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Abstract

Online convex paging (Menache and Singh, 2015; Chiplunkar, Hen-
zinger, Kale, and Vétsch, 2023) models a broad class of cost functions
for the classical paging problem. In particular, it naturally captures
fairness constraints: e.g., that no specific page (or groups of pages)
suffers an “unfairly” high number of evictions by considering £,
norms of eviction vectors for p > 1. The case of the fo, norm has
also been of special interest, and is called min-max paging.

We give tight upper and lower bounds for the convex pag-
ing problem for a broad class of convex functions. Prior to our
work, only fractional algorithms were known for this general set-
ting. Moreover, our general result also improves on prior works
for special cases of the problem. For example, it implies that the
randomized competitive ratio of the min-max paging problem is
©(log k log n); this improves both the upper bound and the lower
bound given in prior work. It also shows that the randomized and
deterministic competitive ratios for £,-norm paging are ©(p log k)
and ©(pk) respectively; the randomized results are completely new,
as is the deterministic lower bound.

All previous algorithms we know for paging with non-linear
costs used fractional relaxations. We show a fundamental limitation
of this approach — we give integrality gap instances for the natural
relaxation used in these works. This shows that a generic relax-
and-round framework—solving the relaxation and then rounding
it—is insufficient for obtaining tight bounds for this problem.

To bypass this bottleneck, we work with the integer versions
of the problems directly. Somewhat surprisingly, we show how to
take an arbitrary online algorithm for the weighted paging prob-
lem (with linear costs), and convert it in a black-box way to an
online algorithm for convex paging, losing just an optimal factor in
this reduction. This reduction proves especially challenging in the
randomized case, where the underlying weighted paging algorithm
is randomized, and the analysis needs to proceed via a delicate
martingale argument. We believe this approach of lifting arbitrary
(weighted linear) online algorithms to convex objectives may be of
broader interest.
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1 Introduction

Paging/caching is perhaps the most well-studied problem in online
algorithms. Given a universe of n pages and a cache that can only
hold any k pages at any time, a paging algorithm must serve an
online sequence of page requests by ensuring that the currently
requested page is in the cache. Traditionally, the goal has been to
minimize the total number of page evictions, i.e., the £;-norm of
the page eviction vector. For this problem, we have long known
tight k-competitive deterministic and Hy-competitive randomized
algorithms.

In recent years, there has been increased focus on paging appli-
cations in decentralized settings, such as in cloud computing and
web caching. One key difference in these applications is that the
different pages (e.g., web pages) are owned/requested by different
agents. It is natural to ask that any paging algorithm be fair to
these agents, and not evict pages for any one agent too often (see
e.g. [24, 26]). Motivated by these considerations, Chiplunkar, Hen-
zinger, Kale, and Vétsch [11] defined the min-max paging problem.
Here the goal is to minimize the maximum number of evictions
suffered by any page, i.e., the fo-norm of the page eviction vector.
They gave an upper bound of O(log? nlog k) and a lower bound of
Q(logn) on the competitive ratio of min-max paging; this left an
O(lognlog k) gap between these upper and lower bounds.

Chiplunkar et al. [11] also considered the more general setting of
minimizing an arbitrary convex function g(x) of the n-dimensional
page eviction vector x (where the i’ h coordinate represents the
eviction count for page i). They focused on the widely-studied
class of p-bounded of convex functions g, which contains the p"
moments—i.e., the functions Zixf—as a special case. (See Sec-
tion 2.1 for a formal definition.) For such functions, they gave
(O(plog k))P-competitive fractional paging algorithms. As a corol-
lary, this implied an O(p log k)-competitive algorithm for the frac-
tional £5-norm paging problem, where the goal is to minimize ||x||.
! Prior to our work, no such results for the integral convex paging
problem were known.

It turns out that the extension of paging to £,-norms had previ-
ously been studied from both theoretical and empirical standpoints

ISince the £, norms for n-dimensional space with values of p > Inn are within
constant factors of each other, we can restrict our attention to p < Inn.
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by Menache and Singh [23]. They gave an O(pk)-competitive de-
terministic algorithm for this problem, leaving open the question
of getting a matching lower bound for deterministic algorithms, as
well as better results for randomized algorithms.

Given these past results, the following question remains open:

Can we get tight results for the minmax paging and £~
norm paging problems, or the more general p-bounded
convex paging problem, both in the randomized and
deterministic cases?

1.1 Our Results

In this work, we resolve this question, giving matching upper bound
and lower bounds for all these problems using a broad new frame-
work.

1.1.1  Randomized Algorithms. Our main result shows a black-box
transformation from a randomized online algorithm for classical
weighted ¢ paging to a corresponding randomized online algorithm
for p-bounded convex paging.

THEOREM 1.1 (RaANDOMIZED UPPER BOUND). Suppose there is a
randomized online algorithm for weighted paging with competitive
ratio . Then, there is a randomized (O(pf))P -competitive online
algorithm for the p-bounded convex paging problem. Using known
randomized O(log k)-competitive weight paging algorithms, this im-
plies the following randomized online algorithms:

(1) an O(log nlog k)-competitive algorithm for the min-max pag-

ing problem, and

(2) an O(plog k)-competitive algorithm for the £,-norm paging

problem.

Our min-max paging result improves on the O(log? nlogk)-
competitive algorithm given by [11]. No previous randomized algo-
rithm was known for the generalization to £,-norms (and hence,
for p-bounded convex paging).

Next, we show our matching lower bounds. In fact, our lower
bounds hold for the most restrictive settings of min-max paging
and £p-norm paging—and hence for p-bounded convex functions
as well.

THEOREM 1.2 (RANDOMIZED LOWER BOUND). There exists a con-
stant C > 0 such that for any p < Clnn, any randomized algorithm
(that is even allowed to produce a fractional solution) for £,-norm
paging has an Q(plogk) competitive ratio against an optimal in-
teger solution. This result implies an Q(log nlogk) lower bound for
randomized min-max paging.

This lower bound improves and generalizes a lower bound of
Q(logn) given by [11] for the integral min-max paging problem.
Moreover, it shows that for min-max paging, both our randomized
(integral) algorithm from Theorem 1.1, as well as the O(log k log n)-
competitive (fractional) algorithm of [11] are asymptotically tight.
For £p-norm paging, to our knowledge, this is the first lower bound
result.

1.2 Integrality Gap

Before we present the analogous reductions for deterministic al-
gorithms, let us address a question that immediately arises when
faced with these problems:
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Could we get the randomized algorithm of Theorem 1.1,
by applying the relax-and-round framework, e.g., for the
special case of min-max paging? In particular, could we
take the O(log k log n)-competitive fractional solutions
from [11] (or Theorem 1.4), and round these online with
only a constant factor loss?

Indeed, relax-and-round has been the dominant paradigm for pag-
ing problems, as well as for generalizations such as weighted paging
and k-server. However, we show a significant barrier: starting with
a generic fractional solution to the natural convex relaxation and
rounding it must lose a nearly-logarithmic factor to get from frac-
tional to integer solutions. Indeed, the integrality gap of the natural
linear programming formulation is nearly logarithmic.

THEOREM 1.3 (INTEGRALITY GAP). There exist instances of min-
max paging where the natural linear program has an integrality gap
of Q(logn/loglogn). Further, for any p, 2 < p < Inn, there exist
instances of fp-norm paging where the natural convex program has
an integrality gap of Q(p/log p).

