
Journal of Algebra 656 (2024) 3–23
Contents lists available at ScienceDirect

Journal of Algebra

journal homepage: www.elsevier.com/locate/jalgebra

Applications of the Fixed Point Theorem for group 

actions on buildings to algebraic groups over 

polynomial rings

Peter Abramenko a, Andrei S. Rapinchuk a, Igor A. Rapinchuk b,∗

a Department of Mathematics, University of Virginia, Charlottesville, VA 
22904-4137, USA
b Department of Mathematics, Michigan State University, East Lansing, MI 48824, 
USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 October 2022
Available online 30 May 2023
Communicated by Philippe Gille

In memoriam Jacques Tits

Keywords:
Algebraic groups
Buildings
Galois cohomology

We apply the Fixed Point Theorem for the actions of 
finite groups on Bruhat–Tits buildings and their products 
to establish two results concerning the groups of points 
of reductive algebraic groups over polynomial rings in one 
variable, assuming that the base field is of characteristic zero. 
First, we prove that for a reductive k-group G, every finite 
subgroup of G(k[t]) is conjugate to a subgroup of G(k). This, 
in particular, implies that if k is a finite extension of the p-adic 
field Qp, then the group G(k[t]) has finitely many conjugacy 
classes of finite subgroups, which is a well-known property 
for arithmetic groups. Second, we give a short proof of the 
theorem of Raghunathan–Ramanathan [26] about G-torsors 
over the affine line.

© 2023 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: pa8e@virginia.edu (P. Abramenko), asr3x@virginia.edu (A.S. Rapinchuk), 

rapinchu@msu.edu (I.A. Rapinchuk).
https://doi.org/10.1016/j.jalgebra.2023.05.023
0021-8693/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2023.05.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2023.05.023&domain=pdf
mailto:pa8e@virginia.edu
mailto:asr3x@virginia.edu
mailto:rapinchu@msu.edu
https://doi.org/10.1016/j.jalgebra.2023.05.023


4 P. Abramenko et al. / Journal of Algebra 656 (2024) 3–23
1. Introduction

In 1872, in his very influential “Erlanger Programm”, Felix Klein suggested to base 
the study of (certain) geometric spaces on the analysis of their transformation groups, 
thus assigning groups a fundamental role in geometry. In the late 1950s and early 1960s, 
Jacques Tits reversed this idea. He invented geometric structures that he called “build-
ings” in order to interpret (certain) groups of Lie type as symmetry groups. Until then, 
some of these groups, particularly those of exceptional type, had been studied in a purely 
algebraic manner. Through the use of buildings, important parts of modern group theory 
have become accessible to geometric methods and ideas, and this has continued to be a 
crucial link between group theory and geometry, with many applications ever since. The 
goal of this paper is to present several results on the structure and Galois cohomology 
of the groups of points of reductive algebraic groups over polynomial rings that rely in a 
critical way on the analysis of the actions of these groups on affine Bruhat–Tits buildings 
and the Fixed Point Theorem for actions of finite groups on these buildings and their 
products. We hope that this approach can be developed further to treat similar issues 
for the groups of points over the coordinate rings of more general affine curves.

First, one of the notable consequences of reduction theory for arithmetic groups is 
that every arithmetic subgroup has finitely many conjugacy classes of finite subgroups 
(cf. [3], [24, Ch. 4, Theorem 4.3]) — we will refer to this property as (FC). Later, using a 
combination of various techniques, including the Fixed Point Theorem for group actions 
on CAT(0) spaces, it was shown in [18, Theorem 1.4] that (FC) remains valid for all
finite extensions of arithmetic groups. We will use the Fixed Point Theorem to establish 
(FC) for groups of the form G(k[t]), where G is a reductive algebraic group over a 
nonarchimedean local field k of characteristic zero, i.e., over a finite extension of some p-
adic field Qp (see Theorem 4.4). This result can be viewed as a contribution to the theory 
of algebraic groups over function fields of p-adic curves, where very significant progress 
has been achieved over the last decade on the cohomological Hasse principle and related 
issues — see [11], [23], and references therein for the most recent installments of this work. 
Nevertheless, the question about (FC) for the groups of points over the coordinate rings 
of such curves has not been previously addressed. We plan to investigate this question 
for curves other than the affine line in future work. It should be pointed out that our 
finiteness result is derived from the following statement that is of independent interest.

Theorem 1.1. Let G be a reductive algebraic group over a field k of characteristic 0. Then 
every finite subgroup of G(k[t]) is conjugate to a subgroup contained in G(k).

We note that if p = char k > 0 and the derived group [G, G] of G is k-isotropic, then 
the group G(k[t]) contains finite abelian p-subgroups of unbounded orders (even when 
k = Fp is the field with p elements). This implies that the above theorem fails in this 
situation and no finiteness theorem can be established unless we limit ourselves to finite 
subgroups of order prime to p.
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Second, the result on (FC) for arithmetic groups was used in [4] to establish the 
finiteness of the cohomology set H1(g, Γ) for certain actions of a finite group g on an 
arithmetic group Γ, which was then applied to prove the properness of the global-to-local 
map in Galois cohomology in some situations. Subsequently, the finiteness of H1(g, Γ) was 
established in [18, Theorem 1.5] for all actions of a finite group g on an arithmetic group 
Γ as a consequence of the result on (FC) for all finite extensions of arithmetic groups. 
We will utilize this approach, in conjunction with the techniques employed in the proof 
of Theorem 1.1, to give a short proof of the theorem of Raghunathan–Ramanathan [26]
(see Theorem 5.1). The proof quickly reduces to the following statement, which we then 
establish.

Theorem 1.2. Let G be a reductive algebraic group over a field k of characteristic 0. Then 
for any finite Galois extension �/k, the natural map

H1(Gal(�/k), G(�)) −→ H1(Gal(�/k), G(�[t]))

is a bijection.

It follows from this result that if k is a local field of characteristic zero, then the 
set H1(Gal(k̄/k), G(k̄[t])) is finite. The result of [8] on torsors over the punctured affine 
line implies the finiteness of the set H1(Gal(k̄/k), G(k̄[t, t−1]) over such k. It would be 
interesting to see if the finiteness result remains valid over the coordinate rings of more 
general p-adic curves.

2. The action of G(k[t]) on the relevant building

We begin this section with a summary of the results of B. Margaux [20] that generalize 
results established by C. Soulé [30] in the split case. It should be noted that for anisotropic 
groups, the relevant building degenerates into a point, but the results we need remain 
valid in this case due to Proposition 2.5 below.

