6} usenix
8 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

CalcuLatency: Leveraging Cross-Layer Network
Latency Measurements to Detect Proxy-Enabled Abuse

Reethika Ramesh, University of Michigan; Philipp Winter, Independent;
Sam Korman and Roya Ensafi, University of Michigan

https://www.usenix.org/conference/usenixsecurity24/presentation/ramesh

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

CalcuLatency: Leveraging Cross-Layer Network Latency
Measurements to Detect Proxy-Enabled Abuse

Reethika Ramesh Philipp Winter
University of Michigan Independent
Abstract

Efforts from emerging technology companies aim to democ-
ratize the ad delivery ecosystem and build systems that are
privacy-centric and even share ad revenue benefits with their
users. Other providers offer remuneration for users on their
platform for interacting with and making use of services. But
these efforts may suffer from coordinated abuse efforts aim-
ing to defraud them. Attackers can use VPNs and proxies to
fabricate their geolocation and earn disproportionate rewards.
Balancing proxy-enabled abuse-prevention techniques with
a privacy-focused business model is a hard challenge. Can
service providers use minimal connection features to infer
proxy use without jeopardizing user privacy?

In this paper, we build and evaluate a solution, CalcuLa-
tency, that incorporates various network latency measurement
techniques and leverage the application-layer and network-
layer differences in roundtrip-times when a user connects to
the service using a proxy. We evaluate our four measurement
techniques individually, and as an integrated system using a
two-pronged evaluation. CalcuLatency is an easy-to-deploy,
open-source solution that can serve as an inexpensive first-
step to label proxies.

1 Introduction

Online advertising revenue in the U.S. reached over $209.7
billion in 2022, almost three times as much as the revenue
from U.S. TV advertisements [, 2]. Companies and service
providers increasingly thrive on collecting, processing, and
sharing large amounts of data on users, and monetize this data
by enabling targeted ads and tracking. Reports have criticised
leading companies such as Google and Facebook, calling
them surveillance giants, and asserting that their business
models are a threat to privacy and even to human rights [3].
With the growing awareness and demand for privacy among
the general public, emerging tech companies are aiming to de-
mocratize the ad delivery ecosystem by building services that
are privacy-focused and even share ad revenue with users. A

University of Michigan

Sam Korman Roya Ensafi

University of Michigan

plethora of companies offer ad and tracker-blocking for users
regular browsing experience and provide alternative search
engines geared toward privacy. Some also create solutions
that promote user agency by allowing users to opt-in to view-
ing and earning rewards from privacy-preserving ads. On a
technical level, such “ad reward networks” make use of brows-
ing activity to generate ads but all the computational process
occur locally on the user’s device, without any data being ex-
filtrated to the companies. They then use privacy-preserving
protocols to confirm ad event activity and reward users in cryp-
tocurrency based on ad-providers and region-specific pricing.
There are several companies that have similar rewards and
provide remuneration to users on their platform for making
use of their services [4, 5, 0, 7].

One critical threat to these novel types of reward networks
is attackers who actively game the reward system by lever-
aging VPNs or proxies. These attackers fabricate their ge-
olocation to gain access to more high-reward ads and falsify
interaction activity to earn disproportionate rewards. Ensur-
ing the long-term viability of these privacy-focused business
models necessitates cost-effective and easily deployable tech-
niques to differentiate regular users from those who use VPNs
or proxies, for further monitoring for suspicious activity.

Balancing abuse-prevention techniques with rigorous
privacy-requirements is a hard challenge, especially if the
service provider seeks to uphold user privacy. The state of the
art in generic VPN and proxy detection uses a series of heuris-
tics developed by surveilling client traffic at large. Deployed
by large platforms, these services use user data to build IP
reputation metrics, generate user-specific metrics, and even
use black box services that claim to detect “suspicious” users
and IP addresses. But to get these metrics, the service provider
will need to compromise on protecting the privacy of their
users. In short, we seek to answer: Can service providers
build a system using minimum connection features, such as
latency, to infer VPN or proxy use, without the need for data
collection or jeopardizing user privacy?

In this paper, we build and evaluate our solution to this ques-
tion, CalcuLatency, that leverages cross-layer network latency

USENIX Association

33rd USENIX Security Symposium 2263

measurement techniques to differentiate users that are using a
remote, long-distance VPN or proxy from those who are not.
We leverage the fact that the application-layer latency when
a user connects through a proxy is end-to-end (browser to
server), whereas, any measurement on the network-layer only
reaches the proxy, and the round-trip time (RTT) difference
between the two can be a reliable indicator. To this end, we
combine existing techniques such as WebSocket RTT, TCP
handshake RTT, and ICMP ping, as well as implementing and
evaluating a modified traceroute method (Otrace), which has
not been done before. Otrace conducts hop enumeration from
within an existing, established TCP connection such as a web-
socket session. Using CalcuLatency, we can even differentiate
between network-layer and application-layer proxies.

To evaluate CalcuLatency, we evaluate each of the measure-
ment techniques on their own and also evaluate the system
as a whole by using a comprehensive (geo)diverse set of
clients. The former is necessary to characterize and quantify,
for each technique, the effects of network jitter and reliabil-
ity of the methods. For the latter, we implement the system
as a web service and conduct a two-pronged evaluation of
CalcuLatency as a whole: (i) we perform an in-depth testbed
evaluation where we maximize the number of VPN products,
servers, protocols and browsers tested, from four different
user geolocations; (ii) we expand this to include a real-world,
crowdsourced evaluation to collect and analyze more diverse
user geolocations. To this end, we rally user participation on
Twitter and personal contacts, using the authors’ accounts.
We have participants from 37 different countries located in
all (six) continents, 144 autonomous systems, and collect a
large crowdsourced dataset.

We find empirically that a viable threshold to consider a
particular client as a remote VPN or proxy connection is 50
milliseconds. In 98% of all direct measurements from both
sets of evaluation, we find that the RTT difference is below
this threshold of 50ms. Conversely, 89.1% of all VPN mea-
surements in the testbed evaluation and 63.9% of the crowd-
sourced evaluation have an RTT difference of above 50ms.
Through location analysis, we were able to attribute a major-
ity of the remaining 10.9% and 36.1% VPN measurements to
the fact that the VPN server and the user were located very
close to each other.

Investigating the VPN measurements whose RTT differ-
ence was below 50ms, we find that in a majority of such cases
(66.2%) the VPN server is located close to the user (within
650mi). This can be equated to straight line distance between
Washington DC and Boston, MA (635mi) or the straight line
distance between Mountain View, CA and San Diego, CA
(685mi). Surprisingly, this indicates that we can reliably de-
tect proxy use when a user and the VPN or proxy are just 650
miles apart or more.

Overall, we consider 50ms to be the RTT difference thresh-
old for a connection to be labelled as a remote VPN or proxy,

our system has a false negative rate of 2.9% (28/964) and a
low false positive rate of 0.95% (2/210).

Adopting a more conservative analysis strategy, if we only
consider measurements where ICMP ping is successful and
Otrace reaches the client or its network (i.e. 96% of all mea-
surements), we find that the RTT difference is below 50ms for
the 210 direct measurements, and none were wrongly flagged
using our system. These measurements include 137 unique
user IPs from 84 different Autonomous Systems (ASes), from
six different continents and over 34 different countries. We
also reduce our false negatives to 2.77% (26/937).

While CalcuLatency cannot detect all proxy use especially
if the user and VPN are close to each other, CalcuLatency is
an easy-to-deploy, open-source solution that can serve as an
inexpensive defense against proxy enabled abuse for server-
side operators. We incorporate existing methods to calculate
network latency and implement a modified traceroute method
to overcome the challenges of our probes getting blocked due
to stateful firewalls or NATs. Though this traceroute concept
was first discussed over two decades ago, we are the first to
implement, deploy in a real-world system, and evaluate its
performance.

The following are our contributions in this paper: we pro-
pose a system, CalcuLatency, that combines existing building
blocks and implements measurement techniques to help de-
tect VPN and proxies. We extensively evaluate our technique
and elaborate on its calibration. We perform several controlled
and crowdsourced experiments with our system deployed in
real-networks and collect data to quantify thresholds and char-
acterize the reliability of our techniques.

Roadmap: In Section 2, we discuss the background of our
techniques and the architecture of proxies. In Section 3, we in-
troduce our system architecture, followed by our techniques to
measure roundtrip times, the implementation of CalculLatency
(§ 3.5), and our ethics discussion (§ 6). Next, we evaluate each
of our building-blocks (§ 4), followed by our two-pronged
evaluation of the system (§ 5.1, § 5.2). In § 7, we present
our limitation, followed by related work (§ 8) and finally,
we discuss CalcuLatency, its implications, and conclude in
Section 9.

2 Background

Below, we discuss how network proxies differ in their archi-
tecture and we explain each of our measurement methods.

2.1 Architecture of Network Proxies

Figure | illustrates how a proxy’s type affects the underlying
protocol stack. We divide the protocol stack into three lay-
ers as per the OSI model: the application layer (HTTP), the
transport layer (TCP), and the network layer (IP). Application-
layer proxies terminate the application protocol, e.g., to in-
spect content for malware (Figure 1a). This includes Web

2264 33rd USENIX Security Symposium

USENIX Association

Client Pr(_)xy Server Client Pr(_)xy Server Client Pr(_)xy Server
— P — P — — P — P — — P — P —
— TCP — — TCP — — TCP — — TCP — TCP
'— HTTP — — HTTP —' HTTP HTTP .

(a) Application-layer proxies, e.g., proxies
that work via HTTP CONNECT.

(b) Transport- and Sessions-layer proxies,
e.g., SOCKS, Tor, and SSH.

(c) Network-layer proxies, e.g., VPNs like
OpenVPN and WireGuard.

Figure 1: Architecture of Network Proxies—We distinguish between three types of proxies that differ based on the layer
at which they terminate client connections. Clients connecting to application-layer (1a) and transport-layer proxies (1b) first
establish a TCP connection with the proxy and initiate the proxying using protocol specific messages. The proxies create new
TCP connections to the web server, and then establish the tunnel. Whereas, network layer (1c) proxies authenticate the client and

establish a tunnel, after which all packets including TCP SYN packets are encapsulated and proxied through the server.

servers that support the HTTP CONNECT method. Transport-
layer proxies like Tor and SSH (both build on top of the
SOCKS protocol) pass through the application protocol but
terminate the client’s TCP connection (cf. Figure 1b). Clients
use SOCKS’s signalling mechanism to tell the proxy what
destination to connect to. Finally, network-layer proxies like
OpenVPN or WireGuard perform NAT but pass through the
client’s TCP connection (Figure 1c).