Observe that Theorem 1.2 and Theorem 1.3 together imply lower
bounds on the relax-and-round framework— any (randomized)
online algorithm for min-max paging using the relax-and-round
framework must have Q(log k log? n/log log n)-competitive ratio
(and similarly, Q(log kp?/log p) competitive ratio for {p-norm pag-
ing). We manage to bypass the challenge of overcoming this inte-
grality gap in Theorem 1.1 by avoiding working with fractional
solutions entirely, and using a direct reduction between integral
paging algorithms.

1.3 Deterministic Algorithms

Finally, we show that our techniques also extend to deterministic
algorithms: we give a black-box transformation from a deterministic
(fractional or integral) online algorithm for the ¢; weighted paging
problem to a corresponding online algorithm for the p-bounded
convex paging objective.

THEOREM 1.4 (DETERMINISTIC UPPER BOUND). Suppose there is
a deterministic a-competitive online algorithm A for the weighted
paging problem. Then there is an (O(pa))P -competitive deterministic
online algorithm for the p-bounded convex paging problem. This
algorithm yields a fractional or an integral solution depending on
whether A is fractional or integral.

Given deterministic fractional O(log k)-competitive [6] and in-
tegral O(k)-competitive [12] algorithms for weighted paging, we
recover two known results for £,-norm paging:

(1) an O(p log k)-competitive fractional algorithm [11], and

(2) an O(pk)-competitive integral algorithm [23].

The first result is tight by Theorem 1.2. We also give a new lower
bound matching the second result.

THEOREM 1.5 (DETERMINISTIC LOWER BOUND). There exists a
constant C > 0, such that for any p < Clnn, any deterministic
integral online algorithm for £,-norm paging must have Q(pk) com-
petitive ratio. This implies an Q(k In n) lower bound for deterministic
min-max paging.
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For general p, we are not aware of any prior lower bound. For
(integral) min-max paging, the best previous deterministic lower
bound was Q(klogn/log k) [11], which we improve by log k.

1.4 Our Techniques

Algorithms. First, we describe the deterministic reduction of The-
orem 1.4, given in Section 3. Recall that we want to reduce paging
with a convex objective g to a series of weighted #; paging instances.
A natural idea is to define the weight of page i as the marginal cost
of evicting a single page given the current situation, i.e., the gradi-
ent Vg(x) w.r.t. the page eviction vector x. This allows the weighted
paging objective to locally track the growth of the convex objective.
However, if we strictly implemented this, we would have to update
page weights after every eviction, and run a new weighted paging
instance which terminates upon a single eviction. Clearly, this is
infeasible because we would not be able to account for the (additive)
cost incurred by the black-box weighted paging algorithm, e.g., for
resetting its initial state. To avoid this, we need to let the weighted
paging instance run until its additive cost can be charged to the
cost of an optimal solution with the same set of page weights. But,
this means that the page weights determined at the beginning of
an instance do not accurately reflect the growth of g(-) later on in
the same instance.

To reconcile these differences, we need two ideas. For any page,
there is an initial period of time where we do not maintain explicit
control over how the gradient changes within a weighted paging
instance. Instead, we ensure that the total weighted cost of evictions
of the page in this initial time period is bounded. Once a page crosses
this initial threshold, we switch to maintaining explicit control
over the change in gradient within a weighted paging instance; in
particular, the gradient at the end is at most twice the gradient at
the beginning of the instance. These phases for different pages are
asynchronous, which makes the analysis more subtle. Moreover we
need to introduce extra lags in this process to control the number
of phases; we give these details in Section 3.

The randomized reduction (Theorem 1.1) is more involved. Ide-
ally, we would like to use the same strategy as above, while replacing
the deterministic weighted paging algorithm with a randomized
one. However, each weighted paging instance is a function of the
algorithm’s choices in the previous instances, i.e., is itself random.
Moreover, the bound on the cost of a weighted paging instance only
holds in expectation, and with some probability an instance can
generate an expensive solution. Crucially, this can have a cascading
effect, raising the (optimal) cost of later instances. We counter this
by terminating an instance if the weighted paging cost exceeds a
set threshold. The key idea is to show that this extra termination
condition does not increase the total number of instances signifi-
cantly, since the latter would make the additive cost of the instances
unacceptable. We use a careful martingale argument to bound the
probability of this bad event, which allows us to restart the algo-
rithm every time this bad event happens, i.e., if the algorithm is
creating too many weighted paging instances. The details of the
randomized reduction appear in Section 4.

Lower Bounds. We outline the main ideas for the randomized
lower bound for fractional min-max paging (Theorem 1.2); the
ideas for the deterministic lower bound are similar. We start off
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with n > k pages, which are grouped arbitrarily into disjoint
groups of k + 1 pages each. In the first epoch, we iterate over all the
ﬁ groups. For each group we give some M requests for the k + 1
pages in the group, each request for a uniformly random page in
the group. Each such request causes an eviction with probability
1/k+1, and hence any algorithm pays ~ M/k? for each page during
all these requests. Now a random half of the pages in each group
are deactivated, and the remaining half of the pages survive to the
next epoch. There are log, (n/(k + 1)) = log n such epochs.

Since the algorithm does not know the identity of the pages to be
deactivated, a random page suffers approximately M/k? evictions,
and hence pages that survive all the epochs suffer approximately
(M/k?) log n evictions. However, an optimal solution can save on
two fronts. First, it can ensure that the % pages that remain active
in the following epoch are always kept in cache and hence suffer a
constant number of evictions in this epoch. In other words, a page is
subjected to a substantial number of evictions only in its final epoch;
in this case, the % such pages in its group vie for % slots in the
cache. The instance now behaves like a paging lower bound with

~ M/2 requests and % pages: using a coupon-collector argument

. , M2 -
we know that the optimal solution suffers ~ W2 g (F/2) evictions

overall, and hence a random page suffers ~ M/ (k? log k) evictions
in the optimal solution. Since a random page suffers ~ (M/k?) logn
evictions in the online algorithm, this gives the gap of Q(log k log n).
The formal argument for this lower bound, along with its extension
to £,-norm paging, appears in Section 5; the modification to the
deterministic case (Theorem 1.5) is deferred to the full version.

1.5 Other Related Works

In classical paging, Bélady’s offline algorithm (Farthest in Future)
is known to be optimal for minimising the number of evictions [9].
We know deterministic k-competitive and randomized O(log k)-
competitive algorithms for the caching problem; both are opti-
mal [18, 25]. Weighted paging is equivalent to the k-server prob-
lem on a weighted star, so deterministic k-competitiveness follows
from a k-server algorithm on trees [12]. Bansal et al. [6] gave a
randomized O(log k)-competitive algorithm for weighted paging,
illustrating the power of the relax-and-round framework for these
problems. They used an interval covering IP given by [8, 13], which
also extends to the setting of £, norms.

Azar et al. [3] give an algorithm for solving online covering
LPs with supermodular convex objective functions f; their ap-
proximation factor depends upon bounds on the derivatives of
f. These ideas were extended by Chiplunkar et al. [11] to solve
fractional £,-norm paging, where the natural LP also has box con-
straints. (Alternatively, we can write the stronger covering-only
LP given in Section 2 and directly use the algorithm from [3] to
get an O(p log k)-competitive algorithm for the fractional £,-norm
paging problem.) Menache and Singh [23] used KKT conditions on
the natural convex program to obtain deterministic algorithms for
paging with convex objectives.

