑠) (if no
such time exists, then 𝑡𝑒 is the last time in the input sequence).

Consider running the algorithm B on I(𝑠) till time 𝑡𝑒 (without

worrying about whether any of the conditions for ending of a stage

gets satisfied). By definition ofB, the expected weighted paging cost

during this stage if at most 𝛽 · 𝐴(𝑠) + 𝛾𝑛
∑
𝑖 𝑤
(𝑠)
𝑖

. Using Markov’s

inequality, it follows that with probability at least 3/4, the total

weighted paging cost of B during [𝑡𝑠 , 𝑡𝑒] is at most

4𝛽𝐴(𝑠) + 4𝛾𝑛
∑︁
𝑖

𝑤
(𝑠)
𝑖

=
𝑔(opt)

𝑛
.

Assume that this event, call it E, happens. We now claim that stage 𝑠

must end beyond 𝑡𝑒 . Indeed, otherwise condition (18) is not satisfied,

and hence, stage 𝑠 must be a good stage. □

As a corollary, we get

Corollary 4.8. Fix an integer 𝑠 , 1 ≤ 𝑠 ≤ 𝑇★. Then the probability
that less than 0.6𝑠 of the first 𝑠 stages are good is at most 𝑒−0.04𝑠 .

Proof. We apply Azuma’s inequality (see e.g. [16]). For a stage 𝑠 ,

let𝑌𝑠 be the indicator random variable which is 1 if𝑌𝑠 is good. Then

Claim 4.7 shows that 𝑍𝑠 := (𝑌1 + . . .+𝑌𝑠) − 0.75𝑠 is a submartingale.

Therefore, using Azuma’s inequality,

Pr[𝑍𝑠 ≤ −0.15𝑠] ≤ 𝑒−0.04𝑠 .

Thus, (𝑌1 + . . . + 𝑌𝑠) ≤ 0.6𝑠 with probability at most 𝑒−0.04𝑠 . □

4.2.3 Bounding the number of stages. Let E denote the event that

among the first 𝑇 ∗ stages, at least 0.6𝑇 ∗ are good. Corollary 4.8

shows that Pr[E] ≥ 1−𝑒−𝑝 (recall that𝑇 ∗ ≥ 𝑐′𝑝 for a large enough

constant 𝑐′). For rest of this section we assume that E happens

and 𝑔(z(1)
init
) ≤ 1/𝑛 · 𝑔(opt). Our goal is to show that the algorithm

terminates in the current phase:

Theorem 4.9. Assuming that 𝑔(z(1)
init
) ≤ 1/𝑛 ·𝑔(opt) and the event

E occurs, the current phase ends in less than 𝑇 ∗ stages.

We now prove this theorem. Suppose, for the sake of contradic-

tion, that the current phase runs till stage 𝑇 ∗ (i.e., all these stages
are non-null). Let 𝑆

𝑔

3
denote the set of good stages that end with

condition (18), and let 𝑇
𝑔

3
:= |𝑆𝑔

3
|. We show that a constant fraction

of stages are in 𝑆
𝑔

3
:

Claim 4.10. 𝑇𝑔

3
≥ 0.05 ·𝑇 ∗.

Proof. The fact that event E occurs implies that

𝑇
𝑔

3
≥ 0.6𝑇 ∗ − (𝑇1 +𝑇2) ≥ 0.6𝑇 ∗ − (𝑇1 + 𝑛).

It follows from Lemma 4.4 that 2𝑇1 ≤ 𝑇 ∗ + 2𝑛𝑝. The desired result

now follows from the above inequality and the fact that 𝑇 ∗ ≫
𝑛𝑝 . □

STOC ’25, June 23–27, 2025, Prague, Czechia Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

The definition of a stage in 𝑆
𝑔

3
implies that∑︁

𝑠∈𝑆𝑔
3

⟨𝑤 (𝑠) ,∆x̄(s) ⟩ ≥
𝑇
𝑔

3
𝑔(opt)
4𝛽𝑛

− 1

𝛽

∑︁
𝑠≤𝑇 ∗

∑︁
𝑖

𝑤
(𝑠)
𝑖

𝛾𝑛 . (22)

We first bound the LHS of the above inequality.

