arXiv:2405.02795v2 [cs.LG] 30 May 2024

Graph as Point Set

Xiyuan Wang' Pan Li? Muhan Zhang

Abstract

Graph is a fundamental data structure to model
interconnections between entities. Set, on the con-
trary, stores independent elements. To learn graph
representations, current Graph Neural Networks
(GNNs) primarily use message passing to encode
the interconnections. In contrast, this paper in-
troduces a novel graph-to-set conversion method
that bijectively transforms interconnected nodes
into a set of independent points and then uses
a set encoder to learn the graph representation.
This conversion method holds dual significance.
Firstly, it enables using set encoders to learn from
graphs, thereby significantly expanding the de-
sign space of GNNs. Secondly, for Transformer,
a specific set encoder, we provide a novel and
principled approach to inject graph information
losslessly, different from all the heuristic struc-
tural/positional encoding methods adopted in pre-
vious graph transformers. To demonstrate the
effectiveness of our approach, we introduce Point
Set Transformer (PST), a transformer architecture
that accepts a point set converted from a graph as
input. Theoretically, PST exhibits superior expres-
sivity for both short-range substructure counting
and long-range shortest path distance tasks com-
pared to existing GNNs. Extensive experiments
further validate PST’s outstanding real-world per-
formance. Besides Transformer, we also devise
a Deepset-based set encoder, which achieves per-
formance comparable to representative GNNGs, af-
firming the versatility of our graph-to-set method.

1. Introduction

Graph, composed of interconnected nodes, has a wide range
of applications and has been extensively studied. In graph
machine learning, a central focus is to effectively lever-
age node connections. Various architectures have arisen
for graph tasks, exhibiting significant divergence in their
approaches to utilizing adjacency information.

Two primary paradigms have evolved for encoding adja-
cency information. The first paradigm involves message
passing between nodes via edges. Notable methods in

this category include Message Passing Neural Network
(MPNN) (Gilmer et al., 2017), a foundational framework
for GNNs such as GCN (Kipf & Welling, 2017), GIN (Xu
et al., 2019a), and GraphSAGE (Hamilton et al., 2017).
Subgraph-based GNNs (Zhang & Li, 2021; Huang et al.,
2023b; Bevilacqua et al., 2022; Qian et al., 2022; Frasca
et al., 2022; Zhao et al., 2022; Zhang et al., 2023a) select
subgraphs from the whole graph and run MPNN within
each subgraph. These models aggregate messages from
neighbors to update the central nodes’ representations. Ad-
ditionally, Graph Transformers (GTs) integrate adjacency
information into the attention matrix (Mialon et al., 2021;
Kreuzeret al., 2021; Wu et al., 2021; Dwivedi & Bresson,
2020; Ying et al., 2021; Shirzad et al., 2023) (note that some
early GTs have options to not use adjacency matrix by using
only positional encodings, but the performance is signif-
icantly worse (Dwivedi & Bresson, 2020)). Some recent
GTs even directly incorporate message-passing layers into
their architectures (Rampések et al., 2022; Kim et al., 2021).
In summary, this paradigm relies on adjacency relationships
to facilitate information exchange among nodes.

The second paradigm designs permutation-equivariant neu-
ral networks that directly take adjacency matrices as in-
put. This category includes high-order Weisfeiler-Leman
tests (Maron et al., 2019a), invariant graph networks (Maron
et al., 2019b), and relational pooling (Chen et al., 2020).
Additionally, various studies have explored manual feature
extraction from the adjacency matrix, including random
walk structural encoding (Dwivedi et al., 2022a; Li et al.,
2020), Laplacian matrix eigenvectors (Wang et al., 2022;
Lim et al., 2023; Huang et al., 2023a), and shortest path dis-
tances (Li et al., 2020). However, these approaches typically
serve as data augmentation steps for other models, rather
than constituting an independent paradigm.

Both paradigms heavily rely on adjacency information in
graph encoding. In contrast, this paper explores whether
we can give up adjacency matrix in graph models while
achieving competitive performance. As shown in Figure 1,
our innovative graph-to-set method converts interconnected
nodes into independent points, subsequently encoded by a
set encoder like Transformer. Leveraging our symmetric
rank decomposition, we break down the augmented adja-
cency matrix A + D into QQT, wherein @ is constituted
by column-full-rank rows, each denoting a node coordinate.

g

oo ® : 3
O—>3 — | ¥
o _ o : g
° ® H
Input Graph Pomnt Set Set Encoder

Interlinked nodes Independent points with O(r)equivanant

coordinates contaimng ~ Transformer
full adjacency mformation
Figure 1. Our method converts the input graph to a point set first
and encoding it with a set encoder. O(r) denotes the set of r-
dimension orthogonal transformations.

This representation enables us to express the presence of
edges as inner products of coordinate vectors (Q; and Q;).
Consequently, interlinked nodes can be transformed into
independent points and supplementary coordinates without
information loss. Theoretically, two graphs are isomorphic
iff the two converted point sets are equal up to an orthogo-
nal transformation (because for any QQT = A+ D, QR
is also a solution where R is any orthogonal matrix). This
equivalence empowers us to encode the set with coordinates
in an orthogonal-transformation-equivariant manner, akin
to E(3)-equivariant models designed for 3D geometric deep
learning. Importantly, our approach is versatile, allowing
for using any equivariant set encoder, thereby significantly
expanding the design space of GNNs. Furthermore, for
Transformer, a specific set encoder, our method offers a
novel and principled way to inject graph information loss-
lessly. In Appendix D, we additionally show that it unifies
various heuristic structural/positional encodings in previous
GTs, including random walk (Li et al., 2020; Dwivedi et al.,
2023; Rampasek et al., 2022), heat kernel (Mialon et al.,
2021), and resistance distance (Zhang et al., 2023b).

To instantiate our method, we introduce an orthogonal-
transformation-equivariant Transformer, namely Point Set
Transformer (PST), to encode the point set. PST provably
surpasses existing models in long-range and short-range ex-
pressivity. Extensive experiments verify these claims across
synthetic datasets, graph property prediction datasets, and
long-range graph benchmarks. Specifically, PST outper-
forms all baselines on QM9 (Wu et al., 2017) dataset. More-
over, our graph-to-set method is not constrained to only one
specific set encoder. We also propose a Deepset (Segol &
Lipman, 2020)-based model, which outperforms compara-
ble to GIN (Xu et al., 2019b) on our datasets.

Differences from eigendecomposition. Note that our
graph-to-set method is distinct from previous approaches
that decompose adjacency matrices for positional encod-
ings (Dwivedi et al., 2023; Wang et al., 2022; Lim et al.,
2023; Bo et al., 2023). The key differences root in that
previous methods primarily relied on eigendecomposition
(EVD), whereas our method is based on symmetric rank
decomposition (SRD). Their differences are as follows:

* SRD enables a practical conversion of graph problems
into set problems. SRD of a matrix is unique up to a single
orthogonal transformation, while EVD is unique up to a
combination of orthogonal transformations within each
eigenspace. This difference allows SRD-based models to
easily maintain symmetry, ensuring consistent predictions
for isomorphic graphs, while EVD-based methods (Lim
et al., 2023) struggle because they need to deal with each
eigenspace individually, making them less suitable for
graph-level tasks where eigenspaces vary between graphs.

* Due to the advantage of SRD, we can utilize set encoder
with coordinates to capture graph structure, thus expand-
ing the design space of GNN. Moreover, our method pro-
vides a principled way to add graph information to Trans-
formers. Note that previous GTs usually require multiple
heuristic encodings together. Besides node positional en-
codings, they also use adjacency matrices: Grit (Maetal.,
2023) and graphit (Mialon et al., 2021) use random walk
matrix (normalized adjacency) as relative positional en-
coding (RPE). Graph Transformer (Dwivedi & Bresson,
2020), Graphormer (Ying et al., 2021), and SAN (Kreuzer
et al., 2021) use adjacency matrix as RPE. Dwivedi &
Bresson (2020)’s ablation shows that adjacency is crucial.
GPS (Rampisek et al., 2022), Exphormer (Shirzad et al.,
2023), higher-order Transformer (Kim et al., 2021), and
GraphVit/MLP-Mixer (He et al., 2023) even directly in-
corporate message passing blocks which use adjacency
matrix to guide message passing between nodes.

In summary, this paper introduces a novel approach to graph
representation learning by converting interconnected graphs
into independent points and subsequently encoding them
using an orthogonal-transformation-equivariant set encoder
like our Point Set Transformer. This innovative approach
outperforms existing methods in both long- and short-range
tasks, as validated by comprehensive experiments.

2. Preliminary

For a matrix Z € R®*?, we define Z; € R? as the i-th row
(as a column vector), and Z;; € R as its (¢, j) element. For a
vector A e R?, diag(A) e R**“ is the diagonal matrix with A
as its diagonal elements. And for S €R**?, diagonal(S) €
R? represents the vector of its diagonal elements.

Let G = (V, E, X)) denote an undirected graph. Here, V =
{1,2,3,...,n} is the set of n nodes, E C V x V is the
set of edges, and X € R™*? is the node feature matrix,
whose v-th row X, is of node v. The edge set E' can also be
represented using the adjacency matrix A € R™*"™, where
Ayy is 1if the edge exists (ie., (u,v) € E) and 0 otherwise.
A graph G can also be represented by the pair (V, A, X) or
(A, X). The degree matrix D is a diagonal matrix with node
degree (sum of a row of matrix A) as the diagonal elements.

Given a permutation function = : {1,2,3,...,n} —

Graph As Point Set

{1,2,3,...,n}, the permuted graph is =(G) =
(GIT(A), ?T(X)), where GIT(A) € Rxn, "'T(A)Tr(u)ﬂ'(fu) = Ay,
and 7(X) € R 71(X)r) = X, forall u,v € V.
Essentially, the permutation 7 reindex each node v to m(v)
while preserving the original graph structure and node
features. Two graphs are isomorphic iff they can be mapped
to each other through a permutation.

Definition 2.1. Graphs G; = (A1, X1) and Gy = (A2, X3)
are isomorphic, denoted as G; ~ Go, if there exists a permu-
tation 7 such that w(A;) = A, and w(X;) = X,.

Isomorphic graphs can be transformed into each other by
merely reindexing their nodes. In graph tasks, models
should assign the same prediction to isomorphic graphs.

Symmetric Rank Decompeosition (SRD). Decomposing an
matrix into two full-rank matrices is well-known (Puntanen
etal., 2011). We further show that a positive semi-definite
matrix can be decomposed into a full-rank matrix.

Definition 2.2. (Symmetric Rank Decomposition, SRD)
Given a (symmetric) positive semi-definite matrix L €
R™*™ of rank r, its SRD is Q € R™ ", where L=QQ".

As L = QQ7, rank(Q)=rank(L)=r, which implies that
() must be full column rank. Moreover, two SRDs of the
same matrix are equal up to an orthogonal transformation.
Let O(r) denote the set of orthogonal matrices in R"™*".

Proposition 2.3. Matrices ()1 and Q5 in R™™ " are SRD of
the same matrix iff there exists R € O(r), Q1 = Q2R.

SRD is closely related to eigendecomposition. Let L =
Udiag(A)UT denote the eigendecomposition of L, where
A € R" is the vector of non-zero eigenvalues, and U €
R™" is the matrix whose columns are the corresponding
eigenvectors. Q = Udiag(A'/?) yields an SRD of L, where
the superscript denotes element-wise square root operation.

3. Graph as Point Set

In this section, we present our innovative method for convert-
ing graphs into sets of points. We first show that Symmetric
Rank Decomposition (SRD) can theoretically achieve this
transformation: two graphs are isomorphic iff the sets of
coordinates generated by SRD are equal up to orthogonal
transformations. Additionally, we parameterize SRD for bet-
ter real-world performance. Proof details are in Appendix A.

3.1. Symmetric Rank Decomposition for Coordinates

A natural approach to breaking down the interconnections
between nodes is to decompose the adjacency matrix. While
previous methods often used eigendecomposition outputs as
supplementary node features, these features are not unique.
Consequently, models relying on them fail to provide con-
sistent predictions for isomorphic graphs, ultimately leading

to poor generalization. To address this, we show that Sym-
metric Rank Decomposition (SRD) can convert graph-level
tasks into set-level tasks with perfect alignment. Since SRD
only applies to positive semi-definite matrices, we use the
augmented adjacency matrix D + A, which is always posi-
tive semi-definite (proof in Appendix A.2).

Theorem 3.1. Given two graphs G = (V,A,X) and
G' = (V', A’, X") with respective degree matrices D and
D, G ~ G iff AR € O(r),{(Xv, RQy)|Vv € V} =
{(X!.,Q.)|v e V'}, where Q and Q' are the SRD of D+ A
and D' + A’ respectively, and r is the rank of Q.

