
exLong: Generating Exceptional Behavior Tests

with Large Language Models

Jiyang Zhang

The University of Texas at Austin, USA

jiyang.zhang@utexas.edu

Yu Liu

The University of Texas at Austin, USA

yuki.liu@utexas.edu

Pengyu Nie

University of Waterloo, Canada

pynie@uwaterloo.ca

Junyi Jessy Li

The University of Texas at Austin, USA

jessy@austin.utexas.edu

Milos Gligoric

The University of Texas at Austin, USA

gligoric@utexas.edu

Abstract—Many popular programming languages, including
C#, Java, and Python, support exceptions. Exceptions are thrown
during program execution if an unwanted event happens, e.g.,
a method is invoked with an illegal argument value. Software
developers write exceptional behavior tests (EBTs) to check
that their code detects unwanted events and throws appropriate
exceptions. Prior research studies have shown the importance
of EBTs, but those studies also highlighted that developers put
most of their efforts on “happy paths”, e.g., paths without
unwanted events. To help developers fill the gap, we present the
first framework, dubbed EXLONG, that automatically generates
EBTs. EXLONG is a large language model instruction fine-tuned
from CodeLlama and embeds reasoning about traces that lead
to throw statements, conditional expressions that guard throw
statements, and non-exceptional behavior tests that execute simi-
lar traces. We compare EXLONG with the state-of-the-art models
for test generation (CAT-LM) and one of the strongest foundation
models (GPT-4o), as well as with analysis-based tools for test
generation (Randoop and EvoSuite). Our results show that
EXLONG outperforms existing models and tools. Furthermore,
we contributed several pull requests to open-source projects and
23 EBTs generated by EXLONG were already accepted.

Index Terms—test generation, large language models, program
analysis, exceptional behavior tests

I. INTRODUCTION

Many popular programming languages, including C#, Java,

and Python, support exceptions [14], [18], [58]. Exceptions

are thrown during program execution if an unwanted event

happens, e.g., a method is invoked with an illegal argument

value. To throw an exception, a developer writes a throw

statement in their code. These throw statements are commonly

guarded with conditional statements (e.g., if), as excep-

tions should be thrown only under exceptional circumstances.

Figure 1a shows a code snippet, in Java, that throws an

IllegalStateException (line 17) when the next character,

parsed from argument request, is identified as a special atom

(line 11) but is neither an opening (line 12) nor a closing

parenthesis (line 14).

Software developers write exceptional behavior tests (EBTs)

to check that their code properly detects unwanted events and

throws desired exceptions. Figure 1b shows an example EBT.

An EBT, similar to a non-exceptional behavior test (non-

EBT), first performs necessary setup of the system under test,

e.g., creates objects (lines 4-5), then invokes a method under

1 class SearchCommandParser extends CommandParser {

2 static final char CHR_SPACE = ’ ’;

3 static final char CHR_CR = ’\r’;

4

5 public SearchTerm searchTerm(ImapRequestLineReader

request) throws ProtocolException {

6 ...

7 char next;

8 while ((next = request.nextChar()) != ’\n’ &&

9 next != CHR_CR) {

10 next = request.consumeAll(CHR_SPACE);

11 if (isAtomSpecial(next)) {

12 if (next == ’(’) {

13 ...

14 } else if (next == ’)’) {

15 ...

16 } else {

17 throw new IllegalStateException("Unsupported atom

special char <" + next + ">");

18 }

19 }

20 ...

21 }

22 return handleOperators();

23 }

24 }

target throw statement

(a) Method under test: searchTerm.

1 public class SearchCommandParserTest {

2 private SearchTerm parse(String line)

3 throws ProtocolException {

4 final byte[] bytes = (line.endsWith("\n")?line:(line

+ ’\n’)).getBytes();

5 ByteArrayInputStream ins = new ByteArrayInputStream(

bytes);

6 return new SearchCommandParser().searchTerm(new

ImapRequestLineReader(ins, null));

7 }

8

9 @Test(expected = IllegalStateException.class)

10 public void testUnsupportedAtomSpecialChar()

11 throws ProtocolException {

12 parse("*");

13 }

14 }

method under test

exceptional behavior test

(b) Exceptional behavior test written using JUnit 4 that covers the
highlighted statement above.

Fig. 1: An EBT (‘testUnsupportedAtomSpecialChar’) from

greenmail-mail-test/greenmail and the target

throw statement.

test (line 6), and finally checks the expected behavior (line 9).

For an EBT, the expected behavior is that an exception was

thrown and the type of the exception matches the one specified

by a developer.

Prior research has studied EBTs in practice [2], [7], [13],

[24], [28] and observed that most projects already have some

EBTs, but that the number of EBTs is not as high as the

number of non-EBTs. Simply put, developers focus on “happy

paths” and have limited time to test exceptional behaviors.

Furthermore, through interviews and surveys [7], [28], prior

studies confirmed the importance of EBTs and developers’

desire to improve the testing of exceptional behaviors.

Sadly, tool support for automatically generating EBTs is

limited. Most existing analysis-based test generation tools

(e.g., Randoop [36], [42] and EvoSuite [11]) and learning-

based test generation tools (e.g., CAT-LM [40] and TeCo [32])

have no special settings for targeting EBTs and are primarily

evaluated on non-EBTs. Random test generation tools can

be guided by reinforcement learning to target exceptional

behaviors [1], but the generation works only on the entire

codebase, and not for a specific throw statement that a develop

might select. Additionally, tests produced by analysis-based

tools lack readability [5], [6], [37].

We present the first framework, dubbed EXLONG, an in-

struction fine-tuned large language model (LLM) that auto-

matically generates EBTs. LLMs are shown to be effective

in code generation, including test generation [22], [32], [40],

[56], [63]. Such strong prior provides a good foundation yet is

not enough. EBTs contribute to only a very small percentage

in existing codebases, i.e., they are not well-represented in

LLM training data. The special conditions that trigger an EBT

during execution are not included in the training phase of

standard code LLMs, thus they do not perform well on the

task of generating EBTs.

Using CodeLlama [43] as its base, EXLONG is fine-

tuned [45], [60], [62] with a novel task instruction and fine-

tuning data, designed specifically to embed the reasoning about

a context that includes: (a) traces that lead to target throw

statements, (b) guard expressions (i.e., conditional expressions

that guard those throw statements), and (c) non-EBTs that

execute similar traces. This context is used as the input to

generate an EBT that triggers the target throw statement. The

EBT that we already showed in Figure 1b was generated by

EXLONG.

We assess the power of EXLONG using two use cases. In

the first use case, which we call developer-oriented use case,

a developer selects a method under test and a target throw

statement, as well as a destination test file. EXLONG takes

these inputs and automatically generates an EBT that executes

the target throw statement.

In this use case, we compare EXLONG with the state-of-the-

art models for test generation (CAT-LM [40]) and strongest

foundation models (GPT3.5 [34] and GPT-4o [35]). We use

a number of standard metrics (BLEU [39], CodeBLEU [41],

edit similarity [49], [64] and exact match), as well as metrics

specific to code, including percentage of compilable tests,

executable tests, and executable tests that cover the target

throw statement. Our results show that EXLONG generates

83.8% and 9.9% more executable EBTs than CAT-LM and

GPT3.5, respectively.