2.1. Results of B. Margaux [20]

Let G be an absolutely almost simple simply connected algebraic group over a field 
k. Fix a maximal k-split torus S of G, and let T be a maximal k-torus containing S. 
Take �/k to be a finite Galois extension with Galois group G = Gal(�/k) such that T
splits over � (we do not assume that � is necessarily the minimal splitting field of T ). Let 
Φ = Φ(G, T ) (resp., Φr = Φ(G, S)) denote the corresponding absolute (resp., relative) 
root system. We choose compatible orderings on Φ and Φr, and denote by Δ and Δr the 
corresponding systems of simple roots.

Next, we set K = k( (1/t) ) and L = �( (1/t) ), and let B (resp., B�) denote the (affine) 
Bruhat–Tits building associated with the group GK := G ×k K (resp., GL = G ×k L). 
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Both B and B� possess natural simplicial complex structures, and there is an isometric 
embedding j : B → B� that identifies B with the fixed set (B�)G under the natural 
action of G. The hyperspecial subgroup G(��1/t�) of G(L) fixes a unique vertex p0

� ∈ B�. 
Since the subgroup G(��1/t�) is G-invariant, the point p0

� is G-fixed, hence p0
� = j(p0) for 

p0 ∈ B. Let A (resp., A�) be the standard apartment of B (resp., B�) associated with S
(resp., TL). Then

A = p0 + Homk-gr(Gm, S) ⊗Z R and A� = p0
� + Hom�-gr(Gm, T ) ⊗Z R, (1)

hence j(A) = (A�)G. Let

〈·, ·〉 : Homk-gr(S,Gm) × Homk-gr(Gm, S) → Z

be the canonical pairing. We then define the sector (quartier) by

Q = p0 + D, where D := {λ ∈ Homk-gr(Gm, S) ⊗Z R | 〈α, λ〉 ≥ 0 ∀α ∈ Δr}.

The following theorem, which is Theorem 2.1 in [20], generalizes the result that was 
established by Soulé [30] for split groups.

Theorem 2.1. The set Q is a simplicial fundamental domain for the action of G(k[t])
on B. In other words, every simplex of B is equivalent under the action of G(k[t]) to a 
unique simplex of Q.

We note that in this paper, the uniqueness will be used only in the split case. It 
follows from the description that if G is k-split, then S = T and consequently A� = A. 
Therefore, in the split case, every point of B� is G(�[t])-equivalent to a point of A.

Next, set Γ = G(k[t]). We will now recall the description of the stabilizers Γx of points 
x ∈ Q obtained in [20, §2]. Clearly, for p0 ∈ Q we have Γp0 = G(k). Let now x ∈ Q \{p0}. 
Set

Ix = {α ∈ Δr | α(x) = 0}

(we obviously have Ip0 = Δ). As usual, for I ⊂ Δr, we define

SI =
( ⋂

α∈I

ker α

)◦

and LI = ZG(SI).

Let PI be the standard parabolic subgroup of G of type I (cf. [2, 21.11]). Then PI has 
LI as its (standard) Levi subgroup, i.e. PI is the semi-direct product UI �LI , where UI

is the unipotent radical of PI , which is a connected k-defined k-split unipotent subgroup 
of PI . Recall that the root system Φ(LI , S) coincides with [I], the subsystem of Φr

consisting of roots that are linear combinations of elements of I. Then UI is generated 
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by the Uα for α ∈ Φ+
r \ [I]. (All these facts can be found in [2]) The following result is a 

consequence of ([20, Proposition 2.5(1)]).

Proposition 2.2. We have

Γx = (Γx ∩ UIx
(K)) � LIx

(k), (2)

and Γx ∩ UIx
(K) is the group of k-points of a k-split unipotent group.

We will only explain how one can identify the group Θx := Γx ∩ UIx
(K) with the 

group U(k) of k-points of a k-defined split (unipotent) subgroup U of the restriction of 
scalars RAn/k(UIx

) for a sufficiently large positive integer n where An = k[t]/(tn). It 
is one of the cornerstones of Bruhat–Tits theory that the stabilizers in G(K) of points 
of the building are open bounded subgroups (cf. [19, Axiom 4.1.2]) with respect to the 
topology associated with the valuation, in our case, with the valuation associated with 
t−1. Thus, the subgroup Θx ⊂ UIx

(k[t]) is bounded, and therefore there exists an integer 
n > 0 such that Θx has trivial intersection with the congruence subgroup UIx

(k[t], (tn)). 
Then Θx is identified with a subgroup of

UIx
(k[t])/UIx

(k[t], (tn)) � UIx
(An) � RAn/k(UIx

)(k),

and in fact we have a similar identification when n is replaced by any n′ ≥ n. Further 
analysis based on information about the structure of Θx that is developed in [20, §2]
using the results of [6] shows that the image of Θx coincides with the group of k-points 
of a k-defined subgroup U of RAn/k(UIx

) for a sufficiently large n. More precisely, let 
{b1, . . . , bm} be the set of reduced roots in Φ+

r \ [Ix]. Then the product map 
∏m

j=1 Ubj
→

UIx
is an isomorphism of k-varieties [2, Proposition 21.9], yielding an identification of ∏m

j=1 RAn/k(Ubj
) with RAn/k(UIx

). On the other hand, it follows from [6, section 6.4.9]
that the product map 

∏n
j=1(Γx ∩ Ubj

(K)) → Θx is a bijection. Thus, it is enough to 
prove that for a sufficiently large n, the subgroup Θx,j := Γx ∩ Ubj

(K) gets identified 
with the group of k-points of a k-subgroup Uj of RAn/k(Ubj

). But Θx,j coincides with the 
intersection Γ ∩Ũbj ,m for some integer m, where Ũbj ,m is introduced on p. 395 of [20], and 
it is enough to show that the intersection G(�[t]) ∩ Ũbj ,m gets identified with the group of 
�-points of a closed subgroup of RAn/k(Ubj

) for a sufficiently large n. The decomposition 
defining Ũbj ,m in [20] reduces this question to G = SL2, where it is well-known and easy 
to check (cf. [28, Ch. II, §1]).

Recall that for subsets I, J ⊂ Δr, we clearly have LI ∩ LJ = LI∩J . So, we deduce 
from the proposition that given a subset Ω ⊂ Q, the pointwise stabilizer ΓΩ :=

⋂
x∈Ω Γx

has the following description:

ΓΩ = (ΓΩ ∩ UΩ(K)) � LIΩ(k), where UΩ =
⋂

UIx
and IΩ =

⋂
Ix. (3)
x∈Ω x∈Ω
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Using the procedure we applied above to identify Θx with the group of k-points of a 
k-defined split unipotent subgroup, we obtain the following.

Corollary 2.3. For any subset Ω ⊂ Q, the pointwise stabilizer ΓΩ of Ω is of the form 
U(k) � LIΩ(k), where U is a k-defined k-split unipotent group.

