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1. Introduction

The elementary symmetric quadratic or oy equation

Au)? — | D2ul?

o2 (D*u) = 1@;2@&1&2 _ (8w — [Pl 5 [l _ 1 (1.1)
with ALs being the eigenvalues of the Hessian D?u of scalar function u, is a non-
linear Hessian dependence equation of the lowest integer order, and is called fully
nonlinear equation, because the nonlinearity is on the highest order derivatives
of the solutions. The o9 equation sits in between the (linear) Laplace equation
o1(D*u) = A\ + -+ Ay = Au = 1 and the (fully nonlinear) Monge-Ampére
equation o, (D2u) = A2 A, = det D%y = 1. The 2-sheet hyperboloid level set

of the equation
{)\GR": M+ F A, :i\/2+|)\|2}

is rotationally symmetric, unlike all the other o) equations with 3 < k < n.

To make those equations elliptic, or monotone dependence on Hessian along
positive definite symmetric matrices, we require the linearized operator positive
definite. Equivalently, the normal of the level set has positive sign for all compo-
nents in the eigenvalue space, respectively positive definite in the matrix space.
For example, among all four branches of level set Ay A2A3 = 1, only one is elliptic;
the same is true for A\; A\sA3 = —1. The negative definite or all negative component
case is also considered as elliptic. In particular, the two symmetric branches of

o2 (\) = 1 are both elliptic. The choice of branch is made automatically by C?
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solutions. For less smooth solutions such as continuous viscosity ones, the positive
Au > 0 or negative Au < 0 branch has to be specified. Afterward, —D?u is on the
other branch in viscosity sense.

Replacing the flat eigenvalues A,s with the principal curvatures «}s of graph

(x,u (x)) in Euclid space R™ x R, one has the scalar curvature equation
o3 (K1, kn) = 1.

Recall k}s are the eigenvalues of the normalized second fundamental form I by
the induced metric g or shape matrix
D2y

IIg—! = []
1+ |Dul?

Du® Du
1+ |Dul?

= [aiCzAI)g (Du)] )

where IT = D2u/v/1+ |Dul?, g = I+ Du® Du, and A (p) = /1 + |p|>. Replacing
the flat eigenvalues \;s with the eigenvalues of Schouten tensor of a conformal
metric g = u~2gg, one has o»-type Yamabe equation in conformal geometry, which

simplifies to

1
o9 (uDQu ~3 |Du2I> =1

for flat metric go. Replacing the flat eigenvalues \,s with the eigenvalues of Hermi-
tian Hessian 00u, one has oo-type equation arising from complex geometry. Lastly,
in three dimensions o9 (Dzu) = 1 or equivalently arctan A; +- - - +arctan Ay = +7/2
is the potential equation of minimal Lagrangian graph (z, Du (x)) with phase /2
in Euclid space R? x R3.

2. Results

2.1. Outline. Once an equation is given, the first question to answer is the
existence of solutions. Smooth ones cannot be obtained immediately, in general,
worse, they may not even exist. The typical approach is to first seek weak solutions,
in the integral sense if the equation has divergence structure, or in the “pointwise
integration by parts sense”, namely, in the viscosity sense if the equation enjoys
a comparison principle. After obtaining those weak solutions, one studies the
regularity and other properties of the solutions, such as Liouville or Bernstein type

rigidity for entire solutions. All these hinge on a priori estimates of derivatives of
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solutions:
[ D?ul| e,y < C(|Dull Lo (85)) < C|Jul| = (By))-

Having the L* bound of the Hessian available, the ellipticity of the above fully
nonlinear equations becomes uniform, we can apply the Evans-Krylov-Safonov the-
ory (for the ones with convexity/concavity, possibly without divergence structure)
or the Evans-Krylov-De Giorgi-Nash theory (for the ones with convexity/concavity
and divergence structure) to obtain C%< estimates of solutions. Either theory can
handle the quadratic Hessian equation along with all other o equations, because
they all share the divergence structure. In the o9 equation (1.1) case, the linearized

operator is readily seen in divergence form

Ap =Y Fydy =Y 0 (F;0),

ij=1 ij=1

(Fij) = Au I — D*u=\/2+ |D?ul* T — D*u > 0.