2.2 The Otrace Technique

In a traceroute, a client sends multiple packets to a server, with
each packet containing an incrementing time-to-live value
(TTL) in the IP header. These packets are stateless “stray”
packets, meaning that they do not belong to an open network
connection. Stateful firewalls may reject such packets, termi-
nating the traceroute.

In 2007, Zalewski invented a traceroute technique that can
get past stateful firewalls [8]. This technique—called Otrace—
creates trace packets that match the five-tuple of an already-
established TCP connection. Unable to tell apart Otrace pack-
ets from packets belonging to this TCP connection, stateful
firewalls will let Otrace’s trace packets pass. Otrace achieves
its goal by manipulating network packet headers and does so
by crafting its own network packets using Linux’s raw socket
APIL. However, this techniques comes at the cost of potentially
corrupting the TCP connection at the end: the receiving end-
point may terminate the TCP connection upon receiving an
unexpected trace packet.

While Otrace’s purpose is hop enumeration in the pres-
ence of firewalls, we use it for RTT measurements. The go-to
technique for RTT measurements are ICMP echo requests
(colloquially called “pings”) but we found that many residen-
tial ISPs block pings (§ 3.4.1). While Otrace does not always
work in such settings, it does allow for more accurate RTTs
in the presence of firewalling as we show in Section 4.3.

2.3 The WebSocket API

The WebSocket protocol is an application layer protocol on
top of TCP, which offers Web applications a bidirectional
socket for communication. While distinct from HTTP, the
WebSocket protocol is compatible with HTTP and uses the
HTTP Upgrade header in its handshake. This allows Web
servers to handle both HTTP and WebSocket connections on
the same port. Once a WebSocket connection is established,
client and server exchange binary data. Web applications can
use WebSockets by taking advantage of the JavaScript Web-
Socket API that’s supported by all modern browsers [9]. Later
in this work, we use WebSockets to determine the application-
layer round trip time between a client and server.

3 Method

Our aim is to measure round-trip times on the application,
transport, and network-layers, and use a combination of these
different measurements to reason about whether a particular
connection is coming through a proxy server. We combine
four cross-layer latency measurement techniques into a single
software service that we call CalcuLatency. Our system inte-
grates well into existing service provider infrastructure, and
we create and publish a pipeline to analyze the collected data.

3.1 System Architecture and Assumptions

A typical client-proxy-service scenario consists of three enti-
ties: (i) a service provider that makes available one or more
HTTP endpoints to its clients; (ii) clients that use the service
provider’s services; and (iii) proxy servers that some clients
use to disguise their topological (i.e., IP address) and physical
(i.e., their home country) location. While most clients are
honest, there are some malicious ones that seek to defraud the
service provider while using network proxies to disguise their

USENIX Association

33rd USENIX Security Symposium 2265

TCP Handshake RTT (Transport Layer)

- -Initial Connection through WebSocket- - - - ---- 2 . -
Websocket-based RTT (Application Layer) 3 >
<Modified Traceroute Otrace (Network Layer)

1 —

4 —>
ICMP Ping (Network Layer)
<+——TCP Handshake RTT (Transport Layer) 1 >
2
------------- Initial Connection through WebSocket - == == - e
ﬁ <« Websocket-based RTT (Application Layer) 3 >
- Modified Traceroute Otrace (Network Layer) 4

i=h

ICMP Ping (Network Layer)

Web Server

Figure 2: Measurement Setup—User connects to the Web server either via a VPN or Proxy (top) or directly (bottom). We
illustrate the measurements done in both cases. The network layer measurements only reach the proxy server in case the user is
using a proxy, but reaches all the way to the user’s public IP if they are connecting directly.

location. For instance, an ad reward network or survey dis-
tribution service provides different rewards for geolocations,
and users may seek to earn disproportionate rewards using
proxies. Service providers need an inexpensive and practical
solution that can tell apart clients that use remote proxies
to mask their geolocation from those that do not, without
user surveillance using blackbox detection techniques. We
introduce CalcuLatency to fill this gap.

Broadly, our technique allows for the detection of the three
proxy types illustrated in Figure 1. CalcuLatency’s key in-
sight is that the use of a proxy affects the layers in the OSI
model differently. If we find a non-trivial difference between
the application-layer RTT (Aar) and the transport-layer RTT
(AtL) and/or the network-layer RTT (AnL), we can conclude
that the client is using a proxy server.

Consider a concrete example: A client in India is using
a VPN server in Canada to make an HTTP connection to
our CalcuLatency server in the U.S. Upon accepting the con-
nection, our server now determines three types of round-trip
times to the client, as shown in Figure 2. First, it upgrades the
HTTP connection to WebSocket and sends several pings (us-
ing JavaScript) to determine the application-layer RTT. Next,
our server inspects the (previously-recorded) TCP handshake
to infer the transport-layer RTT. Finally, our server determines
the network-layer RTT by sending ICMP echo requests and
by running a Otrace measurement, which piggybacks onto the
already-established HTTP connection.

Having determined all RTTs, our server notes that the Web-
Socket RTT is 250 ms—time taken for WebSocket pings to
travel from the U.S. to Canada, to India, and back. The ICMP
echo responses exhibit an RTT of only 35 ms—the time it
takes to go from the U.S. to Canada, and back again. This dif-
ference manifests because the WebSocket ping was answered
by the client’s browser in India while the network-layer ping

was answered by the proxy in Canada. Confronted with the
RTT difference of 250 — 35 = 215 ms, the service provider
concludes that the client is using a proxy.

Assumptions: First, CalcuLatency requires an HTTP con-
nection between the client and the server. We chose HTTP
because of its ubiquity but other application-layer protocols
work equally well. Second, the client’s proxy must not be ge-
ographically close to the user. This assumption is reasonable
in the case of service providers that seek to identify users who
spoof their country of origin. Third, we assume that clients do
not control the network behavior of the proxy and therefore
cannot have it delay selected network packets. Instead, we as-
sume that clients either use open proxies or rent them, e.g., as
part of a VPN subscription. Even if the client does control the
proxy, it is not guaranteed to evade CalcuLatency’s detection
as our Otrace component can estimate the RTT to the client
using adjacent hops on the path that are outside the client’s
control.

While not universally applicable, we believe that these as-
sumptions are both realistic and commonplace. What’s more,
CalcuLatency does not suffer from the shortcomings of exist-
ing, established proxy detection techniques like IP reputation
blocklists that just use IP-to-Geolocation databases [10, 11,
12, 13].

3.2 Determining the Application-layer RTT

How can the service provider determine the application-layer
RTT to the client? We chose WebSocket for this task: As of
June 2023, WebSocket is supported by all major browsers [14],
it is compatible with HTTP, and it is purpose-built for real-
time communication, making it a natural choice for determin-
ing round-trip times. As mentioned above, CalcuLatency is

2266 33rd USENIX Security Symposium

USENIX Association

SOCKSvVS5 Proxy
‘ SYNe —
‘e SYN/ACKp —

ACKe — ¢

Client Service provider

SYNp —
'« SYN/ACK; /IA
: ACKp — TCP

54__,————nonce#l /
i S
'e——————————monce#tn —
5\1>IAWS

«— ICMP request —
: 7 ICMP response _,

IAICMP

Figure 3: Measurement Flow—In this example, the client
uses a SOCKSvS5 proxy. The service provider determines four
round-trip times (on three layers) to infer what kind of proxy
the client uses.

not dependent on WebSocket and could employ alternatives,
like WebRTC, XMPP, or HTTP page load times [15, § IL.B].

Specifically, a client establishes a WebSocket connection
with the service provider. The server then sends n WebSocket-
based pings to the client as illustrated in Figure 3. Section 4.1
suggests that n > 10 is useful to make the measurement more
robust against transient networking issues or asymmetric rout-
ing, both of which interfere with our measurement. In our
CalcuLatency system, we send 100 WebSocket-based pings
to the client. Upon receiving a WebSocket ping, the client’s
browser echoes back each ping to the server. Upon receiving
the echo response, the server determines the WebSocket RTT
on the Application Layer (Aar) between itself and the client
as follows: AAL = min{AAL] s ~--7AAL,,}-

Importantly, our technique must work in an adversarial envi-
ronment because malicious clients seek to disguise their use of
a proxy. These clients control the server-provided JavaScript,
and can therefore choose to either delay the echo or send an
“anticipatory” echo before having received the corresponding
request. The former is against a malicious client’s interest be-
cause it would increase the odds of CalcuLatency concluding
that the client is using a proxy. Malicious clients are therefore
incentivized to respond as quickly as possible. To thwart the
“anticipatory response” attack, we include a unique nonce in
every echo request. The client has to embed the nonce in its
echo response, preventing it from sending responses before
having received the request.

3.3 Determining the Transport-layer RTT

We take advantage of the fact that in our setting, the client
establishes a TCP connection with our server, meaning that we
are in control of the TCP three-way handshake. We estimate
the RTT between client and server by calculating the time
difference between the server responding with a SYN/ACK
segment and the client acknowledging receipt with an ACK
segment, as discussed by Ding and Rabinovich [16]. We refer
to this RTT as Agr. Again, clients have no incentive to delay
their ACK segment and are unable to send an “anticipatory”
segment because of the difficulty of predicting TCP sequence
numbers. We find that Aty is reliable and straightforward to
determine but we have only a single sample per connection,
which makes this technique susceptible to transient conditions
like network congestion. Indeed, Hgiland-Jgrgensen et al. [17]
showed that “20% of the clients experience increased delays
of more than about 80 ms, at least 5% of the time.”

We considered taking advantage of the TCP timestamp
option to measure RTT. We chose not to because TCP times-
tamps are not universally used [18, § 6] and often exhibit poor
granularity—Veal et al. showed in their PAM’05 paper that
the majority of 500 popular web servers used a granularity of
either 10 ms or 100 ms [19, § 3].

3.4 Determining the Network-layer RTT

Finally, we focus on the lowest layer for which we determine
the round-trip time: the network layer. Determining the RTT
to an IP address is challenging because it is difficult to reli-
ably get a remote network stack to respond to unsolicited IP
packets. Prior work reported that it is increasingly rare for
hosts to respond to ICMP echo request, or send a TCP RST
segment in response to unsolicited SYN segments [20, § 4].
To maximize success, we draw on two separate techniques
to estimate Anp, our network-layer RTT: ICMP (see § 3.4.1)
and Otrace (see § 3.4.2).

