2404.01200v1 [stat.ML] 1 Apr 2024

arxiv

Large-Scale Non-convex Stochastic Constrained Distributionally Robust
Optimization

Qi Zhang !, Yi Zhou 2, Ashley Prater-Bennette *, Lixin Shen *, Shaofeng Zou !

'University at Buffalo
2The University of Utah
3 Air Force Research Laboratory
4Syracuse University
qzhang48 @buffalo.edu, yi.zhou@utah.edu, ashley.prater-bennette @us.af.mil, Ishen03 @syr.edu, szou3 @buffalo.edu

Abstract

Distributionally robust optimization (DRO) is a powerful
framework for training robust models against data distribu-
tion shifts. This paper focuses on constrained DRO, which
has an explicit characterization of the robustness level. Exist-
ing studies on constrained DRO mostly focus on convex loss
function, and exclude the practical and challenging case with
non-convex loss function, e.g., neural network. This paper de-
velops a stochastic algorithm and its performance analysis
for non-convex constrained DRO. The computational com-
plexity of our stochastic algorithm at each iteration is inde-
pendent of the overall dataset size, and thus is suitable for
large-scale applications. We focus on the general Cressie-
Read family divergence defined uncertainty set which in-
cludes x>-divergences as a special case. We prove that our
algorithm finds an e-stationary point with a computational
complexity of O(e~3%+~°), where k. is the parameter of
the Cressie-Read divergence. The numerical results indicate
that our method outperforms existing methods. Our method
also applies to the smoothed conditional value at risk (CVaR)
DRO.

1 Introduction

Machine learning algorithms typically employ the approach
of Empirical Risk Minimization (ERM), which minimizes
the expected loss under the empirical distribution Py of the
training dataset and assumes that test samples are gener-
ated from the same distribution. However, in practice, there
usually exists a mismatch between the training and testing
distributions due to various reasons, for example, in do-
main adaptation tasks domains differ from training to testing
(Blitzer, McDonald, and Pereira 2006; Daume III and Marcu
2006); test samples were selected from minority groups
which are underrepresented in the training dataset (Grother
et al. 2011; Hovy and Sggaard 2015) and there might ex-
ist potential adversarial attacks (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017). Such a mismatch may
lead to a significant performance degradation.

This challenge spurred noteworthy efforts on develop-
ing a framework of Distributionally Robust Optimization
(DRO) e.g., (Ben-Tal et al. 2013; Shapiro 2017; Rahimian
and Mehrotra 2019). Rather than minimizing the expected
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loss under one fixed distribution, in DRO, one seeks to op-
timize the expected loss under the worst-case distribution in
an uncertainty set of distributions.

Specifically, DRO aims to solve the following problem:

inf sup Eg~g [l(z;9)], (D
T Q~U(Py)

where U (Pp) is an uncertainty set of distributions centered
at Py, Py is the empirical distribution of the training dataset,
{ is the loss function, and z is the optimization variable. For
example, the uncertainty set can be defined as

U(P) :==1{Q : D(Q| F) < p}, (2)

where D is some distance-like metric, e.g., Kullback-Leibler
(KL) divergence and x? divergence, and p is the uncertainty
level. In practice, for ease of implementation and analysis,
a relaxed formulation of eq. (1), which is referred to as the
penalized DRO, is usually solved (Levy et al. 2020; Jin et al.
2021; Qi et al. 2021; Sinha et al. 2017):

ir;f sgp Es~q [l(z;S)] — AD(Q|| Po), 3)

where A > 0 is a fixed hyperparameter that needs to be cho-
sen manually. In contrast to constrained DRO in eq. (1), a
regularization term is added to the objective function to keep
the distribution Q and the distribution P, close, and the hy-
perparameter A is manually chosen beforehand to control the
tradeoff with minimizing the loss. Compared with the penal-
ized DRO setting, the constrained DRO problem in eq. (1)
requires that the distribution ) to be strictly in the uncer-
tainty set, and searches for the optimal solution under the
worst-case distribution in the uncertainty set. Therefore, the
obtained solution from the constrained DRO is minimax op-
timal for distributions in the uncertainty set, whereas it is
hard to get such a guarantee for the penalized DRO relax-
ation. In this paper, we focus on the challenging constrained
DRO problem in eq. (1).

Existing studies on constrained DRO are limited to con-
vex loss functions or require some additional assumptions
(Soma and Yoshida 2020; Hashimoto et al. 2018; Levy
et al. 2020; Duchi and Namkoong 2018; Duchi, Glynn, and
Namkoong 2021; Qi et al. 2022; Wang, Gao, and Xie 2021).
Little understanding on the practical non-convex loss func-
tions, e.g., neural network, is known. In this paper, we focus
on the constrained DRO problem with non-convex loss.



DRO problems under different uncertainty sets are fun-
damentally different. As will be discussed later in related
works, there is a rich literature on DRO with various uncer-
tainty sets. In this paper, we focus on the general Cressie-
Read family divergence defined uncertainty set (Duchi and
Namkoong 2018; Jin et al. 2021), which includes, e.g., X2
divergence, as a special case (see Section 2 for more de-
tails). We also investigate the smoothed conditional value at
risk (CVaR) DRO problem.

More importantly, we focus on the practical yet challeng-
ing large-scale scenario, where F is the empirical distribu-
tion of N samples and N is very large. In classic stochastic
optimization problems, e.g., ERM, it is easy to get an un-
biased estimate of the gradient using only a few samples,
and therefore the computational complexity at each itera-
tion is independent of the training dataset size. However,
in the DRO problems, due to taking the worst-case distri-
butions in the objective, the problem becomes challenging.
Many existing DRO algorithms incur a complexity that in-
creases linearly (or even worse) in the training dataset size
(Duchi and Namkoong 2018; Namkoong and Duchi 2016;
Ghosh, Squillante, and Wollega 2018), which is not feasible
for large-scale applications. In this paper, we will design a
stochastic algorithm with computational complexity at each
iteration being independent of the training dataset size (Qi
et al. 2022; Wang, Gao, and Xie 2021; Levy et al. 2020).

