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Abstract

The safe linear bandit problem is a version of
the classical stochastic linear bandit problem
where the learner’s actions must satisfy an
uncertain constraint at all rounds. Due its
applicability to many real-world settings, this
problem has received considerable attention
in recent years. By leveraging a novel ap-
proach that we call directional optimism, we
find that it is possible to achieve improved re-
gret guarantees for both well-separated prob-
lem instances and action sets that are finite
star convex sets. Furthermore, we propose a
novel algorithm for this setting that improves
on existing algorithms in terms of empirical
performance, while enjoying matching regret
guarantees. Lastly, we introduce a generaliza-
tion of the safe linear bandit setting where
the constraints are convex and adapt our algo-
rithms and analyses to this setting by leverag-
ing a novel convex-analysis based approach.

1 INTRODUCTION

The stochastic linear bandit setting Dani et al.
(2008); Rusmevichientong and Tsitsiklis (2010); Abbasi-
Yadkori et al. (2011) is a sequential decision-making
problem where, at each round, a learner chooses a vec-
tor action and subsequently receives a reward that, in
expectation, is a linear function of the action. This
problem has found broad applications in fields ranging
from online recommendation engines to ad placement
systems, to clinical trials. In the rich literature that has
emerged, it is often assumed that any constraints on the
learner’s actions are known. In the real world, however,
there are often constraints that are both uncertain and
need to be met at all rounds, such as toxicity limits
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in clinical trials or sensitive topics for recommenda-
tion engines. As a result, linear bandit problems with
uncertain and roundwise constraints have received con-
siderable attention in recent years from works such as
Amani et al. (2019), Khezeli and Bitar (2020), Pacchi-
ano et al. (2021), Moradipari et al. (2021) and Varma
et al. (2023).

A natural formulation of the safe linear bandit prob-
lem, initially studied by Moradipari et al. (2021), im-
poses a linear constraint on every action x; of the
form a”z; < b where @ is unknown, b is known and
the learner gets noisy feedback on a'x;. To address
this problem, algorithms have been proposed with
O(d*/>\/T) (Moradipari et al. (2021)) and O(dv/'T)
(Pacchiano et al. (2021); Amani and Thrampoulidis
(2021)) regret. These algorithms operate by choosing
actions from a pessimistically safe set using versions of
Thompson sampling or upper confidence bound where
the confidence set for the reward parameter is scaled
by a fized constant in both cases. In this work, we
introduce an algorithm with matching O(dv/T) regret
that avoids the use of this fixed scaling by implement-
ing optimism with respect to directions, and find that,
when compared to the above-mentioned approach, our
algorithm enjoys improved performance in problem in-
stances with less restrictive constraints. Leveraging this
intuition, we then give algorithms that enjoy improved
regret guarantees in terms of the problem dimension
for well-separated problem instances and settings with
finite star convex action sets.

In fact, this approach is part of a broader perspec-
tive for the safe linear bandit problem in which we
understand this setting as fundamentally a problem
of choosing directions (rather than actions). Since
the set of feasible actions is unknown in safe linear
bandits, the uncertainty in the problem comes from
both the uncertainty in the reward and the uncertainty
in the diameter of the feasible action set in each di-
rection. Accordingly, any algorithm for this setting
should appropriately quantify both of these uncertain-
ties to ensure low regret. This understanding facilitates
our contributions in both geometry-dependent regret
guarantees and empirical performance.
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Algorithm General Problem-dependent  Finite-star convex Linked convex con-
action set straint
Safe-LTS [1] O(d*/*VT) - - -
GenOP 23]  O(dVT) o (§ + \/T) - O(dv/T) Appendix D
Appendix E
ROFUL (Alg. 1) O(dvT) Theorem 1 @ (dK + ﬁ) - O(dv'T) Appendix D

Corollary 1

Safe-PE (Alg. 3) - -

O(VdT) Theorem 3 O(VdT) Appendix D

Table 1: Algorithms and regret bounds developed in existing works and this paper for the safe linear bandit
problem where T is horizon and d is problem dimension. Existing work is shown in gray, where the references are
[1] for Moradipari et al. (2021), [2] for Pacchiano et al. (2021) and [3] for Amani and Thrampoulidis (2021). Due
to variations in problem settings in existing work, we use the name GenOP to refer to a generic upper confidence
bound-based algorithm that uses the expanded confidence set approach from [2], [3] (see Section 3.3 for details).

Contributions Our contributions are summarized
in Table 1 and in the following:

e We propose a novel UCB-based algorithm, RO-
FUL, which enjoys o (d\/T) regret. We provide
some intuition and empirical evidence as to when

ROFUL is preferred over existing approaches. (Sec-
tion 3)

e We introduce a notion of well-separated problem
instance in safe linear bandits, and show that it

is possible to achieve @) (% + \/T) regret in this
setting. (Section 3.2)

e We study the case when the action set is a finite
star convex set and introduce a phased elimination-
based algorithm, Safe-PE, which is proven to enjoy

O (\/ dT) regret. (Section 4)

e We introduce a generalization of the safe linear
bandit problem, which we call linked convex con-
straints, where each action x; needs to satisfy
Az, € G for all t € [T] where G is an arbitrary
convex set. We extend the ROFUL and Safe-PE
algorithms and their analyses to this setting with a
novel convex analysis-based approach. (Section 5)

e Simulation results provide validation for the the-
oretical guarantees and numerical comparison to
existing approaches. (Section 6)

Related Work Uncertain constraints have been con-
sidered in various learning and optimization problems,
often under the umbrella of “safe learning”. This in-
cludes constrained Markov decision processes (CMDP),
where the constraints take the form of limits on auxil-
iary cost functions (Achiam et al. (2017); Wachi and

Sui (2020); Liu et al. (2021a); Amani et al. (2021); Bura
et al. (2022); Lindner et al. (2023)). There have also
been works that study convex optimization with uncer-
tain constraints that are linear (Usmanova et al. (2019);
Fereydounian et al. (2020)), and safe bandit optimiza-
tion with Gaussian process priors on the objective and
constraints (Sui et al. (2015, 2018)). Although the
Gaussian process bandit framework is able to capture
a wider class of reward and constraint functions than
linear bandits, safe Gaussian process bandit works typi-
cally make the stronger assumption that the constraint
is not tight on the optimal action. Some recent litera-
ture has also studied safe exploration of bandits (Wang
et al. (2022)) as well as best arm identification under
safety constraints (Wan et al. (2022); Lindner et al.
(2022); Camilleri et al. (2022)). These works consider
objectives other than regret minimization, i.e. accu-
rate estimation of policy value or finding the best arm,
and are therefore distinct from the regret minimization
setting that we study here.

For the bandit setting in particular, various types of
constraints have been considered, including knapsacks,
cumulative constraints and conservatism constraints.
In knapsack bandits, pulling each arm yields both a
reward and a resource consumption with the objective
being to maximize the reward before the resource runs
out (Badanidiyuru et al. (2013, 2014); Agrawal and
Devanur (2016); Agrawal et al. (2016); Cayci et al.
(2020)). There are also works that consider various
types of cumulative constraints on the actions, includ-
ing ones with fairness constraints (Joseph et al. (2018);
Grazzi et al. (2022)), budget constraints (Combes et al.
(2015); Wu et al. (2015)) and general nonlinear con-
straints for which the running total is constrained (Liu
et al. (2021b)). Similarly, there are works that bound
the cumulative constraint violation in the multi-armed
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(Chen et al. (2022b)) and linear (Chen et al. (2022a))
settings. Similar to us, Chen et al. (2022a) uses an
optimistic action set, although their algorithm does
not ensure constraint satisfaction at each round and
instead aims for sublinear constraint violation. These
types of cumulative constraints differ from the setting
we study, where constraints are roundwise and must
hold at each round. In the conservative bandit litera-
ture, the running total of the reward needs to stay close
to the baseline reward (Wu et al. (2016); Kazerouni
et al. (2017)).

Various works have also studied linear bandits with
roundwise constraints. In particular, Amani et al.
(2019) studies a stochastic linear bandit setting with
a linear constraint, where the constraint parameter is
the linearly transformed reward parameter and there
is no feedback on the constraint value. Also, Khezeli
and Bitar (2020) and Moradipari et al. (2020) study a
conservative bandit setting where the reward at each
round needs to stay close to a baseline. Pacchiano et al.
(2021) studies a setting where the learner chooses a
distribution over the actions in each round and the con-
straint needs to be satisfied in expectation with respect
to this distribution. Although this is a slightly different
type of constraint than we consider, their approach can
be adapted to our setting which we discuss further in
Section 3.3.

Most relevantly, several works have studied linear ban-
dit problems with an auxiliary constraint function that
the learner observes noisy feedback of and needs to
ensure is always below a threshold. Moradipari et al.
(2021) studied such a setting with a linear constraint
function and proposed the Safe-LTS algorithm. Also,
Amani and Thrampoulidis (2021) studied a decentral-
ized version of the same problem where the agents
collaborate over a communication network. Lastly, the
recent work by Varma et al. (2023) considers a safe
linear bandit problem where different constraints apply
to different parts of the domain and the learner only
receives feedback on a given constraint when she se-
lects an action from the applicable part of the domain.
However, all of these works use algorithms that choose
actions from a pessimistic action set using either linear
UCB or linear TS with a confidence set that is scaled
by a fixed constant, which significantly differs from our
proposed algorithms as detailed in Section 3.3. Also,
they do not achieve improved regret guarantees for
well-separated and finite star-convex settings as we do.

2 PRELIMINARIES

Notation We use O() to refer to big-O notation and

O(+) for the same except ignoring log factors. To refer
to the p-norm ball and sphere of radius one, we use the

notation B, and S, respectively, where B and S refers
to the 2-norm ball and sphere. For some n € N, we use
[n] to refer to the set {1,2,...,n}. For a matrix M, its
transpose is denoted by M . For a positive definite
matrix M and vector x, the notation for the weighted
norm is ||z||pr = Vo T Mz. For a real number z, the
ceiling function is denoted by [x].

Problem Setup We study a stochastic linear bandit
problem with a constraint that must be satisfied at
all rounds (at least with high probability). At each
round ¢ € [T], the learner chooses an action z; from
the closed set X. She subsequently receives the reward
Y = 0Tz, + € and the noisy constraint observation
2 =alz + 1, where the reward vector 6 € R? and
constraint vector a € R? are unknown, and €, and 7,
are noise terms. Critically, the learner must ensure
that a'2; < b for all t € [T], where b > 0 is known.
We will refer to the feasible set of actions as Y := {z €
X :a'z <b}.