34.1 ICMP RTT

CalcuLatency sends five ICMP echo requests to the client. We
refer to this measurement as Ajcnp. Prior work had found that
some proxies don’t answer to ICMP: 90% of VPN servers
tested by Weinberg et al. [10] reportedly ignored ICMP re-
quests. However, they only tested servers belonging to seven
undisclosed VPN providers. Due to ICMP’s potential use-
fulness to CalcuLatency, we revisit this topic by asking the
following research question:

Do VPN servers respond to ICMP pings? To answer this
question, we sent ICMP requests to IP addresses belonging to
80 VPN providers that past work studied [21, 1 1]. These VPN
providers host servers that run various VPN protocols includ-
ing OpenVPN, WireGuard, and other proprietary protocols.
We augment our list of IP addresses with addresses present in
the same /24 network as the VPN IP addresses, resulting in a

USENIX Association

33rd USENIX Security Symposium 2267

list of 492 unique IP addresses. We chose to ping adjacent ad-
dresses in CalcuLatency because a response from an adjacent
address is likely to have a near-identical RTT to that of the
actual proxy, which may not respond to ICMP requests. Our
ICMP requests to these addresses resulted in 369 addresses
(75%) that responded—a higher percentage than what past
work found.

VPN servers appear likely to respond to ICMP requests
but what about a random sample of the IPv4 population? To
answer this question, we ran a ZMap scan [22] targeting a
randomly-selected set of 1 million IP addresses. This resulted
in 10.52% of 1P addresses that responded to our ICMP re-
quests. This is in line with prior work by Bano et al., which
found that approximately 10% of IP addresses respond to
ICMP pings [20, § 4.1]—making the odds of a response low.

We conclude that VPN servers are significantly more likely
to respond to ICMP requests than randomly-selected IP ad-
dresses, which includes residential clients that don’t use a
proxy. We therefore decide to augment our ICMP measure-
ment with Otrace, which we discuss in the next section.

3.4.2 Otrace RTT

We use Zalewski’s Otrace technique [8] for the purpose of
determining the round-trip time between the server (where
the Otrace measurement is initiated) and a connecting client.
Again, we take advantage of the fact that our setting has the
client establish a WebSocket connection to the server, mean-
ing that we have an already-established TCP connection that
Otrace can use for its TTL and RTT measurement.

We developed a Go package that implements Otrace. This
package uses Linux’s raw socket API to send manually-
crafted TCP segments with incrementing IP time-to-live
(TTL) values. We carefully craft Otrace packets to match
the TCP five-tuple of the WebSocket connection,' so that
firewalls between client and server will not interfere. Our
Otrace implementation keeps incrementing the TTL until ei-
ther (i) the responding IP address is identical to the client’s
IP address; or (ii) until TTL 32 is reached. For each TTL, we
send three redundant probes to account for potential packet
loss [23]. If we don’t receive a response to any of our three
probe packets within five seconds, we mark the given TTL
as unresponsive. The RTT of our Otrace measurement (Agt)
is the round-trip time of the probe packet that made it the
farthest to the client, i.e., the probe packet with the largest
TTL.

We specifically use Otrace because it can get past (CG)NAT
and stateful firewalls by operating on existing TCP connec-
tions. Furthermore, even if Otrace measurements do terminate
at the NAT-box due to network level rules, we argue that the
distance between a NAT and the user’s machine is less than
1,000 km as most are typically deployed by their ISP [24].

IThe five-tuple consists of TP source and destination addresses; TCP
source and destination ports; and the IP protocol.

1.00 T Y AR N
;' |

0.75
E Platform
O 050) — Internet
83
- Loopback
0.25

0.00
0.01 0.10 1.00 10.00 100.00
Latency in ms (log)

Figure 4: Latency distribution of TCP handshake
measurements over two networks.

Being equipped with four techniques that measure the RTT
across three OSI layers, we now devise a decision tree that
helps us collapse all our measurements into a single verdict:
does the client use a proxy?

3.5 Implementation and Deployment

CalcuLatency combines our application, transport, and
network-layer measurements into a single service. We im-
plemented CalcuLatency in both Go and JavaScript (Web-
Socket pings). The Go service consists of (i) a Web server
with an endpoint that speaks WebSocket, (ii) a Go package
that records TCP handshakes to extract round trip times, and
(iii) a package that runs a Otrace measurement to the client.

While developing our Otrace Go package, we take advan-
tage of the ICMP error requirements stated in RFC 1812 and
RFC 792, which state that the returned ICMP error message
will contain (parts of) the original datagram’s data [25, 26].
We find that the ICMP error message reliably contains the IP
header of the original datagram in the ICMP datagram. Hence,
we design our server to keep track of the IP ID in for each
TTL-limited probe it sends out, and it uses the IP ID obtained
from the IP header of the original datagram from the received
ICMP error packet to correspond the hop IP to the particular
TTL value. Using the packet sent time and packet received
time, the server calculates the RTT for each hop that responds
with the ICMP error. It repeats the process until (if) it reaches
the VPN IP, or until the maximum TTL value. All our code is
available online under a free software license but we omit the
URL to preserve our anonymity.

In real-world systems, CalcuLatency can be deployed as
part of a CAPTCHA. The CAPTCHA can be non-interactive
and consist of HTML and JavaScript, which initiates a Web-
Socket connection to the CalcuLatency server. In the first
phase, CalcuLatency sends hundred WebSocket pings to the
client to estimate the application-layer RTT. After Calcu-
Latency determines the application-layer latency, we calcu-
late the RTT of the TCP handshake, send ICMP pings, and
use Otrace to determine the network-layer RTT, as discussed

2268 33rd USENIX Security Symposium

USENIX Association

above. Clients that CalcuLatency deems to be using a proxy
can be flagged for manual inspection.

4 Building Block Evaluation

Before evaluating CalcuLatency in its entirety, we study its
building blocks in isolation.

4.1 Reliability of WebSocket Pings

Unlike our network-layer RTT methods, which are typically
handled by the kernel’s network stack, our application-layer
method—WebSocket—traverses not only the kernel’s net-
work stack but also the client’s browser, and is therefore sub-
ject to more jitter. To characterize and approximate this jitter,
we built an HTTPS-based Web service that sends 10,000 se-
quential WebSocket echo requests to the client and measured
the round-trip time Aws, ,...,Aws,, o fOr €ach request. We
made these measurements over the loopback interface to elim-
inate networking delays and isolate processing delays.

Figure 11 in the Appendix illustrates the results for two
consumer laptops (ThinkPad X1, MacBook Pro) running two
browsers. The median RTT for all distributions is less than
1.4 ms, and 99% of RTT measurements completed in less than
2.4 ms. All distributions exhibit a long tail, presumably due
to transient load spikes. CalcuLatency must account for this
by running multiple measurements, spaced out over time.

4.2 Reliability of TCP Handshake RTT

We conduct an experiment to understand the reliability of the
TCP handshake in measuring RTT. We used Go to build an
HTTP server that served a static index page. In parallel to
serving this index page, the server uses libpcap to record the
TCP handshake; in particular the time delta between the server
responding to the client’s SYN with its SYN/ACK segment
and the subsequent receipt of the client’s ACK. We built a
shell script that establishes 86,400 TCP connections: one
connection per second for 24 hours. We ran this experiment
in two network settings: in the “Loopback™ setting, client
and server run on the same machine, communicating over
the loopback interface. By excluding the Internet, this setting
highlights computational latency. In the “Internet” setting,
client and server run on separate machines, communicating
over the Internet. The client ran on a VPS in Ohio, U.S. while
the server ran on a VPS in Paris, France.

Figure 4 illustrates the results of this experiment. In the “In-
ternet” setting, we see a minimum, median, and maximum la-
tency of 87, 88, and 171 ms, respectively. 99% of handshakes
exhibit a latency of less than 94 ms—only 7 ms more than
the minimum. The “Loopback” setting, we observe a median
latency of 18 ps. 99% of handshakes exhibit a latency of less
than 34 us. As expected, we observe a long tail in both and
we account for outliers by running repeated measurements.

The TCP RTT is readily available and straightforward to
calculate, but we only get a single measurement per TCP
connection. One could work around this limitation by having
the client establish multiple TCP connections to the server.

4.3 Reliability of Otrace Pings: Considering the
Variance of Latency Across the Internet

To evaluate the reliability of Otrace, we conduct a large scale
measurement with endpoints having a variety of configura-
tions to understand potential effects on the results. For this
experiment, we take advantage of the RIPE Atlas network.

First, we set up an HTTPS server that runs our Otrace code
whenever a client connects to the server. Next, we instruct
the RIPE Atlas probe to run an ICMP and a TCP traceroute
using both the IPv4 and v6 addresses towards the server, and
an “SSL”” measurement to fetch our server’s TLS certificate,
which trigger our Otrace measurement toward the client’s IPv4
address. For each RIPE Atlas probe, we measure three differ-
ent RTT values (Otrace and two traceroute RTTs). We repeat
each of these measurements three times to account for any
transient errors. We then determine the absolute difference
between the Otrace RTT and the other traceroute RTTs, which
serve as ground truth in each case. Appendix B contains a
breakdown of the available RIPE probes and our selection.

Our initial experiments to explore whether running latency
measurements at different times of the day influence the mea-
sured RTT difference (presented in Appendix C and Fig-
ure 13) revealed no significant differences even when the
RTTs were measured every 3 hours. To maximize the utility
of our measurements considering concurrency limits and re-
source constraints, we trade-off the small benefit in reliability
of running multiple experiments per day, for the diversity of a
larger number of RIPE probes over a long period of time.

For our measurements, we selected probes that are “con-
nected” (not abandoned or disconnected), with a public IPv4
and IPv6 address, valid country code, with all the desirable
tags. Note that while we request all eligible probes to par-
ticipate in our measurements, not all of them do [27]. We
had 2,350 RIPE Atlas probe IP-probe ID pairs that fully
completed the SSL, ICMP and TCP traceroute measurements,
i.e. they either reached our server directly or their last hop IP
address was in the same AS as our server. The distribution
of these probes over continents, ASNs, and different access
technology is described in the Appendix B.

Differences in local and last-mile access technology We
evaluate our hypothesis of whether the probe’s last-mile ac-
cess technology (derived from the probe’s tags) has large
effects on the latency seen from the server side.