1.1 Challenges and Contributions

The key challenges and main contributions in this paper are
summarized as follows.

e For large-scale applications, the number of training
samples is large, and therefore directly computing the
full gradient is not practical. Nevertheless, as discussed
above, it is challenging to obtain an unbiased estimate of
the gradient for DRO problems using only a few samples.
For ¢-divergence DRO problem, the distributions in the
uncertainty set are continuous w.r.t. the training distribu-
tion. Thus the distributions in the uncertainty set can be
parameterized by an N-dimensional vector (Namkoong
and Duchi 2016). Then the DRO problem becomes a
min-max problem and primal-dual algorithms (Rafique
et al. 2022; Lin, Jin, and Jordan 2020; Xu et al. 2023) can
be used directly. Subsampling methods in DRO were also
studied in (Namkoong and Duchi 2016; Ghosh, Squil-
lante, and Wollega 2018). However, all the above stud-
ies require a computational complexity linear or even
worse in the training dataset size at each iteration and
thus is prohibitive in large-scale applications. In (Levy
et al. 2020), an efficient subsampling method was pro-
posed, where the batch size is independent of the train-
ing dataset size. However, they only showed the sampling
bias for x2 and CVaR DRO problems. In this paper, we
generalize the analysis of the bias in (Levy et al. 2020)
to the general Cressie-Read family. We further develop
a Frank-Wolfe update on the dual variables in order to
bound the gap between the objective and its optimal value
given the optimization variable z and the biased estimate.

* The second challenge is due to the non-convex loss func-

tion. Existing studies for the Cressie-Read divergence
family (Duchi and Namkoong 2018; Levy et al. 2020) are
limited to the case with convex loss function, and their
approach does not generalize to the non-convex case. The
key difficulty lies in that the subgradient of the objective
function can not be obtained via subdifferential for non-
convex loss functions. Instead of explicitly calculating
the worst-case distribution as in (Duchi and Namkoong
2018; Levy et al. 2020), we propose to design an algo-
rithm for the dual problem which optimizes the objective
under a known distribution. Thus the gradient of the ob-
jective can be efficiently obtained.

The third challenge is that the dual form of constrained
DRO is neither smooth nor Lipschitz, making the con-
vergence analysis difficult. Existing studies, e.g., (Wang,
Gao, and Xie 2021), assume that the optimal dual vari-
able is bounded away from zero, i.e., A* > \g for some
Ao > 0, so that it is sufficient to consider A > Ag.
However, this assumption may not necessarily be true
as shown in (Wang, Gao, and Xie 2021; Hu and Hong
2013). In this paper, we generalize the idea in (Qi et al.
2022; Levy et al. 2020) to the general Cressie-Read di-
vergence family. We design an approximation of the orig-
inal problem, and show that it is smooth and Lipschitz.
The approximation error can be made arbitrarily small
so that the solution to the approximation is still a good
solution to the original. We add a regularizer to the ob-
jective and at the same time we keep the hard constraint.
In this way, we can guarantee that its dual variable \ has
a positive lower bound.

* We design a novel algorithm to solve the approximated
problem and prove it converges to a stationary point
of the constrained DRO problem. The numerical results
show that our proposed algorithm outperforms existing
methods.

1.2 Related Work

Various Uncertainty Sets. (-divergence DRO problems
(Ali and Silvey 1966; Csiszar 1967) were widely studied, for
example, CVaR in (Rockafellar, Uryasev et al. 2000; Soma
and Yoshida 2020; Curi et al. 2020; Tamar, Glassner, and
Mannor 2015), x2-divergence in (Hashimoto et al. 2018;
Ghosh, Squillante, and Wollega 2018; Levy et al. 2020), KL-
divergence in (Qi et al. 2021, 2022; Hu and Hong 2013)
and Sinkhorn distance (Wang, Gao, and Xie 2021), a vari-
ant of Wasserstein distance based on entropic regulariza-
tion. However, the above studies are for some specific di-
vergence function and can not be extended directly to the
general Cressie-Read divergence family.

Penalized DRO. The general ¢-divergence DRO problem
was studied in (Jin et al. 2021) where the proposed algorithm
works for any divergence function with a smooth conjugate.
The authors also designed a smoothed version of the CVaR
problem and showed their method converges to a stationary
point. However, their method is for the penalized formula-
tion and does not generalize to the constrained DRO. In this
paper, we focus on the challenging constrained DRO, the
solution of which is minimax optimal over the uncertainty



set. Our proposed algorithm can also be applied to solve the
smoothed CVaR problem in the constrained setting.

Constrained DRO with Convex Loss. The general ¢-
divergence constrained DRO problem was studied in
(Namkoong and Duchi 2016). Instead of optimizing from
the dual form, the authors treat the worst-case distribution as
a N-dimentional vector and implement a stochastic primal-
dual method to solve the min-max problem. However, the
computational complexity at each iteration is linear in the
number of the training samples and can not be used in large-
scale applications. The same problem was further studied in
(Duchi, Glynn, and Namkoong 2021). The authors pointed
out that minimizing constrained DRO with -divergence
is equivalent to adding variance regularization for the Em-
pirical Risk Minimization (ERM) objective. The general
Cressie-Read divergence family DRO problem was studied
in (Duchi and Namkoong 2018), where the basic idea is
to calculate the worst-case distribution for the constrained
DRO first and then use the subdifferential to get the subgra-
dient. Furthermore, the X2 and CVaR DRO problems were
studied in (Levy et al. 2020). Compared with the method in
(Duchi and Namkoong 2018), they calculate the worst-case
distribution for the penalized DRO and then optimize both
the Lagrange multiplier and the loss function. This approach
converges to the optimal solution with a reduced complex-
ity. Their method can be extended to the general Cressie-
Read divergence family. However, all the above papers are
limited to the case with convex loss function. To the best
of our knowledge, our work is the first paper on large-scale
non-convex constrained DRO with the general Cressie-Read
divergence family. We note that the KL DRO was studied in
(Qi et al. 2022), which however needs an exponential com-
putational complexity. We achieve a polynomial computa-
tional complexity for the Cressie-Read divergence family.

2 Preliminaries and Problem Model
2.1 Notations

Let s be a sample in $ and F, be the distribution on the
points {s;}¥,, where N is the size of the support. De-
note by AN := {p € R"\Zfilpi = 1,p; > 0} the N-
dimensional probability simplex. Denote by 2 € R the op-
timization variable. We denote by 1x(z) the indicator func-
tion, where 1x(x) = 0if x € X, otherwise 1x(x) = co. Let
¢ :R% x $ — R be a non-convex loss function. Let || - || be
the Euclidean norm and (¢)1 := max{¢,0} be the positive
part of £ € R. Denote V, by the gradient to z. For a func-
tion f : R* — R, a point € R is said to be an e-optimal
solution if | f(z) — f(z*)| < ¢, where f(z*) is the optimal
value of f. If the function f is differentiable, a point z € R?
is said to be first-order e-stationary if ||V f(z)|| < e.