Here and in the remaining, for certainty, and without loss of generality, we assume

with

Au > 0. The concavity of the equation is evident in an equivalent form
Au—+/2+ |D2uf’ =0, (1.2)

D%y

whose linearized operator
=
2+ |D2u?
also reveals the uniform ellipticity of the equation with uniformly bounded Hessian
solutions.

Considering the minimal surface structure of the quadratic Hessian equation in
three dimensions, the C*® estimate can also be achieved via geometric measure
theory. For the o,, or Monge-Ampere equation, back in the 1950s, Calabi attained
C? estimates by interpreting the cubic derivatives in terms of the curvature of
the corresponding Hessian metric ¢ = D?u. Further, iterating the classic Schauder
estimates, one obtains smoothness of the solutions, and even analyticity, if the

smooth equations such as all the o1 equations are also analytic.

2.2. Rigidity of entire solutions. The classic Liouville type theorem asserts

every entire harmonic function bounded from below or above is a constant by
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the Harnack inequality. Thus every semiconvex harmonic function is a quadratic
one, as its double derivatives are all harmonic with lower bounds, hence constants.
Similarly, every entire (convex) solution to the Monge-Ampere equation det D?u =
1 is quadratic. This was first proved in two dimensional case by Jorgens, later in
dimension up to five by Calabi, and in all dimensions by Pogorelov. Also, Cheng-

Yau had a geometric proof.

Recently, Shankar-Yuan [SY3] proved that every entire semiconvex solution to
the quadratic Hessian equation oo (D2u) = 1 is quadratic. In dimension two,
it is the above classic Jorgens’s theorem without any extra condition (not even
convexity) on the entire solutions, thus a Bernstein type result. In three dimensions,
this was proved in [Y] earlier, as a by-product of rigidity for the special Lagrangian

equation.

Under an almost convexity condition on entire solutions to oy (Dzu) = 1in gen-
eral dimension, Chang-Yuan derived the rigidity [ChY]. Under a general semicon-
vexity and an additional quadratic growth assumption on entire solutions in general
dimension, Shankar-Yuan showed the rigidity in [SY1]. Assuming only quadratic
growth on entire solutions to oo (Dgu) =1 in three and four dimensions, the same
rigidity result was proved in the joint work with Warren [WY] and Shankar [SY4]
respectively. Assuming a super quadratic growth condition, Bao-Chen-Ji-Guan
[BCGJ] demonstrated that all convex entire solutions to oo (D2u) =1 along with
other oy, (D?u) = 1 are quadratic polynomials; and Chen-Xiang [CX][ showed that
all “super quadratic” entire solutions to o9 (D2u) = 1 with o (DQu) > 0 and
o3 (D?u) > —K are also quadratic polynomials.

Warren’s rare saddle entire solution u (zy, -+ ,z,) = (23 + 23 — 1) €™ + te
to o2 (D2u) = 1 in dimension three and above [W], confirms the necessity of the
semiconvexity or the quadratic growth assumption. C.-Y. Li [L] followed with “non-
degenerate” entire solution u (z) = (2§ + 23 — 1) €™ +272e " +(x5 + - + Tp_1) Tn

in dimension n and above for n > 4.

2.2.1. Two dimensions. In the following, we recap Nitsche’s idea in showing the
rigidity of entire solutions in two dimensions.

Given a C? solution u to o (D?u) = 1, up to negation, we assume D?u is
on the positive branch of the hyperbola A\;Ay = 1, in turn, u is convex. Let

w be the Legendre-Lewy transform of u (x), that is, the Legendre transform of
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u(z) + |#|* /2. Geometrically their “gradient” graphs satisfy (z, Du (z)+ z) =
(Dw (y),y) € R? x R?, and the “slopes” of graphs satisfy

(I, D*u(z)+1) = (Dzw (y) ?;,g) :

It follows that

-1

I < D*u(z)+1 = (D*w(y)) or D*u(z)=(D*w(y) -1

Taking determinants yields
1 =0y (D?u) = det {(Dzw (y))_1 - I} =pi gt =t -yt + L
or an equation for the eigenvalues s of D?w
1=p1+ pe = Aw.
Noticing the boundedness of Hessian D?w
0< D*w< 1,

we see the constancy by Liouville. Consequently from the flatness of graphs
(x,Du(x) +x) = (Dw(y),y) or constancy of (DZw)f1 — I = D%u, it follows
that v is quadratic. Note that Jorgens’ original “involved” proof made use of a
partial Legendre transformation.

