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Abstract

Geometric deep learning (GDL) has gained significant attention in scientific fields,
for its proficiency in modeling data with intricate geometric structures. Yet, very
few works have delved into its capability of tackling the distribution shift problem,
a prevalent challenge in many applications. To bridge this gap, we propose GeSS, a
comprehensive benchmark designed for evaluating the performance of GDL models
in scientific scenarios with distribution shifts. Our evaluation datasets cover diverse
scientific domains from particle physics, materials science to biochemistry, and
encapsulate a broad spectrum of distribution shifts including conditional, covariate,
and concept shifts. Furthermore, we study three levels of information access
from the out-of-distribution (OOD) test data, including no OOD information, only
unlabeled OOD data, and OOD data with a few labels. Overall, our benchmark
results in 30 different experiment settings, and evaluates 3 GDL backbones and
11 learning algorithms in each setting. A thorough analysis of the evaluation
results is provided, poised to illuminate insights for GDL researchers and domain
practitioners who are to use GDL in their applications.

1 Introduction

Machine learning (ML) techniques, as a powerful and efficient approach, have been widely used in
diverse scientific fields, including high energy physics (HEP) [15], materials science [20], and drug
discovery [81], propelling ML4S (ML for Science) into a promising direction. In particular, geometric
deep learning (GDL) is gaining much focus in scientific applications because many scientific data can
be represented as point cloud data embedded in a complex geometric space. Current GDL research
mainly focuses on neural network architectures design [79, 19, 36, 73, 78, 47], capturing geometric
properties (e.g., invariance and equivariance properties), to learn useful representations for geometric
data, and these backbones have shown to be successful in various GDL scenarios.

However, ML models in scientific applications consistently face challenges related to data distribution
shifts (PS(X,Y ) ̸= PT (X,Y )) between the training (source) domain S and the test (target) domain
T . In particular, the regime expected to have new scientific discoveries has often been less explored
and thus holds limited data with labels. To apply GDL techniques to such a regime, researchers often
resort to training models over labeled data from well-explored regimes or theory-guided simulations,
whose distribution may not align well with the real-world to-be-explored regime of scientific interest.
In materials science, for example, the OC20 dataset [10] covers a broad space of catalyst surfaces
and adsorbates. ML models trained over this dataset may be expected to extrapolate to new catalyst
compositions such as oxide electrocatalysts [80]. Additionally, in HEP, models are often trained
based on simulated data and are expected to generalize to real experiments, which hold more variable
conditions and may differ substantially from simulations [50].
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Despite the significance, scant research has systematically explored the distribution shift challenges
specific to GDL. Findings from earlier studies on CV and NLP tasks [9, 13, 99] might not be directly
applicable to GDL models, due to the substantially distinct model architectures.

In the context of ML4S, several studies address model generalization issues, but there are two
prominent disparities in these works. First, previous studies are often confined to specific scientific
scenarios that have different types of distribution shifts. For example, [96] concentrated exclusively
on drug-related shifts such as scaffold shift, while [33] investigated model generalization to deal with
the label-fidelity shifts in the application of materials property prediction. Due to the disparity in
shift types, the findings effective for one application might be ineffectual for another.

Moreover, existing studies often assume different levels of the availability of target-domain data
information. Specifically, while some studies assume some availability of the data from the target
domain [33], they differ on whether such data is labeled or not. On the other hand, certain investi-
gations presume total unavailability of the target-domain data [55]. These varying conditions often
dictate the selection of corresponding methodologies.

To address the above disparities, this paper presents GeSS, a benchmark to evaluate GDL models’
capability of dealing with various types of distribution shifts across scientific applications. Specifically,
the datasets cover three scientific fields: HEP, biochemistry, and materials science, and are collected
from either real experimental scenarios exhibiting distribution shifts, or simulated scenarios designed
to mimic real-world distribution shifts. Moreover, we leverage the specific generation process
of geometric data, i.e., the inherent causality of these applications to categorize their distribution
shifts into different categories: conditional shift (PS(X|Y ) ̸= PT (X|Y ) and PS(Y ) = PT (Y )),
covariate shift (PS(Y |X) = PT (Y |X) and PS(X) ̸= PT (X)), and concept shift (PS(Y |X) ̸=
PT (Y |X)). Furthermore, to address the disparity of assumed available out-of-distribution (OOD)
information across previous works, we study three levels: no OOD information (No-Info), only OOD
features without labels (O-Feature), and OOD features with a few labels (Par-Label). We evaluate
representative methodologies across these three levels, specifically, OOD generalization methods for
the No-Info level, domain adaptation (DA) methods for the O-Feature level, and transfer learning
(TL) methods for the Par-Label level.

Our experiments are conducted over 6 datasets, in 30 different settings with 10 different distribution
shifts times 3 levels of OOD info, covering 3 GDL backbones and 11 learning algorithms in each
setting. According to our experiments, we observe that no approach can be the best for all types
of shifts, and the levels of OOD info may benefit GDL models to various extents across different
applications. In the meantime, our comprehensive evaluation also yields three valuable takeaways to
guide the selection of practical solutions depending on the availability of OOD data:
• For Par-Label level, TL strategies show advantages under concept shifts, particularly when there

are significant changes in the marginal label distribution.
• For O-Feature level, DA strategies excel when the distribution shifts happen to the geometric

characteristics of features that are critical for label determination compared with other features.
• For No-Info level, OOD generalization methods will have some improvements if the training

dataset can be properly partitioned into valid groups that reflect the shifts.
In addition to offering domain practitioners guidance on handling distribution shift issues, our new
proposed HEP datasets and 10 curated distribution shift scenarios can also facilitate the development
and evaluation of new algorithms within the GDL community for various scientific applications.

2 Comparison with Existing Benchmarks on Distribution Shifts

Prior research has constructed benchmarks tailored to diverse research fields, shifts, and knowledge
levels, and some representative works are summarized in Table 1. In this section, we discuss how
GeSS is compared to existing distribution-shift benchmarks in the following three perspectives.

Application Domain. Recent works have introduced benchmarks on distribution shifts across various
application domains, including tabular data [23, 49], CV [34, 30, 109], OCR [43], GraphML [27, 14,
5], NLP [95, 104], and LLMs [76]. Regarding ML4S, OOD issues have been discussed across various
prediction tasks, such as retrosynthesis predictions [102] and property predictions on drugs [35, 86,
108], proteins [41], and materials [56], most of which are built upon GraphML settings. However, no
benchmark studies have been conducted in numerous scientific applications, let alone with a focus on
GDL models and a broad range of methodologies to deal with distribution shifts like this benchmark.
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Table 1: Comparison with existing benchmarks under distribution shifts from three perspectives:
Application Domain, Distribution Shift, and Available OOD Info. “Available OOD Info” refers to
what type of OOD-Info has been used in the evaluation of these benchmarks.

Benchmark Application Domain Distribution Shift Available OOD Info
Covariate Conditional Concept No-Info O-Feature Par-Label

WILDS [39], [31] CV and NLP ✔ ✘ ✘ ✔ ✘ ✘

OoD-Bench [100] CV ✔ ✘ ✔ ✔ ✘ ✘

WILDS 2.0 [69], [103] CV and NLP ✔ ✘ ✘ ✘ ✔ ✘

Wild-Time [98] CV and NLP ✔ ✘ ✔ ✔ ✘ ✔

IGLUE [8] NLP ✔ ✘ ✘ ✘ ✘ ✔

GOOD [27], GDS [14] Graph ML ✔ ✘ ✔ ✔ ✘ ✘

DrugOOD [35] ML4S (Graph ML)
only Biochemistry ✔ ✘ ✔ ✔ ✘ ✘

GeSS (Ours)
ML4S (GDL)

HEP, Biochemistry
and Materials Science

✔ ✔ ✔ ✔ ✔ ✔

Distribution Shift. Previous works explored various distribution shifts. [77, 39, 28, 14] benchmark
domain generalization methods. [39, 97, 70] study subpopulation shift. [100] categorizes and
quantifies diversity and correlation shifts. [89] jointly analyzes spurious correlation, low-data drift
and unseen data shift. [107, 53] benchmark spurious correlations in more diverse and realistic settings.
[49] benchmarks a Y |X-shift (aka., concept shift in our work) which is shown to be prevalent in
tabular data. [27] specifies covariate and concept shifts on the GraphML setting. However, many
scientific application scenarios involve distribution shifts with mechanisms that differ from those
mentioned above due to their specific data generation processes. Regarding ML4S, previous OOD
benchmarks have proposed several data-split strategies to reflect distribution shifts in realistic scientific
scenarios, such as molecular sizes and scaffolds [35], protein sequences and structures [41], and
chemical reaction conditions [86]. Compared to these works, our benchmark not only collects
datasets that can reflect distribution shifts in real-world scientific challenges but also, from an ML
perspective, leverages the inherent causality of the specific geometric data generation processes in
these applications to categorize their distribution shifts for an in-depth analysis.

Available OOD Info. In addition to the level without any OOD data [39, 27], some studies assume
the availability of OOD features and benchmark DA methods [69, 24], while others assume the
availability of OOD labels to investigate the model transferability [8, 88, 17, 46]. Compared to
previous works, we aim to understand the benefits of different levels of OOD data across various
distribution shifts, so our benchmark integrates three information levels.

3 Benchmark Design

3.1 Distribution Shift Categories

Let X be the input space, Y be the output space, h : X → Y be the labeling rule. Under the OOD
assumption, we have joint distribution shift, i.e., PS(X,Y ) ̸= PT (X,Y ). We denote f(·; Θ) as the
GDL model with parameters Θ, and ℓ : Y × Y → R as the loss function. Our objective is to find an
optimal model f∗ with parameters Θ∗, which can be best generalized to target distribution PT :

Θ∗ = argmin
Θ

E(X,Y )∼PT [ℓ(f(X; Θ), Y )] (1)

For an in-depth analysis dedicated to scientific applications studied in this work, we consider the
following data model [60, 9, 91, 45, 96]. The input variable X ∈ X consists of two disjoint parts,
namely the causal part Xc and the independent part Xi, which satisfies conditional independence
with Y given Xc, i.e., Xi ⊥⊥ Y |Xc. Next, we categorize various types of distribution shifts.

First, the above data model satisfies P(X,Y ) = P(Y |X)P(X) = P(Y |Xc)P(X). Thus, we define
covariate and concept shifts as follows.

† Covariate Shift holds if PS(Y |Xc) = PT (Y |Xc), and PS(X) ̸= PT (X).

† Concept Shift holds if PS(Y |Xc) ̸= PT (Y |Xc). Note that the shift of P(Y |Xc) is also characterized
by the change of labeling rule h between S and T .
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Figure 1: Overview of distribution shifts in this study. The upper (green-colored) and lower (blue-
colored) instances represent the scenarios in domains S and T , respectively. (a) Three-dimensional
trajectories of particles in a collision event, which are simulated with a magnetic field parallel to the
z axis and plotted on a 2D plane; (b) For the same set of MOFs, the distribution of calculated band
gap values exhibits a bimodal (unimodal) nature with lower (higher) expectations under PBE (HSE06)
estimation; (c) Molecular three-dimensional stick models with different scaffold IDs across S and T .
Table 2: Summary of distribution shifts in this study. We also recommend applicable methods for
each scenario according to our experimental results, which are shown comprehensively in Table 3.

