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1. Introduction

The elementary symmetric quadratic or σ2 equation

σ2

(
D2u

)
=

∑
16i1<i26n

λi1λi2 =
(4u)

2 −
∣∣D2u

∣∣2
2

= 1 (1.1)

with λ′is being the eigenvalues of the Hessian D2u of scalar function u, is a non-

linear Hessian dependence equation of the lowest integer order, and is called fully

nonlinear equation, because the nonlinearity is on the highest order derivatives

of the solutions. The σ2 equation sits in between the (linear) Laplace equation

σ1

(
D2u

)
= λ1 + · · · + λn = 4u = 1 and the (fully nonlinear) Monge-Ampère

equation σn
(
D2u

)
= λ1λ2 · · ·λn = detD2u = 1. The 2-sheet hyperboloid level set

of the equation {
λ ∈ Rn : λ1 + · · ·+ λn = ±

√
2 + |λ|2

}
is rotationally symmetric, unlike all the other σk equations with 3 6 k 6 n.

To make those equations elliptic, or monotone dependence on Hessian along

positive definite symmetric matrices, we require the linearized operator positive

definite. Equivalently, the normal of the level set has positive sign for all compo-

nents in the eigenvalue space, respectively positive definite in the matrix space.

For example, among all four branches of level set λ1λ2λ3 = 1, only one is elliptic;

the same is true for λ1λ2λ3 = −1. The negative definite or all negative component

case is also considered as elliptic. In particular, the two symmetric branches of

σ2 (λ) = 1 are both elliptic. The choice of branch is made automatically by C2
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solutions. For less smooth solutions such as continuous viscosity ones, the positive

4u > 0 or negative 4u < 0 branch has to be specified. Afterward, −D2u is on the

other branch in viscosity sense.

Replacing the flat eigenvalues λ′is with the principal curvatures κ′is of graph

(x, u (x)) in Euclid space Rn × R1, one has the scalar curvature equation

σ2 (κ1, · · · , κn) = 1.

Recall κ′is are the eigenvalues of the normalized second fundamental form II by

the induced metric g or shape matrix

IIg−1 =
D2u√

1 + |Du|2

[
I − Du⊗Du

1 + |Du|2

]
=
[
∂xiApj (Du)

]
,

where II = D2u/

√
1 + |Du|2, g = I+Du⊗Du, and A (p) =

√
1 + |p|2. Replacing

the flat eigenvalues λ′is with the eigenvalues of Schouten tensor of a conformal

metric g = u−2g0, one has σ2-type Yamabe equation in conformal geometry, which

simplifies to

σ2

(
uD2u− 1

2
|Du|2 I

)
= 1

for flat metric g0. Replacing the flat eigenvalues λ′is with the eigenvalues of Hermi-

tian Hessian ∂∂̄u, one has σ2-type equation arising from complex geometry. Lastly,

in three dimensions σ2

(
D2u

)
= 1 or equivalently arctan λ1+· · ·+arctanλ3 = ±π/2

is the potential equation of minimal Lagrangian graph (x,Du (x)) with phase ±π/2
in Euclid space R3 × R3.

2. Results

2.1. Outline. Once an equation is given, the first question to answer is the

existence of solutions. Smooth ones cannot be obtained immediately, in general;

worse, they may not even exist. The typical approach is to first seek weak solutions,

in the integral sense if the equation has divergence structure, or in the “pointwise

integration by parts sense”, namely, in the viscosity sense if the equation enjoys

a comparison principle. After obtaining those weak solutions, one studies the

regularity and other properties of the solutions, such as Liouville or Bernstein type

rigidity for entire solutions. All these hinge on a priori estimates of derivatives of
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solutions:

‖D2u‖L∞(B1) 6 C(‖Du‖L∞(B2)) 6 C(‖u‖L∞(B3)).

Having the L∞ bound of the Hessian available, the ellipticity of the above fully

nonlinear equations becomes uniform, we can apply the Evans-Krylov-Safonov the-

ory (for the ones with convexity/concavity, possibly without divergence structure)

or the Evans-Krylov-De Giorgi-Nash theory (for the ones with convexity/concavity

and divergence structure) to obtain C2,α estimates of solutions. Either theory can

handle the quadratic Hessian equation along with all other σk equations, because

they all share the divergence structure. In the σ2 equation (1.1) case, the linearized

operator is readily seen in divergence form

4F =
n∑

i,j=1

Fij∂ij =
n∑

i,j=1

∂i (Fij∂j) ,

with

(Fij) = 4u I −D2u =

√
2 + |D2u|2 I −D2u > 0.