Going further, this Legendre-Lewy transformation proof of Jorgens’ theorem,
coupled with Heinz transformation, led Nitsche [N] to his elementary proof of the

original Bernstein theorem: every entire solution to the minimal surface equation

Df

V1+I[DfP

The remaining proof goes as follows. The mean curvature vector H of the graph

(z1, 22, f (x)) is
=Ng(z1,22, f () =) \}gai (V99" 9;) (1,22, f (x))

(]

div =0

in two dimensions is linear.

1+f2, f1f2 div f1f2,1+f1) div (f1, f2)

1+ |Df? 1+ |Df? 1+ |Df?
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2
where /gg~! = 1_—}_2;2 1 _{1]]:13 } /\/1+|Df|> was used in the last equality.

The magnitude H of the mean curvature vector is, as noted before
(fla fQ)

V1+IDS
Hence7 Ag ($1,$27f (I)) = (03070) :

Considering the first component equation Ayzq = 0, the conjugate function of

H =Tr 8,4y, (Df)] =div =0.

7 is defined as

« (e1,22) fifodzy + (1+ f3) das
a7 (x1,29) = | |2 .
1+|Df

Similarly, the conjugate function of z is also defined. Together, they represent the
“normalized” metric

1 [1+f12 fife }:[ng}
1+ DS fofi 14 f3 Dzy |-

By symmetry of the left-side matrix, dqexy = 0127, then there exists a double
potential w so that Du = (x5, 7). Thus, one has Heinz transformation u of the
height function f of a minimal graph satisfying

2
_ [ 1f+ff1 1f_'1_f;2 } =D*y and detD?*u=1 on R
L+|Dff* b ’

As just obtained, the Hessian D?u of entire solution u is a constant matrix, and
in turn, Df is a constant vector. The original Bernstein theorem is reached.

In passing, let us note the conjugate function of f

(1}1,I2) —
R

\/ 14 |DfJ?

satisfies
PR 1| Y reyysvor S SR
or
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Consequently
Df*

V1-IDref

Observe that the above conjugation process from minimal surface to maximal

div =0.

surface is reversible. “Incidentally” we have obtained a two dimensional Bernstein
type result: every entire solution to the maximal surface equation div (D f/A/J1—|Df |2) =
0 is linear, which was first proved up to four dimensions by Calabi, and in general

dimension by Cheng-Yau.

2.2.2. General dimensions. Next, we outline the argument toward rigidity for
semiconvex entire solutions to oo (D2u) =1 in general dimensions.

The Legendre-Lewy transform of a general semiconvex solution satisfies a uni-
formly elliptic, saddle equation with bounded Hessian. In the almost convex case,
the new equation becomes concave, thus the Evans-Krylov-Safonov theory yields
the constancy of the bounded new Hessian, and in turn, the old one. To beat
the saddle case, one has to be “lucky”, only one time. Recall that, in general the
Evans-Krylov-Safonov fails as shown by the saddle counterexamples of Nadirashvili-
Vladuts. Our earlier trace Jacobi inequality, as an alternative log-convex vehicle,
other than the maximum eigenvalue Jacobi inequality, in deriving the Hessian es-
timates for general semiconvex solutions [SY1], could rescue the saddleness. But
the trace Jacobi only holds for large enough trace of the Hessian. It turns out that
the trace added by a large enough constant satisfies the elusive Jacobi inequality.

Equivalently, the reciprocal of the shifted trace Jacobi quantity is superhar-
monic, and it remains so in the new vertical coordinates under the Legendre-Lewy
transformation by a transformation rule. Then the iteration arguments developed
in our joint work with Caffarelli show the “vertical” solution is close to a “harmonic”
quadratic at one small scale, “luckily” (two steps in the execution: the superhar-
monic quantity concentrates to a constant in measure by applying Krylov-Safonov’s
weak Harnack; a variant of the superharmonic quantity, as a quotient of symmetric
Hessian functions of the new potential, is very pleasantly concave and uniformly
elliptic, consequently, closeness to a “harmonic” quadratic is possible by the Evans-
Krylov-Safonov theory), and the closeness improves increasingly as we rescale (this
is a self-improving feature of elliptic equations, no concavity/convexity needed).