We present our results for the RTT difference between the
Otrace result and the probes’ TCP and ICMP traceroutes sepa-
rately. We find that VDSL has three outlier RTT differences

USENIX Association

33rd USENIX Security Symposium 2269

g
=}
SN
.

)
508
£
g
E
§0.6 Cable
£ DSL
E Fibre
20-4' VDSL
2
0.2
&

0.0

0.0 50.0 100.0 150.0 200.0 250.0

Difference in RTT between zerotrace and ICMP measurements (ms)

(a) Difference between Otrace-determined RTT and RIPE Atlas-

determined ICMP RTT in ms.

o =
© <}
“\

i

Cable
DSL
Fibre
VDSL

Proportion of all measurements
I o
& [

e
N

o
<)

0.0 50.0 100.0 150.0 200.0 250.0
Difference in RTT between zerotrace and TCP measurements (ms)

(b) Difference between Otrace-determined RTT and RIPE Atlas-
determined TCP RTT.

Figure 5: Comparing the RTT differences between probes with different local last-mile access technology— In 80% of all
measurements the RTT difference is less than 18ms. However RTT differences in TCP are lower and more stable. Removing
three outliers from VDSL, we see that the differences between the access technology become more pronounced for the remaining
20% of the values, with cable performing worse, and Fibre performing marginally better with no outliers.

measuring 388ms, 1970ms, and 2640ms and upon investiga-
tion we note that these were due to two German RIPE probes
in AS8881 and AS3320 which failed to reach far in the tracer-
oute. To improve readability of our figure, we have removed
these three cases and note them separately in Figure 14 in
Appendix F. From Figure 5, we see that 95% of all ICMP
measurements have an RTT difference lower than 111ms in
Cable, 94.93ms in DSL, 86ms in Fibre?, and 31.3ms in VDSL.
Similarly, 95% of all the TCP measurements have an RTT dif-
ference lower than 46.3ms in Cable, 93.8ms in DSL, 87.9ms
in Fibre, and 30.7ms in VDSL (including outliers).

In summary, we see that the RTT differences in TCP are
lower and more stable, that is, Otrace measurements are closest
to the TCP ground truth RTTs. We note that in 80% of all
measurements the RTT difference is less than 18ms. We see
that the differences between the access technology become
more pronounced for the remaining 20% of the measurements,
with cable performing worse, and Fibre performing slightly
better than others considering it has no outliers.

Our experiments show that given that Otrace is able to
match ground truth for >80% cases, and in 95% of cases has a
maximum difference of 111ms in RTT when compared with
ground truth. Given the results of our experiment, we can
reason about the generalizability of our measurements. We
can be confident that when measuring long distance proxies,
these differences of 111ms will not hinder CalcuLatency’s
ability to detect the proxies, and in the remaining 5% of cases,
it may inflate the endpoint RTT, which may lead to false
negatives that CalcuLatency can tolerate.

S Evaluating CalcuLatency in Practice

We conduct a thorough evaluation of CalcuLatency using a
two-pronged approach. First, we conduct an evaluation with a

2We are preserving the spelling used in the RIPE Probe Tag

controlled testbed where we control the webserver, the client,
and test our system with a variety of different VPN products
and proxy servers, that run multiple different protocols. We
test the system with mobile connections, various different
user locations, without any proxies connected, and then by
connecting to various VPN and tunnelling protocols. Next,
we extend on this experiment by conducting a large evalua-
tion with volunteer Internet users. This mimics a real-world
deployment test for CalcuLatency because we draw on a ge-
ographically diverse population that’s representative of the
average Internet user. For this experiment, we set up our mea-
surement server at a university network and advertised our
crowd-source measurement page via social media channels.

5.1 Control Testbed Evaluation

We conduct a controlled evaluation of our CalcuLatency
service by creating a testbed and collecting various mea-
surements ourselves. In our experiment, we controlled the
webserver that conducted the measurements. We had team-
members run tests from their devices from fifteen differ-
ent home and mobile networks using four different popular
browsers—Chrome, Mozilla Firefox, Safari, and Brave.

Our network locations include three cities in the U.S. and
one city in Canada, UAE, and India each from multiple net-
works. We conduct both direct measurements from these net-
works and also run measurements while connecting to various
different VPN and proxy servers around the world. We in-
strumented an automation script using Selenium to trigger
measurements from multiple different browsers on a com-
puter at the same time. In both the direct connection case
and when we turned on a VPN, we use this automation script
to conduct multiple experiments from different browsers to-
wards the same server. We re-ran a direct measurement each
time we started experiments, from each browser, and repeated

2270 33rd USENIX Security Symposium

USENIX Association

e mm e m e mm e mmm e mamams N

- 3
! Data: Websocket Min RTT, ICMP MinRTT, Otrace !

Label: “WsICMP”
Diff: Min WS RTT -
ICMP Min RTT

NwLayerProxy
or Direct

> 10ms
Possibly:
AppLayer

NO

Otrace
Closest
Pkt
== Client
P

YES Label: “Ws0TClient”
Diff: Min WS RTT -
Otrace RTT

Label: “E2EWSTCPICMP”
Diff: Min WS RTT - Min
{TCPRTT, ICMPRTT}

Query
stat.ripe.net/data/netwo
4 rk-info/data json?resou
? [ree=<IP>

ASNs
of Otrace
Closest Pkt
same as
Client IR

Label: “E2EWSTCPOt"
Diff: Min WS RTT - Min
{TCP RTT, 0Trace RTT}

Label “Ws0TNetwork™
Diff: Min WS RTT -
Otrace RTT

Label “BestEffortWs0T”
Diff: Min WS RTT -
Otrace RTT

Label: “E2EWs0tClient™
RTTDiff: Min WS RTT -
Otrace RTT

Label “E2EBestEffortWsTCP™
RTTDiff: Min WS RTT - TCP
RTT

Figure 6: Decision Tree—We create a decision tree that uses
the round-trip times measured using our four different tech-
niques. Based on their results, we use a combination of these
values to decide whether a particular experiment can be la-
beled as a possible proxy connection. The two yellow nodes
refer to cases that lack some of the measurement results and
are hence, labeled “best effort” calculations.

it between different experiments. The VPNs and proxies used
to conduct these experiments include ten popular, commer-
cial VPN providers including Astrill VPN, CyberGhost VPN,
ExpressVPN, IPVanish, IVPN, Mozilla, Mullvad, NordVPN,
Private Internet Access, Surfshark. These VPN providers of-
fer multiple different protocols such as Wireguard, Open VPN,
and other proprietary protocols such as OpenWeb and Light-
way. We also instrumented our own SOCKSS5 proxy servers
and tested them as well. We do not measure or reason about
security and privacy aspects of the tested commercial VPN
providers; our aim is to simply connect to various servers they
offer and evaluate our CalcuLatency measurement service.

5.1.1 Data Characterization

In total, we conducted 891 unique experiments with 354
unique client IPs. Our measurements came from 337 unique
VPN or proxy server IPs belonging to 82 different au-
tonomous systems (ASes), and 17 unique direct, client IPs
belonging to 12 different ASes. Overall, we collected data
from four different countries.

100 — e

.

0.75
= o
8 0.0 Type
Q 03 ; .
m < Direct
0.25 = Proxy

0.00 —i---
0 100 200 300
RTT difference in ms

Figure 7: ECDF of RTT difference for the 891 con-
trol, testbed evaluation measurements—From our measure-
ments, we find that over 98% of direct measurements and
less than 11% of VPN measurements have an RTT difference
below 50 ms (shaded in yellow).

5.1.2 Results

We calculate the RTT difference for each experiment using a
decision tree that we devised (Figure 6).

First, we check if the TCP handshake RTT (Arr) g web-
socket RTT (Aar), i.e. if they are within &= 10 ms. If so then
the experiment is a network layer proxy or a direct measure-
ment. In this case, the A, cannot be used for calculating the
RTT difference. Hence, we use the ICMP RTT, if it exists, and
if not, we will use Otrace RTT as Anr.. In order to differentiate
and identify which value was used as Axr. and to record the
conditions that are met according to the decision tree, we
assign labels for each end node of the tree. For instance, in
this case, if ICMP RTT does not exist (i.e. ICMP was not
supported by the client IP), we will use Otrace RTT and assign
different labels based on whether Otrace reached the client IP
(*0TClient), Otrace did not reach the client but reached the
same ASN as the client (*0TNetwork), and label it a “best
effort” if none of these conditions is met. We only use the
Otrace RTT from the last successful hop for the calculation.

However, if Ay, é AaL, then the experiment could be an
application layer proxy. In this case, we check if Arp, =~ to
either of the ANy, ICMP RTT, Otrace RTT). If not, we follow
the same procedure as above and use ICMP RTT if it exists,
and if not, fallback to Otrace if it reaches the client IP or its
ASN. Finally, if none of those conditions are met, we label it a
“best effort” and use TCP RTT to calculate the RTT difference.

In our control testbed evaluation, we find that in 98.0 %
of the direct measurements (48 of 49) the calculated RTT
difference is less than 50 ms, as shown in Figure 7. Upon
investigating, the anomalous direct measurement belonged to
an Indian mobile network provider, where the ICMP failed
and Otrace was unable to reach even the same network, hence
it was a “best effort” calculation. We will revisit the “best
effort” cases in §5.3.

Next, we investigate the VPN measurements, we find that
the RTT difference is above 50 ms in 89.1% of all VPN mea-

USENIX Association

33rd USENIX Security Symposium 2271

surements (750 of 842), shown in Figure 7. Among the rest of
the 10.9% of VPN experiments, we find that in 60.9% of them
(56 of 92), the VPN server is close to the user geographically,
i.e. the straight line distance between user and VPN server is
less than 650 miles. This is equal to the straight line distance
between Washington DC and Boston, MA (635 miles) or
the straight line distance between Mountain View, California
and San Diego, California (685 miles). This is expected, as
specified in our assumptions, our technique primarily seeks
to identify longer-distance remote VPN users.

We investigated the 14 unique VPN server IPs belonging
to 36 of 92 measurements (39.14%) where the user to VPN
distance was above 650 miles. We found that six of those 14
IPs belonged to AS9009 (corresponding to 17 of 36 measure-
ments), and for all these IPs, the VPN provider claims their
location to be in a Latin American country (Mexico, Costa
Rica, The Bahamas, Venezuela, Chile, Argentina). However,
when we investigated their ICMP RTTs as measured from
our server in the U.S. Midwest region, we find that all their
RTTs ranged between 28 ms—52 ms. We used the speed of the
Internet approximation provided by Katz-Bassett et al. [28]
which is % ¢, where c is the speed of light traveling in a vac-
uum, and find that for all of these experiments, the locations
of the VPN server as reported by the VPN provider is
an impossibility. Their true geolocation appears to be much
closer than that what is reported.