2.2. A result concerning G(k[t])

In order to extend some results from subsection 2.1 to arbitrary reductive groups, we 
need the following fact.

Theorem 2.4. Let G be reductive algebraic k-group. Then

G(k[t]) = G(k) · G(k[t])+,

where G(k[t])+ is the subgroup of G(k[t]) generated by the subgroups UP (k[t]) for all 
minimal k-defined parabolic subgroups P of G, with UP being the unipotent radical of P .

This was established in [32, Theorem 3.1] under the additional assumption that every 
normal semi-simple k-subgroup of [G, G] is k-isotropic. The argument in [32] gives a 
reduction to the case where G is semi-simple and simply connected, which was considered 
in [20] by generalizing the techniques introduced in [30]. To handle the general case in 
the theorem, we will need the fact that if G is k-anisotropic, then G(k[t]) = G(k). In 
fact, we have the following more general statement.

Proposition 2.5. Let C̃ be a smooth absolutely irreducible projective curve over a field k, 
let P ∈ C̃(k) be a k-rational point, and C = C̃ \ {P} be the corresponding affine curve. 
Then for any connected reductive algebraic k-group G whose semi-simple part H = [G, G]
is k-anisotropic, we have G(k[C]) = G(k).

Proof. The claim is almost immediate if G = T is a torus. Indeed, let � be the splitting 
field of T . Then �[C]× = �×, and consequently

T (k[C]) ⊂ T (�[C]) = T (�).

So, T (k[C]) ⊂ T (k[C] ∩ �) = T (k).
We will reduce the proof to the case of a semi-simple k-anisotropic group. There is 

a central k-defined isogeny π : G → T̄ × H̄ to the direct product of a torus and a semi-
simple group. Clearly, π yields a central isogeny H → H̄, so H̄ is k-anisotropic. Assuming 
that the assertion of the proposition is valid for semi-simple k-anisotropic groups, we will 
have

π(G(k[C])) ⊂ T̄ (k[C]) × H̄(k[C]) = T̄ (k) × H̄(k).
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Since ker π ⊂ G(k̄), we obtain G(k[C]) ⊂ G(k[C] ∩ k̄) = G(k) as k[C] ∩ k̄ = k due to the 
fact that C is absolutely irreducible (cf. [17, Proposition 5.50]).

Now we will treat the main case where G is a semi-simple k-anisotropic group. Let 
K = k(C), and set OP and v = vP to be the local ring of P and the discrete valuation 
of K associated with the point P , respectively. Then the completion Kv can (and will) 
be identified with the field of formal power series k( (t) ), and G remains Kv-anisotropic.

To see the latter, we recall that the proper parabolic subgroups of G are parametrized 
by a k-scheme P which is proper over k (cf. [14], éxpose XXVI, cor. 3.5 and 3.6). The 
assumption that G becomes isotropic over Kv would mean that P has a Kv-point. Then 
by the valuative criterion for properness (see, for example, [17, Theorem 15.9]) the scheme 
P would have a point over the valuation ring Ov of Kv. The reduction of this point 
would give us a point of P over the residue field, which in our case coincides with k. 
Thus, P(k) �= ∅, and hence G has a proper k-defined parabolic. This means that G is 
k-isotropic, which is not the case.

Next, fix a faithful k-defined representation G ↪→ GLn. The fact that G is Kv-
anisotropic implies that G(Kv) is a bounded subgroup of GLn(Kv) (see [19, Theorem 
2.2.9]). We claim that in fact

G(Kv) = G(Ov), (4)

where Ov is the valuation ring of Kv. Indeed, suppose that g = (gij) ∈ G(Kv) \ G(Ov). 
Then for some indices i0, j0 ∈ {1, . . . , n} we have v(gi0j0) < 0. For each m = 1, 2, . . ., we 
can consider the k-algebra homomorphism ϕm : k( (t) ) → k( (t) ) defined by sending t to 
tm. Since G is defined over k, we have (ϕm(gij)) ∈ G(Kv) for all m. But the sequence 
ϕm(gi0j0), m = 1, 2, . . ., is unbounded, contradicting the boundedness of G(Kv), hence 
proving (4). Then

G(k[C]) = G(k[C]) ∩ G(Ov) = G(k[C] ∩ OP ) = G(k[C̃]) = G(k),

as required. �
Remarks. 1. The statement of Proposition 2.5 in an earlier version of this paper included 
the assumption that k has characteristic zero. This assumption was used in the proof 
to argue, using nilpotent elements in the Lie algebra, that G remains Kv-anisotropic. 
Subsequently, Gopal Prasad showed us a justification of this fact over fields of any 
characteristic in the context of Bruhat–Tits theory as developed in [19], [25]. The current 
argument was proposed by the referee.

2. If a connected reductive k-group G is k-anisotropic, then the same argument yields 
that G(k[C]) = G(k) for any affine curve of the form C = C̃ \ {P1, . . . , Pr}, where 
P1, . . . , Pr ∈ C̃(k).

Proof of Theorem 2.4. We can write G as an almost direct product G = G1 · G2, where 
G1 has the property that every semi-simple normal k-subgroup is k-isotropic and G2
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is k-anisotropic. Let E = G1 ∩ G2, and set Gi = Gi/E for i = 1, 2 so that we have a 
k-isogeny

θ : G → G1 × G2,

with ker θ = E. We have G1(k[t]) = G1(k) ·G1(k[t])+ by [32, Theorem 3.1] and G2(k[t]) =
G2(k) by Proposition 2.5. Since θ(G1(k[t])+) = G1(k[t])+, we see that

G(k[t]) = (θ−1(G1(k) × G2(k)) ∩ G(k[t])) · G(k[t])+.

However, θ−1(G1(k) × G2(k)) ⊂ G(k̄), and since G(k̄) ∩ G(k[t]) = G(k), our claim 
follows. �

Now suppose that G is a reductive k-group, and let S be a maximal k-split torus, and 
M = ZG(S) be its centralizer. Furthermore, let Z be the central torus (i.e. the connected 
center Z(G)◦) of G, let H = [G, G] be the semi-simple part of G, and let π0 : H̃ → H be 
a k-defined universal cover. Set G̃ = H̃ × Z and denote by π : G̃ → G the composition 
of the morphism G̃ → H × Z induced by π0 followed by the product map.

Corollary 2.6. With the preceding notations, we have G(k[t]) = M(k) · π(G̃(k[t])).

Proof. According to Theorem 2.4, we have G(k[t]) = G(k) ·G(k[t])+. On the other hand, 
G(k) = M(k) · G(k)+ by [5, Proposition 6.11]. So,

G(k[t]) = M(k) · G(k[t])+.