Thus a Holder estimate for the bounded Hessian is realized, and consequently so
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is the constancy of the new and then the old Hessian.

Note that, in three dimensions, our proof provides a “pure” PDE way to estab-
lish the rigidity, distinct from the geometric measure theory way used in our earlier
work on the rigidity for special Lagrangian equations two decades ago.

The details are in the following.

Step 1. Bounded Hessian and uniform ellipticity after Legendre-Lewy trans-
form.

The Legendre-Lewy transform w (y) = LL [u (z) + K |z|* /2| of a general semi-
convex solution u (z) with D?u > (6 — K) I satisfies a uniformly elliptic, saddle

equation with bounded Hessian:
(z,Du(z) + Kz) = (Dw,y),
0<D*w=(Du+K) " <5 or\=p ' —K>6-K,
g =—f(p'-K)=-0y (' - K) = -1
By Lin-Trudinger [LT], and also Chang-Yuan [ChY]
MUS AL S AL Fuss ®AL for Ay >0 2 Ay
for oo (A\) = 1 with A\; > 0 — K, all but one eigenvalues are bounded, [Ag>2| < C (K)
and fx, A1 = 1, then
Gue = PP = N+ K)P? = C(n,K) A

Consequently, level set

{n]g(p) =—-02(p ' —K)=-1} is a uniformly elliptic surface. (1.3)

The new equation also takes the form

on—2 (1) On-1(p)  n(n—1)
on (1) on (1) 2

Remark. In the almost convex case K = /2/n(n — 1), the new equation

becomes

—(n—-1)K K?=1.

on—1 (1)
On—2 (1)
thus concave. Then the Evans-Krylov-Safonov theory yields the constancy of the

=[n-1K", (1.4)

bounded new Hessian

C(n)
CO‘(BR) ~ Ra

C (n)

wHLOC(BgR) S TRa

[DQw] HD2 —0 as R — oo,
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and in turn, the old one.
The uniformly elliptic level set {g (1) = —0o9 (;fl — K) = —1} is saddle for
large K. There are C™® singular solutions to uniformly elliptic saddle equation in

five dimensions by Nadirashvili-Tkachev-Vladuts.

In the next two steps, we really use the following equivalent uniformly elliptic

saddle equation
H (D*w) =0, (p) [1 =02 (0" = K)] =0,
which in three dimensions, becomes

—o1 (k) +2Kos (p) — (3K* —=1) o3 (1) =0 or

o2 (1) o
o1 (p)

o3 (1)
o2 (1)

= [2K — (3K* —1)

Step 2. Shifted trace Jacobi inequality to rescue saddleness.
For F (D*u) = 02 (\) = 1 with D?u > —KI, b(z) = In (Au + nK) satisfies the

elusive strong subharmonicity

Apb = Fy;8;;b > Fij0ib 9;b = |V pb|?

which is equivalent to the superharmonicity, by a transformation rule in [SY1].

Aga(y) <0
1 _ On (1) n=3 03 (1)

ith a (y) = - '
w1 a(y) M+K+ 4+ N+ K O'n—l(,LL) 0-2(#)

Remark. For log-convex function b = In Apax or In (Apnax + K), Jacobi in-
equality Apb > |V Fb|2 holds in three dimensions without any restriction, in gen-
eral dimensions with necessary semiconvexity condition. The reciprocal pimin (y) =
(Amax —|—K)_1 is superharmonic Appimin (y) < 0. But fimin (DQw) is not a uni-
formly elliptic function/operator on D?w, though concave. Therefore, it is not
adequate via fimin (y) to run the Caffarelli-Yuan procedure for Holder of Hessian
D?uw.

3-d

For log-linear b = In Au, Qiu showed Apb > |V b|* in [Q]. Tt is indeed another

log-convex function
InAu=In\/|A” +2 mod oy (\) =1
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satisfying AplnAu > |VplnAul® for large enough Au > C(K) under semi-
convexity D?u > —K. It is important to have the above shifted Jacobi quantity
b(xz) = In(Au+ nK) valid without assuming Aw large enough, to execute our
argument toward constancy of the Hessian.