Here and in the remaining, for certainty, and without loss of generality, we assume

4u > 0. The concavity of the equation is evident in an equivalent form

4 u−
√

2 + |D2u|2 = 0, (1.2)

whose linearized operator

I − D2u√
2 + |D2u|2

also reveals the uniform ellipticity of the equation with uniformly bounded Hessian

solutions.

Considering the minimal surface structure of the quadratic Hessian equation in

three dimensions, the C2,α estimate can also be achieved via geometric measure

theory. For the σn or Monge-Ampère equation, back in the 1950s, Calabi attained

C3 estimates by interpreting the cubic derivatives in terms of the curvature of

the corresponding Hessian metric g = D2u. Further, iterating the classic Schauder

estimates, one obtains smoothness of the solutions, and even analyticity, if the

smooth equations such as all the σk equations are also analytic.

2.2. Rigidity of entire solutions. The classic Liouville type theorem asserts

every entire harmonic function bounded from below or above is a constant by
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the Harnack inequality. Thus every semiconvex harmonic function is a quadratic

one, as its double derivatives are all harmonic with lower bounds, hence constants.

Similarly, every entire (convex) solution to the Monge-Ampère equation detD2u =

1 is quadratic. This was first proved in two dimensional case by Jörgens, later in

dimension up to five by Calabi, and in all dimensions by Pogorelov. Also, Cheng-

Yau had a geometric proof.

Recently, Shankar-Yuan [SY3] proved that every entire semiconvex solution to

the quadratic Hessian equation σ2

(
D2u

)
= 1 is quadratic. In dimension two,

it is the above classic Jörgens’s theorem without any extra condition (not even

convexity) on the entire solutions, thus a Bernstein type result. In three dimensions,

this was proved in [Y] earlier, as a by-product of rigidity for the special Lagrangian

equation.

Under an almost convexity condition on entire solutions to σ2

(
D2u

)
= 1 in gen-

eral dimension, Chang-Yuan derived the rigidity [ChY]. Under a general semicon-

vexity and an additional quadratic growth assumption on entire solutions in general

dimension, Shankar-Yuan showed the rigidity in [SY1]. Assuming only quadratic

growth on entire solutions to σ2

(
D2u

)
= 1 in three and four dimensions, the same

rigidity result was proved in the joint work with Warren [WY] and Shankar [SY4]

respectively. Assuming a super quadratic growth condition, Bao-Chen-Ji-Guan

[BCGJ] demonstrated that all convex entire solutions to σ2

(
D2u

)
= 1 along with

other σk
(
D2u

)
= 1 are quadratic polynomials; and Chen-Xiang [CX][ showed that

all “super quadratic” entire solutions to σ2

(
D2u

)
= 1 with σ1

(
D2u

)
> 0 and

σ3

(
D2u

)
> −K are also quadratic polynomials.

Warren’s rare saddle entire solution u (x1, · · · , xn) =
(
x2

1 + x2
2 − 1

)
ex3 + 1

4e
−x3

to σ2

(
D2u

)
= 1 in dimension three and above [W], confirms the necessity of the

semiconvexity or the quadratic growth assumption. C.-Y. Li [L] followed with “non-

degenerate” entire solution u (x) =
(
x2

1 + x2
2 − 1

)
exn+n−2

4 e−xn+(x3 + · · ·+ xn−1)xn

in dimension n and above for n > 4.

2.2.1. Two dimensions. In the following, we recap Nitsche’s idea in showing the

rigidity of entire solutions in two dimensions.

Given a C2 solution u to σ2

(
D2u

)
= 1, up to negation, we assume D2u is

on the positive branch of the hyperbola λ1λ2 = 1, in turn, u is convex. Let

w be the Legendre-Lewy transform of u (x), that is, the Legendre transform of
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u (x) + |x|2 /2. Geometrically their “gradient” graphs satisfy (x,Du (x) + x) =

(Dw (y) , y) ∈ R2 × R2, and the “slopes” of graphs satisfy(
I,D2u (x) + I

)
=

(
D2w (y)

∂y

∂x
,
∂y

∂x

)
.

It follows that

I < D2u (x) + I =
(
D2w (y)

)−1
or D2u (x) =

(
D2w (y)

)−1 − I.

Taking determinants yields

1 = σ2

(
D2u

)
= det

[(
D2w (y)

)−1 − I
]

= µ−1
1 µ−1

2 − µ
−1
1 − µ

−1
2 + 1.

or an equation for the eigenvalues µ′is of D2w

1 = µ1 + µ2 = 4w.

Noticing the boundedness of Hessian D2w

0 < D2w < I,

we see the constancy by Liouville. Consequently from the flatness of graphs

(x,Du (x) + x) = (Dw (y) , y) or constancy of
(
D2w

)−1 − I = D2u, it follows

that u is quadratic. Note that Jörgens’ original “involved” proof made use of a

partial Legendre transformation.

