
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Opportunistic Data Flow Integrity for
Real-time Cyber-physical Systems Using
Worst Case Execution Time Reservation

Yujie Wang, Ao Li, Jinwen Wang, Sanjoy Baruah, and
Ning Zhang, Washington University in St. Louis

https://www.usenix.org/conference/usenixsecurity24/presentation/wang-yujie

Opportunistic Data Flow Integrity for Real-time Cyber-physical Systems Using
Worst Case Execution Time Reservation

Yujie Wang, Ao Li, Jinwen Wang, Sanjoy Baruah, Ning Zhang
Washington University in St. Louis

Abstract
With the proliferation of safety-critical real-time systems in
our daily life, it is imperative that their security is protected
to guarantee their functionalities. To this end, one of the most
powerful modern security primitives is the enforcement of
data flow integrity. However, the run-time overhead can be
prohibitive for real-time cyber-physical systems. On the other
hand, due to strong safety requirements on such real-time
cyber-physical systems, platforms are often designed with
enough reservation such that the system remains real-time
even if it is experiencing the worst-case execution time. We
conducted a measurement study on eight popular CPS systems
and found the worst-case execution time is often at least five
times the average run time.

In this paper, we propose opportunistic data flow integrity,
OP-DFI, that takes advantage of the system reservation to
enforce data flow integrity to the CPS software. To avoid im-
pacting the real-time property, OP-DFI tackles the challenge
of slack estimation and run-time policy swapping to take
advantage of the extra time in the system opportunistically.
To ensure the security protection remains coherent, OP-DFI
leverages in-line reference monitors and hardware-assisted
features to perform dynamic fine-grained sandboxing. We
evaluated OP-DFI on eight real-time CPS. With a worst-case
execution time overhead of 2.7%, OP-DFI effectively per-
forms DFI checking on 95.5% of all memory operations and
99.3% of safety-critical control-related memory operations
on average.

1 Introduction

Real-time embedded systems play a critical role in modern
society, as they are used to control and monitor various safety-
critical processes, such as air traffic control, medical oper-
ations, and autonomous driving. Besides real-time respon-
siveness, security of these systems is also essential for safety,
where it is widely acknowledged that there is no safety with-
out security [46].

However, due to the constraints on processor speed, the
trade-off between performance and security has been a major
obstacle in embedded system designs. As a result, to maintain
form factor and low cost, security overhead often has to be
very small [65]. Overhead from data flow integrity (DFI)
ranges from 100% to 200% is often considered prohibitive
for most real-time embedded systems.

Real-time Scheduling and Security Opportunities: While
there will always be a trade-off between security and perfor-
mance, there are unique properties in real-time cyber-physical
systems offering new opportunities. One key observation
comes from the difference between the average execution
time and the worst-case execution time (WCET). In real-time
systems, the most important property is that all tasks need
to complete in a timely manner with no task exceeding its
deadline, since there is risk in physical world consequences
(such as a plane crashing or a collision with pedestrians). In
order to ensure this property, real-time system designers per-
form schedulability analysis using the WCET of the tasks
to ensure all the tasks can complete even in the worst case.
However, as the worst case is rare most of the time, the typical
runtime of a task is significantly less than its WCET. In our
preliminary analysis of eight CPS platforms, the worst case
is more than five times of the average case for many tasks.
Such difference is often referred to as slack in real-time sys-
tem literature. As a result, after the real-time task finishes its
execution, the system often remains idle. Recognizing this
opportunity, existing work has explored utilizing such time
for additional system checks [25,41] or additional non-critical
tasks in mix-criticality systems [36].

OP-DFI: Building on top of the observation that slack opens
up new opportunities to improve system security opportunis-
tically, we propose OP-DFI, which takes advantage of slack
to perform data flow integrity checks. This allows the de-
ployment of computationally intensive data-flow integrity on
real-time embedded platforms without impacting the real-
time requirement. Different from existing works that leverage
opportunistic execution [25] to perform memory checksum

USENIX Association 33rd USENIX Security Symposium 6615

verification, the targeted security primitive dictates that OP-
DFI cannot wait till the task completion and has to be executed
as in-line reference monitors for data flow integrity, present-
ing a fundamentally different set of challenges to meet both
the real-time and security requirements.

Technical Challenges and Solutions: The challenges in OP-
DFI arise from the need to accurately estimate the amount of
slack, formulate a security policy leveraging such slack, and
enforce the security policy in runtime.

Challenge 1: Slack Estimation. The key idea behind our
slack estimation approach is to leverage program inputs and
contexts to eliminate infeasible worst-case execution path
(WCEP) for better estimation of slack. However, enumerating
all the paths to recalculate the new WCET imposes prohibitive
runtime overhead. To address this, path constraints and new
WCET are pre-computed and stored in a table. Yet the table
can be very large, imposing prohibitive memory overhead. To
tackle this, OP-DFI leverages only a small number of con-
straints at the cost of further under-approximation of slack. To
maximize the impact of the limited constraint evaluations, the
selection of constraints takes advantage of the predictable na-
ture of CPS and optimizes over the expected input distribution.
Furthermore, since slack estimation is under-approximated
to ensure real-time requirements are met, this may result in
a lack of computation time earlier in the task execution. To
tackle this issue, we make the observation that if critical data
is isolated, as long as it has not been written, it does not have
to be tracked. To minimize runtime overhead, OP-DFI makes
use of memory tag extension (MTE) in ARM hardware to
perform the hardware-enforced isolation to prevent arbitrary
data write, such that it remains possible to turn on DFI for
more of these variables. Three sandboxes are maintained, the
unprotected variables, the protected variables, and metadata.

Challenge 2: Translating Slack to Security Protection. Effec-
tive use of slack for data flow protection requires addressing
several technical problems. First, to maximize the security
protection of slack, the security policy has to balance between
the probability of memory access and the cyber-physical secu-
rity implications of the memory location to decide if it should
be included. At the same time, OP-DFI also has to ensure
that the constructed security policy does not violate real-time
constraints by estimating its impact to the worst-case execu-
tion time. Lastly, OP-DFI also has to ensure that the selected
data is indeed protected while leaving the rest of the program
unchecked. To tackle this, OP-DFI formulates two properties
of security coherence, from both spatial and temporal dimen-
sions. The properties are based on the observation that the
data corruption of protected variables can only be achieved
by either tampering with their dependencies or by modifying
them during the time window when they are not protected.

Challenge 3: Runtime Enforcement of Dynamic Policy. Due
to changes in security policy over data flow during runtime,
the reference monitor must adapt to new sets of data access

rules by using different in-line reference monitors. While
conceptually simple, implementing this in the system is very
challenging, as the security policy and its enforcement are
often accomplished via reference monitors in the form of
software instrumentation. Updating the policy would modify
the program instrumentation, or the reference monitor needs
to have sufficient logic to switch between different security
policies. Additionally, dynamically self-modifying the binary
is not only problematic from the security perspective but also
degrades performance due to cache coherence. To address
this problem, OP-DFI trades the space for performance. More
specifically, OP-DFI keeps different versions of the same
code logic but with different levels of policy protection, and
dynamically switches to the code with the desired policy.
Evaluation and Outcome: We implement a prototype of OP-
DFI to enforce opportunistic DFI on the AArch64 platform.
The prototype includes a slack analyzer for input-based slack
estimation, a library for runtime enforcement, a customized
compiler for automatic program instrumentation, and an opti-
mization engine for optimal security policy generation. We
evaluate the prototype on eight real-time CPS platforms. Com-
pared to regular DFI with 184% WCET expansion, OP-DFI
with 2.7% overhead can effectively perform DFI checking on
95.5% of all memory operations and 99.3% of safety-critical
control-related memory operations on average. In summary,
our contributions are:

• We propose a new security primitive, opportunistic DFI,
capable of enforcing data-flow integrity by taking advan-
tage of processor reservation for meeting the worst-case
execution time of tasks.

• We tackle several technical challenges to design oppor-
tunistic DFI, including runtime estimation of slack, bal-
ancing security and real-time in slack utilization, as well
as runtime enforcement of dynamic policy.

• We implement a prototype1 and evaluate it on eight real-
time CPS platforms to demonstrate its effectiveness.

2 Background

2.1 Real-time System
Real-time systems execute tasks with precise timing con-
straints [59–61]. In real-time CPSs [63], tasks are often re-
curring or periodic workloads, each instance of which must
complete by a deadline, after which a delayed control sig-
nal may cause catastrophic results (e.g., a self-driving car
crash). A formal guarantee of timeliness is achieved through
schedulability analysis, which determines whether each in-
stance of every task can complete within its deadline on the
target system.

1Source code is available at https://github.com/WUSTL-CSPL/OP-DFI

6616 33rd USENIX Security Symposium USENIX Association

WCET

Opportunity: Slack

Figure 1: Opportunity in WCET reservation.

To this end, each task’s workload is characterized according
to its worst-case execution time (WCET). Because program
execution paths may be input-dependent [37], a common
approach to measuring WCET involves statically unrolling
loops to derive the longest execution paths [42]. In combina-
tion with low-level timing data for basic blocks or functions,
each path’s execution time may be characterized. The path
with the longest execution time, or worst-case execution path
(WCEP), defines the WCET. Analysis techniques, such as
utilization bound tests [39] and response time analysis [31],
can then be used to determine the schedulability of a complete
task system under the assumption of worst-case execution.

However, individual instances of a task often execute for
less than the WCET. This discrepancy is referred to as dy-
namic slack. It can be regarded as the extra computational
resource remaining after executing a task instance and can be
used on other computations such as security checking [41].

2.2 Software Security

Data Flow Integrity: DFI aims to check whether loaded
data is only modified by expected instructions at runtime [18].
Specifically, a software-based DFI mechanism instruments
a program to taint bytes written to memory with the corre-
sponding store instruction’s ID assigned during compile time.
Before any data is loaded from memory at runtime, the ref-
erence monitor checks whether the data has been modified
by the set of expected instructions, which is obtained through
compile-time static analysis.
ARM Memory Tag Extension: ARM Memory Tagging
Extension (MTE) [1] is introduced by ARM on the AArch64
platform to provide defense against attacks that try to subvert
code to process malicious data. MTE introduces two kinds
of 4-bit value tags: address and memory. An address tag is
stored at the top of each pointer. A memory tag is associated
with every 16-byte memory region. The address and memory
tags will be verified every time an instruction loads or stores
data. If two tags are mismatched, a hardware fault will be
triggered. Current Linux kernels support configuring whether
MTE is enabled on a specific region of memory [2]. MTE also
offers user-space instructions for manipulating memory tags.
For instance, the instruction STGP is a variant of the regular
store instruction STR. Unlike STR, STGP stores both the tag
and data in memory.
ARM Branch Target Identification: Branch target identi-
fication (BTI) aims to mitigate jump-oriented programming

Table 1: WCET reservation on real-time systems
Type Platform Hw Task #

Traces
Ratio (%)

(Ave. / WCET)

Drone
PX4 [45] A53 altitute control 1M 13% (36/275 us)

navigate 1M 15% (22/141 ms)

Ardupilot [9] A53 throttle loop 1M 7.8% (4.0/52.4 us)
bearing update 1M 5.1% (2.2/43 us)

AV

Turtlebot [53] A72 laser receive 100K 5.3%(10/187 ms)
dwa planning 100K 39% (402/1016 ms)

Autoware [33] A78 path planning 100K 3.2% (90/2736 ms)
mission planning 1M 9.9% (28/281 us)

Jackal [30] A78 laser handle 1M 14% (109/778 us)
odometry handle 1M 8.4% (4.6/54.6 ms)

Robot

OpenMani. [48] A53 trajectory make 3K 28% (4.1/14.2 ms)
main control 1M 21% (15/70 ms)

Unitree [54] A57 fsm control 1M 22% (835/3697 us)
trottling control 1M 13% (209/1512 us)

OP3 [48] A57 walking control 1M 17% (2.8/15.8 ms)
head control 1M 1.7% (92/5259 us)

(JOP) attacks [5]. With BTI, the targets of indirect branch in-
structions are enforced to be designated locations, such as the
beginning of functions. Therefore, BTI can also be regarded
as an efficient but coarse-grained control flow integrity (CFI).

