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ABSTRACT. We first provide an overview of several results dealing with
the genus of a division algebra and highlight the role of ramification in its
analysis. We then give a survey of recent developments on the genus problem
for simple algebraic groups and its connections to the analysis of groups with
good reduction.

1. Introduction

This paper is an expanded version of the author’s talk at the Amitsur
Centennial Symposium. Our goal is to give an overview of some recent work on
the surprising and exciting connections between the study of algebraic groups with
good reduction and the genus problem, which is concerned with characterizing
simple algebraic groups in terms of their maximal tori over the field of definition.
These developments in fact comprise just one aspect of the emerging arithmetic
theory of algebraic groups over higher-dimensional fields in which good reduction
plays a central role — we refer the reader to [24] for an in-depth account of good
reduction for linear algebraic groups and its connections with various other direc-
tions, including local-global principles and weak-commensurability of Zariski-dense
subgroups and applications to Riemann surfaces. The reader can also consult [25]
for a more concise and less technical survey of these topics.

The initial focus of the genus problem was on the study of division algebras
having the same maximal subfields. So, to establish the appropriate context, we
will begin by discussing the genus of a division algebra and the role of ramification
in its analysis. We will then give a precise statement of the genus problem for
algebraic groups. In this setting, it appears that groups with good reduction are an
adequate substitute for unramified division algebras. We will therefore present a
brief discussion of good reduction and formulate our main Finiteness Conjecture for
groups with good reduction over finitely generated fields. We will then indicate the
connection between the Finiteness Conjecture and the genus problem. To conclude
the paper, we will survey some of the available results.
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2. The genus problem for division algebras

Let K be a field and D; and Dy be two central division K-algebras of de-
gree n. We say that Dy and Dy have the same mazimal subfields if a degree n
field extension P/K admits a K-embedding P < D; if and only if it admits a
K-embedding P < Ds. Then one can ask the following natural question:

(¥) Let D1 and Do be central division algebras of the same degree. How are Dy
and Dy related if they have the same mazximal subfields?

We note that this problem is similar in spirit to the following famous theorem of
Amitsur [1]:

THEOREM 2.1 (Amitsur). Let Dy and D be finite-dimensional central division
algebras over a field K that have the same splitting fields, i.e., for a field exten-
sion F', the algebra D1 @ F is F-isomorphic to a matriz algebra M, (F) if and
only if the algebra Dy @k F is isomorphic to a matriz algebra M,,(F). Then
n1 = ng and the classes [Dq] and [Ds] in the Brauer group Br(K) generate the
same subgroup, ([D1]) = ([D2]).

The crucial point is that Amitsur’s proof relies in a very essential way on in-
finite (non-algebraic) extensions of K — namely, so-called generic splitting fields
(concrete examples of which are function fields of Severi-Brauer varieties). So, it
is natural to ask if Amitsur’s Theorem can be proved using only finite extensions
of K. In other words, does the theorem’s conclusion still hold if one only assumes
that that Dy and Dy have the same finite-dimensional splitting fields or just the
same maximal subfields? It turns out that the answer is (strongly) negative al-
ready over global fields. Indeed, this follows from the observation that, using the
Albert-Brauer-Hasse-Noether theorem (see [20, Ch. 18, §18.4]), one can construct
arbitrarily large collections of pairwise non-isomorphic cubic division algebras hav-
ing the same maximal subfields over number fields (the same construction actually
works for division algebras of any degree d > 2, cf. [4, §1]). On the other hand,
two quaternion division algebras over a number field that have the same quadratic
subfields are necessarily isomorphic. Thus, even over number fields, question (x)
appears to be interesting.

Until about 10 years ago, no information at all was available on (%) over any
fields other than global. The following question along these lines was first asked in
[21, Remark 5.4]:

Are quaternion division algebras over Q(zx) determined uniquely up to isomor-
phism by their mazimal subfields?

Shortly after it was formulated, this question was answered in the affirmative by
D. Saltman. In subsequent work, he and S. Garibaldi [13] showed that the answer
is still affirmative over the field of rational functions k(x), where k is any number
field, and also in some other situations. This marked the starting point of the
investigation of question (%) over fields more general than global (we note that
a similar question, formulated in terms of finite-dimensional splitting fields, was
considered in [17]).