2.2 Assumptions

In this paper, we take the following standard assumptions
that are commonly used in the DRO literature (Duchi and
Namkoong 2018; Levy et al. 2020; Qi et al. 2021, 2022;
Wang, Gao, and Xie 2021; Soma and Yoshida 2020):

* The non-convex loss function is bounded: 0 < £(z; s) <
B for some B > 0,Vz € R%, s € 5.

» The non-convex loss function is G-Lipschitz such that
[¢(x1;8) — €(x2; 8)| < G||lz1 — 22| and L-smooth such
that ||V, 0(x1;8) — Vil(z2;s)|| < L||lxy — x2|| for any
z1,22 € Réand s € 8.

2.3 DRO Objective and Its Dual Form
In ERM, the goal is to solve

infEgp, [€(z;9)],

where the objective function is the expectation of the loss
function with respect to the training distribution Py. To solve
the distributional mismatch between training data and test-
ing data, the formulation of DRO (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017; Rahimian and Mehrotra
2019) was developed, where the goal is to minimize the ex-
pected loss with respect to the worst distribution in an un-
certainty set U(P):

inf sup Eg~q l(x;5). 4)
T Q~U(Py)

DRO problems under different uncertainty sets are funda-
mentally different. Consider the uncertainty set defined by
p-divergence D, (Q|| Fy), which is one of the most common
choices in the literature and can be written as D, (Q|| Fp) :=

[ (%) dPy, where ¢ is a non-negative convex function

such that ¢(1) = 0 and ¢(¢) = 400 for ant ¢ < 0. Then let
the uncertainty set U (P) := {Q : D,(Q||Fo) < p} where
p > 0 is the radius of the uncertainty set.

In this paper, we study the general Cressie-Read family of
(p-divergence (Cressie and Read 1984; Van Erven and Har-
remos 2014), where

th —kt+k—1

T 5)

or(t) :=
k € (—o00,+00) \ {0,1}. Let k, = X;. This family in-
cludes as special cases x2-divergence (k = 2) and KL di-
vergence (k — 1). When k > 2, the conjugate function of
@k (t) (which will be introduced later) is not smooth, thus the
problem becomes hard to solve even in the penalized formu-
lation (Jin et al. 2021). In this paper, we focus on &k € (1, 2]
(k« € [2,00)). The objective is

inf sup

Es~q U(z; S). (6)
T Q:Dy, (QlIPy)<p

Solving (6) directly is challenging due to the sup over Q.
In (Namkoong and Duchi 2016), a finite-dimensional vector
q was used to parameterize the distributions in the uncer-
tainty set since ) < P, for ¢-divergence. Then the DRO
problem becomes a convex concave min-max problem. This
method can be extended to the case with non-convex loss
function by applying the algorithms for non-convex concave
min-max problems (Rafique et al. 2022; Lin, Jin, and Jordan
2020; Xu et al. 2023). However, the dimension of distribu-
tion in the uncertainty set is equal to the number of training



samples. Thus, the computational complexity at each itera-
tion is linear in the sample size and is prohibitive in large-
scale applications.

To obtain a complexity independent of the sample size,
one alternative is to use its dual. By duality, we can show
that the DRO objective (6) can be equivalently written as
(Levy et al. 2020; Shapiro 2017)

lx;S)—10 N
ot o (5) 0]
where @Z(t’) = sup,{t't — vr(t)} is the conjugate func-
tion of ¢ (t'). In this way, the optimization problem un-
der an unknown distribution is rewritten into one under a
known distribution. The subsampling method can then be
used, which leads to a complexity independent of the sample
size (which will be introduced later). For the Cressie-Read
family in (5), the corresponding conjugate function family

is p(t) = ¢ [((kz — 1)t 1)k — 1] . Therefore, the objec-
tive can be written as

: A Uz 8) =7 \™
oAb erES~Fo [k (“f B S 1)

+
1 _
+>\<pk)+77.

Letn=n— ﬁ and the corresponding objective is

. (k — 1)k -
it Been | B ) - i
1
A — .
+ (/H- k(k—l)) +n
Define
k—1 k. i 3
flz; Asm s) Z%(ﬁ(az; S) — )k A1k
1
A —_— . 7
+ (p+k(k_1)>+n @)
Thus the goal is to solve
lIJ}f )\>10nrf]€RF(x A;n), (8)

where  F(z;\;n) is defined as
Es~p, [f(ﬂf; A S)} :
DRO problem as one to minimize an objective function

under a known distribution, where subsampling method
could be used to reduce the complexity.

F(z;Nm) =
Therefore, we reformulate the

3 Analysis of Constrained DRO

In this section, we analyze the constrained DRO problems
under Cressie-Read family divergence uncertainty sets with
general smooth non-convex loss function. We first discuss
the challenges appearing in constrained formulations, then
we present how to construct the corresponding approxi-
mated problem in order to overcome these challenges.

3.1 Smooth and Lipschitz Approximation

For A € [0,+00),n € R, the objective F'(z; A;n) is nei-
ther smooth nor Lipschitz. Thus it is difficult to implement
gradient-based algorithms. In the following, we will con-
struct an approximation of the original problem so that the
objective function F'(z; \; n) becomes smooth and Lipschitz
by constraining both A and 7 in some bounded intervals.
Denote by w = (k(k — 1)p + 1)%. Since the
loss function is bounded such that 0 < ¢ < B,
we can show that there exists an upper bound A =

(k — D)(k(k—1)p+1)" % (1 + ”) B which
1 (L) ke

only depends on k,p and B such that the optimal value
A* < . In this paper, we do not assume that A* > Xy > 0 as
in (Wang, Gao, and Xie 2021). Instead, we consider an ap-
proximation with A € [Ag, A], and show that the difference
between the orignial and the approximation can be bounded.
We can show corresponding optimal n* € [—7j, B], where

n=A (W) """ The challenge lies in that the value
of 1 can be negative. Thus given this 7, the optimal value of
A can be quite large then it is hard to upper bound \. In our
proof, we change the objective to the function that only de-
pends on 7 and find the lower bound on 7. Based on this
lower bound, we get the bound on .

We show that the difference between the original and the
approximation can be bounded in the following lemma.

Lemmal. Vz € R, 0 < \g < ),

inf F(x;\;n) — inf  F(x; )\ < 2A0p-
AE[No,N,n€[—7,B] ( ) A>0,n€R ( ) 0p

Note in the proof of this lemma, we derive an equivalent
expression of

sup Es~q [€(z;5)] = AoDg, (Ql| Po),

Q:Dy, (Q[lPo)<p

where both the hard constraint and regularizer are kept. This
is different from the approach in Section 3.2 of (Shapiro
2017). Note that this equivalent formulation holds for any
-divergence DRO problem.