In addition to guaranteeing constraint satisfaction, the
learner also aims to minimize the pseudo-regret,

T
Ry = ZGT (e — ),
t=1

where z, = argmax,cy, 67 x is the optimal constraint-
satisfying action. Going forward, we will use the term
regret to refer to pseudo-regret.

We use the following assumptions.

Assumption 1. The action set X is star-convez. Also,
it holds that ||z|| < 1 for all z € X and that 6"z, > 0.

Assumption 2. There exists positive real numbers
Se and Sy such that ||a|]| < S, and ||0|| < Se. Let
S :=max(S,, Sy). Also, it holds that v := s% <1.
Remark 1. If v > 1, then it is known that the con-
straint is loose and therefore the problem can be treated
as a conventional linear bandit problem.! Therefore,
our assumption that v < 1 avoids this trivial setting
and allows for cleaner presentation of results.

Technical Approach Our approach to this problem
is based on the perspective that it is fundamentally
a problem of choosing directions rather than actions
and therefore any solution approach should be focused
on choosing directions that will result in low regret.
This perspective comes from the understanding that
the only viable solutions are actions that are in the
maximally-scaled part of the feasible set (i.e. the set of
x € Y such that (x ¢ Y for all ¢ > 1).2 Therefore, the

If v > 1, then for all # € X it holds that 'z <
lla|lllz]| < Sev < b given that ||z|| <1< v for all z € X.

To see that the optimal action must be in the maximally
scaled part of the set, suppose that it is not (i.e. that there
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Algorithm 1: Restrained OFUL (ROFUL)
Input: X, v,b,5;,0 € (0,1),A>1

1 fort=1to T do

2 Update a; := Vt_1 22;11 T2 and

ét = Vt_1 Z};—:ll TLYk, Where

Vi = Yl awa) + AL

3 Update

WP = {x €X o+ Billally-r < b} and

Ve = {x € X iz~ Billally-r < b}.

4 Find a 2; € argmax,¢yo (é:x + ﬂtHxHV;l).

1 else.

6 | Setu =max{ue(0,1]:ui; € Y/} and
Y+ = max (Bt, [Lt) .

7 Play x; = v:2+ and observe y;, z;.

o | s fonlEmy) Hae

s end

challenge lies in identifying the optimal direction given
that the maximum scaling of this direction is the only
viable solution in that direction. Unlike the conven-
tional linear bandit setting, however, the feasible set
is unknown and therefore the uncertainty in the prob-
lem comes from both the uncertain reward parameter
and the uncertainty in the maximum scaling in each
direction (i.e. ¢ = max{a > 0: au € Y} for each unit
vector u € S). As such, our solutions to the problem
will aim to explicitly characterize both these uncer-
tainties in order to choose directions that will result
in low regret. This will be realized via both an upper
confidence bound-based algorithm (Section 3) and a
phased elimination-based algorithm (Section 4) which
are each suited for different action set geometries.

3 RESTRAINED OPTIMISM
ALGORITHM

In this section, we first propose the algorithm Re-
strained Optimism in the Face of Uncertainty for Lin-
ear bandits (ROFUL, Algorithm 1) to address the
stated problem, and then provide general and problem-
dependent regret analyses for ROFUL in Sections
3.1 and 3.2, respectively. Additionally, we provide
a detailed comparison with existing algorithms in Sec-
tion 3.3.

exists ¢ > 1 such that ¢z, € V). It follows that the point
¢z has larger reward than ., i.e. 7 (¢z.) > 0" z., and
therefore z. cannot be the optimal action (where we use
0"z, > 0 from Assumption 1).

Optimistic Direction Selection The key idea be-
hind the ROFUL algorithm is that it uses an opti-
mistic action set ()7) to find which direction should be
played to efficiently balance exploration and exploita-
tion, while using a pessimistic action set ()?) to find
the scaling of this direction that will ensure constraint
satisfaction. In each round, the algorithm first finds
the action Z; which maximizes the upper confidence
bound over the optimistic set (line 4), and then finds
the largest scalar v; such that ;x4 is known to be in
the pessimistic set (line 6). The optimistic set overesti-
mates the feasible set and the upper-confidence bound
overestimates the reward, so Z; can be viewed as the
optimistic action with respect to both the reward and
the constraint. As such, the algorithm uses Z; to de-
termine which direction to play. However, the action
Z; may not satisfy the constraints, so it needs to be
scaled down until it is within the pessimistic set and
will therefore satisfy the constraints.

Confidence Sets for Unknown Parameters In
order to construct the optimistic and pessimistic ac-
tion sets as well as the upper confidence bound for
the reward, we use confidence sets for the unknown
parameters 0, a. To specify these confidence sets, we
need to impose some structure on the noise terms. In
particular, the following assumption specifies that the
noise terms ¢, 7; are p-subgaussian conditioned on the
history up to the point that y;, z; are observed.

Assumption 3. For all t € [T], it
holds that TEled|z1,€1, .y €11, T4 = 0 and

2 2
Elexp(Aer)|xr, €1, .o, €01, 2] < exp(ATp),V)\ € R.
The same holds replacing €; with n;.

The specific confidence set that we use is from Abbasi-
Yadkori et al. (2011) and is given in the following.

Lemma 1 (Theorem 2 in Abbasi-Yadkori et al. (2011)).
Let Assumptions 1, 2 and 8 hold. Also, let

)= p\/dlog (W) +VAS. (1)

Then with probability at least 1 — 4, it holds that both
[ (0 — 0)| < Billelly+ and lo” (a; — o)) < Billaly
for all z € R and all t > 1.

It follows from Lemma 1 that, with high probability,
the optimistic and pessimistic action sets contain and
are contained by the true feasible set ), respectively.
Since ROFUL only chooses actions from the pessimistic
action set (or those with norm less than v), the actions
chosen by the algorithm satisfy the constraints at all
rounds with high probability.
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3.1 General Analysis

The ROFUL algorithm (Algorithm 1) is proven to enjoy
sublinear regret and maintain constraint satisfaction
in the following theorem.

Theorem 1. Let Assumptions 1, 2 and 8 hold. Then,
with probability at least 1 — §, the regret of ROFUL
(Algorithm 1) satisfies

H9|| Sa j
<
R{( 2 b ﬂ{( 2dT log 1 + 7\ 5 (2)

and a"xzy < b for all t € [T).

Inspecting the bound in Theorem 1, we can see that
the regret is O (%d\/f log(T)), only considering T', d
and b. This matches the orderwise regret of other safe
upper-confidence bound approaches, as discussed in
Section 3.3. In the next section, we find that it is
possible to achieve improved problem-dependent regret
guarantees.

Remark 2. The ROFUL algorithm and Theorem 1
easily extend to the setting where the action set X and
constraint limit b are allowed to vary in each round.

3.2 Problem-dependent Analysis

We also study the case where the optimal reward is
well-separated from the reward of any feasible action
that is not in the same direction as the optimal action.
To make this concrete, let the reward gap be defined

as3

0" (x. — ), (3)

A= inf

z€Y: x#ax, Ya>0
We study the case where A > 0. Note that the typical
notion of a “reward gap” in linear bandits, such as
that used by the problem-dependent analysis in Dani
et al. (2008) and Abbasi-Yadkori et al. (2011), is not
particularly useful in the safe linear bandit setting
because it relies on the optimal reward being separated
from the reward of any other action that the learner
might play. This could occur in the conventional linear
bandit setting either when the feasible set is finite,
which would not be a star convex set (except for the
trivial case), or when the feasible set has finite extrema,
which will not ensure that the played actions are well-
separated in safe linear bandits given that the feasible
set is unknown. Nonetheless, when the constraint is
loose (i.e. v > 1), a well-separated problem in our
setting (A > 0) implies a well-separated problem in
the conventional linear bandit setting.

3Unlike  the problem-dependent analysis in
Amani et al. (2019), our notion of a reward gap does not
depend on how tight the constraints are on the optimal
action.

Wrong Directions are Rarely Selected We find
that when A > 0, we can establish a polylogarithmic
bound on the number of times that ROFUL chooses
the wrong direction, which is denoted by

T
Br ::Z]l{ﬂa>01xt:ax*}.

t=1

Specifically, the following theorem shows that ROFUL
chooses O (g5 d? log? (T)) wrong directions when
A > 0.

Theorem 2. Let Assumptions 1, 2 and 8 hold. If
A > 0, then the number of wrong directions chosen by
ROFUL (Algorithm 1) satisfies

325262.d T
Br< 222010 00 (14 =
T = TpAC Og( +>\d>

with probability at least 1 — 4.

Nearly Dimension-free Regret Leveraging Theo-
rem 2, we can devise a version of ROFUL that achieves
improved regret guarantees when A > 0 and known. In
particular, Theorem 2 implies that the optimal direc-
tion can be identified in a polylogarithmic number of
rounds. Once the optimal direction has been identified,
the problem becomes one-dimensional and therefore
does not suffer any dimensional dependence.

Corollary 1. Let Assumptions 1, 2 and 3 hold. If
A > 0, consider the algorithm PD-ROFUL: 4

1. Play ROFUL wuntil any single direction has been
5. 325°p2d TN
played more than B := ~—5x4— log (1 + W) times.

Let this direction be denoted by u..

2. For the remaining rounds, play ROFUL (after
restarting) for the 1-dimensional safe linear bandit
problem of choosing & € Ry and then playing & .

Then, with probability at least 1 — 20,

48 _ 2B +1
Rr §b523+1\/2d(23+1)10g (1+ )

A
48 ~ T
+ bﬁT\/QTlog (1 + )\d)

where Br is Br with d = 1.

Corollary 1 indicates that when A > 0 and known, it is
possible to achieve O(35x + %\/T ) regret. When T is
large and + is O(1), this improves on the general regret

4Detailed pseudo-code of PD-ROFUL is given in Algo-
rithm 2 in Appendix B.
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bound in Theorem 1 because the second term domi-
nates. Concretely, as T goes to infinity, Ry /v/T log(T)
goes to O(3) whereas in the general case (i.e. Theorem
1), it goes to O(d3).

Remark 3. This problem-dependent analysis approach
yields similar guarantees for existing safe linear bandit
algorithms as shown in Appendiz E.