In this theorem, the graph G = (V, A, X) is converted to a
set of points {(Xy, Qu)|v € V'}, where X, is the original
node feature of v, and @, the v-th row of SRD of D + A,
is the r-dimensional coordinate of node v. Consequently,
two graphs are isomorphic iff their point sets are equal up to
an orthogonal transformation. Intuitively, we can imagine
that the graph is mapped into an r-dimensional space, where
each node has a coordinate, and the inner product between
two coordinates represents edge existence. This mapping
is not unique, since we can freely rotate the coordinates
through an orthogonal transformation without changing in-
ner products. This conversion can be loosely likened to the
reverse process of constructing molecular graph from atoms’
3D coordinates, where Euclidean distances between atoms
determine node connections in the graph.

Leveraging Theorem 3.1, we can convert a graph into a
set and employ a set encoder for encoding it. Our method
consistently produces representations for isomorphic graphs
when the encoder is orthogonal transformation-invariant.
The method’s expressivity hinges on the set encoder’s ability
to differentiate non-equal sets, with greater encoder power
enhancing overall performance on graph tasks.

3.2. Parameterized Coordinates

In this section, we enhance SRD’s practical performance
through parameterization. As shown in Section 2, SRD
can be implemented via eigendecomposition: @ =
Udiag(A'/2), where A € R denotes non-zero eigenvalues
of the decomposed matrix, and U € R™*" denotes corre-
sponding eigenvectors. To parameterize SRD, we replace
the element-wise square root with a function f : R™ — R".
This alteration further eliminates the constraint of non-
negativity on eigenvalues and enables the use of various
symmetric matrices containing adjacency information to
generate coordinates. Additionally, for model flexibility,
the coordinates can include multiple channels, with each
channel corresponding to a distinct eigenvalue function.

Definition 3.2. (Parameterized SRD, PSRD) With a d-
channel eigenvalue function f : R” —R"*%and an adjacency
function Z:R™*™ — R™™ producing symmetric matrices,
PSRD coordinate of a graph G=(V, A, X) is Q(Z(A), f e

Graph As Point Set

R"*rxd_whose i-th channel is Udiag(f;(A)) € R™*",
where A € R", U € R™*" are non-zero eigenvalues and
corresponding eigenvectors of Z(A), and f; :R"™ —R" is the
i-th channel of f.

In the definition, Z maps adjacency matrix to its vari-
ants like Laplacian matrix, and f transforms eigenvalues.
Q(Z(A), f)u € R™4 is node u’s coordinate. Similar to
SRD, PSRD can also convert the graph isomorphism prob-
lems to set equality problems.

Theorem 3.3. Given a permutation-equivariant adjacency
function Z, for graphs G=(V, A, X)and G'=(V', A’, X")

* Ifeigenvalue function f is permutation-equivariant and
G ~ @', then two point sets with PSRD coordinates are
equal up to an orthogonal transformation, i.e., AR € O(r),
X0, RO(Z(A),f)v|v € V}={X,,Q(ZA),f)v|v € V},
where T is the rank of coordinates.

» If Z is injective, for all d > 2, there exists a continuous
permutation-equivariant function f:R™ — R4 that if
two point sets with PSRD coordinates are equal up to an
orthogonal transformation, G ~ G'.

Given permutation equivariant f and Z, the point sets with
PSRD coordinates are equal up to an orthogonal transforma-
tion for isomorphic graphs. Moreover, there exists f making
reverse true. Therefore, we can safely employ permutation-
equivariant eigenvalue functions, ensuring consistent pre-
dictions for isomorphic graphs. An expressive eigenvalue
function also allows for the lossless conversion of graph-
level tasks into set problems. In implementation, we utilize
DeepSet (Segol & Lipman, 2020) due to its universal expres-
sivity for permutation-equivariant set functions. Detailed
architecture is shown in Figure 3 in Appendix G.

In summary, we use SRD and its parameterized generaliza-
tion to decompose the adjacency matrix or its variants into
coordinates. Thus, we transform a graph into a point set
where each point represents a node and includes both the
original node feature and the coordinates as its features.

4. Point Set Transformer

Our method, as depicted in Figure 1, comprises two steps:
converting the graph into a set of independent points and
encoding the set. Section 3 demonstrates the bijective trans-
formation of the graph into a set. To encode this point set,
we introduce a novel architecture, Point Set Transformer
(PST), designed to maintain orthogonality invariance and
deliver remarkable expressivity. Additionally, to highlight
our method’s versatility, we propose a DeepSet (Segol &
Lipman, 2020)-based set encoder in Appendix K.

PST’s architecture is depicted in Figure 4 in Appendix G.
PST operates with two types of representations for each
point: scalars, which remain invariant to coordinate orthogo-

nal transformations, and vectors, which adapt equivariantly
to coordinate changes. For a point ¢, its scalar representation
is s; € R4, and its vector representation is v; € R"*<, where
d is the hidden dimension, and r is the rank of coordinates.
s; and v; are initialized with the input node feature X; and
PSRD coordinates (detailed in Section 3.2) containing graph
structure information, respectively.

Similar to conventional transformers, PST comprises multi-
ple layers. Each layer incorporates two key components:

Scalar-Vector Mixer. This component, akin to the feed-
forward network in Transformer, individually transforms
point features. To enable information exchange between
vectors and scalars, we employ the following architecture.

s, « MLP; (s;||diagonal(Wyv] v, WY)), (1)
v + v;diag(MLPs(s;)) W3 + v; Wy (2)

Here, Wi, Wy, Wa, and W, € R9*9 are learnable matri-
ces for mixing different channels of vector features. Addi-
tionally, MLP; : R?2474 and MLP; : R?~4 represent two
multi-layer perceptrons transforming scalar representations.
The operation diagonal(W;v] v;Wy) takes the diagonal ele-
ments of a matrix, which translates vectors to scalars, while
v;diag(MLPy(s;)) transforms scalar features into vectors.
As vT RTRv; = vI'v;, VR € O(r), the scalar update is
invariant to orthogonal transformations of the coordinates.
Similarly, the vector update is equivariant to O(r).

Attention Layer. Akin to ordinary attention layers, this
component compute pairwise attention score to linearly
combine point representations.

Atten,; = MLP((W;s; @Ws;)||diagonal (W2 v] v;Wy)) (3)

Here, W; and W;" denote the linear transformations for
scalars and vectors queries, respectively, while W and W}
are for keys. The equation computes the inner products of
queries and keys, similar to standard attention mechanisms.
It is easy to see Atten;; is also invariant to O(r).

Then we linearly combine point representations with atten-
tion scores as the coefficients:

si ¢ > Atteny;sy, v+ Y Atten;v] @)
3 J

Each transformer layer is of time complexity O(n?r) and
space complexity O(n? + nr).

Pooling. After several layers, we pool all points’ scalar
representations as the set representation s.

s + Pool({s;|z € V}), (5

where Pool is pooling function like sum, mean, and max.

Graph As Point Set

5. Expressivity

In this section, we delve into the theoretical expressivity
of our methods. Our PSRD coordinates and the PST archi-
tecture exhibit strong long-range expressivity, allowing for
efficient computation of distance metrics between nodes,
as well as short-range expressivity, enabling the counting
of paths and cycles rooted at each node. Therefore, our
model is more expressive than many existing models, in-
cluding GIN (equivalent to the 1-WL test) (Xu et al., 2019b),
PPGN (equivalent to the 2-FWL test, more expressive in
some cases) (Maron et al., 2019a), GPS (Rampdsek et al.,
2022), and Graphormer (Ying et al., 2021) (two representa-
tive graph transformers). More details are in Appendix B.

5.1. Long Range Expressivity

This section demonstrates that the inner products of PSRD
coordinates exhibits strong long-range expressivity, which
PST inherits by utilizing inner products in attention layers.

When assessing a model’s capacity to capture long-range
interactions (LRI), a key measure is its ability to compute
shortest path distance (spd) between nodes. Since formally
characterizing LRI can be challenging, we focus on analyz-
ing models’ performance concerning this specific measure.
We observe that existing models vary significantly in their
capacity to calculate spd. Moreover, we find an intuitive
explaination for these differences: spd between nodes can
be expressed as spd(i, j, A) = arg ming {k|A¥; > 0}, and
the ability to compute AKX, the K -th power of the adjacency
matrix A, can serve as a straightforward indicator. Different
models need different number of layers to compute AX.

PSRD coordinates. PSRD coordinates can capture arbitrar-

ily large shortest path distances through their inner products
in one step. To illustrate it, we decompose the adjacency

matrix as A = Udiag(A)UT, and employ coordinates as U
and Udiag(AK). Their inner products are as follows:

1 step

Udiag(A")UT — AX 6)

Theorem 5.1. There exists permutation-equivariant func-
tions fr,k = 0,1,2,..., K, such that for all graphs G =
(A, X), the shortest path distance between node i, j is a
function of (Q(A, fo)i, Q(A, fr);), k=0,1,2,..K, where
Q(A, f) is the PSRD coordinate defined in Section 3.2, K
is the maximum shortest path distance between nodes.

2-FWL. A powerful graph isomorphic test, 2-Folklore-
Weisfeiler-Leman Test (2-FWL), and its neural network
version PPGN (Maron et al., 2019a) produce node pair rep-
resentations in a matrix X € R™*™. X is initialized with A.
Each layer updates X with X X. So intuitively, computing
AX takes [log, K layers.

[logs K| layers

A AT=AA 5 A=A2A% 5 o AKSAR AR ()

Theorem 5.2. Let c*(G);; denote the color of node tuple
(,7) of graph G at iteration k. Given graphs G = (A, X)
and G'=(A’, X"), for all K e N*, if two node tuples (i, j)
inG and (',7') in G’ have spd(i, j, A) < spd(i',5', A') <
2K then cX(G)ij # c&(G')ijr. Moreover, for all
L > 2K, there exists i,3,i',j', such that spd(i,j, A) >
SPd(E",j!, A,) EL while CK (g),;j :CK (gr)gfjf.

In other words, K iterations of 2-FWL can distinguish pairs
of nodes with different spds, as long as that distance is at
most 2K . Moreover, K -iteration 2-FWL cannot differenti-
ate all tuples with spd > 2% from other tuples with different
spds, which indicates that K -iteration 2-FWL is effective in
counting shortest path distances up to a maximum of 2%

MPNN. Intuitively, each MPNN layer uses AX to update
node representations X . However, this operation in general
cannot compute A% unless the initial node feature X = I.

K layers
-

X 5 AX - A2X=AAX — ... = AKXx=2AK"1x (8

Theorem 5.3. A graph pair exists that MPNN cannot dif-
ferentiate, but their sets of all-pair spd are different.

If MPNNs can compute spd between node pairs, they should
be able to distinguish this graph pair from the sets of spd.
However, we show no MPNNs can distinguish the pair, thus
proving that MPNNs cannot compute spd.

Graph Transformers (GTs) are known for their strong long-
range capacities (Dwivedi et al., 2022b), as they can ag-
gregate information from the entire graph to update each
node’s representation. However, aggregating information
from the entire graph is not equivalent to capturing the dis-
tance between nodes, and some GTs also fail to compute
spd between nodes. Details are in Appendix C. Note that
this slightly counter-intuitive results is because we take a
new perspective to study long range interaction rather than
showing GTs are weak in long range capacity.

Besides shortest path distances, our PSRD coordinates also
enables the unification of various structure encodings (dis-
tance metrics between nodes), including random walk (Li
et al., 2020; Dwivedi et al., 2023; Rampasek et al., 2022),
heat kernel (Mialon et al., 2021), resistance distance (Zhang
& Li, 2021; Zhang et al., 2023b). Further insights and details
are shown in Table 5 in Appendix D.

5.2. Short Range Expressitivity

This section shows PST’s expressivity in representative
short-range tasks: path and cycle counting.

Theorem 5.4. A one-layer PST can count paths of length
1 and 2, a two-layer PST can count paths of length 3 and
4, and a four-layer PST can count paths of length 5 and 6.
Here, “count” means that the (i, j) element of the attention

Graph As Point Set

matrix in the last layer can express the number of paths
between nodes i and ;.

Therefore, with enough layers, our PST models can count
the number of paths of length < 6 between nodes. Further-
more, our PST can also count cycles.

Theorem 5.5. A one-layer PST can count cycles of length
3, a three-layer PST can count cycles of length 4 and 5, and
a five-layer PST can count cycles of length 6 and 7. Here,
“count” means the representation of node i in the last layer
can express the number of cycles involving node 1.

Therefore, with enough layers, PST can count the number of
cycles of length < 7 between nodes. Given that even 2-FWL
is restricted to counting cycles up to length 7 (Fiirer, 2017),
the cycle counting power of our Point Set Transformer is at
least on par with 2-FWL.