The use of £, norms and other convex objectives to capture the
notions of fairness and balance is widespread in both offline and
online algorithms. E.g., see [1, 2, 4, 5, 7, 10, 14, 15, 17, 19-22].
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Roadmap. We now give an overview of the rest of the paper.
In Section 2, we give some preliminaries and notations, includ-
ing formally defining the class of p-bounded convex functions.
We prove Theorem 1.4 giving our deterministic algorithms for p-
bounded convex functions in Section 3; this allows us to develop
many of our ideas. In Section 4, we prove Theorem 1.1 by extending
our ideas to randomized algorithms. We prove the lower bound
result Theorem 1.2 for randomized online algorithms in Section 5;
Theorem 1.5 for deterministic online algorithms apears in the full
version of the paper. The integrality gap result Theorem 1.3 is also
deferred to the full version. All missing proofs appear in the full
version.

2 Preliminaries

We start with a formal definition of the paging problem. We have a
universe U of n pages, and a cache of size k. At any given time, at
most k of the n pages can be in the cache. Let the cache contents at
time ¢ be C;. Requests for pages arrive online: the page requested at
timestep t is denoted oy, and it must belong to the cache C; at the
end of time ¢t. W.l.o.g., we assume that the algorithm does nothing
if o; € Cy—1, and hence C; < C;_j. Otherwise, if |C;—1| = k and
or ¢ Cy_1, the algorithm must evict some page o; € C;— and
replace it with page oy; ie., C; < (Ci—1 U {o¢}) \ {o;}. Let xl.t
denote the number of times that the page i € U is evicted from the
cache by the algorithm until the end of time ¢, and let the eviction
vector be x! := (x{, .. ,x,tl).

We consider the convex paging problem, that of minimizing
g(x?) for a convex function g : R* — Ry(. This captures the un-
weighted (¢, -norm paging) problems [18, 25], where g(x') := ¥; x£,
and the min-max paging problem [11] where g(x?) = ||x||c0 =
max; x{. Moreover, we may have the ,-norm paging problem,

where g(x!) = ||xt||1L7 = (Zi(xit)f’)l/p for any p € [1,00]. As
mentioned in footnote 1, we focus our attention on values of p <
O(logn), and the result for p = O(log n) gives us min-max paging.

The £,-norm paging problem can be further generalized to the

1/p
weighted versions with g(x’) := (Zi wi(xl.[)p) . In particular,
the weighted ¢;-norm paging problem is g(x*) := 3; wixl.t, and is
well-studied in the literature [6, 12]. Secondly, the pages can be
partitioned into ¢ groups and the weighted £,-norm is now defined

1/p
on the groups: g(x?) := (ZC we (Diee xl.t)p) . The intuition is
that each group represents a separate entity such a client in a cloud
service, and the goal is to achieve fairness across these groups [23].

2.1 p-Bounded Convex Functions

All the cases above are modeled by the class of p-bounded convex
functions. These were previously studied by [3, 11] (and called nice
functions in [3]):
(i) g is convex, differentiable, monotone, with ¢g(0) = 0;
(ii) g is supermodular, which implies that Vg are monotone, and
(iii) the linear approximation (Vg(x), x) is within a factor of p
of the function value g(x): formally,

(Vg(x),x) < pg(x) for all x. (1)
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Note that all the paging objectives considered above satisfy the
properties of a p-bounded convex function, where the value of p
coincides with the index of the £,-norm. The following properties
hold for p-bounded convex functions (see [3, Lemma 4(a,d)]):

Lemma 2.1. For a p-bounded convex function g:
g(6x) < 87 - g(x) foranyd > 1 ()
glx+y) <27 -g(5) <207 g(x) +9(y)). (3)

2.2 Weighted ¢;-Norm Paging

Our main contribution is to reduce convex paging to weighted #;-
norm problem. In an instance I of the weighted #;-norm problem,
each page i has a weight w;, and the goal is to minimize the total
weighted eviction cost of the pages. We will use algorithms for the
weighted #;-norm problem in a black-box fashion, and assume one
of the two below:

(i) An a-competitive deterministic algorithm A: given an in-
stance I of weighted #;-norm paging with page weight vector
w and optimal solution x*, and an arbitrary starting config-
uration, the algorithm A produces an integral solution with
objective value at most & (W, X*) + Wmax * Yn, Where wpay is
the maximum weight, and the term y, depends only on the
number of pages n and not on the input sequence.

(if) A randomized algorithm B with expected competitive ratio
B, i.e., in the same setting as above, it produces a solution
with expected objective value at most ff (w, X*) + Wmax * Vn-

2.3 Assumptions on opt

Given an instance I of the convex paging problem, we denote the op-
timal solution by opt(I), or opt when the instance is unambiguous.
We assume that the algorithm knows the optimal objective function
value g(opt), and that g(opt) > B(n) for some large enough func-
tion of n that we will define later. Both assumptions are without
loss of generality (see full version for details).

3 Deterministic Online Algorithm for Convex
Paging
We now present our reduction for deterministic algorithms. This al-

lows us to develop some of our techniques, which will subsequently
be useful for the reduction for randomized algorithms.

3.1 The Intuition for Our Algorithm

Consider an instance I of p-bounded convex paging. Our algorithm
divides time into stages. It maintains a solution x, where x; denotes
the number of evictions of page i. Observe that if x is the final
solution produced by the algorithm, then

9(x) = / Vg(x') dx =y Vg(xis) - Ax(S),
4 S

where x! denotes the solution x at time t, xf;l)t
the beginning of stage s, and Ax®) the change in x during this
stage. In other words, the cost incurred during a stage can be ap-

proximated by the weighted #; paging cost with weight of page i

given by (Vg(xi(r;)t))i. Hence it is natural for the algorithm to run

the following greedy procedure: in each stage s, run the weighted

the solution x at
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paging algorithm A with weights given by the gradient of function
g at the beginning of this stage.

However, there is an inherent trade-off in this approach: On one
hand, if a stage s runs for too long, (Vg(x)) may differ significantly

from the gradient Vg(xf;i)t) at the beginning of the stage, and hence
the weighted paging cost with fixed weights may not reflect the
true costs incurred during this stage. On the other hand, there is an
initial set-up cost (and an additive term in the competitive ratio of
A) each time we start a new stage. If there are many stages, these
set-up costs can be large fraction of the overall cost incurred by the
algorithm. The challenge lies in finding the right balance between
these two factors.

We adopt the following approach: each page i goes through two
conceptual “phases”. In the initial phase (for page i), we do not
control how fast (Vg(x)); grows within a stage, but ensure that
the total weighted paging cost (over all stages so far) incurred for
page i forms a small fraction of g(opt) (at most #/n - g(opt) to be
precise). Once this initial phase for page i is over, we ensure that
(Vg(x)); at most doubles during a stage. Formally, a stage ends due
to one of two reasons: (i) the total weighted paging cost of a page
i reaches the threshold p/n - g(opt), or (ii) the gradient of g along
page i, i.e., (Vg(x));, doubles during this stage. There are at most
n stages of the first type, and we show that the doubling process
cannot happen too many times, thereby bounding the number of
stages.