3 Motivation

Overhead of Direct Application of DFI: DFI is one of the
most powerful tools to defend against advanced attacks, such
as data-oriented attacks [17,19]. However, existing DFI imple-
mentations often impose an average overhead ranging from
100% to 200% to the program runtime [13, 18]. As a matter
of fact, on the eight CPS platforms we studied, DFI leads to
an average WCET increase of 184%. To provide a concrete
example, throttle loop is a safety-critical real-time task within
Ardupilot, where full DFI leads to runtime expansion of 125%
for WCET. According to the task model from the Ardupilot
documentation, the system is no longer schedulable when the
overhead is greater than 44%.
Opportunity in Worst Case Execution Time Reservation:
While direct application of DFI incurs prohibitive runtime
overhead, the difference between WCET and average runtime
does provide unique opportunities. To gain a more quanti-
tative understanding of available slack in common safety-
critical tasks in existing CPS platforms, we have conducted a
measurement study over 16 real-time tasks supporting differ-
ent CPS functions (navigation, throttle, trajectory, and more)
selected from eight most widely studied CPS software across
three types of CPS platforms (including drones, autonomous
vehicles (AV), and robots) using four different types of pro-
cessors (ARM A53, A57, A72, and A78). Details of our eval-
uation setup can be found in Table 1.
Measurement Setup - For each CPS, we select officially re-
leased missions to initiate its execution. For drones and au-
tonomous vehicles, the missions involve following a prede-
fined trajectory. For robots, their missions consist of a series
of actions, such as standing up, walking, turning around, etc.
More details about the concrete set of missions can be found
in Appendix C.1. During these missions, we record the ex-

USENIX Association 33rd USENIX Security Symposium 6617

ecution time of two critical tasks. Most tasks are measured
and calculated over 1 million loops. Four tasks have fewer
traces due to their relatively low task release frequency. The
WCET is obtained via aiT TimeWeaver [6], a state-of-the-art
timing analysis tool used in the industry. To obtain the WCET
of a task, aiT TimeWeaver first unrolls the task’s control-flow
graph (CFG) into paths based on loop bound information. The
tool then leverages Arm CoreSight debugging feature to pro-
file the fine-grained execution time of individual basic blocks.
Based on these fragmented timing profiles, it calculates the
execution time of the longest path and reports it as WCET.
Observations - As shown in Table 1, the average execution
time for different tasks ranges from 1.7% to 39% of WCET,
with an average runtime of just 13.9% of the WCET. To un-
derstand this from a statistical perspective, Figure 1 shows the
distribution of the percentage of task execution time in rela-
tion to task WCET. As shown in the figure, 90% of execution
time is less than 20% of the WCET. As a result, for a large
percentage of the executions, there are ample opportunities to
leverage slack to improve the security of the system.

DFG

Yes

Online Adjustment

Insufficient time budget?

Reduce protection coverage

Figure 2: Workflow of opportunistic DFI.

Opportunistic DFI: Due to the large difference between
WCET and the average runtime, it leaves a surplus of re-
served time in most execution iterations, i.e., slack. However,
direct application of existing data flow security primitives also
leads to expansion of WCET. To capitalize on this opportu-
nity, we propose a new security primitive, opportunistic DFI,
which deploys DFI to perform data-flow checking whenever
there is slack. Figure 2 shows the workflow of opportunistic
DFI. Specifically, in-line reference monitors, which DFI uses
for security checking, are deployed only on a portion of the
program such that only a portion of data flows are checked.
During execution, slack is monitored to adjust the coverage
of DFI. For instance, if the slack is insufficient for the current
DFI deployment, it reduces the amount of data flow to check.
While the idea is simple, the design has to balance two re-
quirements, timing and security respectively. From a timing
perspective, WCET has to remain unaltered. From a security
perspective, protection over the data has to be sound when
only applied opportunistically over a subset of it. Details of
the design are presented in Section 5.

4 Threat Model and System Goal

Threat Model: In this work, we focus on preventing memory
corruption, therefore, we follow the common threat model

of other DFI works [13, 18, 50, 51], trying to defend against
data-oriented attacks [4, 26, 27, 29]. We assume there exists
a memory corruption bug in the application software that
can be exploited by attackers to read and write memory ar-
bitrarily [3]. Consistent with other works [13, 18, 50, 51], we
assume that code injection is prevented using existing mem-
ory protection technology such as MMU or MPU, therefore
instrumentation cannot be tampered by the attacker. We also
make the assumption that it is possible to prevent the instru-
mentation from being bypassed. This can be realized using
software-based CFI implementations [34, 55] or hardware-
based methods, such as the BTI feature in ARM [5]. Our de-
sign assumes that it’s possible to sandbox the program. This
sandboxing can be implemented using software-based fault
isolation [57] or hardware-based mechanisms, such as ARM
MTE [1]. Our implementation leverages the hardware fea-
tures, ARM BTI and MTE, to enhance efficiency. Additional
discussions on how to realize the CFI and sandboxing using a
software-only approach are available in Section 11. Although
the combination of CFI and sandboxing, such as BTI and
MTE, provides powerful protection, the limited granularity
of the sandbox still exposes a non-trivial attack surface for
data-oriented attacks [44]. Our focus is memory-corruption-
based attacks, therefore, hardware attacks [22], side-channel
attacks [64], and performance interference attacks [38] are
out of our scope. In this work, we focus exclusively on appli-
cation security, assuming that all privileged software stacks,
including the OS, hypervisor, and device firmware, are trusted.
Lastly, though DFI is capable of preventing all illegal data

flow (i.e data flows that do not follow the known DFG), the
goal of OP-DFI is to provide as much data flow protection
as possible without violating the real-time constraints, where
the quantification of protection can take the form of either the
number of read/write instructions or the number of critical
variables or memory addresses.

5 OP-DFI Design

While the idea of utilizing slack for security is attractive,
making use of such time without impacting the real-time
system presents several unique challenges, from estimating
the available slack during the execution of the program, to how
to apply the slack to ensure data-flow integrity for critical data
while maintaining the policy coherence. The system overview
is shown in Figure 3.

5.1 On-the-fly Slack Estimation
Slack is defined by the difference between the time it takes to
execute a task and its WCET. Such slack is easy to calculate
upon the completion of the task, but it is impossible to obtain
prior to the completion of the task. On the other hand, to
make use of the time for security, the necessary condition is
to have an under-approximation of the slack available, such

6618 33rd USENIX Security Symposium USENIX Association

Dynamic Runtime EnforcementApplication Source Code
Policy Optimization

On-the-fly Slack
Estimation

Slack Modeling

Data-flow Integrity
using Slack

Security Coherence
Runtime Slack Estimation Dependency Period

Policy

Dynamic Code
Switching

Input/context-dependent Slack Formulation

Data operation Checked data operationData flow

Real-time Constraint

Protected Region

Context Input

Constraint
Selection

Input-context
to Slack

Real-time
Constraint

Security
Coherence

With Constraints

Objective

Maximizing Protection
Coverage

Code Version

Unprotected Region

Dynamic Sandboxing

Data-flow
Checking

Code
Switching

In
st

ru
m

en
ta

tio
n

1 2
4

3

Security Policy

Policy

Figure 3: OP-DFI system overview.

that the system timeliness will not be impacted. To do so, we
build on top of the observation that the execution time of a
task depends on the program inputs (including sensor inputs,
external messages, and program memory), assuming perfor-
mance interference from other processes in the system has
already been taken into consideration for the timing profile in
the original design. While a subset of inputs are known at the
start of the task (referred to as input), others will only become
available during the execution of the program (referred to as
context). The key idea behind run-time slack estimation in
OP-DFI is that with the input and the known subset of context,
then it is possible to prove some of the program paths to be
infeasible. If the original WCEP happens to be in the set of
infeasible paths, then WCET can be updated to provide a
better estimate of the slack.

From Input-context to Slack: OP-DFI first employs sym-
bolic execution to gather symbolic formulas for path con-
straints (i.e., branch conditions on paths). A subset of the
formulas are computed at runtime using both the input and
the known subset of context. The result is then considered as
an estimate of the execution state. Since the collected formula
might only be partially evaluated due to missing context, it is
recalculated when more context becomes available, enabling
a more accurate state estimation. With the estimated state as
an index, the corresponding slack can be looked up from a
pre-computed table, which is generated using Algorithm 1.
Specifically, for an estimated state, Algorithm 1 checks the
feasibility of all paths in the order from longest to shortest,
continuing until it encounters a path that cannot be negated.
The corresponding slack of that path is then taken as the esti-
mated slack. This estimated slack is an under-approximation
of the slack under the current state, as proved in Appendix A.1.

Constraint Selection: Conceptually, contexts can be used to
prove that certain paths are infeasible, leading to a better esti-
mate of slack. Therefore, a naive approach would be to insert
checkpoints for new slack estimation at every single memory
update relevant to the constraint formula. However, directly
evaluating the full constraints over all paths incurs signifi-
cant runtime overhead. An alternative is to encode them into
lookup tables, but such a design leads to significant memory
overhead and still incurs a non-trivial computational overhead

Algorithm 1: Parametric Estimation of Slack
Input: S! // constraints eval results

Output: B // Worst-case slack estimate

// From long to short path

foreach pi in Sort({p1, p2, ...}) do
if Infea(pi,S!) then

continue // Path eliminated

else
return WCET → ti // Path’s slack estimate

Note: S!: { (∀0 : r0), (∀1 : r1), ... }, where ri is the evaluation result
for symbolic formula of branch constraints ∀i, and can be true,
false or unknown (for missing context). In f ea(p, S!): true if the
path condition of p violates S!.

to calculate the table index from memory contexts. As a re-
sult, only a subset of constraints can be used. This leads to
the problem of which subset should be selected will offer the
higher probability of obtaining a better estimate of slack.