6. Related Work

Graph Neural Network with Eigen-Decomposition. Our
approach employs coordinates derived from the symmet-
ric rank decomposition (SRD) of adjacency or related ma-
trices, differing from prior studies that primarily rely on
eigendecomposition (EVD). While both approaches have
similarities, SRD transforms the graph isomorphism prob-
lem into a set problem bijectively, which is challenging
for EVD, because SRD of a matrix is unique up to a single
orthogonal transformation, while EVD is unique up to mul-
tiple orthogonal transformations in different eigenspaces.
This key theoretical difference has profound implications for
model design. Early efforts, like Dwivedi et al. (2023), intro-
duce eigenvectors into MPNNs’ input node feature (Gilmer
et al., 2017), and subsequent works, such as Graph Trans-
formers (GTs) (Dwivedi & Bresson, 2020; Kreuzer et al.,
2021), incorporate eigenvectors as node positional encod-
ings. However, due to the non-uniqueness of eigenvectors,
these models produce varying predictions for isomorphic
graphs, limiting their generalization. Lim et al. (2023) par-
tially solve the non-uniqueness problem. However, their
solutions are limited to cases with constant eigenvalue mul-
tiplicity in graph tasks due to the property of EVD. On
the other hand, approaches like Wang et al. (2022), Bo
et al. (2023), and Huang et al. (2024) completely solve non-
uniqueness and even apply permutation-equivariant func-
tions to eigenvalues, similar to our PSRD. However, these
methods aim to enhance existing MPNNs and GTs with
heuristic features. In contrast, we perfectly align graph-
level tasks with set-level tasks through SRD, allowing us to
convert orthogonal-transformation-equivariant set encoders
to graph encoders and to inject graph structure information
into Transformers in a principled ways.

Equivariant Point Cloud and 3-D Molecule Neural Net-
works. Equivariant point cloud and 3-D molecule tasks

share resemblances: both involve unordered sets of 3-D co-
ordinate points as input and require models to produce pre-
dictions invariant/equivariant to orthogonal transformations
and translations of coordinates. Several works (Chen et al.,
2021; Winkels & Cohen, 2018; Cohen et al., 2018; Gasteiger
et al., 2021) introduce specialized equivariant convolution
operators to preserve prediction symmetry, yet are later sur-
passed by models that learn both invariant and equivariant
representations for each point, transmitting these represen-
tations between nodes. Notably, certain models (Satorras
et al., 2021; Schiitt et al., 2021; Deng et al., 2021; Wang &
Zhang, 2022) directly utilize vectors mirroring input coordi-
nate changes as equivariant features, while others (Thomas
et al., 2018; Batzner et al., 2022; Fuchs et al., 2020; Hutchin-
son et al., 2021; Worrall et al., 2017; Weiler et al., 2018)
incorporate high-order irreducible representations of the
orthogonal group, achieving proven universal expressiv-
ity (Dym & Maron, 2021). Our Point Set Transformer
(PST) similarly learns both invariant and equivariant point
representations. However, due to the specific conversion
of point sets from graphs, PST’s architecture varies from
existing models. While translation invariance characterizes
point clouds and molecules, graph properties are sensitive to
coordinate translations in our method. Hence, we adopt in-
ner products of coordinates. Additionally, these prior works
center on 3D point spaces, whereas our coordinates exist in
high-dimensional space, rendering existing models and the-
oretical expressivity results based on high-order irreducible
representations incompatible with our framework.

7. Experiments

In our experiments, we evaluate our model across three
dimensions: substructure counting for short-range expres-
sivity, real-world graph property prediction for practical per-
formance, and Long-Range Graph Benchmarks (Dwivedi
et al., 2022b) to assess long-range interactions. Our primary
model, Point Set Transformer (PST) with PSRD coordi-
nates derived from the Laplacian matrix, performs well
on all tasks. Moreover, our graph-to-set method is adapt-
able to various configurations. In ablation study (see Ap-
pendix H), another set encoders Point Set DeepSet (PSDS,
introduced in Appendix K), SRD coordinates different from
PSRD, and coordinates decomposed from the adjacency ma-
trix and normalized adjacency matrix all demonstrate good
performance, highlighting the versatility of our approach.
Although PST has higher time complexity compared to ex-
isting Graph Transformers and is slower on large graphs,
it shows similar scalability to our baselines in real-world
graph property prediction datasets (see Appendix I). Our
PST uses fewer or comparable parameters than baselines
across all datasets. Dataset details, experiment settings, and
hyperparameters are provided in Appendix E and F.

Graph As Point Set

Table 1. Normalized MAE () on substructure counting tasks. Following Huang et al. (2023b), models can count the structure if the test

loss < 10 units (

in the table), measured using a scale of 10~2. TT: Tailed Triangle. CC: Chordal Cycle, TR: Triangle-Rectangle.

Method 2-Path 3-Path 4-Path 5-path 6-path 3-Cycle 4-Cycle 5-Cycle 6-Cycle 7-cycle TT cc TR
MPNN 1.0 67.3 159.2 2353 321.5 3515 2742 208.8 1555 169.8 363.1 311.4 2979
IDGNN 19 1.8 273 68.6 78.3 0.6 2.2 49 49.5 499 105.3 454 62.8
NGNN 1.5 2.1 244 754 82.6 0.3 1.3 40.2 43.9 52.2 1044 39.2 72.9
GNNAK 4.5 40.7 7.5 47.9 48.8 04 4.1 13.3 23.8 79.8 4.3 11.2 131.1
I2GNN 15 2.6 4.1 54.4 63.8 0.3 1.6 2.8 8.2 39.9 1.1 1.0 1.3
PPGN 0.3 1.7 4.1 15.1 21.7 0.3 0.9 3.6 7.1 27.1 2.6 1.5 14.4
PSDS 2.2,0.12.65044.910899+0.515.8:0.2 06107 2.2403 5.8:106 25.140.7 57.740.36.041.329.8,3056.4147

PST

0.74011.140.11.54012.2401 33403 08101 1.9402 3.1403 49403 8.6405 3.040.1 40407 92400

7.1. Graph substructure counting

As Chen et al. (2020) highlight, the ability to count sub-
structures is a crucial metric for assessing expressivity. We
evaluate our model’s substructure counting capabilities on
synthetic graphs following Huang et al. (2023b). The con-
sidered substructures include paths of lengths 2 to 6, cycles
of lengths 3 to 7, and other substructures like tailed triangles
(TT), chordal cycles (CC), and triangle-rectangle (TR). Our
task involves predicting the number of paths originating
from each node and the cycles and other substructures in
which each node participates. We compare our Point Set
Transformer (PST) with expressive GNN models, including
ID-GNNs (You et al., 2021), NGNNs (Zhang & Li, 2021),
GNNAK-+(Zhao et al., 2022), I2-GNN(Huang et al., 2023b),
and PPGN (Maron et al., 2019a). Baseline results are from
Huang et al. (2023b), where uncertainties are unknown.

Results are in Table 1. Following Huang et al. (2023b), a
model can count a substructure if its normalized test Mean
Absolute Error (MAE) is below 10~2 (10 units in the table).
Remarkably, our PST counts all listed substructures, which
aligns with our Theorem 5.4 and Theorem 5.5, while the
second-best model, I2-GNN, counts only 10 out of 13 sub-
structures. PSDS can also count 8 out of 13 substructures,
showcasing the versatility of our graph-to-set method.

7.2. Graph properties prediction

We conduct experiments on four real-world graph datasets:
QM9 (Wu et al, 2017), ZINC, ZINC-full (G6émez-
Bombarelli et al., 2016), and ogbg-molhiv (Hu et al., 2020).
PST excels in performance, and PSDS performs comparable
to GIN (Xu et al., 2019a). PST also outperforms all base-
lines on TU datasets (Ivanov et al., 2019) (see Appendix J).

For the QM9 dataset, we compare PST with various ex-
pressive GNNs, including models considering Euclidean
distances (1-GNN, 1-2-3-GNN (Morris et al.,, 2019),
DTNN (Wu et al., 2017), PPGN (Maron et al., 2019a)) and
those focusing solely on graph structure (Deep LRP (Chen
et al., 2020), NGNN (Zhang & Li, 2021), I>-GNN (Huang

et al., 2023b), 2-DRFWL(2) GNN (Zhou et al., 2023)). For
fair comparsion, we introduce two versions of our model:
PST without Euclidean distance (PST) and PST with Eu-
clidean distance (PST#*). Results in Table 2 show PST out-
performs all baseline models without Euclidean distance
on 11 out of 12 targets, with an average 11% reduction in
loss compared to the strongest baseline, 2-DRFWL(2) GNN.
PST* outperforms all Euclidean distance-based baselines
on 8 out of 12 targets, with an average 4% reduction in
loss compared to the strongest baseline, 1-2-3-GNN. Both
models rank second in performance for the remaining tar-
gets. PSDS without Euclidean distance also outperforms
baselines on 6 out of 12 targets.

For ZINC, ZINC-full, and ogbg-molhiv datasets, we have
conducted an evaluation of PST and PSDS in comparison to
a range of expressive GNNs and graph transformers (GTs).
This set of models includes expressive MPNN and subgraph
GNNs: GIN (Xu et al., 2019b), SUN (Frasca et al., 2022),
SSWL (Zhang et al., 2023a), 2-DRFWL(2) GNN (Zhou
et al., 2023), CIN (Bodnar et al., 2021), NGNN (Zhang
& Li, 2021), and GTs: Graphormer (Ying et al., 2021),
GPS (Rampdsek et al., 2022), Graph MLP-Mixer (He et al.,
2023), Specformer (Bo et al., 2023), SignNet (Lim et al.,
2023), and Grit (Ma et al., 2023). Performance results
for the expressive GNNs are sourced from (Zhou et al.,
2023), while those for the Graph Transformers are extracted
from (He et al., 2023; Ma et al., 2023; Lim et al., 2023). The
comprehensive results are presented in Table 3. Notably, our
PST outperforms all baseline models on ZINC-full datasets,
achieving reductions in loss of 18%. On the ogbg-molhiv
dataset, our PST also delivers competitive results, with only
CIN and Graphormer surpassing it. Overall, PST demon-
strates exceptional performance across these four diverse
datasets, and PSDS also performs comparable to representa-
tive GNNs like GIN (Xu et al., 2019a).

7.3. Long Range Graph Benchmark

To assess the long-range capacity of our Point Set Trans-
former (PST), we conducted experiments using the Long

Graph As Point Set

Table 2. MAE () on the QM9 dataset. * denotes models with 3D coordinates or features as input. LRP: Deep LRP (Chen et al., 2020).
DF: 2-DRFWL(2) GNN (Zhou et al., 2023). 1GNN: 1-GNN. 123: 1-2-3-GNN (Morris et al., 2019).

Target Unit LRP NGNNI?GNN DF PSDS PST |IGNN* DTNN* 123* PPGN* PST*

I 107D 3.64 428 428 3.46 3531005 3.191004| 493 244 476 231 0.23i001
a 107%a 298 290 230 222 2.05i002 1.89:i00s| 7.80 950 270 3.82 0.7810.0s
fhomo 107?meV 691 721 7.10 6.15 6.5610.03 5.984000 | 873 10.56 9.17 7.51 2.98.00s
fume 1072meV 754 8.08 7.27 6.12 6.31i005 5.844008| 966 1393 955 7.81 2.20i0.07
Ac 10 2meV 9.61 10.34 10.34 8.82 9.1340.04 8.46+007 | 13.33 3048 13.06 11.05 4.47-0.00
R? ad 19.30 20.50 18.64 15.04 14.3540.02 13.08410.16| 34.10 17.00 22.90 16.07 0.93:0.0s
ZPVE 10 ?meV 150 054 0.38 046 0411002 0.39:i001 | 337 468 0.52 17.42 0.26+0.01
Ug meV 11.24 8.03 574 424 3531011 3.461017 | 63.13 66.12 1.16 637 3.33:10.10
U meV 11.24 982 561 4.16 3491005 3.5510.10 | 56.60 66.12 3.02 637 3261005
H meV 11.24 830 7.32 3.95 3.4710.04 3.494020 | 60.68 66.12 1.14 623 3.2910.21
G meV 11.24 1331 7.10 4.24 3.564014 3.5510.17 | 5279 66.12 1.28 6.48 325,015
Cy 10 %cal/mol/K 12.90 17.40 7.30 9.01 8.3510.00 7.77+0.15 |27.00 243.00 9.44 18.40 3.63:0.13

Table 3. Results on graph property prediction tasks.