To quantify our discussion, it is convenient to introduce the notion of the genus
of a division algebra (this terminology was suggested by L.H. Rowen).
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DEFINITION 2.2. Let D be a finite-dimensional central division algebra over a
field K. Then the genus gen(D) of D is defined to be the set of classes [D'] € Br(K)
represented by central division K-algebras D’ having the same maximal subfields
as D.

Broadly speaking, the general goal of the genus problem is to characterize the
genus of a given division algebra — note that this is essentially a reformulation of
our original question (x). Most recent work in this direction has dealt with the
following two more precise questions:

e When does gen(D) reduce to a single element? (Note that this is the case if and
only if D is determined uniquely up to isomorphism by its maximal subfields.)
e When is gen(D) finite?

We should point out that over a number field K, the Albert-Brauer-Hasse-
Noether Theorem enables one to resolve both questions: namely, the genus of every
quaternion division algebra is trivial (i.e., reduces to a single element), while the
genus of any division algebra of higher degree is nontrivial but always finite (see
[4, Proposition 3.1] for the details).

Turning now to more general fields, we would first like to mention the following
theorem for rational function fields that was established in [23].

THEOREM 2.3 (Stability Theorem). Assume that char k # 2. If |gen(A)| =1
for any central division quaternion algebra A over k, then |gen(D)| = 1 for any
quaternion algebra D over k(z).

(An analogous statement also holds for all division algebras having exponent two
in the Brauer group, cf. [3].) Note that a consequence of Theorem 2.3 is that the
genus of a quaternion algebra over the purely transcendental extension k(z1, ..., z,)
of a number field k of any (finite) transcendence degree reduces to a single element.
On the other hand, at this point, it is not known whether there exists a central
quaternion division algebra D over a finitely generated field K of characteristic # 2
having nontrivial genus.

Next, observe that |gen(D)| > 1 whenever D does not have exponent two
since in that case, the opposite algebra D°P is not isomorphic to D, but clearly has
the same maximal subfields as D. We will therefore focus on finiteness properties
of the genus. Let us first point out that over general fields, the genus gen(D)
can be infinite. Indeed, adapting a construction that has been suggested by a
number of people, including M. Schacher, A. Wadsworth, M. Rost, S. Garibaldi and
D. Saltman, J. Meyer [19] produced examples of quaternion algebras over “large”
fields with infinite genus. (By construction, these fields have infinite transcendence
degree over the prime subfield.) Subsequently, S. Tikhonov [30] extended this
approach to construct examples of division algebras of any prime degree having
infinite genus. On the other hand, over finitely generated fields, we have the
following.

THEOREM 2.4. Let K be a finitely generated field. Then for any finite-
dimensional central division K-algebra D, the genus gen(D) is finite.

There are two proofs of Theorem 2.4, which can be found in [5] and [8]. Both
arguments depend on an analysis of ramification, but require somewhat different
amounts of information about the unramified Brauer group. Before indicating
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some of the main points, we first recall that if F' is a field equipped with a discrete
valuation v, then a central simple F-algebra A is said to be unramified at v if there
exists an Azumaya algebra A over the valuation ring O, of the completion K, such
that

Ao, K, ~ ARk K,.

Furthermore, if F' is equipped with a set V' of discrete valuations, the corresponding
unramified Brauer group is defined as

Br(F)y = {z € Br(F) | z is unramified at all v € V'}.

We also recall that any finitely generated field K possesses natural sets of discrete
valuations called divisorial. More precisely, let X be a model of K, i.e., a normal
separated irreducible scheme of finite type over Z (if char K = 0) or over a finite
field (if char K > 0) such that K is the function field of X. It is well-known that to
every prime divisor 3 of X, there corresponds a discrete valuation vz on K. Then

V(%) = {vs

is called the divisorial set of places of K corresponding to the model X. Any set of
places V of K of this form (for some model X) will be simply called divisorial.