Remark. The above Jacobi inequality is actually an equality on minimal

surface (z, f (z)) € R™ x R! for div (Df/ 1+ Df|2) =0:
Ngb= Vb2 +|ITg7"|* or Agw=—w|IIg ' <0,

where b = Iny/1+ |Df|?>, and w = ((0,---,0,1),N) = 1/4/1+ |[Df|* is the ef-
fective deformation, while varying the minimal surface along a Jacobi vector field
J=(0,---,0,1).

Step 3. Holder estimate of new Hessian on saddle equation.

We illustrate the argument for Holder estimates for Hessian on uniformly elliptic
saddle equation in three dimensions, where the idea is not lost, but the gain is a
better understanding of the idea.

Again, the new/ “vertical” uniformly elliptic saddle equation is

o1 (1) o2 (1)
for 1> plizo 2 ¢(K) >0 and 1> py > 0.

Apply Krylov-Safonov’s weak Harnack to the bounded superharmonic a (y) = Zzgz g

from Step 2, a (y) concentrates to a level | = minp_ a (y) in one small (enough) ball

B. (0), that is Zzgzg ~ [ in 99.99999% of B.. Note the concave Zzgﬁg is not uniformly

elliptic, because u; could be close 0.

Step 3 Continued: Remarkably, p is approximately on the uniformly elliptic

(1> us, pe = c(K) > 0), concave (level set Zf—gzg = [ is a concave surface) equation

@2 _ ok (352 -1) 1] in 99.99999% of B.
o1 (k)

By existence of Dirichlet problem via Evans-Krylov-Safonov and Alexandrov max-

imum principle in measure,
w (y) = quadratic @ (y) £ 0.00000000001 in B, .

By self-improving property of the smooth uniformly elliptic equation (no con-
cavity needed)
—01 (1) +2Kos (1) — (3K* = 1) 03 (1) = 0,
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2+«

through iterative procedure w (y) ~ y near y = 0. Similarly near everywhere in

B, /4. Thus Hélder estimates for D?w.
Finally, by quadratic scaling

C (naK) R—o0

[D2w} Co(Br) § T — 0.

Thus D?w is constant matrix, in turn, so is D?u.

Remark. In the original Caffarelli-Yuan procedure, the superharmonic quan-
os(p) N
o2(p)
with convex level setS along trace ¢trM of the level set {F (M) = 0}. Once, only

tity a = is 1 — for saddle uniformly elliptic equation F' (DQu) =0
one lucky chance needed, Au concentrates in measure, solution u is close to a
quadratic, by solving the Laplace equation and applying the Alexandrov maxi-
mum principle in measure. Afterwards, the self-improving machinery of smooth

uniformly elliptic equation takes over for Holder estimate of Hessian.

2.3. Regularity for viscosity solutions. Any reasonable solution to the oy
or Laplace equation Au = 1 such as continuous viscosity in pointwise sense or
distributional solution in integral sense is analytic. The same is not true for o4>3
equations, and unknown for oy equation in dimension five and higher currently. In
fact, by now there are C'»¢ and Lipschitz Pogorelov-like singular viscosity solutions
to or>3 equations in dimension three and higher. In the o, or Monge-Ampere
equation case, those viscosity solutions are also singular solutions in the Alexandrov
integral sense.

The advance in the joint work with Chen-Shankar [CSY] also led us to obtain in-
terior regularity (analyticity) for almost convex viscosity solutions to the quadratic
Hessian equation (1.1), in the joint work with Shankar [SY2]. Due to similar con-
ceptual and technical challenges—smooth approximations may not preserve those
semiconvexity constraints—we cannot invoke our available Hessian estimates with
Shankar [SY1] for general semiconvex solutions or with McGonagle and Song [MSY]
for almost convex solutions, while taking the limit and deduce interior regularity.
A key observation is that the Legendre-Lewy transform of any semiconvex vis-
cosity solution to the equivalent concave equation (1.2) stays viscosity solution to
a new concave (1.4) (only for the original almost convex solution) and uniformly
elliptic equation (1.3) (for all original semiconvex solutions). In passing, let us
note that, for a general fully nonlinear second order elliptic equation, Alvarez-

Lasry-Lions showed that the Legendre transform of any strictly convex C? solution



34 YU YUAN

is a convex viscosity solution of a conjugate equation. Moreover, the “striking”
role of the C? regularity of the original solution in their arguments was pointed
out [ALL, p.281]. It follows that the transformed C'! solution is smooth by the
Evans-Krylov-Safonov theory. Then the boundedness of the original solutions com-
bined with the constant rank theorem by Caffarelli-Guan-Ma [CGM] implies that

the original viscosity solution is smooth.