Claim 4.11.
∑
𝑠≤𝑇 ∗ ⟨𝑤 (𝑠) ,∆x̄(s) ⟩ ≤ 5𝜀𝑇 ∗ · 𝑔(opt).

Proof. We have that∑︁
𝑠≤𝑇 ∗
⟨𝑤 (𝑠) ,∆x̄(s) ⟩ ≤ ⟨𝑤 (𝑇

∗) , 𝑥 (𝑇
∗+1) ⟩ ≤ ⟨∇𝑔(z(𝑇

∗)
final
), 𝑥 (𝑇

∗+1) ⟩

≤ 𝑔(opt) + 𝑝 · 𝑔(z(𝑇
∗)

final
)

≤
(
5𝑝2 + 4𝜀𝑝𝑇 ∗

𝑛

)
· 𝑔(opt) ≤ 5𝜀𝑇 ∗ · 𝑔(opt),

where the first inequality follows frommonotonicity of the weights,

the second inequality follows from Claim 3.1, the third inequality

follows from Corollary 4.5, and the last one follows from the fact

that 𝑇 ∗ = 𝑐1𝛽𝑝
2𝑛 ≥ 5(𝑐𝛽𝑝)𝑝𝑛 = (5𝑝𝑛)/𝜀 (using (15)). □

The proof of the following technical result follows along the

same lines as that of Claim 3.3. (Since𝑇★ = 𝑐1𝑝
2𝛽𝑛, we do not need

any additional assumptions on 𝑇 ∗ here.)

Claim 4.12. For any page 𝑖 ,∑︁
𝑠≤𝑇 ∗

𝑤
(𝑠)
𝑖

𝛾𝑛 ≤
1

𝑐1

(∑︁
𝑠≤𝑇 ∗

𝑤
(𝑠)
𝑖
((x(𝑠)

final
)𝑖 − (x(𝑠)

init
)𝑖) +

𝑔(opt)
𝑛

)
.

We use this to bound the second term in the RHS of (22).

Corollary 4.13.
1

𝛽
·
∑︁
𝑠≤𝑇 ∗

∑︁
𝑖

𝑤
(𝑠)
𝑖

𝛾𝑛 ≤ 2𝜀𝑇 ∗ · 𝑔(opt) .

Proof. Using Claim 4.12, (19) and the fact that 𝛾𝑛 ≥ 1, we see

that

(𝑐1 − 1)
∑︁
𝑠≤𝑇 ∗

∑︁
𝑖

𝑤
(𝑠)
𝑖

𝛾𝑛 ≤ 𝑔(opt) + 𝑇
∗𝑔(opt)
𝑛

≤ 2𝑇 ∗𝑔(opt)
𝑛

.

The desired result now follows from the fact that 𝑐1 ≫ 𝑐 (as

in (15)) and the definition of 𝜀. □

Substituting the results in Claim 4.11 and Corollary 4.13 in (22),

we see that

5𝜀𝑇 ∗ ≥
𝑇
𝑔

3

4𝛽𝑛
− 2𝜀𝑇 ∗ .

But this is a contradiction using Claim 4.10 and the fact that 𝜀 =

1/(𝑐𝛽𝑛) for a large enough constant 𝑐 . This proves Theorem 4.9.

4.2.4 Putting it together. Now we calculate the total cost incurred

during a phase.

Claim 4.14. Assume that 𝑔(z(1)
init
) ≤ 1/2 · 𝑔(opt). Let x(𝑇

∗)
final

be the
actual solution maintained by the algorithm at the end of 𝑇 ∗ stages
in this phase. Then,

(𝑂 (𝑝𝛽))𝑝 · 𝑔(opt) + 𝛾𝑝,𝑛 𝑔(1),
for some 𝛾𝑝,𝑛 that depends only on 𝑝 and 𝑛, and not on the sequence.