A straightforward method to balance overhead is to ran-
domly select a limited number of constraints. However, not
all constraints are equally effective. Given that the inputs for
CPS typically follow specific distributions, certain path con-
straints are more frequently effective for path elimination in
Algorithm 1. Based on this observation, we employ dynamic
profiling to capture the mission-level CPS input distributions,
which guides the optimization engine in selecting the con-
straints that are most effective for the most commonly appear-
ing inputs. The details of the optimization formulation are in
Section 5.4. Using this set of constraints, the expected gain
in the bounds of slack is optimized over the expected input
distribution. This, also in turn, enables more fine-grained code
switching and enhances protection. Empirical measurements
from our evaluation in Section 8.2 show the proposed method
improves slack estimation accuracy by 15.3% on average.

5.2 Data-flow Integrity using Slack

Once an under-approximation of the slack is obtained, it is
important to consider how this slack can be used for security.
Unlike the conventional data-flow integrity, due to the limited
slack, only part of the system can be protected (referred to as

USENIX Association 33rd USENIX Security Symposium 6619

the protection region and denoted by #). Yet this leads to three
challenges: 1) From the perspective of security policy, how
to select which memory access instructions to instrument, 2)
From the timeliness perspective, how to ensure the computa-
tional cost of the protection remains within the available slack,
and 3) From the perspective of coherency for the protection,
how to ensure that the selected data is indeed protected while
leaving the rest of the program unchecked?
Security Policy: OP-DFI adopts a security policy ∃ to select
the protection target at runtime. The form of ∃ is a mapping
function that outputs a set of checked memory operations,
#, based on the estimated execution state S!. This state is
calculated using the current input and context, as discussed
in Section 5.1. In synthesizing such a policy, there are two
factors that govern the selection of memory operations. The
first factor is variable usage. Variables not expected to be ac-
cessed before the next slack estimation checkpoint are directly
included since they do not impact on runtime cost under nor-
mal conditions. For variables with uncertain usage, OP-DFI
estimates access probability based on input data distribution
and prioritizes the variables with higher probabilities. The
second factor considers the importance of a variable’s secu-
rity implications, which can be derived from both cyber and
physical perspectives. From the cyber aspect, variables that
are more depended upon by other variables may be prioritized
due to their broader impact. Regarding the physical aspect,
variables associated with critical physical meanings could
be prioritized. For example, control variables essential to the
cyber-physical loop may receive higher priority for protec-
tion. To facilitate the selection from physical aspect, OP-DFI
enables users to define policies that specify the criticality of
variables. These factors are incorporated as weights in the
synthesis of the security policy ∃, details of which will be
provided in Section 5.4.
Real-time Constraint: OP-DFI imposes the constraint that,
for every possible estimated state S!, the computational cost
of the checked memory operations must not exceed its esti-
mated slack. Formally, the constraint is:

↑S!,%(S!,∃)↓ B(S!) (1)

where B(S!) is the slack estimate obtained in Section 5.1.
%(S!,∃) represents the runtime cost of the checked mem-
ory operations, which is overestimated using the highest cost
among all potential paths for the estimated state S!.

For each individual potential path associated with the es-
timated state S!, we quantify the runtime cost induced by a
security policy in terms of the number of instructions added to
the execution path by the policy. Given the security policy can
be updated at each slack estimation checkpoint, the runtime
cost of the security policy can be different between different
checkpoints. To address this, OP-DFI divides the paths into
subpaths at each slack estimation checkpoint and individu-
ally quantifies their runtime costs. The detailed derivation of
%(S!,∃) is discussed in Appendix A.2.

Data Physical Memory Page

MTE-off Read-only Shadow Data Virtual Memory Page Type II

 MTE-on Read-write Shadow Data Virtual Memory Page Type I
Protected Tag

Unprotected Tag
Virtual Address Physical Address
Virtual Address Physical Address

RD P.D ①
WR UP.D ①
WR P.D ①

Protected

Ap
p

Co
de

s

RD P.D ②

WR UP.D ①
RD UP.D ②

Unprotected

RD: Read, WR: Write, P.D: Protected Data, UP.D: Unprotected Data
RD/WR instructions’ address operands are masked to one of two virtual pages

Figure 4: Dynamic sandboxing.

Security Coherence: Recognizing that the data corruption of
protected variables can only be achieved by either tampering
with their dependencies or by modifying them during the time
window when they are not protected, there are two dimensions
of security coherence that the policy needs to guarantee. The
first dimension concerns the spatial aspect: given that attack-
ers can compromise data through its dependencies, it follows
that if a data item is included in the protected region, all its
data and control dependencies must also be included. The sec-
ond dimension focuses on the temporal aspect: given that the
protected region can change at slack estimation checkpoints
during runtime, attackers could exploit unprotected periods
to compromise data. Since predicting the timing of attacks is
challenging without additional security measures, effective
protection can only be maintained if a variable remains pro-
tected throughout the task loop. In other words, the protected
region can only shrink during runtime.

5.3 Dynamic Runtime Enforcement
As the protected region is consistently updated at slack es-
timation checkpoints, this leads to two challenges: 1) How
to change the policy enforcement mechanism in the code in-
strumentation, since data-flow checking is generally enforced
by in-line reference monitors via program instrumentation,
which is not mutable at runtime. 2) How to ensure the protec-
tion remains coherent when protection boundary changes.
Dynamic Code Switching: To adapt the security policy
at runtime, one direct method is to perform runtime binary
rewriting. However, this approach can significantly degrade
performance due to cache coherence issues. OP-DFI ad-
dresses this by maintaining multiple versions of code that
have the same logic but different levels of protection. It then
integrates a code-switching Reference Monitor (RM) into
each slack estimation checkpoint to enable real-time switch-
ing between these code versions. For the generation of mul-
tiple code versions, an intuitive approach would be to create
a unique code version for each estimated slack determined
in Section 5.1. However, maintaining such a large number
of code versions can lead to significant memory overhead.
To mitigate this, we limit the number of code versions. Fur-
thermore, when different code versions share the same code
regions, we leverage MMU with address alignment to share
these common code pages, reducing memory consumption.

To determine the switching target, the RM first re-evaluates
the constraint formula using the input and context, and then

6620 33rd USENIX Security Symposium USENIX Association

outputs the estimated state S!. Subsequently, S! is input into
the security policy, which results in the identification of the
transfer target. Conceptually, the target code version is usually
the one that can provide the highest level of protection within
the updated slack budget. Detailed implementation of code
switching RMs are in Section 6.
Dynamic Sandboxing: There are two requirements for the
second challenge. First, upon boundary changes, the protected
data should remain isolated from the unchecked memory oper-
ations. Second, the overhead on the boundary change process
is minimized.

Sandboxing is a natural solution for achieving the isolation,
but its static nature limits its applicability in our scenario.
To address this, we propose a novel dynamic sandboxing
approach, where the isolation boundary is dynamically ad-
justed based on changes in the protected region. However,
directly implementing dynamic sandboxing is problematic.
Traditional sandboxing relies on inline instruction masking to
sanitize addresses. Dynamic changes of the protection bound-
ary can incur prohibitive overhead, as they require moving
data between sandboxes, thereby violating the second require-
ment. To handle this issue, our system leverages ARM MTE
to facilitate access control. We assign distinct MTE tags to the
checked and unchecked code regions. Every time a memory
is modified, its memory tag is updated as the tag of the write
instruction. Thus, any unauthorized tag write on protected
data by unchecked code will eventually be detected during
checked read operations, as the stored memory tag is inconsis-
tent with the instruction tags. The advantages of ARM MTE
is its support for the STGP instruction, which allows data and
memory tags to be modified simultaneously. By replacing the
STR instruction with STGP, the need for additional instructions
to update memory tags upon protection boundary changes is
eliminated, thereby avoiding extra overhead.

Unfortunately, the use of ARM MTE introduces a new chal-
lenge: it indistinguishably prevents both read and write opera-
tions on protected data from unchecked code. This limitation
could disrupt the program’s normal execution, as unchecked
code may need to read the protected data. To mitigate this
issue, we introduce a second virtual page with MTE-off and
read-only privilege to enable access, as shown in Figure 4.
Lastly, to prevent unchecked write operators from updating
the metadata in MTE, an instrumentation is added to enforce
a known "unprotected" mask for all those memory write in-
structions.

5.4 Opportunistic DFI Policy Optimization
From the previous sections, the effectiveness of a security pol-
icy is influenced by various factors, including the formation of
protected memory operations, the choice of path constraints,
and the selection of code versions for different slack. Be-
sides, these factors are subject to multiple constraints, namely
real-time constraint, security coherence, and limitations on

memory impact. Our goal is to find a security policy that
maximizes our security objectives without violating any of
the three constraints. To achieve this, we naturally formulate
it as an optimization problem.
Security Objective: To quantify the security objectives
within the optimization framework, OP-DFI proposes a met-
ric called coverage score. A naive approach for calculating
this score is to simply count the number of checked memory
operations, treating all operations as if they were of equal
importance. As discussed in Section 5.2, the security implica-
tions of variables can vary, meaning that allocating more of the
time budget to more important variables could enhance over-
all security. Thus, OP-DFI introduces weights for variables to
indicate their importance. To identify such importance, sensi-
tivity analysis [10, 62] is a potentially promising solution. To
capture the difference in the importance, a weight is added to
each operation in the problem formulation. With the weights,
the protection coverage score C for a set of selected path con-
straints !s and policy ∃ is calculated as the weighted average
percentage of checked memory operations:

C (!s,∃) = &
x↔X

Pr(x)↗ (&
∋↔∃(S!(x))

w∋). (2)

Where x represents the input and context, Pr(x) is the dy-
namically profiled distribution of x, and S!(x) signifies the
execution state estimated using x. The variable w∋ represents
the importance weight assigned to a memory operation ∋
with &∋ w∋ = 1. By default, w∋ is set to 1

N , where N is the
total number of memory operations. Additionally, ∃(S!(x))
represents the final set of protected memory operations. It is
important to note that the simple formulation above captures
only memory operations but not how it relates to critical vari-
able or memory coverage, which is an important direction for
our future work.
Optimization: The optimization problem is formulated as
finding (!s,∃)↗ that maximizes C (!s,∃), subject to a set of
constraints on !s and ∃. These constraints consist of limita-
tions on the runtime and memory overhead imposed by !s
and ∃, as well as the requirements on ∃ for security coher-
ence. To solve the optimization problem, we employ a com-
bined approach that leverages the genetic algorithm for its
capability in solving non-linear problems, and mixed-integer
linear programming for its efficiency. More details on the
optimization problem formulation and solving can be found
in Appendix A.3 and B.1 respectively.

Even though our evaluation across eight platforms in Sec-
tion 8 didn’t yield any instances where the optimization pro-
duced a null policy, a policy protects no memory operations,
it remains possible that in extreme cases, the output policy is
null. For example, when all variables are mutually dependent,
a substantial amount of slack would be needed upfront to pro-
tect any individual variable due to its dependencies on others.
In these situations, no suitable policies would be available,
and OP-DFI would not offer any additional protection.