In the second use case, which we call machine-oriented

use case, a developer uses EXLONG to automatically generate

EBTs for the entire codebase with the goal to cover all existing

throw statements (with one EBT per statement). EXLONG

takes the entire codebase as input, finds throw statements that

are in public methods already covered by at least one non-

EBT and generates one EBT for each of the throw statements.

This use case is similar to the traditional test generation setup

targeted by analysis-based generation tools.

In this use case, we compare EXLONG with popular

analysis-based test generation tools: Randoop [36], [42] and

EvoSuite [11]. Although tools complement each other (i.e.,

each tool can generate EBTs for some target throw statements

that other tools cannot), our findings show that EXLONG

outperforms Randoop and EvoSuite.

Additionally, we built EXLONG on GPT-4o (a state-of-the-

art language model) without fine-tuning and evaluated it in

developer-oriented use case. Our results show that EXLONG–

GPT-4o outperforms GPT-4o by up to 16.6%. This emphasizes

that our technique is generalizable to the most advanced

proprietary LLMs.

Finally, we selected a subset of EBTs generated by EXLONG

and created pull requests for several open-source projects. By

the time of this writing, 23 tests generated by EXLONG have

already been accepted by developers of those projects.

The key contributions of this paper include:

• Task. We define a novel task for LLMs: generating excep-

tional behavior tests (EBTs).

• Model. We designed and implemented EXLONG, an instruc-

tion fine-tuned LLM built on CodeLlama, which reasons

about traces to methods that contain throw statements, guard

expressions, and non-EBTs that cover similar traces.

• Use cases. We recognized two use cases for EXLONG:

developer- and machine-oriented use cases.

• Evaluation. We assess the power of EXLONG in both

use cases. In developer-oriented use case, we compare

EXLONG with existing models for code and test generation.

In machine-oriented use case, we compare EXLONG with

analysis-based testing tools: Randoop and EvoSuite. We find

that EXLONG outperforms existing state-of-the-art models

and tools.

• Dataset. We developed a novel dataset for the presented

task and this dataset is publicly available.

EXLONG is available on GitHub at https://github.com/

EngineeringSoftware/exLong.

II. USE CASES

At a high level, EXLONG is designed to help software

developers write EBTs that cover the throw statements within

the given repository. We propose two use cases for EXLONG:

developer-oriented use case (Section II-A) and machine-

oriented use case (Section II-B). Note that in this work we

do not consider generating EBTs that cover throw statements

in the dependency libraries of the given repository, e.g.,

ArithmeticException thrown from the java.lang.Math, as

Algorithm 1 Collecting training corpus.

1: inputs: Teb, Tneb - existing EBTs and non-EBTs
2: SUT - the system under test
3: outputs: C - the training corpus of {(mut, s, d, r, g, T̂neb, teb)}
4: procedure COLLECTTRAININGCORPUS(Teb, Tneb, SUT)
5: C ← ∅
6: for teb ∈ Teb do
7: d ← GetFile(teb)
8: r ← Execute(InstrumentPrintException(teb))
9: ▷ instrumenting and executing EBT to get stack trace

10: r ← ExcludeTestAndUtilMethods(r, d)
11: mut ← r[0].method ▷ MUT comes first in stack trace
12: s ← GetSourceCode(r[-1])
13: ▷ last stack trace item points to target throw statement
14: g ← ComputeGuardExp(r)
15: T̂neb ← ∅ ▷ initialize set of relevant non-EBTs
16: C ← C ∪ {(mut, s, d, r, g, T̂neb, teb)}

17: SUT ← InstrumentPrintMethod(SUT)
18: ▷ instrumentation for getting methods covered by non-EBTs
19: for tneb ∈ Tneb do
20: mut

′ ← Execute(tneb)[0]
21: ▷ get MUT directly invoked by non-EBT
22: for c ∈ C do
23: if c.mut == mut

′∨ c.d == GetFile(tneb) then
24: c.T̂neb ← c.T̂neb ∪ {tneb}

25: return C

inputs to the training corpus collection algorithm (line 1 in

Algorithm 1).

2) Executing EBT and collecting stack trace: Each EBT

will be expanded to one SFT example (c) in the training

corpus (C). Naturally, the file that contains the EBT is the

destination test file (line 7 in Algorithm 1). To avoid data

leakage problems, we remove all test methods in the test file

(d) and only keep the test class structure and utility methods.

For training, stack trace is the sequence of method in-

vocations from EBT (non inclusive) that lead to the target

throw statement under test (inclusive). Line 8 in Algorithm 1

shows how to collect the stack trace: first, instrument the

EBT by adding “print(exception.getCause())” to the code

location after the exception is thrown and caught by the EBT;

then, execute the instrumented EBT to get the printed stack

trace. To avoid duplicate information, we exclude EBT itself

and any utility methods in the destination test file from the

stack trace (line 10 in Algorithm 1).

The first method invoked in the stack trace is the MUT by

definition (line 11 in Algorithm 1). The last method invocation

and line number in the stack trace point to the target throw

statement (line 12 in Algorithm 1).

3) Computing the guard expression: Stack trace provides

the sequence of method invocations that lead to the target

throw statement, but knowing only the names of the methods

is insufficient for generating EBTs. To aid the reasoning about

the setup of the system under test, which lead to exceptional

behaviors, we propose guard expression: a logical formula

representing the constraints on the symbolic variables that

must be true to follow the particular code trace. Specifically,

we use conjunctions of expressions extracted from the invoked

methods in the stack trace to form the guard expressions.

Algorithm 2 Collect AST nodes along the stack trace.

1: inputs: r - the stack trace for a target throw statement
2: outputs: N - the collected nodes
3: procedure COLLECTNODES(r)
4: N ← ∅
5: for (m, lineno) ∈ Reversed(r) do
6: current ← GETSOURCECODE(m, lineno)
7: parent← current

8: N ← N ∪ {current}
9: while current ̸= m do

10: if parent is ForStmt then
11: N ← N ∪ {parent.CompareExpression}

12: if parent is IfStmt then
13: if parent.ThenStmt == current then
14: N ← N ∪ {parent.ConditionExpression}

15: if parent.ElseStmt == current then
16: N ← N ∪ {¬ parent.ConditionExpression}

17: ▷ Other cases (while, switch, block and assignment
statements) are in supplementary material.

18: current = parent

19: parent = parent.getParent()

20: return N

Algorithm 3 Compute guard expression based on stack trace.

1: inputs: r - the stack trace for a target throw statement
2: outputs: g - the guard expression for the target throw statement
3: procedure COMPUTEGUARDEXP(r)
4: N ← COLLECTNODES(r)
5: ▷ collect all condition (if, while, etc.) and assignment

(assign, method call) nodes along the stack trace
6: E ← ∅ ▷ the set of conditions in the guard expression
7: for n ∈ N do
8: if n is ConditionalExpr then
9: E ← E ∪ {n}

10: if n is AssignStmt then
11: E ← MERGE(E , {n.lhs 7→ n.rhs})

12: if n is MethodDeclaration then
13: n′ ← n ▷ process with next node (method call)

14: if n is MethodCallExpr then
15: argmap ← ∅
16: for arg, argname ∈ n.getArgs(), n′.getParams() do
17: argmap ← argmap ∪{argname 7→ arg}

18: E ← MERGE(E , argmap)

19: return
∧
E

20:

21: procedure MERGE(E , argmap)
22: E’ ← ∅
23: for e ∈ E do
24: for name 7→ expr ∈ argmap do
25: if e.contains(name) then
26: e ← e.replace(name, expr)

27: E’ ← E’ ∪ {e}

28: return E’

For instance, the guard expression for the throw statement

highlighted in Figure 1a is present in the Figure 2 (box 3).