3.3 Comparison with Existing Algorithms

In this section, we discuss the key differences between
ROFUL and existing safe linear bandit algorithms.
Compared to ROFUL, which uses an optimistic action
set to identify low-regret actions, existing safe linear
bandit algorithms often choose actions directly from
the pessimistic action set using either linear UCB (Pac-
chiano et al. (2021); Amani and Thrampoulidis (2021))
or linear TS (Moradipari et al. (2021)) where an ex-
panded confidence set is used in both cases. In our
specific setting, the linear UCB version of the expanded
confidence set approach can be written as

@y € arg max (é;x—km,@tHxHVq), (4)
ze)i},’ ¢

with an appropriately chosen parameter x > 1. The
specific choice of k ensures that optimism holds, i.e.
that 6] 2, + lﬂ}ﬁt”.’]ﬂ‘t”Vt—l > 0T x,, which is critical to
ensuring that the algorithm enjoys sublinear regret.
We call this generic algorithm GenOP (as in Generic
Optimism-Pessimism) in reference to the concept of
optimism-pessimism that is often used in safe linear
bandits (e.g. Pacchiano et al. (2021)). Note that the
choice of k used in existing UCB-based algorithms
is not appropriate for our setting because such algo-
rithms were developed for slightly different settings
(i.e. decentralized Amani and Thrampoulidis (2021),
local constraints Varma et al. (2023), or constraints
in expectation Pacchiano et al. (2021)) so we show in
Appendix D.2 that it is sufficient to choose k = 1+ %,
to get

Ry < (1+ H)BT\/2dTlog (1 + ATd) (5)

Note that because GenOP uses a fized xk parameter that
must be chosen ahead of time, it is necessarily defined
using worst-case quantities (such as Sp). Conversely,
ROFUL uses the optimistic action set and safe scaling
7+ which are updated with empirical quantities in each
round and therefore improve as more data is collected.
This suggests that ROFUL is preferable in “easier”
problem instances in which worst-case quantities are
loose on the true empirical quantities.

We can gain additional insight into the respective bene-
fits of either algorithm by comparing the regret bounds.

Specifically, it follows from (2) and (5) that ROFUL
enjoys a tighter regret bound than GenOP when

So— 6] > 5. —b. (6)

The quantity on the left-hand side represents how loose
the assumed bound on the reward parameter is on
the true value (given that Assumption 2 specifies that
18]l < Sp), while the right-hand side represents how
loose the assumed bound on the constraint limit (b) is
(given that Assumption 2 specifies that v = b/S, < 1
and therefore that b < S;). Therefore, (6) suggests
that ROFUL is preferred over GenOP when the bound
on the reward parameter is loose and the bound on the
constraint limit is tight. Our numerical experiments
support this intuition as ROFUL outperforms GenOP
on average when b is large (and therefore S, is tighter
on b), while the two algorithms perform similarly in
the settings when b is small (and therefore S, is looser
on b).

4 SAFE PHASED ELIMINATION
ALGORITHM

In this section, we propose the algorithm Safe Phased
Elimination (Safe-PE) for the case when the action
set is a finite star-convex set. We provide a high-level
description of Safe-PE here and give the full algorithm
in Appendix C. The assumption that the action set is a
finite star-convex set means that it can be represented
as

X = U {au; : a € [0,04]}, (7)

i€ (k]

where uq,...,ux € S are unit vectors and aq, ..., €
R, + are the maximum scalings for each unit vector.
We find that in such a setting, it is possible to reduce
the dependence on the problem dimension when k& < 2¢.
The key insight is that a confidence set at a single action
applies to all scalings of that action without the need
for a union bound over a cover (or related technique).
This insight allows us to leverage the reduced dimension
dependence offered by phased elimination algorithms
in the safe linear bandit setting. Nonetheless, it also
introduces additional challenges due to the fact that
the pessimistic action set varies from phase to phase.

Algorithm Description Our Safe-PE algorithm op-
erates in phases j = 1, 2, ... that grow exponentially in
duration, and maintains a set of viable directions A
and a pessimistic set of actions )P that are updated in
each round. In particular, each phase j proceeds as:

1. For 27! rounds, play the action with the largest
confidence set width | - |[,-1 in each round.
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2. Eliminate directions from A that have low esti-
mated reward.

3. Update VP by scaling the directions in A as large
as possible while still being verifiably safe.

This algorithm builds on existing phased elimination
algorithms, including those from Auer (2002), Chu
et al. (2011) and, specifically, Valko et al. (2014) and
Kocék et al. (2020). However, Safe-PE differs in that
it eliminates directions, instead of distinct actions, and
maintains a set of safe actions to ensure constraint
satisfaction. Furthermore, it requires a looser criterion
when eliminating directions to ensure that the optimal
direction is not eliminated.

Regret Analysis As is commonly used for phased
elimination algorithms Auer (2002); Chu et al. (2011);
Lattimore et al. (2020), we assume that the noise terms
are independent subgaussian random variables.

Assumption 4. The noise sequences (&)i_, and
(ne)L, are sequences of independent p-subgaussian ran-
dom wvariables.

With this, we state the regret guarantees for the Safe-
PE algorithm in Theorem 3.

Theorem 3. Let Assumptions 1, 2 and 4 hold. When
the action set is a finite star-convez set, the regret of
Safe-PE (Algorithm 3 in Appendiz C) is O(gVdT).

Theorem 3 shows that, for the case when the action
set is a finite star convex set, the regret of Safe-PE
is O(VdT) in terms of d and T. Note that the regret
only depends on the number of directions (k) in log
factors and therefore this improves on the regret of
ROFUL in terms of d when k < 2¢. For example, if
the directions are the coordinate directions, i.e. u; = e;,
then k = 2d and therefore the regret bound of Safe-PE
is @(\/ﬁ ) since d only appears in log factors. However,
if the directions are the corners of the hypercube, then
k = 2% and the regret bound of Safe-PE is O(dv/T).
Also, note that the regret bound of Safe-PE depends
on b%, whereas the regret bound of ROFUL depends on
%. As such, the regret bound of ROFUL is still tighter
than that of Safe-PE in some settings, e.g. when b is
small and d = 1.

5 EXTENSION TO LINKED
CONVEX CONSTRAINTS

In this section, we generalize the design and analysis
of the algorithms ROFUL, Safe-PE and GenOP to a
novel setting which we call linked convex constraints,
where the output of the constraint function is multi-
dimensional and must lie in an arbitrary convex set.

Figure 1: Graphical representation of the approach for
lower bounding 7; (in ROFUL) for the setting with
linked convex constraints.

The key challenge in this setting is characterizing how
far a point in the optimistic action set is from the
pessimistic action set. To address this, we leverage a
theoretical tool from the zero-order optimization litera-
ture. We only provide a description of key contributions
in this section and leave the details of the algorithms
to Appendix D.

Problem Description The problem setting is spec-
ified as follows. At each round ¢ € [T, the learner
observes z; = Ax; + 1y, where A € R"*? is the un-
known constraint matrix and 7; € R™ is a vector noise
term. The learner must ensure that Ax; is in the known
convex set G for all ¢ € [T]. The reward function and
feedback mechanism are the same as the original set-
ting described in Section 2. We assume that there
exists 7 > 0 such that rB C G. Lastly, we assume
that each element of 7; satisfies the assumptions on
the noise used for ROFUL (Assumption 3) or Safe-PE
(Assumption 4).

Analysis Techniques Although the design of the
algorithms trivially extends to this setting, the regret
analysis is more challenging. In particular, it is difficult
to characterize the distance from any point in the
optimistic action set to the pessimistic action set. To
address this, we use an analysis tool that is popular in
the zero-order optimization literature (e.g. Flaxman
et al. (2005)). This tool, given in Fact 1, allows us
to consider a shrunk version of the constraint set in
order to bound the scaling that is required to take any
point in Yy to yg’, i.e. v¢ in ROFUL. We use a similar
approach to bound the scaling required to take any
point in Y to V¥ for GenOP and Safe-PE.

Fact 1. Let D be a convex set such that rB C D for
some r > 0. Then, for any « € [0,1] and x € oD, it
holds that x + (1 — a)rB C D.

With this in hand, we can then describe our approach
for lower bounding -, which is illustrated in Figure 1.
Recall the definition of Z; in ROFUL, where it is known
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Figure 2: Simulation results of our proposed algorithms (ROFUL, Safe-PE) and generic expanded confidence set

algorithm GenOP (see Section 3.3).

that z; is in )7. Then, the overall objective is to find
some positive scaling o such that aZ; is in Y and
then it follows that 74 > «a. To do so, we define the
uncertainty set for the constraint function at point x as
the box H(x) := a z + BtHCL‘HV;IIBOO and note that }?
and )y are precisely the set of x € X such that H(z)
has nonempty intersection with G and the set of x € X
such that H(z) is contained in G, respectively. First,

we consider a point u in the intersection of G and H(Z).

Such a point exists given that z; is in V7. Next, we
scale u by some non-negative scalar a. Note that au

is in H(a:) given that H is positive homogeneous, i.e.

oH(z) = H(ax) for any z. In order to show that oz,
is in V¥, we need to show that H(aZ;) is contained in
G. To do so, we first consider a set P, that is centered
at au but has twice the radius of H () and therefore
contains H(a;) (this is illustrated in Figure 1). We
then use Fact 1 to reason that, because u is in G, the
ball au + (1 — a)r;B is contained in G. Therefore,
we choose « such that (1 — a)rB = Qaﬁﬁt\\thV;l,
where the /n is necessary to bound an infinity-norm
ball with a 2-norm ball. Some simple algebra shows
that 4 > 1 — 2228, |y,

s

6 NUMERICAL EXPERIMENTS

In this section, we numerically validate the theoretical
guarantees and assess the performance of the proposed
algorithms. Note that we only give a high-level descrip-
tion of the simulations in this section. The details of
the experimental settings and additional results are
given in Appendix F.

First, we consider a setting with a linear constraint.
We study the case when b is large (Figure 2a) and
when b is small (Figure 2b). We simulate ROFUL and
GenOP for 30 trials for each case, where b is uniformly
sampled in the interval [0.25, 1] for the first case and
in the interval [0.05,0.25] for the second case. The
action set is taken to be a finite star-convex set with
10 directions that are randomly sampled in each trial.
Furthermore, the reward vector 6, constraint vector

a, constraint limit b and noise realizations €;,n; are
also randomly sampled in each trial. The average and
standard deviation of the regret normalized by v/t are
shown in Figures 2a and 2b. These plots suggest that,
when b is large, ROFUL outperforms GenOP in the
aggregate. When b is small, the average performance of
the two algorithms is similar, although GenOP enjoys
a smaller standard deviation than ROFUL.

Next, we consider a setting with convex constraints.
In particular, we study the case where the constraint
set is a ball, i.e. G = bB for scalar b. We simulated
ROFUL for 30 trials in each setting, where constraint
set radius b, the reward vector 6, constraint vector a and
noise realizations e, n; are all randomly sampled. The
average and standard deviation of the regret normalized
by v/t is shown in Figure 2c. In this plot, ROFUL
converges to constant /¢ regret. We provide additional
results for the case when G is an infinity-norm ball in
Figure 3 in Appendix F.