The proof of Theorem 2.4 given in [5] requires the additional assumption that
the degree n of the division algebra D is relatively prime to char K. For the
argument, we fix a divisorial set of places V of K. Note that since char K is prime
to n, we can assume without loss of generality that for each v € V', the characteristic
of the residue field K(*) is prime to n. Then one of the essential ingredients in the
proof is the following observation:

3 prime divisor of X}

LEMMA 2.5. If D and D’ are central division K -algebras of degree n having the
same mazximal subfields, then for any v € V', either both algebras are unramified at
v or both are ramified.

(See [3, Lemma 2.5] for the details.) This ultimately enables one to reduce the
proof of Theorem 2.4 to showing that the n-torsion subgroup ,Br(K)y is finite and
leads to the estimate

lgen(D)| < [nBr(K)v|-¢(n)",
where 7 is the number of v € V' where D ramifies (which is necessarily finite for a
divisorial set).

Our second proof of Theorem 2.4, given in [8], also uses the analysis of ramifi-
cation, but does not impose any restrictions on the characteristic of K. The reason
is that the argument does not require the finiteness of the full n-torsion subgroup
of Br(K), but only the finiteness of certain of its subgroups. On the other hand,
since these subgroups depend on the division algebra at hand, we do not obtain a
general estimate on the size of the genus as provided by our first proof.

Without going into the details, let us mention that an interesting generalization
of the genus, termed the upper genus, was analyzed in [18], where the study of the
genus problem for algebras with involution was also begun.

3. The genus problem for algebraic groups

We now turn our attention to the genus problem for algebraic groups. Roughly
speaking, to define the genus in this context, we replace maximal subfields with
maximal tori in the definition of the genus of a division algebra.
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More precisely, given two reductive algebraic groups G; and G over a field K,
we say that G, and Go have the same isomorphism classes of maximal K -tori if
every maximal K-torus 77 of GG; is K-isomorphic to some maximal K-torus T5
of G2, and vice versa.

DEFINITION 3.1. Let G be an absolutely simple simply connected algebraic
group over a field K. The genus geny (G) of G is the set of K-isomorphism classes
of (inner) K-forms G’ of G that have the same isomorphism classes of maximal
K-tori as G.

(We recall that if G is an algebraic group over K, then a K-group G’ is a called a
K-form of G if G and G’ become isomorphic over a separable closure K5P.)

In analogy to the case of division algebras, the following two questions have
received the most attention so far:

o When does geny (G) reduce to a single element?
o When is geng (G) finite?

The basic case where K is a number field was considered in [21, Theorem 7.5],
where the following result was established (although the term “genus,” which ap-
peared later, was not used).

THEOREM 3.2. Let G be an absolutely almost simple simply connected algebraic
group over a number field K. Then

(1) geng(G) is finite;
(2) if G is not of type An, Dani1 (n > 1), or Eg, we have |geng (G)| = 1.

Given that this result resolves both questions over number fields, the next nat-
ural problem is to investigate the behavior of the genus over more general (finitely
generated) fields. On the basis of Theorem 3.2 (as well a number of other results
that we will discuss in §5), in conjunction with the statements for division algebras
mentioned in the previous section, we have been led to the following conjecture.

CONJECTURE 3.3.

(1) Let K = k(x) be the field of rational functions in one variable over a
number field k. If G is an absolutely almost simple simply connected
algebraic K -group with center Z(G) of order < 2, then the genus gen g (G)
reduces to a single element.

(2) Let G be an absolutely almost simple simply connected algebraic group
over a finitely generated field of “good” characteristic. Then the genus
geng (G) is finite.

(Here, char K = p is said to be “good” if either p =0 or p > 0 and does
not divide the order of the Weyl group of G.)

As we saw in the previous section, the study of the genus of a division algebra
is based on a careful analysis of ramification. In the setting of algebraic groups,
it appears that a suitable substitute for unramified division algebras are algebraic
groups with good reduction. In the next section, we will describe the precise con-
nection between the genus and groups with good reduction, which underlies most
of the progress that has been achieved on Conjecture 3.3 so far.

NOT FOR DISTRIBUTION



NOT FOR DISTRIBUTION.

276 I. RAPINCHUK

4. Groups with good reduction

We begin this section by first recalling some of the basic facts concerning groups
with good reduction and then formulating our main Finiteness Conjecture for forms
with good reduction.