Lemma 1 demonstrates that the non-smooth objective
function can be approximated by a smooth objective func-
tion. A smaller Ay makes the gap smaller but the function
“less smooth”.

3.2 Convexity and Smoothness on Parameters

The advantage of our approximated problem is that the func-
tion is smooth in all x, A, and 7. Moreover, We find that the
objective function is convex in A and 7 though the loss func-
tion is non-convex in x.

Lemma 2. Define z = (\,n) € M, where M = {(\,n) :

A€ [Mo,A,n € [-7,B]}. ThenVx € RY 2 € M, the
objective function F (3: z) is convex and L.-smooth in z,
2(B+1)

)\10 I 2(B+17 + (B+n) ifk, = 2and L,
=" g (k- 1) ((fzi’?f* Bt )ik >2
0

)\k* 1

where L, =




Algorithm 1: SFK-DRO

Input: Iteration number 7, initial point (x1,z;), sam-
ple numbers mn.,n,, stepsize «, and one constant

C
1: Lett=1
2: whilet <T do
3:  randomly select n, samples S1, Ss, ..., Sy, and com-

pute Vo fo(as, z¢) = So0e, Vel @eizeSi)

=1 Ng
4 w1 = x — oV folag, 2)
5:  randomly select n, samples S1, 53, ..., Sy, and com-

ne  Vaof(xer1;2e;S;)
pute V. fo(ey1,2¢) = 352, =0

=1 n,
6:  e=argminee m(e, Vi f2(Te41; 21))
7: dt = €t — Z¢
8 gt = (d, =V fo(Te4152t))

9: v =min{% 1}

10: Zt+1 = 2t + ’ytdt

11: t=t+1

12: end while

t' = argming ||V fo (@ 20) |2 + g7

Output: (.’Et/+1, Zt/)

Moreover, the objective function F(x; z) is L,-smooth in
_ (k 1 k‘ /\1 k*(B—F??)k _2((k —1)G2

x, where L,
(B+17)L).

Note the first-order gradient of the objective function is
non-differential at some point when k, = 2. Therefore, we
discuss in two cases: k. > 2 and k., = 2. In the first case,
we can get the Hessian matrix of the objective. In the second
case, we show the smoothness and convexity.

4 Mini-Batch Algorithm

Existing constrained stochastic Proximal Gradient De-
scent (PGD) algorithm for general non-convex functions
(Ghadimi, Lan, and Zhang 2016) can be used to solve the ap-
proximated problem directly. However, this method requires
a small fixed step size, leading to a 4slow convergence. Ad-
ditionally, it involves a projection step, making it less effi-
cient for large-scale problems.

In this paper, we find that the objective F'(z; z) is convex
in z and non-convex in z. This motivates us to consider a
stronger convergence criterion:

- ; N

| (25 Ay mp) A,g{)fm/F(m i)l <e

In this paper, we use the Frank-Wolfe method to up-
date the variable z. Compared with the PGD method, the
Frank-Wolfe method can solve the stepsize selection prob-
lem by adapting the stepsize through line search tech-
niques and does not require projection, making it effi-
cient for large-scale applications. We then provide our
Stochastic gradient and Frank-Wolfe DRO algorithm (SFK-
DRO), which optimizes x and z separately (see Algo-
rithm 1). Define D = , 09 =

P (BTGNS o = (o414 ) +

1)k )\ Tkx —\kx
(k=)™ (B (k —1+?3°fn) A = F(zy;21) —

inf, e m F(z; 2) and C is a constant such that C > D?L,.
The convergence rate is then provided in the following the-
orem.

. .. . 12L,02
Theorem 1. With mini-batch sizes n, = =FZ°

O He2), n, > BZAL L O(e-2) such
that 3B\/1+ k(k — 1)p 4“25"2) < S f ke = 2

1
or 3B(1+k( ) ) (ﬂ% + 21@*71(;(1:*72)”;) . < i lf
ki > 2 and o = % Ao = i,for any small € > 0 such
that 2 L= ~ O(e~ )22andD"1 ~ O(e) < 1, at most

T = 48CAe~2 ~ O(\; ¥ ~1e2) iterations are needed to
guarantee a stationary point (xt/+17 zt/) in expectation:

E|VoF(zpy1520)]| < e,

EHF(It'H;Zﬁ) - A>1()D£€R F (241 >\;77)H <e.

A proof sketch will be provided later. Before that,
we introduce a lemma for our subsampling method. Via
this lemma, we can show the complexity is indepen-
dent of the sample size and thus is suitable for our
large-scale setting. When we optimize z, an estimator

fola,2) = 3002, f(znz 51) is build to estimate F(z;z) =

Es~p, [ flz; 2,8 )} . Though the estimator is unbiased, in our

Frank-Wolfe update process (Jaggi 2013; Frank, Wolfe et al.
1956; Lacoste-Julien 2016) we need to estimate min F'(z; z)
via Emin f,(x; z). Obviously, the expectation of minimum
is not equal to the minimum of expectation, thus it is a bi-
ased estimator. In the following lemma, we show that this
gap can be bounded by a decreasing function of the sample
batch n.

Lemma 3. For any bounded loss function ¢, if k., = 2,

inf  [F(zi1;0¢)]—E [ inf fz(xtJrl;)\;n):H

A>0,nER A>0,n€R
4+ log(n,
<3B\I+k(k—1)p %(n);
and if k. > 2,

Azlor},f,em [F(2t41;A;m)] — E Lzlor}geR fo(ir; A 77)] ‘

—1)p)* 1 1 w
)p) nt + 2k-~1(k, — 2)n, :

Note that (Levy et al. 2020) only shows this lemma when
k. = 2, and we extend the results to k, > 2. This lemma
shows that the gap is in the order of O(nz_ﬁ) and is inde-
pendent of the total number of samples.

e

< 3B(1+k(k

4.1 Proof Sketch of Theorem 1

We use a stochastic gradient descent method (Moulines and
Bach 2011; Gower et al. 2019; Robbins and Monro 1951) to



update x. Since the objective function is L,-smooth in z, if
o < 57— we have that:

%E [IVaF (26 20) 7] < E[F (26 20)] = E[F (20115 20)]

+ &P L E[||Va fa i 20) — Vo F (245 20) 1%, ©))
where f.(z,2) = Z?;lﬂ%zsﬂ Define o9 =

%k‘*(B + )k =1GA; "+ and we can show that
2
Vo F (2 2)|7] < %0 (10)