Lastly, we consider a star-convex multi-armed bandit
with results shown in Figure 2d. In this setting, the
action set only includes the coordinate directions. We
simulate both ROFUL and Safe-PE in this setting with
d = 10. The regret normalized by v/# is shown in Figure
2d. From this plot, it is clear that ROFUL outperforms
Safe-PE despite the fact that Safe-PE enjoys a tighter
regret bound in terms of the problem dimension. In
fact, it is well known that UCB-based algorithms often
empirically outperform elimination-based algorithms
despite the orderwise tighter regret bound, as discussed
by Valko et al. (2014) and Chu et al. (2011). Simulation
results for PD-ROFUL (specified in Corollary 1) are
given in Appendix F.

7 CONCLUSION

In this work, we take a novel approach to the safe linear
bandit problem in which we view it as fundamentally
a problem of choosing directions rather than actions.
We find that this approach leads to improvements in
empirical performance in certain problem instances as
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well as tighter geometry-dependent regret bounds. An
interesting direction for future work is to investigate
if this approach yields similar gains when applied to
related safe learning problems, such as constrained
MDPs or safe Gaussian process optimization.
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A Proof of Theorem 1

In this section, we prove the general regret bound given in Theorem 1. First, we introduce some notation. Let
the event that the confidence sets hold be defined as

Econt = {7 (B, = 0)] < Bellzlly, -1, |27 (@ — a)] < Bllzlly,-1, Ve € RY, Ve > 1}, (8)

and note that P(Econt) > 1 — § by Lemma 1.

We start by giving a key lemma that lower bounds ;.

Lemma 2. If Assumptions 1 and 2, and E.one holds, then

2
¢ > max <1 — gﬂt”xt”Vt—l, V)

for all t € [T).

Proof. We will find lower bounds individually for j; (line 6) and b; (line 5) in the following.

Lower bound on ju;: Since p; = max{p € [0,1] : uz; € Y¥'}, we find a lower bound on y; by finding an
a € {pe(0,1]: uz, € YF}. Specifically, we will show that o can be chosen as

b
o= .
b+2/6t‘|xt||vf1
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For this to be a valid choice for o, we need that (i) o € [0, 1], (ii) aZ; € X and (iii) &, (ad;) + Bt||owﬁt||vt—1 <b.
Point (i) follows by definition. Point (ii) holds because Z; € X, X is star-convex and « € [0, 1], so aZ; € X. Then,
to show point (iii), we have that

a/ (afe) + Billadilly-1 = a@) T+ Bil|Zelly, )
£ &= BellEelly 1 + 28| Eelly, 1)
< a(b + 26|24 y,-1)

a(a

I
SE

where the inequality uses the fact that &, € )¢ and therefore a; 7; — ﬁt||xt||v_1 < b, and the last equality uses

the choice of a. Therefore,
b

zo= .
A A A

Lower bound on b;: Recall that,

by = {min (uin’l) if #; # 0,

1 else.

We consider each case separately. If £; = 0, then bh=1>v given that v < 1 by Assumption 2. Alternatively, if
Z¢ # 0, then

b; = min (ij, 1) > min (v, 1) = v, 9)
12

where the inequality holds because Z; € X, and therefore, ||Z;|| < 1 by Assumption 1 which implies that ‘ TV

The last equality holds because v < 1 by Assumption 2. Therefore, it holds that b, > v in either case.
Completing the proof: With the above, we have shown that

i b
¢ = max (buﬂt) Z max (V’ b+ 25t|~%t||vfl> v

In order to complete the proof, we need a bound on 7; that is in terms of th”vt‘l instead of ||jt||vt—1. To get
this, first note that v,&; = z; and ~ > 0, and therefore

VellZelly -1 = [vedelly -1 = llwelly-

Using this, we can rearrange (10) to get that

2
Z e b+ 2 1 >2bh = >1-Z2 .
Tt =2 b+26t‘|it”vr1 Yt + ﬂtHJJtHVt 1 = Yt = bﬂtH(EtHVt 1 (11)

Finally, combining (10) and (11), we get that
2
v > max [ 1 — gBtthHth,l/ ,
completing the proof. O

Then, we turn our attention to the instantaneous regret. In particular, we will utilize the decomposition,

rei=0 (z, —x) =07 (2e — Ty) + 0 (&4 — ).

Term I Term II

Term I can be understood as the regret due to the optimistic actions, while Term IT can be understood as the
cost incurred by maintaining constraint satisfaction. In the following two lemmas, we bound Term I and Term II
seperately.
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Lemma 3. Conditioned on Eqont, it holds that

5 2
Term I =07 (z, — &) < ;@&th”vfl'

Proof. We condition on Eons without further reference. First, it holds for all ¢ € [T] that

NT T =~ ~
0w, = mafTe < max (02 + fulellyr) < max (670 + Billalyr) = 0] 2+ Bll@ly (12)

Also, note that v, > v > 0 by Lemma 2 and therefore

Tt

1 1
s = e < Sl (13)

@l =

Therefore, it holds that

Term I=0"z, — 0% < 0] & + BillZelly, -+ — 07 7,
=0, = 0)" &+ Bel|Elly,
< 28| E¢]] -

2
< ;5t”$tHVt—17

where the first inequality uses (12), the second inequality uses the definition of E.ons and the third inequality uses
(13). O

Lemma 4. Let Assumption 1 hold. Then, conditioned on Econt, it holds that
Term I =0 (& — x;) < H9|| th”V 1
for allt € [T7.

Proof. Conditioned on E.onf, it holds that

Term IT = QT(fEt — .Tt) = HT (i’t — ’tht)

= (1 —'yt)QT:Et
< (=)ol
< (@ =)0l
26
< 19]] t||$t|\v—17

where the second inequality uses the fact that Z; € X which implies that ||Z;|| < 1 by Assumption 1, and the
third inequality uses Lemma 2. O

Finally, we turn our attention to the cumulative regret. To bound this, we will need the so-called elliptic potential,
which is standard in the stochastic linear bandit literature.

Lemma 5 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Consider a sequence (wy)ren where wy € RY and
lwkll <1 for all k € N. Let Wy, = A + Es L wsw, for some A\ > 1. Then, it holds that

K
K
2 < —
E [lws || -1 < 2dlog (1+ )\d)

k=1

With this, we complete the proof of Theorem 1 in the following.
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Theorem 4 (Duplicate of Theorem 1). Let Assumptions 1, 2 and 3 hold. Then, with probability at least 1 — 4,
the regret of ROFUL (Algorithm 1) satisfies

[ T
< R
Ry 2( ; Bry|2dTlog (1+ 15 ).

Proof. We condition on Eqqns without further reference. We give the regret guarantee and then the safety guarantee
in the following.

and a"xy < b for all t € [T).

Regret guarantee: Using Lemmas 3 and 4, it holds that
re=0" (x, —x)

=07 (2 —3) + 07 (7 — x4)
= Term I + Term II

0
<2 <”b| ) ﬂtHﬂUtHv 1.

We can then study the sum of the squared instantaneous regret,

; 2<Z4('9” O sttt
—a (1 1) Zﬁ?IIxtHvl

< 1
8 ( + y dﬂT IOg 1+ 7\

where the second inequality uses the fact that ; is monotone in ¢ and the third inequality uses Lemma 5. Then,
by Cauchy-Schwarz, it holds that

T
RT: E Tt
t=1

IN

T

2

TZ L
t=1

0 T
\/gT (HbH + V) dfF log (1 + /\d)
0
=2 (”b” + 11/> ﬂT\/2dT10g (1 + ):\Z;i)

Safety guarantee: In order to show that a'zy < b, we note that v, = max(l;t, u¢) and therefore it holds that
either v, = bt or v = py. If v = bt and &; # 0, then using the quantity v = b/S, as defined in Assumption 2, it
holds that

IN

7~ T~ . v -
o < lalllwell < Sallzell = Sallbedel = Sabilliel| = Samin ( =, 1) |4]] < Sar—r[|il| = Sav =,
12| N1zl

where we use Assumption 2 in the second inequality. If z; = 0, then b; = 1 and therefore z; = #; = 0 which
implies that o'z, = 0 < b.
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Alternatively, if v = p, it holds that
Ty = @y € Y C Y.

Therefore, it holds for both cases that a'x; < b for all ¢ € [T. O

B Proof of Theorem 2

In this section, we prove the problem-dependent analysis given in Theorem 2 and then Corollary 1. In order to
do so, we first restate the definition of A as follows

Ls — 117)7

inf
z€Y: x#ax, Ya>0
and then restate the definition of By,

T
Br ::Z]l{ﬂoz>0:xt=ozx*}.

t=1

Then, we give a lemma with some useful facts.

Lemma 6. Let Assumptions 1 and 2 hold, and let Eq.ons hold. Also, let
¢t :=max{( > 0: (T € V}, (14)

and vy = (3T¢. Then, it follows that:

1. Ct S [’Yta 1]
2. HT(j‘t - Ut) S %ﬁtthHVtﬂ
3. If there exists a > 0 such that Ty = ax., then vy = x,.

4. If there does not exists a > 0 such that x; = ax,, then GT(.Z‘* — ) > A

Proof. We condition on Eons throughout the proof without further reference. We will first give some useful facts.
In particular, it holds that, .
0) &1+ Bellelly 1 > 0T >0 (15)

where the first inequality is from (12) and the second is Assumption 2. It follows from (15) that &; # 0 and
therefore the set {¢ > 0 : (Z; € Y} is compact. Also, note that {¢ > 0 : {Z; € YV} contains 0 and is therefore
nonempty, so (; is well-defined. Next, we prove each item individually in the following.

1: First, we show that ¢; < 1. If this were not the case, i.e. (; > 1, then there exists ¢’ € {¢ > 0: (& € Y} such
that ¢’ > 1. Then, from the definition of Z; in line 4 and the fact that u = {'Z; is in Y C V¢,

0, &, + ﬁt“ftHVt—l = o (éth + 5t||xHVt—1> >0 u+ ﬂt”u”Vt‘l‘ (16)
At the same time, it follows from (15) that 6, Z, + Bel|Z¢||y -1 is positive and therefore,

07 0+ Bllellyr < ¢ (07 30+ BullFally ) = 07w+ Bellully-1. (17)

Since (16) and (17) cannot simultaneously be true, it must hold that {; < 1.
Then, we show that (; > 7;. Since xy = y& € Y, it holds that v € {¢ > 0: (Z; € Y} and therefore §; > ;.

2: Since, v; = %+ and (¢ € [, 1], it follows from Lemma 2 that

0T (5 —v) = 0721~ G) < 501~ ) < S =) < 2 Bllaly+.