The algorithm has to overcome several additional technical issues
to get our claimed guarantee: (i) Due to the factor p in (3) and
the competitive ratio & of A, we maintain a scaled down version
z := ¢-x, where 1/¢ = pa), and the weights of pages must be defined
with respect to Vg(z). (ii) It is possible that x; does not change a
lot during a stage (and hence the change is small compared to the
stage set-up cost), but (Vg(x)); changes by almost a factor of two.
In such cases, we do not want to change the weight of page i. To
ensure this, we change z;, which dictates the weight of page i, only
when x; changes by a quantity greater than some threshold. We
now present the formal description, which pins down these and
other subtleties.

3.2 Algorithm Description

The page eviction vector is denoted x € R, ie., x; is the total
number of evictions of page i. We define an auxiliary vector z,
which is essentially an ¢-scaled version of x, but which omits some
of the page evictions. The pages in [n] are partitioned into two
subsets J; and Js, loosely corresponding to pages whose x; values
are “large” and “small”, respectively. Let

€:=1/(cpa)

for some suitably large constant ¢ > 8.

(1) The input is divided into stages, where stage 1 begins at the

first timestep. Let 2%) denote the vector z at the beginning
init

of stage s. Define the weight wi(s) = (Vg(zi(:i)t))i of page i

for stage s. Initialize the vectors x = x; !

init = 11 - 1 for some

parameter 5 = 8p%ny,; set z = zi(;i)t = exi(;i)t. (Recall that the

parameter yj is in the additive term of the competitive ratio
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guarantee of algorithm A.) All the pages initially belong to
Js.

(2) Within each stage s, we run the black-box algorithm A with

page weights wl.(s). Without loss of generality, this algorithm
is lazy and evicts at most one page at each time.

(3) Whenever a page i is evicted in some stage s by algorithm A,
we add 1 to x;. Since z; is a scaled down version of x;, one
expects z; to increase by ¢. This is almost the case, with two
differences. First, we increase z; after an initial lag. In other
words, at any time during a phase s, we ideally want z; to
equal

(z.(s))i + ¢ - max(0, xj — (x(s) )i — A), 4)
init init
for some lag parameter A = 4pn yy. Second, after each evic-
tion we increase z; continuously, until it either reaches the
value in (4), or else the stage ends—the condition for which
we describe in the next bullet point. Hence the only case
when z; does not satisfy (4) is at the end of the stage.

(4) The stage s ends when one of the following conditions is

true:

(Vg(2)); = 2 (Vg(z); for some page i € Ji  (5)

or, (Vg(z)); - (z); = p/n-g(opt) for some pageic Js. (6)

We stop the stage as soon as one of these conditions happens.
Since we raise z; continuously, it follows that the condition
above that triggers the end of the stage holds with equality.
Moreover, if page i satisfies condition (6), it is moved from Jg
to Jr. (We show in Claim 3.2 that none of the pages satisfies
condition (6) initially, i.e., all pages are initially in Js).

(5) When the stage ends, we evict all pages from the cache and
start a new stage. To account for this last eviction for every
page, we add 1 to each x;, but keep z; unchanged. This incurs
a further discrepancy between x and z.

3.3 Analysis

We now give an overview of the analysis.
Recall the definition of page weights w(s) := Vg(zi(rfi)t). Also,
z < ex, where x is our actual (integer) solution.

(1) We first show that due to the properties of the algorithm A,
the weighted eviction cost incurred by our algorithm during
a stage is within a factor « of that incurred by the optimal
solution opt with the same weights, plus additive terms.

(2) Recall that the page weights are defined by the gradients
of our z solution at the beginning of each phase. Hence the
cost incurred by the optimal solution using our weights may
have nothing to do with our algorithm and these weights.
Nonetheless, we show that the total weighted paging cost
of this optimal solution (using our weights) can be upper
bounded by g(opt) + p - g(z) (using Claim 3.1). Hence, this
implies the same bound for our algorithm with an additional
a factor (details in Claim 3.4).

(3) Next, we bound the final value of g(z) by half the total
weighted paging cost of our algorithm, which uses the fact
that the gradient does not change significantly in a stage
and the convexity of the function g(z) (Claim 3.4 and Corol-
lary 3.5).
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One difficulty in carrying out this step is that the additive
term involved in the guarantee of A (or the set-up cost for
each stage) can accumulate over all the stages to give a large
error. Therefore, we show that the number of stages T is
O(pn) (see Lemma 3.6). Using this fact, we show that the
total weighted set-up cost over all the stages is also bounded
(see Claim 3.3).
Let us now proceed with the details of the sketch above. The first
simple but crucial claim uses the p-boundedness of the gradients
to show an approximate sub-additivity-type property for g.

Claim 3.1. For any non-negative convex function g that satisfies (1)
(Vg(z),v) < g(v) +p - g(2).
Proor. For a convex function

9(v) 2 g(2) +(Vy(2),v - 2).

Now rearrange, use the non-negativity of g to drop g(z), and use
the upper bound from (1) on (Vg(z), z) to complete the proof. O

In the following, we will instantiate v with the optimal solution,
and z with the algorithm’s solution, to infer that the weighted ¢; cost
of the optimal solution with respect to the algorithm’s weights is at
most g(opt)+p-g(z). The following claim shows some monotonicity
conditions, and that if the initial solution has small cost relative to
g(opt), all pages initially satisfy the condition of belonging to the
set Js.

(In this claim and in the subsequent analysis, we assume that

9(z4) < /- glopt). ™
This is due to g(opt) being at least some large enough function of
n—see Section 2.3. We will make this function precise later in (14).)
Claim 3.2 (Initialization and Monotonicity). Suppose g(zi(;i)t) <
1/n - g(opt), then none of the pages satisfy (6) initially. If a page
satisfies (6) at some time, it continues to do so from then onward.

(s) _(s)

Let Xp o1 Zonal denote the vectors x, z at the end of any stage s;
define AxS) = Xf(isn)al - Xx(ri)t and Az®®) analogously. Let ]]Es) and

]és) denote the sets J; and Js respectively during stage s. The next
claim shows that as long as the number of stages is not too large,
the algorithm can account for the additive terms (i.e., about y,
evictions for each page) in each of the stages.

Claim 3.3 (Additive Term). Suppose we run the algorithm for T <
4pn stages. Then for any page i,

2w < 3w (xS otopupn

s<T s<T

PRrROOF SKETCH. As long as a page i does not satisfy property (6),
the quantity y, wl.(s) summed over all stages can be upper bounded
by p/n - g(opt). Once condition (6) is satisfied, the page weight
w; changes after a stage s only when x; changes by a significant
amount during this stage: this is due to the lag term in (4) built into
each stage. In this case, the quantity y, wi(s) can be charged to the
weighted change in x;. O
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We can now relate the cost incurred by the algorithm to the cost
of an optimal solution. This uses the competitive ratio of A and the
fact that the additive terms corresponding to y,w; for each page i
during each of the stages can be bounded using Claim 3.3.