The first step in the computation is to collect the list

of guard-related AST nodes along the stack trace starting

from the target throw statement to the MUT, as described in

Algorithm 2. We traverse each method in the stack trace in

reversed order (line 5). Inside each method, we start from the

AST node specified by the line number in the stack trace. We

always include this node into the list of collected nodes (line 8)

because the variable names in that statement may be used by

the next step for replacing method call arguments. Starting

from the statement, we traverse the AST by maintaining

the pointer current that constantly moves from the child

AST node to its parent node. AST nodes entailing condition

expressions within the ‘for’ loop (lines 10 to 11), ‘if’ statement

(lines 12 to 16), ‘while’ loop and ‘switch’ statement will be

added to N. We also collect the assignment statements, method

call expressions, and method declarations. Some of these are

omitted from Algorithm 2 to keep it simple.

The second step of computing guard expressions is to pro-

cess the collected nodes by propagating the symbolic variables

through the stack trace, as described in Algorithm 3. The

nodes are visited in the order being collected, and conditional

expressions are directly added to the guard expression (line 9).

Assignment statements, method declaration, and method call

expressions will trigger a Merge operation (line 21). The

goal of the Merge operation is to review the current guard

expression and replace the symbolic variables (e.g., variables

appearing in the target throw statement) with their corre-

sponding values (e.g., constant values or MUT’s arguments).

Therefore, the guard expression reflects the MUT’s arguments

and public fields that are usable by EBT, rather than local

variables that EBT may not have access to. For assignment

statement (line 11), we replace the left hand side variable in

E with the right hand side expression. For method declaration

and method call expression (lines 15 to 18; these two nodes

always appear in pairs in the collected nodes), we replace

the method declaration’s argument names in E with the actual

arguments in the method call expression.

4) Connecting EBTs to relevant non-EBTs: We add the

relevant non-EBTs to the prompt (lines 17 to 24 in Algo-

rithm 1), to encourage the LLM to reason about the procedures

to set up the object under test and the condition under which

the exception will be triggered grounding the existing non-

EBTs. Additionally, we believe the non-EBTs in the same

repository will promote the consistency between the generated

code and the existing code in terms of the both format and

coding conventions. Given an MUT, we use two approaches to

retrieve the relevant non-EBTs: non-EBTs that directly invoke

the same MUT (used first when the context window of the

LLM cannot fit all relevant non-EBTs) and non-EBTs that

are already present in the destination test file (line 23 in

Algorithm 1). If there is no relevant non-EBT retrieved, this

part of the prompt is left empty.

5) Instruction fine-tuning: We use CodeLlama-Instruct-

7B [43], an open-source foundation model designed for code

generation and instruction following, as the foundation model

of EXLONG. CodeLlama is pretrained on auto-regressive and

infilling objectives, enabling tasks like code completion and

document generation. We fine-tune CodeLlama on our col-

lected training corpus of SFT data C = {(p, teb)}, with

the novel instructions shown in Figure 2 (4). Given the

Algorithm 4 Prepare the pool stack traces from non-EBTs

and assemble the prompt for evaluating EXLONG.

1: inputs: Tneb - existing non-EBTs
2: SUT - the system under test
3: outputs: Q - stack traces to reach target throw statements
4: procedure COLLECTSTACKTRACESET(Tneb, SUT)
5: SUT ← InstrumentPrintTrace(SUT)
6: Q ← ∅
7: for tneb ∈ Tneb do
8: for r ∈ Execute(tneb) do
9: r ← ExcludeTestAndUtilMethods(r, GetFile(tneb))

10: for s ∈ GetThrowStmts(r) do
11: Q ← Q ∪ (r, tneb, s)

12: return Q
13:

14: global var: Q = COLLECTSTACKTRACESET(Tneb, SUT)
15: inputs: mut, s, d - task inputs selected by developers or inferred
16: Tneb - existing non-EBTs
17: outputs: p - the prompt to give to the LLM
18: procedure ASSEMBLEPROMPT(mut, s, d)
19: R← ∅
20: T̂neb ← ∅
21: for q ∈ Q do
22: if mut ∈ q.r ∧ q.s == s then
23: R← R ∪ {q.r}
24: if mut == q.r[0].method then
25: T̂neb ← T̂neb ∪ {q.tneb}

26: if R ̸= ∅ then
27: r ← RandomSelect(R)
28: g = EXTRACTGUARDEXP(r)
29: T̂neb ← T̂neb ∪ {tneb|GetFile(tneb)==d}
30: return (mut, s, d, r, g, T̂neb)

instruction that includes the collected context, the model is

expected to produce the EBT: LLM(p) = teb.

We fine-tune the CodeLlama model using the parameter-

efficient Low-Rank Adaptation (LoRA) technique [20]. Rather

than updating the entire set of parameters in the LLM, LoRA

injects trainable low-rank matrices into each layer of the

model. This approach dramatically reduces the number of

trainable parameters and the amount of required computational

resources.

B. Inference

The inference workflow of EXLONG is different from its

training workflow in that we cannot rely on executing EBTs to

collect the context (e.g., stack trace), as our goal is to generate

those EBTs. Instead, EXLONG reasons about the context based

on task inputs (MUT, target throw statement, and destination

test file) and leveraging existing non-EBTs for the system

under test. Algorithm 4 describes the key steps in preparing

the inference prompt of EXLONG.

1) Collecting non-EBTs’ stack traces to reach poten-

tial target throw statements: We first prepare a set of

stack traces, from the execution of non-EBTs, that can

reach potential target throw statements in the repository

(lines 4 to 12). This only needs to be done once per

repository. Specifically, we first instrument all methods that

have throw statements to log the current stack trace (using

TABLE I: Statistics of the collected dataset. #MUTs is the

number of unique method under test; #Exception Types is the

number of unique exception types tested by the EBTs.

#Projects #Tests #EBTs #MUTs
#Exception

Types

All 562 111,230 12,574 6,250 821
Train 501 100,030 11,182 5,508 725
Valid 29 5,298 550 279 66
Eval 32 5,902 842 - -

Thread.currentThread().getStackTrace();) upon invok-

ing those methods (line 5). Then, we execute all non-EBTs and

collect the logged stack traces (lines 7 to 11). The execution

of each non-EBT may generate multiple stack traces, as it may

cover multiple methods with throw statements.

2) Selecting task inputs: Next, we select the task inputs

(MUT, target throw statement, and destination test file), which

can be specified by the developer or inferred by heuristics

depending on the use case that EXLONG is targeting:

• Developer-oriented use case: developer specify the MUT

and target throw statement to generate the EBT for, and

the destination test file where the EBT should be placed.