For the remaining 19 experiments with eight unique VPN
server IPs, we were not able to disprove the advertised loca-
tion of the server with the RTT measurements. However, five
VPN servers belonged to the same VPN provider which may
have a policy to inflate ICMP values. The other two IPs did
not have a reliable ICMP value for us to confirm or disprove
their advertised location.

Overall, we find that 50 ms is a viable threshold for the
RTT difference to distinguish a direct measurement from one
coming through a remote VPN or proxy. We expand on this
evaluation by conducting a real-world evaluation to increase
the diversity of our “direct” connections and user locations.

5.2 Real-world Crowdsourced Evaluation

Next, we conduct an evaluation of our system in practice,
using real-world measurements. We developed the Calcu-
Latency system, created a web server, and deployed it on a
subdomain of our university. To obtain ground truth about
the measurements, we create a form that users fill out to give
us information regarding their setup. We ask users to option-
ally provide us with an email with which we can reach them,
whether they are connecting to us though a mobile or a desk-
top, who their internet service provider is, and their current
location (to reason about the measured latencies and physical
distance). We then ask users if they are connecting to us via a
VPN, or directly. If they are using a VPN, we request them

1.00 —

0.75

8 0.0 Type

Q .

83 = Direct
0.25 - Proxy

0.00 —*
0 100 200 300 400
RTT difference in ms

Figure 8: ECDF of RTT difference for the 283 public
crowdsourced evaluation measurements—From our col-
lected measurements, we find that over 98% of direct mea-
surements and 36.1% of VPN measurements have an RTT
difference below 50 ms (shaded in yellow).

to enter their VPN server location if known, and any details
about their VPN provider.

We recruited users by publicizing a call for participation
on Twitter using the authors’ twitter handles and collected
data for this experiment over a period of 15 days. We did not
target or advertise towards specific Twitter users and chose
not use platforms like Prolific or MTurk as they have not been
evaluated to be generalizable for network measurement (but
rather for qualitative studies).

5.2.1 Data Characterization

We collected 283 unique experiments from 252 unique client
IPs, with (self-reported) 161 direct measurements and 122
VPN measurements. Our 161 direct measurements came from
145 unique client IPs from 93 different autonomous systems
(ASes). Our 122 VPN measurements came from 109 unique
VPN IPs belonging to 51 different ASes. The most num-
ber of measurements for the direct measurements came from
ASN 7922, followed by ASNs 701, 7018, 21928 and 3320 be-
longing to Comcast, Verizon, AT&T, T-Mobile, and Deutsche
Telekom. We provide a more detailed breakdown of these IPs
by ASN in the Appendix E. Overall, we collected data from
over 37 different countries from all (six) continents.

5.2.2 Results

Based on the same decision tree explained in §5.1 and Fig-
ure 6, we calculate the RTT difference and label each experi-
ment with the appropriate label from the tree. We find that
98.8% of all direct measurements have an RTT difference
below 50 ms (159 of 161) as shown in Figure 8, following
the same trend as our controlled testbed evaluation, despite
a large increase in the variety and diversity of our collected
direct measurements. Upon investigating the remaining 1.2%
(2 of 161) measurements, we find that one measurement was
conducted through Safari and indicates that the IP is an iCloud

2272 33rd USENIX Security Symposium

USENIX Association

Iy
=)

o
©

4
Gl
o

P Public
A . Testbed

1
IS

o
[N

Proportion of all measurements

o
=)

0 500 650 1000 1500 2000
Difference in RTT in ms

Figure 9: CDF of the distance between user and VPN when
RTT difference < 50ms—Majority of VPN experiments with
a low RTT difference (below 50ms) are located close to the
user. 66.2% of these cases, the proxy is only upto 650 miles
away from the user (in yellow), and 89% of these cases, the
proxy is < 1000 miles from the user (in orange).

Private Relay IP, we conclude that the user may have over-
looked the fact that private relay was turned on, and hence
this is a “proxy” measurement. The other experiment had
an abnormally large Otrace RTT value, labeled a “best effort”
calculation (We explore this in §5.3).

Next, we investigate the VPN measurements, the RTT dif-
ference in 63.9% of measurements (78 of 122) are above the
threshold of 50 ms, also shown in Figure 8. Of the 36.1%
VPN measurements whose RTT difference is below 50 ms,
we find that in 77.3% of the cases (34 of 44), the user and
the VPN server are below 650 miles apart, which we con-
sider as the minimum threshold for it be a “remote proxy”,
as shown in Figure 9. We use the locations provided by the
user in our form and also compare the VPN IP-geolocation.
Another 2.2% (1 of 44) was an experiment mislabeled as a
VPN measurement, although the client IP indicates it is in
the same location as the user. Of the remaining 20.5% of
measurements (9 of 44), we did not see any proof to disprove
the apparent location of the VPN.

5.3 Results Combining the two Evaluations

Overall, if we consider 50 ms to be the RTT difference thresh-
old for a connection to be labelled as a remote proxy, our
method has a low false positive rate of 0.95% (2/210 direct
measurements). On the other hand, we find that 14.1% (136
of 964) VPN measurements had an RTT difference below
this threshold. However, only 2.9% (28/964) of VPN mea-
surements are located over 650 miles away from the user,
and are legitimate (i.e. excluding VPNs with fake locations,
and mislabeled experiments). Thus, we consider 2.9% our
method’s false negative rate.

What percentage of VPN servers respond to ICMP
pings? In our evaluations, we collected a total of 434 unique
VPN IPs, and we find that over 94.2% of these IPs (409/434)
responded to ICMP pings. A majority of the VPN server IPs

that did not respond to ICMP pings belong to Astrill VPN
(14/25), which may have a policy for some/all of its servers to
not respond to ICMP pings. Of the rest, four VPN servers be-
longed to personal Open VPN VPN servers, three other servers
others belonged to SOCKSS5 proxies, and the remaining four
were miscellaneous VPN services including iCloud Private
Relay.

Does removing all best-effort calculations improve our
method? Yes! Combining both sets of evaluation, we see
that exactly 4.0% of all measurements (47/1174) was labeled
“best effort calculations”, which means that the experiment
did not contain successful ICMP measurements, and that TCP
RTT measurement (Ang) is too close in value to Aap, and
Otrace did not reach the client or even the same network as
the client IP. Since these anomalous measurements only com-
prise 4% of all measurements, we do an investigation into
what our analysis would look like if we removed these mea-
surements. When a service provider deploys CalcuLatency,
they can achieve this by simply labeling all “best effort” ex-
periments as requiring a re-run and have the client conduct
another round of measurements.

From Figure 10, we see that a 100% of all direct measure-
ments have an RTT difference less than 50 ms, and 86.2%
of VPN measurements (808 of 937) have an RTT difference
greater than 50 ms. Of the 13.8% (129 of 937) VPN measure-
ments that have an RTT difference below 50 ms, we find that
66.7% of measurements are less than 650 miles away from
them user and another 13.2% advertise fake VPN locations as
we found in §5.1. The remaining 26 VPN experiments whose
RTT difference is less than 50 ms but distance from the user is
more than 650mi are false negatives, and the average distance
between the VPN server and user in these cases is 1089 miles.

In summary, in a more conservative analysis setting where
we only consider the experiments where we obtain all mea-
surement data points (96% of all collected measurements), we
do not find any false positives and false negative rate is 2.77%
(26/937). In production systems, the experiments that we ex-
clude in this analysis, i.e. those that are labelled “best-effort”,
can be marked by service providers for deeper inspection and
for re-running of the experiment to remove transient issues.

6 Ethics

Before running a public, crowd-sourced evaluation of our
system detailed in § 5.2, we contacted our institution’s IRB
and were informed that our project is exempt from regula-
tion. Our crowdsourcing evaluation web service presents a
input form and did not trigger any measurements until the
user reads, inputs data about the measurement, and consents
to the measurements. The index page also outlines the mea-
surements conducted, data collected, and that any latency data
collected may possibly be published to help future research,
after anonymizing the last octet of each visitor’s IP address.
From the web service, we measure the user’s latency using

USENIX Association

33rd USENIX Security Symposium 2273

100 @ —

0.75

o % ‘/' Type

8 050

m < Direct
0.25 -~ Proxy

0.00 —-=°
0 100 200 300 400
RTT difference in ms

Figure 10: ECDF of RTT difference of 1127 reliable mea-
surements—This analysis contains measurements that did
not have a “best effort” label from our decision tree. 100% of
all direct measurements and 86.2% of all VPN measurements
have an RTT difference below 50 ms (in yellow).

four different methods and any data collected is only accessi-
ble to the authors of this paper.

We acknowledge that there are potential misuses of our
CalcuLatency system that server-side operators and service
providers could use to penalize VPN users. However, ser-
vices currently employ black-box techniques to do similar
blocking that maybe even more discriminatory. Our solution
aims to identify users that connect to far-off, remote VPNs
specifically to abuse systems, and will serve as one of several
anti-fraud identifiers. Previous work has found that a majority
of VPN users use it for privacy and security purposes [29].
Such legitimate VPN users can still connect to servers closer
to themselves to enjoy the privacy benefits of the VPN and
still evade our remote proxy detection.

7 Limitations

CalcuLatency cannot reveal proxy users in all cases. We can
only detect proxy users if the proxy is sufficiently far enough
from the user, from our measurements this distance appears to
be at least 650 miles or more. Otherwise if the user and proxy
are closer, the RTT difference may be too small to detect
the proxy. This may be a prohibitive limitation for some
service providers, and a non-issue for others because users
may deliberately choose proxy servers that are geographically
far away from them, to disguise their physical location. For
example, users defrauding rewards networks want access to
higher-reward locations, or users of streaming services often
use VPN to appear to be in another country, to get access
to geo-restricted content. Each service operator can decide
based on their business needs if they are conservative (treat
ambiguous users as direct users) or be more aggressive (treat
ambiguous users as proxy users). The service provider can
also choose to subject ambiguous users’ connections to further
tests to confirm observations.