Proof. It follows from (17) and the fact that we may count an

extra +1 for each 𝑥𝑖 at the end of each stage that

x
final
≤ x(1)

init
+ (1/𝜀) · z

final
+ (𝜆 + 2)𝑇 · 1,

where the first term accounts for the initialization, the second term

captures that difference in scales between x and z, and the last term
accounts for the discrepancies due to the lag and the boundary

effects. Using our initial value for x = 𝜂1, the choice of 𝜀 = 1/𝑐𝑝𝛽,
and 𝑇 ∗ = 𝑐1𝛽𝑝

2𝑛, we get

x
final
≤ (𝑐𝑝𝛽) · z

final
+ [2𝑐1𝛽𝑝2𝑛(𝜆 + 2) + 𝜂]︸ ︷︷ ︸

𝛾=𝛾𝑝,𝑛

·1,

Using Lemma 2.1, Corollary 3.5, and the definition of 𝜀, we get

𝑔(x
final
) ≤ (2𝑐𝑝𝛽)𝑝 𝑔(z

final
) + (2𝛾)𝑝 𝑔(1)

≤(2𝑐𝑝𝛽)𝑝 (4𝑝 + 4𝑐1𝑐𝑝2) 𝑔(opt) + (2𝛾)𝑝 𝑔(1) . □

Now suppose 𝑔(opt) ≥ max{𝛾𝑝,𝑛 𝑔(1), 2𝑔(z(1)
init
)}. The above

claim shows that if xℎ denotes the solution produced during a

particular phase ℎ, then 𝑔(xℎ) is (𝑂 (𝛽𝑝))𝑝 . Now, if x≤ℎ denotes

the solution produced till the end of phase ℎ, i.e., x1 + . . . + xℎ , we
have

𝑔(x≤ℎ) ≤ ℎ𝑝 ((𝑔(x1) + . . . 𝑔(xℎ)) ≤ ℎ𝑝 · (𝑂 (𝛽𝑝))𝑝 · 𝑔(opt),
where we have used the fact that

𝑔(x≤ℎ) = 𝑔

(
ℎ · x

1 + . . . + xℎ
ℎ

)
≤ℎ𝑝 · 𝑔

(
x1 + . . . + xℎ

ℎ

)
≤ ℎ𝑝 (𝑔(x1) + . . . + 𝑔(xℎ)) .

The first inequality above follows from (2) and the last one follows

from the convexity and the monotonicity of 𝑔.

Theorem 4.9 shows that the probability of ℎ phases is at most

𝑒−ℎ𝑝 . Thus, we see that the expected cost of the solution is∑︁
ℎ≥1

ℎ𝑝

𝑒ℎ𝑝
(𝑂 (𝛽𝑝))𝑝 · 𝑔(opt) = (𝑂 (𝛽𝑝))𝑝 · 𝑔(opt) .

As in Section 3.2, we can remove the assumption that the al-

gorithm knows 𝑔(opt) and that there is a lower bound on 𝑔(opt).
(see the full version for details). This completes the proof of Theo-

rem 1.1.

5 Lower Bounds for Randomized Algorithms
In this section, we prove Theorem 1.2, that is restated here.

Theorem 1.2 (Randomized Lower Bound). There exists a con-
stant 𝐶 > 0 such that for any 𝑝 ≤ 𝐶 ln𝑛, any randomized algorithm
(that is even allowed to produce a fractional solution) for ℓ𝑝 -norm
paging has an Ω(𝑝 log𝑘) competitive ratio against an optimal in-
teger solution. This result implies an Ω(log𝑛 log𝑘) lower bound for
randomized min-max paging.

The Instance. The total number of pages is 𝑛 and the cache size

is 𝑘 , where 𝑛 > (𝑘 + 1)2. We assume wlog that 𝑛 = 2
𝑟 · (𝑘 + 1) for

some integer 𝑟 := lg
𝑛

𝑘+1 , and that 𝑘 is odd. The request sequence is

partitioned into 𝑟 + 1 = Ω(log𝑛) epochs, indexed 𝑒 = 0, 1, 2, . . . , 𝑟 .