Shortly after, Mooney [M] provided a different proof of the interior regularity
for convex viscosity solutions: every such convex solution is strictly 2-convex, then
all smooth approximated solutions enjoy uniform Pogorelov-type C!'! and higher
derivative estimates by Chou-Wang [CW], in turn, the interior regularity by taking
limit.

In two dimensions, the above regularity result (now the convexity condition
is automatic) actually also follows from Heinz’s famous Hessian estimate earlier.
In three dimensions, the regularity for continuous viscosity solutions to (1.1) fol-
lows from the Hessian estimate in our joint work with Warren [WY] and smooth
existence with smooth boundary value by Caffarelli-Nirenberg-Spruck, and also
Trudinger. Our most recent joint work with Shankar [SY4] on Hessian estimates
for the quadratic Hessian equation (1.1) in four dimensions yields up the same
regularity in four dimensions. There, a direct way to interior regularity without
first deriving the Hessian estimates is also provided. Consequently, a compactness

argument leads to an implicit Hessian estimate.

2.4. A priori Hessian estimates. In our long investigation, culminating in
the most recent joint work with Shankar [SY4], we obtained an implicit Hes-
sian estimate and interior regularity (analyticity) for the quadratic Hessian equa-
tion g (Dzu) = 1 in four dimensions. Our compactness method (almost Ja-
cobi inequality—doubling—twice differentiability—small perturbation) also provides
respectively a Hessian estimate for smooth solutions satisfying a dynamic semicon-
vexity condition in higher dimensions, which includes convexity, almost convexity,
and semiconvexity conditions appeared in the recent papers on Hessian estimates,
and a non-minimal surface proof for the corresponding three dimensional results

in our earlier joint work with Warren [WY].

Other consequence is a rigidity result for entire solutions to the oo equation

with quadratic growth, namely all such solutions must be quadratic, provided the
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smooth solutions in dimension n > 5 also satisfying the dynamic semiconvex as-
sumption.

Again, the Hessian estimate for the oo or Monge-Ampere equation in dimension
two was achieved by Heinz in the 1950s. Hessian estimates fail for the Monge-
Ampere equation in dimension three and higher, as illustrated by the famous coun-
terexamples of Pogorelov in the 1970s; those irregular solutions also serve as coun-
terexamples for cubic and higher order symmetric ox>3 equations, for example by
Urbas. Hessian estimates for solutions with certain strict convexity constraints
to the Monge-Ampere and oj>2 equations were derived by Pogorelov and later
Chou-Wang respectively using the Pogorelov technique; some (pointwise) Hessian
estimates in terms of certain integrals of the Hessian were obtained by Urbas in the
early 2000s. The gradient estimates for o equations were derived by Trudinger,
Chou-Wang in the mid 1990s.

The compactness proof toward an implicit Hessian estimates for almost convex
solutions in [MSY] is based on the concavity of uniformly elliptic equation (1.4)
under the Legendre-Lewy transformation, a constant rank theorem by Caffarelli-
Guan-Ma [CGM], on the vertical side, and a strip argument on the horizontal side.

The proof toward an explicit Hessian estimate for semiconvex solutions is based
on an elusive-Jacobi inequality-satisfying quantity, the maximum eigenvalue of the
Hessian of the solutions, envisioned to be true in 2012. Another essential new device
is a mean value inequality for the strongly subharmonic maximum eigenvalue under
the Legendre-Lewy transformation with uniformly elliptic equation (1.3), and its
weighted version converted back to the original variables or horizontal side.