Scientific Field Dataset Domain Shift Case Shift Category Evaluation Metrics Applicable Method

HEP

Track-Pileup Pileup
PU50 I-Conditional Shift ACC Mixup
PU90

Track-Signal Signal
τ → 3µ

C-Conditional Shift ACC DANNz′10 → 2µ

z′20 → 2µ

Materials Science QMOF Fidelity
HSE06

Concept Shift MAE TL Methods
HSE06*

Biochemistry
DrugOOD-3D-Assay Assay lbap-core-ic50-assay Concept Shift

AUC
GroupDRO

DrugOOD-3D-Size Size lbap-core-ic50-size Covariate Shift DA or TL Methods
DrugOOD-3D-Scaffold Scaffold lbap-core-ic50-scaffold Covariate Shift TL Methods

On the other hand, we have P(X,Y ) = P(X|Y )P(Y ). This induces the scenario of Conditional
Shift, which holds if PS(X|Y ) ̸= PT (X|Y ) and PS(Y ) = PT (Y ), and Label Shift if PS(X|Y ) =
PT (X|Y ) and PS(Y ) ̸= PT (Y ). But as label shift does not arise in our datasets, we later only focus
on Conditional Shift. The conditional probability can be decomposed into two parts due to our data
model, i.e., P(X|Y ) = P(Xc|Y )P(Xi|Xc). This enables us to further categorize Conditional Shift
into two sub-types based on the specific factor experiencing shifts, and we observe that these two
sub-types exhibit distinct characteristics in our experiments.

† I-Conditional Shift holds if PS(Xi|Xc) ̸= PT (Xi|Xc), and PS(Xc|Y ) = PT (Xc|Y ).

† C-Conditional Shift holds if PS(Xi|Xc) = PT (Xi|Xc), and PS(Xc|Y ) ̸= PT (Xc|Y ).

Given that each category mentioned above has only one factor experiencing shifts, we naturally
partition sub-groups within the source domain S based on the specific factor undergoing changes.

Note that our considered data models as above do not aim to cover all possible causal relationships.
Some other models studied in previous literature [1, 11, 4] are discussed in Appendix A.1, but they
do not correspond to GDL applications and thus fall outside the scope of this study. Our data models
best describe the mechanisms of applications studied in this work. Besides, the categorization of
distribution shifts is determined by the shifted probability term which directly manifests through the
data generation processes of the studied applications. These processes typically align with scientific
experiment procedures or domain-specific theories. More details are in Appendix A.2.
3.2 Dataset Curation and Shift Creation

In this section, we introduce the datasets in this study. Table 2 gives a summary. For each dataset,
we first introduce the significance of its associated scientific application. Then, we delve into how
the distribution shift of each dataset comes from in practice, and categorize the distribution shift
according to the definition in Sec. 3.1. Additionally, we elaborate on the selection of domains S and
T , along with partitioning subgroups in the source domain S for our later experimental setup.

4



3.2.1 Track: Particle Tracking Simulation — High Energy Physics

Motivations. ML techniques have long been employed and have played a significant role in diverse
applications of particle physics [63], including particle flow reconstruction [37], jet tagging [61],
and pileup mitigation [54], etc. Typically, ML models rely on simulation data for training due to
the scarcity of labeled data from real-world experiments. However, the intricate and time-varying
nature of experimental environments often leads to distinct physical characteristics that differ from
simulated data used for training. For example, the pileup (PU) level, is defined as the number of
noisy collisions around the primary collision in Large Hadron Collider experiments [32]. The PU
level during the real deployment phase can differ from the PU level used to train the ML model.

Dataset. We create Track, a particle tracking simulation dataset, and propose Track-Pileup and
Track-Signal datasets. A data sample corresponds to a collision event, which generates numerous
particles. Each particle will leave multiple detector hits when traversing the detector. Each point in a
data sample represents a detector hit generated by a particle associated with a 3D coordinate. The task
is to predict the existence of a specific decay of interest (referred to as signal in our work) in a given
event, denoted by Y , like the decay of z → µµ. This can be formulated as a binary classification
task in differentiating the detector hits left by the signal particles plus backgrounds (Xc +Xi) from
those only left by background particles (Xi). This application scenario naturally involves a data
generation process Y → X because the detector hit patterns are determined by whether some type of
collision happens. Such generation process leads to conditional shift: The variation in the number of
PU particles (Pileup Shift) causes a shift in P(Xi|Xc), and the change in the type of signal particles
(Signal Shift) causes a shift in P(Xc|Y ). We further categorize the two shifts as follows.

Pileup Shift — I-Conditional Shift. As shown in the bottom left of Fig. 1a, a higher PU level results
in more background particle tracks in a collision while keeping the signal particle track the same.
This mechanism aligns with our definition of I-Conditional Shift as PS(Xi|Xc) ̸= PT (Xi|Xc) and
PS(Xc|Y ) = PT (Xc|Y ). We train the model on source-domain data with the PU level of 10 (PU10)
and evaluate its generalizability on PU50 and PU90 target-domain data, respectively. The division of
source-domain subgroups is based on the number of points present in the data entry (one collision
event) as it can mimic Pileup Shift in terms of varying particle counts across different PU levels.

Signal Shift — C-Conditional Shift. As depicted in the bottom right of Fig. 1a, we alter the geometric
characteristics of signal tracks by introducing signal particles with varying momenta, which leads to
changes in the curvature of signal tracks, while leaving the background particle tracks unchanged.
Therefore, we categorize this shift as C-Conditional Shift, as it satisfies PS(Xi|Xc) = PT (Xi|Xc)
and PS(Xc|Y ) ̸= PT (Xc|Y ). We train the model on source-domain data, where the positive samples
consist of 5 different types of signal decays, all characterized by large signal track radii, making them
easier to distinguish from background tracks. We evaluate the model on target-domain data with
signal decays of z′20 → 2µ, z′10 → 2µ, τ → 3µ, respectively, whose radii of signal tracks are smaller.
We split the source S into 5 sub-groups, each corresponding to a specific type of signal decay.

3.2.2 QMOF: Quantum Metal-organic Frameworks — Materials Science

Motivations. Materials property prediction plays a crucial role in discovering new materials with
favorable properties [62, 93]. Training ML models using data with labels calculated from theory-
grounded methods, such as DFT [57], to predict important materials properties, such as band gap,
has been an emerging trend, accelerating the process of materials discovery. Among DFT methods,
PBE techniques are popular for their cost-effectiveness. However, they are noted for producing
low-fidelity results, particularly in the underestimation of band gaps [111, 7]. Conversely, high-
fidelity methods exhibit highly accurate calculations but come at the cost of extensive computational
resources, resulting in a scarcity of high-fidelity labeled data. Hence, there’s a need for methods that
allow ML models trained on low-fidelity data to generalize to high-fidelity prediction.

Dataset. We introduce the Quantum MOF (QMOF) [66, 65], a publicly available dataset comprising
over 20,000 metal-organic frameworks (MOFs), coordination polymers, and their quantum-chemical
properties calculated from high-throughput periodic DFT. Each point in a sample represents an atom
associated with a 3D coordinate. The task is to predict the band gap value of a given material as a
regression problem that can be evaluated with MAE metrics. The dataset includes band gap values
calculated by 4 different DFT methods (PBE, HLE17, HSE06*, and HSE06) ranging from low-fidelity
to high-fidelity over the same set of input materials. This naturally forms the shifts across DFT
methods at different fidelity levels (Fidelity Shift) categorized as follows.

5



Fidelity Shift — Concept Shift. As illustrated in Fig. 1b, DFT methods at different fidelity levels
tend to yield varying distributions of the band gap estimation Y given the same set of input data X ,
thus reflecting the shift of P(Y |X) characterized by concept shift. Namely, the expected estimation
band gap values tend to increase sequentially from PBE (the lowest estimation) to HLE17, HSE06*,
and HSE06 (the highest estimation). We construct 2 separate shift cases: one with HSE06 as the target
domain T and the other with HSE06* as the target domain. In both cases, the remaining three levels
are used as the source domain S , each serving as a subgroup in the source-domain splits.

3.2.3 DrugOOD-3D: 3D Conformers of Drug Molecules — Biochemistry

Motivations. ML techniques have been applied to various biochemical scenarios, such as protein
design [3], molecular docking [12], etc., thereby catalyzing the process of drug discovery. Despite
the success, the performance of ML-aided drug discovery easily degrades due to the underlying
distribution shifts. Unpredictable public health events like COVID-19 may introduce entirely new
targets from unseen domains. Besides, the assay environments, where biochemical properties are
measured, may also largely diverge. These challenges related to the distribution shift spur a need for
generalizable ML models to further advance drug discovery.

Dataset. We adapt DrugOOD [35] and propose DrugOOD-3D, with our main focus on the ge-
ometric structure of molecules and GDL models. We adopt the task of Ligand Based Affin-
ity Prediction (LBAP) in predicting the binding affinity of a given ligand molecule. We transi-
tion the task to a binary classification problem, using AUC scores as evaluation metrics, follow-
ing DrugOOD. We built DrugOOD-3D-Scaffold, DrugOOD-3D-Size, and DrugOOD-3D-Assay
datasets, corresponding to shift cases of lbap-core-ic50-scaffold, lbap-core-ic50-size,
and lbap-core-ic50-assay, which cover scaffold, assay, and size shifts introduced as follows.

Scaffold & Size Shift — Covariate Shift. The scaffold pattern, illustrated in Fig. 1c, is a significant
structural characteristic to describe the core structure of a molecule [101]. Analogously, molecular
size is also an important biochemical characteristic. We categorize the two shifts as covariate shifts
because the shift in scaffold and size primarily reflects a shift in the marginal input distribution P(X)
across domains, while the labeling rule h and P(Y |X) are kept invariant.

Assay Shift — Concept Shift. We classify assay shift as concept shift since shifts in assays can be
viewed as modifying the experimental procedures and conditions. Such modifications could alter
the resulting binding affinity value for the same set of molecules, described as a change in P(Y |X).
Note that we follow the same design of domain splits and sub-group splits as DrugOOD.

4 Experiments
4.1 Experimental Settings

We briefly introduce the experimental settings and leave more details about dataset splits in Appendix
C, backbones and learning algorithms in Appendix D, and hyperparameter tuning in Appendix F.

Backbones. We include three GDL backbones widely used in various scientific applications: EGNN
[71], DGCNN [85], and Point Transformer [110].

Learning Algorithms. We select 11 most representative OOD methods to compare. These methods
cover general, GNN-grounded, and GDL-grounded algorithms, and span a broad range of learning
strategies under different levels of OOD info, i.e., No-Info, O-Feature, and Par-Label levels. For No-
Info level, we select 1) vanilla: ERM [82]; 2) invariant learning: VREx [40]; 3) data augmentation:
MixUp [105]; 4) subgroup robust method: GroupDRO [68]; 5) causal inference: DIR [91]; 6) infor-
mation bottleneck: LRI [55]. Note that DIR is a well-known graph-based OOD baseline and LRI is a
novel algorithm grounded in GDL. We refer to the above-mentioned methods as OOD generalization
methods for simplicity. For O-Feature level, we select domain-invariant methods: 7) DANN [22] and
8) DeepCoral [75]. For Par-Label level, we conduct full fine-tuning, i.e., all model parameters get
fine-tuned, with 9) 100, 10) 500, and 11) 1000 labels, denoted as TL100,TL500,TL1000 respectively.
Regarding Fidelity Shift, we select a subset of OOD generalization methods (VREx and GroupDRO)
that are compatible with regression tasks to evaluate.

We provide a detailed discussion on the rationale behind the selection of methods and GDL backbones
in Appendices D.1 ad D.2. Additionally, we have developed a highly modular codebase, allowing for
the seamless evaluation of new algorithms tailored for the GDL setting using this benchmark.
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Table 3: Experimental results (Test-ID and Test-OOD performance) on Pileup (PU50 and PU90
cases), Signal (τ → 3µ and z′10 → 2µ cases), Size, Scaffold, and Fidelity (HSE06 and HSE06*
cases) shifts over EGNN and DGCNN. Note that Test-ID performance of TL methods is not evaluated.
Parentheses show standard deviation across 3 replicates. ↑ denotes higher values correspond to better
performance, whereas ↓ denotes lower for better. We bold and underline the best and the second-best
OOD performance, and use † to mark best within the No-Info level for each distribution shift scenario.