Since G(k[t])+ ⊂ π(G̃(k[t])), we obtain our claim. �
2.3. The case of G simple, but not necessarily simply connected

Let G be an absolutely almost simple, but not necessarily simply connected, algebraic 
k-group, and let π : G̃ → G be a k-defined universal cover. It is well known that the 
Bruhat–Tits buildings associated with G̃ and G over K are canonically isomorphic (cf. 
[19, Remark 7.6.2, last paragraph]). We will denote this common building by B. Then the 
canonical action of G(K) on B composed with the group homomorphism π(K) : G̃(K) →
G(K) yields the canonical action of G̃(K). We will use ̃ to denote the objects associated 
with G̃, dropping the tilde to denote the objects associated with G; in particular, we set 
Γ̃ = G̃(k[t]) and Γ = G(k[t]). We fix a maximal k-split torus S̃ of G̃; then S := π(S̃) is a 
maximal k-split torus of G. We let A ⊂ B denote the apartment constructed above for 
S̃, and let Q ⊂ A be the corresponding sector. We claim that Theorem 2.1, proved for 
the group Γ̃, remains valid for Γ, i.e. Q is a simplicial fundamental domain for the group 
Γ. To see this, we observe that according to Corollary 2.6 we have Γ = M(k) ·π(Γ̃). Then 
the mere inclusion π(Γ̃) ⊂ Γ yields the fact that B = Γ · Q. To continue the argument, 
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we recall that M(k) acts trivially on the entire apartment A, which follows, for example 
from [19, Proposition 9.3.16]. So, if two simplices S1, S2 ⊂ Q are related by S2 = γ(S1)
with γ ∈ Γ, then writing γ = m · δ with m ∈ M(k) and δ ∈ π(G̃(k[t])), we will have 
δ(S1) = S2. Then S1 = S2 by Theorem 2.1, completing the argument.

We will now show that the description of pointwise stabilizers of subsets of Q obtained 
in Corollary 2.3 for simply connected groups remains valid in the general case. Let Ω ⊂ Q

be an arbitrary subset. We have seen in §2.1 that Γ̃Ω = (ΓΩ ∩ Ũ(K)) � L̃IΩ(k) in the 
notations introduced there. On the other hand, by Corollary 2.6, we have Γ = M(k) ·π(Γ̃). 
As we already mentioned in the previous paragraph, M(k) acts on A trivially, so we 
conclude that ΓΩ = M(k) · π(Γ̃Ω). The isogeny π induces a k-isomorphism ŨΩ → UΩ, 
and hence group isomorphisms

Γ̃ ∩ ŨΩ(K) → Γ ∩ UΩ(K) and Γ̃Ω ∩ ŨΩ(K) → ΓΩ ∩ UΩ(K).

Thus, π(Γ̃Ω) = (ΓΩ ∩ UΩ(K)) � π(L̃Ω(k)). Being a subgroup of ΓΩ, the group M(k)
normalizes the intersection ΓΩ ∩ UΩ(K). Hence

ΓΩ = M(k) · π(Γ̃Ω) = (ΓΩ ∩ UΩ(K)) � LIΩ(k) (5)

as LIΩ(k) = M(k) · π(L̃IΩ(k)) (cf. [5, Proposition 6.11]). Furthermore, in view of Corol-
lary 2.3, the isomorphism Γ̃Ω ∩ ŨΩ → ΓΩ ∩ UΩ enables us to identify the latter with the 
group U(k) of k-points of a k-defined k-split unipotent subgroup U.

To close this subsection, we now consider one special situation that will come up in the 
proof of the Raghunathan–Ramanathan theorem in §5. Let G be an absolutely almost 
simple k-group that is quasi-split over k. As usual, we denote by S a maximal k-split 
torus of G. Then the centralizer M = ZG(S) is a maximal k-torus T of G (cf., e.g., [31, 
Proposition 16.2.2]). Let �/k be a finite Galois extension with Galois group G = Gal(�/k)
that contains the splitting field of T . Let Δ ⊂ Φ(G, T ) be a G-invariant system of simple 
roots that corresponds to a k-defined Borel subgroup of G containing T . Let Q� be the 
sector in the apartment A� defined using this Δ; clearly, Q� is G-invariant.

Proposition 2.7. With the same assumptions and notations as introduced above, let us set 
Γ� = G(�[t]). Then for any G-invariant subset Ω ⊂ Q�, the pointwise stabilizer (Γ�)Ω has 
the form ((Γ�)Ω ∩UΩ(L)) �LIΩ(�), where LIΩ is a k-defined reductive subgroup and UΩ is 
a k-defined k-split unipotent subgroup, of G. Consequently, (Γ�)Ω can be identified with 
the group of �-points of a k-defined semi-direct product U � LIΩ where U is a k-defined 
k-split unipotent group.

The description of (Γ�)Ω follows from our earlier discussion based on results of Mar-
gaux [20], and the stated properties of LIΩ and UΩ are clear. Elaborating on the procedure 
described after Proposition 2.2, one can identify the intersection (Γ�)Ω ∩ UΩ(L) with the 
group of �-points of a k-defined k-split subgroup U of RAn/k(UΩ) for a sufficiently large 
n, where An = k[t]/(tn). The group LIΩ naturally acts on UΩ by conjugation, allowing 
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us to form a k-defined semi-direct product UΩ �LIΩ . Applying restriction of scalars, we 
obtain

RAn/k(UΩ � LIΩ) = RAn/k(UΩ) � RAn/k(LIΩ).

The structure homomorphism k → An yields a k-morphism LIΩ → RAn/k(LIΩ), leading 
to the semi-direct product RAn/k(UΩ) � LIΩ . Then the intersection (Γ�)Ω ∩ UΩ(L) is 
identified with the group of �-points of the subgroup U �LIΩ of this semi-direct product.

2.4. Arbitrary reductive groups

Let G be a reductive k-group, Z = Z(G)◦ be the central torus, and H = [G, G] be the 
semi-simple part. Let H1, . . . , Hr be the k-simple components of H. For each i = 1, . . . , r, 
we let H̃i (resp., Hi) denote the corresponding simply connected (resp., adjoint) group. 
Also, let F = Z ∩ H and Z = Z/F . Set

G̃ = Z × H̃1 × · · · × H̃r and G = Z × H1 × · · · × Hr.