Table 4. Results on Long Range Graph Benchmark. * means using

Random Walk Structural Encoding (Dwivedi et al., 2022a), and **

zinc zinc-full molhiv means Laplacian Eigenvector Encoding (Dwivedi et al., 2023).
MAE| MAE| AUCH

GIN 0.16310.001 0.088:0.002 77.0711.40 Model PaPSf:Ia]VOC—SP Peptj:l;s—Func Peptl:;l:l;sﬁStruct
GNN-AK+ 0.080 10,001 - 79614110 score { T +
ESAN 0.102+0.003 0.029410.003 78.2540.08 GCN 0.126810.0060 0.593040.0023 0.3496+0.0013
SUN 0.08310.003 0.02410.003 80.0310.55 GINE 0.1265j:o_0073 0.5498:|:0,0079 0.35471010045
SSWL 0.08310.003 0.022410.002 79.5840.35 GatedGCN 0.2873 100210 0.586440.0077 0.342010.0013
DRFWL 0.077+0.002 0.025410.003 78.1842.10 GatedGCN* 0.286010.0085 0.606940.0035 0.3357+0.0006
CIN 0.079+0.006 0.02210.002 80.941 057 Transformer®** 0.269410.0008 0.632640.0126 0.2529410.0016
NGNN 0.11140.003 0.0294+0.001 78.34+1.86 SAN* 0.321610.0027 0.6439+0.0075 0.254510.0012
Graphormer 0.12240.006 0.05210.005 80.514t0.53 SAN** 0.323010.0030 0.638410.0121 0.268310.0043
GPS 0.070+0.004 - 78.8041.01 GraphGPS 0.3748 0.0100 0.653540.0041 0.2500+0.0005
GMLP-Mixer 0.077+0.003 - 79.974+1.02 Exphormer 0.397510.0037 0.652740.0043 0.248110.0007
SAN 0.139+0.006 - T7.75+0.61 GMLP-Mixer - 0.697040.0080 0.2475+0.0015
Specformer 0.066.19 003 - 78.8041 04 Graph ViT - 0.694240.0075 0.2449:0.0016
SignNet 0.084+0.006 0.02410.003 - Grit - 0.6988.+0.0082 0.2460+0.0012
Grit 0.059+0.002 0.024+0.003 - PSDS 0.213410.0050 0.596540.00624 0.2621+0.0036
PSDS 0.16240.00r 0.049+0.002 74.9241.18 PST 0.4010.+0.0072 0.698410.0051 0.2470+0.0015
PST 0.063+0.003 0.01810.001 80.3240.71

Range Graph Benchmark (Dwivedi et al., 2022b). Follow-
ing He et al. (2023), we compared our model to a range of
baseline models, including GCN (Kipf & Welling, 2017),
GINE (Xu et al., 2019a), GatedGCN (Bresson & Laurent,
2017), SAN (Kreuzer et al., 2021), Graphormer (Ying et al.,
2021), GMLP-Mixer, Graph ViT (He et al., 2023), and
Grit (Ma et al., 2023). PST outperforms all baselines on
the PascalVOC-SP and Peptides-Func datasets and achieves
the third-highest performance on the Peptides-Struct dataset.
PSDS consistently outperforms GCN and GINE. These re-
sults showcase the remarkable long-range interaction cap-
turing abilities of our methods across various benchmark
datasets. Note that a contemporary work (Tonshoff et al.,
2023) points out that even vanilla MPNNs can achieve sim-
ilar performance to Graph Transformers on LRGB with
better hyperparameters, which implies that LRGB is not a
rigor benchmark. However, for comparison with previous
work, we maintain the original settings on LRGB datasets.

8. Conclusion

We introduce a novel approach employing symmetric rank
decomposition to transform interconnected nodes in graph
into independent points with coordinates. Additionally, we
propose the Point Set Transformer to encode the point set.
Our approach demonstrates remarkable theoretical expres-
sivity and excels in real-world performance, addressing both
short-range and long-range tasks effectively. It extends the
design space of GNN and provides a principled way to inject
graph structural information into Transformers.

9, Limitations

PST’s scalability is still constrained by the Transformer
architecture. To overcome this, acceleration techniques such
as sparse attention and linear attention could be explored,
which will be our future work.

Graph As Point Set

Impact Statement

This paper presents work whose goal is to advance the field
of graph representation learning and will improve the design
of graph generation and prediction models. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

Acknowledgement

Xiyuan Wang and Muhan Zhang are partially sup-
ported by the National Key R&D Program of China
(2022ZD0160300), the National Key R&D Program of
China (2021ZD0114702), the National Natural Science
Foundation of China (62276003), and Alibaba Innovative
Research Program. Pan Li is supported by the National
Science Foundation award 1IS-2239565.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In SIGKDD, 2019.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa,
J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and
Kozinsky, B. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature
communications, 13(1):1-11, 2022.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron, H.
Equivariant subgraph aggregation networks. In ICLR,
2022.

Bo, D., Shi, C., Wang, L., and Liao, R. Specformer: Spectral
graph neural networks meet transformers. In /CLR, 2023.

Bodnar, C., Frasca, F,, Otter, N., Wang, Y., Lio, P., Montifar,
G. F.,, and Bronstein, M. M. Weisfeiler and lehman go
cellular: CW networks. In NeurIPS, 2021.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M.
Improving graph neural network expressivity via sub-
graph isomorphism counting. TPAMI, 45(1), 2023.

Bresson, X. and Laurent, T. Residual gated graph convnets,
2017.

Chen, H., Liu, S., Chen, W., Li, H., and Jr., R. W. H. Equiv-
ariant point network for 3d point cloud analysis. In CVPR,
2021.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? In NeurIPS, 2020.

Cohen, T. S., Geiger, M., Kohler, J., and Welling, M. Spher-
ical cnns. In ICLR, 2018.

Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasacchi,
A., and Guibas, L. J. Vector neurons: A general frame-
work for so(3)-equivariant networks. In ICCV, 2021.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs, 2020.

Dwivedi, V. P, Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In ICLR, 2022a.

Dwivedi, V. P, Rampisek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. In NeurIPS, 2022b.

Dwivedi, V. P, Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural networks.
J. Mach. Learn. Res., 24:43:1-43:48, 2023.

Dym, N. and Maron, H. On the universality of rotation
equivariant point cloud networks. In /CLR, 2021.

Feng, J., Chen, Y., Li, E, Sarkar, A., and Zhang, M. How
powerful are k-hop message passing graph neural net-
works. In NeurIPS, 2022.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. CoRR, abs/1903.02428, 2019.

Frasca, F.,, Bevilacqua, B., Bronstein, M. M., and Maron, H.
Understanding and extending subgraph gnns by rethink-
ing their symmetries. In NeurIPS, 2022.

Fuchs, E, Worrall, D., Fischer, V., and Welling, M. Se(3)-
transformers: 3d roto-translation equivariant attention
networks. NeurIPS, 2020.

Fiirer, M. On the combinatorial power of the weisfeiler-
lehman algorithm. In CIAC, volume 10236, pp. 260-271,
2017.

Gasteiger, J., Becker, F., and Giinnemann, S. Gemnet: Uni-
versal directional graph neural networks for molecules.
In NeurIPS, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. E, Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Goémez-Bombarelli, R., Duvenaud, D., Herndndez-Lobato,
J. M., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P, and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules, 2016.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurlIPS, 2017.

Graph As Point Set

He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. A generalization of vit/mlp-mixer to graphs.
In ICML, 2023.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In NeurlPS,
2020.

Huang, Y., Lu, W., Robinson, J., Yang, Y., Zhang, M.,
Jegelka, S., and Li, P. On the stability of expressive
positional encodings for graph neural networks. arXiv
preprint arXiv:2310.02579, 2023a.

Huang, Y., Peng, X., Ma, J., and Zhang, M. Boosting
the cycle counting power of graph neural networks with
i$°2$-gnns. In ICLR, 2023b.

Huang, Y., Lu, W., Robinson, J., Yang, Y., Zhang, M.,
Jegelka, S., and Li, P. On the stability of expressive
positional encodings for graph neural networks. ICLR,
2024.

Hutchinson, M. J., Lan, C. L., Zaidi, S., Dupont, E., Teh,
Y. W., and Kim, H. Lietransformer: Equivariant self-
attention for lie groups. In ICML, 2021.

Ivanov, S., Sviridov, S., and Burnaev, E. Understanding iso-
morphism bias in graph data sets. CoRR, abs/1910.12091,
2019.

Kim, J., Oh, S., and Hong, S. Transformers generalize
deepsets and can be extended to graphs & hypergraphs.
In NeurIPS, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking graph transformers with spec-
tral attention. In NeurlIPS, 2021.

Li, P, Wang, Y., Wang, H., and Leskovec, J. Distance en-
coding: Design provably more powerful neural networks
for graph representation learning. In NeurIPS, 2020.

Lim, D., Robinson, J. D., Zhao, L., Smidt, T. E., Sra, S.,
Maron, H., and Jegelka, S. Sign and basis invariant
networks for spectral graph representation learning. In
ICLR, 2023.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P. H. S., and Lim, S. Graph
inductive biases in transformers without message passing.
In ICML, 2023.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. In NeurIPS, 2019a.

10

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. In IGN, 2019b.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. Graphit:
Encoding graph structure in transformers, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In AAAI,
20109.

Paszke, A., Gross, S., Massa, F, Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E. Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS,
pp- 8024-8035, 2019.

Perepechko, S. and Voropaev, A. The number of fixed length
cycles in an undirected graph. explicit formulae in case
of small lengths. MMCP, 148, 2009.

Puntanen, S., Styan, G. P, and Isotalo, J. Matrix tricks
for linear statistical models: our personal top twenty.
Springer, 2011.

Qian, C., Rattan, G., Geerts, F., Niepert, M., and Morris,
C. Ordered subgraph aggregation networks. In NeurIPS,
2022.

Rampisek, L., Galkin, M., Dwivedi, V. P, Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. In NeurIPS, 2022.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In JCML, 2021.

Schiitt, K., Unke, O., and Gastegger, M. Equivariant mes-
sage passing for the prediction of tensorial properties and
molecular spectra. In ICML, 2021.

Segol, N. and Lipman, Y. On universal equivariant set
networks. In ICLR, 2020.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. JMLR, 2011.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland,
D. J., and Sinop, A. K. Exphormer: Sparse transformers
for graphs. In ICML, 2023.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation-and translation-equivariant neural networks for
3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Graph As Point Set

Tonshoff, J., Ritzert, M., Rosenbluth, E., and Grohe, M.
Where did the gap go? reassessing the long-range graph
benchmark. CoRR, abs/2309.00367, 2023.

Wang, H., Yin, H., Zhang, M., and Li, P. Equivariant and
stable positional encoding for more powerful graph neural
networks. In ICLR, 2022.

Wang, X. and Zhang, M. Graph neural network with local
frame for molecular potential energy surface. LoG, 2022.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. 3d steerable cnns: Learning rotationally equiv-
ariant features in volumetric data. In NeurIPS, 2018.

Wijesinghe, A. and Wang, Q. A new perspective on "how
graph neural networks go beyond weisfeiler-lehman?”.
InICLR, 2022.

Winkels, M. and Cohen, T. S. 3d g-cnns for pulmonary
nodule detection, 2018.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and
Brostow, G. J. Harmonic networks: Deep translation and
rotation equivariance. In CVPR, 2017.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V. S.
Moleculenet: A benchmark for molecular machine learn-
ing, 2017.

Wu, Z., Jain, P., Wright, M. A., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. Representing long-range context for
graph neural networks with global attention. In NeuriPS,
2021.

Xu, K., Hu, W, Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019a.

Xu, K., Hu, W, Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019b.

Ying, C., Cai, T, Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T. Do transformers really perform badly for
graph representation? In NeurIPS, 2021.

You, J., Selman, J. M. G., Ying, R., and Leskovec, J.
Identity-aware graph neural networks. In AAAI 2021.

Zhang, B., Feng, G., Du, Y., He, D., and Wang, L. A
complete expressiveness hierarchy for subgraph gnns via
subgraph weisfeiler-lehman tests. In ICML, 2023a.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking the
expressive power of gnns via graph biconnectivity. In
ICLR, 2023b.

Zhang, M. and Li, P. Nested graph neural networks. In
NeurIPS, 2021.

11

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
AAAI 2018.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars
to subgraphs: Uplifting any GNN with local structure
awareness. In ICLR, 2022.

Zhou, J., Feng, J., Wang, X., and Zhang, M. Distance-
restricted folklore weisfeiler-leman gnns with provable
cycle counting power, 2023.

Graph As Point Set

A. Proof
A.1. Proof of Proposition 2.3

The matrices QT Q1 and QI Q2 in R™*" are full rank and thus invertible. This allows us to derive the following equations:

L=0:Q7 =Q.Q% (C)]

Q107 = Q2Q7 = Q1 Q1Q] = Q1 Q2Q7 (10)

= Q7 = (QTQ1)'QTQ:QT (11)

= 3R e R™™ QT = RQT (12)

= 3R e R™™ Q; = Q2R (13)

Q:1QT = Q2RRTQT = Q2QF = QT Q2RRTQT Q2 = QT Q:QTQ: (14)
= RRT = (;Qz)_ngQngQz(;Qz)_l =1 (15)

Since R is orthogonal, any two full rank () matrices are connected by an orthogonal transformation. Furthermore, if there
exists an orthogonal matrix R where RRT = I, then Q; = @R, and L = Q;:QT = Q:RRTQT = Q,Q7.

A.2. Matrix D+A is Always Positive Semi-Definite

Vo € R™,
T (D+ A)z = Z T + Z(Z Ayj)z? (16)

(i,j)EE i€V jev

— 1 2 1 2

= Z Tity + 5 Z g Z z? (17)
(1.7)€E (1.7)EE (i.7)€E
1

=3 Y (zi+z)°>0 (18)

(1.7)€E

Therefore, D + A is always positive semi-definite.