Our technique becomes less accurate in the presence of

highly restrictive firewalls that discard all ICMP traffic. For
perfect accuracy, we need to receive ICMP error packets from
the client itself. The farther away we are from the client, topo-
logically, the less accurate our RTT measurements become.
While such restrictive firewalls do exist, our results suggest
that they are the exception rather than the rule. We find from
our evaluation that 94.2% of all VPN or proxy server IPs
respond to ICMP pings, and over 56% of direct connections
respond to ICMP pings, which is much higher than reported
before. Additionally even if direct ICMP pings are disallowed,
Otrace can function as long as the firewall does not discard
ICMP error responses.

If a server-client pair uses the Multipath TCP (MTCP) pro-
tocol, it could reduce the effectiveness of CalcuLatency, due
to the fact that this protocol uses multiple network routes con-
currently within the same TCP connection, which could cause
skewed results when comparing the Otrace RTT measurement
to the application-layer RTT measurement since they could
have traveled different paths. However, Shreedhar et al. de-
termine that MTCP usage is extremely low compared to TCP
(0.5%), and the vast majority of MTCP traffic is from a single
company (Apple), which means that CalcuLatency would still
be viable in the vast majority of use-cases [30].

Finally, we also present an analysis of how latency measure-
ments can vary when it comes to dual-stack endpoints, where
IPv6 connections to the server side can influence a bloat in the
measured latency differences. We present an analysis using
RIPE Atlas probes in the Appendix D. However, CalcuLa-
tency only supports [Pv4 based Otrace measurements, and we
leave the optimization of IPv6 based latency calculation for
detecting proxy-enabled abuse for future work.

8 Related Work

We provide an overview of related work on latency measure-
ment techniques and its applications, Internet liveness tests,
and proxy detection methods.

Latency Measurements: In a 2021 blog post, Tschacher
writes that using in-browser measurements and on the server
side by measuring RTT of the incoming TCP/IP handshake,
website owners can infer that a visitor is using a proxy using
the latency difference [31]. However, the blog post conducts
a limited evaluation and relies only on one incoming TCP/IP
connections and the handshake to identify RTT which may
be affected by packet loss and transient factors.

Weinberg et al. [10] used ping-time measurements to hosts
in known locations to estimate the locations of 2,269 proxy
servers. They also found that over 90% of VPN servers and
their first hop routers tested ignore ICMP pings and do not
send time exceeded packets. Hopper et al. [32] estimate that an
Internet host in 2007 can be uniquely identified by knowing
its RTT to five randomly chosen hosts. Pelsser et al. [33]
studied whether ICMP ping provides a good estimation of

2274 33rd USENIX Security Symposium

USENIX Association

delay and find that from an application perspective, [CMP
ping actually gives a poor estimate of the delay and jitter as it
can vary between flows.

Jiang et al. propose two techniques that a passive in-path
monitor can use to measure the TCP round-trip time including
the handshake [34]. Unlike this work, CalcuLatency has ac-
cess to bidirectional flows and can analyze all three segments
of the TCP handshake. In 2020, Livadariu et al. found that
using RTT measurements from probing an IP from multiple
vantage points (including from within its own AS) is a more
viable strategy than using geolocation databases [35].

Cloud Providers: Dang and Mohan [36] investigated la-
tency specifically towards cloud service providers in 2021,
with a focus on developing regions. They found that geo-
graphical distance has a high impact on latency towards cloud
systems. Kashaf et al. [37] determine that a majority (95%) of
websites that are hosted in or serve traffic primarily to Africa
rely on third-party cloud infrastructure. These two conclu-
sions support the efficacy of CalcuLatency in lower traffic
regions. Dang and Mohan conclude that the last-mile tech-
nology used is the greatest factor for latency when reaching
a cloud provider, but the results from our RIPE Atlas mea-
surements show that the last-mile technology does not have a
large impact on the measured RTT.

Internet Liveness: In their CCR’18 paper, Bano et al. per-
form Internet-wide scans to study the population of addresses
that respond to probes [20]. They found ICMP probes are
the most effective to discover alive hosts but TCP probes can
further add to the population of alive hosts. A combination
of ICMP, TCP, and (to a lesser extent) UDP results in the
most complete picture of liveness. Bano et al.’s results in-
form how CalcuLatency attempts to determine an address’s
network-layer or transport-layer latency.

Proxy Detection: Much work has focused on detecting
proxies; mostly on detecting Web proxies, VPNs, and Tor.
Weaver et al.’s PAM’ 14 paper studied the prevalence of in-
path Web proxies by sending controlled application-layer
measurements between clients and a server, controlled by the
researchers using Netalyzr [38]. In an S&P’19 paper, Mi et
al. studied the emerging ecosystem of end user systems that
serve as proxies to others—often without the knowledge of
the owners of the proxies [39].

Hoogstraaten [40] explored several server-side VPN detec-
tion methods, such as using existing IP information databases
(WHOIS, rDNS), fingerprinting TCP options like advertised
MSS, and even timing based measurements. But they only pro-
pose limited latency based measurements to identify internet-
layer proxies, and conducted a short proof of concept. The
closest related work is by Webb et al. [15] who also proposed
detecting proxies and VPNs based on traffic timing and la-
tency. They measure the RTT for each connecting IP address
and flag anomalies in the distribution of these RTTs as proxies.

However, their method must be trained for each IP address,
and hence is not practical.

9 Discussion and Conclusion

In this paper, we present and evaluate our system CalcuLa-
tency that incorporates several network RTT measurement
techniques and leverage the application-layer and network-
layer differences in roundtrip-times when a user connects to
a service using a proxy (which are absent when the user con-
nects to the service directly). We implement and evaluate each
building block of our system individually: WebSocket RTT
measurement on the application-layer, TCP handshake RTT
recorded on the transport-layer, and ICMP ping and Otrace
hop-enumeration RTT on the network-layer. We integrate all
these techniques into one system called CalcuLatency and
conduct a two-pronged evaluation: a control testbed environ-
ment where we test multiple different VPN products, proxy
protocols, and server locations with over 337 unique VPN
or proxy server IPs tested. To expand the diversity of our
evaluation, we rally users and collect a public, crowdsourced,
real-world evaluation of our system, which gained us 283 mea-
surements from 37 different countries in all six continents.

Our evaluations reveal that a round-trip time difference of
50 milliseconds between the application and network-layer la-
tencies is a viable, empirical threshold to consider a particular
client as a remote VPN or proxy connection. We open-source
our code in order to help encourage future research [41, 42].

CalcuLatency provides a preliminary, labelling technique
for service-providers, and must not serve as the only signal
for detecting “malicious proxy traffic”’. Not all VPN users are
attackers and not all VPN or proxy traffic is abusive. Hence,
our method only serves as one of the signals and service
providers must leverage business-specific logic and make
decisions on flagging connections as possible abuse traffic.
For example, reward networks can flag certain connections as
malicious and use such signals over time to detect and curb
abusive consumers.

We acknowledge that service providers could potentially
misuse this method to penalize all proxy use. However, we
emphasize that our method’s inherent design of detecting long-
distance proxies and VPNs still protect legitimate proxy use
and its users. Users could evade detection by using proxies
close to their location, which gives them better performance
and the requisite privacy and security features of the VPN.

Ensuring the adoption, success, and sustainability of
privacy-focused business models rely heavily on the availabil-
ity of computationally cost-effective and easily deployable
techniques. Service providers must strike a delicate balance
between implementing robust abuse-prevention mechanisms
and maintaining a rigorous commitment to privacy. With Cal-
cuLatency, we provide an open-source technique that can be
readily deployed as a software service that can support efforts
that prioritize user interests and their privacy.

USENIX Association

33rd USENIX Security Symposium 2275

10 Acknowledgment

The authors are grateful to Armin Huremagic, Riya Agarwal,
Farzad Siraj for their help with the evaluations. We thank the
reviewers for their feedback, and RIPE Atlas for generously
granting credits to conduct an evaluation of our techniques.
This material is based upon work supported by the National
Science Foundation under grant numbers CNS-2141512, and
CNS-2237552.

References

(1]

(2]

(3]

(4]
(3]
(6]
(7]
(8]

(9]

[10]

(11]

[12]

Todd Spangler. Digital Advertising Slowed in 2022
but Was Still Up 10.8%. URL: https://variety.com/
2023/digital/news/digital-advertising-revenue-2022-
growth-pwe-research-iab- 1235601801/ (visited on
05/03/2023).

PwC. Outlook 2022: The US Digital Advertising
Ecosystem. URL: https://www.pwc.com/us/en/
industries/tmt/library/assets/pwc-iab-2022-outlook.
pdf (visited on 10/01/2021).

Amnesty International. Surveillance giants: How
the business model of Google and Facebook threat-
ens human rights. https : // www . amnesty . org /
download /Documents/POL3014042019ENGLISH .
PDF. Amnesty International, 2019.

Presearch. https://presearch.io/pre.

Prolific. URL: https://www.prolific.com/participants.
Brave. https://brave.com/brave-ads/.

Omee. https://www.qmee.com/.

Michal Zalewski. Otrace — traceroute on established
connections. Jan. 2007. URL: https://lwn.net/Articles/
217023/.

The WebSocket API (WebSockets). https://developer.
mozilla.org/en-US/docs/Web/API/WebSockets_API.
May 31, 2023.

Zachary Weinberg, Shinyoung Cho, Nicolas Christin,
Vyas Sekar, and Phillipa Gill. “How to Catch when
Proxies Lie: Verifying the Physical Locations of Net-
work Proxies with Active Geolocation”. In: IMC.
ACM, 2018. URL: http://www.contrib.andrew.cmu.
edu/~nicolasc/publications/Weinberg-IMC18.pdf.

Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and
Roya Ensafi. “VPNalyzer: Systematic Investigation of
the VPN Ecosystem”. In: NDSS. The Internet Society,
2022. URL: https://dx.doi.org/10.14722/ndss.2022.
24285.

Manaf Gharaibeh, Anant Shah, Bradley Huffaker, Han
Zhang, Roya Ensafi, and Christos Papadopoulos. “A
look at router geolocation in public and commercial
databases”. In: Proceedings of the 2017 Internet Mea-
surement Conference. 2017.

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar,
Benoit Donnet, and Bamba Gueye. “IP geolocation
databases: Unreliable?” In: ACM SIGCOMM Com-
puter Communication Review (2011).

Can I use WebSocket? URL: https://caniuse.com/
7search=websocket (visited on 06/06/2023).

Allen T. Webb and A. L. Narasima Reddy. “Finding
Proxy Users at the Service Using Anomaly Detection”.
In: CNS. IEEE, 2016. URL: https://ieeexplore.icee.org/
document/7860473.