We then have the evident k-isogenies π1 : G̃ → G and π2 : G → G. Next, for each 
i = 1, . . . , r, we can write

H̃i = R�i/k(H̃i) and Hi = R�i/k(Hi)

for absolutely almost simple simply connected and adjoint groups H̃i and Hi and some 
finite separable extensions �i/k. Set Li := �i( (1/t) ) and let Bi be the Bruhat–Tits building 
associated with H̃i and Hi over Li. The natural identifications

Hi(K) � Hi(Li)

enable us to define an action of G(K) on the product of buildings B = B1 × · · ·Br, and 
hence an action of G(K) that factors through π2. (We observe that then the natural 
action of G̃(K) on B factors through π1.) Furthermore, for each i = 1, . . . , r, one can fix 
a maximal �i-split torus Si of Hi and a system of simple roots Δi ⊂ Φ(H̃i, Si), and then 
consider the corresponding apartments Ai of Bi and the sectors Qi ⊂ Ai. Set

A = A1 × · · · × Ar and Q = Q1 × · · · × Qr.

Proposition 2.8. (1) Every point of B is equivalent under the group Γ = G(k[t]) to a 
point of Q.
(2) For any x ∈ Q, the stabilizer Γx is of the form U(k) � L(k) for some reductive 
k-subgroup L ⊂ G and some unipotent k-group U .
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Proof. Part (1) follows from the fact that every point of B is equivalent to a point of Q
under the action of H̃1(�1[t]) × · · · × H̃r(�r[t]), which is a consequence of Theorem 2.1. 
To prove part (2), one observes that the group Γ̃ = G̃(k[t]) admits the following decom-
position

Γ̃ = Z(k) × Γ̃1 × · · · × Γ̃r where Γ̃i = H̃i(�i[t]).

If x = (x1, . . . , xr), then clearly Γ̃x = Z(k) × (Γ̃1)x1 × · · · × (Γ̃r)xr
. Proposition 2.2

provides a description of each stabilizer (Γ̃i)xi
, which yields a description of Γ̃x. To 

obtain the required description of Γx, one observes that Γx = M(k) · π1(Γ̃x) where M is 
the centralizer of the maximal k-split torus of G associated with Q (see Corollary 2.6) 
and argues exactly as in §2.3. �

We note that the result remains valid when some of the k-simple components are 
k-anisotropic.

2.5. Type-preserving automorphisms

We refer the reader to [1] for general background on buildings. We recall that given 
a building B, every apartment A of B is isomorphic to a standard Coxeter complex 
Σ(W, S), where the Coxeter system (W, S) is uniquely determined by B and called the 
type of B. There exists a type function τ defined on the set of vertices of B with values in 
S such that for every chamber C of B, the restriction of τ to the set of vertices of C is a 
bijection onto S (see [1, Proposition 4.6]; we note that “to be colorable” precisely means 
“to admit a type function,” cf. Definition A.10 in [1]). Since B is a chamber complex, 
τ is uniquely determined by its restriction to the set of vertices of a single chamber. To 
every simplicial automorphism φ of B, one can associate a permutation π = π(φ) of S
such that

τ(φ(v)) = π(τ(v)) for all vertices v of B

(this follows, for example, from Proposition A.14 of Section A.1.3 in [1]). Then φ is called 
type-preserving if π(φ) = idS. We note that in order to establish that φ is type-preserving, 
it is enough to show that τ(φ(v)) = τ(v) for all vertices v of a single chamber C of B. 
Here is one simple but important fact concerning type-preserving automorphisms.

Lemma 2.9. Let φ be a type-preserving automorphism of a building B, let X = |B| be the 
geometric realization of B, and let f : X → X be the homeomorphism induced by φ.
(1) If Σ is a simplex of B such that φ(Σ) = Σ, then φ(v) = v for every vertex v of Σ, 
and hence f acts trivially on |Σ|.
(2) If f fixes a point of X, then φ fixes a vertex of B.
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Proof. (1): Let C be a chamber containing Σ. Since φ(Σ) = Σ, for every vertex v of Σ, 
the image w = φ(v) is also a vertex of Σ, hence of C. But τ(w) = τ(φ(v)) = τ(v) as φ
is type-preserving. Since the restriction of τ to the set of vertices of C is injective, we 
conclude that w = v, i.e. φ(v) = v.

(2): Assume that f(x) = x for a point x ∈ X. Then there is a unique simplex Σx in B
such that |Σx| is the carrier Fx of x, i.e. the closed cell/simplex in X that contains x in 
its interior. We have Fx = Ff(x) = f(Fx), which implies that φ(Σx) = Σx. By part (1), 
φ (hence also f) fixes every vertex of Σx. �

We now return to the notations introduced in subsection 2.3. It follows from [7, 
Proposition 5.2.10(i), p. 165] and standard results about BN -pairs and their associated 
buildings (cf. [15, Theorem, p. 80]) that the group G̃(K) acts on B by type-preserving 
transformations, but this may not be true for the action of G(K). Nevertheless, we have 
the following.

Proposition 2.10. Let G be an absolutely almost simple algebraic k-group. Then G(k[t])
acts on B by type-preserving transformations.

Proof. As we mentioned above, the action of G̃(k[t]) on B is type-preserving and factors 
through the isogeny π : G̃ → G. On the other hand, by Corollary 2.6 we have G(k[t]) =
M(k) · π(G̃(k[t])) where M is the centralizer of a fixed maximal k-split torus S of G. 
So, it is enough to show that M(k) acts on B by type-preserving transformations. As we 
mentioned at the start of §2.3, M(k) acts trivially on the apartment A ⊂ B corresponding 
to S. But for any vertex v of B, there exists a g ∈ G(k[t]) (and even in π(G̃(k[t]))) such 
that gv ∈ A (see §2.3). Then for any m ∈ M(k), we have m(gv) = gv, so

mv = (mg−1m−1g)v.

Let C = ker π. Since C is central, it follows that the coboundary map G(k[t]) →
H1(Gk, C(k̄[t])) is a group homomorphism (where Gk = Gal(k̄/k)) and we have an exact 
sequence of groups

G̃(k[t])
πk[t]−→ G(k[t]) → H1(Gk, C(k̄[t]))

(see, e.g., [24, Ch. 1, §1.3.2]). From this, we see that π(G̃(k[t])) is a normal subgroup of 
G(k[t]), and the quotient G(k[t])/π(G̃(k[t])) is abelian, so

π(G̃(k[t])) ⊃ [G(k[t]), G(k[t])].

In particular, the element mg−1m−1g lies in πk[t](G̃(k[t])), and since the latter acts 
by type-preserving transformations, we conclude that m also acts by type-preserving 
transformations, as required. �
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Although we differentiated between a building and its geometric realization in the 
above discussion, we do not make this distinction elsewhere in the paper.

2.6. The Fixed Point Theorem

The proofs of the main results of this paper critically depend on the following Fixed 
Point Theorem. We recall that a Bruhat–Tits building is equipped with a canonical 
metric and is a complete CAT(0) space for that metric (cf. [1, 11.2]). So, the Fixed Point 
Theorem for isometric actions of groups on CAT(0) spaces with a bounded orbit [1, 
Theorem 11.23] has the following consequence.