A.3. Proof of Theorem 3.1

We restate the theorem here:

Theorem A.1. Given two graphs G = (V,A,X) and G' = (V', A', X") with degree matrices D and D', respectively, the
two graphs are isomorphic (G ~ G') if and only if 3R € O(r), {(Xy, RQy)|Vv € V} = {(X,, @) |v € V'}, where r
denotes the rank of matrix Q, and Q and Q' are the symmetric rank decompositions of D + A and D' + A’ respectively.
Proof. Two graphs are isomorphic < 37 € II,, 7(A) = A" and n(X) = X',

Now we prove that 3r € II,,, m(A) = A’ and n(X) = X & FR € O(r), {(Xo, RQu) v € V} = {(X,, Q) v € V'}.
When 3r € IT,,, m(A) = A’ and n(X) = X, as

n(@n(Q)" =n(A4+D)=4'+D' =QQ", (19)
according to Proposition 2.3, 3R € O(r), 7(Q)RT = Q'. Moreover, m(X) = X', so
{(Xo, RQy)lv e V} = {(X,,Q,)|lv e V'} (20)

When 3R € O(r),{(Xv, RQy)lv € V} = {(X,,Q,)|lv € V'}, there exists permutation = € II,, m(X) =
X', 7(Q)RT = @Q'. Therefore,

(A + D) = m(Q)m(Q)T = n(Q)RTRr(Q)T = Q' QT = A' + D’ 1)
O

12

Graph As Point Set

As A=D+ A — ldiag((D + A)I), A’ = D + A — Ldiag((D + A)T), where T € R™ is an vector with all elements = 1.

w(A) = A’ (22)

A.4. Proof of Theorem 3.3

Now we restate the theorem.

Theorem A.2. Givenitwo graphs G = (V,A,X)and G = (V', A’, X'), and an injective permutation-equivariant function
Z mapping adjacency matrix to a symmetric matrix: (1) For all permutation-equivariant function f, if G ~ G’, then the
two sets of PSRD coordinates are equal up to an orthogonal transformation, i.e., AR € O(r), { Xy, RQ(Z(A), f)u|v €
VI={X.,Q(Z(A"), flv|lv € V'}, where r is the rank of A, Q, Q' are the PSRD coordinates of A and A’ respectively.
(2) There exists a continuous permutation-equivariant function f : R™ — R™*2, such that G ~ G’ if IR € O(r),¥i =

1: 2: b d: {(XU:RQ(Z(A)': fl)'u:RQ(Z(A): fZ)'u)h} € V} = H(X,:” Q(Z(A!): fl)lh Q(Z(A!): f‘Z)U)lU € V’}’ where
fi:R" = R" and f5 : R™ — R" are two output channels of f.

Proof. First, as Z is an injective permutation equivariant function, forall permutation = € II,
m(Z(A)=Z(A") & Z(r(A)=Z(A") e n(A)=A". (23)
Therefore, two matrix are isomorphic < 3r € I, n(X) = X', w(Z) = Z’', where Z, Z' denote Z(A), Z(A') respectively.

In this proof, we denote eigendecomposition as Z = Udiag(A)UT and Z’ = U'diag(A’)U’”, where elements in A and
A’ are sorted in ascending order. Let the multiplicity of eigenvalues in Z be rq,rg, ..., 1, corresponding to eigenvalues
)‘1:)"21 ety)‘i-

(1) If G ~ @', there exists a permutation € II,,, m(X) = X' #(Z) = Z".
m(Z) = 7' = Z' = n(U)diag(A)n(U)T = U'diag(A)U"" . (24)

7(U)diag(A)7(U)T is also an eigendecomposition of Z’, so A = A’ as they are both sorted in ascending order. Moreover,
since 7(U), U" are both matrices of eigenvectors, they can differ only in the choice of bases in each eigensubspace. So there
exists a block diagonal matrix V' with orthogonal matrix V; € O(r1), V2 € O(ra), ..., Vi € O(r;) as diagonal blocks that
(U)W =U".

As f is a permutation equivariant function,

A=A = 3r eIl n(i) = j,x(j = i), m(A) = A (25)
= Ir € IL,, n(i) = j,n(j = i), 7(f(A)) = f(w(A)) = £(A) (26)
= f(A): = f(A); 27)

Therefore, f will produce the same value on positions with the same eigenvalue. Therefore, f can be consider as a block
diagonal matrix with fiI,,, folr,, ..., filr, as diagonal blocks, where f; € Ris f(A)p,. p; is a position that A,, = A;, and
I, is an identity matrix € R"*".

Therefore,
Vdiag(f(A)) = diag(f1V1, f2Va, ..., iVi) = diag(f(A))V. (28)

Therefore,
m(Q(Z, f))V = n(U)diag(f(A))V (29)
= m(U)Vdiag(f(A)) (30)
= U'diag(f(A")) (31)
=Q(Z',f) (32)

AsVVT =1,V € O(r),

3R € O(r), {Xv, RQ(Z(A), flolv € V} = { X, Q(Z2(4"), fluo|lv e V'} (33)

13

Graph As Point Set

(2) We simply define f; is element-wise abstract value and square root 1/|.|, f; is element-wise abstract value and square
root multiplied with its sign sgn(|.|)+/|.|- Therefore, f1, f2 are continuous and permutation equivariant.

if3R € O(r),

{ X, RQ(Z(A), f1)v, RQ(Z(A), fa)vlv € V} = {X5, Q(Z(A'), f1)v, Q(Z(A'), f2)u|v € V'}. then there exist m €
II,., so that

(X)) =X’ (34)
(U)diag(f1(A))RT = U'diag(f1(A")) (35)
(U)diag(f2(A))RT = U'diag(f2(A")). (36)
Therefore,
m(Z) = n(U)diag(f1(A))diag(f2(A))x(U")" (37)
= m(U)diag(f1(A)) RR" diag(f2(A))=(U")" (38)
= U'diag(f1 (A"))diag(f2(A"))U"" (39)
=7 (40)

Asw(Z) = Z',w(X) = X', two graphs are isomorphic.

A.5. Proof of Theorem 5.3

Let H; denote a circle of [nodes. Let G denote a graph of two connected components, one is H|; /5| and the other is H; /5,
Obviously, there exists a node pair in G; with shortest path distance equals to infinity, while H; does not have such a node
pair. So the multiset of shortest path distance is easy to distinguish them. However, they are regular graphs with node degree
all equals to 2, so MPNN cannot distinguish them:

Lemma A.3. For all nodes v, u in G;, H;, they have the same representation produced by k-layer MPNN, forall k € N.

Proof. We proof it by induction.
k = 0. Initialization, all node with trivial node feature and are the same.

Assume k£ — 1-layer MPNN still produce representation k for all node. At the k-th layer, each node’s representation will be
updated with its own representation and two neighbors representations as follows.

h, {h, b} (41)
So all nodes still have the same representation. g

A.6. Proof of Theorem 5.2 and B.3

Given two function f, g, f can be expressed by g means that there exists a function ¢ ¢ o g = f, which is equivalent to
given arbitrary input H, G, f(H) = f(G) = g(H) = g(G). We use f — g to denote that f can be expressed with g. If
both f — gand g — f, there exists a bijective mapping between the output of f to the output of g, denoted as f <+ g.

Here are some basic rule.
*g—+h=fog—foh
s g—h f—s=fog—soh.
+ fisbijective, fog— g

14

Graph As Point Set

2-folklore Weisfeiler-Leman test produce a color h{; for each node pair (3, j) at ¢-th iteration. It updates the color as follows,

hift =hash(h;, { (Ri, hi;) |k € VD). 42)

The color of the the whole graph is
he = hash({Rf;[(7,7) € V x V}). (43)

Initially, tuple color hashes the node feature and edge between the node pair, h?j — 045, Aij, Xi, X

We are going to prove that

Lemma A.4. Forallt € N, h! ; can express A;‘j, k=0,1,2,...,2% where A is the adjacency matrix of the input graph.

Proof. We prove it by induction on t.

* Whent = 0, b, — A;;, I;; in initialization.

« Ift >0,V < t,hl; » A¥ k' =0,1,2,..,2" Forallk = 0,1,2,

hi; — hash(h;, {(hf, hi;) |k € V}) (44)

— hash(hf;, {(AL/2, ALYk e V}) (45)

= AR A (46)
kEeV

— A @7)

O

To prove that ¢-iteration 2-FWL cannot compute shortest path distance larger than 2, we are going to construct an example.

Lemma A.5. Let H,; denote a circle of | nodes. Let Gy denote a graph of two connected components, one is H ;3| and the
other is Hyy9). VK € N+, 2-FWL can not distinguish H,,. and G,,., where lix = 2 x 2 x (2K). However, G;,. contains
node tuple with 25 + 1 shortest path distance between them while H;,. does not, any model count up to 2% + 1 shortest
path distance can count it.

Proof. Given a fixed ¢, we enumerate the iterations of 2-FWL. Given two graphs H;,., Gy, we partition all tuples in
each graph according to the shortest path distance between nodes: ¢, ¢1, ..., ¢, ..., cax, Where ¢; contains all tuples with
shortest path distance between them as [, and c- 5« contains all tuples with shortest path distance between them larger than
2K We are going to prove that at k-th layer k <= K, all ¢;,7 < 2* nodes have the same representation (denoted as h¥)
Coky1,Cok 2, ..., €2k, > Nodes all have the same representation (denoted as hng).

Initially, all ¢, tuples have representation A3, all ¢; tuples have the same representation A9 in both graph, and all other tuples
have the same representation k9.

Assume at k-th layer, all ¢;,7 < 2¥ nodes have the same representation hY, Coky1,Cok 12, ..., €K, Csok tuples all have the
same representation h%, 41- Atk + 1-th layer, each representation is updated as follows.

hift < hi;, {(hiy, hiy)lv € V))

For all tuples, the multiset has [x elements in total.

For ¢y tuples, the multiset have 1 (hf, hE) as v =14, 2 (hF, hF) for t = 1,2, .., 2 respectively as v is the k-hop neighbor of
i, and all elements left are (h;‘kﬂ, hgkﬂ) as v is not in the k-hop neighbor of 7.

For ¢;,t = 1,2, ..., 2F tuples: the multiset have 1 (h¥ hF) fora = 0,1,2,..,t respectively as v is on the shortest path

between (7, 5), and 1 (hf, %,) fora = 1,2, ..., 2% respectively, and 1 (h%, |, hf) fora = 1,2, ..., 2 respectively, with
hk

other elements are (ki k41)-

k
2k+]_:

15

Graph As Point Set

For ¢;,t = 2% +1,2F + 2, ..., 2K+ tuples: the multiset have 1 (kX h¥) fora =t — 2k ¢t — 2F + 1, ..., 2% respectively
as v is on the shortest path between (,5), 1 (kX h¥) fora € {0,1,2,...,t — 28 — 1} U {2F + 1,2k 4 2, .. 2F+1}
respectively as v is on the shortest path between (i, 7), and 1 (hf, k%, ;) fora = 1,2, ..., 2 respectively, and 1 (h%; , k)

hk

for a = 1,2, ..., 2" respectively, with other elements are (h. 2k 41)-

k
2k+]_:

For ¢;, ¢ = 2871 +1,..., 25, > 2% the multiset are all the same : 2 (hg, k5,) and 2 (RS, ;, hY) fora=1,2,3,...,2%,

respectively. O

A.7. Proof of Theorem 5.1
We can simply choose fx(A) = A*. Then (Q(A, fo)i, Q(A, fx);) = Af;. The shortest path distance is

spd(i, j, A) = argmin{k € N |Af; > 0} (49)

A.8. Proof of Theorem 5.4 and 5.5

This section assumes that the input graph is undirected and unweighted with no self-loops. Let A denote the adjacency
matrix of the graph. Note that AT = A, A0 A=A

An L-path is a sequence of edges [(i1,i2), (42,%3), ..., (¢1, 21 +1)], Where all nodes are different from each other. An L-cycle
is an L-path except that i; = i1,,1. Two paths/cycles are considered equivalent if their sets of edges are equal. The count of
L path from node u to v is the number of non-equivalent pathes with ¢y = u,ir,41 = v. The count of L-cycle rooted in
node w is the number of non-equivalent cycles involves node u.

Perepechko & Voropaev (2009) show that the number of path can be expressive with a polynomial of A, where A is the
adjacency matrix of the input unweight graph. Specifically, let Py, denote path matrix whose (u,v) elements denote the
number of L-pathes from u to v, Perepechko & Voropaev (2009) provides formula to express Pr, with A for small L.

This section considers a weaken version of point cloud transformer. Each layer still consists of sv-mixer and multi-head
attention. However, the multi-head attention matrix takes the scalar and vector feature before sv-mixer for @, K and use the
feature after sv-mixer for V.

At k-th layer sv-mixer:

s; + MLP; (s;||diag(Wyv] vf W3)) (50)
v; + v;diag(MLPy(s})) W3 + v; Wy (51)
Attention layer:

Yij = MLP3(Ky;), Kij = (Wys: © Ws;) || diag(Wg v viWy), (52)

As s} and v] can express s;, v;, so the weaken version can be expressed with the original version.
si MLPy(s}||) _ Atten;;s) (53)

J

U — W5(U;" Z Attenijv;;) (54)

j
Let Y* denote the attention matrix at k-th layer. Y'* is a learnable function of A. Let Y* denote the polynomial space of A
that Y'* can express. Each element in it is a function from R™"*" — R™*"

We are going to prove some lemmas about Y.
Lemma A.6. Y* C Yk+1

Proof. As there exists residual connection, scalar and vector representations of layer k + 1 can always contain those of layer
k, so attention matrix of layer k + 1 can always express those of layer k. O

Lemma A.7. Ify1,ys, ..., ys € Y, their hadamard product y; ® y2 ® ... ® y, € YX.