Pileup Shift — I-Conditional Shift (ACC↑)

Level Algorithm
EGNN DGCNN

PU50 PU90 PU50 PU90
Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD

No-Info

ERM 95.75(0.08) 87.65(0.30) 96.11(0.15) 80.99(1.40) 94.35(0.42) 86.56(0.96)† 94.35(0.42) 79.84(1.08)
VREx 95.49(0.32) 87.45(0.76) 95.49(0.32) 80.77(0.93) 94.54(0.17) 86.37(0.84) 94.54(0.17) 80.41(0.91)†

GroupDRO 93.18(0.33) 83.03(0.32) 93.18(0.33) 75.67(0.63) 91.48(0.19) 79.38(0.59) 91.48(0.19) 73.69(0.37)
DIR 95.10(0.09) 85.59(0.45) 95.10(0.09) 78.47(0.17) 94.01(0.29) 84.33(0.65) 94.01(0.29) 75.73(1.39)
LRI 95.80(0.14) 88.15(0.31) 95.77(0.43) 81.43(0.80) 93.95(0.04) 85.25(0.04) 93.95(0.04) 78.65(0.39)

MixUp 95.78(0.41) 89.41(0.11)† 95.86(0.13) 82.29(0.40)† 94.18(0.25) 85.93(0.46) 94.18(0.25) 79.43(0.77)

O-Feature DANN 95.18(0.51) 87.16(0.72) 95.86(0.10) 80.69(0.44) 93.91(0.47) 85.01(0.64) 94.33(0.12) 76.15(1.95)
Coral 95.13(0.27) 86.98(0.80) 95.19(0.07) 78.99(1.79) 94.17(0.21) 84.61(1.04) 94.66(0.16) 77.08(0.94)

Par-Label
TL100 84.20(0.46) 77.85(0.59) 81.65(1.06) 73.48(0.39)
TL500 87.05(0.46) 82.09(0.88) 84.41(1.06) 78.19(0.94)
TL1000 87.61(0.13) 83.40(0.80) 85.09(0.70) 79.97(0.38)

Signal Shift — C-Conditional Shift (ACC↑)

Level Algorithm
EGNN DGCNN

τ → 3µ z′10 → 2µ τ → 3µ z′10 → 2µ

Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD

No-Info

ERM 97.15(0.20) 65.98(0.77) 96.85(0.23) 70.72(1.28) 95.72(0.23) 65.30(1.03) 95.37(0.12) 69.04(0.31)
VREx 96.86(0.29) 66.38(0.80) 96.66(0.15) 71.46(0.87) 95.66(0.03) 64.91(0.47) 95.49(0.32) 69.83(0.06)

GroupDRO 96.48(0.22) 67.15(0.10) 96.71(0.08) 72.56(0.88)† 95.02(0.06) 66.01(0.33) 95.06(0.32) 69.76(0.03)
DIR 77.91(2.87) 67.32(0.43) 93.56(2.62) 70.04(1.00) 91.87(0.53) 64.74(0.82) 91.87(0.53) 70.67(0.81)†

LRI 96.25(0.16) 67.49(0.24)† 96.37(0.21) 69.91(0.89) 90.50(0.89) 67.82(0.06)† 93.40(0.28) 67.84(0.07)
MixUp 96.95(0.22) 65.63(0.77) 96.97(0.06) 71.39(1.49) 95.41(0.33) 66.02(1.01) 95.80(0.08) 69.23(0.01)

O-Feature DANN 81.37(1.04) 68.05(0.09) 90.08(0.86) 77.36(0.83) 80.72(1.34) 68.27(0.36) 87.90(0.22) 75.46(0.53)
Coral 96.32(0.67) 66.61(0.49) 96.82(0.18) 71.60(0.42) 94.93(0.16) 65.06(0.43) 94.29(0.04) 68.95(0.73)

Par-Label
TL100 64.08(1.01) 74.21(0.94) 64.37(0.29) 63.19(0.03)
TL500 67.08(0.04) 75.81(0.86) 65.99(0.76) 66.42(0.45)
TL1000 67.47(0.11) 77.02(0.37) 65.73(0.78) 66.03(0.33)

Size & Scaffold Shift — Covariate Shift (AUC↑)

Level Algorithm
EGNN DGCNN

Size Scaffold Size Scaffold
Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD

No-Info

ERM 91.06(0.26) 64.98(0.54) 84.73(0.48) 68.16(0.82) 89.60(0.04) 62.56(0.61) 81.89(0.14) 67.05(0.49)
VREx 91.20(0.08) 65.01(0.50)† 84.76(0.54) 68.20(0.31) 89.41(0.21) 62.91(0.47) 82.95(0.43) 68.24(0.25)

GroupDRO 86.80(0.23) 61.11(0.31) 85.38(0.16) 68.07(0.66) 83.41(0.56) 60.55(0.02) 83.27(0.25) 67.57(0.18)
DIR 87.24(0.84) 64.40(0.42) 80.59(2.34) 67.70(1.19) 80.43(0.50) 62.05(0.65) 74.49(0.37) 67.19(0.91)
LRI 91.00(0.32) 64.05(0.26) 85.00(0.79) 67.61(0.26) 89.50(0.30) 63.00(0.41) 80.20(0.75) 67.69(0.28)

MixUp 91.02(0.46) 63.87(0.24) 85.36(0.29) 68.28(0.19)† 89.45(0.19) 63.65(0.21)† 82.71(0.57) 68.33(0.69)†

O-Feature DANN 91.25(0.05) 65.45(0.45) 85.65(0.42) 67.66(0.90) 89.08(0.37) 63.73(0.49) 82.30(0.69) 67.74(0.50)
Coral 91.32(0.19) 64.77(0.49) 85.41(0.72) 68.61(0.48) 89.05(0.36) 63.87(0.48) 81.92(0.69) 67.26(0.62)

Par-Label
TL100 64.48(0.29) 67.21(0.34) 62.50(0.21) 67.10(0.18)
TL500 64.84(0.28) 68.94(0.67) 62.54(0.22) 68.15(0.13)
TL1000 65.43(0.27) 70.71(0.43) 63.00(0.38) 68.79(0.11)

Fidelity Shift — Concept Shift (MAE ↓)

Level Algorithm
EGNN DGCNN

HSE06 HSE06* HSE06 HSE06*
Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD Test-ID Test-OOD

No-Info
ERM 0.508(0.003) 1.099(0.095) 0.624(0.014) 0.556(0.007) 0.486(0.005) 1.082(0.030) 0.604(0.003) 0.547(0.007)
VREx 0.511(0.005) 1.083(0.063) 0.628(0.010) 0.534(0.012)† 0.511(0.002) 1.042(0.075) 0.620(0.002) 0.522(0.007)

GroupDRO 0.533(0.003) 0.996(0.029)† 0.689(0.009) 0.546(0.002) 0.515(0.001) 0.977(0.021)† 0.698(0.004) 0.518(0.006)†

O-Feature DANN 0.502(0.004) 1.161(0.017) 0.623(0.011) 0.570(0.012) 0.484(0.001) 1.051(0.030) 0.603(0.007) 0.540(0.009)
Coral 0.504(0.004) 1.161(0.045) 0.623(0.005) 0.571(0.009) 0.488(0.003) 1.062(0.014) 0.605(0.007) 0.538(0.007)

Par-Label
TL100 0.732(0.009) 0.629(0.036) 0.695(0.026) 0.603(0.009)
TL500 0.638(0.008) 0.556(0.013) 0.620(0.010) 0.541(0.005)
TL1000 0.625(0.003) 0.547(0.010) 0.575(0.008) 0.517(0.000)

Dataset Splits. For each dataset, we first divide it into the ID dataset and the OOD dataset based
on our characterization of PS and PT . The resulting dataset in the source domain contains multiple
subgroups following our split covered in Sec. 3.2, for the operation of OOD methods that rely on
subgroup splits. Subsequently, the ID and OOD datasets are randomly segmented into Train-ID,
Val-ID, and Test-ID, and Train-OOD, Val-OOD, and Test-OOD, respectively.

Model Training & Evaluation. For fair comparisons across the three info levels, we meticulously
set up both the model training and evaluation processes: In No-Info level, we train the model solely
on the Train-ID dataset via OOD methods. In O-Feature level, we apply DA algorithms and train
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the model on the same Train-ID used in No-Info level plus the extra data feature info of the entire
OOD dataset. In Par-Label level, we use the Train-OOD dataset to fine-tune the model which
has already been pre-trained on the same Train-ID used in the two previous levels. Although the
training datasets may vary due to the need to contain different levels of OOD info, we achieve a
fair comparison by keeping Train-ID data invariant. Across all levels of OOD info, we evaluate the
model’s ID performance using the same Val-ID and Test-ID datasets, and its OOD performance using
the same Val-OOD and Test-OOD datasets. For hyperparameter tuning, we tune a predefined set
of hyperparameters and select the model with the best metric score of Val-OOD for the ultimate
evaluation. Also, we thoroughly discuss the motivation and insights of our design of model training
and evaluation processes, and put details in Appendix E.

4.2 Results Analysis — General Tendency
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Figure 2: Test-OOD improvements
(%) over ERM for TL100 and
TL1000 across different shift cases
(in the EGNN backbone).

We put experimental results on 2 of 3 backbones in Table 3.
Complete results can be found in Appendix G. We begin by
presenting overall comparisons and general findings: Although
TL1000 outperforms ERM by a notable margin in several cases,
fine-tuning can sometimes result in negative effects when the
labeled OOD data is quite limited, particularly in cases involv-
ing a smaller degree of distribution shifts (cf. Fig. 2). This
is consistent with [38], where fine-tuning a large model based
on a small set of labels may lead to catastrophic forgetting.
To mitigate this issue, robust fine-tuning strategies, such as
weight-space ensembles [90], regularization [94] and surgical
fine-tuning [44], could be potential solutions.

4.3 Results Analysis — Insightful Conclusions

Besides the general observations exhibited above, our experiments also yield some intriguing conclu-
sions that may be widely applicable. We structure this subsection by first presenting our conclusions,
exemplified by representative observations and rational explanations.

• Conclusion 1. DA strategies excel in C-Conditional Shift, where some variation arises in the
geometric characteristics of the causal component Xc.

A great example illustrating this conclusion comes from Signal Shift. As shown in Fig. 4, DANN,
a DA method, performs particularly well in the case of z′10 → 2µ, largely outperforming ERM (↑
9.4% in the EGNN model) and all OOD generalization methods without OOD info (↑ at least 6.6%
in EGNN). As introduced before, Signal Shift represents a C-conditional shift, which in this case
arises from the shift in the curvature of the signal tracks, whose points collectively form the causal
component Xc. The access to OOD features enables the model to align the latent representations of
the causal components with varying distributions of geometries (curvatures here) across the source
and target domains, thereby aiding in the correct identification of unseen signal types.

In contrast, Fig. 4 shows that DA strategies yield performance very close to ERM in Pileup Shift.
Although both Pileup and Signal shifts are categorized as Conditional Shifts (cf. Sec. 3.2.1), they
mainly differ in two aspects: 1) Pileup Shift represents an I-Conditional Shift, occurring exclusively
in the independent part, i.e. P(Xi|Xc), and 2) it involves a variation in the number of particle
tracks rather than geometric characteristics, which is different from Signal Shift. We propose two
plausible explanations for the challenges faced by DA strategies in Pileup Shift, centered around
these disparities, and recommend interested readers see H2 in Appendix H.

• Conclusion 2. TL methods excel under Concept Shift, particularly when the shift of the
marginal label distribution P(Y ) is large.

Here we examine two cases of Fidelity Shift, where the TL strategy demonstrates contrasting results
(cf. Fig. 3a): TL performs particularly well in the case of HSE06, where it largely outperforms all
other methods with the MAE score increased by at least 40%. However, it exhibits only limited
improvement in the case of HSE06*. We explain the difference by analyzing the marginal label
distributions PS(Y ) and PT (Y ). As mentioned before, Fidelity Shift can be characterized by a
change in the labeling rule, i.e., two similar inputs may be mapped to very different Y values.
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Figure 3: (a) Test-OOD improvements (%) over ERM for VREx, DeepCoral,
TL100 and TL1000 methods in Fidelity Shifts (including HSE06 and HSE06*
cases) in the EGNN backbone; (b)/(c) KDE [67, 58] curves of the marginal
label distribution P(Y ) across the source S and target T in the cases of
HSE06 / HSE06*.