USENIX Association 33rd USENIX Security Symposium 6621

6 Implementation

A prototype of OP-DFI is built on AArch64, and the imple-
mentation mainly contains four parts, including slack analyzer,
code switching RM, program instrumentation, and optimiza-
tion engine. The policy optimization engine is described in
Appendix B.1 while others are described below.

Slack Analyzer: To compute path-level slack, timing anal-
ysis [24] is conducted. This involves several steps: First, dy-
namic analysis is used to profile the timing characteristics
of various basic blocks. Second, loops are unrolled based on
the bounds given in the schedulability analysis of the system.
Subsequently, path information and low-level timing data are
combined to calculate slack using the industrial-standard tim-
ing analysis tool, aiT TimeWeaver [32]. To obtain symbolic
formulas for constraints, we utilize a symbolic execution en-
gine based on KLEE [16]. Given that a threshold is set to
bound constraint evaluation cost, which also limits the com-
plexity of the constraint formula, the depth of symbolic exe-
cution is limited as well, thereby preventing path explosion.
With the chosen constraints, slack estimation checkpoints are
added at relevant variable updates. Given that the constraints
pertain to specific variable updates, each checkpoint uses an
update counter to differentiate between multiple updates for
the same variable.

Code Switching RM: For efficient determination of the
switching target, the switching rules, automatically gener-
ated by the optimization engine, are implemented as a pre-
computed lookup table, where the estimated execution state
is utilized as the index. Moreover, to prevent potential attack-
ers from exploiting the system by maliciously jumping to
code versions lacking protection, each code version is en-
closed within a compartment, achieved by aligning its code
addresses to ensure differences only exist in the high bits. A
register, which can only be updated by reference monitors,
is reserved to store the identifier of the current code version.
This identifier is used to conduct address masking on each
indirect branch, guaranteeing that the control flow remains
confined within the correct compartments at all times.

Program Instrumentation: To enforce hard-coded MTE
tags, masking instructions are inserted before both read and
write instructions. Similar to the optimization techniques used
in static sandboxing [49], repeated masking for registers used
in frequent memory accesses, such as stack accesses, can be
eliminated. To prevent attackers from directly jumping to
the middle of the instrumented code, a coarse-grained CFI
mechanism is employed as a fundamental security feature.
Specifically, ARM BTI instructions are inserted at each func-
tion entry and potential function return address. The return
address is further protected with a shadow stack, implemented
using a separate MTE tag. Additionally, all metadata is pro-
tected with a distinct MTE tag.

7 Case Study

Variable Set #3

Variable Set #2

Variable Set #1

yaw

void generate_attitude_setpoint (const Quatf &q, ...){
 const float yaw = Eulerf(q).psi();
 _man_yaw_sp = yaw;
 /* . . . */

// fly towards the direction of (roll, pitch)
 Vector2f v = Vector2f(_m_control_setpoint.roll *
 _man_tilt_max), _m_control_setpoint.pitch *
 _man_tilt_max);
 Quatf q_sp_rp = AxisAnglef(v(0), v(1), 0.f);
 /* . . . */
 //calculate how much the yaw changes
 const Quatf q_sp_yaw(cosf(_man_yaw_sp / 2.f), 0.f,
 0.f, sinf(_man_yaw_sp / 2.f));
 correctTiltSetpointForYawError(q_sp_rp, q, q_sp_yaw);
 /* . . . */}

q_sp_yaw

_m_control_setpoint.roll

_m_control_setpoint.pitch

q

_man_yaw_sp

_man_titlt_maxq_sp_rp

Listing 1: Code snippet of the case study.

In this case study, OP-DFI is applied to the CPS task al-
titude control of PX4 [45]. Listing 1 shows code snippets
taken from the altitude setpoint generation process in the
altitude controller, with irrelevant code omitted for simplic-
ity. This process involves a procedure to correct setpoints in
the presence of a yaw error. The correction procedure takes
three control variables: q_sp_rp (pure tilt quaternion that
needs correction), q (current attitude), and q_sp_yaw (pure
yaw quaternion). These variables are categorized into inclu-
sive/exclusive sets based on their dependencies, in accordance
with the security-coherence constraint. Subsequently, the opti-
mization engine generates the optimal policy to maximize the
quantified protection coverage score. The process of construct-
ing the coverage scores is accomplished through Sensitivity
Analysis [62]. The variables of configurations with the most
substantial influence are given priority for dynamic protection.
In our case, the control variable q_sp_rp in the altitude con-
troller is identified as more critical than the control variables
q_sp_yaw and q in the context of altitude setpoint corrections,
and it is highlighted in red in Listing 1. As a result, memory
operations on its dependent variables (set 1) are prioritized
for protection by assigning higher optimization weights (ten
times larger in our setting) than to other memory operations.
With OP-DFI deployed, it achieves a 94.2% protection cover-
age with just a 2.8% increase in WCET. Compared to regular
DFI, the WCET is reduced by 108%.

8 Evaluation

Our evaluation aims to answer the following questions: (1)
What is the system overhead and provided protection of OP-
DFI compared with full DFI? (Section 8.1) (2) What are the
factors affecting slack estimation? (Section 8.2) (3) What is
the trade-off between different code versions? (Section 8.3)
(4) How effective is OP-DFI when facing an adaptive at-
tacker? (Section 8.4).
Evaluation Setup:The evaluation is conducted on eight real-
time CPS platforms [9, 30, 33, 45, 48, 53, 54], as shown in
Table 2. Among the eight CPS, PX4, Ardupilot, Turtlebot, and
OpenManipulator are evaluated in real-world scenarios, while
the others are evaluated in simulation mode. We utilized all
eight platforms for the evaluation question (1) (Section 8.1),

6622 33rd USENIX Security Symposium USENIX Association

Table 2: Runtime performance of OP-DFI

CPS
Baseline (ms) System Runtime Overhead (%) Reduced

WCET
Coverage

Score
Protected
Ctr.Var.Average Runtime WCET Average Runtime WCET

w.o DFI w. full DFI w.o DFI w full DFI DF checking code switching sandboxing code swiching sandboxing
PX4 22 48 141 311 116 2.82 6.1 0.32 2.21 118.0% 0.98 99.8%

Ardupilot 0.004 0.007 0.052 0.117 76 6.3 4.2 0.66 1.98 123.2% 0.93 99.6%
Turtlebot 10 26 187 490 153 5.82 5.2 0.42 2.39 159.2% 0.95 98.5%
Autoware 90 440 2736 12941 383 8.31 7.3 0.22 3.09 369.7% 0.99 99.7%

Jackal 0.109 0.219 0.778 2.372 97 2.1 6.4 0.47 2.04 202.4% 0.95 99.3%
OpenMani. 15 33 70 173 117 1.93 5.6 0.28 2.28 144.6% 0.97 99.4%

Unitree 0.835 1.829 3.697 8.546 99 3.8 4.4 0.57 2.33 128.3% 0.92 98.9%
OP3 2.8 7.1 15.8 48.6 142 2.44 4.7 0.34 2.67 204.6% 0.95 99.3%

w: with, w.o: without, DF: Data Flow, Ctr.Var.: Control Variable

which focuses on macroscopic performance metrics. Subse-
quently, to answer the evaluation questions (2) - (4) (from
Section 8.2 to 8.4), we selected PX4, Turtlebot, and OpenMa-
nipulator. These platforms are selected for their real-world
settings and represent CPS platforms for drones, autonomous
vehicles, and robots, respectively. The evaluated tasks for
each CPS (in the order listed in Table 2) are navigate, throttle
loop, laser receive, path planning, laser handle, main control,
fsm control, and walking control. The evaluated hardware
is Cortex-A53 on Raspberry Pi 3 model B (PX4, Ardupilot,
OpenManipulator), Cortex-A57 on Jetson Nano (OP3, Uni-
tree), Cortex-A72 on Raspberry Pi 4 model B (Turtlebot) and
Cortex-A78 on Jetson AGX Orin (Autoware, Jackal). For se-
curity policy generation, we set the number of code versions,
the number of selected path constraints, and the threshold
for constraint evaluation cost to 6, 16, and 0.3% of WCET,
respectively. We prioritized the protection of control variable-
related memory operations by assigning them optimization
weights 10 times larger than others. However, for clarity in
presenting protection coverage within the program, the cov-
erage scores displayed in this section represent the average
percentage of checked memory operations. Moreover, due
to the lack of publicly available hardware for ARM MTE
and BTI, instruction analogs are employed to assess perfor-
mance. Regarding WCET measurement, we are utilizing the
aiT TimeWeaver [6], a timing analysis tool. Further details
regarding the instruction analogs and WCET measurement
can be found in Appendix C.1.

8.1 Comparison with Full DFI
To answer evaluation question (1), we measured the offered
protection and system overhead, including average runtime,
WCET, and memory overhead, under the CPS missions as
described in Table 7.

Baseline DFI: The baseline DFI [18] enforces inter-
procedure data-flow checking using a read-write table, write-
tainting, and read-checking instrumentation. Specifically, the
read-write table keeps an entry for each 4-byte word. Each
memory write is assigned a 2-byte label and is instrumented
to update the table entry with its label when writing, and the
memory read is instrumented to check if the memory content
has been written by a legitimate memory write according to
the result of static analysis.

Runtime Overhead: Both average and WCET overhead of
OP-DFI are measured and shown in Table 2.
Average Runtime Overhead - OP-DFI results in an average
runtime overhead of 157.5%, attributed to data-flow check-
ing (147.8%), code switching (4.19%), and dynamic sand-
boxing (5.4%). Among these factors, data-flow checking in
OP-DFI is comparable to full DFI (147.8% versus 155.3%)
and accounts for the most significant portion of the average
runtime overhead due to the abundantly available slack. The
dynamic code switching mechanism incurs a runtime cost
of 4.1%, attributable to the evaluation of constraint formulas,
tracking runtime context, and executing transitions between
code versions. Moreover, the overhead incurred by dynamic
sandboxing (5.4%) is comparable to static sandboxing, as
dynamic sandboxing only requires inserting an address mask-
ing instruction before memory operations, akin to certain
implementations of the static sandboxing approach.
WCET Overhead - Compared to full DFI, OP-DFI achieves
a 181% reduction in WCET overhead. WCET overhead is
attributed to the unavoidable code switching (0.4%) and sand-
boxing (2.3%) instrumentation on WCEP. Conversely, the
code instrumented for data-flow checking does not add to the
WCET of the original task due to the design of OP-DFI: it
only checks when slack is available. Code switching typically
induces less WCET overhead than sandboxing. This disparity
arises because the cost associated with constraint evaluation,
a phase of the code switching process, is restricted by a pre-
defined threshold (0.3% of WCET). In contrast, sandboxing
occurs with memory accesses on WCEP. Upon further inves-
tigation of code switching, the overhead of some instances
slightly exceeds the predefined threshold due to the added
complexity of context tracking. However, in Autoware and
OpenManipulator, the overhead stays below this threshold.
This can be ascribed to two factors: The selected constraints
can depend directly on inputs, lowering evaluation costs, and
some constraints undergo partial evaluation due to missing
runtime contexts on the WCEP.