In each epoch 𝑒 , a subset 𝐴𝑒 of
𝑛
2
𝑒 pages is active and the rest of the

Tight Results for Online Convex Paging STOC ’25, June 23–27, 2025, Prague, Czechia

pages are inactive. The set 𝐴𝑒 is defined recursively. In epoch 0, all

𝑛 pages are active; i.e., 𝐴0 is the set of all 𝑛 pages. To define the set

𝐴𝑒+1 from the set 𝐴𝑒 , we need to introduce the notion of blocks of
pages. The active pages in any epoch are (arbitrarily) partitioned

into blocks of𝑘+1 pages each. Note that𝐴𝑒 contains 2
𝑟−𝑒 = 𝑛

2
𝑒 (𝑘+1)

blocks. We denote the 𝑏th block of the 𝑒th epoch by 𝐵𝑒𝑏 . For every

𝑏, a uniform random subset of
𝑘+1
2

pages from block 𝐵𝑒𝑏 is added

to 𝐴𝑒+1, i.e., these pages are active in epoch 𝑒 + 1; the remaining

𝑘+1
2

pages in block 𝐵𝑒𝑏 are inactive in epoch 𝑒 + 1.
Next, we define the request sequence for the instance. The overall

request sequence is ordered by epochs 𝑒 = 0, 1, 2, . . . , 𝑟 and for a

fixed epoch 𝑒 , by the blocks in 𝐴𝑒 in arbitrary order. Overloading

notation, we call the request sequence for an epoch of pages as an

epoch, and the request sequence for a block of pages as a block. We

now describe the requests in the 𝑏th block of the 𝑒th epoch. These

requests are entirely for pages in block 𝐵𝑒𝑏 and are partitioned

into 𝑁 phases. (Here 𝑁 is a large number whose value we will

make precise later.) Morally, we would like each phase to comprise

a minimal sequence of requests spanning all the 𝑘 + 1 distinct

pages in block 𝐵𝑒𝑏 (similar to the usual definition of a phase for

the standard caching problem). For technical reasons, we need to

modify this definition slightly. We define a phase as the minimal

sequence of requests that contains all the
𝑘+1
2

pages from block

𝐵𝑒𝑏 \𝐴𝑒+1. In other words, the phase ends when we have seen at

least one request for every pages in block 𝐵𝑒𝑏 that is not active in

the next epoch. Finally, we generate each individual request in a

phase by choosing a page in block 𝐵𝑒𝑏 uniformly at random.

The procedure for generating this input request sequence is

described formally in Algorithm 1. For each block 𝐵𝑒𝑏 during an

epoch 𝑒 , we select a random subset 𝐴𝑒𝑏 of size |𝐵𝑒𝑏 |/2 (line 1.9),
which we call the static pages of 𝐵𝑒𝑏 , because they will be passed

on to the next epoch (and therefore 𝐴𝑒+1 ← ∪𝑏𝐴𝑒𝑏 . The rest of the

pages, i.e., 𝐵𝑒𝑏 \𝐴𝑒𝑏 , are called dynamic pages (of this epoch). This
completes the description of the input sequence.

We now give an overview of the lower bound analysis for the

random input sequence generated using Algorithm 1. The formal

details of the analysis are deferred to the full version.

Optimal Solution. The benchmark solution (we call it the op-

timal solution) is defined via two rules. The first rule is about the

static pages 𝐴𝑒𝑏 of a block 𝐵𝑒𝑏 . Note that these pages shall be re-

quested in later epochs. For any page 𝑖 ∈ 𝐴𝑒𝑏 , it stays in the cache

for the entire duration of the (requests in) block 𝐵𝑒𝑏 . Thus, these

pages are evicted only once in epoch 𝑒 . Since |𝐴𝑒𝑏 | = (𝑘+1)/2, the
remaining (𝑘−1)/2 slots in the cache are available for the dynamic

pages during this block.