Going further, this Legendre-Lewy transformation proof of Jörgens’ theorem,

coupled with Heinz transformation, led Nitsche [N] to his elementary proof of the

original Bernstein theorem: every entire solution to the minimal surface equation

div

 Df√
1 + |Df |2

 = 0

in two dimensions is linear.

The remaining proof goes as follows. The mean curvature vector ~H of the graph

(x1, x2, f (x)) is

~H = 4g (x1, x2, f (x)) =
∑
i,j

1
√
g
∂i
(√
ggij∂j

)
(x1, x2, f (x))

=

div

(
1 + f2

2 ,−f1f2

)√
1 + |Df |2

, div

(
−f1f2, 1 + f2

1

)√
1 + |Df |2

, div
(f1, f2)√
1 + |Df |2

 ,
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where
√
gg−1 =

[
1 + f2

2 −f1f2

−f2f1 1 + f2
1

]
/

√
1 + |Df |2 was used in the last equality.

The magnitude H of the mean curvature vector is, as noted before

H = Tr
[
∂xiApj (Df)

]
= div

(f1, f2)√
1 + |Df |2

= 0.

Hence, 4g (x1, x2, f (x)) = (0, 0, 0) .

Considering the first component equation 4gx1 = 0, the conjugate function of

x1 is defined as

x∗1 (x1, x2) =

∫ (x1,x2) f1f2dx1 +
(
1 + f2

2

)
dx2√

1 + |Df |2
.

Similarly, the conjugate function of x2 is also defined. Together, they represent the

“normalized” metric

1√
1 + |Df |2

[
1 + f2

1 f1f2

f2f1 1 + f2
2

]
=

[
Dx∗2
Dx∗1

]
.

By symmetry of the left-side matrix, ∂2x
∗
2 = ∂1x

∗
1, then there exists a double

potential u so that Du = (x∗2, x
∗
1) . Thus, one has Heinz transformation u of the

height function f of a minimal graph satisfying

1√
1 + |Df |2

[
1 + f2

1 f1f2

f2f1 1 + f2
2

]
= D2u and detD2u = 1 on R2.

As just obtained, the Hessian D2u of entire solution u is a constant matrix, and

in turn, Df is a constant vector. The original Bernstein theorem is reached.

In passing, let us note the conjugate function of f

f∗ (x1, x2) =

∫ (x1,x2) −f2dx1 + f1dx2√
1 + |Df |2

satisfies

Df∗ =
(−f2, f1)√
1 + |Df |2

and

√
1− |Df∗|2 =

1√
1 + |Df |2

∈ (0, 1)

or
Df∗√

1− |Df∗|2
= (−f2, f1) .
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Consequently

div

 Df∗√
1− |Df∗|2

 = 0.

Observe that the above conjugation process from minimal surface to maximal

surface is reversible. “Incidentally” we have obtained a two dimensional Bernstein

type result: every entire solution to the maximal surface equation div

(
Df/

√
1− |Df |2

)
=

0 is linear, which was first proved up to four dimensions by Calabi, and in general

dimension by Cheng-Yau.

2.2.2. General dimensions. Next, we outline the argument toward rigidity for

semiconvex entire solutions to σ2

(
D2u

)
= 1 in general dimensions.

The Legendre-Lewy transform of a general semiconvex solution satisfies a uni-

formly elliptic, saddle equation with bounded Hessian. In the almost convex case,

the new equation becomes concave, thus the Evans-Krylov-Safonov theory yields

the constancy of the bounded new Hessian, and in turn, the old one. To beat

the saddle case, one has to be “lucky”, only one time. Recall that, in general the

Evans-Krylov-Safonov fails as shown by the saddle counterexamples of Nadirashvili-

Vladuts. Our earlier trace Jacobi inequality, as an alternative log-convex vehicle,

other than the maximum eigenvalue Jacobi inequality, in deriving the Hessian es-

timates for general semiconvex solutions [SY1], could rescue the saddleness. But

the trace Jacobi only holds for large enough trace of the Hessian. It turns out that

the trace added by a large enough constant satisfies the elusive Jacobi inequality.

Equivalently, the reciprocal of the shifted trace Jacobi quantity is superhar-

monic, and it remains so in the new vertical coordinates under the Legendre-Lewy

transformation by a transformation rule. Then the iteration arguments developed

in our joint work with Caffarelli show the “vertical” solution is close to a “harmonic”

quadratic at one small scale, “luckily” (two steps in the execution: the superhar-

monic quantity concentrates to a constant in measure by applying Krylov-Safonov’s

weak Harnack; a variant of the superharmonic quantity, as a quotient of symmetric

Hessian functions of the new potential, is very pleasantly concave and uniformly

elliptic, consequently, closeness to a “harmonic” quadratic is possible by the Evans-

Krylov-Safonov theory), and the closeness improves increasingly as we rescale (this

is a self-improving feature of elliptic equations, no concavity/convexity needed).