Memory Overhead: Figure 5 shows the breakdown of mem-
ory overhead for each system component. Built on top of
baseline DFI, OP-DFI shares a common memory overhead
(approximately 50%) with baseline DFI due to the utiliza-
tion of read-write tables for taint tracking. Moreover, OP-
DFI introduces additional memory overhead ranging from
19.2% to 31.7% due to various factors, including code ver-

USENIX Association 33rd USENIX Security Symposium 6623

PX4

Ardupilot

Turtle
bot

Autoware
Jackal

OpenMani.

Unitre
e

OP3

60

80

M
e
m

o
r
y
 O

v
e
r
h
e
a
d
 (

%
)

DFI Code Version Sandboxing Other

Figure 5: Memory overhead breakdown.
Table 3: Context tracking for slack estimation accuracy

CPS D. P. No Ctx Partial Ctx Full Ctx

PX4 w 69% 78% 92%w.o 53% 65%

Turtlebot w 79% 85% 95%w.o 58% 73%

OpenMani. w 59% 73% 90%w.o 41% 61%
D.P.: dynamic profiling, w: with, w.o: without

sions, sandboxing, and others (such as the pre-computed table
for switching target lookup and the shadow stack for return
address protection). Among these factors, code versions con-
tribute the most significant overhead, accounting for 18.9%
of the memory overhead. The second contributing factor to
memory overhead is the sandboxing implemented using MTE,
introducing an overhead of 2.7%. This arises because MTE
supports isolation only at a 16-byte granularity, necessitat-
ing data alignment to accommodate these 16-byte granularity
restrictions when adjacent data has different privileges.
Protection Coverage: With a WCET overhead of 2.7%,
OP-DFI effectively performs DFI checking on approximately
95.5% of all memory operations and 99.3% of those related
to control variables, where the discrepancy arises from the
prioritization of control variables during the policy genera-
tion phase. Typically, CPS with ample slack (which allows
for more resource allocation) and a lower average runtime
overhead for DFI operations (thereby consuming fewer com-
putational resources for checks) yield higher coverage scores.
Moreover, a greater data and control dependency within a
program can reduce the protection coverage. This happens
because interdependent data needs to be consolidated into a
single set when choosing instrumentation points. As the size
of these data sets increases, the granularity of slack utilization
becomes coarser, which compromises the protection coverage.
For instance, even though OpenManipulator has less avail-
able slack (with its average runtime accounting for 21% of
WCET) and a higher average DFI runtime cost (120%) com-
pared to Jackal, it achieves better protection coverage. This is
attributed to fewer dependencies among its program variables.

8.2 Analysis of Slack Estimation
There are two key factors influencing slack estimation: dif-
ferent levels of context tracking and variations that cannot be
captured by inputs a priori.

Table 4: Slack variation
CPS Mission Sla. Var. Est. Acc. Est. Acc.↘

PX4
takeoff 0.17 77% 2.8%
flyto 0.19 70% 4.1%
land 0.25 59% 5.6%

Turtlebot w.o obstacle 0.08 86% 0.4%
w obstacle 0.11 72% 3.2%

OpenMani.
grasp 0.27 62% 1.8%
place 0.29 55% 2.8%
rotate 0.15 73% 2.2%

Different Levels of Context Tracking: To investigate the
impact of varying context levels on slack estimation accu-
racy, we experimented with three distinct settings: input-only
(no context), partial context, and full context. In the input-
only setting, the considered inputs are the navigation mode,
user command, and position status for PX4; laser data for
Turtlebot; and user command, trajectory status, and moving
status for OpenManipulator. The partial context represents
the program’s default configuration, where only a subset of
runtime variable updates are automatically selected through
optimization. In contrast, the full context involves tracking
every branch target encountered during program execution.
Table 3 presents the results for the three CPS platforms.

The results indicate that incorporating more context im-
proves the precision of slack estimation. Specifically, when
using full context, the accuracy reaches 92%. The residual
discrepancy is primarily attributed to inter-process interfer-
ence. Employing partial context provides an average accuracy
increase of 9.6% compared to input-only estimation. Remark-
ably, for OpenManipulator, the improvement is even more
pronounced at 14%. This is because certain loops in its kine-
matics solver are resource-intensive and heavily dependent
on non-input global variables. We also evaluated the effec-
tiveness of dynamic profiling in constraint selection for both
input-only and partial context scenarios. The results are indi-
cated in the second column D.P. in Table 3. We observed an
average improvement of 15.3% in slack estimation accuracy,
underscoring the efficacy of dynamic profiling.
Slack Variation: We further measured slack variation across
eight different missions, calculating the normalized difference
between the actual slack and the lowest observed slack for the
same input. The results, presented in Table 4, show a variation
ranging from 0.08 to 0.29, with an average of 0.18. Greater
slack variations generally result in reduced slack estimation
accuracy because the worst case is assumed for uncertain
estimates. To improve slack estimation, one viable approach
is to increase the number of path constraints for a more precise
execution state estimation, albeit potentially at the expense of
performance. By increasing the number of path constraints
from the original setting of 16 to 24, we achieved a 2.8%
improvement in estimation accuracy.

8.3 Analysis of Code Version
We first evaluated the general protection coverage and runtime
performance across different code versions. Then we exam-

6624 33rd USENIX Security Symposium USENIX Association

Table 5: Properties of different code versions

CPS Code
Version

Ave. Run.
Overhead

Cov.
Score

Cov.
Diff.

Switch
Cond.

PX4
highest 118% 1

0.15
>67%

others 75% 0.83 9%≃67%
lowest 19% 0.16 <9%

Turtlebot
highest 162% 1

0.21
>75%

others 116% 0.77 13%≃75%
lowest 7% 0.09 <13%

OpenMani.
highest 124% 1

0.09
>72%

others 86% 0.89 16%≃72%
lowest 5% 0.12 <16%

ined code switching frequency in different missions. Lastly,
we manually introduce different numbers of code versions to
further explore the trade-offs in selecting such a number dur-
ing optimization. For the sake of simplifying the discussion,
in the rest of this section, we focus on the code versions with
the highest and lowest coverage scores, while grouping all
other versions under the category others.

Protection Coverage and Overhead: Table 5 presents these
two properties as well as the average difference in coverage
among different code versions. It is observed that code ver-
sions with higher protection coverage generally incur a greater
runtime cost due to the increased number of memory oper-
ations that need to be checked. This leads to the associated
switching condition requiring a larger slack to accommodate
the increased runtime cost. Coverage differences among the
various code versions are relatively small and even, ranging
from 0.09 to 0.21. Notably, even though the code version with
the lowest coverage is designed for scenarios with no slack,
it can still have a non-zero coverage score (averaging around
0.12 in our evaluation). As long as the memory operations
checked in a given code version are not part of the WCEP,
these checked data operations will not affect the WCET.

Code Switching: The last column in Table 5 indicates the
range of available slack required to switch to a specific code
version at the first switch. Among the tested CPSs, Turtle-
bot has the most stringent switching conditions, requiring
more slack due to its higher runtime cost of DFI compared to
the other two CPSs. For example, the highest code version
in Turtlebot requires more than 75% of the WCET as slack
to initiate the switch. As for the actual switching frequency,
Figure 6 presents both the frequency at which the program
switches to a specific version at the first code-switching point

1.18
1.26
1.17
1.29
1.13

1.07

1.18
1.11

Switch Freq

Figure 6: Code switching frequency.

and the frequency at which the program remains on that ver-
sion after the last switching point. The results indicate that
OP-DFI implements proactive protection by maintaining an
overly large initial protection region to take advantage of the
potential increase in slack while maintaining security coher-
ence. This is illustrated in Figure 6, where the dark green bars
in the left subfigure are longer than those in the right subfigure.
Moreover, switching primarily occurs at the program’s entry
point, with the switching frequency in subsequent executions
remaining below 0.18, due to the availability of sufficient
slack. In approximately 91% of cases, the program eventually
switches to the version with the highest coverage for the same
reason. Additionally, different missions can result in varying
switching frequencies. For instance, the “w obstacle" mission
exhibits a higher switching frequency compared to the “w.o
obstacle" mission of the same CPS. This difference is due to
the presence of randomly occurring obstacles during the mis-
sion leading to fluctuations in slack, which cannot be inferred
at the program’s entry point. Consequently, the updated slack
prompts OP-DFI to narrow the protection coverage.

20%

30%

M
e
m

.
O

h
.

PX4 Turtlebot OpenMani.

0.94

0.98

C
o
v
.

4 6 8 Code Versions

Figure 7: Memory overhead and protection coverage under
varying numbers of code versions.

Number of Code Versions: We also investigated the impact
of varying the number of code versions. Illustrated in Figure 7,
when the number of code versions increases from 4 to 8,
the protection coverage experiences a rise of 0.04. However,
the memory overhead also witnesses a 7.6% increase. Our
results indicate that an increase in the number of code versions
leads to improved protection coverage, effectively creating a
more fine-grained security policy. It’s also noteworthy that
the growth in memory overhead is not linear with the number
of code versions. This is because different code versions can
share the common code pages, and OP-DFI leverages the
MMU to map the common physical code pages to multiple
code versions, thereby reducing memory overhead.

8.4 Adaptive Attack Analysis

Analysis Principle: While the level of protection provided by
OP-DFI is bounded by the available slack, the need to exhaust
slack also constrains the attackers on the adversarial input,
since the input must satisfy specific path constraints to cause
a significant expansion in the task run-time. To gain a more
holistic understanding of the practical level of protection for
CPS systems, this trade-off is analyzed through the lens of

USENIX Association 33rd USENIX Security Symposium 6625

Table 6: Constraint on control flow and input value

CPS Est. Slack Constraint Cov. Scorecontrol flow input value

PX4

0 27% 0.042% 0.16
0≃20% 42% 0.73% 0.43
0≃40% 71% 8.2% 0.75
0≃80% 87% 15.3% 0.95

Turtlebot

0 24% 0.007% 0.09
0≃20% 47% 1.6% 0.36
0≃40% 67% 5.5% 0.73
0≃80% 84% 14.4% 0.84

OpenMani.

0 22% 0.015% 0.12
0≃20% 38% 0.063% 0.41
0≃40% 56% 4.8% 0.71
0≃80% 90% 27.5% 0.91

the exploitability by an adaptive adversary in this section.
Even though the concrete techniques to implement a shell-
code could differ from one stance to another, there are often
two necessary conditions to successfully exploit a vulnera-
bility in the system, namely, the ability to reach vulnerable
functions with attackers’ input and the ability to craft the input
to trigger the vulnerability upon delivery. Note that even if the
input is supplied by the attacker, there can be various logic
in the program, such as data sanitization, preventing arbitrary
manipulation on such input.