Theorem 2.11. Let B1, . . . , Br be Bruhat–Tits buildings, and suppose that a finite group 
Γ acts on each building Bi by isometries. Then there exists a fixed point for the diagonal 
action of Γ on the product B := B1 × · · · × Br.

Proof. It follows from the Fixed Point Theorem for CAT(0) spaces that for each i =
1, . . . , r, there exists a Γ-fixed point b0

i ∈ Bi. Then b0 = (b0
1, . . . , b0

r) is a fixed point for 
the diagonal action of Γ on B. �

(Even though it is not needed in the proof of the theorem, one should keep in mind 
that given (complete) CAT(0) metric spaces (X1, d1), . . . , (Xr, dr), their product X :=
X1 ×· · ·×Xr is a (complete) CAT(0) space for the metric d defined by d2 = d2

1 + · · ·+d2
r. 

As a consequence, we see that the assertion of the theorem remains valid for any isometric 
action of a finite group on a product of affine buildings.)

3. Some auxiliary results

In this section, we establish several auxiliary statements needed for the proof of the 
main results. The reader is referred to [29, Ch. I, §5] or [24, 1.3.2] for the basics of 
nonabelian cohomology. We begin with the following well-known lemma.

Lemma 3.1. Let G = N�H be a semi-direct product of abstract groups, and let Ψ ⊂ H be 
a subgroup. Then a map fξ : Ψ → G of the form δ �→ (ξ(δ), δ) is a group homomorphism 
if and only if the map ξ : Ψ → N is a 1-cocycle. Furthermore, two such homomorphisms 
fξ1 and fξ2 are conjugate by an element n ∈ N if and only if the corresponding cocycles 
ξ1 and ξ2 are equivalent.

Proof. We find by direct computation that for δ1, δ2 ∈ Ψ, we have

fξ(δ1)fξ(δ2) = (ξ(δ1), δ1)(ξ(δ2), δ2) = (ξ(δ1) · (δ1ξ(δ2)), δ1δ2),

and our first assertion follows. Furthermore,
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(n, 1)−1fξ(δ)(n, 1) = (n−1 · ξ(δ) · (δn), δ),

yielding our second assertion. �
Lemma 3.2. Let G = N � H be a semi-direct product and π : G → H be the canonical 
projection. If Γ ⊂ G is a subgroup such that Γ ∩ N = {e} and H1(π(Γ), N) = 1, then Γ
is conjugate in G to a subgroup of H.

Proof. Set Ψ = π(Γ). By our assumption, π induces an isomorphism Γ → Ψ, and we let 
f : Ψ → G be the inverse of this isomorphism. It follows from Lemma 3.1 that f is of the 
form fξ(δ) = (ξ(δ), δ) for some 1-cocycle ξ : Ψ → N . Since H1(Ψ, N) is trivial, applying 
Lemma 3.1, we see that f is conjugate by an element of N to the identity embedding 
Ψ → H, δ �→ (1, δ), yielding our claim. �
Lemma 3.3. Let U be a unipotent group defined over a field k of characteristic 0. Then 
for any finite group Γ acting on U(k), the cohomology set H1(Γ, U(k)) is trivial.

Proof. If U is commutative, then U � (Ga)d (cf. [2, Ch. II, Remark 7.3]). Then U(k) � kd

is a uniquely divisible abelian group, so H1(Γ, U(k)) = 0. In the general case, we argue 
by induction on dim U . We may assume that U is noncommutative, hence the center 
V := Z(U) is a proper k-defined subgroup of positive dimension. We then have the exact 
sequence

1 → V −→ U −→ U/V → 1

of unipotent k-groups, where V and U/V are of dimension < dim U . Since the Galois 
cohomology H1(k̄/k, V ) is trivial (cf., for example, [24, Ch. 2, Lemma 2.7]), the sequence 
of k-points

1 → V (k) −→ U(k) −→ (U/V )(k) → 1

is also exact, i.e. (U/V )(k) can be naturally identified with the quotient U(k)/V (k). 
Moreover, the fact that U(k) is Zariski-dense in U implies that V (k) is precisely the 
center of U(k), hence is invariant under the action of Γ. Then the action of Γ on U(k)
also descends to (U/V )(k) = U(k)/V (k). We have the following exact sequence of pointed 
sets

H1(Γ, V (k)) −→ H1(Γ, U(k)) −→ H1(Γ, (U/V )(k)).

By the induction hypothesis, the sets H1(Γ, V (k)) and H1(Γ, (U/V )(k)) are trivial, so 
it follows from the above sequence that the set H1(Γ, U(k)) is also trivial. �
Remark. The assertion of Lemma 3.3 remains valid if p = char k > 0 if one assumes that 
U is connected and k-split and the order of Γ is prime to p. (Indeed, it follows from [13, 
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Proposition B.3.2] that such a U possesses a k-defined central subgroup isomorphic to 
Ga.)

Corollary 3.4. Let G be a semi-direct product N � H, where N is the group of k-points 
U(k) of a unipotent group U over a field k of characteristic 0. Then every finite subgroup 
of G is conjugate to a subgroup of H.

Proof. This follows from Lemmas 3.2 and 3.3. �
4. Finite subgroups

Proof of Theorem 1.1. Let B be the product of buildings constructed for the reductive k-
group G over the field K = k( (1/t) ) in §2.4. We recall that the group G(K) naturally acts 
on B by isometries, and therefore the resulting action of the group Γ = G(k[t]) ⊂ G(K)
on B is also isometric. According to Theorem 2.11, any finite subgroup Ψ of Γ fixes a point 
x ∈ B. Applying Proposition 2.8(1), we see that replacing Ψ by a Γ-conjugate subgroup, 
we may assume that x lies in the sector Q in the product A of standard apartments (cf. 
§2.4). According to Proposition 2.8(2), the stabilizer Γx is of the form U(k) � L(k) for 
some reductive k-subgroup L of G and some k-defined k-split unipotent group U. Then 
by Corollary 3.4, the subgroup Ψ is conjugate to a subgroup of L(k) ⊂ G(k) within Γx, 
and the required fact follows. �

Before proving property (FC) for G(k[t]) over a p-adic field k, we first establish one 
finiteness result over a significantly broader class of fields. For this, we recall that accord-
ing to Serre [29, Ch. III, §4], a profinite group G has type (F) if it satisfies the following 
property:

(F) For every n ≥ 1, the group G has only finitely many open subgroups of index ≤ n.

Furthermore, a field k is of type (F) if it is perfect and its absolute Galois group Gal(k̄/k)
is of type (F). Examples of fields of type (F) include C, R, and finite extensions of Qp

— cf. [29]. For more examples of fields satisfying condition (F) and its generalizations, 
we refer the reader to [27].