The second rule is about managing the dynamic pages 𝐵𝑒𝑏 \𝐴𝑒𝑏

to serve all the page requests in the sequence corresponding to

the block 𝐵𝑒𝑏 . For each phase 𝐻ℓ in this block, we ensure that the

first (𝑘−1)/2 pages requested in this phase are in the cache at the

beginning of phase 𝐻ℓ . The last page request in 𝐻ℓ causes a page

eviction. Thus, there is only page eviction in each phase. However,

one needs to be careful about which page to evict at the end of

each phase. Indeed, we may be dealing with the ℓ∞ metric and

evicting the same page at the end of each phase could lead to high

ℓ∞ eviction cost. We show that a carefully designed round-robin

eviction scheme ensures that each active page in a block 𝐵𝑒𝑏 is

Algorithm 1: GenerateRequestSequence(𝑘, 𝑛).
1.1 Input: Cache size 𝑘 and total number of pages 𝑛. Assume 𝑛

is of the form 2
𝑟 (𝑘 + 1).

1.2 Set 𝐴0 ← [𝑛] . (Active Pages)
1.3 for 𝑒 = 0, . . . , 𝑟 do
1.4 (Generate request sequence for epoch 𝑒)
1.5 Partition 𝐴𝑒 into 𝑟𝑒 := 2

𝑟−𝑒
blocks, each of size 𝑘 + 1.

1.6 Let the blocks be 𝐵𝑒1, . . . , 𝐵𝑒𝑟𝑒 .

1.7 for 𝑏 = 1, . . . , 𝑟𝑒 do
1.8 (Generate request sequence for block 𝑏 in epoch 𝑒)
1.9 𝐴𝑒𝑏 ← random subset of size

𝑘+1
2

from 𝐵𝑒𝑏 .

1.10 for ℓ = 1, . . . , 𝑁 do
1.11 (Generate request sequence for phase ℓ in this

block)
1.12 repeat
1.13 Request a randomly chosen page from 𝐵𝑒𝑏 .

1.14 until all the pages in 𝐵𝑒𝑏 \𝐴𝑒𝑏 have been
requested at least once during this phase.

1.15 𝐴𝑒+1 ← ∪𝑏𝐴𝑒𝑏 (Active pages for next epoch)

evicted 𝑂 (𝑁 /𝑘) times with high probability during the 𝑁 phases

of this block. Since each page appears as an active page in only the

last epoch where it is active, this shows that with high probability,

each page is evicted 𝑂 (𝑁 /𝑘 + 𝑟) = 𝑂 (𝑁 /𝑘) times. Formally, we

show (in the full version):

Claim 5.1. Let 𝑋𝑖 be the random variable denoting the number
of evictions of page 𝑖 in the solution constructed by the adversary
as above. Then E[max𝑖 𝑋𝑖] = 𝑂 (𝑁 /𝑘) . Further, for any 𝑝 ≤ log𝑛,
E[(∑𝑖 𝑋

𝑝

𝑖
)1/𝑝] = 𝑛1/𝑝 ·𝑂 (𝑁 /𝑘).

A Deterministic (Fractional) Algorithm’s Solution. Fix any
deterministic (fractional) algorithm A. Consider a block 𝐵𝑒𝑏 in an

epoch 𝑒 . By standard coupon collector arguments, each phase 𝐻ℓ in

this block has Ω(𝑘 log𝑘) page requests with high probability. Since

each request in𝐻ℓ selects a random page from 𝐵𝑒𝑏 , which has (𝑘+1)
pages, the algorithm incurs eviction cost of

1

𝑘+1 in expectation for

each request. Let𝑋𝑒 (𝑖) denote the number of evictions of a page 𝑖 in

epoch 𝑒 . Then (1/|𝐴𝑒 |) ·
∑
𝑖∈𝐴𝑒

E[𝑋𝑒 (𝑖)] = Ω((𝑁 /𝑘) log𝑘). Since
the sets 𝐴𝑒 are randomly selected, the expected eviction cost on a

random page in 𝐴𝑒 is Ω(𝑒 (𝑁 /𝑘) log𝑘). Using this, we show (in the

full version):

Claim 5.2. Let𝑋𝑖 be the evictions incurred by page 𝑖 in algorithmA
on the instance given in Algorithm 1. Then, E[max𝑖 𝑋 (𝑖)] = (𝑁 /𝑘) ·
Ω(log𝑛 log𝑘) and E[(∑𝑖 (𝑋 (𝑖))𝑝)1/𝑝] = 𝑛1/𝑝 · (𝑁 /𝑘) · Ω(𝑝 log𝑘).