Claim 3.4 (Linearized Scaled Cost). Suppose we run the algorithm
forT stages and T < 4pn. Then, if c > 8, we have

T
D3 (Valz) i+ (A2 < (12) - g(z)) + (p+ 1) g opt).
s<T i
ProoF SKETCH. Note that the LHS in the claim is closely related
to the total weighted eviction cost over all stages—it would pre-

cisely be the e-scaled weighted cost if Vg(zgl;l) were replaced by
Vg(zi(rz;t) ). The weighted paging algorithm A gives a bound on the
weighted eviction cost of a single stage; adding/telescoping this
bound over all the stages gives

D 2 Valz) - (82,

s<T i
=3 3w (A < 2ea - (WD), T 462 - g(opt),
s<T i
8)

where x(T*1) is any feasible solution and w(T) is any upper bound
on the weights in the individual stages. The first term on the right
comes from the multiplicative loss of ¢ in A and the second term
1/2- g(opt) bounds the cumulative effect of the additive losses across
all stages.

We now relate the two sides of (8) to the two sides of the inequal-
ity in the claim. On the right side, we set %(T+1) to be (offline) opt
and w(T) to be the page weights in the last stage of the algorithm.
Then, using Claim 3.1, we have

<W(T), )—((T+1)> — <V9(Z$t)), )—((T+1)>
<g& ™) +p- (1)) < glopt) +p-g(zll)). (9
To relate the left side of (8) to the claim, we observe that
Vg(zg;l)i < 2Vg(zi(r£t))ifor each pagei € Jg,

and Vg(z,(T))i -z; < p/n - g(opt) for each page in Js. This lets us

init

infer
2 2 (Valz i (A2,
s<T i
<2 )" 3 Vglz) - (A2 +p - glopt). (10)
s<T i
Substituting (9) and (10) into (8) and setting ¢ > 8 gives the
claim. O

Corollary 3.5 (Scaled Cost Bound). Suppose we run the algorithm
forT stages and T < 4pn. Moreover, suppose g(z(l)) < n - g(opt).

init

Then forc > 8, we have 9(Zf(‘12\1) < 2(p +2) g(opt).

(s) (s+1)

. _ : (T) .
Proor. Since z, °\ =z, ., we can write g(zg, ) as a telescop

ing sum to get

9(zg) =9z = Y {9z — 9(zi)

s<T
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< D (Vg(zgy). A2) < 1/29(z ) + (p+ 1 glopt). (1)
s<T

The first inequality uses convexity, and the next one uses Claim 3.4.

Using n > 1 and our assumption on the initial function value, and

simplifying, we get the desired result. ]

3.3.1 Bounding the Number of Stages. The previous results con-
sidered the situation at any stage T < 4pn. We now show that the
algorithm must stop after at most 2pn stages, assuming we have a
correct assumption on the cost of the optimal solution. The main
idea is to show that once a page i satisfies (6) and is added to Ji, its
weight cannot double too many times. (The assumption is from (7),
which will follow from (14).)

Lemma 3.6. Suppose g(zi(;i)t) < 1/n - g(opt). Then the total number
of stages is at most 2pn.

PRroOF. Suppose for the sake of contradiction that the algorithm
runs for more than 2pn stages. We consider the first T := 2pn
stages. The number of stages that end because of condition (6)
is at most n, since each time a page is moved from Js to Jr, and
no page can move in the other direction. For a stage s that ends

because of condition (5), there must be some page is € ]L(s) such

that (Vg(z(s) )i, =2- (Vg(z.(S)))iS; call this page responsible for

final init
such a stage s.

For sake of brevity, let J; denote the set ]L(TH). Forapagei € Jp,
let n; be the number of times it has been responsible for some stage
s ending due to condition (5). Then ;¢ j, ni > T — n. For each such
page i that is responsible at least once, let f; be the final stage s in
which it belonged to J, ), (Such a stage must exist, since a page is
responsible only if it belongs to Jr.) Now,

1
P - 9(Zfina1) (Z) (V9(Zfina1), Zfinal) = Z (V9(2final))i - (Zgzl)i

ie]

U . .
DS 2 vaai i S - glopy - Y2, (12)
i€ iej.

where inequality (1) uses that the gradient doubles each time the
page is responsible for the stage, and inequality (%) uses the def-
inition of f;, and the criterion (6) for a page to move from Js to
JL- Now, since the sum };c;, n; > T — n, the quantity ;¢ 2" is
minimized when all the n;’s are equal and |J; | = n, in which case it
is at least n - 27/7~1, Substituting this into (12), we get

9(zginal) = 27/ 1 - g(opt). (13)
The desired contradiction, i.e., T < 2pn, now follows from Corol-
lary 3.5. O

3.3.2 Bounding the Competitive Ratio. Finally, suppose

9(0pt) = max{{pn g(1).ng(z)}: (14
this is wlog (proof deferred to full version). Given that the total
number of stages T < 2pn, we can bound the competitive ratio of
the algorithm. (Note that assumption follows from (14).)

THEOREM 3.7 (CosT). Given g(zi(;i)t) < 1n - g(opt), the total cost
of the algorithm is at most

(c1p) (2cpa)? - g(opt) + {pn - g(1),

STOC 25, June 23-27, 2025, Prague, Czechia

for some {p n that depends only on p and n, and not on the sequence.

4 Randomized Algorithm for Convex Paging

In this section, we give a randomized online algorithm for the con-
vex paging problem. Ideally, we would like to adapt the algorithm
presented in Section 3 with the deterministic weighted paging al-
gorithm A replaced by the randomized one B, the latter having
(expected) competitive ratio f. However, there are several issues in
this direct approach:

e Each stage now uses a randomized algorithm, and hence, the
start time of a stage depends on the coin tosses of the prior
stages. Hence, we cannot argue that the expected weighted
paging cost in this stage is at most f times the optimal
weighted paging cost of this stage (because we can make
such statements only for fixed times).

o Since the number of stages can be Q(n), it is possible that in
some stage the algorithm B incurs a large weighted paging
cost, say Q(fn) times the optimal cost in this stage. It is
difficult to directly bound the cost incurred in such stages.

o Unlike the deterministic setting, the number of stages need

not be O(pn).

We address the above issues as follows: (i) We explicitly ensure
that the weighted #; cost incurred in every stage is not too large
by adding a third condition (besides (5) and (6)) for ending a stage,
(i) we use martingale based tail bounds to show that with high
probability, the number of stages ending because of this third con-
dition cannot be too large, and finally, (iii) if the number of stages
becomes too large, we restart the algorithm on the remaining input.

We now describe the randomized algorithm. Its execution is
divided into phases. Each new phase runs the algorithm in Section 3
from scratch, i.e., it initializes the x and z variables, and runs on the
remaining input. The phase ends if the number of stages exceeds a
threshold T* which is O(fp?n).

We now give the details of any phase. For ease of notation, we
describe the first phase — every other phase is identical, the only
difference being the start times. Since the intuition for these steps
remains same as that in Section 3.2, we only give the technical
details for every step.

4.1 Algorithm

We maintain the page eviction vector x and an auxiliary vector z
which is roughly ¢ - x. Here ¢ = 1/cpB, where ¢ is a large enough
constant. These variables are re-initialized at the beginning of every
phase; the actual page eviction vector across all phases is only
computed at the end as the sum of page eviction vectors in each
phase. Our algorithm uses an additional constant c; satisfying

c1>c> 1. (15)

We now set a limit T* := ¢ p?fn on the number of stages in a phase.