Thus a Hölder estimate for the bounded Hessian is realized, and consequently so
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is the constancy of the new and then the old Hessian.

Note that, in three dimensions, our proof provides a “pure” PDE way to estab-

lish the rigidity, distinct from the geometric measure theory way used in our earlier

work on the rigidity for special Lagrangian equations two decades ago.

The details are in the following.

Step 1. Bounded Hessian and uniform ellipticity after Legendre-Lewy trans-

form.

The Legendre-Lewy transform w (y) = LL
[
u (x) +K |x|2 /2

]
of a general semi-

convex solution u (x) with D2u > (δ −K) I satisfies a uniformly elliptic, saddle

equation with bounded Hessian:

(x,Du (x) +Kx) = (Dw, y) ,

0 < D2w =
(
D2u+K

)−1
< δ−1 or λi = µ−1

i −K > δ −K,

g (µ) = −f
(
µ−1 −K

)
= −σ2

(
µ−1 −K

)
= −1.

By Lin-Trudinger [LT], and also Chang-Yuan [ChY]

λ−1
1 / fλ1

/ λ1, fλk>2
≈ λ1 for λ1 > · · · > λn;

for σ2 (λ) = 1 with λi > δ−K, all but one eigenvalues are bounded, |λk>2| 6 C (K)

and fλ1λ1 ≈ 1, then

gµi = fλiµ
−2
i = fλi (λi +K)

2 ≈ C (n,K) λ1 .

Consequently, level set{
µ | g (µ) = −σ2

(
µ−1 −K

)
= −1

}
is a uniformly elliptic surface. (1.3)

The new equation also takes the form

σn−2 (µ)

σn (µ)
− (n− 1)K

σn−1 (µ)

σn (µ)
+
n (n− 1)

2
K2 = 1.

Remark. In the almost convex case K =
√

2/n (n− 1), the new equation

becomes
σn−1 (µ)

σn−2 (µ)
= [(n− 1)K]

−1
, (1.4)

thus concave. Then the Evans-Krylov-Safonov theory yields the constancy of the

bounded new Hessian[
D2w

]
Cα(BR)

6
C (n)

Rα
∥∥D2w

∥∥
L∞(B2R)

6
C (n)

Rα
→ 0 as R→∞,
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and in turn, the old one.

The uniformly elliptic level set
{
g (µ) = −σ2

(
µ−1 −K

)
= −1

}
is saddle for

large K. There are C1,α singular solutions to uniformly elliptic saddle equation in

five dimensions by Nadirashvili-Tkachev-Vladuts.

In the next two steps, we really use the following equivalent uniformly elliptic

saddle equation

H
(
D2w

)
= σn (µ)

[
1− σ2

(
µ−1 −K

)]
= 0,

which in three dimensions, becomes

−σ1 (µ) + 2Kσ2 (µ)−
(
3K2 − 1

)
σ3 (µ) = 0 or

σ2 (µ)

σ1 (µ)
=

[
2K −

(
3K2 − 1

) σ3 (µ)

σ2 (µ)

]−1

.

Step 2. Shifted trace Jacobi inequality to rescue saddleness.

For F
(
D2u

)
= σ2 (λ) = 1 with D2u > −KI, b (x) = ln (4u+ nK) satisfies the

elusive strong subharmonicity

4F b = Fij∂ijb > Fij∂ib ∂jb = |∇F b|2

which is equivalent to the superharmonicity, by a transformation rule in [SY1].

4Ha (y) 6 0

with a (y) =
1

λ1 +K + · · ·+ λn +K
=

σn (µ)

σn−1 (µ)

n=3
=

σ3 (µ)

σ2 (µ)
.

Remark. For log-convex function b = lnλmax or ln (λmax +K) , Jacobi in-

equality 4F b > |∇F b|2 holds in three dimensions without any restriction, in gen-

eral dimensions with necessary semiconvexity condition. The reciprocal µmin (y) =

(λmax +K)
−1

is superharmonic 4Hµmin (y) 6 0. But µmin

(
D2w

)
is not a uni-

formly elliptic function/operator on D2w, though concave. Therefore, it is not

adequate via µmin (y) to run the Caffarelli-Yuan procedure for Hölder of Hessian

D2w.