The new idea for Hessian estimates, under a dynamic semiconvexity condition
in dimension five and higher, and consequently interior regularity in dimension
four, is first to get a doubling, or a “three-sphere” inequality for the Hessian bound
on the middle ball, in terms of Hessian bound on a small inner ball and gradient
bound on the outer large ball:

mex Au < O (7“7 ||U\|Lip(33(0))) nax A

Using a Jacobi inequality, true with a lower o3-bound condition for Hessian, sat-
isfied by convex solutions, Guan-Qiu [GQ] reached their Hessian estimate for the
quadratic Hessian equation. Qiu [Q] followed with his doubling in three dimen-

sions, where the Jacobi inequality was unconditionally available since [WY]. But
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the maximum of Guan-Qiu test function

P:21n(9—|x|2> +a|Dul’ )2+ B (z- Du—u)
—l—lnmax{ln# _1}

maxpg; (o) Au’ v

with small v = v (n) > 0, smaller 8 = (fy, ||uHLip(BS(0))) >0

and smallest &« = « (% Hu”Lip(Bs(O)) >0,

could not be ruled out from happening on the small inner ball without the o3-lower
bound assumption, thus Qiu’s “three-sphere” inequality.

Now only an almost Jacobi inequality is available in dimension four. In fact, as
observed in 2012, there is no Jacobi inequality in dimension four, and worse, even
no subharmonicity of the Laplace of the log of Hessian in dimension five, thus the
added dynamic semiconvexity condition in higher dimensions for an almost Jacobi

inequality:

n=4 (1 Ay
Apb > = min
E (2 + Au

> IV rb|* > 0;

n=5 \ ) .
Dpb S (cnt 28 ) [Vpbf 20, TP o+ 22 >0

u

2 —
W and b=InAu

with ¢, =

Note that for o5 (A) = 1, we have )‘A“—:; > _an, and at extreme configuration A =

(K,~~~ K, -2 K+ m) , one has 2pin > —2=2 TIn fact Jacobi inequality

holds Agb n;3 3 IVeb|® > (3-3%) |V #b|* unconditionally in three dimensions.
But the almost Jacobi inequality is really a regular one away from the extreme
configuration of the equation, where the equation is conformally uniformly elliptic.
Qiu’s doubling argument can be pushed through.
Now to find a small inner ball where the Hessian is bounded, we first show the

almost everywhere twice differentiability of continuous viscosity solutions,

u(@) = Qy(x) = o (le - yI*)

by adapting Chauder-Trudinger’s argument [CT] for k-convex functions with k >
n/2, with the gradient estimates ||Dul|p«(p,) < C(n) [ull po(p,) . actually its in-
tegral form of control (a Holder substitute for k-convex function was used in [CT])

for o equations in [T] and also [CW], and the fact that D?u is a bounded Borel



Quadratic Hessian Equation 37

measure for solutions of o9 (Dzu) =1, as

2 Audz < C (n) | Dull oo 3,5 -
By

[ 0l fumvEne
u|axr
B1

Then Savin’s small perturbation (from the quadratic polynomial at a twice
differentiable point) [S] guarantees the small inner ball with bounded Hessian.

In our most recent follow-up paper with Shankar [SY5], a new proof of reg-
ularity for strictly convex solutions to det D?u = 1 is found, using similar dou-
bling methods, instead of Euclid distance, now in terms of an extrinsic distance on
the maximal Lagrangian submanifold determined by the potential Monge-Ampere
equation. This “strict convex” regularity was achieved originally by Pogorelov in
the 1960s and 1970s, and generalized by Urbas and Caffarelli in the late 1980s.

3. Problems

Problem 1. Are there singular (Lipschitz) viscosity solutions, W?2! regularity,
and any better partial regularity oo (DQu) =1 in dimension five or higher?

Given the Jacobi inequality is exhausted in our argument for Hessian estimates
and regularity in four dimensions, it is time to look for singular viscosity solutions
and better partial regularity for possible singular viscosity solutions in dimension
five or higher. For example, a dimension estimate on the singular set of possible
singular viscosity solutions. Note that by the gradient estimate, and then smooth
approximations in Lipschitz norm, all continuous viscosity solutions are Lipschtiz,
and by our almost everywhere twice differentiability [SY4] and Savin’s small per-
turbation [S], the possible singular set is closed and with zero Lebesgue measure
(Also true for viscosity solutions to o3 equation in dim n > 3).