Analysis Approach: The first exploitability metric is adver-
sarial access to the security-sensitive functions, since func-
tion calls, like unsafe C library function calls and system
calls [11, 20, 23], are frequently used for exploitation. How-
ever, not all the function calls matter, only those with adver-
sarial inputs flowing into can be exploited. Thus, only calls to
security-sensitive function with adversarial information flows
are measured. To provide a quantitative measurement, it is
quantified as the percentage of reachable security-sensitive
locations, which are defined as calls to security-sensitive func-
tions. The second exploitability metric is the adversary’s abil-
ity to manipulate the input. To obtain the ranges of possible
manipulation, the path constraints from the worst-case execu-
tion path are converted to a logic formula that limits the range.
To obtain a quantitative measurement, the percentage of the
modifiable range over the full range of the input is measured.
It is important to note that the measurement for exploitability
requires considerations of many subtle details and remains an
open research challenge [52]. The two basic metrics measured
in this study are merely the first step towards quantitatively
understanding the exploitability in the context of OP-DFI, and
in the future, we intend to further develop this research.

Analysis Results: The quantitative measurement of the con-
straints at different slack levels are shown in Table 6. As
the results show, in the worst-case scenario where there is
no slack, the reachable security-sensitive locations are con-
strained to 24.3%, and only 0.02% of the program’s input
value range can be utilized for generating exploits. This lim-
itation arises because, in order to traverse longer paths, the
input must satisfy all constraints along these paths, thereby
restricting control flow and input value. As the slack level

increases, attackers gain greater flexibility to craft exploit pay-
loads and access more security-sensitive locations. However,
concurrently, the protection offered by OP-DFI also increases
due to the augmented amount of slack (with a coverage score
of 0.90 when slack is 80% of WCET), providing enhanced
defense. A concrete example can be found in Appendix C.2.

9 Security Analysis

Security of System Implementation. First, attackers may
attempt to jump around the instrumented reference monitor
to bypass security checking. However, OP-DFI leverages the
hardware feature ARM BTI to efficiently enforce a coarse-
grained CFI, which ensures the attacker can only jump to the
function entries and return to callsites. As a result, all data
operations are checked, and the control transfer between code
versions can only occur in code switching units given that all
indirect jumps are masked into an address range. Second, OP-
DFI uses MTE to securely maintain the write protection of
data. All data created from the protected region is associated
with specific MTE tags, and only the code within the protected
region carries these same MTE tags. Any write operations
from the unprotected region will alter the original tags of the
protected data, which will subsequently be detected when the
data is read by the protected region. At runtime, OP-DFI may
dynamically reduce the scope of the protected region via code
version switches. In the newly activated code version, the
MTE tags in the removed region are hardcoded to be different
from those in the protected region. Consequently, after such
a code version switch, any attempt from the removed region
to directly write on the protected data will also be detected.
Furthermore, since the removed region has no dependency
with the remaining protected region, the sandboxing effec-
tively prevents data corruption from the unprotected region.
Lastly, the metadata for OP-DFI and the software-based DFI
enforced in the protected region are also protected by ARM
MTE. OP-DFI ensures that all MTE tags are hardcoded and
reserve specific tags to the metadata, ensuring that only desig-
nated RMs can modify it.
Security of Data-flow Protection. Although OP-DFI does
not guarantee complete protection for all data flows, its adapt-
ability allows it to optimally secure a desired subset of data.
For instance, in the eight platforms we evaluated, OP-DFI can
be customized to achieve an average protection coverage of
99.3% for control variables. Furthermore, for variables that
are expected to be protected, OP-DFI offers comparable se-
curity guarantees as full DFI. Since OP-DFI enforces DFI to
check data flows in the protected region, any illegal data flows
within the protected region that deviate from DFG can be
detected. An attacker may attempt to modify unprotected data
to influence the protected data. However, this is not possible
because OP-DFI maintains security coherence, taking into
account both the dependency and the protection duration of

6626 33rd USENIX Security Symposium USENIX Association

the protected region. The former ensures that at any given
time, the protected region encompasses all data and control
dependencies of the protected data. Additionally, the latter
ensures that the shrunken protected region, by the end of the
task, remains protected throughout the entire iteration period.
Real-time Guarantee. The violation of real-time guarantees
can arise from either the overestimation of slack or when the
actual enforced DFI exceeds the capability of the estimated
slack. For the first case, our slack estimation provides a lower
bound for the actual slack, as we proved in Claim 1. Regarding
the second case, the DFI enforcement policy is generated
under the strict constraints of the slack budget, as outlined in
Appendix A.3. Consequently, its actual execution time cannot
exceed the capability allotted by the given slack.

10 Related Work

Information Flow Integrity: Among the existing work on
DFI, RT-DFI [13] optimizes DFI tag checks to reduce the
overhead for real-time systems. KENALI [50] supports partial
DFI to only protect selected data. TMDFI [40], HDFI [51],
and Trustflow [14] reduce the runtime overhead of DFI but
require customized hardware. OP-DFI complements existing
work by utilizing slack to minimize WCET overhead. Fur-
thermore, some existing works on CFI take real-time into
consideration [21, 47, 58, 65]. However, most of them focus
on average runtime efficiency, while OP-DFI focuses on min-
imizing WCET overhead using slack.
Opportunistic Execution: Opportunistic execution [25, 35,
41] leverages slack to perform additional workloads. For ex-
ample, [25, 35] utilize slack to execute extra inter-process
real-time tasks, which can include security checks [25]. How-
ever, [25] is limited to examining program static properties
rather than runtime behaviors. On the other hand, [41] em-
ploys slack measured by the timer for intra-process online
monitoring, albeit requiring customized hardware. OP-DFI
complements these works by using slack to assess program
runtime behavior without the need for customized hardware.
Parametric WCET: The parametric WCET analysis [7, 8,
12, 15, 28, 43, 56] aims to derive a function that expresses
the WCET of a program in terms of its input parameters,
software-related factors (e.g., flow constraints), and hardware-
related factors (e.g., timing impacts of cache and architecture).
However, existing works manly focus on offline analysis.

11 Discussion and Limitation

Extending Optimization Across Multiple Execution Itera-
tions: The current design of OP-DFI focuses on maximizing
protection on a single job release. However, for periodical
tasks in CPS, there are usually strong temporal dependen-
cies among different real-time tasks or different jobs of the

same task. Though such dependency has not been an issue
for platforms in our evaluation, it is entirely possible that a
large amount of control variables have to be protected in the
beginning when slack is not available. A potential mitigation
is to use sanitizers to bring the critical control variable back
to protection or reset it to the default state, leveraging the
physical momentum to mitigate the control impact.

Dependence on Hardware Feature: While OP-DFI utilizes
existing hardware features ARM MTE and BTI for runtime
enforcement, it is also possible to use software-based fault
isolation and software-based CFI to realize the enforcement.

Memory Overhead: The current implementation of OP-DFI
incurs a non-negligible memory overhead of 23.1% over that
of the full DFI. This increase is largely attributed to the utiliza-
tion of multiple code versions designed to facilitate changes
in security policy enforcement. Although memory usage is
already optimized by sharing code pages common to different
versions, as the number of code versions increases, the effec-
tiveness of this optimization can diminish because common
code regions become more segmented, resulting in fewer 4KB
(page-size) common code regions. Several potential mitiga-
tion solutions exist. First, more common code pages can be
generated by adjusting the code layout during compilation.
Second, finer-grained code region sharing can be achieved
by decomposing the execution of a code version into the exe-
cutions of multiple smaller code regions. Then, the sharing
of common regions can be realized using trampolines that
transit execution among different regions. Lastly, it is possi-
ble to trade space expansion with computational overhead by
dynamically updating the policy in place.

12 Conclusion

In this paper, we propose a security primitive, opportunistic
DFI, to opportunistically perform in-line data-flow checking
using the opportunity of slack in real-time systems. To enforce
opportunistic DFI, a system OP-DFI is proposed, for which
an input/context-dependent slack is constructed, the real-time
property and security coherence are modeled, and dynamic
runtime enforcement mechanisms are designed. A prototype
is implemented on the AArch64 platform and evaluated on
eight real-time CPSs.

Acknowledgment

We thank the reviewers for their valuable feedback. This
work was partially supported by the NSF (CNS-2141256,
CPS-2229290, CNS-1916926, CNS-2038995, CNS-2154930,
CNS-2238635), ARO (W911NF2010141), and Intel.

USENIX Association 33rd USENIX Security Symposium 6627

References

[1] Arm mte. https://developer.arm.com/-/media/

Arm%20Developer%20Community/PDF/Arm_Memory_

Tagging_Extension_Whitepaper.pdf.

[2] Linux kernel mte support. https://lwn.net/

Articles/834289/.

[3] Mercedes-benz mbux security research report.
https://keenlab.tencent.com/en/whitepapers/

Mercedes_Benz_Security_Research_Report_

Final.pdf.

[4] New exploitation techniques and defenses for
dop attacks. https://techxplore.com/news/

2019-03-exploitation-techniques-defenses-dop.

html.

[5] Arm architecture reference manual Armv8, for Armv8-
A architecture profile. https://developer.arm.com/
documentation/ddi0487/fc, 2022.

[6] Timeweaver. https://www.absint.com/

timeweaver/index.htm, 2023.

[7] Ernst Althaus et al. Precise and efficient parametric path
analysis. ACM SIGPLAN Notices, 2011.

[8] Sebastian Altmeyer et al. Parametric timing analysis for
complex architectures. In IEEE International Confer-
ence on Embedded and Real-Time Computing Systems
and Applications, 2008.

[9] Ardupilot project. https://ardupilot.org/.

[10] Karl Johan Åström and Richard M Murray. Feedback
systems: an introduction for scientists and engineers.
Princeton university press, 2021.

[11] Thanassis Avgerinos et al. Aeg: Automatic exploit gen-
eration. In Network and Distributed System Security
Symposium, 2011.

[12] Clément Ballabriga et al. Context-sensitive parametric
wcet analysis. In WCET, 2015.

[13] Nicolas Bellec and et al. Rt-dfi: Optimizing data-flow in-
tegrity for real-time systems. In Euromicro Conference
on Real-Time Systems, 2022.

[14] Cyril Bresch and et al. Trustflow: A trusted memory
support for data flow integrity. In Computer Society
Annual Symposium on VLSI, 2019.

[15] Stefan Bygde et al. An efficient algorithm for parametric
wcet calculation. Journal of Systems Architecture, 2011.

[16] Cristian Cadar et al. Klee: unassisted and automatic
generation of high-coverage tests for complex systems
programs. In Operating Systems Design and Implemen-
tation, 2008.

[17] Nicholas Carlini et al. Control-Flow Bending: On the
Effectiveness of Control-Flow Integrity. In USENIX
Security, 2015.

[18] Miguel Castro et al. Securing software by enforcing
data-flow integrity. In Operating Systems Design and
Implementation, 2006.

[19] Shuo Chen et al. Non-control-data attacks are realistic
threats. In USENIX Security, 2005.

[20] Lucas Davi et al. Stitching the gadgets: On the in-
effectiveness of coarse-grained control-flow integrity
protection. In USENIX Security, 2014.

[21] Yufei Du et al. Holistic Control-Flow Protection on
Real-Time Embedded Systems with Kage. In USENIX
Security, 2022.