Spencer Hutchinson, Berkay Turan, Mahnoosh Alizadeh

3: First, we will show that ¢, = max{¢ > 0: x, € Y} = 1. If this were not the case, then either (., < 1 or . > 1.
The case (x < 1 would imply that x, is not in ), while the case that (, > 1 would imply the existence of a point
r = (x, €Y with ¢ > 1 such that 0Tz = (0" x,) > 6"z, (where we use 6"z, > 0 from Assumption 2). Either
case contradicts the definition of x, and therefore cannot hold.

Now, we turn to the statement. If there exists a > 0 such that x; = ax,, then,

G=max{(>0:(7 €V} =~y max{¢' >0:{'z, € Y} = ﬁmax{gtz 0:Cx, €V} = &,
@ @
where we use the mapping ¢’ = %( in the first equality and ¢ = ¢’ in the second equality. Therefore, it follows
that
e Gt ae o
V= (T = T = T = Ty
Tt Tt

4: First, note that if there does not exist a > 0 such that z; = ax,, then there does not exist o’ > 0 such that
vy = o'z, as vy = %xt. Then, since v; € Y, it follows from the definition of A that,

inf 07 (2, — ) <O (2 — vy).
rz€eY: z;iIolzm* Ya>0 (-I :E) - (:E Ut)

Then, we restate and prove Theorem 2.

Theorem 5 (Duplicate of Theorem 2). Let Assumptions 1, 2 and 3 hold. If A > 0, then the number of wrong
directions chosen by ROFUL (Algorithm 1) satisfies

32d5% T
< Z2TFT —
BT*VQAQIOg 1+/\d

with probability at least 1 — 9.

Proof. In order to bound the number of times that the wrong action is chosen, we study the regret due to the

wrong choice of direction,
T

Ry = ZHT(QC* — ),

t=1

where v; = (& with (; defined in (14). We will denote the instantaneous regret due to the wrong choice of
direction as 7 = 0" (z, — v;). It follows from Lemma 6 (#3 and #4) that 7, = 0 if there exists o > 0 such that
xy = axy (i.e. x; is in the correct direction) and 7; > A otherwise. Therefore,

T T
Ry = th :th]l{ﬂ a>0:z=ar,}
t—1

t=1

T
ZAZ]I{EBQ>O:xt:ax*}

t=1
= ABr.
Since Ry > AByp and A > 0, an upper bound on Ry implies an upper bound on B
Then, we bound 7 in the following,
ft = GTI* — OT’Ut
S é;r-it"i_/@t”i‘t“vfl —QTUt (a)
=07 F+ (0 — 0) & + BellZelly, -+ — 0T,
S 9Tft + 2ﬁt||i‘t||vt—1 — HTvt (b)
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= QT(i't — Ut) + 2Bt||i’t||vt—1

25 -

< = Bellzelly-r + 2Bl @elly,- (c)
25 2

< = Bellzelly-r + ~Bellzelly - (d)
45

= = Belltlly-1,

where (a) follows from the fact that Z; is optimistic (i.e. (12)), (b) is from the definition of the confidence set, (c)
is from Lemma 6 (#2), and (d) is due to (13).

Since either 7, > A or 7, = 0, it holds that 7, <

—~

7)?/A. Then, we have that

Ry

I
M=
:31

ﬁ
Il
—

(7¢)°

A

M=

t

165282
< s Z ||$t||%/t—1
t=1

1

A
325232d T
< 222 Py (14
= TA Og( + Ad)

where the last inequality uses Lemma 5. Finally, we have that
Ry _ 325%p2d T
Br< ——< ———-1 1+—.
TSA S TpEar BTG
O

Now, we turn out attention to Corollary 1. To do so, we state PD-ROFUL more formally in Algorithm 2. Note
that in the second phase of the algorithm, we reduce the problem to a 1-dimensional safe linear bandit problem
which is defined formally in the following.

Definition 1 (Reduction to 1-dimensional problem). Given a direction u. € S, the safe linear bandit problem
(Section 2) reduces to a 1-dimensional setting. For each round t of this setting, the learner chooses & € Ry and
then &y is played in the original setting (Section 2).

Using this, we give psuedo-code for PD-ROFUL.

Corollary 2 (Duplicate of Corollary 1). Let Assumptions 1, 3 and 2 hold. With A > 0, the regret of PD-ROFUL
(Algorithm 2) satisfies

48 - 2B+1\ 48 T
Rp < b523+1\/2d(2B + 1) log (1 + )\d> + bﬁT\/ZTlog <1 + )\d>

with probability at least 1 — 28, where Br is Br with d = 1.

Proof. We condition on the confidence sets holding jointly for both the first and second phases, which occurs
with probability at least 1 — 24.

First, we argue that the optimal direction is correctly identified, i.e. u. = x,/||2.||. Intuitively, this holds because
Theorem 2 says that wrong directions are chosen at most B times, so any single direction that is chosen more
than this must be the optimal direction. Concretely, Theorem 2 implies that for every single wrong direction
u € S,u # x. /|||, the actions chosen by ROFUL in the first 7 — 1 rounds will satisfy

T—1 T—1
Z]l{ut:u}SZ]I{}Q@>O:xt:ax*}§BT§B,
t=1 t=1
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Algorithm 2: Problem-Dependent ROFUL (PD-ROFUL)

Set A={}, N=0and t=1.

while N < B = 325452 10g (1 4+ L) do

ROFUL plays z; and observes y;, z;.

if 2, # 0 and u; = z¢/||x¢|| & A then
A=AU{u}.
N, = 1.

else if z; # 0 and u; = z;/||z¢|| € A then

| Nu, =Ny, +1

Set N = maxyec4 Ny.

Sett =t+1.

11 end

12 Set u, = argmax,c 4V, and 7 = t.

13 For ¢ € [t +1,T], ROFUL is restarted and plays 1-dimensional setting (Definition 1) in direction wu, for
remaining rounds.

[

© o N o 0 A~ W N

=
[=]

where we use the notation u; = x;/||z¢|| for nonzero x; as specified in Algorithm 2. Then, since u. is specified in
PD-ROFUL to be a direction that ROFUL plays more than B times in 7 — 1 rounds,

T—1
Z]l{ut =u,} > B,
t=1

and therefore u, cannot be a wrong direction or equivalently, u, = x/||z./|.

Then, we show the bound on the duration of the first phase 7 — 1 < 2B + 1. The intuition is that u, is played at
most B + 1 times and wrong directions are played at most B times, so the total duration of the first phase must
be less than 2B + 1. Concretely, it follows from the fact that u. = x./||x.],

T—1 T—1

771:Z]l{EIa>0::ct:ax*}+Z]l{fﬂa>O:xt:a:c*}

t=1 t=1

T—1 T—1
:Z]l{ut:u*}+Z]l{§9a>0:xt:am*}§QBJrl,
t=1 t=1

<B+1 <B

where the bound on the first term holds because the first round ends when the correct direction is played more
than B times and the bound on the second term follows from Theorem 2.

Finally, we study the regret. To do so, we decompose the regret due to the first and second phases respectively,

T—1 T
Ry = E re + E Tt .
t=1 t=1

—— N~
R, RY

Then, we use Theorem 1 and the fact that 7 — 1 < 2B + 1 to bound RIT,

T—1 =
49 T—1 45 _ 2B+1
RL = tEZI Ty < bﬁrl\/Qd(T —1)log (1 + /\d) < b523+1\/2d(23 +1) log (1 Y )v

For the remainder of the rounds, play of the algorithm is ROFUL with d = 1. Also, the duration of the second
phase is less than the time horizon, i.e. T — (7 — 1) < T. Therefore, R is less than that given in Theorem 1
with d = 1. O
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Algorithm 3: Safe Phased Elimination (Safe-PE)
Input: X,S5,b,d,p,0 € (0,1),\>1 ‘
1 Set Ay = [k], <i,1 = min(b/S, ai) Vi € [k‘], y{) = {Ci’lui}ie[k], J = |—1Og2(T+ 1)-‘, tj =271,

2 for j=1to J do

3 Vi, = Al.

4 Ty = min(tj_H — 17T)
5 for t =t; to 7; do

6

Play z; € argmax,cy» ||ac||vt_1.
J

7

T
Vier = Vi + 22y
8 end
N Yr—1 Tj A~ =1 Tj o
9 Set 0; =V ZSJ:tj zsys and a; =V Es;tj T3z, where V; = Vo 1.

10 Find %; € arg max, ¢y (é;x - ﬂ||517||‘7;1>

_ AT . 256G lluillg -1
11 Update .Aj+1 =4q1€ Aj : Gj (l’j — Ci,jui) < BHZ‘J||‘7]—1 + ﬂc@j”ui”f/fl + % .
12 Update p; j+1 := max {a €0,0] : (u;—dj + ,BHUiHVfI) < b} and ¢; j+1 = max (¢ ;, thi,j+1) for all
J
xS Aj-i-l-
13 | Update Y7y = {Gij+1uibiea; -
14 end

C Details of Safe-PE Algorithm

In this section, we give the details of the Safe-PE algorithm (Algorithm 3) discussed in Section 4. This algorithm
relies on the action set being a finite star convex set, which we formally assume in the following.

Assumption 5. The action set satisfies

X = U {aui RS [O7ai]}7
i€[k]

where uy, ..., ur, € S are unit vectors and ay, ...,a € Ry, are the mazimum scalings for each unit vectors.

The Safe-PE algorithm builds on SpectralEliminator from Valko et al. (2014) and Kocék et al. (2020). It differs
in that it eliminates directions in each phase rather than distinct actions and only plays actions from a verifiably
safe set.

C.1 Operation of algorithm

The Safe-PE algorithm consists of phases j = 1,2, ..., which are each of duration 2/~!. Throughout its operation,
the algorithm maintains a set of direction indexes A; and safe actions y;’ . The key parts of each phase are:

1. For 2/~! rounds, chooses the action in Y with the largest confidence set width || - val (line 6).
2. Eliminates directions from A; with too low of estimated reward (line 11).

3. Updates y;’ with the maximum scaling of each direction that is verifiably safe (lines 12 and 13).

The algorithm relies on a confidence set to determine which directions should be eliminated and to ensure that the
constraints are not violated. Different from the confidence set in Lemma 1, the radius of the following confidence
set does not grow with d. We prove such a confidence set in the following lemma.