16

Graph As Point Set

Proof. As (y1 ©® y2 ® ... ® ys)ij = [1;—;(1)i; is a element-wise polynomial on compact domain, an MLP (denoted as
g) exists that takes (z, 7) elements of the y1,ys, ..., ys to produce the corresponding elements of their hadamard product.
Assume gp is the MLP3 in Equation 53 to produce the concatenation of y1, 32, .., ¥, Use g o gp (the composition of two
mlps) for the MLP3 in Equation 53 produces the hadamard product. -

Lemma A.8. Ify1,ya,...,ys € YX, their linear combination y";_, aiy; € Y*, where a; € R.

Proof. As (ELI ay)ij = Zle ai(y1)i; is a element-wise linear layer (denoted as g). Assume go is the MLP3 in
Equation 53 to produce the concatenation of yq, s, .., Y., Use g o gy for the MLP3 in Equation 53 produces the linear
combination. H

Lemma A.9. Vs > 0, 4% € YL

Proof. As shown in Section 5.1, the inner product of coordinates can produce A®. O

Lemma A.10. Vy]. yY2,Y3 € Yk 8 € N+ ’ d(yl)y2, yzd(yl)1 d(yl)yZd(yS), ylAs H Asyl H y1A3y2 S Yk

Proof. According to Equation 50 and Equation 52, s/ at k-th layer can express y;; for all y € Y*. Therefore, at k + 1-th
layer in Equation 52, MLP5 can first compute element (2, 5) (y2)i; from s;, s;, v;, v, then multiply (y2);; with (y1):; from
si. (y3);; from s; and thus produce d(y1)y2, y2d(y1), d(y1)y2d(ys).

Moreover, according to Equation 53, v; at k+1-th layer can express Y, (y1)ixVk, 5, (¥2)ikvk- So at k+1-th layer, the (4, j)

element can express (Y, (y1)ikVk, v5)s (Vi, Dk (¥1) jxvk), ((Y1)ikvi, 3k (¥2) jkvk), corresponds to y; A%, A%y, y1 A%ya,
respectively.

O

Therefore,
LemmaA.ll. +V¥s>0,0l>0,a; >0 0. ;A% € YL

* Vs1,52 > 0,1 >0, A%d(0}_;A%),d(®)_; A%) A%, d(ofL A%) A d(02 A%) € Y2
* Vsy,82,83 >0, A1d(GL_; A%)

Therefore, we come to our main theorem.

Theorem A.12. The attention matrix of 1-layer PST can express P,, 2-layer PST can express Ps, 3-layer PST can express
P,, Ps, 5-layer PST can express Ps.

Proof. As shown in (Perepechko & Voropaev, 2009),
P, = A2 (55)

Only one kind basis ®!_; A%. 1-layer PST can express it.

Py = A® + A— Ad(A?) — d(A*)A (56)

Three kind of basis ®_; A% (A3, A), A5 d(®L_; A%)(Ad(A?)), and d(®L_, A%)A*1. 2-layer PST can express it.

Py=A%+ A2 + 34 ® A2 — d(A3)A — d(A%)A? — Ad(A%) — A%d(A?) — Ad(A?)A (57)

Four kinds of basis ©L_, A% (A%, A2, A® A%), A d(0L_, A%) (Ad(A3), A2d(A2)), d(OL_, A%) A™ (d(A%)A, d(A%) A2),
and A1d(®L_; A%)A% (Ad(A?)A). 3-layer PST can express it.

17

Graph As Point Set

Py = A® +3A% + 44
+3420 A0 A+34A0 A% - 440 A?
—d(A")A — d(A%)A? — d(A%) A® +2d(A?)?A — 2d(A%)A — 4d(AH) A
— Ad(A*) — A%d(A®) — APd(A?) + 2Ad(A?)? — 2Ad(A?) — 4Ad(A?)
+ d(A?)Ad(A?)
+3(A®A%)A
+3A(A® A?)
— Ad(A®)A — Ad(A?)A? — A%d(A%)A
+d(Ad(A%)A)A

Basis are in

o Y1

- Ol A%: A5 A3 A A2 A0 A, AG A3 AG A%

. Y2

- ASd(®l_ A%):Ad(A%), A2d(A3), A3d(A?), Ad(A?)?, Ad(A?), Ad(A?).
- d(el_;A%)A%: Ad(AY), A%d(A3), A3d(A?), Ad(A?%)?, Ad(A?), Ad(A?).
- d(OL,A%) A% d(eL, A%): d(A%)Ad(A?).

- An (L, A%): A(AG A2).

- (O A%) A% (AG A2)A

. Y3
 ATY2: Ad(AP)A, Ad(A2) A2, A2d(A2)A.

— d(Y?)A*: d(Ad(A%)A)A

3-layer PST can express it.

18

(38)
(39)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)

Graph As Point Set

Formula for 6-path matrix is quite long.

Ps = A® +4A4* + 1242 (68)
+3A0 A +6A0 A0 A+ A20 A0 A2 —4A7 0 A% + 1A o A? (69)
—d(A®)A — d(A*)A? — d(A®)A3 — 5d(A3)A — d(A%)A* — 7d(A?)A? (70)
+2d(A%)2A? + 4(d(A?%) © d(A3))A (71)
— Ad(A®) — A%d(A?) — A%d(A3) — 5Ad(A3) — A%d(A*) — TA%d(A?) (72)
+2A%d(A%)? + 4A(d(A?) © d(A3)) (73)
+ d(A%)Ad(A3) + d(A3)Ad(A?) + d(A?)A%d(A?) (74)
+2A0ANA+2A0 A0 A%)A+ (A0 A0 A)A-3(A0A)A+ (A0 AY)A (75)
+ (A AHA? +2(A0 AY)A% - (A® AP)A (76)
+24A(A0 A3 +24(A0 A0 A%) + A(A20 A?® A) —3A(A® A?) + A(A @ A3) (77)
+ A2 (A0 A?) +24%(A0 A% — A(Ae A?) (78)
—8A® (A(A® A%) -840 ((A® A%)A) (79)
—12d(A%)(A ® A?) — 12(A ® A?)d(A?) (80)
— Ad(A*)A — Ad(A?)A® — A%d(A?)A — Ad(A®)A? — A2d(A®)A — A%d(A?)A? (81)
— 10Ad(A?*)A + 2Ad(A?)*A (82)
+ d(A%)Ad(A%) A + Ad(A?)Ad(A?) (83)
— 340 (Ad(A?)A) (84)
—4Ad((A® A?)A) — 4Ad(A(A ® A?)) (85)
+34(A6 AH)A (86)
—4d(A(A® A?))A —4d((A® A?)A)A (87)
+ d(Ad(A®)A)A + d(Ad(A?)A)A% + d(Ad(A%)A%)A + d(A%d(A?*)A)A (88)
+ Ad(Ad(A*)A) + A%d(Ad(A*)A) + Ad(A%d(A*)A) + Ad(Ad(A*)A?) (89)
+ Ad(Ad(A*)A)A (90)
oD
Basis are in
. Y1
- Ol A%: A5 A% A2 A0 A A AZ A3 A0 A20 A% A2 0 A2 A0 A2
.« Y2
- A%d(®l_ A%):Ad(A®), A*d(A?), ABd(A3), Ad(A3), A%d(A*), A%d(A?), A%d(A?)?, A(d(A?) © d(A?)).
- d(Gl_;A%)A%: d(AB)A, d(A*)A?, d(A3)A3, d(A3)A, d(A%) A%, d(A%)A?, d(A%)2A2, (d(A?) @ d(A%))A.
- d(OLA%)And(OL, A%): d(A?)Ad(A%), d(A®)Ad(A?), d(A?)A%d(A?).
- A (Ol A%): A(A@ A%), A(A® A2 0 A?), A(A20 A2 0 A), A(A 6 A?), A(A 6 A3), A%2(A e A?),
A%(A® A?), A(Ao A?).
- (O A%)A%: (A0 A3A, (A A2 AYA, (A20 A20 A)A, (A0 A%)A, (A0 A%A, (Ao A%)A2,
(A A?)A2% (A® A2)A
- YoY% A0 (A®A2A), AG (A A2)A).
- d(Y")Y: d(A2)(A ® A2?)
- Yid(Y'): (A © A?)d(A2?)
. Y3

19

Graph As Point Set

- AY2: Ad(A%)A, Ad(A?)A3, A3d(A%)A, Ad(A3)A2, A2d(A%)A, A2d(A%)A?, Ad(A?)A, Ad(A?)2A,
Ad(A?)Ad(A?), A(A® A?)A.

~ Y2A°: d(A2)Ad(A2)A.

- Y3 o Y3 Ao (Ad(A2)A).

- d(Y?)Y?: d(Ad(A?)A)Ad(A(A ® A?))Ad((A® A%)A)A

- Y2d(Y?):Ad((A ® A%)A),Ad(A(A ® A?))
. Y4

— d(Y3)Y3: d(Ad(A3)A)A, d(Ad(A%)A)A?, d(Ad(A%)A2)A, d(A2d(A%)A)A.

— Y3d(Y3): Ad(Ad(A3)A), A2d(Ad(A%)A), Ad(A2d(A%)A), Ad(Ad(A?)A?).
. Y5

- A%1d(Y3)A%2:Ad(Ad(A?)A)A

5-layer PST can express it. g

Count cycle is closely related to counting path. A L + 1 cycle contains edge (i, 7) can be decomposed into a L-path from 2
to j and edge (2, j). Therefore, the vector of count of cycles rooted in each node Cy, y; = diagonal(APy)

Theorem A.13. The diagonal elements of attention matrix of 2-layer PST can express Cs, 3-layer PST can express Cy,
4-layer PST can express Cs, Cg, 6-layer PST can express C'.

Proof. Itis a direct conjecture of Theorem A.12 as Cr,y; = diagonl(APy) and Yk, P;, € Y¥ = AP, € YFH! O

B. Expressivity Comparision with Other Models

Algorithm A is considered more expressive than algorithm B if it can differentiate between all pairs of graphs that algorithm
B can distinguish. If there is a pair of links that algorithm A can distinguish while B cannot and A is more expressive than B,
we say that A is strictly more expressive than B. We will first demonstrate the greater expressivity of our model by using
PST to simulate other models. Subsequently, we will establish the strictness of our model by providing a concrete example.

Our transformer incorporates inner products of coordinates, which naturally allows us to express shortest path distances and
various node-to-node distance metrics. These concepts are discussed in more detail in Section 5.1. This naturally leads to
the following theorem, which compares our PST with GIN (Xu et al., 2019a).

Theorem B.1. A k-layer Point Set Transformer is strictly more expressive than a k-layer GIN.

Proof. We first prove that one PST layer can simulate an GIN layer.

Given node features s; and v;. Without loss of generality, we can assume that one channel of v; contains Udiag(A'/2). The
sv-mixer can simulate an MLP function applied to s;. Leading to sj. A GIN layer will then update node representations as
follows,

sisi+ Y (92)
JEN()

By inner products of coordinates, the attention matrix can express the adjacency matrix. By setting W7, W = 0, and
Wy, Wy be a diagonal matrix with only the diagonal elements at the row corresponding the the channel of Udiag(A'/2).

Kij=(Wgsi © Wgsj)||diagona1(w;u;f"uj W?) — (diag(A'/2)U;, diag(A /2)U;) = Ay; (93)

Let MLP express an identity function.
Attenij = MLP(KIJ) — Aij (94)

20

Graph As Point Set

The attention layer will produce

sie Y Aysi= > s (95)
J

JEN(7)
with residual connection, the layer can express GIN
siesi+si=s;+ Y (96)
JEN(1)

Moreover, as shown in Theorem 5.3, MPNN cannot compute shortest path distance, while PST can. So PST is strictly more
expressive. -

Moreover, our transformer is strictly more expressive than some representative graph transformers, including
Graphormer (Ying et al., 2021) and GPS with RWSE as structural encoding (Rampdsek et al., 2022).

Theorem B.2. A k-layer Point Set Transformer is strictly more expressive than a k-layer Graphormer and a k-layer GPS.

Proof. We first prove that k-layer Point Set Transformer is more expressive than a k-layer Graphormer and a k-layer GPS.

In initialization, besides the original node feature, Graphormer further add node degree features and GPS further utilize
RWSE. Our PST can add these features with the first sv-mixer layer.

s} <= MLP (s;||diagonal(Wyv! v; W) (97)

Here, diagonal(Wyv;uI W) add coordinate inner products, which can express RWSE (diagonal elements of random walk
matrix) and degree (see Appendix D), to node feature.