Hao Ding and Michael Rabinovich. “TCP Stretch Ac-
knowledgements and Timestamps: Findings and Im-
plications for Passive RTT Measurement”. In: ACM
CCR 45.3 (2015). URL: https://www.sigcomm.org/
sites/default/files/ccr/papers/2015/July /0000000 -
0000002.pdf.

Toke Hgiland-Jgrgensen, Bengt Ahlgren, Per Hurtig,
and Anna Brunstrom. “Measuring Latency Variation
in the Internet”. In: CoNEXT. ACM, 2016. URL: https:
/[dl.acm.org/doi/pdf/10.1145/2999572.2999603.

Gregor Maier, Anja Feldmann, Vern Paxson, and Mark
Allman. “On Dominant Characteristics of Residential
Broadband Internet Traffic”. In: IMC. ACM, 2009.
URL: https://www.icir.org/vern/papers/imc102 -
maier.pdf.

Bryan Veal, Kang Li, and David Lowenthal. “New
Methods for Passive Estimation of TCP Round-Trip
Times”. In: PAM. Springer, 2005. URL: https://dkl.cs.
arizona.edu/publications/papers/pam05.pdf.

Shehar Bano et al. “Scanning the Internet for Liveness”.
In: ACM CCR 48.2 (2018). URL: https://ccronline.
sigcomm.org/wp-content/uploads/2018/05/sigcomm-
cer-final175.pdf.

Diwen Xue, Reethika Ramesh, Arham Jain, Michalis
Kallitsis, J. Alex Halderman, Jedidiah R. Crandall, and
Roya Ensafi. “OpenVPN is Open to VPN Fingerprint-
ing”. In: Security. USENIX, 2022. URL: https://www.
usenix.org/system/files/sec22-xue-diwen.pdf.

Zakir Durumeric, Eric Wustrow, and J. Alex Halder-
man. “ZMap: Fast Internet-Wide Scanning and its
Security Applications”. In: Security. USENIX, 2013.
URL: https://zmap.io/paper.pdf.

Ram Sundara Raman, Mona Wang, Jakub Dalek,
Jonathan Mayer, and Roya Ensafi. “Network Measure-
ment Methods for Locating and Examining Censor-
ship Devices”. In: ACM International Conference on
emerging Networking EXperiments and Technologies
(CoNEXT). 2022.

2276 33rd USENIX Security Symposium

USENIX Association

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

Philipp Richter et al. “A Multi-perspective Analysis
of Carrier-Grade NAT Deployment”. In: IMC. ACM,
2016. URL: https://dl.acm.org/doi/pdf/10.1145/
2987443.2987474.

IETF. RFC 1812: Requirements for IP Version 4
Routers. https://datatracker.ietf.org/doc/html/rfc1812.
1995.

IETF. RFC 792: Internet Control Message Protocol.
https://datatracker.ietf.org/doc/html/rfc792. 1981.
RIPE Atlas Docs. Starting your own Measurements
(User-defined Measurements). https://atlas.ripe.net/
docs/ getting - started / user - defined - measurements .
html#the-user-defined-measurements.

Ethan Katz-Bassett, John P John, Arvind Krishna-
murthy, David Wetherall, Thomas Anderson, and Yatin
Chawathe. “Towards IP Geolocation Using Delay and
Topology Measurements”. In: IMC. ACM, 2006. URL:
https://conferences.sigcomm.org/imc/2006/papers/
p7-bassett.pdf.

Reethika Ramesh, Anjali Vyas, and Roya Ensafi. “"All
of them claim to be the best": Multi-perspective study
of VPN users and VPN providers”. In: 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim,
CA: USENIX Association, 2023.

Tanya Shreedhar, Danesh Zeynali, Oliver Gasser, Nitin-
der Mohan, and Jorg Ott. A Longitudinal View at the

Adoption of Multipath TCP. 2022. arXiv: 2205.12138
[cs.NI].

Nikolai Tschacher. Detecting Proxies and VPN’s [sic]
with Latency Measurements. June 2021. URL: https:
//web.archive.org/web/20210614154432 /https://
incolumitas.com/2021/06/07/detecting-proxies-and-
vpn-with-latencies/ (visited on 02/15/2023).

Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-
Tin. “How Much Anonymity does Network Latency
Leak?” In: ACM Transactions on Information and Sys-
tem Security 13.2 (2010). URL: https://www-users.cse.
umn.edu/~hoppernj/tissec-latency-leak.pdf.

Cristel Pelsser, Luca Cittadini, Stefano Vissicchio, and
Randy Bush. “From Paris to Tokyo: On the Suitability
of ping to Measure Latency”. In: IMC. ACM, 2013.
URL: https://inl.info.ucl.ac.be/system/files/IMC2013-
short-tokyo-ping.pdf.

Hao Jiang and Constantinos Dovrolis. “Passive Estima-
tion of TCP Round-Trip Times”. In: ACM CCR 32.3
(2002). URL: http://ccr.sigcomm.org/archive/2002/
jul02/ccr-2002-3-jiang.pdf.

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

Joana Livadariu, Thomas Dreibholz, Anas Saeed Al-
Selwi, Haakon Bryhni, Olav Lysne, Steinar Bjgrnstad,
and Ahmed Elmokashfi. “On the Accuracy of Country-
Level IP Geolocation”. In: Proceedings of the Applied
Networking Research Workshop. ANRW ’20. Virtual
Event, Spain: Association for Computing Machinery,
2020, pp. 67-73. ISBN: 9781450380393. por: 10.1145/
3404868 .3406664. URL: https://doi.org/10.1145/
3404868.34066064.

The Khang Dang, Nitinder Mohan, Lorenzo Corneo,
Aleksandr Zavodovski, Jorg Ott, and Jussi Kangasharju.
“Cloudy with a chance of short RTTs: analyzing cloud
connectivity in the internet”. In: Proceedings of the
215t ACM Internet Measurement Conference. IMC *21.
Virtual Event: Association for Computing Machinery,
2021, pp. 62-79. ISBN: 9781450391290. por: 10.1145/
3487552.3487854. URL: https://doi.org/10.1145/
3487552.3487854.

Agsa Kashaf, Jiachen Dou, Margarita Belova, Maria
Apostolaki, Yuvraj Agarwal, and Vyas Sekar. “A First
Look at Third-Party Service Dependencies of Web
Services in Africa”. In: Passive and Active Measure-
ment. Ed. by Anna Brunstrom, Marcel Flores, and
Marco Fiore. Cham: Springer Nature Switzerland,
2023, pp. 595-622. ISBN: 978-3-031-28486-1.

Nicholas Weaver, Christian Kreibich, Martin Dam,
and Vern Paxson. “Here Be Web Proxies”. In: PAM.
Springer, 2014. URL: https://www.icir.org/vern/papers/
netalyzr-proxies.pam14.pdf.

Xianghang Mi et al. “Resident Evil: Understanding
Residential IP Proxy as a Dark Service”. In: Security
& Privacy. IEEE, 2019. URL: https://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=8835239.

Hans Hoogstraaten. “Evaluating server-side internet
proxy detection methods”. MA thesis. Leiden Univer-

sity, 2018. URL: https://studenttheses.universiteitleiden.
nl/access/item%3A2701711/view.

Zerotrace. URL: https://github.com/censoredplanet/
zerotrace-code.
CalcuLatency Evaluation Code. URL: https://github.

com/censoredplanet/calculatency-code.

RIPE Atlas Probes Archive, Accessed 01-11-2024.
https://ftp.ripe.net/ripe/atlas/probes/archive/2024/01/
20240111 json.bz2.

USENIX Association

33rd USENIX Security Symposium 2277

. Top 1% Top Top
Continent s 10% 50%
ASes ASes

Elig. Com. Elig. Com. Elig. Com.

Europe 208 | 31.3 | 654 | 66.2 | 87.2 | 87.3
N. America | 36.5 | 24.6 | 67.3 | 61.4 | 83.8 | 87.8
Oceania 289 | 30.1 | 53.0 | 39.7 | 87.2 | 82.2
S. America | 7.2 15.6 | 325 | 28.1 | 66.2 | 65.6
Asia 109 | 9.7 | 415 | 40.0 | 77.2 | 74.2
Africa 159 | 43.8 | 39.7 | 43.8 | 71.4 | 75.0

Table 1: Distribution of probes over the top 1%, 10% and
50% stratified by the continent of the probes. “Elig.” refers
to the percentage of eligible probes that exist in RIPE Atlas
and “Com.” refers to the percentage of probes that actually

participated in and completed our measurements successfully.

This table shows that the distribution of eligible probes closely
follow the distribution of the probes that actually participated
in our measurements, showing that our selection strategy did
not skew our results.

1.00 S ——————
[}
I Platform
0.75 l
29 " — MacBook (Chrome)
§ 0.50 ! MacBook (Safari)
| ThinkPad (Chrome)
0.25 A
]

— = ThinkPad (Firefox)
0.00 —=
1 10 100 1,000

RTT in ms (log)

Figure 11: RTT distribution of WebSocket
measurements on four platforms.

A Reliability of WebSocket Pings

Figure 11 illustrates the results from our WebSocket ping
measurement with 10,000 WebSocket echo requests from two
consumer laptops (ThinkPad X1, MacBook Pro) with two
browsers: ThinkPad is a X1 Carbon 8th generation equipped

with a 15-10210U CPU, and ran Chrome 111 and Firefox 111.

The 2023 MacBook Pro is equipped with an M2 Pro CPU,
and ran Safari 16.3 and Chrome 111. We find that the median
RTT is less than 1.4ms for all measurements and 99% of the
RTT measurements completed in less than 2.4ms. Hence, we
account for this by running multiple measurements, spaced
out over time in CalcuLatency.

B RIPE Atlas Probes Characterization

In our analysis outlined in 4.3, we downloaded the RIPE Atlas
probes list latest on January 11, 2024 [43]. The total number
of probes by unique probe ID was 38,554. But many probes
have the same public IPv4 address, and the number of unique
IPv4 addresses is 27,004.

We had to filter probes by eligibility based on multiple
criteria. We found that 1,497 (3.9% of 38,554) probes had no
public IPv4 OR IPv6 addresses. We found 588 (1.5%) probes
had a bad country code where the country code either did not
exist or the length of the country code was not two (specified
by ISO-3166). We found that there were 1,107 (2.9%) probes
that had undesirable tags attached to them, namely "system-
geoloc-disputed”, "core", "cloud", "vps", "ixp", "ipv6-only",
or probe’s tags start with “data-center” or “datacenter”.