Specifically, fidelity
levels of PBE, HLE17,
and HSE06* provide
estimations that are
closer to each other,
while the fidelity level
of HSE06 significantly
exceeds the other
three. Therefore, the
case with HSE06 as
the target domain T
but the other three as
the source S, yields a
large gap in the distribution of P(Y ) between the two domains, i.e., PS(Y ) ̸= PT (Y ) (cf. Fig. 3b).
Therefore, the OOD labels are crucial to finetune the model predictions to match the aimed
distribution PT (Y ). In contrast, the case when HSE06* is the target domain T but the others as S,
yields closer distributions of P(Y ) between the two domains, i.e., PS(Y ) ≈ PT (Y ) (cf. Fig. 3c).
Therefore, only using a few OOD labels to finetune the model tends to have a limited impact on its
performance.

• Conclusion 3. For the OOD generalization methods to learn robust representations, the more
informatively the groups obtained by splitting the source domain S indicate the distribution
shift, the better performance these methods may achieve.

PU50 PU90 τ → 3µ z′10 → 2µ

−5

0

5

10
GroupDRO

LRI

MixUp

DANN

Figure 4: Test-OOD improvements
(%) over ERM for GroupDRO,
MixUp, LRI, and DANN meth-
ods across Pileup Shifts (cases of
PU50/90) and Signal Shifts (cases
of τ → 3µ and z′10 → 2µ) in the
EGNN backbone.

This observation is related to GroupDRO, an OOD method
that is to learn robust representation across different group
splits of the source S. As illustrated in Fig. 4, GroupDRO
almost consistently outperforms ERM in all cases with Signal
Shift (τ, z′10, z

′
20) while it largely under-performs ERM in the

cases of Pileup Shift (PU50, PU90). GroupDRO captures ro-
bustness by increasing the importance of subgroups with larger
errors and thus highly relies on the assumption that the shift
between the splits of in-domain data can to some extent reflect
the distribution shift between the source S and the target T . In
the cases with Signal Shift, the way to split subgroups of the
source domain aligns well with the distribution shift: Each split
represents a distinct type of decay (5 types in total). By learn-
ing robust representations across these subgroups, GroupDRO
yields better OOD generalization. In contrast, in the case of
Pileup Shift, varying the number of points in a collision event is used as a proxy of the shift to achieve
the group splits of the training dataset, based on the fact that the PU level is positively correlated with
the number of particles. This way of subgroup splits is subjective, which is limited by the availability
of data and may not fully reflect Pileup Shift between domain S and T .

More analysis (obervations, conclusions, and conjectures) of experimental results are put in Ap-
pendix H. Also, we identify conclusions that align with existing OOD literature and others that are
novel and specific to the GDL setting. We conduct comparisons (including consistency and disparity)
between our findings and previous ones in Appendix I.

5 Conclusion

This work systematically evaluates the performance of GDL models when scientific applications
meet distribution shifts. Our benchmark has 30 distinct scenarios with 10 shift cases times 3 levels of
available OOD info, covering 3 GDL backbones and 11 learning algorithms. Based on our evaluation,
we reveal several intriguing discoveries. In particular, our results may help select applicable solutions
based on the causal mechanism behind the distribution shift and the availability of OOD info.
Moreover, our work encourages more realistic and rigorous evaluations of GDL used in scientific
applications, and may inspire methodological advancements for GDL to deal with distribution shifts.
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A More Discussions about Distribution Shift Formulations

A.1 Details of the Data Model

Here we give a complementary discussion about the established data model that are discussed in
Sec. 3.1. Concretely, we adopt the Structure Causal Model (SCM) [59, 60] to represent I-conditional,
C-conditional, covariate, and concept shifts from a causal view. As illustrated in Fig. 5, five variables,
including input X , causal part Xc, independent part Xi, domain D and label Y , are linked by the
direct causal correlation “→”. For some variable A in the SCM, Pa(A)→ A denotes as the direct
causal link from its parent variables Pa(A) to A. According to the causal theory [59, 60], there exists
the correlation Pa(A)→ A, if and only if there exists a function fA, s.t., A = fA(Pa(A), ϵA), where
ϵA is exogenous noise satisfying ϵA ⊥⊥ Pa(A), and we omit the exogenous noise in this study for
simplification. Plus note we treat D as an additional variable that exerts an influence on the other
variables and thus induces a shift in the corresponding probability distribution between the domains
S and T .

We start with the correlation that is shared across four categories. The input variable X consists of two
disjoint parts Xi and Xc, i.e., Xi → X ← Xc. For a convenient analysis of the proposed application
scenarios, we introduce certain assumptions or specifications. However, it’s important to note that
our data model and its associated assumptions do not aim to cover all possible causal relationships.
To provide a more comprehensive view, each specification or assumption is accompanied by some
examples (from other works) that challenge it.

• We do not further discuss potential causal dependencies between Xi and Xc for simplicity and use
a dashed arrow to represent such potential dependencies, following [91]. However, some works
[1, 11] involved the explicit discussions of latent interactions between Xi and Xc.

• We assume the independent part Xi and the label variable Y to be conditionally independent given
Xc, i.e., Xi ⊥⊥ Y |Xc, as discussed in Sec. 3.1. Also, there exists some causal relationships which
violate this assumption of conditional independence. A typical example lies in the PIIF SCM[4, 1],
where the correlation Xc → Y → Xi breaks the assumption. However, we haven’t identified a
scenario in this work that adheres to such a setting.

In particular, the causal part Xc shares the causal correlation with Y , represented as either Xc → Y
(which is assumed by many previous works), or Y → Xc (which appears in our study), corresponding
to the aforementioned data generating process X → Y and Y → X .

A.2 Details of the Shift Categories

Concretely, we classify the following distribution shifts based on their distinct data generation process
between X and Y (specifically, the correlation between Xc and Y ) as well as how the domain
variable D affects individual variables like Xi, Xc or Y . Note that we follow the well-established
definitions of these shifts and further extend the definitions to what we present in our work based on
our established data model to better align with the application scenarios we propose.

(a) covariate (b) concept (c) I-conditional (d) C-conditional

Figure 5: SCMs of covariate, concept, I-conditional, and C-conditional shifts.

Covariate Shift [26] is initially defined as PS(X) ̸= PT (X) and PS(Y |X) = PT (Y |X). In the
context of our work, the data generating process of X → Y induces the assumption of covariate and
concept shifts, and covariate shift holds if PS(X) ̸= PT (X) and PS(Y |Xc) = PT (Y |Xc), which are
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achieved by the variable D exclusively impacting X without affecting Y , as shown in Fig. 5a. Note
that we do not further specify which part of X , Xc or Xi, is impacted by the variable D. This is in
line with real-world scenarios where the specific shifts in P(Xc) or P(Xi) may not be apparent, such
as in our instances of the scaffold shift and size shift based on the DrugOOD-3D dataset. Therefore,
we present both D → Xc and D → Xi in Fig. 5a for simplicity.

Concept Shift [52, 21] is initially formalized as PS(Y |X) ̸= PT (Y |X). Under our formulation,
concept shift holds if PS(Y |Xc) ̸= PT (Y |Xc). This is characterized by the correlation D → Y ←
Xc, as shown in Fig. 5b, which means the label Y is determined collectively by the input causal part
Xc and the domain variable D, and more importantly, there is a change of the labeling rule h across
domains S and T . Note that in our study we do not further assume if the shift in P(X) exists. In
the fidelity shift, DFT methods with varying fidelity levels calculate band gap values of the same
set of MOFs, where we consider that P(X) remains invariant across domains, while the assay shift,
also categorized as concept shift, may involve the shift in P(X). So we do not explicitly present the
correlation between D and Xi or Xc in Fig. 5b.

Conditional Shift, as proposed in [106], is induced by the data generating process of Y → X and
holds if PS(X|Y ) ̸= PT (X|Y ). We follow this formulation in our work. Note that Y → X aligns
well with the scenario of the Track dataset, where the simulated physical event X is controlled by
multiple parameters, including one representing the label Y as positive or negative. The conditional
distribution could be decomposed into two distinct parts based on the data model of Xi ⊥⊥ Y |Xc:
P(X|Y ) = P(Xc|Y )P(Xi|Xc, Y ) = P(Xc|Y )P(Xi|Xc), which serves as the basis to further
categorize conditional shift into the two following sub-types.

• I-Conditional Shift holds if PS(Xi|Xc) ̸= PT (Xi|Xc) and PS(Xc|Y ) = PT (Xc|Y ). As shown
in Fig. 5c, the domain variable D exclusively affects the independent part Xi, i.e., D → Xi. In this
case, only the conditional distribution P(Xi|Xc) changes across domains S and T . Note that there
does not exist the causal link of Xi → Xc in this scenario to hold the assumption of Xi ⊥⊥ Y |Xc,
so the distribution P(Xc|Y ) will not be indirectly influenced by D and thus keeps invariant across
the domains.

• C-Conditional Shift holds if PS(Xi|Xc) = PT (Xi|Xc) and PS(Xc|Y ) ̸= PT (Xc|Y ). As shown
in Fig. 5d, the domain variable D exclusively affects the causal part Xc, which forms the structure
of Y → Xc ← D, representing the distribution of Xc is determined by both Y and D. That
means only the conditional distribution P(Xc|Y ) changes across the domains S and T while the
distribution P(Xi|Xc) keeps invariant.

Discussions. In terms of covariate shift and concept shift, our extended formulations, compared to
the initial definitions, put greater emphasis on the analysis of P(Y |Xc) rather than P(Y |X), due to
the assumption of conditional independence in our data model. Such extension is beneficial because
the underlying rationale or causal correlation, often rooted in well-established scientific rules or
theories like Density Functional Theory (DFT), holds significant importance for scientific discovery
and ML4S. Therefore, it deserves more attention.

A.3 Additional Comparisons with Distribution Shifts in Related Studies

Here we conduct additional comparisons with some distribution shifts which have been proposed by
related works.

Concept Shift. [27] and [100] also involved shift cases explicitly formalized as concept shift.
However, we claim it operates under a different mechanism than the one formalized in our study.
In our work, concept shift particularly denotes the change in causal correlation between Xc and Y ,
i.e., the shift in P(Y |Xc). This definition aligns perfectly with a real-world scenario of fidelity shift
observed in materials science. In contrast, in GOOD’s context [27], concept shift corresponds to
changes in statistical rather than causal correlation. For instance, it may involve correlations between
color and digit in datasets like ColoredMNIST [27, 14].

Covariate Shift. Diversity shift [100], low-data drift [89], and unseen data shift [89] can be explicitly
formalized as covariate shift. However, our work does not aim to conduct a more find-grained analysis
within a single shift category. Instead, our goal is to formalize and categorize diverse distribution-shift
mechanisms across various scientific application scenarios.
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Table 4: Dataset statistics for each dataset and distribution shift scenario. We evaluate the ID
performance of models using Val-ID and Test-ID Datasets, and the OOD performance using Val-
OOD and Test-OOD Datasets. The “OOD” column in this table presents the total number of OOD
data entries whose features (but not labels) are used in the O-Feature level. Note that this table does
not include statistics of Train-OOD that is specifically used for fine-tuning models in the Par-label
level as mentioned in Sec. 4.1, because we utilize a fixed number of 100, 500, 1000 labels in this
case, corresponding to TL100, TL500, TL1000 baselines respectively. For bi-classification tasks, we
list the number of positive data points (left) and negative data points (right), separated by “/”.