Proposition 4.1. Let G be a connected linear algebraic group over a field k of character-
istic 0 that is of type (F). Then for every finite group Γ, the group G(k) has only finitely 
many conjugacy classes of subgroups isomorphic to Γ.

Proof. Let R = R(Γ, G) be the variety of representations of Γ into G (cf. [24, 2.4.7]). 
It is enough to show that the number of orbits of the adjoint action of G(k) on R(k) is 
finite. According to [24, Theorem 2.17], there are only finitely many orbits for the adjoint 
action of G on R and these orbits are Zariski-closed. Now, fix some ρ ∈ R(k); then the 
corresponding orbit V = G · ρ is a k-defined homogeneous space of G. It is well known 
that the orbits of G(k) on V (k) are in one-to-one correspondence with the elements of 
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the kernel of the map H1(k, C) → H1(k, G), where C is the centralizer of ρ (cf. [29, Ch. 
I, §5.4, Corollary 1]). However, since k is of type (F), the set H1(k, C) is finite [29, Ch. 
III, §4, Theorem 4], and our claim follows. �
Corollary 4.2. Let G be an absolutely almost simple algebraic group defined over a field 
k of characteristic 0 that is of type (F). Then for every finite group Γ, the group G(k[t])
has only finitely many conjugacy classes of finite subgroups isomorphic to Γ.

Proof. By Theorem 1.1 every finite subgroup of G(k[t]) is conjugate to a subgroup of 
G(k). On the other hand, by Proposition 4.1, the group G(k) has only finitely many 
conjugacy subgroup isomorphic to Γ, so our assertion follows. �
Proposition 4.3. Let G be a reductive algebraic group over a finite extension k of the 
p-adic field Qp. Then the group G(k) has finitely many conjugacy classes of finite sub-
groups.

Proof. As we already mentioned above, k is of type (F). So, it follows from Proposi-
tion 4.1 that it is enough to show that finite subgroups of G(k) split into finitely many 
isomorphism classes. Considering a faithful k-defined representation G ↪→ GLn, we see 
that it is enough to prove this fact for G = GLn. It is well known that every finite sub-
group of GLn(k) is conjugate to a subgroup of GLn(O), where O is the valuation ring of 
k (cf. [24, Proposition 1.12]). On the other hand, the congruence subgroup GLn(O, pd), 
where p ⊂ O is the valuation ideal, is torsion-free for d large enough (“Minkowski’s 
Lemma,” cf. [24, p. 234]). Then every finite subgroup of GLn(k) is isomorphic to a 
subgroup of the finite group GLn(O)/GLn(O, pd), and the required fact follows. �
Theorem 4.4. Let G be a reductive algebraic group defined over a finite extension k of 
the p-adic field Qp. Then the group G(k[t]) has finitely many conjugacy classes of finite 
subgroups.

Proof. This follows from Theorem 1.1 and Proposition 4.3. �
5. The Raghunathan–Ramanathan theorem

5.1. The statement and preliminary remarks

In [26], Raghunathan and Ramanathan proved the following theorem.

Theorem 5.1. Let G be a connected reductive algebraic group over a field k, and let 
π : B → A1

k be a G-torsor over the affine line A1
k = Spec k[t]. If π is trivialized by 

the base change from k to k̄ (separable closure), then π is obtained by the base change 
A1

k → Spec k from a G-torsor π0 : B0 → Spec k.
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In this section, we present a simple proof of this theorem over fields of characteristic 
zero that is based on the Fixed Point Theorem; the argument in the general case requires 
some technical adjustments. First, we note that if k has characteristic zero (or, more 
generally, is perfect) then every G-torsor over the affine line is trivialized by the base 
change k̄/k. Let us show that this remains true if A1

k is replaced by a Zariski-open subset, 
and actually by any geometrically connected smooth affine curve if G is semi-simple.

Lemma 5.2. Let K be an algebraically closed field of characteristic 0, let G be a connected 
reductive algebraic K-group, and let C be a smooth affine curve over K. In each of the 
following situations
(1) C is a Zariski-open subset of A1

K ;
(2) G is semi-simple,
we have H1(C, G) = 1.

Proof. (Cf. the proof of Corollary 7.5 in [10]) Let β : H1(C, G) → H1(K(C), G) be the 
map given by specialization to the generic point. By Tsen’s theorem, the field K(C)
has cohomological dimension ≤ 1 (cf. [29, Ch. II, 3.3]), so applying a theorem due to 
Steinberg [29, Ch. III, 2.3], we see that H1(K(C), G) = 1. So, it is enough to show that 
ker β is trivial. On the other hand, according to [22], there is a bijection between ker β

and the double coset space

cl(G, K(C), V ) := G(A∞(V ))\G(A(V ))/G(K(C))

where G(A(V )) is the group of rational adeles of G associated with the set V of discrete 
valuations corresponding to the closed points of C, and G(A∞(V )) and G(K(C)) are 
the subgroups of integral and principal adeles, respectively (see [9] for a discussion of 
adeles in this context). Fix a maximal K-torus T of G, which of course splits over K. 
A standard argument (cf. [9, proof of Theorem 4.1]) using strong approximation for the 
opposite maximal unipotent with respect to V (which holds because C is assumed to be 
affine) shows that every double coset in the class set cl(G, K(C), V ) has a representative 
lying in T (A(V )). We have a K-isomorphism T � Gd

m, where d = dim T , and the double 
coset space cl(Gm, K(C), V ) is a group that can be identified with the Picard group 
Pic C.

Now, if C is a Zariski-open subset of A1
K , then the group P := Pic C is trivial, and 

the triviality of ker β follows immediately. In the general case, we assume that G is semi-
simple, and let π : G̃ → G denote the universal cover. Since the curve C is affine, there 
exists a canonical surjective group homomorphism J(K) → P , where J is the Jacobian of 
projective curve C that contains C. It follows that the group P is divisible, i.e. nP = P

for any n ≥ 1. Consequently, for any n ≥ 1, every coset in the class group cl(T, K(C), V )
can be chosen in T (A(V ))n. On the other hand, for n = | ker π|, we have the inclusion

G(A(V ))n ⊂ π(G̃(A(V ))). (6)
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Again, since G̃ is K-split, then arguing as in [9, proof of Theorem 4.1], we conclude that 
G̃ has strong approximation and therefore G̃(A(V )) = G̃(A∞(V ))G̃(K(C)). It follows 
that π(G̃(A(V )) ⊂ G(A∞(V ))G(K(C)). Combining this with (6), we see that

G(A(V ))n ⊂ G(A∞(V ))G(K(C)),

and, in particular, T (A(V ))n is contained in G(A∞(V ))G(K(C)). Thus, we conclude 
that cl(G, K(C), V ) reduces to a single element, and hence ker β is trivial. �

Turning now to the proof of Theorem 5.1 in the case where char k = 0, we recall the 
Hochschild–Serre sequence

1 → H1(Gal(k̄/k), G(k̄[t])) −→ H1(A1
k, G) ρ−→ H1(A1

k̄
, G), (7)

which is exact as a sequence of pointed sets (see [16, 2.2 and 2.9] and also [21, p. 96] for 
the commutative case). The G-torsors over A1

k trivialized by the base change k̄/k are 
classified by the elements of ker ρ. On the other hand, (7) yields a natural bijection

ker ρ � H1(Gal(k̄/k), G(k̄[t])).