• Machine-oriented use case: given a repository, EXLONG

locates all throw statements and generates one EBT for

each of them. For a target throw statement, the MUT

is the method containing the throw statement, and the

destination test file is selected based on (a) file name

matching, and (b) test coverage analysis. Specifically,

similar to prior work [40], given a code file named FNM,

we search for test file named FNMTest or TestFNM. If

there is no result based on file name matching, we run

the existing non-EBTs to find any existing test class that

cover the MUT or the class of MUT. If there is again no

result based on test coverage analysis, EXLONG will not

generate an EBT for this target throw statement (and it

will move to the next one).

The selected task inputs are then used to assemble the prompt

for EXLONG (line 15).

3) Assembling the prompt: We first need to find stack

traces from the set of non-EBTs’ stack traces that match the

given MUT and target throw statement (line 22). If multiple

matching stack traces are found, we randomly select one

(line 27). Given the stack trace, we use the same algorithm in

Section III-A3 to compute the corresponding guard expression

(line 28). The relevant non-EBTs are selected using the similar

criteria as Section III-A4, i.e., having the same MUT (line 25)

or in the same destination test file (line 29). However, if no

matching stack trace is found, EXLONG will not generate an

EBT for the given inputs.

IV. DATASET

In this section, we describe details on collecting the dataset

(Section IV-A), as well as the statistics of our dataset used for

training and evaluation (Section IV-B).

TABLE II: Statistics of the evaluation dataset for developer-

oriented use case. #MUT is the number of unique method un-

der test; #Exception Types is the number of unique exception

types tested by the EBTs; #Throw Statements is the number

of unique throw statements covered by the EBTs.

#EBTs #MUT
#Exception

Types
#Throw

Statements

Developer-Oriented 434 267 41 278

TABLE III: Statistics of the evaluation dataset for machine-

oriented use case. #Throw Statements is the number of target

throw statements we extracted from the repository according

to Section III-B2. #Exception Types is the number of unique

exception types thrown by the target throw statements.

#Throw
Statements

#Exception
Types

Machine-Oriented 649 81

A. Dataset Collection

Following prior work [32], we collect data from Java

projects from CodeSearchNet [21], which are available on

GitHub and satisfy the following: (1) use the Maven build

system; (2) compile successfully; (3) do not have test failures;

(4) have at least one EBT that follows one of the four

patterns [28] (Section III-A1), and (5) have a license that

permits the use of its data. Requirements 1-4 simplify the

automation steps and ensure that we can run existing tests to

collect dynamic data (e.g., stack traces), as well as run EBTs

that we generate.

B. Dataset Statistics

The statistics for the collected dataset are presented in

Table I. In total, we collected 111,230 tests from 562

projects, where 12,574 of these tests are EBTs. Collected

EBTs cover a range of 821 unique exception types (e.g.,

RuntimeException, IllegalArgumentException).

The dataset is randomly split by projects into training

(Train), validation (Valid), and evaluation (Eval) sets, where

the training set is the SFT data used to instruction fine-tune

EXLONG, the validation set is used for early-stopping the

training process and guiding our design decision of EXLONG,

and the evaluation set is used for evaluating the performance

of EXLONG and baselines.

Table II presents the statistics of the evaluation data for

developer-oriented use case. Note that this is a subset of the

last row from Table I. Under developer-oriented use case, we

benchmark EXLONG on the subset of 434 examples for which

we are able to extract stack traces. In this paper, we focus on

cases where accurate stack traces can be extracted by executing

existing non-EBTs. When such non-EBTs are not available,

namely the stack traces cannot be obtained, developers can

first write or generate non-EBTs for the MUT with the help of

other test generation tools, and then use EXLONG to generate

EBTs.

Table III presents the statistics of the evaluation data for

machine-oriented use case. Note that this is a subset of the last

row from Table I. For machine-oriented use case, we evaluate

on 649 examples as we filter the data for which we were

not able to locate the destination test file with our designed

heuristics (Section III-B2).

V. EVALUATION DESIGN

We assess the performance of EXLONG by answering the

following research questions:

RQ1: How does EXLONG perform under the developer-

oriented use case compared with the state-of-the-art models?

RQ2: How much do stack traces and guard expressions help

EXLONG in generating EBTs?

RQ3: How much does the selection of non-EBTs help EX-

LONG in generating EBTs?

RQ4: How does EXLONG perform with different underlying

LLM model?

RQ5: How does EXLONG perform under the machine-oriented

use case compared with analysis-based test generation tools?

We next describe metrics used to compare models and tools

(Section V-A) and then describe the baselines used in our

comparison (Section V-B). We answer all research questions

in Section VI.

A. Evaluation Metrics

1) Developer-oriented use case: For developer-oriented use

case, we compare (using data shown in Table II) the generated

EBTs against the developer-written EBTs by benchmarking on

similarity-based and functional-correctness metrics.

Following prior work on learning-based test generation [32],

[40], [56], we use the following similarity-based metrics to

compare generated EBTs and ground-truth (i.e., developer-

written ones):

Exact-match accuracy (xMatch): the percentage of the pre-

dictions that are exactly the same as the ground-truth.

BLEU [39]: the number of n-grams in the prediction that also

appear in the ground-truth.

CodeBLEU [41]: adapted version of BLEU score for code. In

addition to n-grams overlapping, it also computes the overlap

of AST nodes, nodes in the data-flow graph between the

prediction and ground-truth.

Edit similarity [49], [64]: calculates 1-Levenshtein distance

which is the minimum number of character-level edits (in-

sertions, deletions, or substitutions) required to change the

prediction into the ground-truth.

The similarity metrics only capture the surface-level simi-

larity between the prediction against an existing EBT; among

them, xMatch is the most strict one as it requires perfect

matches, while the others account for partial matches. How-

ever, such surface metrics do not adequately capture the func-

tional validity of the generated EBT (e.g., whether the code

can be compiled or executed), especially since the developer-

written EBTs may not be the only correct implementation to

cover a specific target throw statement. Thus, we additionally

include the following functional-correctness metrics:

Compilable%: percentage of the generated EBTs that can be

compiled. Being compilable is a basic functional requirement

for the generated tests.

Matched-E%: percentage of EBTs that check the specified

exception type. Namely, whether the exception class following

‘@Test(expected =’ is the same as user specified one. This

metric checks if the model hallucinates the exception type.

Runnable%: percentage of EBTs that check the specified

exception type, and can be compiled and executed without

any error. This metric, unlike others, requires the generated

EBTs to be semantically valid.

ThrowCov%: out of all developer-specified target throw state-

ments (Table II), the percentage of target throw statements with

successfully generated EBTs, i.e., compilable, runnable, and

checking the specified exception type. This is the strictest met-

ric, ensuring that the generated EBTs are semantically valid

and are targeting the throw statement specified by developers.

2) Machine-oriented use case: For machine-oriented use

case, we benchmark tools ability to cover the throw statements

within a given repository:

ThrowCov%: out of all target throw statements selected in

repositories (Table III), the percentage of the target throw

statements with successfully generated EBTs, i.e., compilable,

runnable, and checking the correct exception type.

B. Baselines

1) Learning-based tools: We compare EXLONG with one

of the strongest foundation models and one LLM that is

specifically pretrained to generate tests.