Importantly, we found that that 24,454 (63.4%) probes
were either disconnected and/or abandoned, and were hence
unusable. We also had to filter out 126 (0.3%) probes that do
not have an IPv4 address specifically because Otrace relies on
the IPv4 stack on the endpoint contacting us. We identified
a set of 97 valid “tags” that determine usable probes. We
eliminated 5,382 (14%) of probes that had none of the 97

desirable tags.
Of the 38,554 probes in the RIPE Atlas probe file, the total

number of ineligible probes as defined by the criteria above
was 33,154 (85.99% of 38,554). Therefore, the number of
eligible probes were 5,400 (14 %). Note that while we request
all these eligible probes to participate in our measurements,
not all of them do [27]. RIPE Atlas documentation mentions
that it is possible for probes to not participate if the requested
probes were too busy to take on new jobs, or had changed
statuses, i.e. become disconnected or offline.

As mentioned in Section 4.3, we have 2,350 RIPE Atlas
probe IP-probe ID pairs that fully completed the SSL, ICMP
and TCP traceroute measurements. Overall, there are 2,304
unique RIPE Atlas probe IPs belonging to 2,193 unique probe
IDs, because some probe IPs have multiple probe IDs asso-
ciated with them and some probes have multiple IPs. The
probes we have in our measurement covered all continents:
Europe (1539), North America (378), Australia/Oceania (73),
South America (32), Asia (155), and Africa (16).

The distribution of these probes over the top 1%, 10% and
50% of ASes per continent is shown in Table 1. We see that the
distribution of eligible probes closely follow the distribution
of the probes that participated in our measurements, thereby
showing that our selection strategy did not skew our results.

The distribution of eligible and participated probes across
different access technology shown in Table 2.

C Measurements done at different times of day
and days of the week

We tested the hypothesis that running latency measurements
at different times of the day in the local time of the probe

2278 33rd USENIX Security Symposium

USENIX Association

g

(=)

\

\
1
i
1

o
©

o
o

ICMP (v4-v6 diff)
TCP (v4-v6 diff)

o
IS

Proportion of all measurements

o
N

o
<)

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0
Difference in RTT between lowest v6 and v4 for the same probe in ms

Figure 12: RIPE Atlas IPv4 and v6 RTT Differences—
From our measurements, we find that in over 85.4% of the
probes the difference between the RTTs of the terminal hops
done from the traceroutes of IPv4 and IPv6 addresses (ICMP
and TCP separately) is less than 50ms, which is exactly our
margin threshold. In all cases above 50ms, the IPv6 traceroute
RTT was markedly higher.

Tags (Associated RIPE Tags) | Eligible | Participated

Fibre (Fibre, FTTH) 2124 906
Cable (Cable) 1071 365
VDSL (Only VDSL or VDSL2) | 475 268
DSL (DSL and not | 356 160
VDSL/VDSL?2)

Table 2: Distribution of probes over access technology in the
set of eligible probes and probes that actually participated in
our measurement. This table shows that the distribution of
tags follows the participation rate of ~46%

~

Iy
o

o
©

o
=)

ICMP
TCP

I
S

e
N

Proportion of all measurements

o
<)

0.0 200.0 400.0 600.0 800.0 1000.0
Std dev of RTTs measured 8 times a day per IP in ms

Figure 13: CDF of Standard Deviation of RTTs per RIPE
Probe IP measured eight times a day—We see that in both
ICMP and TCP traceroutes the standard deviations in over
90% of all probes is less than 9.2ms and 10.9ms respectively.

could lead to variance in expected RTT due to different traffic
patterns at different times. So, we restricted our measurements
to run at eight different times during the day, with respect to
the local time of the probe, extrapolated from the latitude
and longitude of the probe. We also ran these measurements

on weekdays and weekends over two weeks to observe any
differences. We had 1,345 probes that completed the TCP

traceroute measurements, and 1,196 that completed the ICMP
traceroutes over multiple days.

Our measurements show that in both ICMP and TCP tracer-
outes, the standard deviations of the RTTs throughout the day
is low per IP address. Figure 13 shows that in 90% of probes,
the standard deviation is lower than 9.2ms and 10.9ms in
ICMP and TCP respectively. Moreover, in over 95% of probes,
the standard deviation is lower than 15.7ms and 21.1ms in
ICMP and TCP respectively. The outlying 5% measurements
are not belonging to any specific group of probes and are
equally spread out among the tags, locations, and times.

Since RIPE Atlas has a daily quota and a concurrency limit
for measurements, our aim is to maximize the usefulness of
our measurements. If we run measurements at different times
of the day and repeat each measurement thrice to account
for errors, we can only measure a maximum of 595 probes a
day (Maximum credits per day: 1,000,000, divided by credits
need per measurement round per probe (420) times 4 repeats).
But since our experiments revealed that there is no significant
difference in latency for 95% of the cases when measured at
different times of the day, we make the trade-off of missing
out the 5% of probes with some variance in measurements
taken at different times of the day, and rather choose to expand
our measurements to include a larger variety and diversity of
probes from different geolocations and last-mile technology.
In the rest of this section, we present results from our wider,
diverse measurement run that was aimed at maximizing the
number of probes, and conducted over a three day period
(Sunday—Tuesday).

D RIPE Atlas Probes v4 vs v6 Differences

Since RIPE Atlas allows us to run Internet measurements
from their probes which have IPv4 and IPv6 dual stack probes,
we wanted to identify if our CalcuLatency and its evaluation
have any significant effects if the tested endpoints are dual-
stack. However, we note that our Otrace system is currently
only able to run and measure towards an IPv4 address, since
we rely on the IPID field and ICMP(v4) error responses in
our system design. If the endpoint makes a TCP handshake
via their IPv6 address, Otrace will not be able to run towards
that host.

Nevertheless, we conducted measurements from the IPv4
and IPv6 addresses of the same probe. We find that the RTT
difference between the terminal hops in the ICMP traceroute
and TCP traceroute. We find that in ~ 90% of the probes,
the RTT difference between the IPv4 and IPv6 traceroutes
in a given protocol (ICMP/TCP) is below 50ms, as shown in
Figure 12. There is a long tail with the RTT differences, and
upon manual investigation we notice that in each case, the
IPv6 traceroute ended early, and had bloated RTT values and
hence the difference turned out to be large.

We note that our CalcuLatency at the moment only sup-
ports IPv4 based Otrace measurements and so, we present this

USENIX Association

33rd USENIX Security Symposium 2279

=
=]

o
©

-

R

Cable
DSL
Fibre
VDSL

o o
e o

I
N

Proportion of all measurements

o
=}

0.0 500.0 1000.0 1500.0 2000.0 2500.0

Difference in RTT between zerotrace and ICMP measurements (ms)

(a) Difference between Otrace-determined RTT and RIPE Atlas-
determined ICMP RTT in ms.

Ly
=}

o
®
\'\

Cable
DSL
Fibre
VDSL

4
o

o
~

Proportion of all measurements

I
N

o
=}

0.0 500.0 1000.0 1500.0 2000.0 2500.0
Difference in RTT between zerotrace and TCP measurements (ms)

(b) Difference between Otrace-determined RTT and RIPE Atlas-
determined TCP RTT.

Figure 14: Comparing the RTT differences between probes with different local last-mile access technology

analysis in the appendix, and leave the optimization of IPv6
based latency calculation for detecting proxy-enabled abuse
for future work.

E Public Real-World Crowdsourced Evalua-
tion ASN distribution

As mentioned in Section 5.2, we had 161 direct measurements
that came from 145 unique client IPs belonging to 93 differ-
ent autonomous systems (ASes), and 122 VPN measurements
that came from 109 unique VPN IPs belonging to 51 differ-
ent ASes. Overall, we collected data from over 37 different
countries from all (six) continents.

We provide a more detailed breakdown of the IPs by au-
tonomous system number. Our direct measurements had at
least two measurements from the following AS numbers:
7922, 701, 7018, 21928, 3320, 36375, 33915, 3209, 243009,
1257,22773, 35807, 577,61832,27,20115, 5089, 3215, 6167.
The rest of the 74 ASes had one measurement from them. Our
VPN measurements had at least two measurements from the
following AS numbers: 9009, 212238, 60068, 136787, 39351,
16509, 136557, 132825, 137409, 63949, 20473, 13335, 60781,

197706. The rest of the 34 ASes had one measurement from
them.

F Differences in local and last-mile access tech-
nology

Figure 14 contains all the data from our evaluation of our
hypothesis of whether different last-mile access technologies
have large effects on the latency seen from the server side. We
divide and present our results for the RIPE Atlas probe’s TCP
and ICMP traceroutes separately. In Section 4.3, we presented
results without outliers for better visibility. Here, we present
all our results.

We see that there are only three outliers, all of which were
tagged with VDSL as the access technology. As noted in
Section 4.3, these outliers had an RTT difference of 388ms,
1970ms, and 2640ms and upon investigation we note that
these were due to two German RIPE probes in AS8881 and
AS3320 which failed to reach far in the Otrace traceroute.
These cases would be characterized as “best effort” in the real
world operation of the CalcuLatency system and would be
marked for retrying and not used for determination.

2280 33rd USENIX Security Symposium

USENIX Association

	Introduction
	Background
	Architecture of Network Proxies
	The 0trace Technique
	The WebSocket API

	Method
	System Architecture and Assumptions
	Determining the Application-layer RTT
	Determining the Transport-layer RTT
	Determining the Network-layer RTT
	ICMP RTT
	0trace RTT

	Implementation and Deployment

	Building Block Evaluation
	Reliability of WebSocket Pings
	Reliability of TCP Handshake RTT
	Reliability of 0trace Pings: Considering the Variance of Latency Across the Internet

	Evaluating CalcuLatency in Practice
	Control Testbed Evaluation
	Data Characterization
	Results

	Real-world Crowdsourced Evaluation
	Data Characterization
	Results

	Results Combining the two Evaluations

	Ethics
	Limitations
	Related Work
	Discussion and Conclusion
	Acknowledgment
	Reliability of WebSocket Pings
	RIPE Atlas Probes Characterization
	Measurements done at different times of day and days of the week
	RIPE Atlas Probes v4 vs v6 Differences
	Public Real-World Crowdsourced Evaluation ASN distribution
	Differences in local and last-mile access technology