E[vafl(xty Zt) -

Since z € M, instead of the stochastic gradi-
ent descent method, we employ the Frank-Wolfe
method (Frank, Wolfe et al. 1956) to update =z.
Define ¢, = argmineca(e, Ve fo(ris;20)) and
gt = {er — z¢, —V . f2(x¢41; 2¢)). In addition, we have that
Gt > f2(Teg1s 2) ?eliel fa@iga; 2)
since f,(x; z) is convex in z (Jaggi 2013). We can show that
9 ~ O(Xg) thus for small A\g we have £ < 1. Then due to

the fact that the objective is L ,-smooth in 2z ((9) of (Lacoste-
Julien 2016)), we have that

2 D252
B |22 ] < BlP(ennsan] - ElF (sl g
(11)
By recursively adding (9) and (11), we have that
T
1 a g?
2> 2R (VL)) + B {45}
t=1
Py z) — EF(@ras zre)] | a2L£12+D20%
T ng Cn,
(12)

Since L, ~ O(\;™ 1) and L. ~ O(\;*™1), for small
Ao we have C > D?L, > 2L,. Then we set & = == <

2C —
g T = 48CAe? ~ 0N " 1e2),m, = 12La2” and
denote A = F(x1;21) —

Ce?
[1,T] we have that

min, .em F(x; 2), for some t' €
E[|VoF (zes2e)l] < 5. (13)

(14)

N N ™

E |:F(xt’+1§ 2y) — Zienja Ja(@er s 2)} < Elgr] <

We  choose (x441,2¢) as our output and

we need to bound E[|V,F(zyi1; ztf)||] and

E[F(axpy1;20) — infyepmq Fro(xe41;2)]). Since  F(z;2)

is L,-smooth in x, we have that E[|V, F(xy41; 2¢)||] < e.
By Lemma 3, we pick small n, such that

Azlg;lyf]ER [F(zeq1:An)] — E L> o fe (@i s 77)}

Lemma 1 also works for f,. When /\0 = 8 ,

inf (s \m) — inf  fo(zAim)| <
/\e[Ao,Xﬁye[—ﬁ,B]f@ 77) Azor,lneJRf (a: 77)

Thus we have

E[F (24415 2¢0) — A>iolf1£ERF(~"3t'+1§)\;7))] <e (15)

which completes the proof.

we have that

=~ o

5 Smoothed CVaR

Our algorithm can also solve other DRO problems effi-
ciently, for example, the Smoothed CVaR proposed in (Jin
et al. 2021). The CVaR DRO is an important (-divergence
DRO problem, where p(t) = l[o,ﬁ) if0 <t < i, and
0 < p < 1is some constant. The dual expression of CVaR
can be written as

Lovar(w; Py) = inf l[ES~P0 [(€(z; S) = n)+ + ]

ner [

The dual of CVaR is non-differentiable, which is undesir-
able from an optimization viewpoint. To solve this problem,
(Jin et al. 2021) proposed a new divergence function, which
can be seen as a smoothed version of the CVaR. Their ex-
periment results show the optimization of smoothed CVaR is
much easier. However, (Jin et al. 2021)’s method only works
for the penalized formulation of DRO. We will show that our
method can solve the constrained smoothed CVaR.

Here, the divergence function is

R e
The corresponding conjugate function is
Gl = 3 los(l =t pep(t). (17)
The objective function is then written as
it i)
“Esr, (ST k] as

We can show that there exist upper bounds for the optimal
values \* and n*. There exists a A > 0 only depends on p, B
and p such that A\* € [0, A] and n* € [0, B]. The proof can
be found in Appendix F.

This objective function is non-smooth when A — 0.
Therefore, we take a similar approach as the one in Sec-
tion 3.1 to approximate the original problem with A &
[Ao, A]. We bound the difference in the following lemma.

Lemma 4. Vz € R% )\ > 0,

inf Fs(z; Asm) —  inf Fy(x; A < 2Xop.
AE[o,N],n€[0,B] s(@5Aim) A>0,nER ( ) 0p

The proof is similar to Lemma 1 thus is omitted here. In
addition, we can show that F(x; z) is L’ -smooth and con-
vex in z, where L, ~ O(\;®) if A € [\o, \]. Also it is easy
to get F(x; 2) is L/ -smooth in 2, where L/, ~ O()\;?).

Similar to eq. (42) and Remark 1 in (Levy et al.
2020), we can prove that ‘min,\zo,neﬂ [Fs(zer1;Nm)] —

E [miny>o,yer fs(@er1; A1) ‘ ~ O(n;%%). We then use

Algorithm 1 directly and the complexity to get an e-
stationary point is O(e~?). The detailed proof can be found
in Appendix F.



H Class 0 1 2 3

5 6 7 8 9”

SFK-DRO 76.11 84.71

EMR 77.64 86.19 6933 54.03 5153 47.05 87.66 8535 87.12 83.15
66.18 5495 58.65 4936 89.06 84.03 88.41 83.09
PAN-DRO 7492 85.62 6572 52.69 5583 49.50 88.85 84.06 88.68 81.29

Table 1: Test Accuracy of each class for imbalanced CIFAR 10.

6 Numerical Results

In this section, we verify our theoretical results in solving
an imbalanced classification problem. In the experiment, we
consider a non-convex loss function and k is set to be 2
for the Cressie-Read family. We will show that 1) although
the computational complexity of PGD (Ghadimi, Lan, and
Zhang 2016) is of the same order as that of our SFK-DRO
algorithm, our numerical results indicate that our proposed
algorithm achieves faster convergence in practice; 2) The
performance proposed algorithm for the constrained DRO
problem outperforms or is close to the performance of the
penalized DRO with respect to the worst classes. Both of
them outperform the baseline.
Tasks. We conduct experiments on the imbalanced CIFAR-
10 dataset, following the experimental setting in (Jin et al.
2021; Chou et al. 2020). The original CIFAR-10 test dataset
consists of 10 classes, where each of the classes has 5000
images. We randomly select training samples from the orig-
inal set for each class with the following sampling ratio:
{0.804, 0.543,0.997,0.593, 0.390, 0.285, 0.959, 0.806,
0.967,0.660}. We keep the test dataset unchanged.
Models. We learn the standard Alexnet model in
(Krizhevsky, Sutskever, and Hinton 2012) with the standard
cross-entropy (CE) loss. For the comparison of convergence
rate, we optimize the same dual objective with the PGD al-
gorithm in (Ghadimi, Lan, and Zhang 2016). To compare
robustness, we optimize the ERM via vanilla SGD. In addi-
tion, we propose an algorithm PAN-DRO, which fixes A and
only optimizes 1 and the neural network. Thus it gets the so-
lution for the penalized DRO problem.
Training Details. We set Ay = 1,7, =0, A\g = 0.1, -7 =
—10, and the upper bounds A = 10, B = 10. To achieve a
faster optimization rate, we set the learning rate o = 0.01
before the first 40 epochs and o = 0.001 after. The mini-
batch size is chosen to be 128. All of the results are moving
averaged by a window with size 5. The simulations are re-
peated by 4 times.
Results. In Figure 1, we plot the value of the CE loss us-
ing different algorithms through the training process. It can
be seen that to optimize the same dual objective function
with the same learning rate, the PGD algorithm converges
slower than our proposed DRO algorithms. Moreover, com-
pared with ERM, the DRO algorithms have higher training
losses but lower test losses, which demonstrates they are ro-
bust.