(1) Asin the deterministic setting, the pages are partitioned into
two sets J; and Js; all pages are in Js initially. The vector x is

o 1 .
initialized as Xi(ni)t := 1 - 1 with the parameter = 2c1py,T",
and the vector z is initialized as ¢ - x.

(2) The input is divided into stages, where stage 1 begins at the
first timestep of the phase. Let zi(;i)t denote the vector z at
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the beginning of the stage s. Define the weight wi(s)

i for stage s to be:

of page

= (Vg2 ). (16)

Within the stage, we run the randomized algorithm B to
handle the input, with these page weights w( s) remaining
unchanged. Whenever a page i is evicted by B we add 1 to
x;. Again, z; is a scaled-down version of x; after an initial
lag. In other words, at any time during a phase s, the ideal
value of z; is

( (s)

1n1t

x5 =2, (17)

where A = 2¢1T*yy, is the lag parameter. We increase z;
continuously until it reaches this value, or the stage ends (as
explained in the next bullet point).

)i + & - max(0,x; —

(3) Let zf(‘ls)1 denote the vector z at the end of stage s, and let

Az denote zg )al - zl(m)t The stage s ends when one of the
conditions (5) or (6) used for the deterministic algorithm

hold, or if the following new condition holds:

ZW(S)((X(S) ~ a2 g(opt) (18)

ﬁnal init/?

We stop as soon as one of these conditions happen. As in
the deterministic algorithm (Section 3.2) we can assume that
if a stage ends due to either condition (5) or (6), then that
condition holds with equality. We cannot state the same
for the new condition (18), because x; variables change in
discrete unit-sized steps.’

(4) When the stage ends, we evict all pages from the cache and
start a new stage. To account for this last eviction for every
page, we add 1 to each x;, but keep z; unchanged. This incurs
a further discrepancy between x and z.

(5) Finally, the phase ends when the number of stages within
the phase exceeds the threshold T* (or the input ends).

4.2 Analysis

We analyze the first phase; the same arguments would hold for
subsequence phases. However, for any particular phase, we would
condition on the coin tosses used by B in the previous phases. This
would ensure that the start time of the current phase is determinis-
tic.

We begin by stating the analog of Claim 3.2 justifying adding
all the pages to Js at the beginning of the phase. The proof follows
exactly in the same manner as that of Claim 3.2.

Claim 4.1. Suppose g(zlmt) < 1/n - g(opt), then none of the pages
satisfy (6) initially. If a page satisfies (6) at some time, it continues to
do so from then onward.

Let Tq, T2, T3 be the number of stages which terminate because
of conditions (5), (6) and (18) respectively.

20One might wonder if this condition could also have been written in terms of z; vari-
ables, but the presence of the additive y,, term relating z; and x; makes it challenging
if we state this condition in terms of z;’s.
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4.2.1 Bounding g(z(T) ) in terms of T3. Next, we show that an up—

per bound on T3 would lead to the desired upper bound on g(zﬁ aI)

The intuition is that condition (18) ensures that z does not increase
alot in a single stage, and hence the overall increase can be bounded
in terms of the number of such stages. We first upper bound Az(®)
for a stage s.

Claim 4.2. For a stages, Y; wi(s) (Az0)); < @.

ProOF. Since x; changes in steps of +1, we know from (18) that
for any stage s,

(0 t)
2o (e = G < FE 4 Y™ (9)
i i
It follows from inequality (18) that if Az is positive, then (note
that A > 1)
Az®) < e(Ax®) - 1).

The desired result now follows from (19). O

The following claim bounds g(zf(‘lﬁ;l) in terms of Az(8) over all
stages s.

Claim 4.3. Assume g(z ) < 1/n- g(opt). Then

init

@) <23 w821y + (p+1/2) - g(opt)

s<T

< (—28 (T1n+ LE) + 2p) - g(opt).

ProoOF. By telescoping sum and convexity,

(T) (1) _ (s) (s)
9(z ﬁnal) —g(z 1n1t) - Z g(zﬁilal) _g(zir?it)

s<T
< Z(Vg(z;;)al),m“)).
s<T

(s)
ﬁnal)i <

Z(Vg(zl(;)t)l = 2wl~(s). For a page i, let f; be the last stage such that
(f)
i € Jg

In a stage s, if a page i € ]]Es), then (5) ensures that (Vg(z

. Then the r.h.s. above is at most

23w, a2+ 3 3 (Vg(a) ), Az

s<T i osiefg
<2 Z(w(s) Az®)) +Z(V9(Zt(£a1)) (Zt(ijzal)”
s<T

The first inequality in the claim now follows from condition (6) and
Claim 4.1.
Now, Claim 4.2 shows that

3w, 826 < €T - g(opt).

s<T "
The second inequality in the claim now follows from the fact that
T=T1+T,+T3and T» < n. m]

Now we upper bound T.

Lemma 4.4. Assume thatg(z ) < 1/n-g(opt). ThenTy < T3+2np.

init
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Proor. Consider a stage s that ends with (5). We know that there
is a page is € ]Ifs) such that (Vg(zf(i;)al))is =2- (Vg(zi(;i)t))is. Fora
page i, let n; be the number of times it appears as is for some stage

s. We know that Ty = }}; n;. For sake of brevity, let zg,, denote
2
final

For each page i, let f; be the final stage in which it appears as a

small page. Now,
P9ttt (é) (V9(inal): Zhnat) Z(Vg(zﬁnal))i . (Zéﬁzl)i
i
> Z 2ni(V9(Zé{1i;1)i . (zf(.lj;":l)i > p/n - g(opt) - Z oni.
Now, lCOnditioned on Y; n;j = T, the sum ); 2™ is lminimized when

each of the n;’s is equal to T; /n. Substituting this above, we get

g(zﬁnal) 2 2T1/n : g(opt).
Using Claim 4.3 we get
2T1/n < 2€(Tl + TS) +2np < Ti +T5 + 2np
n n

(20)

If Ty < 2np, there is nothing to prove. So assume T; > 2np. Then,

2li/n > o1y /n. Substituting in the above, we get the desired result.

]

Combining the above two results, we get:

Corollary 4.5. Assume thatg(zi(r}i)t) < /n-g(opt). Then g(zg;l) <

(% + 4p) - g(opt)

4.2.2 Defining good and bad stages. Corollary 4.5 shows that an

upper bound on T3 would lead to an upper bound on g(zgzﬂ). If the
optimal solution were also incurring high cost in stages ending with
condition (18), then we would be done. However, the algorithm B
is randomized and hence, it is possible that in some stages, it incurs
high cost whereas the optimal weighted paging cost in this stage is
small. The crux of the analysis in this section lies in showing that
such events are not frequent. Observe that we cannot use Markov’s
inequality on the expected cost incurred in a stage directly because
the time at which a stage ends is a random variable.

Let x denote the optimal solution to the convex paging instance

I. Here x; denotes the number of evictions of page i by this solution.

Let () denote the solution x at the beginning of stage s (of the
current phase). We now give a crucial definition:

Definition 4.6. We say that a stage s (in the current phase) is a
bad stage if it ends with condition (18) and

. 1 [g(opt) (s)
(w®, Ax®)y < vl el Z w! (21)
A stage is said to be good if it is not a bad stage.