Lemma 7. Let Assumptions 4 and 5 hold and fix some 6 € (0,1). Then, for all x € X and all j € [J] it holds
that |7 (8; — 0)] < Bllzlly-1 and |z (a; — a)| < Bl|z|lg-1 where B = py/2log (£2) + V/AS with probability at
least 1 — 9. ’ ’
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Proof. First, we find a confidence set that applies for a fixed u € {uy,...,ux}. To do so, we start as

u' (B, —0)=u" ‘7]-71 Z Ty — 0

t=t;

:’U,T Vj*let(xIQ—i—et)—G

t=t;

Tj Tj
=l Vj_1 Z xtx: -1 9+uTVj_l Z T4€p

t=t; t=t;

Term 1 Term II
Using the notation V = Z;tj zsx), we study the first term,
|Term I| = ’uT (‘7j_1‘7 - I) 9‘

e (-

=A ’uT‘_/j_lH‘ (a)

< Allelffle TV

=9l uTVj*le*lu

< VAS|ullg-, (b)
where (a) is due to the fact that V — V; = —AI, and (b) is due to the fact that V; = A and therefore

y "V hy < |lyl*/X for any y € R%.
Now, we look at the second term, which can be written as
7

Term II = Z (uTVj*lxtet) .

t=t;

Since the noise terms ¢, are independent and the actions z; within each phase (i.e. t € [t;, 7;]) are deterministic
given the history at the beginning of the phase, we can use standard concentration of subgaussian random
variables (e.g. as in equation 20.2 of Lattimore and Szepesvari (2020)) to get that

2\ o -
|Term II| > p, | 2log ((5,) Z(UT\/j_lxs)Q

t=t;
with probability at least 1 — ¢’ for some ¢’ € (0,1). Also, since V< Vj,
Tj Tj
Z(uTVj_lxt)Q = uTVj_l Z Ty, Vj_lu = uTVj_lVVj_lu < uT\7j_1 V; 7j_1u = ||u||f—/;1
t=t; t=t;

Therefore, with probability at least 1 — ¢’, it holds that

. 2
|u"(0; — 0)| < |Term I| + |Term II| < (p“Qlog <5,> \/XS) Hu||‘7;1

Note that the same applies replacing # with a. Then, by taking

ﬁzp“?log (4];(]> +\/XS,
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it holds that |uT (4; — )| < Bllully-1 and |uT (a; — a)| < Bllufy-1 for all u € {uq,...,ux} and all j € [J] with
probability at least 1 — §. Since all z € X can be written as au for some a > 0 and u € {uy,...,ux}, it holds
under the same conditions that

(7 (65— 0)] = olu™ (6 — )] < aBllully—+ = Bllally.

We define the event that this confidence set holds as
Eoont = {7 (0 = )| < llellg 28, 0T (@ — )| < lallg 8 Vo€ X V)€ ]},
which occurs with probability at least 1 — 4.

C.2 Regret analysis

Now, we will prove the regret bound for Safe-PE. In order to do so, we need some more notation. The true
maximum scaling for each direction is denoted by

G :=max{a € [0, : au a < b}. (18)

Also, let v; j := (; ju; and U; := Giug. The index of the direction played at round t and the optimal direction are
denoted by i; and i, respectively. When i; or i, are used in a subscript, the shorthand ¢ and * are used. With
this, we prove a bound on the safe scalings.

Lemma 8. Let Assumptions 1, 2 and 5 hold and assume that Econs holds. For all i € [k] and j > 1, it holds that

@>

2
21 gl 8

and furthermore that

Gi,j 2
CT,; 2 1-— bigsHvi,j*l”Vj__llﬁ'
Proof. We condition on E.on¢ throughout the proof without further reference. We aim to find a v > 0 such that

v;; = Y0;. First, we show that pv; is in yj? , where p = m This holds because,
i Vj_—l

a1 () + Bllntill -1 = u (&J'T—l@" + mwi”‘_fﬁﬁ)

(72 + @]y — a) T+ Bl )
<pu (GT@' + 25H17i||x7j—_11)
< (b+28lillg ) =

where the first inequality is from the definition of E.qns and the second inequality is due to the fact that v; satisfies

. s b . _ _ _ _
the constraints by definition. It follows that v > Mol 2 PP Then, using the fact that 7||vi|\‘7j111 = nyvi”‘—/j:ll =
o

||vi7j||‘7_711, we can rearrange this to get that
i

Sid > 1 2visllo P
Gi b

This is the first claim.

Also, we know from the definition of (; j41 that

. b
aj > (i j+1 = Giyj = G0 = min (S’ai) ;
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and therefore

S L o 1 .5 (19)
Gj—1~ Go min(%,0)  pin (Sb } 1) min (2,1) b
where we use % <1 from Assumption 2. It follows that
Cioi 2||vijllg -2 B 2(Gij/Gig-Dlvij-llg- B 25|vij-1llg - B
Sl > EE AR R P s
G~ b b - b2
giving the second claim. O

Next, we show that the optimal action is never eliminated with high probability.

Lemma 9. Let Assumptions 1, 2 and 5 hold and suppose that E.ong holds. It follows that i, is in A; for all
j €]

Proof. First note that, given Lemma 8, it holds that
0" (20 — i) = 0w (e — Cuj)
=G0 u (1= Gy /)
<GS —6/6) (20)
2801l 1 8
PO
- b
Then, conditioning on E.ont, we have for all j € [J] that
é]—r(iﬁ] — ’U*J') = i;(éj - 9) + GTan - QTU*J‘ + vlj(ﬁ - é])
<@ (0= 0)+ 07 (v —vey) + 0] ;0 - 05)
2810 411y 5
b

where the first inequality comes from the optimality of z, (i.e. GT:fcj < 60"x,) and the second inequality applies
the confidence set to the first and third terms and (20) to the second term. Note that (21) is exactly the condition
for directions to be retained by the algorithm in line 11. Therefore, if i, is in A; for some j, then it will be in
Aj+q. Then, since i, € Ay, it holds that i, € A, for all j € [J] by induction. O

(21)

< Blla;lly + + B0y,

Next, we relate the actions in yf to the chosen actions.
Lemma 10. For all j € [J — 1], it holds that

1 tjy1—1
w; = max ||[z||;-1 < — Z x L %
J meyf ” ||VJ tj+1 — tj = ” t“Vt ( )

Proof. This proof essentially follows from Lemma 39 in Kocdk et al. (2020) but we give it for completeness. Note
that for any t € [t;,7;], it holds that V; = > 77, .  z,a] + V; = V; = 0 and therefore that ||z[|;-1 < ||z~ for
j t

any z. Also, since j < J — 1, it holds that 7; = t;41 — 1. It follows for any x € yf that

tjt1—1

(i — )l < 30 flally

t=t;

tj+1—-1

> max ||z,

t=t; J

IA

tj+1—-1

S il

t=t;
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Lastly, we put everything together and prove the complete regret bound for the Safe-PE in Theorem 6, which
shows that the regret is O(z5+\/dT log(T) log(klog(T))).

Theorem 6 (Complete version of Theorem 3). Let Assumptions 1, 2, 4 and 5 hold. Then, the regret of Safe-PE

(Algorithm 3) satisfies
24,52 T
< R
Ry < 6S + 503 ( o+ 10) \/QdTlog (1 + Ad)

with probability at least 1 — 9.

Proof. Without further reference, we condition on Eon¢ throughout. We decompose the instantaneous regret for
te [tj, T. j] as

T T T T T T T T
re=0 2, —0 =0 T, —0 vy j_1+0 Vi1 —0 v j1+0 v 1 —0 3

Term 1 Term II Term III
We study each of the terms individually in the following.

Term I: It follows from Lemma 8 that

Term 1= 67 ) = G0 u (1= G /E) < 2B e
erm I =67 (2, —vsj-1) = G0 ua( _C*,]*l/c*)—bTHU*J*QHVj__E‘

Term II: We further decompose Term II as

Term II = 9Tv*7j_1 — GTvm_l

=0 v —0] v o0 - Bllosj-1lly -1 + (6 = 0;—1) Vs g1+ (Bj—1 — 0) Tve ;1 + Bllosj-1lly-

Term II.A Term II.B
Then, we have that
)T )T
Term II.A = Hj—lv’mj—l — Hj_lvm_l — ﬂHU*J_lHVJ:ll

<0/ adj1 =0y = Bl

255

< 2Bllveg-ally=y + == lorg-llv-y
2524

< 2Bllveg-allyy + = llvei—2llv-y

where the first inequality follows from the definition of Z; in line 10 of Algorithm 3 given that v. ;_1 € yf_l, the
second inequality comes from the fact that i; € A; and therefore satisfied the criteria in line 11, and the third
inequality comes from (19).

Also, we have that
Term II.B = (9 — éjfl)—rv*,jf1 + (9 — éjfl)—rvt,jfl + /BHU*J*1||\7]:11
< 9Bl il + Byl
where the inequality is from the definition of E.opnt-
Putting everything together, we have that
2523
Term I < 3fjvej-1lly-y, + 2Blvei-1lly-y + =5~ llveg—2lly-,-
Term III: We have that

Term 1T = 0" (v; ;1 — 24)
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=0T u(Ce o1 — Crg)

< S[Gej—1 — Gl
= 5(Gej = Cri-1) (a)
< S{Ct —Ctj—1) . (b)
= SCt( - Ct jfl/Ct)

2523
< T”W,J 2||V L (c)

where (a) is from the fact that ¢; ; > (; ;1 since (; ; is monotone in j by definition (see line 12), (b) is due to the
fact that ¢; ; < (¢ give that y;’ C Y (conditioned on Eont), and (c) is from Lemma 8.

Completing the proof: Using the bounds established for each of the terms, it holds that

= Term I + Term IT + Term III

25233 4523
< 3Bllveg-illy-y +2Blvejtlly + =5 llvei—2llv-y, + =5 llveg-ally -
652
< b5Bwj_1 + bTﬂwj—%

where we use the fact i, € A;_1 C Aj_o (due to Lemma 9) and i; € A; € A;_1 C A;_» which implies
that vy j_1,v¢ -1 € J}]{l and vy j_2,Vt 2 € y;LQ. Therefore ‘|Ut,j71||\7j111 < wj_1, ||v*,j,1H‘7j111 < wj_q,

||vt7j_2||‘7j:12 < wj_g and ||U*7J'—2||ijlz < wj;_g (where w; is defined in (22)).

Then, we study the regret within a single phase j7 > 3,

T" 6523w,
Z Tt S (Tj — t]' + 1) (ﬂwj 2 + 5610]'1)

2
t=t; b
6528w, _
< (tj-i-l - t]) <b2]2 +5ﬁw]‘_1> (a)
2452
=T ﬂf(tj—l —ti—g)wj_g + 108(t; — tj_1)wj—1 (b)
1—1 ti—1
24526 b
<= Y lwlly o+ 108 Z [ty ()
t=tj_2 t=t;_1
1 tj—1
24523 Ky
SR N TAP S [ R UCA PR S AT (@)
t=tj_2 t=t;_1

24523
< P . -
S \/2dtJ 2 log <1+ d >+10ﬂ\/2dtj_1log <1+ d > (e)

where (a) is due to the fact that 7; <t¢;11 — 1, (b) is due to the fact that t;41 —t; = 2(t; — t;_1), (c¢) is due to
Lemma 10, (d) is Cauchy-Schwarz and (e) is from Lemma 5.