We also provide the test accuracy of trained models in Ta-
ble 1. It can be shown that for class 3, 4, 5, the accuracies are
the lowest due to the limited samples. For these classes, the

performance of our SFK-DRO algorithm for the constrained
DRO is better or close to the performance of PAN-DRO for

—— ERM_training
—— ERM_test
—— SFKDRO_training

SFKDRO_test

PANDRO_training

PANDRO_test
—— PGD_training
PGD_test

0.800
0.775

0 10 20 30 40 50 60
Epoch

Figure 1: Training curve of classification task.

the penalized DRO. Both DRO algorithms outperform the
vanilla ERM algorithm.

7 Conclusion

In this paper, we developed the first stochastic algorithm for
large-scale non-convex stochastic constrained DRO prob-
lems in the literature with theoretical convergence and com-
plexity guarantee. We developed a smooth and Lipschitz ap-
proximation with bounded approximation error to the orig-
inal problem.Compared with existing algorithms, the nu-
merical results show that our proposed algorithm converges
faster. The computational complexity at each iteration is in-
dependent of the size of the training dataset, and thus our
algorithm is applicable to large scale applications. Our re-
sults hold for a general family of Cressie-Read divergences.
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A Bounds on the parameters

Proof. Firstly, we show for bounded loss function ¢, the optimal value A* has an upper bound. If A* = 0, then absolutely
it has an upper bound. Otherwise, denote by A*(n) for the optimal value of A given  and A* = A\*(n*). We then have
VaF(x; M*(n);n) = 0since F(x; A;n) is convex in A and 7 (which will be shown in ). It then follows that

A () = (- Do Es, [ (w3 8) — )]~ (19)

If n* > 0, then \*(n*) < (k — 1w ! B.
If n* < 0, combine (8) and (19), the objective changes into

o L\ /B
inf F(z;n)=w (IESNPO (l(xz;S) — n)+*> + 1.

z;neER
For the optimal value *, we have V, F'(z;n*) = 0. It follows that
vnF(xé n)
*\ ks ks
== w (B, (6(x; 8) = "))

% (Bsr, (w; 8) =)™t ) +1 =0,

Therefore, we have

1 Esem (U8 -t
B kR
[Bser(€las 8) = 1) ]
‘,’]* k.—1

> T owNk. —1°
SRR
where the last inequality is due to the fact that ¢(x; S) is bounded. Since w > 1, we have that

1
fe (BB
| < el
1—(5)&1
Thus, from (19) we have that
(l)k*%l _
N< (B =1w™! 1+ —2—— | B=A} (20)
L—(5)mT

where \ only depands on the parameter k& and the upper bound on the loss function B. In addition, for any fixed \, for the
optimal value (), we have V, F'(x; A\; n*()\)) = 0. Thus, we have

k
. ok ki.—1 _ k.—1
B (02 8) =0 ()| = Vo7 o
1
Since A € [\g, A], we have * € [~7, B], where 77 = A (W) " This completes the proof. O

B Proof of Lemma 1
Proof. We consider the following question first:

sup  Egnq £(55) = Ao Dy, (Q Po)-
Dy (QIIPo)<p

Suppose ((s) = ;19’0 ((Z)) , then the question can be written as

sup / 0@ 5)¢ — Aopr(C)dPy

¢=0

st. [t < . [ car = 1.



The Lagrangian of the above problem can be written as

£lasGixin) = [ €SI~ O+ Nu() — nedPs
+Ap+1.
The problem is equivalent to

sup inf L(z;(;\;n).
up o, (3¢ Aim)

Since the Slater condition holds, we can exchange the positions of sup and inf thus getting the dual form

inf Ap+ 7+ sup / 03 S)C — (Mo + Ngw(C) — nCdPo.
A20,m ¢=0

Since the maximum operation can be moved inside the integral ( Theorem 14.60 of (Rockafellar and Wets 1998)), we have that

sup / 03 S)C — (Mo + Ngw(C) — nCdPy

¢=0

- / sup £(z; )¢ — (Ao + \)pr(¢) — nCdPo

¢=0

— / sup C[0(z; S) — 1] — (Mo + Ngi ()l Py

¢=0
_ / (Mo + M) (U(w; S) = m)dPy.

For each A > 0 we get (A\p(£))* = \p* (f) Therefore, the objective function changes into

: (U3 S) —n
Alznof:n Ap+n+ (Ao + A)Es~p, ¢k <>\o+)\> :

We then have
inf F(z;0m) — Aop
AE[No,A],n€[~17,B]
. L LxS)—17 -
= _inf Eg.p, [)\(pk(()\)n) + ()\—)\o)p+77:|

A>No,AER

= sup  Eguq l(w;8) — oDy, (QllFo), 2D
De, (QlIPo)<p

where the first equality is due to the definition of F', A\* € [Ao, A, n* € [—17, B], and the second equality is due to the strong
duality we provide above. Moreover, we have

sup Es~g (x;.5)
Doy, (QlIPo)<p

- sup Es~q (x;5) — AoDy, (Q| Po)
Dy, (QlPo)<p

< hop. (22)
Combining (8),(21) and (22), we complete the proof. O]

C Proof of Lemma 2
Proof. From (7), (8) we only need to prove ¢(z; z) = Eg..p, [(6(:1:; S) — n)i*)\l’k*} is convex and smooth in z and smooth
inx.
Firstly, we have
Vad(w;2) = (1— k)Bsep, [ (€5 8) = n)l A7 |
and
V(@i 2) = ~hEswr, | (€ ) = )l AR



If k, = 2, the problem becomes a x2-DRP problem and V, ¢(z) is not differentiable when ¢(z; S) — n = 0. For any z; =