Dataset Shift Shift Case Train-ID Val-ID Test-ID OOD Val-OOD Test-OOD

Track-Pileup Pileup
PU50

14814/15634 2469/2605 2470/2607
10000/10000 2500/2500 2500/2500

PU90 7700/7700 2500/2500 2500/2500

Track-Signal Signal

τ → 3µ

11851/15000 1975/2500 1975/2500

12000/15000 1975/2500 1977/2500

z′10 → 2µ 12000/15000 1975/2500 1977/2500

z′20 → 2µ 12000/15000 1975/2500 1977/2500

QMOF Fidelity
HSE06 10781 1796 1798 6000 2000 2000

HSE06* 10781 1796 1798 6000 2000 2000

DrugOOD-3D-Assay Assay lbap-core-ic50-assay 29060/3861 9611/1295 9945/1323 32371/4687 17099/1557 15272/3130

DrugOOD-3D-Size Size lbap-core-ic50-size 32686/2542 10872/857 11003/846 26426/6921 14657/2706 11769/4215

DrugOOD-3D-Scaffold Scaffold lbap-core-ic50-scaffold 19455/1116 4473/211 26670/3015 30389/6824 16020/2678 14369/4146

B Preliminaries for Geometric Deep Learning

Notations. We consider a geometric data sample g = (V,X, r), where V = {v1, · · · , vn} is a set of
points with the size n, X ∈ Rn×m denotes as m-dimensional point features, and r ∈ Rn×d denotes
as d-dimensional spacial coordinates of points. We specifically focus on 3D coordinates of scientific
data in our study, i.e., d = 3. We build the GDL model ŷ = f(g; Θ) to predict the ground-truth
label y of data g, where y is categorical for classification tasks and continuous for regression tasks.
The model in our study consists of two parts, i.e., f = ω ◦ Φ, including the GDL component Φ,
which is based on multiple GDL layers, and the MLP component ω, which gives the final prediction.
And we hope the GDL models maintain strong predictive performance even when g is drawn from a
distribution differing from the one during training, which motivates our study.

Pipelines. Here we present how GDL backbones handle geometric data in this study. Given N
samples of {gi}Ni=1, we begin with constructing a k-nn graph for each data entry based on the spacial
distances, i.e., ∥rv−ru∥2 between any pair of points u, v ∈ V , where k is a hyperparameter. The GDL
model then iteratively updates the representation of the point v via aggregation AGGu∈N (v)(muv),
where AGG denotes as the aggregation operator (e.g.,

∑
or max), N (v) denotes as the neighbors of

point v in the k-nn graph, and muv denotes as the message passing from the point u to v. The GDL
models typically need to capture geometric properties (e.g., invariance properties), and this has caused
GDL models to often process geometric features carefully. Beyond basic spatial coordinates, the GDL
models that achieve the invariance merit often incorporate relative geometric information between
points into the message muv , such as distance [72], angle [25], torsion [51], and rotation angle [83]
information. Note that the selected backbones in this study only involve the distance information.
Investigation into how capturing higher-order geometric information (such as certain kinds of angles
with special scientific meanings) affects the generalization ability of GDL models remains a topic for
future work. Also, we refer interested readers to [16] for more detailed descriptions of different types
of GDL models.

After several GDL layers, there is a pooling operator used to aggregate all point representations, to
obtain the representation of the geometric data. Then an additional MLP component is needed to
generate the predicted labels.

C Details of Datasets

C.1 Dataset Statistics

The statistics of the covered datasets are shown in Table 4. Strategies of domain splits and sub-group
splits for each distribution shift scenario, which have been discussed in Sec. 3.2, are detailed in Table
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6. Note that for distribution shifts in DrugOOD-3D, we follow the same dataset splits and sub-group
splits as the original benchmark DrugOOD. But in the Par-Label setting, we split 1000 samples from
both Val-OOD and Test-OOD datasets, create the Train-OOD dataset, sample a specific number (100,
500, and 1000) for model fine-tuning, and evaluate the OOD performance of the fine-tuned models on
the remaining OOD data. We also ensure a fair comparison here, as the number of removed samples
is significantly smaller than the size of the OOD dataset itself. In the following three sub-sections,
we make a complementary introduction to the studied scientific datasets.

Besides, we provide more granular information that better reflects the characteristics of the constructed
datasets and distribution shifts. The detailed statistics can be seen in Table 5, covering

• The average number of tracks for each pileup level in Pileup Shift (Track-Pileup Dataset). Note
that a higher PU level results in more background particle tracks in the collision while keeping the
signal particle track the same.

• The average signal radius of each type of signal in Signal Shift (Track-Signal Dataset). Note that
from z → 2µ, z′20 → 2µ, z′10 → 2µ, to τ → 3µ, the average radius of signal tracks progressively
approaches 2724.96 (the average radius of background tracks), which means it is getting harder to
distinguish signals from backgrounds.

• The average number of atoms for different domains in Size Shift (DrugOOD-3D-Size Dataset).

• The average band gap value for each fidelity level in Fidelity Shift (QMOF Dataset). Note that the
distinction between these fidelity levels extends beyond the mean of bandgap values. Specifically,
the distribution of calculated band gap values displays varying properties across different levels, as
illustrated in Fig. 1c.

Table 5: More granular information that better reflects the characteristics of the constructed datasets
and distribution shifts.

1) Pileup Shift — the average number of tracks
Domain PU-10 PU-50 PU-90
#Tracks 55.76 232.58 408.38

2) Signal Shift — the average radius of signal tracks
Domain τ → 3µ z′10 → 2µ z′20 → 2µ z → 2µ

#Radius 3979.66 8754.34 16014.98 58092.27

3) Size Shift — the average number of atoms
Domain Domain-8 Domain-37 Domain-95 Domain-157
#Atoms 25 46 105 276

4) Fidelity Shift — the average bandgap value
Domain PBE HLE17 HSE06* HSE06

#Bandgap 2.09 2.68 2.95 3.86

C.2 Track Dataset

Here we employ the term event to refer to the comprehensive recording of an entire physics process
by an experiment [74]. As mentioned in Sec. 3.2.1, a signal event (labeled as positive) involves the
existence of a particular decay of interest (i.e., signal). Here we are interested in multiple types of
signals, including z → µµ, τ → µµµ (which have been widely observed), and z′K → µµ (which is a
theoretical possibility) decays. This motivates us to construct the signal shift, where we expect the
models trained with multiple types of signals to generalize to new signals that are different but to
some extent related to the seen types. Invariant mass is a crucial physical quantity that characterizes
the distinct decay type. Specifically, when ranked from the largest to the smallest, z → µµ has an
invariant mass of 91.19 GeV, z′K → µµ (where we consider K = 80, 70, 60, 50 for model training
and K = 10, 20 for evaluation of model generalizability) has an invariant mass of K GeV, and
τ → µµµ has an invariant mass of 1.777 GeV. In our study, the disparities in invariant mass manifest
through changes in the momenta of the signal particles and the radii of signal tracks (tracks left
by signal particles). In the z → µµ decay, the expected radius of the signal tracks is significantly
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Table 6: The criteria of domain splits and sub-group splits in each distribution shift scenario. The
“S-Component” and “T -Component” columns provide a description of the composition of the data
in the domains S and T . We denote the number of sub-group splits in the source domain S as
|Sub-groups|. The criterion of the sub-group splits for each scenario is also summarized in the
“Criterion” column.

Dataset Shift Shift Case S-Component |Sub-groups| Criterion T -Component

Track-Pileup Pileup
PU50

PU10 5 The number of points
PU50

PU90 PU90

Track-Signal Signal

τ → 3µ Mixed Signals: z → 2µ and z′K → 2µ,
where K = 80, 70, 60, 50,

5 types in total
5 The signal type

τ → 3µ

z′10 → 2µ z′10 → 2µ

z′20 → 2µ z′20 → 2µ

QMOF Fidelity
HSE06 Mixed Fidelity: PBE, HLE17, HSE06* 3

The fidelity level
HSE06

HSE06* Mixed Fidelity: PBE, HLE17, HSE06 3 HSE06*

DrugOOD-3D-Assay Assay lbap-core-ic50-assay

Following DrugOOD

307 The assay environment

Following DrugOODDrugOOD-3D-Size Size lbap-core-ic50-size 91 The molecular size

DrugOOD-3D-Scaffold Scaffold lbap-core-ic50-scaffold 6682 The scaffold pattern

larger, making it easily distinguishable from the background tracks, while in the τ → µµµ decay, the
expected radius of the signal tracks is very close to that of the background tracks.

All events are simulated using the PYTHIA generator [6] with the addition of soft QCD pileup events,
and particle tracks are generated using Acts [2]. Each point in a data entry is associated with a 3D
coordinate, as well as other physical quantities measured by detectors, such as momenta. However,
we use a dummy feature with all ones as the point feature for model training, following [55]. The
model takes 3D coordinates and the dummy features of each point in data as input and predicts the
existence of the signal in the given data.

C.3 QMOF Dataset

We obtain 3D coordinates of each point in the materials data via the DFT-optimized structures
provided by the QMOF Database. For point features, we associate each point in a sample with a
categorical feature indicating the atom type for model training. The model takes 3D coordinates and
atom-type categorical features as input and predicts the band gap value of given materials data.

C.4 DrugOOD-3D Dataset

We first present how we adapt DrugOOD [35] and perform the GDL tasks over the dataset. We
pre-process the SMILES [87] string of data provided in the dataset via the RDKit package [42],
generating a conformer for each molecule, so as to assign each atom with a 3D coordinate. Concretely,
we begin with generating a molecular object based on the SMILES string. Then we add hydrogens to
the molecule and employ the ETKDG method [64] to obtain the initial conformer, which is further
refined using the MMFF94 force field [29]. Note that we drop a data entry if it fails in conformer
generation after the above process. The model takes 3D coordinates and atom-type categorical
features as input, which is analogous to the scenario of the QMOF dataset, and predicts the binding
affinity values of given ligands in a form of the binary classification task, as mentioned in Sec. 3.2.3.

C.5 License

For the newly created Track-Pileup and Track-Signal datasets, we’ve got permission from the HEP
community and utilized Acts to create them. Acts is licensed under the Mozilla Public License
Version 2.0. Others are collected from public datasets and can be found at QMOF and DrugOOD.
The data underlying the QMOF Database is made publicly available under a CC BY 4.0 license.
DrugOOD is licensed under the GNU GENERAL PUBLIC LICENSE 3.0.

Also, note that the data we are using and curating do not contain any personally identifiable informa-
tion or offensive content.
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D Details of Algorithms and Backbones

D.1 Backbone Details

Our benchmark contains 3 backbones which have been widely used in scenarios of geometric deep
learning. Here we give detailed descriptions for each backbone in this study as follows.

• DGCNN (Dynamic Graph CNN), introduced by [85], is a GDL architecture aimed at exploiting
local geometric structures of geometric data while maintaining permutation invariance. Specifically,
it constructs a local neighborhood graph and applies edge convolution, with dynamic graph updates
after each layer of the network.

• Point Transformer [110] is an architecture applying self-attention networks to 3D point cloud
processing. It is built based on a highly expressive Point Transformer layer, which is invariant to
permutation and cardinality of geometric data.

• EGNN (E(n) Equivariant Graph Neural Networks), proposed by [71], is an architecture that
preserves equivariance to rotations, translations and reflections on the coordinates of points when
handling GDL data, i.e., E(n) equivariance, and that also preserves equivariance to permutations
on the set of points.

Discussions. It is noteworthy that any specific application indicated by the datasets may have more
advanced model architectures than these three architectures. We choose the above three as they
are the most general, applicable to diverse scientific application scenarios, and most cutting-edge
architectures are built upon them.

D.2 Algorithm Details

Our benchmark contains 11 baselines spanning the No-Info, O-Feature, and Par-Label levels. We
group them according to their distinct learning strategies and provide detailed descriptions for each
algorithm as follows. We use • to represent algorithms from the No-Info level, † for O-Feature, and ‡
for the Par-Label level, respectively.

• Vanilla: The empirical risk minimization (ERM) [82] minimizes the sum of errors across all
samples.

• Subgroup robustness: Group distributionally robust optimization (GroupDRO) [68] aims to mini-
mize worst-case losses and capture subgroup robustness by increasing the importance of groups
with larger errors.

• Invariant learning: Variance Risk Extrapolation (VREx) [40] captures group invariance by specifi-
cally minimizing the risk variances of training domains.

• Augmentation: Mixup [105] improves model generalization by linearly interpolating two train-
ing samples randomly drawn from the training distribution. We follow [84] to perform Mixup
specifically in the embedding space for the classification of geometric data.