GPT3.5: We instruct GPT3.5 [34] to write EBTs by first

providing one random example from the training data. Namely,

one prompt and the corresponding ground-truth EBT. The

prompt we use to query GPT3.5 includes the MUT, the target

exception type to test, the method containing the target throw

statement, one relevant non-EBT, and the destination test file.

We sample a single EBT from the output.

CAT-LM: CAT-LM [40] is an LLM pretrained on Java and

Python repositories. It is pretrained with a novel objective

that considers the mapping between source code and the

corresponding test files. CAT-LM is pretrained to generate

the remaining test methods given a code under test and the

beginning of the test file. It has shown strong performance

on several test generation tasks. To be consistent with its

pretraining objective and intended use case, we prompt CAT-

LM with the MUT followed by the destination test file, one

randomly-selected relevant non-EBT, and the test annotation

(‘@Test(expected =’), encouraging the model to complete

the EBT. Just like in other cases, we sample a single EBT.

2) Automatic test generation tools: In machine-oriented use

case, we compare EXLONG with two widely-used analysis-

based test generation tools.

Randoop: Randoop [36], [42] is a random test generation tool

that creates tests by randomly generating inputs and recording

the sequences of method calls. We run Randoop with a time

limit of 100 seconds per class to generate unit tests for each

project (per the Randoop user manual [54]), we set seed to

42, usethreads to true, and other options to their default

values.

EvoSuite: EvoSuite [11] is a search based test generation

tool that randomly generates inputs and employs a genetic

algorithm to evolve these inputs, aiming to maximize code

coverage. We run EvoSuite for 120 seconds per class (as

suggested in a recent SBST competition [47]). We also set

the seed to 42. Unlike Randoop, which generates tests for

the entire project, to generate more EBTs for the target throw

statements within the time limit, we generate tests on a subset

of classes when running EvoSuite. Starting from classes that

contain throw statements, we use jdeps [53] to retrieve all

classes that transitively depend on these initial classes, thereby

creating a targeted subset for evaluation.

C. Hardware

We run EXLONG’s program analyses part, Randoop, and

EvoSuite on a machine with Intel Core i7-11700K @ 3.60GHz

(8 cores, 16 threads) CPU, 64 GB RAM, Ubuntu 20.04, Java

8, and Maven 3.8.6. We perform EXLONG’s LLM fine-tuning

and generation, as well as CAT-LM on a server with 4 Nvidia

A100 GPUs, 2 AMD Milan 7413 @ 2.65 GHz. We run fine-

tuning and generation, for EXLONG and baselines, three times

with different random seeds and report the average numbers

across three runs.

VI. RESULTS

In this section, we present the evaluation results and answer

each research question.

A. RQ1: Developer-Oriented Use Case

To answer RQ1, we compare the EBTs generated by EX-

LONG with developer-written tests. The results of EXLONG

and baselines are shown in tables IV and V. Table IV presents

the results when we inform LLMs the method name of the

target EBT while in Table V we do not. (We describe the last

row in these tables in a later subsection.)

EXLONG outperforms all the baselines on both similarity-

based metrics (left side in tables) and functional-correctness

metrics (right side in tables). EXLONG achieves higher per-

formance than baselines for both generating executable EBTs

(Runnable%) and EBTs that cover the target throw statements

(ThrowCov%). This highlights that EXLONG can generate

more EBTs that can be directly adopted by developers. In

Table IV, we can see that EXLONG outperforms GPT3.5 by

9.9% and 22.8% on Runnable% and ThrowCov%, respectively.

Similarly, we can see that EXLONG outperforms CAT-LM by

83.8% and 97.5% on Runnable% and ThrowCov%, respec-

tively. This further underlines the benefit of the stack traces

and guard expressions extracted via program analysis, and

EXLONG’s capability of reasoning about them.

To further understand the performance difference, we in-

spect the EBTs generated by GPT3.5 and EXLONG. Although

GPT3.5 generates comparable number of compilable EBTs

public static FileWriter createFileWriter(String className,

LogFilePath logFilePath, CompressionCodec codec,

SecorConfig config)

throws Exception {

return createFileReaderWriterFactory(className, config).

BuildFileWriter(logFilePath, codec);

}

(a) The MUT to be tested.

!FileReaderWriterFactory.class.isAssignableFrom(Class.

forName(className))

(b) The guard expression for the target throw statement.

@Test(expected = IllegalArgumentException.class)

public void testFileWriterConstructorMissing() throws

Exception {

ReflectionUtil.createFileWriter("MissingClass",

mLogFilePath, null, mSecorConfig);

}

(c) Compilable but failing EBT generated by GPT3.5

@Test(expected = IllegalArgumentException.class)

public void testFileWriterConstructorMissing() throws

Exception {

ReflectionUtil.createFileWriter("java.lang.String",

mLogFilePath, null, mSecorConfig);

}

(d) Compilable and runnable EBT generated by EXLONG

Fig. 3: EBT (testFileWriterConstructorMissing) gen-

erated by GPT3.5 and EXLONG. The EBT generated by

EXLONG covers the target throw statement satisfying the

correct condition.

as EXLONG, it struggles to cover the correct target throw

statements especially when they are not in the MUT (but

could be reached through a sequence of method calls). For

example, in Figure 3b, we show the guard expression ex-

tracted by EXLONG to trigger the IllegalAccessException

with regard to the first argument (className) of the

MUT (createFileWriter) in Figure 3a. The EBT gen-

erated by GPT3.5 can be compiled but fails to check the

IllegalAccessException (Figure 3c). EXLONG uses the

correct class “java.lang.String” that satisfies the condition

and successfully covers the target throw statement (Figure 3d).

Comparing functional-correctness metrics in Table IV

and Table V, performance of both GPT3.5 and CAT-

LM declines significantly when the EBT method name

is omitted. This result aligns with expectations, as the

method name frequently implies the conditions under

which the exception is supposed to be thrown, e.g.,

“should fail if time provider is null”. In contrast,

EXLONG demonstrates robustness regarding the inclusion or

exclusion of the test method name, maintaining consistent

performance on functional-correctness metrics. This further

emphasizes the reasoning ability of EXLONG on the stack

traces and guard expressions.

B. RQ2: Ablation Study of Stack Traces and Conditions

To evaluate the contribution of the components in EXLONG,

we perform an ablation study. In Table VI, we show the

results while including EBT’s name in the prompt. We find

that ablating each component deteriorates performance espe-

TABLE VI: Ablations on different context of EXLONG.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

EXLONG 63.13 67.49 85.32 19.05 82.10 100.00 67.36 59.45

No stack trace 62.61 67.36 85.43 17.74 81.41 100.00 67.05 58.14
No stack trace, guard expression 62.53 67.42 84.85 17.74 81.41 100.00 61.98 52.00
No stack trace, guard expression, non-EBT 54.84 60.62 80.70 12.06 61.52 100.00 46.70 38.25

TABLE VII: Comparison between using different non-EBTs to sample and using the same non-EBT but sampling multiple

times. Note that we add the target EBT’s name to the prompt and we only report results on examples that have more than one

candidate non-EBT.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

EXLONG 61.44 66.21 85.34 13.44 83.40 100.00 66.14 56.79
EXLONG-sample w/ same non-EBT 63.64 68.28 86.70 13.18 87.35 100.00 72.46 61.53
EXLONG-sample w/ different non-EBT 71.66 75.18 90.62 17.79 95.65 100.00 83.00 71.94

TABLE VIII: Comparison between GPT-4o-few-shot and EXLONG–GPT-4o.