Finally, we can apply this to the total regret as

RT—ZZQT —.’L't

j=1t= t]

<65+ZZHT )

Jj=3 t=t;

T, (24523
Z ( \/2dtj—2 log (1 + )\d> + IOB\/thj_l log (1 + Ad))

Jj=3

| /\
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24,52 f T\ <
§6S+6( - +10) 2dlog<1+M>jz_:3\/E

2452 T
< — i
_GS+5B( = +10> \/QdTlog<1+)\d>,

where the last inequality uses ijl Vi = Z;]:l(\@)j < 5VT. O

D Proofs for linked convex constraints

In this section, we prove the regret guarantees for the setting with linked convex constraints. First, we give some
notation and specialize the assumptions from the original setting to this setting. We denote the vector formed
from the ith row of A as a; such that A = [ay ... a,]", and the ith element of z; as 2.

Assumption 6. There exists positive reals Sa and Sy such that ||a;|| < Sa for alli € [n] and 6] < Sp. Let

S :=max(Sa,Sp). Also, there exists positive real v such that rB C G. Lastly, it holds that v := \/ETSA <15

In the following subsections will first study ROFUL in this setting and then GenOP and Safe-PE.

D.1 ROFUL under linked convex constraints

We first update the definitions of ROFUL to this setting, then will prove the regret bounds. We define the
estimator of the vector a; as

t—1

~ —1

az; =V, Exmm
k=1

and At = [G¢,1 - &t,n]—r. We then state the specific structural assumption on the noise terms.
Assumption 7. For all t € [T], it holds that Ele;|x1, €1, ..., 61—1,2¢] = 0 and Elexp(Aer)|z1, €1, .oy €4-1, 2] <
exp(%—pz),VA € R. The same holds replacing €, with n.; for each i € [n].

With this, we give a generalization of the confidence sets originally defined in Lemma 1.
Lemma 11 (Theorem 2 in Abbasi-Yadkori et al. (2011)). Let Assumptions 1, 6 and 7 hold. Also, let

By = p\/dlog (W) +V\S. (23)

0/(n+1)

Then, with probability at least 1 — &, it holds that both |7 (6, — 0)| < ﬁt||x||vt71 and (A, — Az € Bt||ac||vf1IB§OO for
allz € R and all t > 1.

We use Econt to refer to the event that the confidence sets in Lemma 11 hold for all rounds. The optimistic and
pessimistic sets then become .
yf:{xGX:Atx—kﬁtHxHVt_lIB%ooﬂg#@} (24)

and

Vi ={zeX: A+ |zl B C G} (25)
The main challenge in this setting is characterizing the scaling required to take any point in V¢ in to V¥, which
we lower bound in the following lemma.

Lemma 12. Let Assumption 1 hold. Also, let x be any point in V¢ and ¢ = max{p € [0,1] : pz € YF'}. Then,
for all t, it holds that

¢=

r
T+ 2\/ﬁﬁt||37H\/;1 ’
and, with * = (x, that

27

22 Byl

°If v > 1, then for all z € X it holds that ||Az| < ||A||r|z| < v/nSv =r given that |lz|| <1 < v for all z € X.

¢>1-
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Proof. From the definition of J?, we can choose a v € B, such that
wi= A + ﬁtHva;lU €g.
For a € [0, 1], we know that

Aoz + Bt”ava;lBoo C Aoz + ﬁt”ax”V[l (2Bes +v)
= Aoz + Billazy-1v + 28| ow]|, - Bo

= a (A + Billelly-1v) + 26zl Bu
=au+ 25t||ax||vt_1Boo.

From Fact 1 and the fact that v is in G, we know that cu + (1 — a)rB C G. We choose o = such

- r
rravmBial, 1
t

that o = (1 — «) to get that

I8
V2B, 1
t

Aoz + Byl|az(ly -1 Boo € au+ 28| a1 Boo
C au+ 2vnfy|az|y, 1B
=au+r(l-a)BCG.

Since Ayox + Bt||o¢x||V;1HBoo C G and az is in X due to the fact that it is star-convex, we know that ax € Y. Tt
follows that

(=max{p>0:pur eIl >a= (26)

;
r+ 2yl

which proves the first inequality in the statement of the lemma. Then, given that (x = & and ¢ > 0, it holds that
C”xHVt—l = ||C$||vt—1 = Hj”\/t—l’
With this, we can rearrage (26) to get that

2Vn

r

(r+2vnBilly, - >r = (>1- Bellzll -,

which proves the second inequality in the statement of the lemma. O

The regret bound for ROFUL in this setting then follows from this.

Theorem 7. Let Assumptions 1, 6 and 7 hold. Then, the regret of ROFUL in the setting with linked convex
constraints satisfies

2 T
Ry < T\/ﬁ (Sg +SA)ﬁT\/2dTlog <1 + )\d)

with probability at least 1 — 4.

Proof. We condition on E.onr throughout the proof without further explicit reference to it. From Lemma 12 and
using the same reasoning as Lemma 2, we know that

2y

Yt 2 max (1 - 5t|ftvtl7’/> .

Then, we know that

GT(jt — xt) S Sg(l — ’}/t)
2,/11S
T

<

Bt”xt”vgl
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Also, it holds that
GT(.’IJ* — jt) S é;ri't + Btlli't”‘/t—l — GTi't
< 28|y~
2
< ;Bt”thv;l
Then, the instantaneous regret satisfies

re =07 (z, —z¢)

_ 2V

r

(So +5a) Bellzell -1
The proof follows from the elliptic potential lemma (Lemma 5) as used in Theorem 1. O

D.2 GenOP under linked convex constraints

In this section, we prove regret guarantees of GenOP under linked convex constraints. Note that this also gives
regret bounds of GenOP in the original setting (i.e. given in (5) in Section 3.3) by taking n = 1 and r = b. Before
giving the regret guarantees, we first give a corollary to Lemma 12 that bounds the scaling required to take any
point in Y in to JP.

Corollary 3. Assume the same as Lemma 12 and let E.ons hold. Let y be any point in Y and {; = max{u €
[0,1) : py € YP}. Then, for all t, it holds that

,
¢G> ,
7+ 2Byl -

and, with y = (1y, that
2y/n

r

G >1- 5t||ﬂ||v;1~

Proof. Conditioned on Econt, it holds that Y C Y7?. Therefore, y is in Yy and we can apply Lemma 12 to get the
statement of the corollary. O

With this, we prove the regret bound for GenOP in the following theorem.

Theorem 8. Let Assumptions 1, 6 and 7 hold. Then, playing GenOP with k =1 + M%S" in the setting with
linked convex constraints satisfies

T
RT S 2 (1 + \/i'%) ﬁT\/ZdTIOg (1 + )\d)

with probability at least 1 — 9.

Proof. Since z, is in Y and using Corollary 3, we know that awx, is in Y, where o = . Using

- r
r+2vnpifle.dl, -1
this, we show that the upper confidence bound of the actions played by GenOP is in fact larger than the optimal
reward.

Since z4 is chosen by a maximization over Y¥, we can reason that
étht + HﬁtthHV;l > o (éth* + nﬂtllx*le)
=a (HTJC* + (0 —0) "2, + Féﬁtnx*”vfl)

> a (072, = Billaally-r + sbillzaly-r)



Spencer Hutchinson, Berkay Turan, Mahnoosh Alizadeh

1 2/nS,
= Qﬁﬂt”w*”‘/,1 (HT.’E* + \/; ]
RS I |

T

Bl )

07w, + 2250 8|7 ||,
26y ||y + 1
Z 9T$*7

where the last inequality holds according to the reasoning that

0w, + 22 Billolly s
Ny NP R
r || L% thl +

2+/nSy 2
r

— 0z, +

2\/7S
T

r

Bullzally—r 2 07, (
o/

r

n
fﬂt“x*nvfl + 1)

—

Btnx*HVt—l > HTCU* 5t||$*HVt—1

— Sy >0"x,,
which holds by Assumption 1. Therefore, we know that
re =07 (z, — x¢)
<02+ /{ﬁt||xt||vt_1 — 0T,
< (0 —0)Ta + kB¢t |ly -
< (14 8)Bellwely, -

Applying Cauchy-Schwarz to the cumulative regret and then the elliptic potential lemma (Lemma 5) as used in
Theorem 1 completes the proof. O

D.3 Safe-PE under linked convex constraints

In this section, we give regret bounds for Safe-PE under linked convex constraints. Let the estimator of each a; in
phase j be d;; and let A; = [a;1 ... djﬁn]—r. We then state the specific structural assumption on the noise terms.

Assumption 8. The noise sequences (e:)i_, and (n:;)—, are independent p-subgaussian random variables for
all i € [n].

With this, we can then define the confidence set for the parameters in this setting which follows immediately
from Lemma 7.

Lemma 13. Then, for allz € X and all j € [J] it holds that |7 (6, —6)| < |||, -18 and (A —A)z € |||y -1 fBoo
J J
where = py/2log (%) +V/\S with probability at least 1 — 6.

Then, the only change to the algorithm is the definition of the maximum safe scalings (i.e. line 7 in Algorithm 3),
which is

i 41 7= max {a €[0,ai] s (UzTaJ + ”uiHVJflﬁjBoo) - g}.
We then apply Corollary 3 to bound the scaling of each direction in the pessimistic set as proven in the following
lemma. Recall the notation from Appendix C.

Lemma 14 (Lemma 8 for linked convex constraints). Let Assumptions 1, 2 and 5 hold. For all i € [k], it holds
that ¢ ; /¢ >1— @va |V:115 for all j > 1. Furthermore, (;;/C > 1— M||Ui’j71“v.illﬁ.

T2

Proof. Note the similarity between p; ; and the definition of ¢; in Corollary 3. Therefore, we can follow the
reasoning of Corollary 3 to get that (¢, ;/¢) > 1— Qfﬁﬂvi,jﬂvjl and then following the proof of Lemma 8 gives
the claim. ’ 0
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With this, we can then give the regret bound for Safe-PE in the following theorem.
Theorem 9. Let Assumptions 1, 2, 4 and 5 hold. Then, the regret of Safe-PE (Algorithm 3) satisfies

2457 T
Ry <65+56 (22 410) | [2dTlog 1+ —
r? Ad

with probability at least 1 — 9.

Proof. Following the proof of Theorem 3 using Lemma 14 yields the result. O

E Problem-dependent analysis of GenOP

In this section, we show that the problem dependent analysis approach in Theorem 2 and Corollary 1 applies to
GenOP.