For log-linear b = ln4u, Qiu showed4F b
3-d
> |∇F b|2 in [Q]. It is indeed another

log-convex function

ln4u = ln

√
|λ|2 + 2 mod σ2 (λ) = 1
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satisfying 4F ln4u > |∇F ln4u|2 for large enough 4u > C (K) under semi-

convexity D2u > −K. It is important to have the above shifted Jacobi quantity

b (x) = ln (4u+ nK) valid without assuming 4u large enough, to execute our

argument toward constancy of the Hessian.

Remark. The above Jacobi inequality is actually an equality on minimal

surface (x, f (x)) ∈ Rn × R1 for div

(
Df/

√
1 + |Df |2

)
= 0 :

4gb = |∇gb|2 +
∣∣IIg−1

∣∣2 or 4g ω = −ω
∣∣IIg−1

∣∣2 6 0,

where b = ln

√
1 + |Df |2, and ω = 〈(0, · · · , 0, 1) , N〉 = 1/

√
1 + |Df |2 is the ef-

fective deformation, while varying the minimal surface along a Jacobi vector field

J = (0, · · · , 0, 1) .

Step 3. Hölder estimate of new Hessian on saddle equation.

We illustrate the argument for Hölder estimates for Hessian on uniformly elliptic

saddle equation in three dimensions, where the idea is not lost, but the gain is a

better understanding of the idea.

Again, the new/“vertical” uniformly elliptic saddle equation is

σ2 (µ)

σ1 (µ)
=

[
2K −

(
3K2 − 1

) σ3 (µ)

σ2 (µ)

]−1

for 1 > µi>2 > c (K) > 0 and 1 > µ1 > 0.

Apply Krylov-Safonov’s weak Harnack to the bounded superharmonic a (y) = σ3(µ)
σ2(µ)

from Step 2, a (y) concentrates to a level l = minBε a (y) in one small (enough) ball

Bε (0) , that is σ3(µ)
σ2(µ) ≈ l in 99.99999% of Bε. Note the concave σ3(µ)

σ2(µ) is not uniformly

elliptic, because µ1 could be close 0.

Step 3 Continued: Remarkably, µ is approximately on the uniformly elliptic

(1 > µ3, µ2 > c (K) > 0), concave (level set σ2(µ)
σ1(µ) = l is a concave surface) equation

σ2 (µ)

σ1 (µ)
=
[
2K −

(
3K2 − 1

)
l
]−1

in 99.99999% of Bε

By existence of Dirichlet problem via Evans-Krylov-Safonov and Alexandrov max-

imum principle in measure,

w (y) = quadratic Q (y)± 0.00000000001 in Bε/2.

By self-improving property of the smooth uniformly elliptic equation (no con-

cavity needed)

−σ1 (µ) + 2Kσ2 (µ)−
(
3K2 − 1

)
σ3 (µ) = 0,
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through iterative procedure w (y) ≈ y2+α near y = 0. Similarly near everywhere in

Bε/4. Thus Hölder estimates for D2w.

Finally, by quadratic scaling[
D2w

]
Cα(BR)

6
C (n,K)

Rα
R→∞−→ 0.

Thus D2w is constant matrix, in turn, so is D2u.

Remark. In the original Caffarelli-Yuan procedure, the superharmonic quan-

tity a = σ3(µ)
σ2(µ) is 1 − eK4u for saddle uniformly elliptic equation F

(
D2u

)
= 0

with convex level setS along trace trM of the level set {F (M) = 0} . Once, only

one lucky chance needed, 4u concentrates in measure, solution u is close to a

quadratic, by solving the Laplace equation and applying the Alexandrov maxi-

mum principle in measure. Afterwards, the self-improving machinery of smooth

uniformly elliptic equation takes over for Hölder estimate of Hessian.

2.3. Regularity for viscosity solutions. Any reasonable solution to the σ1

or Laplace equation 4u = 1 such as continuous viscosity in pointwise sense or

distributional solution in integral sense is analytic. The same is not true for σk>3

equations, and unknown for σ2 equation in dimension five and higher currently. In

fact, by now there are C1,ε and Lipschitz Pogorelov-like singular viscosity solutions

to σk>3 equations in dimension three and higher. In the σn or Monge-Ampère

equation case, those viscosity solutions are also singular solutions in the Alexandrov

integral sense.

The advance in the joint work with Chen-Shankar [CSY] also led us to obtain in-

terior regularity (analyticity) for almost convex viscosity solutions to the quadratic

Hessian equation (1.1), in the joint work with Shankar [SY2]. Due to similar con-

ceptual and technical challenges–smooth approximations may not preserve those

semiconvexity constraints–we cannot invoke our available Hessian estimates with

Shankar [SY1] for general semiconvex solutions or with McGonagle and Song [MSY]

for almost convex solutions, while taking the limit and deduce interior regularity.