Models BLEU CodeBLEU EditSim xMatch Compilable% Matched-E% Runnable% ThrowCov%

GPT-4o-few-shot 60.07 65.56 84.00 16.82 81.87 99.73 71.52 55.53
EXLONG–GPT-4o 60.48 66.77 84.77 17.74 82.49 100.00 75.35 64.75

TABLE IX: Throw statements coverage rate for EXLONG,

Randoop and EvoSuite.

Tools
ThrowCov%

Subset Projects All Projects

EXLONG 29.72 28.81
EvoSuite 20.37 20.95
Randoop 21.87 18.95

could not generate tests for three projects. We inspected the is-

sues and found that: (1) Randoop crashed on OpenNMS/newts
because this project kept throwing runtime exceptions (all

related to com.codahale.metrics.ScheduledReporter);

(2) Randoop crashed on pinterest/secor because this

project requires the configuration of Kafka; (3) Randoop could

not load a class and crashed on OpenHFT/Chronicle-Map.

We report results on the subset of 27 projects where all

the tools can be run successfully (Subset Projects) and results

on all 30 projects (All Projects). Among the given target

throw statements, EXLONG achieves higher throw statement

coverage rate than analysis-based tools. Figure 4 illustrates

the overlap and difference among the sets of target throw

statements covered by EXLONG, EvoSuite, and Randoop. All

three tools cover different sets of throw statements. EXLONG

covers the most target throw statements that other two cannot.

VII. CASE STUDY

We performed a case study where we submitted the EBTs

generated by EXLONG to the open-source projects (where

the data was extracted from) to collect developers’ feedback.

Among the evaluation set for machine-oriented use case,

EXLONG generated 187 EBTs across 30 projects that are

runnable and cover the correct throw statements. We selected a

subset of 9 projects that are actively maintained, i.e., they had

at least one commit, accepted pull request (PR) or responded

issue within the past six months (at the time of the paper

submission). We found that the generated EBTs of 2 projects

were the same as those added by developers on later commits

(commits after the ones we used during evaluation), thus

refrained from submitting PRs to them. In total, we submitted

7 PRs which include 35 EBTs (one PR per project). Among

them, 4 PRs (23 EBTs) have been accepted, and 3 PRs (12

EBTs) are still pending. No PR was rejected. In one instance,

a developer responded and merged our PR only 30 minutes

after we create the PR. This was encouraging, and future tool

development should integrate EXLONG into an IDE, such that

EXLONG continuously provide EBTs for code that a developer

is editing.

VIII. LIMITATIONS

We discuss several limitations and potential future work.

Programming language. In this work, we focused on support-

ing the Java programming language, which is among the most

popular languages nowadays. We expect no substantial dif-

ferences in our approach for similar programming languages,

e.g., C#. Future work could evaluate and tune our model for

dynamically typed languages, e.g., Python.

Project boundaries. In our evaluation, we generate EBTs for

throw statements within a single project, and we ignore throw

statements that are in libraries used by the project. We could

not come up with a use case that targets throw statements

in libraries, so we left it out of our work. If we were to

target such a case, we would need to collect context (throw

statement and conditions) from those libraries. One could take

several directions, e.g., finding code of those libraries, building

a model on bytecode level, or decompiling code and then

extracting the context.

Destination test file. Not every MUT has a destination test

file. We leave the problem on finding or generating destination

test file for any given method under test as future work.

LLMs. We built EXLONG around CodeLlama [43], a recent

open-source model. We believe that building on CodeLlama

provides reproducibility guarantees that will help us and others

to build on this work. Our contributions are the task, definition

of a context for the task, tools for extracting the context,

instruction fine-tuned model, and extensive evaluation. We

expect that building EXLONG on other open-source LLMs

would lead to similar results.

IX. RELATED WORK

There has been significant work on test generation [10],

[11], [36], [40], [48], [59] and code generation [23], [27], [30],

[33], [38], [67], [68]. We cover related work on (1) LLM-based

test generation, (2) generating tests for exceptional behavior,

and (3) other test generation techniques.

LLM-based test generation. Transformer models have been

used to generate tests [9], [22], [31], [32], [40], [46], [56],

[59], [63] and test oracles [8], [57], [61]. CAT-LM [40] is a

2.7B model that is pretrained on a large dataset of Java and

Python projects. It outperforms existing test generation tools

StarCoder [23] and CodeGen 16B [33] in terms of the number

of valid tests and test completion tool TeCo [31], [32]. So we

compared our work with CAT-LM in this paper.

Conditions are useful for guiding the generation of tests and

finding bugs [3], [4], [44]. SymPrompt [44] introduced path

constraint prompting to guide LLMs to generate high-coverage

tests without additional training. They collect constraints from

each possible execution path in the target method and prompt

the LLM to generate tests that cover those paths. We extract

guard expressions by analyzing multiple methods along the

stack trace starting from the throw statement to the target

method for generating EBTs.

Existing test cases (including the setup and teardown meth-

ods) serve as a useful context to guide the generation [32],

[40], [56]. Haji et al. [9] empirically studies the effectiveness

of generating tests using GitHub Copilot and discovers that

using existing test cases as context can increase the passing

rate of generated tests by 37.73%. Our work uses existing non-

EBTs as context and collects stack traces from those tests to

guide the generation of EBTs.

Generating tests for exceptional behavior. Exception han-

dling [28], [65], [66], [69] is an important aspect of software

development. There are several techniques [1], [2], [13], [55]

to generate EBTs. However, they either generate EBTs from

specifications or use random-based or search-based strategies

to generate EBTs. Our work is the first to use LLMs to

generate EBTs. Also, prior work generates tests for the whole

program, while our EXLONG allows users to specify which

throw statements to cover.

Guo et al. [15] introduces boundary coverage distance

(BCD) to evaluate the quality of test inputs, which can be used

to guide the random generation of test inputs by minimizing

BCD. Goffi [13] proposed throw statement coverage to mea-

sure the effectiveness of test inputs in triggering exceptions.

We also use throw statement coverage in our evaluation.

Other test generation techniques. Other techniques incor-

porate random-based [36], [42], search-based [11], [17], [25],

[26] and constraint-based [10], [12], [19] strategies to auto-

matically generate tests. Tests can be derived from multiple

sources, including the code under test, error messages [16],

and specifications [29] like comments [50]–[52].

Randoop [36], [42] generates tests by randomly generating

inputs and saving the sequences of method calls. EvoSuite [11]

is a search based test generation tool that randomly generates

inputs and uses a genetic algorithm to evolve the inputs to

maximize code coverage. During the test generation process,

both Randoop and EvoSuite create tests that cover normal as

well as exceptional behaviors. However, since they generate

inputs randomly, they do not guarantee to generate tests with

high coverage or meaningful and readable inputs. Moreover,

there is no assurance that these inputs will successfully trig-

ger certain exceptional behaviors. EvoSuiteFIT [1] adapted

EvoSuite’s search algorithm with reinforcement learning to

generate exceptional tests. Unfortunately, we cannot directly

use EvoSuiteFIT (has error “Invalid or corrupt jarfile”).