First, we give some useful facts in the following lemma, which is analogous to Lemma 6 in the problem-dependent
analysis of ROFUL.

Lemma 15. Let Assumptions 1 and 2 hold, and let Eqons hold. Also, let’
¢t :=max{¢ >0:Cx; € V}, (27)
and vy = Gxy. Then, it follows that:

1.1/¢ €1 %muxtuvfl,l}
2. 07 (x — ve) < B2 Belaelly,
3. If there exists a > 0 such that x; = ax,, then vy = xy.

4. If there does not exists a > 0 such that x; = ax,, then 9T($* — ) > A

Proof. We condition on E.ons throughout the proof without further reference. We will first give some useful facts.
In particular, it holds that, R
0, x; + I‘iﬁt”Z‘t”V;l >0z, >0 (28)

where the first inequality is due to optimism and the second is Assumption 2. It follows from (28) that z; # 0
and therefore the set {¢ > 0: (x; € Y} is compact. Also, note that {{ > 0: (x; € Y} contains 0 and is therefore
nonempty, so (; is well-defined. Next, we prove each item individually in the following.

1: First, we argue that ¢; > 1. This holds because x; € Y C Y and therefore 1is in {¢ > 0: (x; € Y}. Tt follows

Then, we show that 1/¢; > 1—%@5”9&”‘/;1- In order to do this, we first show that 1/¢; > max{p € [0,1] : pv; € P}

Suppose, this was not the case, i.e. that there exists u € {u € [0,1] : pvy € Y} such that y > 1/¢. Since,
pvy € VP, this would imply that,

0w+ w1 = ma (éjx + /iﬁt||x||vf1) > 07 () + KBy, (29)
At the same time, given that v; = (i,
0 w0+ wBilally s = (/606 (0 w0+ wBilolly, -+ )
< pGe (étTJ?t + H/BtH?CtHv;l)
= 1 (07 e+ wBillenlly, 1 )

=0/ (nvr) + KBellpvelly -1,

SNote that this definition of ¢; differs from the one used for the problem-dependent analysis of ROFUL in Lemma 6.
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where the inequality uses (28). Since (29) and (30) cannot simultaneously hold, it follows that 1/¢{, > max{u €
[0,1] : povy € YP}.

Finally, using Corollary 3 by taking n =1 and r = b (since the setting with linked convex constraints is a more
general case), we have that

2
]./Ct Z maX{/J S [0, 1] v S yf} 2 1-— gﬁt”fﬂt”vt—l.
2: Since, v = Gy and 1/ € |1 — %ﬂt‘lxtll‘/t—l, 1|, it holds that

HT(xt —’Ut) = eTvt(l/Ct — 1) S S|1/Ct — 1| = S(l — 1/Ct) S ?Btnxt"‘/t—l.

3: From Lemma 6, we know that max{¢ > 0: (z. € Y} = 1. Then, if there exists a > 0 such that x; = oz,
1 - - 1
Ct:max{CZO:CactEy}zamax{gzO:Cx*ey}za,
where we use the mapping 5 = a(’. Therefore, it follows that

v = (T = atTs = Ty.
4: First, note that if there does not exist a > 0 such that z; = ax,, then there does not exist o’ > 0 such that
vy = &'z, as vy = (pwy. Then, since v, € Y, it follows from the definition of A that,

A= inf 07 (z, —x) <07 (0 —vy).
z€Y: xF#ax, Ya>0

O

Theorem 10. Let Assumptions 1, 2 and 3 hold. If A > 0, then the number of wrong directions chosen by GenOP
with k =1+ % (defined by (4)) satisfies

1 25\* , T
< — - J—
Br 28d<1+ b) 5T10g<1+/\ )

with probability at least 1 — 9.
Proof. We condition on E.ons defined in (8) without further mention. Consider the the instantaneous directional
regret,
7o =0T (z* — )
<0z, + KBty -1 — 0" v,
=0Tz +(0— ét)Txt + /‘ﬂﬁt”l’t”vt—l — 0Ty,

< OT(:ct —v)+ (k+ 1)Bt||$t||v;1

< %MMW + (5 + 1B |y,

<201+ )8l
where the first inequality uses optimism (with kK = 1 + %), the second inequality uses the definition of the
confidence set, the third inequality uses Lemma 15 (#2). Then, from Lemma 15 (#3, #4), we know that either

7+ = 0 if there exists o > 0 such that 2; = ax, or #; > A otherwise. Then, using the bound Br < Rr/A and the
fact that 7, < 77/A, we have that

Rr 1. 1 ., 4 29\ = 1 1 25\° , T
BTSK:ZZHST (7¢) _A2<1+b> 5T;||$t||vt—1§§8d 1+T fr log 1+m ;

where the last inequality comes from Lemma 5. 0
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It then immediately follows that it is possible to achieve regret that only depends on d in O(polylog(T')) terms
with the same reasoning as Corollary 1.

Corollary 4. Let Assumptions 1, 2 and 3 hold. If A > 0, consider the algorithm:

1. Play GenOP until any single direction has been played more than B = é&l (1 + %)2 B2 log (1 + %) times.
Let this direction be denoted by .

2. For the remaining rounds, play GenOP (after restarting) for the 1-dimensional safe linear bandit problem of
choosing & € Ry and then playing & u, .

Then, with probability at least 1 — 20,

85 _ 2B 4S8 ~ T
< — = P — R

where Br is Br with d = 1.

F Details on numerical experiments

In this section, we give the details of the numerical experiments that were not included in the body of the paper
as well as details on the computing setup and additional results. The computing hardware specifications are given
in Section F.1. Then, the details on the simulation results for the settings with linear contraints, linked convex
constraints, and star convex multi-armed bandit are given in Sections F.2, F.3, and F.4, respectively.

F.1 Computing hardware

All simulations were run on a Lenovo ThinkPad T470 with an Intel Core i7 processor and 16 GB of memory.

F.2 Linear constraints

In the first setting (results in Figure 2a), we take d = 2 and T = 5 x 10*, and also take the action set to be
a finite star convex set X' = [J;c1o{our : @ € [0,1]}. For each trial, we sample 6 ~ U(Bo), ug ~ U(S) for all
k € [10] (where we resample {ug}x until it holds that 6Tz, > 0), b ~ U[0.25,1], a ~ U(B.,). The learner is only
given the prior information on these parameters that ||f|| < v/2 and ||a| < v/2. As such, the algorithm can take
S, = Sp = /2. The noise terms are sampled i.i.d as 17; ~ N (o) and ¢; ~ N(c), where o = 0.1. The learner is
given o. For the regularization parameter, we use A = 1 for all algorithms tested.

The second setting (results in Figure 2b) is the same except that =1 x 10% and b ~ [0.05, 0.25].

To implement the algorithms in this setting, we enumerate over the directions in order to calculate the algorithms’
updates. To show how this matches the specified update for GenOP, consider the update specified in (4),

arg max <é2—x + I'iﬁtHJ?HV—l) . (31)
J:Eyf ‘

Since the pessimistic set can be defined as

VP = U {aui ca€0,1],« (d:ul +ﬁtHui”Vf1) < b} ,

i€[10]

and the objective is convex, we know that for each of the line segments, the maximum objective value is attained
at the origin or the maximum scaling in that direction. Therefore, we find a point in (31) by optimizing over
these points, i.e.

Ty € arg max (é;rx + ﬁ5t||x||vt_1> ,
z€{0,(Yu1,....¢Ypu10}
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Figure 3: Simulation results for setting with linked convex constraints and box constraints.

where
o = {min(b/(d;rui + ﬂt\|ui||vt_1), 1), if a u; + ﬁt”UZ‘HVvt—l >0
1 else.

The calculation used for ROFUL uses a similar idea. In particular, the optimistic action (line 4 of Algorithm 1) is
calculated as

Ty € arg max (é;x+6t|‘x||v—l) )
2€{0,¢fu1,....(Fgu0} ‘

where

o min(b/ (6] wi — Billuilly1), 1), if & w; = Bellualy, 1 >0
1 else.

Then, p; from line 6 is calculated as
(32)

. {mm(b/(ajjt + BellElly 1), 1), if 6 &+ BillFlly 0 >0
t — t
1 else.

F.3 Linked convex constraints

In this (results Figure 2b), d =2, n =2, X =B, and T = 105. We take G = bB, where b ~ 1/[0.25, 1] for each trial.
The constraint matrix and reward vector are randomly sampled, where each row of A is sampled as a; ~ U(Boo)
for all i € [n] and 6 ~ U(B). The learner is only given the prior information on these parameters that |0 < v/2
and ||a;|| < v/2 for all i € [n]. As such, the algorithms can take S = /2 and r; = 0.25. The noise terms are
sampled i.i.d as n; ~ N(ol) and ¢ ~ N (o), where 0 = 0.1. The learner is given o. For the regularization
parameter, we use A = 1 for both algorithms. We simulate this setting for 30 trials, where different realizations of
the problem parameters are used for each trial. In Figure 2b, the mean of the regret at each round ¢ normalized
by square-root t is shown along with the plus-or-minus one standard deviation.

For this setting, we relax the optimistic and pessimistic sets such that they use the 2-norm ball instead of the
infinity-ball. In particular, we use the sets

VP ={z € X: A+ Vnpi|al,-BNG # 0}

and
Vi ={z € X: A+ Vnplz|, B CG}.
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Figure 4: Simulation results for ROFUL and PD-ROFUL in problem with A > 0 and known.

F.3.1 Additional Results

We also includes additional results (given in Figure 3), where everything is the same except that G = bB., and
X = Upepo{aur : o € 0,1]} where ug ~ U(S) for all k& € [10]. In Figure 3, the mean of the regret at each round
t normalized by square-root ¢ is shown along with plus-or-minus one standard deviation.

F.4 Star convex multi-armed bandit

In this setting (results in Figure 2d), the action set only consists of the coordinate directions with scalings between
Oand 1. Weset # =a =[10..0]" and b = 0.5 and use i.i.d. Gaussian noise of standard deviation 0.1. In
this case, we only give the learner the knowledge that |lal|,]|0]] < S = 2 because if the learner was given the
information that ||a|| < 1, it would be initially known that the optimal action satisfies the constraint. In this
setting, we simulate ROFUL and Safe-PE for 3 trials for d = 10.

F.4.1 Additional results

We also simulate PD-ROFUL (Algorithm 2) and ROFUL in the same setting with, except with b = 0.9 and
S = 1.5. We make this modification to make the initial phase of duration less than T" so that there is a difference
between ROFUL and PD-ROFUL. We simulate both algorithms for 5 trials with d = 10 and show the mean and
standard deviation of the regret in Figure 4.
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