[22] Mahmoud A Elmohr et al. Em fault injection on arm
and risc-v. In International Symposium on Quality Elec-
tronic Design. IEEE, 2020.

[23] Seyedhamed Ghavamnia et al. Temporal system call
specialization for attack surface reduction. In USENIX
Security, 2020.

[24] Jan Gustafsson et al. Automatic derivation of loop
bounds and infeasible paths for wcet analysis using ab-
stract execution. In IEEE Real-Time Systems Sympo-
sium, 2006.

[25] Monowar Hasan et al. Exploring opportunistic execu-
tion for integrating security into legacy hard real-time
systems. In 2016 IEEE Real-Time Systems Symposium,
2016.

[26] Hong Hu et al. Automatic generation of data-oriented
exploits. In USENIX Security, 2015.

[27] Hong Hu et al. Data-oriented programming: On the
expressiveness of non-control data attacks. In IEEE
Symposium on Security and Privacy, 2016.

[28] Benedikt Huber et al. A formal framework for precise
parametric wcet formulas. In 12th International Work-
shop on Worst-Case Execution Time Analysis, 2012.

[29] Kyriakos K Ispoglou et al. Block oriented programming:
Automating data-only attacks. In Proceedings of the
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018.

6628 33rd USENIX Security Symposium USENIX Association

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://lwn.net/Articles/834289/
https://lwn.net/Articles/834289/
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://techxplore.com/news/2019-03-exploitation-techniques-defenses-dop.html
https://techxplore.com/news/2019-03-exploitation-techniques-defenses-dop.html
https://techxplore.com/news/2019-03-exploitation-techniques-defenses-dop.html
https://developer.arm.com/documentation/ddi0487/fc
https://developer.arm.com/documentation/ddi0487/fc
https://www.absint.com/timeweaver/index.htm
https://www.absint.com/timeweaver/index.htm
https://ardupilot.org/

[30] Jackal. https://clearpathrobotics.com/

jackal-small-unmanned-ground-vehicle/.

[31] M. Joseph and P. Pandya. Finding Response Times in a
Real-Time System. The Computer Journal, 1986.

[32] Daniel Kästner et al. Timeweaver: A tool for hybrid
worst-case execution time analysis. In 19th Interna-
tional Workshop on Worst-Case Execution Time Analy-
sis, 2019.

[33] Shinpei Kato et al. Autoware on board: Enabling
autonomous vehicles with embedded systems. In
ACM/IEEE 9th International Conference on Cyber-
Physical Systems, 2018.

[34] Mustakimur Rahman Khandaker et al. Origin-sensitive
control flow integrity. In USENIX Security, 2019.

[35] Angeliki Kritikakou et al. Distributed run-time wcet
controller for concurrent critical tasks in mixed-critical
systems. In International Conference on Real-Time
Networks and Systems, 2014.

[36] Angeliki Kritikakou et al. Run-time control to increase
task parallelism in mixed-critical systems. In 26th Eu-
romicro Conference on Real-Time Systems, 2014.

[37] Ao Li et al. From timing variations to performance
degradation: Understanding and mitigating the impact
of software execution timing in slam. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
2022.

[38] Ao Li et al. Polyrhythm: Adaptive tuning of a multi-
channel attack template for timing interference. In IEEE
Real-Time Systems Symposium, 2022.

[39] C. L. Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment.
1973.

[40] Tong Liu et al. Tmdfi: Tagged memory assisted for fine-
grained data-flow integrity towards embedded systems
against software exploitation. In 17th IEEE Interna-
tional Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE Interna-
tional Conference On Big Data Science And Engineer-
ing, 2018.

[41] Daniel Lo et al. Slack-aware opportunistic monitoring
for real-time systems. In IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium, 2014.

[42] Paul Lokuciejewski and Peter Marwedel. Combining
worst-case timing models, loop unrolling, and static loop
analysis for wcet minimization. In 21st Euromicro Con-
ference on Real-Time Systems, 2009.

[43] Amine Marref. Evolutionary techniques for paramet-
ric wcet analysis. In 12th International Workshop on
Worst-Case Execution Time Analysis. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2012.

[44] Derrick McKee et al. Preventing kernel hacks with
hakc. In Proceedings Network and Distributed System
Security Symposium, 2022.

[45] Lorenz Meier et al. Px4: A node-based multithreaded
open source robotics framework for deeply embedded
platforms. In ICRA. IEEE, 2015.

[46] Charlie Miller and Chris Valasek. Remote exploitation
of an unaltered passenger vehicle. Black Hat USA, 2015.

[47] Thomas Nyman et al. Cfi care: Hardware-supported call
and return enforcement for commercial microcontrollers.
In Research in Attacks, Intrusions, and Defenses: 20th
International Symposium, 2017.

[48] Op3. https://emanual.robotis.com/docs/en/

platform/op3/introduction/.

[49] David Sehr et al. Adapting software fault isolation to
contemporary cpu architectures. In USENIX Security,
2010.

[50] Chengyu Song et al. Enforcing kernel security invariants
with data flow integrity. In Network and Distributed
System Security Symposium, 2016.

[51] Chengyu Song et al. Hdfi: Hardware-assisted data-flow
isolation. In IEEE Symposium on Security and Privacy,
2016.

[52] Octavian Suciu et al. Expected exploitability: Predicting
the development of functional vulnerability exploits. In
USENIX Security, 2022.

[53] Turtlebot. https://emanual.robotis.com/docs/

en/platform/turtlebot3/overview/.

[54] Unitree robotics. https://github.com/

unitreerobotics.

[55] Victor Van der Veen et al. Practical context-sensitive cfi.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015.

[56] Emilio Vivancos et al. Parametric timing analysis. In
Proceedings of the ACM SIGPLAN workshop on opti-
mization of middleware and distributed systems, 2001.

[57] Robert Wahbe et al. Efficient software-based fault iso-
lation. In Proceedings of the 14th ACM symposium on
Operating systems principles, 1993.

USENIX Association 33rd USENIX Security Symposium 6629

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://emanual.robotis.com/docs/en/platform/op3/introduction/
https://emanual.robotis.com/docs/en/platform/op3/introduction/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://github.com/unitreerobotics
https://github.com/unitreerobotics

[58] Robert J Walls et al. Control-flow integrity for real-time
embedded systems. In 31st Euromicro Conference on
Real-Time Systems, 2019.

[59] Jinwen Wang et al. Rt-tee: Real-time system availabil-
ity for cyber-physical systems using arm trustzone. In
Symposium on Security and Privacy. IEEE, 2022.

[60] Jinwen Wang et al. Ari: Attestation of real-time mission
execution integrity. In USENIX Security, 2023.

[61] Jinwen Wang et al. Secure and timely gpu execution in
cyber-physical systems. In ACM Conference on Com-
puter and Communications Security, 2023.

[62] Hang Wu et al. Pid controllers: Design and tuning
methods. In IEEE Conference on industrial electronics
and applications, 2014.

[63] Zhiyuan Yu et al. Security and privacy in the emerg-
ing cyber-physical world: A survey. Communications
Surveys & Tutorials, 2021.

[64] Ning Zhang et al. Truspy: Cache side-channel infor-
mation leakage from the secure world on arm devices.
Cryptology ePrint Archive, 2016.

[65] Jie Zhou et al. Silhouette: Efficient protected shadow
stacks for embedded systems. In USENIX Security,
2020.

A Additional Design Details

A.1 Proof of Parametric Slack Estimation
CLAIM 1 Given the constraint evaluation results S! for a set
of selected constraints !s, Algorithm 1 provides an under-
approximated worst-case slack estimate B of the program.

Based on the definition of slack: slack = WCET -
execution time, we define W = WCET →B . We then show
the equivalence of Claim 1: Algorithm 1 provides an over-
approximated worst-case time estimate W of the program,
given the constraint evaluation results S! for a set of selected
constraints !s.

Proof. Let P be the program under analysis, K be the worst-
case execution time analysis tool, {p1, p2, ..., pn} be the set of
all execution paths for P , {t1, t2, ..., tn} be the corresponding
(over-approximated) execution time estimates for the paths,
and {!1,!2, ...,!n} be the corresponding path constraints.
Each !i is a constraint statement consisting of the concatena-
tion of the individual branch constraint {∀1

i ,∀2
i , ...,∀

j
i }. As

previously defined in Algorithm 1, S! represents the results
of evaluating the constraints in the set !s, where ↑∀s ↔ !s,
∀s ↔ {!1 ⇐!2 ⇐ . . .⇐!n}.

We make the assumption that given the program P and
the worst-case analysis tool K , K (P)⇒ {(p1, t1), ...(pn, tn)},
where ti is the over-approximated estimate of the execution
time along pi. We also assume there exists a logical solver (
that can determine whether a path p is feasible or not.

To obtain an over-approximated worst-case time estimate,
K can simply output tmax, where tmax = max{t1, t2, ..., tn}.
To obtain a tighter bound, some WCET tools also elimi-
nate infeasible paths, therefore the output becomes tmax =
max{t1, t2, ..., tm} where ti ↔ {t1, t2, ..., tn}, ((pi)⇒ true. In-
tuitively, Algorithm 1 goes one step further and eliminates
the infeasible paths using the known states in S!. Mathemati-
cally, the output is now tmax = max{t1, t2, ..., tq} where ↑ti ↔
{t1, t2, ..., tn}, ((pi)⇒ true⇑ f easible(pi,rs) for ↑(∀s : rs)↔
S!,∀s ↔ !i. f easible(pi,rs) is true either rs is unknown or rs
does not violate the condition of pi. As a result, among all fea-
sible paths, the algorithm still selects the longest running time,
and since this running time estimate is over-approximated,
this algorithm still returns an over-approximation of the worst-
case execution time.

We can prove this by contradiction. Let tw be the worst-
case time output by Algorithm 1 given P and S!, with the
corresponding worst-case execution path as pw. Since this is
the worst-case execution time, that means for all feasible
paths, F , where ((pi) ⇒ true ⇑ f easible(pi,rs) for ↑(∀s :
rs) ↔ S!,∀s ↔ !i given the known constraint evaluation re-
sults S!, tw is the largest number in the set, i.e. ↑ti ↔ F , tw ⇓ ti.
Let pz be the program execution path that leads to running
time estimation of tz, however tz > tw. This creates a contra-
diction between two complementary conditions. If pz ↔ F ,
then it contradicts with the max selector statement where
↑ti ↔ F , tw ⇓ ti. If pz /↔ F , then it contradicts either the con-
straint evaluation results S! or the original path feasibility
((pz)⇒ true.