• Causal Inference: DIR [91] captures the causal rationales for graph-structured data, mainly
by conducting interventional augmentation on training data to create multiple interventional
distributions, and then filtering out the parts of data that are unstable for model predictions. It is a
well-known graph-based OOD baseline.

• Information bottleneck: LRI [55] is a novel geometric deep learning strategy grounded on a
variational objective derived from the principle of information bottleneck. It injects learnable
randomness to each node of geometric data, aimed at capturing minimal sufficient information to
make correct and stable predictions. We adopt its LRI-Bernoulli framework, which specifically
injects Bernoulli randomness to each point.

† Domain Invariance for Unsupervised Domain Adaptation: Domain-Adversarial Neural Network
(DANN) [22] encourages feature representations to be consistent across the source and the target
domain by adversarially training the normal label predictor and a special domain classifier; Deep
correlation alignment (DeepCoral) [75] also encourages domain invariance by penalizing the
deviation of covariance matrices between the source and the target domain.

23



‡ Vanilla Fine-tuning: We fine-tune all parameters of the GDL model using a small amount of OOD
data, after it has been pre-trained on ID data via the ERM algorithm. Specifically, we conduct 3
baselines here, fine-tuning the model using 100, 500, and 1000 labeled target samples, respectively.

Discussions. Here we explain the rationale behind the selection of methods in this benchmark.

Firstly, the baselines need to include diverse learning strategies, as listed above. This means that if
multiple methods fundamentally adopt similar ideas or strategies, we will select the most representa-
tive one among them.

Secondly, to our best knowledge, there are no OOD baselines specifically designed for scientific GDL,
except LRI which assesses OOD generalization performance in its paper. To build this benchmark, it
is necessary to extend general-purpose and foundational methodologies to the GDL setting. Therefore,
the selected baselines cover 1) general-purpose methods, which can be applied to various scenarios
such as CV, GraphML, and GDL; 2) graph-specific methods, applicable to GraphML but also feasible
in GDL; and 3) GDL-specific methods, feasible only in GDL. That is why DIR and LRI are essential
components of our selected baselines.

E Motivation and Insights from Experimental Design

Since we aim to understand how different Info levels and their associated algorithms affect the model
generalizability across different application scenarios, it is important to carefully design experimental
settings for a fair comparison among the three Info levels. As introduced in Sec 4.1,

• In the training stage, across the three levels, the model is trained (or pre-trained in Par-Label level)
on the same amount of ID data, and gains additional access to some OOD features (in O-Feature
level) or a few OOD features & labels (in Par-Label level). In this way, we demonstrate the effect
of extra OOD info on model generalizability given that the factor of ID data is controlled invariant
across the three levels.

• In the evaluation stage, across the three levels, we evaluate the model’s ID performance using
the same Val-ID and Test-ID datasets, and its OOD performance using the same Val-OOD and
Test-OOD datasets, for a fair evaluation.

We consider the following cases: If additional OOD information does not improve generalization
performance, it is unnecessary to consider the corresponding Info level. Conversely, if it enhances
model generalizability, we need to further evaluate the practicality of utilizing this Info level and
its associated algorithms by assessing: 1) the expected performance gain from the additional OOD
information, and 2) the costs related to acquiring such info. Regarding point 1), the potential of
extra OOD info to enhance generalization performance relies on the underlying mechanism of the
distribution shift, as analyzed in Section 4.2 and 4.3. This requires evaluating the type and mechanism
of the studied distribution shift using domain-specific knowledge. For point 2), we need to assess
the availability and the cost of collecting some labeled or unlabeled OOD data in the considered
application.

Accordingly, we recommend three steps to GDL practitioners in handling distribution shift issues:
1) Assess the type of shift by leveraging domain-specific knowledge; 2) Assess the availability of
collecting some labeled or unlabeled OOD data; 3) Select the suitable Info level and its associated
method by considering the trade-off between the expenses of gathering extra OOD information
(dependent on step2) and the expected performance gain resulting from such info (dependent on
step1). Therefore, our experimental design and results provide practitioners with insights for making
the most suitable choice in handling scientific distribution shift issues.

F Details of Experimental Implementation

We conduct experiments on 3 scientific datasets and 10 cases of distribution shifts, covering 3 GDL
backbones and 11 baselines from 3 knowledge levels. We implement our codes based on PyTorch
Geometric [18]. We provide details of experimental implementation as follows.

Basic Setup. For all the experiments, we use the Adam optimizer, with a learning rate of 1e-3 and a
weight decay of 1e-5. For each backbone, we use a fixed setting across various scenarios, all with
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Table 7: Hyperparameters search space for all algorithms.
Algorithm Hyperparameter Search Space

VREx Penalty Weight {0.001, 0.01, 0.1, 1.0}
GroupDRO Exponential Coefficient {0.001, 0.01, 0.1, 1.0}

Mixup Probability {0.25, 0.5, 0.75, 1.0}
DIR Causal Ratio {0.3, 0.4, 0.5}
LRI Information Loss Coefficient {0.01, 0.1, 1.0, 10.0}

DANN Domain Loss Weight {0.001, 0.01, 0.1, 1.0, 5.0}
DeepCoral Penalty Weight {0.001, 0.01, 0.1}

the sum global pooling and the RELU activation function. The settings of batch size, maximum
number of epochs, and the number of iterations per epoch for the O-Feature level are consistent
across different algorithms for a fair comparison in this study. Details are shown in Table 8. Note that
the batch size is set to 128 instead of 256 in the O-Feature level of the pileup shift due to the memory
constraints, and maximum number of epochs is set to 75 in the pileup shift because the model has
been trained to converge under this setting.

Table 8: General hyperparameters of the datasets in this study.

Dataset Shift
No-Info O-Feature Par-Label

Batch Size # Max Epochs Batch Size # Max Epochs # Iterations per Epoch Batch Size # Max Epochs

Track
Pileup 256 200 128 200 150 256 75

Signal 256 100 256 100 150 256 100

QMOF Fidelity 256 100 256 100 150 256 100

DrugOOD-3D Size, Scaffold, and Assay 256 100 256 100 150 256 100

Hyperparameter Tuning. For each knowledge level and each algorithm, we search from a set of
one specific hyperparameter to tune, and select the optimal one based on Val-OOD metric scores
for a fair comparison. For VREx, we tune the weight of its variance penalty loss; For GroupDRO,
we tune the Exponential coefficient; For Mixup, we tune the probability value that a certain batch
data performs mixup augmentation; For DIR, we tune the causal ratio for selecting causal edges; For
LRI, we tune the weight of the KL divergence regularizer; For DANN, we tune the weight of the
domain classification loss; For DeepCoral, we tune the weight of covariance penalty loss. We detail
the search space for each hyperparameter in Table 7.

G Complete Experimental Results

Here we present complementary baseline results that are not shown in the main text due to space
limit in Table 9, 10, 11, and 12.

H Complementary Analysis of Experimental Results

In addition to representative analysis shown in the main text (cf. Sec 4.2 and 4.3), here we present
complementary analysis (observations, conclusions, and conjectures) of experimental results to
provide further insights to the community.

• H1. Complementary to General Findings in Sec. 4.2

We observe that OOD generalization methods in No-Info level find it hard to improve generalizability
across various applications, which implies that the assumptions adopted by these methods may be
kind of strong and not really match practical scenarios. Therefore, we recommend that future studies
pay attention to 1) collecting some data information from the target domain T if possible, and 2)
proposing novel OOD methods based on assumptions that better match the scientific applications.

• H2. Complementary to Conclusion 1 in Sec. 4.3

Based on the distinctions between Pileup and Signal shifts outlined in Conclusion 1, we propose two
plausible explanations for the failure of DA strategies in Pileup Shift. One explanation lies in their
distinct mechanisms (cf. Sec. 3.2.1): Pileup Shift represents I-Conditional Shift, a shift occurring
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exclusively in the independent part, i.e. P(Xi|Xc). Therefore, the OOD features, unlike in Signal
Shift, cannot provide sufficient information to guide model predictions in the target domain.

Another conjecture is that, in Pileup Shift, the variation occurs in the number of tracks instead of
geometric characteristics (such as the curvature of signal tracks in Signal Shift). Despite sensitive to
geometric properties, the GDL model may struggle to handle the variation of such non-geometric
information, which makes it more challenging to align the representation space between the source
domain S and the target domain T , when given the additional OOD feature info.

We are currently unable to control either of these two disparitiy factors for further exploration because
it would destroy the inherent scientific implications of the Track-Pileup dataset. Therefore, we
leave more investigation to future work.

• H3. Complementary to Conclusion 1 in Sec. 4.3

The DANN algorithm (and its corresponding O-Feature Level) shows a lower performance gain
in the case of τ → 3µ compared to z′10 → 2µ (cf. Fig. 4), although they are both categorized as
C-Conditional Shift. We explain this disparity by analyzing the geometric characteristics of the data
causal component Xc. As shown in Table 5, the average radius of signal tracks in the τ → 3µ decay
is very close to that of the background tracks, which means the signal and background tracks share
very similar curvature in this case. Therefore, distinguishing signals from backgrounds is much more
challenging in the case of τ → 3µ, even when the model has access to the feature information of the
τ → 3µ event in O-Feature Level.

• H4. Complementary to Conclusion 2 in Sec. 4.3

Additionally, we observe that TL strategies cannot yield a large improvement over ERM in Assay
Shift (cf. Table 10), which is another scenario of Concept Shift (cf. Sec. 3.2.3). Following the analysis
in Conclusion 2, a plausible explanation lies in how PS(Y ) and PT (Y ) varies in this case: Although
there is a large divergence in P(Y ) between different assay subgroups (cf. Fig. 6a), the distribution
P(Y ) is quite similar between the source and target domain (cf. Fig. 6b), i.e. PS(Y ) ≈ PT (Y ),
which stands in contrast to the scenarios of the scaffold shift and size shift shown in Fig. 6c and 6d.

However, to provide a comprehensive answer to this question, it’s crucial to consider other factors
as well. For example, we simplify the affinity prediction by following DrugOOD, transitioning it
to a binary classification task. Besides, the mechanism of the assay shift, unlike the fidelity shift
scenario, may involve more than just a mismatch of label distribution P(Y ) but could also entail
a substantial shift in the input distribution P(X) between the domains S and T . This can pose a
significant challenge, particularly when the amount of labeled OOD data is limited. We leave a further
in-depth analysis of this case to future work.

I Comparisons with Previous Findings

During result analysis, we identify conclusions that align with existing OOD literature and others
that are novel and specific to the GDL setting. We conduct comparisons, including both consistency
and disparity, between our observations and conclusions and those from previous findings related to
OOD, such as in CV tasks.

I.1 Comparison — Consistency

• In Sec. 4.2, we observe that fine-tuning can sometimes result in negative effects when the labeled
OOD data is quite limited, particularly in cases involving a smaller degree of distribution shifts.
This is consistent with [38], where fine-tuning a large model based on a small set of labels may lead
to catastrophic forgetting. To mitigate this issue, robust fine-tuning strategies, such as weight-space
ensembles [90], regularization [94] and surgical fine-tuning [44], could be potential solutions.

• In H1 of Appendix H, we observe that multiple OOD generalization methods in our No-Info level
find it hard to provide significant improvement across various applications. We can find consistent
observations in existing works [14, 28, 39].

• In Sec. 4.3, we conclude that, “For the OOD generalization methods to learn robust representations,
the more informatively the groups obtained by splitting the source domain S indicate the distribution
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shift, the better performance these methods may achieve.” This is consistent with [13], which
revealed the importance of appropriate subgroup partitioning for invariant learning.

• Some works focus on leveraging additional auxiliary variables for OOD generalization. [92] used
auxiliary information to help improve OOD performance in a semi-supervised scenario. [48]
recently proposed to leverage such additional variables to encode information about the latent
distribution shift, and to jointly learn group splits and invariant representation. How to leverage
these auxiliary variables to enhance OOD generalization is an interesting topic for the GDL settings.