A key observation is that the Legendre-Lewy transform of any semiconvex vis-

cosity solution to the equivalent concave equation (1.2) stays viscosity solution to

a new concave (1.4) (only for the original almost convex solution) and uniformly

elliptic equation (1.3) (for all original semiconvex solutions). In passing, let us

note that, for a general fully nonlinear second order elliptic equation, Alvarez-

Lasry-Lions showed that the Legendre transform of any strictly convex C2 solution
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is a convex viscosity solution of a conjugate equation. Moreover, the “striking”

role of the C2 regularity of the original solution in their arguments was pointed

out [ALL, p.281]. It follows that the transformed C1,1 solution is smooth by the

Evans-Krylov-Safonov theory. Then the boundedness of the original solutions com-

bined with the constant rank theorem by Caffarelli-Guan-Ma [CGM] implies that

the original viscosity solution is smooth.

Shortly after, Mooney [M] provided a different proof of the interior regularity

for convex viscosity solutions: every such convex solution is strictly 2-convex, then

all smooth approximated solutions enjoy uniform Pogorelov-type C1,1 and higher

derivative estimates by Chou-Wang [CW], in turn, the interior regularity by taking

limit.

In two dimensions, the above regularity result (now the convexity condition

is automatic) actually also follows from Heinz’s famous Hessian estimate earlier.

In three dimensions, the regularity for continuous viscosity solutions to (1.1) fol-

lows from the Hessian estimate in our joint work with Warren [WY] and smooth

existence with smooth boundary value by Caffarelli-Nirenberg-Spruck, and also

Trudinger. Our most recent joint work with Shankar [SY4] on Hessian estimates

for the quadratic Hessian equation (1.1) in four dimensions yields up the same

regularity in four dimensions. There, a direct way to interior regularity without

first deriving the Hessian estimates is also provided. Consequently, a compactness

argument leads to an implicit Hessian estimate.

2.4. A priori Hessian estimates. In our long investigation, culminating in

the most recent joint work with Shankar [SY4], we obtained an implicit Hes-

sian estimate and interior regularity (analyticity) for the quadratic Hessian equa-

tion σ2

(
D2u

)
= 1 in four dimensions. Our compactness method (almost Ja-

cobi inequality–doubling–twice differentiability–small perturbation) also provides

respectively a Hessian estimate for smooth solutions satisfying a dynamic semicon-

vexity condition in higher dimensions, which includes convexity, almost convexity,

and semiconvexity conditions appeared in the recent papers on Hessian estimates,

and a non-minimal surface proof for the corresponding three dimensional results

in our earlier joint work with Warren [WY].

Other consequence is a rigidity result for entire solutions to the σ2 equation

with quadratic growth, namely all such solutions must be quadratic, provided the
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smooth solutions in dimension n > 5 also satisfying the dynamic semiconvex as-

sumption.

Again, the Hessian estimate for the σ2 or Monge-Ampère equation in dimension

two was achieved by Heinz in the 1950s. Hessian estimates fail for the Monge-

Ampère equation in dimension three and higher, as illustrated by the famous coun-

terexamples of Pogorelov in the 1970s; those irregular solutions also serve as coun-

terexamples for cubic and higher order symmetric σk>3 equations, for example by

Urbas. Hessian estimates for solutions with certain strict convexity constraints

to the Monge-Ampère and σk>2 equations were derived by Pogorelov and later

Chou-Wang respectively using the Pogorelov technique; some (pointwise) Hessian

estimates in terms of certain integrals of the Hessian were obtained by Urbas in the

early 2000s. The gradient estimates for σk equations were derived by Trudinger,

Chou-Wang in the mid 1990s.

The compactness proof toward an implicit Hessian estimates for almost convex

solutions in [MSY] is based on the concavity of uniformly elliptic equation (1.4)

under the Legendre-Lewy transformation, a constant rank theorem by Caffarelli-

Guan-Ma [CGM], on the vertical side, and a strip argument on the horizontal side.

The proof toward an explicit Hessian estimate for semiconvex solutions is based

on an elusive-Jacobi inequality-satisfying quantity, the maximum eigenvalue of the

Hessian of the solutions, envisioned to be true in 2012. Another essential new device

is a mean value inequality for the strongly subharmonic maximum eigenvalue under

the Legendre-Lewy transformation with uniformly elliptic equation (1.3), and its

weighted version converted back to the original variables or horizontal side.

The new idea for Hessian estimates, under a dynamic semiconvexity condition

in dimension five and higher, and consequently interior regularity in dimension

four, is first to get a doubling, or a “three-sphere” inequality for the Hessian bound

on the middle ball, in terms of Hessian bound on a small inner ball and gradient

bound on the outer large ball:

max
B2(0)

4u 6 C
(
r, ‖u‖Lip(B3(0))

)
max
Br(0)

4u.