Then we are going to prove that one PST layer can express one GPS and one Graphormer layer. PST’s attention matrix is as
follows,

Atten;; = MLP(Ky;), Ki; = (Ws; ©@ Wis;)||diagonal (W] v v;Wy) — (diag(A'/2)Us, diag(A'/2)U;) (98)

The Hadamard product (W;'s; © Ws;) with MLP can express the inner product of node representations used in Graphormer
and GPS. The inner product of coordinates can express adjacency matrix used in GPS and Graphormer and shortest path
distance used in Graphormer. Therefore, PST” attention matrix can express the attention matrix in GPS and Graphormer.

To prove strictness, Figure 2(c) in (Zhang et al., 2023b) provides an example. As PST can capture resistance distance
and simulate 1-WL, so it can differentiate the two graphs according to Theorem 4.2 in (Zhang et al., 2023b). However,
Graphormer cannot distinguish the two graphs, as proved in (Zhang et al., 2023b).

For GPS, Two graphs in Figure 2(c) have the same RWSE: RWSE is
diagonal(Udiag(A¥)UT), k =1,2,3, ..., (99)

where the eigendecomposition of normalized adjacency matrix D-1/2AD-1/2 is U. By computation, we find that two
graphs share the same A. Moroever, diagonal (Udiag(A*)UT) are equal in two graphs for k = 0, 1,2, ...,9, where 9 is the
number of nodes in graphs. A¥ and diagonal(Udiag(A*¥)UT) with larger k are only linear combinations of A¥ and thus
diagonal(Udiag(A*)UT) for k = 0,1, ...,9. So the RWSE in the two graphs are equal and equivalent to simply assigning
feature h, to the center node and feature k2 to other nodes in two graphs. Then GPS simply run a model be a submodule of
Graphormer on the graph and thus cannot differentiate the two graphs either. O

Even against a highly expressive method such as 2-FWL, our models can surpass it in expressivity with a limited number of
layers:

Theorem B.3. For all K > 0, a graph exists that a K -iteration 2-FWL method fails to distinguish, while a 1-layer Point
Set Transformer can.

Proof. 1tis a direct corollary of Theorem 5.2. O

21

Graph As Point Set

C. Some Graph Transformers Fail to Compute Shortest Path Distance

First, we demonstrate that computing inner products of node representations alone cannot accurately determine the shortest
path distance when the node representations are permutation-equivariant. Consider Figure 2 as an illustration. In cases where
node representations exhibit permutation-equivariance, nodes vy and vz will share identical representations. Consequently,
the pairs (v, v2) and (vy,vs) will yield the same inner products of node representations, despite having different shortest
path distances. Consequently, it becomes evident that the attention matrices of some Graph Transformers are incapable of
accurately computing the shortest path distance.

Theorem C.1. GPS with RWSE (Rampdsek et al., 2022) and Graphormer without shortest path distance encoding cannot
compute shortest path distance with the elements of adjacency matrix.

Proof. Their adjacency matrix elements are functions of the inner products of node representations and the adjacency matrix.

Atten;; = (si, 55)| Asj- (100)

This element is equal for the node pair (v, v) and (vq,v3) in Figure 2. However, two pairs have different shortest path
distances. O

Furthermore, while Graph Transformers gather information from the entire graph, they may not have the capacity to
emulate multiple MPNNs with just a single transformer layer. To address this, we introduce the concept of a vanilla Graph
Transformer, which applies a standard Transformer to nodes using the adjacency matrix for relative positional encoding.
This leads us to the following theorem.

Theorem C.2. For all k € N, there exists a pair of graph that k + 1-layer MPNN can differentiate while k-layer MPNN
and k-layer vanilla Graph Transformer cannot.

Proof. Let H; denote a circle of [nodes. Let G; denote a graph of two components, one is H)|;/2) and the other is Hz/27.
Let H| denote adding a unique feature 1 to a node in H; (as all nodes are symmetric for even [, the selection of node does
not matter), and G denote adding a unique feature 1 to one node in G;. All other nodes have feature 0. Now we prove that

Lemma C3. Forall K € N, (K + 1)-layer MPNN can distinguish Hy s . 1) and Gy, 1), while K-layer MPNN and
K-layer vanilla Graph Transformer cannot distinguish.

Given H‘;(K-i-l)’ Gf;(K+1}= we assign each node a color according to its distance to the node with extra label 1: ¢; (the
labeled node itself), ¢; (two nodes connected to the labeled node), c2 (two nodes whose shortest path distance to the labeled
node is 2),..., cx (two nodes whose shortest path distance to the labeled node is K), ¢~ x (nodes whose shortest path distance
to the labeled node is larger than K'). Now by simulating the process of MPNN, we prove that at k-th layer k <= K,
i < k, ¢; nodes have the same representation (denoted as hY), respectively, cxy1, k12, ..., €k, €=k Nodes all have the
same representation (denoted as hj;).

Initially, all cp nodes have representation hQ, all other nodes have representation A in both graph.

Assume at k-th layer, Vi < k, ¢; nodes have the same representation hf, respectively, cg41, Ck41, ..., €K, C> K Nodes all
have the same representation hf , ;. Atk + 1-th layer, co node have two neighbors of representation hf. all ¢;,1 < i <=k
node two neighbors of representations hf_; and hf, ;, respectively. cx1 nodes have two neighbors of representation hf and
hj 1. All other nodes have two neighbors of representation hf ;. So ¢;,i < k + 1 nodes have the same representation
(denoted as hf“), respectively, ¢x1 141, ..., Ck, €~k Nodes all have the same representation (denoted as hﬁH).

The same induction also holds for K-layer vanilla graph transformer.

However, in the K + 1-th message passing layer, only one node in G 1) is of shortest path distance K + 1 to the labeled
node. It also have two neighbors of representation ~£. While such a node is not exist in Hy(k 41)- So (K + 1)-layer MPNN
can distinguish them. -

The issue with a vanilla Graph Transformer is that, although it collects information from all nodes in the graph, it can only
determine the presence of features in 1-hop neighbors. It lacks the ability to recognize features in higher-order neighbors,

such as those in 2-hop or 3-hop neighbors. A straightforward solution to this problem is to manually include the shortest

22

Graph As Point Set

Figure 2. The failure of using inner products of permutation-equivariant node representations to predict shortest path distance. wv2
and vz have equal node representations due to symmetry. Therefore, (v1, v2) and (v1,v3) will have the same inner products of node

representations but different shortest path distance.

Table 5. Connection between existing structural embeddings and our parameterized coordinates. The eigendecomposition are A +

D — A+ UAUT, A+ UAU". d; denote the degree of node 7.

AT,

Method

Description

Connection

Random walk matrix (Li
et al., 2020; Dwivedi et al.,
2023; Rampéasek et al,
2022)

k-step random walk matrix is (D—'A)*, whose
element (2, 7) is the probability that a k-step ran-
dom walk starting from node 7 ends at node 7.

(D7rA)y
= WA D,
= /(0 diag(R¥)05)

Heat kernel matrix (Mi-
alon et al., 2021)

Heat kernel is a solution of the heat equation. Its
element (i, 7) represent how much heat diffuse
from node i to node j

(14U (diag(exp(—tA))—1)UT)i _
=0i;+(Us, (diag(exp(—tA)) —I)Uj)

Resistance dis-
tance (Zhang & Li,
2021; Zhang et al., 2023b)

Its element (7, §) is the resistance between node
i, j considering the graph as an electrical network.
It is also the pseudo-inverse of laplacian matrix L,

(Udiag(A~")T")y
= (Us, diag(A~1)U;)

Equivariant and stable
laplacian PE (Wang et al.,
2022)

The encoding of node pair ¢, j is |1 x ®(U; —Uj;)||,
where 15 means a vector € R" with its elements
coresponding to K largest eigenvalue of L

Ik © (U — Uy) 2
= (U, diag(1x)Uy)
+(Uy, diag(1x)Uy)

—2(U;, diag(1x)U;)

Degree and number of tri-
angular (Bouritsas et al.,

d; is the number of edges, and ¢; is the number of
triangular rooted in node 7.

d; = (U, diag(A?)U;).
ti = (Ui, diag(A®)U;)

2023)

path distance as a feature. However, our analysis highlights that aggregating information from the entire graph is insufficient
for capturing long-range interactions.

D. Connection with Structural Embeddings

We show the equivalence between the structural embeddings and the inner products of our PSRD coordinates in Table 5.
The inner products of PSRD coordinates can unify a wide range of positional encodings, including random walk (Li et al.,
2020; Dwivedi et al., 2023; Rampések et al., 2022), heat kernel (Mialon et al., 2021), and resistance distance (Zhang & Li,
2021; Zhang et al., 2023b).

E. Datasets

We summarize the statistics of our datasets in Table 6. Synthetic is the dataset used in substructure counting tasks provided
by Huang et al. (2023b), they are random graph with the count of substructure as node label. QM9 (Wu et al., 2017),
ZINC (G6émez-Bombarelli et al., 2016), and ogbg-molhiv are three datasets of molecules. QM9 use 13 quantum chemistry
property as the graph label. It provides both the graph and the coordinates of each atom. ZINC provides graph structure
only and aim to predict constrained solubility. Ogbg-molhiv is one of Open Graph Benchmark dataset, which aims to
use graph structure to predict whether a molecule can inhibits HIV virus replication. We further use MUTAG, PTC-MR,
PROTEINS, and IMDB-BINARY from TU database (Ivanov et al., 2019). MUTAG comprises 188 mutagenic aromatic

23

Graph As Point Set

Table 6. Statistics of the datasets. #Nodes and #Edges denote the number of nodes and edges per graph. In split column, 'fixed” means the
dataset uses the split provided in the original release. Otherwise, it is of the formal training set ratio/valid ratio/test ratio.

#Graphs #Nodes #Edges Task Metric Split
Synthetic 5,000 18.8 31.3 Node Regression MAE 0.3/0.2/0.5.
QM9 130,831 18.0 18.7 Regression MAE 0.8/0.1/0.1
ZINC 12,000 23.2 24.9 Regression MAE fixed
ZINC-full 249,456 23.2 24.9 Regression MAE fixed
ogbg-molhiv 41,127 25.5 27.5 Binary classification AUC fixed
MUTAG 188 17.9 39.6 classification Accuracy 10-fold cross validataion
PTC-MR 344 14.3 14.7 classification Accuracy 10-fold cross validation
PROTEINS 1113 39.1 145.6 classification Accuracy 10-fold cross validataion
IMDB-BINARY 1000 19.8 193.1 classification Accuracy 10-fold cross validataion
PascalVOC-SP 11,355 479.4 2710.5 Node Classification = Macro F1 fixed
Peptides-func 15,535 150.9 307.3 Classification AP fixed
Peptides-struct 1 15,535 150.9 307.3 Regression MAE fixed

Table 7. Hyperparameters of our model for each dataset. #warm means the number of warmup epochs, #cos denotes the number of cosine
annealing epochs, gn denotes the magnitude of the gaussian noise injected into the point coordinates, hiddim denotes hidden dimension,
bs means batch size, Ir represents learning rate, and #epoch is the number of epochs for training.

dataset #warm #cos wd en #layer hiddim bs Ir #epoch #param
Synthetic 10 15 6e4 le-6 9 96 16 0.0006 300 961k
qm9 1 40 le-1 1le-5 8 128 256 0.001 150 1587k
ZINC 17 17 le-1 le-4 6 80 128 0.001 800 472k
ZINC-full 40 40 le-1 le-6 8 80 512 0.003 400 582k
ogbg-molhiv 5 5 le-1 le-6 6 96 24 0.001 300 751k
MUTAG 20 1 le-7 le-4 2 48 64 2e-3 70 82k
PTC-MR 25 1 le-1 1le-3 4 16 64 3e-3 70 15k
PROTEINS 25 1 le-7 3e-3 2 48 8 1.5e-3 80 82k
IMDB-BINARY 35 1 le-7 1le-5 3 48 64 3e-3 80 100k
PascalVOC-SP 5 5 le-1 1le-5 4 96 6 0.001 40 527k
Peptide-func 40 20 le-1 le-6 6 128 2 0.0003 80 1337k
Peptide-struct 40 20 le-1 le-6 6 128 2 0.0003 40 1337k

and heteroaromatic nitro compounds. PROTEINS represents secondary structure elements as nodes with edges between
neighbors in amino-acid sequence or 3D space. PTC involves 344 chemical compounds, classifying carcinogenicity for rats.
IMDB-BINARY features ego-networks for actors/actresses in movie collaborations, classifying movie genre graphs. We also
use three datasets in Long Range Graph Benchmark (Dwivedi et al., 2022b). They consists of larger graphs. PascalVOC-SP
comes from the computer vision domain. Each node in it representation a superpixel and the task is to predict the semantic
segmentation label for each node. Peptide-func and peptide struct are peptide molecular graphs. Task in Peptides-func is to
predict the peptide function. Peptides-struct is to predict 3D properties of the peptide. PTC is a collection of 344 chemical
compounds represented as graphs which report the carcinogenicity for rats. There are 19 node labels for each node.