I.2 Comparison — Disparity

• Conclusion 1 in Sec. 4.3 reveals how an algorithm can achieve superior performance by analyzing
shifts in the geometric or non-geometric characteristics of the causal (Xc) or non-causal (Xi)
components in geometric data. Such an analysis is tailored for GDL settings.

• The second point in Sec. I.1 could be even more severe in GDL compared to CV tasks considering
the intricate nature of irregularity and geometric prior (information on the structure space and
symmetry properties like invariance or equivariance) inherent in geometric data.

Besides, certain shifts in scientific GDL are infrequent or even unique in CV. This indicates the
challenges faced by several methods initially proposed for CV tasks in addressing these shifts, and the
necessity to develop OOD methods specifically designed for scientific GDL. We list some examples
in our work as follows.

• Size shift, despite categorized as covariate shift, is a unique case where the model trained in data
with lower size is to generalize to data with larger size. Methods designed for CV might struggle to
capture this mechanism, potentially explaining why several methods do not perform well in the
context of size shift in our study.

• Fidelity shift, which indicates the variation in the causal correlation between Xc and Y , poses
a challenge in material property prediction. However, such a shift in P(Y |Xc) is rare in CV
tasks because Y is typically derived from human annotations based on the input X . Therefore,
most methods in our benchmark struggle to handle this type of shift, with the exception of the
pretraining-finetuning strategy.
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(b) Assay Shift

4 6 8 10
Affinity Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y 
De

ns
ity

source 
target 

(c) Scaffold Shift
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(d) Size Shift

Figure 6: Plotted KDE curves of the marginal label distribution P(Y ). (a): P(Y ) between two distinct
assay subgroups, namely Assay 688284 and Assay 1936902, where Y represents the ground-truth
binding affinity value; (b) / (c) / (d): PS(Y ) and PT (Y ) in the assay / scaffold / size shift.

Table 9: Experimental results (Val-ID, Test-ID, Val-OOD, and Test-OOD performance included)
on the z′20 → 2µ case of the Signal shift over three backbones with the evaluation metrics of ACC
(higher values indicate better performance). Note that the ID performance of TL methods is not
evaluated. Parentheses show standard deviation across 3 replicates. We bold and underline the best
and the second-best OOD performance for each distribution shift scenario.

Level Algorithm
EGNN DGCNN Pointtrans

Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD

No-Info

ERM 97.66(0.11) 96.74(0.18) 89.41(0.57) 89.13(0.62) 96.38(0.12) 95.55(0.10) 84.89(0.09) 84.72(0.30) 94.60(0.31) 93.44(0.37) 81.76(0.61) 82.73(0.21)

VREx 97.57(0.12) 96.75(0.24) 88.93(0.71) 89.02(0.71) 96.16(0.16) 95.43(0.44) 84.22(0.29) 84.17(0.12) 94.18(0.10) 93.18(0.34) 82.54(0.03) 83.42(0.41)

GroupDRO 97.62(0.13) 96.74(0.23) 89.80(0.37) 89.55(0.08) 95.99(0.34) 95.12(0.41) 86.20(0.84) 85.80(0.92) 94.41(0.45) 93.22(0.37) 83.53(0.74) 83.90(0.56)

DIR 94.57(1.81) 94.12(1.88) 84.57(2.44) 84.86(2.62) 92.98(1.18) 91.78(0.95) 83.78(1.25) 83.98(1.08) 85.84(10.21) 84.92(9.97) 76.39(4.88) 77.34(5.29)

LRI 96.96(0.08) 96.25(0.16) 86.12(1.07) 86.49(1.13) 94.18(0.08) 93.32(0.07) 82.28(0.09) 82.06(0.04) 92.85(0.18) 91.75(0.13) 80.58(0.83) 81.21(0.41)

MixUp 97.76(0.04) 97.05(0.24) 89.18(0.16) 88.86(0.41) 96.48(0.14) 95.43(0.12) 85.28(0.58) 85.15(0.88) 94.44(0.08) 93.31(0.05) 81.91(0.67) 82.83(0.79)

O-Feature
DANN 96.13(0.20) 95.16(0.68) 89.54(0.31) 89.49(0.31) 94.99(0.48) 94.26(0.19) 88.51(0.21) 88.33(0.20) 90.81(0.26) 90.13(0.16) 82.98(0.57) 83.15(0.50)

Coral 97.71(0.21) 96.92(0.20) 88.86(0.01) 89.07(0.26) 95.28(0.11) 94.54(0.17) 84.33(0.50) 84.54(0.59) 94.17(0.18) 93.23(0.11) 81.58(1.23) 82.50(0.82)

Par-Label

TL100 78.33(0.35) 78.33(0.99) 73.45(0.98) 71.13(1.25) 82.80(0.80) 82.98(0.86)

TL500 82.09(0.68) 82.81(0.27) 79.02(1.52) 78.31(1.83) 83.68(0.23) 84.08(0.38)

TL1000 84.33(0.23) 84.90(0.40) 80.67(1.15) 79.80(1.52) 84.42(0.38) 84.59(0.40)

Table 10: Experimental results on the Assay shift over three backbones, with the evaluation metrics
of AUC (higher values indicate better performance). Note that the ID performance of TL methods is
not evaluated. Parentheses show standard deviation across 3 replicates. We bold and underline the
best and the second-best OOD performance for each distribution shift scenario.

Level Algorithm
EGNN DGCNN Pointtrans

Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD

No-Info

ERM 92.35(0.07) 91.70(0.11) 70.66(0.03) 70.85(0.65) 90.49(0.06) 90.07(0.03) 71.44(0.33) 70.77(0.34) 89.54(0.12) 89.31(0.07) 70.55(0.36) 69.58(0.42)

VREx 92.08(0.09) 91.67(0.13) 72.59(1.05) 71.21(0.47) 89.81(0.23) 89.38(0.09) 71.40(0.16) 70.72(0.20) 89.53(0.09) 89.23(0.07) 70.25(0.25) 69.85(0.38)

GroupDRO 92.05(0.10) 91.21(0.04) 72.15(0.24) 71.82(0.71) 88.79(0.16) 88.45(0.24) 71.62(0.06) 71.69(0.70) 87.93(0.15) 87.87(0.15) 69.94(0.16) 70.37(0.30)

DIR 82.57(1.66) 81.85(1.94) 70.08(0.98) 67.97(2.15) 84.25(0.57) 83.89(0.52) 69.91(0.41) 68.55(1.24) 86.14(1.09) 85.99(1.05) 68.79(0.40) 68.20(0.23)

LRI 92.20(0.07) 91.31(0.15) 71.31(0.58) 70.41(0.13) 90.67(0.09) 90.13(0.09) 71.03(0.09) 70.93(0.34) 89.28(0.08) 89.11(0.18) 69.80(0.11) 69.83(0.50)

MixUp 92.25(0.14) 91.55(0.22) 71.15(0.18) 71.36(0.21) 90.53(0.01) 90.06(0.12) 70.88(0.33) 70.71(0.24) 89.46(0.14) 89.20(0.10) 70.00(0.25) 70.65(0.41)

O-Feature
DANN 91.00(0.09) 90.39(0.07) 72.13(1.47) 71.76(0.87) 90.56(0.13) 90.28(0.16) 70.47(0.29) 70.31(0.42) 89.65(0.21) 89.33(0.13) 69.90(0.22) 69.71(0.17)

Coral 92.38(0.05) 91.84(0.25) 71.51(0.66) 71.29(0.55) 90.59(0.16) 90.03(0.17) 70.80(0.55) 70.14(0.97) 89.66(0.21) 89.39(0.15) 70.02(0.47) 69.51(0.68)

Par-Label

TL100 68.73(0.98) 68.82(0.47) 67.27(0.53) 69.14(0.74) 69.31(0.53) 69.77(0.14)

TL500 70.41(0.30) 70.81(0.70) 69.01(0.51) 69.83(0.63) 69.70(0.47) 70.02(0.28)

TL1000 73.66(1.18) 71.44(0.49) 70.95(0.53) 71.19(0.34) 69.61(0.59) 70.30(0.14)
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Table 11: Experimental results (Val-ID and Val-OOD performance) on Pileup (PU50 and PU90
cases), Signal (τ → 3µ and z′10 → 2µ cases), Size, Scaffold, and Fidelity (HSE06 and HSE06*
cases) shifts over the backbones of EGNN and DGCNN. Note that Val-ID performance of TL methods
is not evaluated. Parentheses show standard deviation across 3 replicates. ↑ denotes higher values
correspond to better performance, whereas ↓ denotes lower for better. We bold and underline the
best and the second-best OOD performance for each distribution shift scenario.

Pileup Shift — I-Conditional Shift (ACC↑)

Level Algorithm
EGNN DGCNN

PU50 PU90 PU50 PU90
Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD

No-Info

ERM 96.18(0.05) 88.68(0.31) 96.29(0.22) 82.76(0.88) 94.66(0.43) 86.49(1.10) 94.66(0.43) 79.63(1.48)
VREx 96.05(0.12) 88.36(0.43) 96.05(0.12) 81.63(0.73) 94.95(0.22) 86.92(0.59) 94.95(0.22) 80.65(0.93)

GroupDRO 93.09(0.36) 83.82(0.33) 93.09(0.36) 76.71(0.19) 91.79(0.16) 79.94(0.36) 91.79(0.16) 74.45(0.21)
DIR 95.50(0.19) 86.57(0.40) 95.50(0.19) 79.74(0.31) 94.44(0.18) 84.48(0.46) 94.44(0.18) 76.43(1.19)
LRI 96.28(0.09) 88.88(0.27) 95.89(0.23) 82.80(0.71) 94.52(0.13) 86.08(0.09) 94.52(0.13) 79.61(0.62)

MixUp 96.25(0.10) 89.29(0.24) 96.25(0.10) 82.67(0.41) 94.86(0.38) 86.29(0.46) 94.86(0.38) 80.42(0.66)

O-Feature
DANN 95.53(0.39) 87.60(0.86) 95.96(0.11) 82.16(0.83) 94.35(0.21) 85.29(0.56) 94.69(0.43) 76.87(1.69)
Coral 95.69(0.23) 87.65(0.87) 95.88(0.20) 79.73(2.43) 94.46(0.28) 84.97(1.04) 94.91(0.42) 78.24(1.08)

Par-Label
TL100 85.79(0.53) 80.31(0.70) 81.79(0.94) 74.13(0.38)
TL500 87.76(0.27) 83.31(0.96) 84.91(1.09) 79.00(1.17)
TL1000 88.57(0.19) 84.87(0.53) 85.19(0.86) 79.94(0.20)

Signal Shift — C-Conditional Shift (ACC↑)

Level Algorithm
EGNN DGCNN

τ → 3µ z′10 → 2µ τ → 3µ z′10 → 2µ

Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD

No-Info

ERM 97.85(0.12) 67.11(0.49) 97.72(0.04) 71.30(0.78) 96.55(0.15) 66.12(0.41) 96.47(0.07) 69.71(0.20)
VREx 97.71(0.18) 67.51(0.66) 97.51(0.12) 72.08(0.52) 96.30(0.14) 66.13(0.19) 96.42(0.22) 69.53(0.55)

GroupDRO 97.38(0.17) 67.92(0.17) 97.68(0.24) 73.25(0.34) 95.81(0.17) 67.20(0.42) 95.75(0.24) 71.15(0.38)
DIR 77.80(2.78) 68.47(0.13) 93.94(2.86) 71.18(0.91) 92.91(0.47) 66.21(0.64) 92.91(0.47) 71.45(0.42)
LRI 96.96(0.08) 68.34(0.28) 96.95(0.12) 70.76(0.72) 91.31(0.69) 68.59(0.08) 94.32(0.38) 68.91(0.08)

MixUp 97.74(0.30) 66.55(1.30) 97.83(0.08) 71.37(1.24) 96.25(0.16) 66.23(1.22) 96.48(0.22) 69.99(0.28)