Using a Jacobi inequality, true with a lower σ3-bound condition for Hessian, sat-

isfied by convex solutions, Guan-Qiu [GQ] reached their Hessian estimate for the

quadratic Hessian equation. Qiu [Q] followed with his doubling in three dimen-

sions, where the Jacobi inequality was unconditionally available since [WY]. But
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the maximum of Guan-Qiu test function

P = 2 ln
(

9− |x|2
)

+ α |Du|2 /2 + β (x ·Du− u)

+ ln max
{

ln 4u
maxB1(0)4u

, γ−1
}

with small γ = γ (n) > 0, smaller β = β
(
γ, ‖u‖Lip(B3(0))

)
> 0

and smallest α = α
(
γ, ‖u‖Lip(B3(0))

)
> 0,

could not be ruled out from happening on the small inner ball without the σ3-lower

bound assumption, thus Qiu’s “three-sphere” inequality.

Now only an almost Jacobi inequality is available in dimension four. In fact, as

observed in 2012, there is no Jacobi inequality in dimension four, and worse, even

no subharmonicity of the Laplace of the log of Hessian in dimension five, thus the

added dynamic semiconvexity condition in higher dimensions for an almost Jacobi

inequality:

4F b
n=4
>

(
1

2
+
λmin

4u

)
|∇F b|2 > 0;

4F b
n>5

>
(
cn + λmin

4u

)
|∇F b|2 > 0, IF cn + λmin

4u > 0

with cn =
√

3n2+1−n+1
2n and b = ln4u

.

Note that for σ2 (λ) = 1, we have λmin

4u > −n−2
n , and at extreme configuration λ =(

K, · · · ,K,−n−2
2 K + 1

(n−1)K

)
, one has λmin

4u >
→
−n−2

n . In fact Jacobi inequality

holds 4F b
n=3
> 1

3 |∇F b|
2 >

(
1
2 −

1
3

)
|∇F b|2 unconditionally in three dimensions.

But the almost Jacobi inequality is really a regular one away from the extreme

configuration of the equation, where the equation is conformally uniformly elliptic.

Qiu’s doubling argument can be pushed through.

Now to find a small inner ball where the Hessian is bounded, we first show the

almost everywhere twice differentiability of continuous viscosity solutions,

u (x)−Qy (x) = o
(
|x− y|2

)
by adapting Chauder-Trudinger’s argument [CT] for k-convex functions with k >

n/2, with the gradient estimates ‖Du‖L∞(B1) 6 C (n) ‖u‖L∞(B2) , actually its in-

tegral form of control (a Hölder substitute for k-convex function was used in [CT])

for σk equations in [T] and also [CW], and the fact that D2u is a bounded Borel
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measure for solutions of σ2

(
D2u

)
= 1, as

∫
B1

∣∣D2u
∣∣ dx 4u=

√
2+|D2u|2
<

∫
B1

4udx 6 C (n) ‖Du‖L∞(B1) .

Then Savin’s small perturbation (from the quadratic polynomial at a twice

differentiable point) [S] guarantees the small inner ball with bounded Hessian.

In our most recent follow-up paper with Shankar [SY5], a new proof of reg-

ularity for strictly convex solutions to detD2u = 1 is found, using similar dou-

bling methods, instead of Euclid distance, now in terms of an extrinsic distance on

the maximal Lagrangian submanifold determined by the potential Monge-Ampère

equation. This “strict convex” regularity was achieved originally by Pogorelov in

the 1960s and 1970s, and generalized by Urbas and Caffarelli in the late 1980s.

3. Problems

Problem 1. Are there singular (Lipschitz) viscosity solutions, W 2,1 regularity,

and any better partial regularity σ2

(
D2u

)
= 1 in dimension five or higher?

Given the Jacobi inequality is exhausted in our argument for Hessian estimates

and regularity in four dimensions, it is time to look for singular viscosity solutions

and better partial regularity for possible singular viscosity solutions in dimension

five or higher. For example, a dimension estimate on the singular set of possible

singular viscosity solutions. Note that by the gradient estimate, and then smooth

approximations in Lipschitz norm, all continuous viscosity solutions are Lipschtiz,

and by our almost everywhere twice differentiability [SY4] and Savin’s small per-

turbation [S], the possible singular set is closed and with zero Lebesgue measure

(Also true for viscosity solutions to σk>3 equation in dim n > 3).