Combining Claim 5.2 and Claim 5.1, we get Theorem 1.2.

6 Closing Remarks
In this paper we showed how to reduce convex paging problems

(for a wide class of convex functions) to weighted (linear) paging

problems, for both randomized and deterministic settings, and also

for integer as well as fractional optimization. A crucial aspect of

our work is the black-box nature of the reduction, so that we can

STOC ’25, June 23–27, 2025, Prague, Czechia Anupam Gupta, Amit Kumar, and Debmalya Panigrahi

take algorithms for the well-studied linear cases and lift them to

the convex case, without having to reinvent the wheel (e.g., the

clever rounding approaches known in linear settings). This allows

us to give tight algorithms for min-max paging and ℓ𝑝 -norm paging,

thereby closing gaps in results given by previous works.

Our work suggests several interesting future directions. Can

we extend these techniques and/or results to other classes of on-

line covering problems? The analogous paradigm for fractional

problems – obtaining online algorithms to covering programs with

non-linear convex objectives by employing a local linear approx-

imation – has been applied to a broad class of problems such as

mixed linear programming, ℓ𝑝 -norm set cover, machine activation,

ℓ𝑝 -norm scheduling, capacitated facility location, and more [3]. In

fact, the same framework is also useful for appropriately defined

dual online packing problems such as variants of social welfare

maximization. Can we extend our algorithmic paradigm to obtain

new algorithms for integral online covering problems in other do-

mains beyond caching? What kinds of results can be obtained for

integral online packing problems using this framework?

Acknowledgments
AG and DP were supported in part by NSF grants CCF-2422926 and

CCF-2224718, and CCF-1955703 and CCF-2329230 respectively. DP

would also like to acknowledge the support of Google Research and

the Simons Institute for the Theory of Computing at UC Berkeley

for hosting him during his sabbatical from Duke University in 2023-

24, when a part of this research was conducted. AG thanks Google

Research for their support.

References
[1] Adi Avidor, Yossi Azar, and Jirí Sgall. 2001. Ancient and New Algorithms for

Load Balancing in the lp Norm. Algorithmica 29, 3 (2001), 422–441.
[2] Baruch Awerbuch, Yossi Azar, Edward F. Grove, Ming-Yang Kao, P. Krishnan,

and Jeffrey Scott Vitter. 1995. Load Balancing in the 𝐿𝑝 Norm. In Proceedings
of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
383–391.

[3] Yossi Azar, Niv Buchbinder, T.-H. Hubert Chan, Shahar Chen, Ilan Reuven Cohen,

Anupam Gupta, Zhiyi Huang, Ning Kang, Viswanath Nagarajan, Joseph Naor,

and Debmalya Panigrahi. 2016. Online Algorithms for Covering and Packing

Problems with Convex Objectives. In Proceedings of the 57th Annual Symposium
on Foundations of Computer Science (FOCS). 148–157.

[4] Yossi Azar and Amir Epstein. 2005. Convex programming for scheduling unre-

lated parallel machines. In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC). 331–337.

[5] Yossi Azar, Amir Epstein, and Leah Epstein. 2003. Load Balancing of Temporary

Tasks in the ℓ𝑝 Norm. In Approximation and Online Algorithms, First International
Workshop, (WAOA) (Lecture Notes in Computer Science, Vol. 2909). 53–66.

[6] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. 2012. A Primal-Dual Randomized

Algorithm for Weighted Paging. J. ACM 59, 4 (2012), 19:1–19:24.

[7] Nikhil Bansal and Kirk Pruhs. 2003. Server scheduling in the 𝐿𝑝 norm: a rising

tide lifts all boats. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC). 242–250.

[8] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch

Schieber. 2001. A unified approach to approximating resource allocation and

scheduling. J. ACM 48, 5 (2001), 1069–1090.