We now show that a stage is good with constant probability. For
technical reasons, if T < T*, we add null stages at the end so that

there are exactly T* stages. These null stages are classified as good
stages.

Claim 4.7. Lets < T* be a stage (in the current phase). Condition
on the coin tosses (of B) in the first s — 1 stages. Then stage s is good
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with probability at least 3/4 (where the probability is over the coin
tosses of B in stage s).

PRrOOF. Let ts be the start time of stage s (which is deterministic
since we have conditioned on the first s — 1 stages). Consider the
weighted paging instance 1(5) obtained from the original request in-
stance I by considering requests from time t; onward (with weights
of pages given by w()). Let A() denote the rhs. of (21). Let t,
be the first time after #; such that (w(), Ax(®)) reaches A®) (if no
such time exists, then t, is the last time in the input sequence).

Consider running the algorithm B on 1(5) till time £, (without
worrying about whether any of the conditions for ending of a stage
gets satisfied). By definition of B, the expected weighted paging cost
during this stage if at most f - AG) 4 Yn 2 wl.(s). Using Markov’s
inequality, it follows that with probability at least 3/4, the total
weighted paging cost of B during [fs, t.] is at most

t
4ﬁA(S) + 4y, E wl.(s) = g_(op ).
- n
1

Assume that this event, call it &, happens. We now claim that stage s

must end beyond t,. Indeed, otherwise condition (18) is not satisfied,
and hence, stage s must be a good stage. O

As a corollary, we get

Corollary 4.8. Fix an integers, 1 < s < T*. Then the probability
that less than 0.6s of the first s stages are good is at most e~0:045,

Proor. We apply Azuma’s inequality (see e.g. [16]). For a stage s,
let Ys be the indicator random variable which is 1 if Ys is good. Then
Claim 4.7 shows that Zg := (Y7 +...+ Y5) —0.75s is a submartingale.
Therefore, using Azuma’s inequality,

Pr[Zs < —0.15s5] < e~ %045,

Thus, (Y1 + ...+ Ys) < 0.6s with probability at most %04, o

4.2.3 Bounding the number of stages. Let & denote the event that
among the first T* stages, at least 0.6T* are good. Corollary 4.8
shows that Pr[E] > 1—e™? (recall that T* > ¢’p for a large enough
constant ¢’). For rest of this section we assume that & happens
and g(zi(;i)t) < 1/n - g(opt). Our goal is to show that the algorithm
terminates in the current phase:

THEOREM 4.9. Assuming thatg(zi(;i)t) < 1/n-g(opt) and the event

& occurs, the current phase ends in less than T* stages.

We now prove this theorem. Suppose, for the sake of contradic-
tion, that the current phase runs till stage T* (i.e., all these stages
are non-null). Let Sg denote the set of good stages that end with

condition (18), and let Té] = |Sg |. We show that a constant fraction
of stages are in Sg :

Claim 4.10. T] > 0.05- T*.

Proor. The fact that event & occurs implies that
T) > 0.6T" = (T} + T) > 0.6T" — (T +n).

It follows from Lemma 4.4 that 2Ty < T* + 2np. The desired result
now follows from the above inequality and the fact that T* >
np. m|
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The definition of a stage in Sg implies that

S (), ax®)y > 2 Z(‘;Pt) LS S0, @)

sesy s<T* i
We first bound the LHS of the above inequality.
Claim 4.11. Y 7+ (w) Ax()y < 5¢T* - g(opt).

Proor. We have that
DT Az < (w5 T < (vg(al ), 2 TD)

s<T*

< g(opt) +p- g(zgaf )

4epT*
< (sz + L) - g(opt) < 5¢T* - g(opt),
n

where the first inequality follows from monotonicity of the weights,
the second inequality follows from Claim 3.1, the third inequality
follows from Corollary 4.5, and the last one follows from the fact
that T* = ¢ 8p®n > 5(cBp)pn = (5pn)/e (using (15)). O

The proof of the following technical result follows along the
same lines as that of Claim 3.3. (Since T* = ¢1p?fn, we do not need
any additional assumptions on T* here.)

Claim 4.12. For any page i,
(0 t)
PIRCRTET DRI AECRANEE
s<T* s<T*
We use this to bound the second term in the RHS of (22).
Corollary 4.13.
Z Z w; y < 2eT* - g(opt).
s<T* i

Proor. Using Claim 4.12, (19) and the fact that y, > 1, we see
that

(Cl - l) Z ZW Yn < g(opt) + g(opt) 27" 9(0Pt)

n
s<T* i

The desired result now follows from the fact that ¢; > c¢ (as
in (15)) and the definition of «. O

Substituting the results in Claim 4.11 and Corollary 4.13 in (22),

we see that
g

* T3 *
5¢T" > —— — 26T,
4fn
But this is a contradiction using Claim 4.10 and the fact that ¢ =

1/(cpn) for a large enough constant c. This proves Theorem 4.9.

4.24  Putting it together. Now we calculate the total cost incurred
during a phase.

Claim 4.14. Assume thatg(zmlt) < 1/2 - g(opt). Letx( ) be the
actual solution maintained by the algorithm at the end ofT* stages
in this phase. Then,

(O(pP))? - g(opt) + yp.n g(1),
for some yp n that depends only on p and n, and not on the sequence.
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Proor. It follows from (17) and the fact that we may count an
extra +1 for each x; at the end of each stage that

Xfinal < 1n1t + (1/e) - Zfinal + (A+2)T -1,
where the first term accounts for the initialization, the second term
captures that difference in scales between x and z, and the last term
accounts for the discrepancies due to the lag and the boundary
effects. Using our initial value for x = 51, the choice of &€ = 1/cpp,
and T* = ¢1fp°n, we get

Xfinal < (¢pf) * Zfinal + [chﬁpzn(/1 +2) +n]-1,

Y:Yp.n
Using Lemma 2.1, Corollary 3.5, and the definition of ¢, we get
g(xﬁnal) < (chﬁ)P g(zﬁnal) + (2},)17 g(l)
<(2cpP)P (4p + 4c1ep?) glopt) + (2)P g(1). O

Now suppose g(opt) > max{ypng(1), Zg(zlmt)} The above
claim shows that if x" denotes the solution produced during a
particular phase h, then g(x") is (O(fp))?. Now, if x> denotes

the solution produced till the end of phase h, i.e., x! +... +x" we
have

g(x=") < P ((g(x!) +...g(x™)) < B - (O(Bp))? - g(opt),

where we have used the fact that

h
sy = g ( xl+.;l.+x)

Ty o +xh
Shp.g(’%

The first inequality above follows from (2) and the last one follows
from the convexity and the monotonicity of g.

Theorem 4.9 shows that the probability of h phases is at most
e~"P_ Thus, we see that the expected cost of the solution is

h? »
D g (OBP)? -

h>1

) <P (g(x) +...+g(x").

g(opt) = (O(Bp))? - g(opt).

As in Section 3.2, we can remove the assumption that the al-
gorithm knows g(opt) and that there is a lower bound on g(opt).
(see the full version for details). This completes the proof of Theo-
rem 1.1.

5 Lower Bounds for Randomized Algorithms

In this section, we prove Theorem 1.2, that is restated here.