From
∫
Bl

∣∣D2u
∣∣ dx σ2=1

<
∫
Bl
4udx 6 ‖Du‖L∞(∂Bl)

|∂Bl| and the gradient esti-

mate, D2u is a bounded Borel measure. It is reasonable to expect a W 2,1 regularity

in dim n > 5. Recall that, unlike function |x1| , all (convex) viscosity solutions to

σn
(
D2u

)
= 1 have been shown to be W 2,1.

Problem 2. Regularity for semiconvex viscosity solutions to σ2

(
D2u

)
= 1 in

dimension five or higher.

It is still unclear to us whether semiconvex viscosity solutions are regular, if

only D2u > −KI for large K > 0. The Legendre-Lewy transform is still a C1,1

viscosity solution of a new uniformly elliptic equation (1.3), for any semiconvex
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viscosity solution. However, as the new equation no longer has convex level set,

for large K, we are unable to deduce smoothness for the transformed solution at

this point. Without the smoothness, we are currently unable to obtain a C1,1

version of the constant rank theorem to gain positive definiteness of the semi-

positive Hessian, for the C1,1 solution of a uniformly elliptic and inversely convex

equation on the vertical side. Otherwise, the interior regularity for such semiconvex

viscosity solutions would be justified. At this point, it appears a far stretch to reach

regularity for dymanic semiconvex viscosity solutions in dimension five or higher.

One follow-up of our Hessian estimates for three and the very recent four di-

mension σ2 equation would be

Problem 3. Derive Schauder and Calderón-Zygmund estimates for variable-right-

hand-side equation σ2

(
D2u

)
= f (x) in dimension four.

With a C1,1 assumption on f (x) , Qiu [Q] has generalized the arguments in

[WY] to obtain Hessian estimates in dimension three. With an almost sharp Lips-

chitz assumption on f (x) , very recently, Zhou [Z] reached the Hessian estimate in

three dimensions, along his Hessian estimates for the “twist” special Lagrangian

equation
∑n
i=1 arctanλi/f (x) = c ∈ [(n− 2)π/2, nπ/2). Consequently C2,α esti-

mates follow. Under a small enough Hölder seminorm assumption on f, Xu [X]

derived interior C2,α estimates in dimension three. Notice that the interior gradi-

ent estimates in [T] and [CW] needs Lipschitz assumption on f. The subtle small

seminorm constraint is due to the non-uniform elliptic nature of the equation. The

method works in general dimensions such as the recent four dimension, as long as

the interior Hessian estimate is available for the quadratic Hessian equation with

constant right-hand side.

Problem 4. Any “elementary” pointwise argument toward Hessian estimates for

σ2

(
D2u

)
= 1 in dimension three and four, in general higher dimension with the

dynamic semiconvexity condition, as in the two dimensional case by Chen-Han-

Ou [CHO], and convex case by Guan-Qiu [GQ]?

Forthermore, any explicit Hessian bound in terms of the gradient, as the quadratic

exponential dependence in dimension three and general semiconvex case?

To gain more understanding of σ2 equation, one distinct double divergence

structure of σ2 from σk>3 is worth studying.

Problem 5. Under what additional condition on u ∈ W 1,2 (Ω) does the equation
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σ2

(
D2u

)
= 1 in the very weak sense (Iwaniec [I]):∫

Ω

∑
16i<j6n

(
ϕijuiuj −

1

2
ϕiiu

2
j −

1

2
ϕjju

2
i

)
dx =

∫
Ω

ϕdx for all ϕ ∈ C∞0 (Ω)

become σ2

(
D2u

)
= 1, say, and 4u > 0, in the viscosity sense?

(The double divergence structure is readily seen from the well-known Gauss

curvature formula for graph (x1, x2, u (x)) ⊂ R3 with induced metric g : K =(
− 1

2∂11g22 + ∂12g12 − 1
2∂22g11

)
/ (det g)

2
= detD2u/

(
1 + |Du|2

)2

.)

In dimension two, a (necessary) convexity condition should suffice, also for

σ2

(
D2u

)
= 1 in the equivalent Alexandrov sense. In general dimensions, what

about 4u > 0 in distribution sense for u ∈ C1,2+/3? The answer is yes in two

dimensions, as shown by Pakzad [P]. Moreover, in two dimensions, no better than

C1,1/3 “very weak” solution with sign changing 4u have been constructed; see the

work of Lewicka-Pakzad [LP] and [CS] [CHI]. It is worth noting that the singular

solution to σ2

(
D2u

)
= 1 constructed by C.Y. Li [L], u (x) =

(
x2

1 + · · ·+ x2
7

)
x

7/5
8 −

25
84x

3/5
8 − 25

28x
14/5
8 ∈ W 1,2

loc ∩ C3/5 jumps branches, because 4u ≈ −x−7/5
8 = ±∞

near x8 = 0.
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