[9] Laszlo A. Belady. 1966. A Study of Replacement Algorithms for Virtual-Storage

Computer. IBM Systems Journal 5, 2 (1966), 78–101.
[10] Ioannis Caragiannis. 2008. Better bounds for online load balancing on unrelated

machines. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA), Shang-Hua Teng (Ed.). 972–981.

[11] Ashish Chiplunkar, Monika Henzinger, Sagar Sudhir Kale, andMaximilian Vötsch.

2023. Online Min-Max Paging. In Proceedings of the 34th ACM-SIAM Symposium
on Discrete Algorithms, (SODA). 1545–1565.

[12] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. 1991.

New Results on Server Problems. SIAM J. Discrete Math. 4, 2 (1991), 172–181.
[13] Edith Cohen and Haim Kaplan. 1999. LP-based Analysis of Greedy-dual-size.

In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 879–880.

[14] Nikhil R. Devanur and Zhiyi Huang. 2018. Primal Dual Gives Almost Optimal

Energy-Efficient Online Algorithms. ACM Trans. Algorithms 14, 1 (2018), 5:1–
5:30.

[15] Nikhil R. Devanur and Kamal Jain. 2012. Online matching with concave returns.

In Proceedings of the 44th Symposium on Theory of Computing Conference, (STOC).
137–144.

[16] Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure
for the Analysis of Randomized Algorithms. Cambridge University Press.

[17] Matthias Englert and Harald Räcke. 2009. Oblivious Routing for the 𝐿𝑝 -norm. In

50th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 32–40.
[18] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic

Sleator, and Neal E. Young. 1991. Competitive Paging Algorithms. J. Algorithms
12, 4 (1991), 685–699.

[19] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. 2012. Online

Primal-Dual For Non-linear Optimization with Applications to Speed Scaling. In

Workshop on Approximation and Online Algorithms (Lecture Notes in Computer
Science, Vol. 7846). 173–186.

[20] Sungjin Im, Nathaniel Kell, Janardhan Kulkarni, and Debmalya Panigrahi. 2019.

Tight Bounds for Online Vector Scheduling. SIAM J. Comput. 48, 1 (2019), 93–121.
[21] Sungjin Im and Benjamin Moseley. 2011. Online Scalable Algorithm for Minimiz-

ing k-norms of Weighted Flow Time On Unrelated Machines. In Proceedings of
the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 95–108.

[22] Thomas Kesselheim, Marco Molinaro, and Sahil Singla. 2023. Online and Bandit

Algorithms Beyond ℓ𝑝 Norms. In Proceedings of the 34th ACM-SIAM Symposium
on Discrete Algorithms (SODA), Nikhil Bansal and Viswanath Nagarajan (Eds.).

1566–1593.

[23] Ishai Menache and Mohit Singh. 2015. Online Caching with Convex Costs:

Extended Abstract. In Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures (SPAA). 46–54.

[24] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. 2016. FairRide:

Near-Optimal, Fair Cache Sharing. In Proceedings of the 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 393–406.

[25] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Amortized Efficiency of

List Update and Paging Rules. Commun. ACM 28, 2 (1985), 202–208.

[26] Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun. 2020. Balancing

Fairness and Efficiency for Cache Sharing in Semi-external Memory System.

In Proceedings of the 49th International Conference on Parallel Processing (ICPP).
ACM, 13:1–13:11.

Received 2024-11-04; accepted 2025-02-01

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Integrality Gap
	1.3 Deterministic Algorithms
	1.4 Our Techniques
	1.5 Other Related Works

	2 Preliminaries
	2.1 p-Bounded Convex Functions
	2.2 Weighted 1-Norm Paging
	2.3 Assumptions on opt

	3 Deterministic Online Algorithm for Convex Paging
	3.1 The Intuition for Our Algorithm
	3.2 Algorithm Description
	3.3 Analysis

	4 Randomized Algorithm for Convex Paging
	4.1 Algorithm
	4.2 Analysis

	5 Lower Bounds for Randomized Algorithms
	6 Closing Remarks
	References