X. CONCLUSION

We presented the first work on generating tests for ex-

ceptional behavior (EBTs) using large language models. We

introduced EXLONG that builds on top of CodeLlama to embed

reasoning about traces that lead to throw statements, condi-

tional expressions along those traces, and non-exceptional tests

that cover similar traces. We evaluated EXLONG in two use

cases: developer-oriented use case (i.e., generate EBT for a

given method under test and a target throw statement) and

machine-oriented use case (i.e., automatically generate tests

for all throw statements available in a repository). Our results

show that EXLONG outperforms existing test generation mod-

els and analysis-based test generation tools. We contributed a

number of tests generated by EXLONG to open-source projects,

and 23 EBTs are already accepted. We believe that EXLONG

targets an important task, has good performance, and helps

developers increase code quality assurance by automatically

providing high quality EBTs.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Jayanth Srinivasa, Aditya Thim-

maiah, Zijian Yi, Samuel Yuan, Zhiqiang Zang, Linghan

Zhong, and the anonymous reviewers for their comments

and feedback. This work is partially supported by the US

National Science Foundation under Grant Nos. CCF-2107291,

CCF-2217696, CCF-2313027, CCF-2403036; as well as AST-

2421782 and Simons Foundation MPS-AI-00010515 (NSF-

Simons AI Institute for Cosmic Origins – CosmicAI). This

work was in part supported by Cisco Research. Any opinions,

findings and conclusions, or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of Cisco Research.

REFERENCES

[1] H. Almulla and G. Gay, “Learning how to search: Generating exception-
triggering tests through adaptive fitness function selection,” in Inter-

national Conference on Software Testing, Verification, and Validation,
2020, pp. 63–73.

[2] R. D. Bernardo, R. Sales Jr., F. Castor, R. Coelho, N. Cacho, and
S. Soares, “Agile testing of exceptional behavior,” in Brazilian Sym-

posium on Software Engineering, 2011, pp. 204–213.
[3] A. Blasi, A. Gorla, M. D. Ernst, and M. Pezzè, “Call me maybe:

Using NLP to automatically generate unit test cases respecting temporal
constraints,” in Automated Software Engineering, 2022, pp. 1–11.

[4] I. Bouzenia and M. Pradel, “When to say what: Learning to find
condition-message inconsistencies,” in International Conference on Soft-

ware Engineering, 2023, pp. 868–880.
[5] E. Daka, “Improving readability in automatic unit test generation,” Ph.D.

dissertation, University of Sheffield, 2018.
[6] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with descrip-

tive names or: Would you name your children thing1 and thing2?” in
International Symposium on Software Testing and Analysis, 2017, pp.
57–67.

[7] F. Dalton, M. Ribeiro, G. Pinto, L. Fernandes, R. Gheyi, and B. Fonseca,
“Is exceptional behavior testing an exception? An empirical assessment
using Java automated tests,” in International Conference on Evaluation

and Assessment in Software Engineering, 2020, pp. 170–179.
[8] E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri, “TOGA: A

neural method for test oracle generation,” in International Conference

on Software Engineering, 2022, pp. 2130–2141.
[9] K. El Haji, C. Brandt, and A. Zaidman, “Using Github Copilot for test

generation in Python: An empirical study,” International Workshop on

Automation of Software Test, pp. 45–55, 2024.
[10] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of computer programming, vol. 69, no. 1-3,
pp. 35–45, 2007.

[11] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for
object-oriented software,” in International Symposium on the Founda-

tions of Software Engineering, 2011, pp. 416–419.
[12] P. Godefroid, “Test generation using symbolic execution,” in Annual

Conference on Foundations of Software Technology and Theoretical

Computer Science, 2012.
[13] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè, “Automatic generation

of oracles for exceptional behaviors,” in International Symposium on

Software Testing and Analysis, 2016, pp. 213–224.
[14] J. Gosling, The Java language specification. Addison-Wesley Profes-

sional, 2000.
[15] X. Guo, H. Okamura, and T. Dohi, “Optimal test case generation for

boundary value analysis,” Software Quality Journal, pp. 1–24, 2024.
[16] X. Han, T. Yu, and D. Lo, “Perflearner: Learning from bug reports

to understand and generate performance test frames,” in Automated

Software Engineering, 2018, pp. 17–28.
[17] M. Harman and P. McMinn, “A theoretical and empirical study of

search-based testing: Local, global, and hybrid search,” Transactions

on Software Engineering, vol. 36, no. 2, pp. 226–247, 2009.
[18] A. Hejlsberg, S. Wiltamuth, and P. Golde, C# language specification.

Addison-Wesley Longman Publishing Co., Inc., 2003.
[19] J. Holmes, I. Ahmed, C. Brindescu, R. Gopinath, H. Zhang, and

A. Groce, “Using relative lines of code to guide automated test
generation for Python,” Transactions on Software Engineering and

Methodology, vol. 29, no. 4, pp. 1–38, 2020.
[20] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,

and W. Chen, “LoRA: Low-rank adaptation of large language models,”
in International Conference on Learning Representations, 2022.

[21] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“CodeSearchNet challenge: Evaluating the state of semantic code
search,” arXiv preprint arXiv:1909.09436, 2019.

[22] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “CodaMosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in International Conference on Software Engineering, 2023,
pp. 919–931.

[23] R. Li, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone,
C. Akiki, L. Jia, J. Chim, Q. Liu et al., “StarCoder: May the source
be with you!” Transactions on Machine Learning Research, 2023.

[24] L. P. Lima, L. S. Rocha, C. I. M. Bezerra, and M. Paixao, “Assessing
exception handling testing practices in open-source libraries,” Empirical

Software Engineering, vol. 26, no. 5, 2021.

[25] Y. Liu, P. Nie, A. Guo, M. Gligoric, and O. Legunsen, “Extracting inline
tests from unit tests,” in International Symposium on Software Testing

and Analysis, 2023, pp. 1–13.
[26] Y. Liu, A. Thimmaiah, O. Legunsen, and M. Gligoric, “ExLi: An inline-

test generation tool for Java,” in International Symposium on Software

Testing and Analysis, 2024, pp. 1–5.
[27] J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “LLaMA-Reviewer: Advancing

code review automation with large language models through parameter-
efficient fine-tuning,” in International Symposium on Software Reliability

Engineering, 2023, pp. 647–658.
[28] D. Marcilio and C. A. Furia, “How Java programmers test exceptional

behavior,” in International Working Conference on Mining Software

Repositories, 2021, pp. 207–218.
[29] M. Motwani and Y. Brun, “Automatically generating precise oracles

from structured natural language specifications,” in International Con-

ference on Software Engineering, 2019, pp. 188–199.
[30] N. Muennighoff, Q. Liu, A. R. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo,

S. Singh, X. Tang, L. Von Werra, and S. Longpre, “OctoPack: Instruction
tuning code large language models,” in International Conference on

Learning Representations, 2023.
[31] P. Nie, “Machine learning for executable code in software testing and

verification,” Ph.D. dissertation, The University of Texas at Austin, 2023.
[32] P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, “Learning

deep semantics for test completion,” in International Conference on

Software Engineering, 2023, pp. 2111–2123.
[33] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,

and C. Xiong, “CodeGen: An open large language model for code with
multi-turn program synthesis,” in International Conference on Learning

Representations, 2023.
[34] OpenAI, “GPT-3.5-turbo,” https://platform.openai.com/docs/models/

gpt-3-5-turbo, 2024.
[35] OpenAI, “GPT-4o,” https://platform.openai.com/docs/models/gpt-4o,

2024.
[36] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed

random test generation,” in International Conference on Software Engi-

neering, 2007, pp. 75–84.
[37] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.