(A13m1), 22 = (A2;m2) where A\, A2 € [Ag, A], we have that for any fixed s € $ and a € [0, 1]
20 A2 (€(w; ) — )4 (E(xs 8) —m2) 4
S A (U s) = m2)3 + A3 (x5 8) — m)3
Thus, we have
A1z (az(g(l”; s) — 771)3- +(1- a)2(€(x; ) — 772)3-
+2a(1 — a)((z;5) —m1) 4 (€(x; 8) — n2) )
<(a(l = a)A? + (1= a)* M ho) (Uas s) — m2)%
+ (a(1 — a)A2 + a® A o) (U(z; 5) — nl)i.
In addition, we have
(£(x;s) — am + (1 — a)n2)*,
2

<a®(U(w;s) —m)i + (1= a)*(Uxys) — m2)}
+2a(1 — a)(£(x; 5) — m)+ (€(z; 5) = n2) -

Combine (23) and (24), we can get

1 2
e () —am = (=)}

< (s teCoe) = m)2 + 2 o) = )
Take expectations for both sides, we have
¢ (w5021 + (1 = a)z2) < ad(x, 21) + (1 — a)(x, 22),
which demonstrates both ¢(z; z) and F(z; z) is convex in z. We then show F' is smooth in z. We have that

||vz¢(xa Zl) - Vzd)(x, 22)) H

_lop (blwss) —m)y  (U(x5s) —m2)y
o fo A Ao
(L(z;s) —m)i  (U(x;s) —12)3
M I S e
(U(xss) —m)r (U(x58) —m2)t
< —
— 'Q]ESNPO { )\1 )\1
(C(x;s) —m2)+ _ (U(x;5) —m2)+
(E(l“; 8) - 771)%r (f(%”% 5) - 772)3
e e
(Uz;s) —m2)s (Ux;s) —m2)d
e e e
2lm —na| | 2(B+1n) 2(B +1)
< — N _
ST v A1 — o] + v In — n2|
B+7)?
P BEIN
0

+

2  4(B+1n)
S(M

S S

2(B +7)?
(B +1) )|Zl_22.

(23)

(24)

(25)



Therefore, ¢(x; z) is )\ + (B+") + 2(3/\?7) -smooth and F'(z, z) is )\ + 2(B+") + (BJr") -smooth in z.
0

If by > 2, Vyo(2) is d1fferent1able. We can get the Hessian matrix of ¢ with respect to z as

ki(ks — 1)Es~p, |(£(z;S) — 77)’1*)\*’“**1 ,
o ku(kw — DEgop, [(L(x;8) —m)i Ak |
(k‘* I)ESNPO (B(x7 S) — n)’rfl/\—k* ,
ko(k« — DEs~p, |(£(z;S) — n)’jr*—Q)\lfk*}

Suppose aq, as are the eigenvalues of H. We have
ar + as = tr(H) = ky (k. — 1)Eg.p, {
(€ 8) = i A5 T1  (0as ) =)y 2N
>0
and
aray = det(H) = k2(k, — 1)2X72k-
% (Eswr, (U3 8) = mh Bsor, (63 8) = m)l 2

~ (Bsen @ s) =) ) 20

Thus H is semi-positive definite which demonstrates ¢ is convex in z. Moreover, the smooth constant should be the largest
eigenvalue. Therefore we get

(k — 1) (Bt (B+p)~?

Now we prove the objective is L,-smooth in z. Firstly, we have

Vad(x;2) = kA "FEgp, {( (2;5) —n)k=—'v 4

For any x1, x2 we have that

||V$¢(x17 Z) - va:(b(x% Z)) H

<k. [(C(21; ) =)~ Val(@1; S)
— (E(xg;S) - n)k v, (xzq; S ]H
+ ki« [(C(22; S) =) ™!

x (Vallwn: §) — V., b(x1; 5))] .
Since we have
(615 S) =)y = = (Uwa; S) = )|
<(B+m)* 2 |6(z1:8) — L2 9|
<(ke = 1)(B+ )" 2Gllz1 — 2|,

where the first inequality is because both ¢(x;.S) and 7 are bounded. And the second inequality is due to the fact that £ is
smooth. Thus we have that

1(6(x1; ) =)~ = (Ea2; ) — )7
<EANTE(B 4+ )" 2 (ke = 1)G? |21 — 2o
R (B4 ) Ly — ],
Therefore, ¢(; z) is kAL =% (B+1)% ~2((ky — 1)G% + (B +17)L)-smooth and F(z, z) is = Dk*k MF(B+)P =2 ((ky —

1)G? + (B + 7)) L)-smooth in z.
O



D Proof of Theorem 1
Proof. For the update of z, we have that
Tep1 = Ty — AV fo (T4 2¢).
Since F'(x, z) is Ly-smooth in x, we have
F($t+1; Zt)
<F(wg;2e) + (Vo F (x4 2¢), Tog1 — Tt)
L,
+ 7||$t+1 — x|

:F(zt;zt) - Oévzfz(ft;zt)TVmF(xt;Zt)

o?L
2V s 20|

=F(2;2) — aVa falwr;20) Vo F (245 2)
o?L,
2
SF(w452) — aVafol(ze 20) Vo F (24 2)
+ 02 Ly ||V folwe; 20) = Vo F (24 20) |
+ 02 L, ||V F (245 22) || (26)

+

+ |V fu (w65 20) — Vi F (245 20) + Vi F (245 20) |2

Given z; and z;, take the expectation for both sides of (24), we have that
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where the inequality is because V, f(z; 2z; s) < %k*(B + )k ~1GA 7+ = g is bounded. After that, we take expecta-
tions for both sides and we have

gIE IV Fo(ze; 22)|1°] <E[F (245 20)] — E[F (2441 20))
0_2
+a?L, 2. (28)
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For the update of z and V4; € [0, 1], we get an affine invariant version of the standard descent Lemma ((1.2.5) in (Nesterov
2003))
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where C' > D?L. In our algorithm we have v, = min {%,1} and
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Since L, ~ O(Ay k*_l) thus for small Ao we have £ < 1. Consequently, we can assume v = % and we have
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Since f,(z; z) is convex in z, we have that g; > f,(2¢y1; 2:) — min,eam [ (241; 2). Take expectations for both sides of (29),
we have that

<F(xei1;2) — c. (29)
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By recursively adding (28) and (30), we have that
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Since DL, ~ O(A\y** 1) and L, ~ O(\g** ™), we can find \y small enough such that C > DL, > 2L,. Set a = -+

bTok we
then have that
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From Jensen’s inequality, we have that
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T
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When we set T = 48CAe 2 ~ O(A\g ™ 1e 2), n, = 125:2"2 , for some ¢’ € [1,T] we have