THEOREM 1.2 (RANDOMIZED LOWER BOUND). There exists a con-
stant C > 0 such that for any p < Clnn, any randomized algorithm
(that is even allowed to produce a fractional solution) for £,-norm
paging has an Q(plogk) competitive ratio against an optimal in-
teger solution. This result implies an Q(log nlog k) lower bound for
randomized min-max paging.

The Instance. The total number of pages is n and the cache size
is k, where n > (k + 1)%. We assume wlog that n = 2" - (k + 1) for
some integer r := lg 77, and that k is odd. The request sequence is
partitioned into r + 1 = Q(logn) epochs, indexed e = 0,1,2,...,r
In each epoch e, a subset A, of 7z pages is active and the rest of the
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pages are inactive. The set A, is defined recursively. In epoch 0, all
n pages are active; i.e., Ay is the set of all n pages. To define the set
Aeqq from the set A., we need to introduce the notion of blocks of
pages. The active pages in any epoch are (arbitrarily) partitioned
into blocks of k+1 pages each. Note that A, contains 2" ~¢ = m
blocks. We denote the bth block of the eth epoch by B,. For every
b, a uniform random subset of % pages from block B,y is added
to Ae41, i.e., these pages are active in epoch e + 1; the remaining
1%1 pages in block B, are inactive in epoch e + 1.

Next, we define the request sequence for the instance. The overall
request sequence is ordered by epochs e = 0,1,2,...,r and for a
fixed epoch e, by the blocks in A, in arbitrary order. Overloading
notation, we call the request sequence for an epoch of pages as an
epoch, and the request sequence for a block of pages as a block. We
now describe the requests in the bth block of the eth epoch. These
requests are entirely for pages in block B,; and are partitioned
into N phases. (Here N is a large number whose value we will
make precise later.) Morally, we would like each phase to comprise
a minimal sequence of requests spanning all the k + 1 distinct
pages in block B, (similar to the usual definition of a phase for
the standard caching problem). For technical reasons, we need to
modify this definition slightly. We define a phase as the minimal
sequence of requests that contains all the % pages from block
Bep \ Ae+1. In other words, the phase ends when we have seen at
least one request for every pages in block By, that is not active in
the next epoch. Finally, we generate each individual request in a
phase by choosing a page in block B, uniformly at random.

The procedure for generating this input request sequence is
described formally in Algorithm 1. For each block B, during an
epoch e, we select a random subset A, of size |B,p|/2 (line 1.9),
which we call the static pages of B, because they will be passed
on to the next epoch (and therefore A¢41 < UpA,p. The rest of the
pages, i.e., Bgp \ Agp, are called dynamic pages (of this epoch). This
completes the description of the input sequence.

We now give an overview of the lower bound analysis for the
random input sequence generated using Algorithm 1. The formal
details of the analysis are deferred to the full version.

Optimal Solution. The benchmark solution (we call it the op-
timal solution) is defined via two rules. The first rule is about the
static pages A.p, of a block B,j. Note that these pages shall be re-
quested in later epochs. For any page i € A, it stays in the cache
for the entire duration of the (requests in) block B,j,. Thus, these
pages are evicted only once in epoch e. Since |A.p| = (k+1)/2, the
remaining (k—1)/2 slots in the cache are available for the dynamic
pages during this block.

The second rule is about managing the dynamic pages Bep, \ Aep
to serve all the page requests in the sequence corresponding to
the block B,p,. For each phase Hy in this block, we ensure that the
first (k—1)/2 pages requested in this phase are in the cache at the
beginning of phase H,. The last page request in Hy causes a page
eviction. Thus, there is only page eviction in each phase. However,
one needs to be careful about which page to evict at the end of
each phase. Indeed, we may be dealing with the £, metric and
evicting the same page at the end of each phase could lead to high
fo eviction cost. We show that a carefully designed round-robin
eviction scheme ensures that each active page in a block By, is
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Algorithm 1: GenerateRequestSequence(k, n).

11 Input: Cache size k and total number of pages n. Assume n
is of the form 2" (k + 1).

12 Set Ag < [n]. (Active Pages)
13 fore=0,...,r do
14 (Generate request sequence for epoch e)
15 Partition A into re := 2"~ ¢ blocks, each of size k + 1.
16 Let the blocks be Bey, . . ., Ber, .
17 forb=1,...,re. do
18 (Generate request sequence for block b in epoch e)
19 Agp « random subset of size ]%1 from B,y
110 fort=1,...,Ndo
111 (Generate request sequence for phase ¢ in this
block)
112 repeat
113 ‘ Request a randomly chosen page from B,y,.
114 until all the pages in B,p, \ Ap have been
requested at least once during this phase.
115 Aes1 — UpAgp (Active pages for next epoch)

evicted O(N/k) times with high probability during the N phases
of this block. Since each page appears as an active page in only the
last epoch where it is active, this shows that with high probability,
each page is evicted O(N/k + r) = O(N/k) times. Formally, we
show (in the full version):

Claim 5.1. Let X; be the random variable denoting the number
of evictions of page i in the solution constructed by the adversary
as above. Then E[max; X;] = O(N/k). Further, for any p < logn,
E[(X; X[)!/P] = n!lP - O(N/K).

A Deterministic (Fractional) Algorithm’s Solution. Fix any
deterministic (fractional) algorithm A. Consider a block B, in an
epoch e. By standard coupon collector arguments, each phase Hp in
this block has Q(k log k) page requests with high probability. Since
each request in Hy selects a random page from B,p,, which has (k+1)
pages, the algorithm incurs eviction cost of ﬁ in expectation for
each request. Let X, (i) denote the number of evictions of a page i in
epoch e. Then (1/|Ac]) - Xica, E[Xe ()] = Q((N/k) logk). Since
the sets A, are randomly selected, the expected eviction cost on a
random page in A, is Q(e(N/k) log k). Using this, we show (in the
full version):

Claim 5.2. Let X; be the evictions incurred by page i in algorithm ‘A
on the instance given in Algorithm 1. Then, E[max; X (i)] = (N /k) -
Q(lognlog k) and E[(X;(X(1))P)/P] = nllP - (N/k) - Q(plogk).

Combining Claim 5.2 and Claim 5.1, we get Theorem 1.2.

6 Closing Remarks

In this paper we showed how to reduce convex paging problems
(for a wide class of convex functions) to weighted (linear) paging
problems, for both randomized and deterministic settings, and also
for integer as well as fractional optimization. A crucial aspect of
our work is the black-box nature of the reduction, so that we can
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take algorithms for the well-studied linear cases and lift them to
the convex case, without having to reinvent the wheel (e.g., the
clever rounding approaches known in linear settings). This allows
us to give tight algorithms for min-max paging and £,-norm paging,
thereby closing gaps in results given by previous works.

Our work suggests several interesting future directions. Can
we extend these techniques and/or results to other classes of on-
line covering problems? The analogous paradigm for fractional
problems — obtaining online algorithms to covering programs with
non-linear convex objectives by employing a local linear approx-
imation - has been applied to a broad class of problems such as
mixed linear programming, fp-norm set cover, machine activation,
fp-norm scheduling, capacitated facility location, and more [3]. In
fact, the same framework is also useful for appropriately defined
dual online packing problems such as variants of social welfare
maximization. Can we extend our algorithmic paradigm to obtain
new algorithms for integral online covering problems in other do-
mains beyond caching? What kinds of results can be obtained for
integral online packing problems using this framework?
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