Hellendoorn, “Test smells 20 years later: Detectability, validity, and
reliability,” Empirical Software Engineering, vol. 27, no. 7, p. 170, 2022.

[38] S. Panthaplackel, P. Nie, M. Gligoric, J. J. Li, and R. J. Mooney,
“Learning to update natural language comments based on code changes,”
in Annual Meeting of the Association for Computational Linguistics,
2020, pp. 1853–1868.

[39] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Annual Meeting of the

Association for Computational Linguistics, 2002, pp. 311–318.
[40] N. Rao, K. Jain, U. Alon, C. L. Goues, and V. J. Hellendoorn, “CAT-

LM: Training language models on aligned code and tests,” in Automated

Software Engineering, 2023, pp. 409–420.
[41] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,

M. Zhou, A. Blanco, and S. Ma, “CodeBleu: A method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[42] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N. Li, “Scal-
ing up automated test generation: Automatically generating maintainable
regression unit tests for programs,” in Automated Software Engineering,
2011, pp. 23–32.

[43] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code Llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[44] G. Ryan, S. Jain, M. Shang, S. Wang, X. Ma, M. K. Ramanathan,
and B. Ray, “Code-aware prompting: A study of coverage guided test
generation in regression setting using LLM,” in International Symposium

on the Foundations of Software Engineering, 2024, pp. 951–971.
[45] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai,

A. Chaffin, A. Stiegler, T. L. Scao, A. Raja et al., “Multitask
prompted training enables zero-shot task generalization,” arXiv preprint

arXiv:2110.08207, 2021.
[46] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An empirical evaluation

of using large language models for automated unit test generation,”
Transactions on Software Engineering, 2023.

[47] S. Schweikl, G. Fraser, and A. Arcuri, “EvoSuite at the SBST 2022
tool competition,” in International Workshop on Search-Based Software

Testing, 2022, pp. 33–34.

[48] M. L. Siddiq, J. C. Da Silva Santos, R. H. Tanvir, N. Ulfat, F. Al Rifat,
and V. Carvalho Lopes, “Using large language models to generate JUnit
tests: An empirical study,” in International Conference on Evaluation

and Assessment in Software Engineering, 2024, pp. 313–322.
[49] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode

compose: Code generation using transformer,” in International Sympo-

sium on the Foundations of Software Engineering, 2020, pp. 1433–1443.
[50] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or bad

comments? */,” in Symposium on Operating Systems Principles, 2007,
pp. 145–158.

[51] L. Tan, Y. Zhou, and Y. Padioleau, “acomment: Mining annotations from
comments and code to detect interrupt related concurrency bugs,” in
International Conference on Software Engineering, 2011, pp. 11–20.

[52] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment: Testing
Javadoc comments to detect comment-code inconsistencies,” in Inter-

national Conference on Software Testing, Verification, and Validation,
2012, pp. 260–269.

[53] J. Team, “Jdeps manual,” https://docs.oracle.com/en/java/javase/11/tools/
jdeps.html#GUID-A543FEBE-908A-49BF-996C-39499367ADB4,
2024.

[54] R. Team, “Randoop manual,” https://randoop.github.io/randoop/manual/,
2024.

[55] N. Tracey, J. Clark, K. Mander, and J. McDermid, “Automated test-data
generation for exception conditions,” Software: Practice and Experience,
vol. 30, no. 1, pp. 61–79, 2000.

[56] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan,
“Unit test case generation with transformers and focal context,” arXiv

preprint arXiv:2009.05617, 2020.
[57] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Generating

accurate assert statements for unit test cases using pretrained transform-
ers,” in International Workshop on Automation of Software Test, 2022,
pp. 54–64.

[58] G. VanRossum and F. L. Drake, The python language reference. Python
Software Foundation Amsterdam, The Netherlands, 2010, vol. 561.

[59] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
testing with large language models: Survey, landscape, and vision,”
Transactions on Software Engineering, 2024.

[60] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,
and H. Hajishirzi, “Self-instruct: Aligning language models with self-
generated instructions,” in Annual Meeting of the Association for Com-

putational Linguistics, 2023, pp. 13 484–13 508.
[61] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,

“On learning meaningful assert statements for unit test cases,” in
International Conference on Software Engineering, 2020, pp. 1398–
1409.

[62] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot
learners,” arXiv preprint arXiv:2109.01652, 2021.

[63] Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen, and X. Peng,
“No more manual tests? Evaluating and improving ChatGPT for unit
test generation,” arXiv preprint arXiv:2305.04207, 2023.

[64] L. Yujian and L. Bo, “A normalized levenshtein distance metric,”
Transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007.

[65] H. Zhang, J. Luo, M. Hu, J. Yan, J. Zhang, and Z. Qiu, “Detecting
exception handling bugs in C++ programs,” in International Conference

on Software Engineering, 2023, pp. 1084–1095.
[66] J. Zhang, X. Wang, H. Zhang, H. Sun, Y. Pu, and X. Liu, “Learning

to handle exceptions,” in Automated Software Engineering, 2021, pp.
29–41.

[67] J. Zhang, P. Nie, J. J. Li, and M. Gligoric, “Multilingual code co-
evolution using large language models,” in International Symposium on

the Foundations of Software Engineering, 2023, pp. 695–707.
[68] J. Zhang, S. Panthaplackel, P. Nie, J. J. Li, and M. Gligoric, “CoditT5:

Pretraining for source code and natural language editing,” in Automated

Software Engineering, 2022, pp. 1–12.
[69] H. Zhong, “Which exception shall we throw?” in Automated Software

Engineering, 2022, pp. 1–12.

	Introduction
	Use Cases
	Developer-oriented use case
	Machine-oriented use case

	exLong
	Training
	Identifying EBTs and non-EBTs
	Executing EBT and collecting stack trace
	Computing the guard expression
	Connecting EBTs to relevant non-EBTs
	Instruction fine-tuning

	Inference
	Collecting non-EBTs' stack traces to reach potential target throw statements
	Selecting task inputs
	Assembling the prompt

	Dataset
	Dataset Collection
	Dataset Statistics

	Evaluation Design
	Evaluation Metrics
	Developer-oriented use case
	Machine-oriented use case

	Baselines
	Learning-based tools
	Automatic test generation tools

	Hardware

	Results
	RQ1: Developer-Oriented Use Case
	RQ2: Ablation Study of Stack Traces and Conditions
	RQ3: Selection of non-EBTs
	RQ4: exLong Built with GPT-4o
	RQ5: Machine-Oriented Use Case

	Case Study
	Limitations
	Related Work
	Conclusion
	References