O-Feature
DANN 82.06(1.10) 69.45(0.12) 91.20(1.04) 77.15(0.45) 81.37(1.60) 69.17(0.02) 88.97(0.29) 75.61(0.16)
Coral 96.94(0.76) 67.96(0.65) 97.70(0.08) 71.97(0.26) 95.52(0.08) 65.91(0.76) 95.17(0.15) 69.88(0.76)

Par-Label
TL100 64.15(1.10) 68.69(0.84) 65.57(0.80) 65.07(1.10)
TL500 67.11(1.04) 71.21(0.86) 67.75(0.93) 67.73(0.63)
TL1000 68.96(0.67) 72.79(0.22) 68.56(0.10) 68.47(0.86)

Size & Scaffold Shift — Covariate Shift (AUC↑)

Level Algorithm
EGNN DGCNN

Size Scaffold Size Scaffold
Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD

No-Info

ERM 91.83(0.21) 78.96(0.07) 94.16(0.19) 75.89(0.78) 90.32(0.03) 77.04(0.10) 91.16(0.10) 75.98(0.22)
VREx 91.56(0.23) 78.94(0.42) 94.41(0.36) 76.41(1.04) 90.07(0.12) 77.47(0.27) 91.85(0.74) 76.63(0.47)

GroupDRO 87.46(0.28) 74.08(0.27) 94.22(0.26) 76.77(0.66) 83.99(0.24) 73.05(0.12) 91.56(0.19) 76.79(0.13)
DIR 87.83(1.03) 75.57(0.46) 89.23(2.45) 73.46(2.61) 80.99(0.32) 72.03(0.63) 79.66(1.19) 73.09(0.80)
LRI 91.85(0.22) 79.24(0.29) 94.35(0.22) 76.38(0.09) 90.27(0.38) 77.23(0.14) 87.83(0.16) 75.82(0.31)

MixUp 91.70(0.27) 79.05(0.23) 94.09(0.24) 77.32(0.15) 90.24(0.14) 77.35(0.24) 91.90(0.09) 76.81(0.32)

O-Feature
DANN 91.98(0.15) 79.07(0.12) 94.88(0.12) 76.65(0.14) 89.79(0.17) 77.04(0.17) 91.59(0.51) 75.70(0.26)
Coral 92.07(0.20) 79.01(0.44) 95.15(0.18) 76.81(0.29) 89.68(0.20) 77.62(0.22) 91.89(0.50) 75.40(0.25)

Par-Label
TL100 77.53(0.69) 74.90(0.70) 76.49(0.26) 74.99(0.57)
TL500 77.80(0.50) 77.12(0.83) 76.59(0.22) 76.18(0.27)
TL1000 77.99(0.18) 77.64(0.26) 76.57(0.11) 76.45(0.27)

Fidelity Shift — Concept Shift (MAE↓)

Level Algorithm
EGNN DGCNN

HSE06 HSE06* HSE06 HSE06*
Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD Val-ID Val-OOD

No-Info
ERM 0.498(0.006) 1.128(0.094) 0.618(0.005) 0.541(0.007) 0.486(0.005) 1.126(0.032) 0.601(0.004) 0.537(0.009)
VREx 0.498(0.005) 1.110(0.068) 0.619(0.004) 0.524(0.013) 0.508(0.003) 1.060(0.089) 0.619(0.003) 0.520(0.009)

GroupDRO 0.530(0.000) 1.029(0.029) 0.674(0.003) 0.525(0.004) 0.512(0.005) 1.012(0.017) 0.684(0.007) 0.505(0.003)

O-Feature
DANN 0.495(0.002) 1.185(0.017) 0.620(0.001) 0.542(0.010) 0.484(0.004) 1.093(0.033) 0.603(0.003) 0.534(0.007)
Coral 0.499(0.007) 1.182(0.044) 0.618(0.005) 0.554(0.006) 0.489(0.001) 1.100(0.017) 0.603(0.002) 0.526(0.010)

Par-Label
TL100 0.726(0.010) 0.606(0.028) 0.702(0.019) 0.583(0.003)
TL500 0.640(0.008) 0.543(0.016) 0.625(0.005) 0.524(0.006)
TL1000 0.619(0.007) 0.535(0.012) 0.586(0.004) 0.508(0.002)
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Table 12: Experimental results (Val-ID, Test-ID, Val-OOD, and Test-OOD performance included)
on Pileup (PU50 and PU90 cases), Signal (τ → 3µ and z′10 → 2µ cases), Size, Scaffold, and
Fidelity (HSE06 and HSE06* cases) shifts over the backbone of Point Transformer. Note that
the ID performance of TL methods is not evaluated. Parentheses show standard deviation across 3
replicates. ↑ denotes higher values correspond to better performance, whereas ↓ denotes lower for
better. We bold and underline the best and the second-best OOD performance for each distribution
shift scenario.

Pileup Shift — I-Conditional Shift (ACC↑)

Level Algorithm
PU50 PU90

Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD

No-Info

ERM 93.93(0.36) 93.15(0.31) 85.25(0.25) 84.07(0.60) 93.93(0.36) 93.15(0.31) 79.73(0.10) 78.67(0.25)
VREx 93.74(0.42) 93.17(0.33) 84.95(0.66) 83.75(0.29) 93.74(0.42) 93.17(0.33) 79.41(0.39) 77.92(0.19)

GroupDRO 92.27(0.30) 91.59(0.21) 82.49(0.75) 81.35(0.78) 92.27(0.30) 91.59(0.21) 74.45(1.52) 73.66(1.49)
DIR 93.15(0.13) 92.81(0.14) 84.79(0.64) 84.13(0.45) 93.15(0.13) 92.81(0.14) 79.71(0.83) 78.92(0.76)
LRI 93.58(0.20) 92.96(0.27) 83.93(0.27) 83.63(0.63) 93.58(0.20) 92.96(0.27) 78.77(0.41) 77.77(0.50)

MixUp 93.79(0.12) 93.16(0.24) 85.41(0.24) 84.55(0.59) 93.79(0.12) 93.16(0.24) 80.17(0.34) 79.15(0.46)

O-Feature
DANN 93.82(0.13) 93.01(0.14) 85.06(0.34) 84.25(0.60) 93.75(0.21) 92.84(0.31) 78.22(0.81) 77.11(0.89)
Coral 93.45(0.07) 92.88(0.14) 84.87(0.10) 83.97(0.12) 93.59(0.12) 92.88(0.12) 77.51(1.20) 76.38(1.73)

Par-Label
TL100 83.39(0.38) 82.76(0.30) 77.95(1.62) 76.59(1.88)
TL500 84.59(0.07) 83.54(0.45) 79.19(0.43) 78.28(0.70)
TL1000 84.82(0.18) 84.32(0.27) 79.89(0.13) 78.64(0.33)

Signal Shift — C-Conditional Shift (ACC↑)

Level Algorithm
τ → 3µ z′10 → 2µ

Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD

No-Info

ERM 94.60(0.31) 93.44(0.37) 68.66(0.14) 67.43(0.13) 94.60(0.31) 93.44(0.37) 68.25(0.39) 66.96(0.92)
VREx 94.29(0.25) 93.24(0.15) 68.68(0.21) 67.63(0.08) 94.29(0.25) 93.24(0.15) 69.88(0.23) 68.28(0.40)

GroupDRO 94.22(0.40) 92.98(0.52) 67.65(0.32) 66.46(0.43) 94.22(0.40) 92.98(0.52) 70.60(0.61) 69.15(0.89)
DIR 85.84(10.21) 84.92(9.97) 68.16(0.55) 67.31(0.49) 85.84(10.21) 84.92(9.97) 68.59(1.93) 66.64(1.81)
LRI 92.85(0.18) 91.75(0.13) 68.74(0.02) 67.55(0.08) 92.85(0.18) 91.75(0.13) 69.56(0.30) 68.22(0.89)

MixUp 94.51(0.10) 93.47(0.24) 68.63(0.16) 67.58(0.06) 94.44(0.08) 93.31(0.05) 69.07(0.88) 67.41(1.29)

O-Feature
DANN 94.53(0.30) 93.20(0.14) 68.69(0.04) 67.64(0.09) 83.97(0.30) 84.07(0.35) 72.26(0.10) 70.75(0.35)
Coral 94.42(0.24) 93.32(0.25) 68.71(0.05) 67.60(0.05) 94.61(0.27) 93.44(0.29) 68.39(0.98) 67.47(0.92)

Par-Label
TL100 66.39(1.66) 65.87(1.20) 69.57(1.63) 68.92(1.96)
TL500 68.52(0.26) 67.60(0.23) 68.80(1.21) 67.69(1.08)
TL1000 68.63(0.13) 67.32(0.10) 70.82(2.03) 69.81(2.00)

Size & Scaffold Shift — Covariate Shift (AUC↑)

Level Algorithm
Size Scaffold

Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD

No-Info

ERM 88.91(0.28) 88.09(0.58) 76.34(0.25) 64.17(0.49) 90.05(0.25) 81.22(0.42) 75.26(0.61) 67.92(0.46)
VREx 88.44(0.28) 87.90(0.35) 76.30(0.16) 64.44(0.34) 89.35(0.31) 80.96(0.33) 75.20(0.19) 67.97(0.47)

GroupDRO 83.52(0.20) 82.71(0.37) 71.89(0.37) 58.19(0.46) 89.29(0.67) 81.05(0.29) 75.32(0.25) 67.93(0.27)
DIR 83.65(2.49) 83.46(2.40) 73.63(1.14) 62.82(0.91) 83.61(3.02) 77.05(1.05) 72.11(0.67) 65.82(1.11)
LRI 88.34(0.58) 87.70(0.77) 76.35(0.24) 64.43(0.45) 85.70(0.27) 79.08(0.21) 74.15(0.18) 67.34(0.15)

MixUp 88.76(0.07) 88.17(0.21) 76.58(0.13) 63.81(0.13) 89.40(0.46) 80.88(0.22) 75.00(0.07) 67.56(0.20)

O-Feature
DANN 88.13(0.12) 87.61(0.07) 76.12(0.16) 64.76(0.33) 89.87(0.16) 80.70(0.20) 74.30(0.24) 67.26(0.31)
Coral 88.33(0.70) 87.91(0.38) 76.60(0.15) 64.57(0.12) 90.26(0.47) 80.44(0.40) 74.49(0.69) 67.45(0.36)

Par-Label
TL100 75.90(0.20) 64.11(0.38) 74.07(0.56) 67.67(0.09)
TL500 75.97(0.37) 64.33(0.47) 75.20(0.52) 68.35(0.18)
TL1000 75.89(0.36) 65.14(0.90) 76.32(0.41) 70.00(0.15)

Fidelity Shift — Concept Shift (MAE↓)

Level Algorithm
HSE06 HSE06*

Val-ID Test-ID Val-OOD Test-OOD Val-ID Test-ID Val-OOD Test-OOD

No-Info
ERM 0.492(0.002) 0.495(0.002) 1.182(0.014) 1.146(0.014) 0.613(0.003) 0.624(0.007) 0.543(0.002) 0.553(0.003)
VREx 0.522(0.009) 0.517(0.008) 1.102(0.044) 1.080(0.033) 0.621(0.003) 0.623(0.004) 0.523(0.002) 0.536(0.004)

GroupDRO 0.527(0.005) 0.516(0.008) 0.993(0.052) 0.959(0.057) 0.641(0.015) 0.643(0.016) 0.513(0.004) 0.529(0.003)

O-Feature
DANN 0.493(0.001) 0.501(0.003) 1.162(0.033) 1.135(0.038) 0.612(0.001) 0.615(0.004) 0.537(0.007) 0.560(0.011)
Coral 0.491(0.003) 0.498(0.000) 1.212(0.027) 1.181(0.033) 0.612(0.006) 0.618(0.013) 0.541(0.006) 0.561(0.003)

Par-Label
TL100 0.684(0.010) 0.689(0.015) 0.583(0.008) 0.598(0.006)
TL500 0.618(0.008) 0.613(0.005) 0.519(0.005) 0.545(0.006)
TL1000 0.583(0.001) 0.584(0.002) 0.511(0.007) 0.522(0.010)
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