It follows that to complete the proof of Theorem 5.1, it is enough to prove Theorem 1.2. 
Furthermore, the map H1(k̄/k, G(k̄)) → H1(k̄/k, G(k̄[t])) is injective by specialization 
argument (we can specialize at any t ∈ k, e.g. t = 0). So, we only need to prove that it 
is surjective.

5.2. Reduction to quasi-split simple adjoint groups

We will now show that it is enough to prove Theorem 1.2 for quasi-split simple adjoint 
groups. First, we reduce to the case of adjoint groups. Given a reductive k-group G, there 
exists an exact sequence of algebraic groups

1 → F −→ G
π−→ G → 1

in which F is finite and G is the direct product H × T of a semi-simple adjoint k-group 
H and a k-torus T . As in the proof of Corollary 2.6, we see that Theorem 2.4 implies 
the equality

G(k̄[t]) = G(k̄) · πk̄[t](G(k̄[t])),

and since πk̄(G(k̄)) = G(k̄), we conclude that the sequence

1 → F (k̄) −→ G(k̄[t])
πk̄[t]−→ G(k̄[t]) → 1 (8)
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is exact. We then have the following commutative diagram with exact rows

H1(k̄/k, G(k̄))
γ1

α

H1(k̄/k, G(k̄))

β

H2(k̄/k, F (k̄))

=

H1(k̄/k, G(k̄[t]))
γ2

H1(k̄/k, G(k̄[t])) H2(k̄/k, F (k̄))

If we assume that the map H1(k̄/k, H(k̄)) → H1(k̄/k, H(k̄[t])) is surjective, then in view 
of the fact that T (k̄[t]) = T (k̄) (see Proposition 2.5), the map β will also be surjective, 
hence bijective. So, by a diagram chase, we find that α is also surjective (one needs to 
use the fact that H1(k̄/k, F (k̄)) acts transitively on the fibers of γ2 — cf. [29, Ch. I, §5, 
Proposition 42, p. 54]).

Assume now that G is semi-simple and adjoint. Writing G as a direct product of 
k-simple groups, each of which is obtained by restriction of scalars from an absolutely 
simple group, we see that it is enough to consider the case where G is an absolutely 
simple adjoint group. Such a group is an inner twist of a quasi-split group G0 (cf. [12, 
7.2] or [31, Proposition 16.4.9]), and we have compatible bijections

H1(k̄/k, G(k̄)) � H1(k̄/k, G0(k̄)) and H1(k̄/k, G(k̄[t])) � H1(k̄/k, G0(k̄[t]))

(cf. [29, Ch. I, 5.3]). So, without loss of generality we may assume that G is quasi-split.

5.3. Conclusion of the argument

Thus, it remains to be shown that if k is a field of characteristic 0, then for an 
absolutely simple adjoint quasi-split k-group G and a finite Galois extension �/k with 
Galois group G = Gal(�/k), the natural map

H1(G, G(�)) −→ H1(G, G(�[t])) (9)

is surjective. For this we will use the natural action of the group Ω = Γ� � G, where 
Γ� = G(�[t]), on the Bruhat–Tits building B� associated with G over L = �( (1/t) ) — see 
§2 for the relevant notations.

Let S be a maximal k-split torus of G, and T be a maximal k-torus of G containing S. 
Then the splitting field �0 of T is the minimal Galois extension of k over which G becomes 
split. It follows from the inflation-restriction sequence that without loss of generality, we 
may (and will) assume that � ⊃ �0. Since G is k-quasi-split, there exists a k-defined 
Borel subgroup B of G containing T . Then the system of simple roots Δ in the root 
system Φ(G, T ) corresponding to B is invariant under the Galois group G. Let A� be the 
apartment in B� corresponding to T , and let Q� be the sector in A� corresponding to the 
system of simple roots Δ (see §2). Since T is k-defined, the apartment A� is G-invariant, 
and furthermore, since Δ is G-invariant, Q� is also G-invariant.
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Now, let ξ : G → Γ� be a 1-cocycle and let

ιξ : G → Ω = Γ� � G, σ �→ (ξ(σ), σ)

be the corresponding embedding (see Lemma 3.1). Since the natural action of G on B�

is isometric (due to the fact that the action of G on L preserves the valuation), so is 
the action of Ω, hence using Theorem 2.11, we can find a point x ∈ B� fixed by the 
finite subgroup ιξ(G) ⊂ Ω. As we have seen in §2.3, Theorem 2.1 remains valid for not 
necessarily simply connected groups, so there exists g ∈ Γ� such that y = gx ∈ Q�. Thus, 
replacing ιξ with the conjugate embedding gιξg−1, which is of the form ιξ′ for a cocycle 
ξ′ that is equivalent to ξ (see the proof of Lemma 3.1), we may (and will) assume that 
ιξ(G) fixes a point y ∈ Q�. Let F = Fy be the carrier of y (closed simplex containing y
in its interior). Clearly, F ⊂ Q� and F is invariant under ιξ(G). This means that for any 
σ ∈ G, we have

ξ(σ)(σ(F )) = F. (10)

Since Q� is G-invariant, we conclude that σ(F ) ⊂ Q�, and then, in view of the uniqueness 
in Theorem 2.1, the condition (10) implies that σ(F ) = F . Thus, F is G-invariant. But 
then ξ(σ)(F ) = F , so since the action of Γ is type-preserving (cf. Proposition 2.10), we 
obtain from Lemma 2.9 that ξ(σ) fixes F pointwise. Thus, ξ is a cocycle with values in 
H(F ), the pointwise stabilizer of F .

According to Proposition 2.7, the stabilizer H(F ) is of the form U(�) � L(�) where 
L ⊂ G is a k-defined reductive subgroup and U is a k-defined k-split unipotent group. 
Since the map H1(G, L(�)) → H1(G, U(�) �L(�)) is bijective (cf. [24, Ch. II, Proposition 
2.9]), we see that ξ is equivalent to a cocycle with values in L(�), hence lies in the image 
of the map H1(�/k, G(�)) → H1(�/k, G(�[t])), as required.
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