E[|VaF(@rs 2] < 5

and
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|

Since F(x; z) is L,-smooth in z, we have that
\VoF(zpi1;20) — VoF (2es20)|| < Lallwe 11 — 2o ||
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In addition,
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Thus
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since C' > 2L,. Therefore, we have
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In addition, we have
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Given x4 and zy, take expectations for both sides and we have

Elge |2y 41, 20] > F(2p41520) — E {min fe(Tet1; 2)} :
zEM

Lemma 1 also works for ﬁz. By Lemma 1, when \g = é, we have
€
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By Lemma 3 we can get a small n, such that SB\/l—i—k(k—l)p\/%g(”Z) < g if
1

3B(1 + k(k — 1)p)* (A n W) < £if k, > 2. We then have that
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Thus we have

E {F(xtq_l; zp) — _inf

F ’ 3 A <e.
A>0,7€R (xt +1, )‘7”):| > €

which completes the proof.

E Proof of Lemma 3

j;(xtu+1;A;n)]‘ <

1 o

€29

The (20) of (Levy et al. 2020) provides an inverse-cdf formulation of the DRO problem. By implementing the inverse-cdf

formulation, the (42) and remark 1 of (Levy et al. 2020) show that

min
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0
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in L (x: )\
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where r € R := {r : [0,1] — ]R§+|f01 r(B)dB = 1and fol wr(r(B)ds < p}, h = 3Bmin{,/ﬂiz,1} and the second
inequality is due to the Holder’s inequality. Note this inequality holds for any fixed z, no matter whether the loss function is

convex or not.
Since [, @x(r(83))dS < p, we have that

Irll < 1+ k(k = 1)p.

Moreover, we have that
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For k., = 2, we have

4 +log(n-)
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and if k. > 2, we have that
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Combine (32),(33),(35) and (36), we can get the lemma and complete the proof.
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F Proof of smoothed CVaR

Proof. Bounded parameters: We have

Ve = T e
and
1 (- 1
T = L P
VyFa(z; Am) =1 - ESNPO‘P:/(W)-
ViFu(x; i) = lIESNPOWL‘"(W)-

A A
If n > B, then V, F(z; \;n) < 0.If n <0, then V,, Fs(x; A;n) > 0. Thus n* € [0, B].

_ (p:/(é(x; i) - n)z(a;; 5;\) _ 77].

VR (o) = 5B [ (S et 5) - 2.

The second-order demonstrates that the F (x; A; 77) is convex in A. We then show that A* has an upper bound. If V \ F(x; A; ) >
0 when A\ — 0, then \* = 0. If V\ F,(z; ;) < 0 when A\ — 0, since both ¢ (t), ' (t) are increaing with ¢, we have that

- B

PR
Since we know g(\) = p + @i (5E) — H—B)\ is increasing with A and g(A) < 0 when A — 0, g(A) = p > 0 when A — oco. Thus

VaFs(z; M) > p+ ¢4( (37

we can find A > 0 that g()\) = 0. Moreover, the value of \ only depends on y, B and p.
Smoothness: fix x, the Hessian matrix of Fi(x; z) with respect to z as:

L(xz;S)—
%ESNPO@:H(w)v

. LEsp, |0 (LB (025 8) — )| ;
* T | hEser, @i (I (02 S) )|
SEser, |2 (00 (6w S) — n)?]

Suppose a3, ay are the eigenvalues 9f H,. We have a3 + a4 > 0 and azas > 0. And the function is L/,-smooth and convex in
z, where L, ~ O(\g®) if A € [\o, \]. Also it is easy to get Fy(; \;n) is L’ -smooth in 2, where L/, ~ O(\;!).

Bounded gap: denote fy(z,z) = Y .=, f(mnizsl), in order to use algorithm 1 directly, we need to estimate min F'(z; z) via

Emin f,(x; z) and bound the gap. From the (42) and remark 1 of (Levy et al. 2020), we have that

min [Fs(zi41;2)] — E {fellf{/ll fs(@es; Z)] ‘

FAS

< / (r(8) — (1))(8 - h(8))'dB (38)

where r € R := {r : [0,1] — R4] fol r(B)df = 1and fol os(r(B))dB < p}, h = 3Bmin {,/i, 1} Since
fol ws(r(B))dB < p}, we have that r(3) < i for any Moreover, we have that
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1
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ns ns  Ns

Thus the gap | miny>o yer [Fs(Te15 A1) —E [minx>o ner fs(Te41; A; )] ’ ~ O(n;%®). We then can use algorithm 1 directly
and the complexity to get the e-stationary point is O(e~?). O



G Complexity of PGD
G.1 Cressie-Read family

In the PGD algorithm (Ghadimi, Lan, and Zhang 2016), y = (x; \;n) is optimized as a whole. From Lemma 2, we know
F(y) = F(x; z) is L,-smooth in z and L,-smooth in x. Moreover, it is not hard to show that V, F'(z; z) is L,,-Lipschitz in z

and V,F(x; z) is L,.-Lipschitz in x, where L, L., ~ O(Aak* ). Therefore, we have

IVyEF(y1) = VyF(y2)|| =IVaF (215 21) — Vo F(22; 20) || + [V F (213 21) — Vo F (225 22) |
<V F(x1521) = Vo F(z1; 22) || + IV F (215 21) — Vo F(21; 22) ||
+ Vo F (213 22) = Vo F(w2; 22) | + [V F (%15 22) — Vo F (225 22|
<Ly:|z1 — 22|l + Lz ||lz1 — 22|l + Lea|lz1 — 22| + Laflz1 — 22|
<(Ly+ Ls+ Loz + L)y — 2|

Thus, F(y) is Ly-smoothiny, where L, = Ly + L, + Ly, + L.y ~ O()\ak*fl). According to Corollary 3 in (Ghadimi, Lan,
and Zhang 2016) and Ay ~ O(e), we can get the ¢- stationary point with the number of iterations 7' ~ O(Ay F+=1¢=2) and
batch size n, ~ O(A~2#+¢=2). Thus, the total complexity is O(e3k==5).

G.2 Smoothed CVaR

Similar to Cressie-Read family, we can show that Fs(y) is L;-smooth in y, where L; ~ O(\y %). According to Corollary 3 in

(Ghadimi, Lan, and Zhang 2016), we can get the e- stationary point with the number of iterations T' ~ O(\; 3¢72) and batch
size n, ~ O(A"2€72). Thus, the total complexity is O(e~?).