A.2 Quantifying Runtime Cost
To quantify the runtime cost of a specific path, the path
is divided into subpaths based on slack estimation check-
points along its course. However, due to the uncertainty of
the estimated execution state related to other paths, we enu-
merate the complete set of potential intermediate estimated
execution states for each subpath. This set is denoted as
S↗(p,S!) = {⇔Sp[0] ,Sp[1] , . . .↖}, where Sp[i] represents a po-
tential intermediate estimated execution state on subpath p[i].
Subsequently, the runtime cost for a path given an estimated
execution state, denoted as %(p,S!|∃), is established as the
highest runtime cost among different potential intermediate
execution states:

%(p,S!|∃) = max
⇔Sp[0] ,S

p[1] ,...↖↔S↗(p,S!)

n

&
i

)(∃(Sp[i]), p[i]) (3)

where ∃(Sp[i]) represents the set of checked memory oper-
ations selected by the security policy with the intermedi-

6630 33rd USENIX Security Symposium USENIX Association

ate estimated execution state of subpath p[i]. Furthermore,
)(∃(Sp[i]), p[i]) is the runtime cost on subpath p[i] arising from
the chosen checked memory operations ∃(Sp[i]), and it can
be computed based on instruction count. Finally, the runtime
cost under an estimated execution state S! can be obtained
as the largest runtime cost among all paths corresponding to
that estimated state: %(S!,∃) = maxp↔P %(p,S!|∃).

A.3 Policy Optimization

Optimization Problem Formulation: According to the
definition of a security policy ∃, it can be parameterized by the
checked memory operations across different code versions
∗ = {#0,#1, ...}, as well as the switching rules utilized at
different slack estimation checkpoints {∃0,∃1, ...}. The set of
selected constraints can be denoted as !s = {∀0,∀1, ...}. The
goal of the optimization is to find the optimal parameters that
satisfy the specified constraints:

(!s,∃)↗ =argmax
!s,∃

C (!s,∃)

s.t. %!(!s)↓ +!

%(S!,∃)↓ B(S!), for all S!

D(#) = #, for all # ↔ ∗
∃(S)↙ ∃(S∝), for all (S,S∝) ↔ S↗.

|!s|= N!

|,|= N,

(4)

where %!(!s) is the evaluation cost of the constraint for-
mula (which can be obtained through the instruction count
of the formula) and is bounded by a threshold +!; D(#) is
the dependency of #; (S,S∝) is the estimated execution state
before and after the transition, and S↗ is the set of all possible
transitions; |!s| is the number of selected constraints where
constraints with the same formula are deemed identical, and
it is set to N!; |∗| is the number of code versions and is set
to N∗.

The first constraint bounds the evaluation cost of the con-
straint formula. The second constraint pertains to the real-time
requirement, ensuring that the runtime cost of checked mem-
ory operations remains within the available slack. The third
and fourth constraints relate to security coherence, ensuring
that the code version includes all necessary dependencies and
can only shrink following each code switch. The fifth con-
straint limits the table size to O(2N!) entries, and the sixth
constraint restricts the number of code versions.

B Additional Details on Implementation

B.1 Optimization Engine
In order to generate the optimal parameters, the search space
is initially reduced to facilitate optimization. Considering that

the evaluation cost of selected constraints is bounded, con-
straints with intricate symbolic formulas can be excluded from
the search space. Additionally, by leveraging the security-
coherence constraint, the code version must encompass all
dependencies, and the switching rule exclusively transitions
to versions with fewer checked memory operations, resulting
in a further reduction of the search space.

Subsequently, the optimal parameters can be approximately
determined through the utilization of Mixed-Integer Linear
Programming (MILP) and Genetic Algorithm. To elaborate,
the initial optimization parameters of the genetic algorithm are
first set. Specifically, since high slack estimation usually pro-
vides more opportunities for protection, the initial parameters
for selected constraints are set as the set of constraints that can
yield the highest average estimated slack. After establishing
the initial search state, the genetic algorithm iteratively per-
forms the following steps: it mutates the selected constraints,
and after each mutation, MILP is employed to facilitate the
search for the corresponding optimal switching rules and code
versions. This iterative process continues until convergence is
achieved or timeouts.

C Additional Details on Evaluation

C.1 Evaluation Setup

Testing mission used in evaluation: Table 7 lists all the
missions employed to test the eight CPS platforms in this
paper. These missions encompass trajectories or sequences of
actions. For drones and autonomous vehicles, the CPS plat-
forms are tasked with executing circular trajectory missions.
The robotic arm (OpenManipulator) is assigned the duty of
repeatedly performing actions involving object grasping, rota-
tion, and placement. Similarly, the quadruped robot (Unitree)
and humanoid (OP3) are required to cyclically complete tasks
such as standing up, walking, turning around, and sitting down.
An asterisk (*) in the table denotes that the official repository
does not provide specific test missions; instead, it offers sim-
ulated scenes. As a result, we manually curated the missions
using the provided scenes.

Table 7: Testing missions

Mission Type Mission Name

PX4

Trajectory

FW_mission_1.plan

Ardupilot copter_mission.txt

Turtlebot turtlebot3_house*

Autoware nishishinjuku_autoware_map*

Jackal agriculture_world*

Unitree
Actions

stairs*

OP3 walking demo

OpenMani. pick and place demo

Instruction Analogs: Given that the prototype utilizes

USENIX Association 33rd USENIX Security Symposium 6631

the hardware features ARM MTE and BTI, to the best of
our knowledge, there are no publicly available development
boards that support ARM MTE and BTI at the time of writ-
ing. Consequently, instruction analogs are employed to assess
performance. Instruction analogs are a series of instructions
that consume similar CPU cycles and memory footprint but
do not perform actual checks [44]. According to the descrip-
tion, considering the negligible overhead of MTE and BTI,
we use regular memory operations to simulate MTE-specific
memory operations. For example, we analog an MTE-specific
store instruction (STGP) with a regular store instruction (STR).
Additionally, we analog a BTI instruction as an exclusive-or
(EOR) instruction.
WCET Meaurement: We utilize the aiT TimeWeaver [6],
a timing analysis tool, for WCET measurement. This tool
can take CoreSight ETM trace packets as inputs to ob-
tain architectural-level timing information. Among the four
boards, only Jetson Nano (Cortex-A57) and Jetson AGX Orin
(Cortex-A78) support Coresight ETM, while we were unable
to find the CoreSight ETM supporting documentation for the
other two, Raspberry Pi 3 (Cortex-A53) and Raspberry Pi 4
(Cortex-A72). To conduct WCET measurement on the Cortex-
A53 and Cortex-A72 cores, we thus utilize the Cortex-A53
and Cortex-A72 cores available on the Juno Development
Board, where CoreSight ETM is available. This serves as an
alternative method to obtain architectural-level timing infor-
mation for the Cortex-A53 and Cortex-A72 processors.

C.2 Adaptive Attack Evaluation

An Example of Constraint on Input Value: To justify the
reasonableness of our metric — which involves constraints
on the input value range — we refer to a real-world example
from PX4 for clarification. Listing 2 shows a scenario where
the adaptive attacker is unable to simultaneously push the task
onto the worst-case execution path and trigger the exploit. The
code snippet is taken from the mavlink_receiver.cpp file
in the PX4 project, with irrelevant code omitted for simplicity.

The function handle_message_statustext() (on line
01) is responsible for parsing the input messages regarding

01 void handle_message_statustext(mavlink_message_t *msg) { /*Attacker's input*/

05 if (_mavlink_statustext_handler.should_publish_current(statustext)) {
06 _log_message_pub.publish(_mavlink_statustext.log_message()); /* WCET Path */
 }
}

07 bool should_publish_current(const mavlink_statustext_t &msg_statustext,...) {
08 /* . . . */
09 const bool found_zero_termination =
strnlen(msg_statustext.text, sizeof(msg_statustext.text)) < sizeof(msg_statustext.text);
 /* False for oversize input */
10 if (found_zero_termination) {
11 return true; /* Need to be true for worst-case execution path */
12 } else {
13 return false;}}

- 02 uint8_t len = msg->len < STATUSTEXT_LEN? msg->len : STATUSTEXT_LEN;
- 03 memcpy(statustext, _MAV_PAYLOAD(msg), len);

+ 04 memcpy(statustext, _MAV_PAYLOAD(msg), msg->len);

Listing 2: Example of constraint on input value.

system status and then publishing the parsed information as
logs if necessary (the condition is on line 05). At the outset of
this function, line 03 invokes memcpy() to copy the content
of msg to a local variable statustext. Initially, length check-
ing exists before the copy to prevent out-of-bounds writes.
For the attack demonstration, we replaced this with an unsafe
version on line 04, allowing the attacker to craft a large msg
to trigger a buffer overflow, a preliminary step in exploiting
the system. Concretely, the attacker needs to create an ex-
ploit payload that is long enough to overwrite data beyond
the buffer size of statustext. However, such a crafted ex-
ploit payload cannot trigger the WCEP (line 06) and thus
cannot lead OP-DFI to predict WCET. The reason is that the
WCEP depends on a true return value from the function
should_publish_current(). However, if statustext is
overwritten, this function will always return false. This is
because the function should_publish_current(), on line
09, inspects the content of statustext. If statustext con-
tains no \0, the task will return false, preventing the task
from entering the WCEP. In summary, to steer the task onto
the WCEP, the input value must remain within the value lim-
ited by the size of statustext. Adhering to this constraint
prevents the triggering of a buffer overflow, not to mention
successful exploitation.

In general, the constraints imposed by the WCEP always
restrict the search space during payload generation. Hence, we
leverage these restrictions to quantify the trade-off an attacker
faces when attempting to both trigger the WCEP and launch
an exploit.

C.3 Comparison to CFI

Table 8: Comparison to CFI

System Information Flow Checking Runtime Overhead
data flow control flow average WCET

RECFISH [58] 0 100% 25%, 30% -
Kage [21] 0 100% 6.1% 5.1%
CFI CaRE [47] 0 100% 13%≃513% -
Silhouette [65] 0 100% 3.1% 2.8%
OP-DFI 96.6% 100% 137% 2.6%

Table 8 contrasts OP-DFI with CFI works tailored to
real-time systems [21, 47, 58, 65]. We evaluated [21, 65] on
STM32L475 and STM32F469 respectively, while using the
reported numbers for others due to lack of source code access.
The results indicate that OP-DFI incurs a higher average run-
time overhead (135%) due to its comprehensive protection for
both control and data flow (96.6% of memory operations and
100% of control transfers are checked) for stronger protection.
Regarding the WCET overhead, which is more critical as it
directly affects the hardware requirements, OP-DFI (2.6%) is
comparable to that of the listed CFIs (3.9%).

6632 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Real-time System
	Software Security

	Motivation
	Threat Model and System Goal
	OP-DFI Design
	On-the-fly Slack Estimation
	Data-flow Integrity using Slack
	Dynamic Runtime Enforcement
	Opportunistic DFI Policy Optimization

	Implementation
	Case Study
	Evaluation
	Comparison with Full DFI
	Analysis of Slack Estimation
	Analysis of Code Version
	Adaptive Attack Analysis

	Security Analysis
	Related Work
	Discussion and Limitation
	Conclusion
	Additional Design Details
	Proof of Parametric Slack Estimation
	Quantifying Runtime Cost
	Policy Optimization

	Additional Details on Implementation
	Optimization Engine

	Additional Details on Evaluation
	Evaluation Setup
	Adaptive Attack Evaluation
	Comparison to CFI