From [g | D?u| da S [, Dudx < ||Dul| o g5, |0B:] and the gradient esti-
mate, D?u is a bounded Borel measure. It is reasonable to expect a W?2'! regularity
in dim n > 5. Recall that, unlike function |z1], all (convex) viscosity solutions to
On (D2u) =1 have been shown to be W21,

Problem 2. Regularity for semiconvex viscosity solutions to oo (Dzu) =1in
dimension five or higher.

It is still unclear to us whether semiconvex viscosity solutions are regular, if
only D?u > —KI for large K > 0. The Legendre-Lewy transform is still a C1:!

viscosity solution of a new uniformly elliptic equation (1.3), for any semiconvex
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viscosity solution. However, as the new equation no longer has convex level set,
for large K, we are unable to deduce smoothness for the transformed solution at
this point. Without the smoothness, we are currently unable to obtain a C*!
version of the constant rank theorem to gain positive definiteness of the semi-
positive Hessian, for the ! solution of a uniformly elliptic and inversely convex
equation on the vertical side. Otherwise, the interior regularity for such semiconvex
viscosity solutions would be justified. At this point, it appears a far stretch to reach

regularity for dymanic semiconvex viscosity solutions in dimension five or higher.

One follow-up of our Hessian estimates for three and the very recent four di-

mension oy equation would be

Problem 3. Derive Schauder and Calderén-Zygmund estimates for variable-right-
hand-side equation o5 (D?*u) = f (z) in dimension four.

With a ! assumption on f(x), Qiu [Q] has generalized the arguments in

[WY] to obtain Hessian estimates in dimension three. With an almost sharp Lips-
chitz assumption on f (), very recently, Zhou [Z] reached the Hessian estimate in
three dimensions, along his Hessian estimates for the “twist” special Lagrangian
equation Y i arctan \;/f (z) = ¢ € [(n — 2) 7/2,n7/2). Consequently C* esti-
mates follow. Under a small enough Holder seminorm assumption on f, Xu [X]
derived interior C%® estimates in dimension three. Notice that the interior gradi-
ent estimates in [T] and [CW] needs Lipschitz assumption on f. The subtle small
seminorm constraint is due to the non-uniform elliptic nature of the equation. The
method works in general dimensions such as the recent four dimension, as long as
the interior Hessian estimate is available for the quadratic Hessian equation with
constant right-hand side.
Problem 4. Any “elementary” pointwise argument toward Hessian estimates for
09 (D2u) = 1 in dimension three and four, in general higher dimension with the
dynamic semiconvexity condition, as in the two dimensional case by Chen-Han-
Ou [CHO], and convex case by Guan-Qiu [GQ]?

Forthermore, any explicit Hessian bound in terms of the gradient, as the quadratic
exponential dependence in dimension three and general semiconvex case?

To gain more understanding of o2 equation, one distinct double divergence

structure of oy from oy>3 is worth studying.

Problem 5. Under what additional condition on u € W2 (Q) does the equation
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o3 (D?u) =1 in the very weak sense (Iwaniec [I]):

1 1
/ Z (%‘juiuj - 5%01‘1’“? - 2%‘3‘“?) de = /Q pdz for all p € Cg° ()

Q1gi<ig<n

become o5 (DQu) =1, say, and Awu > 0, in the viscosity sense?

(The double divergence structure is readily seen from the well-known Gauss
curvature formula for graph (xq,z2,u(z)) C R?® with induced metric g : K =
(—1011922 + D12912 — £022911) / (det 9)° = det D?u/ (1 + |DU|2)2 y

In dimension two, a (necessary) convexity condition should suffice, also for
o9 (DQu) = 1 in the equivalent Alexandrov sense. In general dimensions, what
about Au > 0 in distribution sense for u € C127/3? The answer is yes in two
dimensions, as shown by Pakzad [P]. Moreover, in two dimensions, no better than
C11/3 “yery weak” solution with sign changing Au have been constructed; see the
work of Lewicka-Pakzad [LP] and [CS] [CHI]. It is worth noting that the singular
solution to o3 (D?u) = 1 constructed by C.Y. Li [L], u(z) = (2} +--- + 22) xg/S -

25 3/5 25 14/5 —-7/5
8

1,2 1 ~3/5 - N _
§178  — 332g | € W;,o N C¥/° jumps branches, because Au ~ —z = fo00

near rg = 0.
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