F. Experimental Details

Our code is available in supplementary material. Our code is primarily based on PyTorch (Paszke et al., 2019) and PyG (Fey
& Lenssen, 2019). All our experiments are conducted on NVIDIA RTX 3090 GPUs on a linux server. We use 11 loss for
regression tasks and cross entropy loss for classification tasks. We select the hyperparameters by running optuna (Akiba
et al., 2019) to optimize the validation score. We run each experiment with 8 different seeds, reporting the averaged results at
the epoch achieving the best validation metric. For optimization, we use AdamW optimizer and cosine annealing scheduler.
Hyperparameters for datasets are shown in Table 7. All PST and PSDS models (except these in ablation study) decompose
laplacian matrix for coordinates.

ZINC, ZINC-full, PascalVOC-SP, Peptide-func, and Peptide-struct have 500k parameter budgets. Other datasets have
no parameter limit. Graphormer (Ying et al., 2021) takes 47000k parameters on ogbg-molhiv. 1-2-3-GNN takes 929k
parameters on qm9. Our PST follows these budgets on ZINC, ZINC-full and PascalVOC-SP. However, on the peptide-func

24

Graph As Point Set

Table 8. Results on peptide-func and peptide-struct dataset with 1M parameter budget.

Rank r Rank r .
. N —— Hidden
— Batch Matrix Multiplication = . .
S ® dimension d
s} e 3
. (-
LG e o] Eme B BT Diagonal £
1 -1 2 0 o0 o0 decomposition:": l. Dlagqnal
—> . ic
o o 0 2 -1 -1 Eigenvector V m Mmatrice
o 0 0 -1 2 -1
0o 0o 0 -1 -1 2 W]]
. . Rank ¥ Hidden
Laplacian Matrix SRR — |35 | —> .

Eigenvalue A Ef

Figure 3. The pipeline of parameterized SRD. We first decompose Laplacian matrix or other matrice for the non-zero eigenvalue and
the corresponding eigenvectors. Then the eigenvalue is transformed with DeepSet (Segol & Lipman, 2020). Multiply the transformed
eigenvalue and the eigenvector leads to coordinates.

and peptide-struct datasets, we find that hidden dimension is quite crucial for good performance. So we use a comparable
number of hidden dimension and transformer layers. This leads to about 1M parameters because our PST employs two sets
of parameters (one for scalar and one for vector), which resulted in twice the parameters with the same hidden dimension
and number of transformer layers. We conduct experiments with baselines with larger hidden dimensions for these datasets.
The results are shown in Table 8. When the PST and baselines are all to 1M parameters, out PST outperforms baselines with
the same parameter budget 1M, and our method is effective on the two datasets.

Other datasets we explored do not have explicit parameter constraints, and it’s worth noting that our PST has fewer
parameters compared to representative baselines in these cases. Hyperparameter Configuration:

Our experiments involved tuning seven hyperparameters: depth (4, 8), hidden dimension (64, 256), learning rate (0.0001,
0.003), number of warmup epochs (0, 40), number of cosine annealing epochs (1, 20), magnitude of Gaussian noise added
to input (1e-6, le-4), and weight decay (le-6, le-1). We observed that [1] also used seven hyperparameters in their setup.
Batch size was determined based on GPU memory constraints and was not a parameter that we optimized.

G. Architecture

The architecture of parameterized SRD is shown in Figure 3. As illustrated in Section 3.2, it first do eigendecomposition
for non-zero eigenvalues and the corresponding eigenvectors, then use DeepSet (Segol & Lipman, 2020) to process the
eigenvalues, leading to coordinates with multiple channels. The architecture of PST is shown in Figure 4. As illustrated in
Section 4, it is composed of scalar-vector mixers and attention layers.

H. Ablation

To assess the design choices made in our Point Set Transformer (PST), we conducted ablation experiments. First, we replace
the PSRD coordinates (see Section 3.2) with SRD coordinates, resulting in a reduced version referred to as the PST-gc
model. Additionally, we introduced a variant called PST-onelayer, which is distinct from PST in that it only computes
the attention matrix once and does not combine information in scalar and vector features. Furthermore, PST decompose
Laplacian matrix by default to produce coordinates. PST-adj uses adjacency matrix instead. Similar to PST, PSDS takes
node coordinates as input. However, it use DeepSet (Segol & Lipman, 2020) rather than transformer as the set encoder. For
better comparison, we also use our strongest baseline on QM9 dataset, DF (Zhou et al., 2023).

The results of the ablation study conducted on the QM9 dataset are summarized in Table 2. Notably, PST-gc exhibits only

25

(a) _ (b) (c)

:
g.
=
=L
S
= FE
t s
l<—(i)
=
[1°]
B
S =
=
law]
(82)

—_—
vi

Figure 4. Architecture of Point Set Transformer (PST) (a) PST contains several layers. Each layer is composed of an scalar-vector
(sv)-mixer and an attention layer. (b) The architecture of sv-mixer. (c) The architecture of attention layer. s; and s} denote the scalar
representations of node 2, and #; and ¥} denote the vector representations. x; is the initial features of node 7. @; and point coordinates of
node 7 produced by parameterized SRD in Section 3.2.

Table 9. Ablation study on qm9 dataset.
I [o] Ehomo Elumo Ae Rr? ZPVE Ug u H G ',
Unit 107'D 10 'a} 10 %meV 10 2meV 10 2meV a3 10 2meV meV meV meV meV 10~ Zcal/molV/K

PST 3.19:0.04 1.8940.04 5.9810.00 5.8410.08 8.460.07r 13.08,40.16 0.3910.01 3.4610.17 3.5520.10 3.4940.20 3.552017 T.7TT+o0.s

PST-onelayer 3.724.0.02 2.2540.05 6.6240.11 6.67+0.07 9.37+0.15 15.9540.20 0.5510.01 3.46.+0.06 3.5040.14 3.5010.03 3.4530.07r 9.62410.24

PST-gc 3.3440.02 1.9340.03 6.0840.11 6.1040.10 8.65+0.10 13.7140.12 0.4040.01 3.3840.13 3.4310.12 3.3310.08 3.293011 B8.0440.15

PST-adj 3.1610.02 1.8640.01 6.31+0.06 6.10+0.05 8.84+0.01 13.6040.00 0.3910.01 3.5940.12 3.7310.08 3.6510.06 3.6010.016 7.6210.21

PST-normadj 3.2240.04 1.8540.02 5.97+0.23 6.1510.07 8.79+0.04 13.4240.15 0.41 10,01 3.3610.25 3.41 410,24 3.46.10.18 3.381023 B.1040.12

PSDS 3.53.10.05 2.0540.02 6.5610.03 6.31+0.05 9.13+0.04 14.3540.02 0.4110.02 3.5310.11 3.4910.05 3.4710.04 3.561014 8.35:10.00
DF 3.46 2.22 6.15 6.12 8.82 15.04 0.46 4.24 4.16 3.95 4.24 9.01

a slight increase in test loss compared to PST, and even outperforms PST on 4 out of 12 target metrics, highlighting the
effectiveness of the Graph as Point Set approach with vanilla symmetric rank decomposition. In contrast, PST-onelayer
performs significantly worse, underscoring the advantages of PST over previous methods that augment adjacency matrices
with spectral features. PST-adj and PST-normadj achieves similar performance to PST, illustrating that the choice of matrix
to decompose does not matter. DeepSet performs worse than PST, but it still outperforms our strongest baseline DF, showing
the potential of combining set encoders other than transformer with our convertion from graph to set. On the long-range
graph benchmark, PST maintains a significant performance edge over PST-onelayer. However, it’s worth noting that the gap
between PST and PST-gc widens, further confirming the effectiveness of gc in modeling long-range interactions.

I. Scalability

We present training time per epoch and GPU memory consumption data in Table 11 and Table 12. Due to architecture, PST
has higher time complexity than existing Graph Transformers and does not scale well on large graphs like pascalvoc-sp
dataset. However, on the ZINC dataset, PST ranks as the second fastest model, and its memory consumption is comparable
to existing models with strong expressivity, such as SUN and SSWL, and notably lower than PPGN.

J. Results on TU datasets

Following the setting of Feng et al. (2022), we test our PST on four TU datasets (Ivanov et al., 2019). The results are shown
in Table 13. Baselines include WL subtree kernel (Shervashidze et al., 2011), GIN (Xu et al., 2019a), DGCNN (Zhang et al.,
2018), GraphSNN (Wijesinghe & Wang, 2022), GNN-AK+ (Zhao et al., 2022), and three variants of KP-GNN (Feng et al.,
2022) (KP-GCN, KP-GraphSAGE, and KP-GIN). We use 10-fold cross-validation, where 9 folds are for training and 1 fold
is for testing. The average test accuracy is reported. Our PST consistently outperforms our baselines.

26

Graph As Point Set

Table 10. Ablation study on Long Range Graph Benchmark dataset.

Model PascalVOC-SP Peptides-Func Peptides-Struct
PST 0.4010+0.0072 0.6984+0.0051 0.2470+0.0015
PST—onelayer 0.322940.0051 0.6517+0.0076 0.2634+0.0010
PST—gC 0.40071010039 0.6439i0,0342 0.25641010120

Table 11. Training time per epoch and GPU memory consumption on zinc dataset with batch size 128.
PST SUN SSWL PPGN Graphormer GPS SAN-GPS

Time/s 1520 20.93 4530 20.21 123.79 11.70 79.08
Memory/GB 4.08 3.72 3.89 20.37 0.07 0.25 2.00
K. Point Set DeepSet

Besides Transformer, we also propose a DeepSet (Segol & Lipman, 2020)-Based set encoder, Point Set DeepSet (PSDS),
for point set to illustrate the versatility of our graph-to-set method. Similar to PST, PSDS also operates with points
carrying two types of representations: scalars, which remain invariant to coordinate orthogonal transformations, and vectors,
which adapt equivariantly to coordinate changes. For a point i, its scalar representation is denoted by s; € R?, and its
vector representation is denoted by v; € R™4 where d is the hidden dimension, and r is the rank of coordinates. s;
is initialized with the input node feature X;, and v; is initialized with the parameterized coordinates containing graph
structural information, as detailed in Section 3.2. Similar to DeepSet, PSDS transforms point representations individually,
aggregates them to produce global feature, and combine global features and individual point representations to update point
representations.

Scalar-Vector Mixer. This component individually transforms point representations. To enable the information exchange
between vector and scalar features, we design a mixer architecture as follows.

st < MLP; (s;||diagonal (W1 vl v;WT)), (101)
v] « v;diag(MLPa(s;)) W3 + v; Wy (102)

Here, Wy, W, W3, and W, € R?*4 are learnable matrices for mixing different channels of vector features. Additionally,
MLP; : R24~4 and MLP; : R4~ represent two multi-layer perceptrons transforming scalar representations. The operation
diagonal(W; vl v; W) takes the diagonal elements of a matrix, which translates vectors to scalars, while diag(MLP;(s;))v;
transforms scalar features into vectors. As v} RT Rv; = vl v;, VR € O(r), the scalar update is invariant to orthogonal
transformations of the coordinates. Similarly, the vector update is equivariant to O(r).

Aggregator. This component aggregates individual point representations for global features s, v, vsg.

5+ Z MLP3(s:) (103)
ieV

v Y viWs (104)
ieV

Vsg + Y viWeWrv] (105)
ieV

Here, W5, Wg and W~ € R4*4 denote the linear transformations vectors. MLP5 : R? — R? is an MLP converting scalars.
Global feature s € R? is scalar, vR™*? is vector, and vgq € R™*" is the sum of square for each vector.

Point Representation Update. Each point representation is updated by combining global features.

s; 4 MLPy(s; + s) (106)
Vi Vsqli + UWB (lm)

s; is combined with global scalar s and transformed with an MLP MLP, : R? — R%. v; is combined with vgq and v with
linear layer Wy € R4,

27

Graph As Point Set

Table 12. Training time per epoch and GPU memory consumption on pascalvoc-sp dataset with batch size 6.

PST SUN SSWL PPGN Graphormer

GPS SAN-GPS

Time/s 15.20 20.93 45.30 20.21 123.79 11.70 79.08
Memory/GB 4.08 3.72 3.89 20.37 0.07 0.25 2.00
Table 13. TU dataset evaluation result.
Method MUTAG PTC-MR PROTEINS IMDB-B
WL 90.445.7 59.944.3 75.04+3.1 73.84+3.9
GIN 89.4+5.6 64.61+7.0 75.942.8 75.145.1
DGCNN 85.8+1.7 58.6 2.5 75.5+0.9 70.0+0.9
GraphSNN 91.2442.5 66.9643.5 76.51+2.5 76.93+3.3
GIN-AK+ 91.30+7.0 68.2045.6 77.10+5.7 75.60+3.7
KP-GCN 91.71+6.0 67.1+6.3 75.843.5 75.943.8
KP-GraphSAGE 91.746.5 66.5+4.0 76.5+4.6 76.44+2.7
KP-GIN 92.24+6.5 66.81+6.8 75.8+4.6 76.61+4.2
PST 944435 68.844.6 80.7+3.5 78.91+3.6

Pooling. After several layers, we pool all points’ scalar representations as the set representation s.

s + Pool({s;]i € V})

where Pool is pooling function like sum, mean, and max.

28

(108)