Let K be a field equipped with a discrete valuation v, and suppose G is a
reductive affine algebraic group over K. We say that G has good reduction at
v if there exists a reductive group scheme! § over the valuation ring O, of the
completion K, whose generic fiber § ®p, K, is isomorphic to G @x K,. The
special fiber (or reduction) § ®p, K™, where K(*) is the residue field of K, is
then denoted by G™ — it is a connected algebraic group over K () of the same type
as G. Furthermore, given a set V of discrete valuations of K, we will say that G
has good reduction with respect to V' if G has good reduction at all v € V.

Informally, having good reduction means that the group G x g K, has a “nice”
O, -structure whose reduction modulo p, yields a connected reductive group. As
the following examples demonstrate, in various situations of interest, this condition
can be characterized in very concrete terms.

EXAMPLE 4.1.

(a) (cf. [9, Example 2.2]) If G = SL; 4 is the algebraic group associated with
the elements of reduced norm 1 in a central simple algebra A over K, then
G has good reduction at v if and only if A is unramified at v.

(b) (cf. [9, Example 2.3]) Suppose ¢ is a non-degenerate quadratic form in n
variables over K and the residue field K(*) has characteristic # 2. Then
the spinor group G = Spin,,(¢) has good reduction at v if and only if ¢ is
equivalent over K, to a quadratic form

Mar2? 4 - +a,x2), with A € KX, a; € OF.

Historically, the study of algebraic groups with good reduction can be traced
back to the work of Harder [15], Colliot-Théléne and Sansuc [10], and Gross [14].
In [15], the focus was mainly on algebraic groups over a number field K having
good reduction with respect to sets V consisting of almost all nonarchimedean
places of K. Groups with good reduction have also been analyzed extensively over
K = k(z) (the field of rational functions in one variable over a field k). In [22],
Raghunathan and Ramanathan considered the case where V' consists of the discrete
valuations v,y corresponding to all irreducible polynomials p(z) € k[z]. Later,
groups having good reduction at all v € V'\ {v,} were analyzed by Chernousov,
Gille and Pianzola [2]; these results then played a crucial role in their proof of the
conjugacy of analogues of Cartan subalgebras in certain infinite-dimensional Lie
algebras.

A key point is that in all of these cases, K is the fraction field of a Dedekind
ring R, and V consists of discrete valuations associated with the nonzero prime
ideals of R, making the situation “l-dimensional.” By contrast, our recent and
ongoing work addresses the analysis of groups with good reduction in the higher-
dimensional setting of arbitrary finitely generated fields. More precisely, the follow-
ing Finiteness Conjecture is one of the central elements of our current investigations.

1Let R be a commutative ring and S = Spec R. Recall that a reductive R-group scheme is
a smooth affine group scheme § — S such that the geometric fibers G5 are connected reductive
algebraic groups (see [12, Exp. XIX, Definition 2.7] or [11, Definition 3.1.1]).
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CONJECTURE 4.2. Let G be a reductive algebraic group over a finitely generated
field K and V' be a divisorial set of discrete valuations of K. Then the set of
K -isomorphism classes of K-forms G' of G that have good reduction at all v € V
is finite (at least when the characteristic of K is “good.”).

(When G is an absolutely almost simple algebraic group, “good” characteristic
is used here in the same sense as in Conjecture 3.3. For algebraic tori, by good
characteristic, we simply mean char K = 0.)

We refer the reader to [24] for an extensive discussion of groups with good
reduction and, in particular, the key role of the Finiteness Conjecture in the current
development of the arithmetic theory of algebraic groups over higher-dimensional
fields. For our present purposes, we will only mention some connections to the
genus problem.

THEOREM 4.3 ([6, Theorem 5], [9, Theorem 1.1]). Let G be an absolutely almost
simple linear algebraic group over a field K and let v be a discrete valuation of K.
Assume that the residue field K) is finitely generated and that char K(*) # 2 if G
is of type By (£ > 2). If G has good reduction at v, then any G' € geng (G) also has

good reduction at v. Moreover, the reduction Q/(U) lies in the genus gen g (v (Q(”))
of the reduction G¥.

As we already mentioned above, one should view groups with good reduction
as an analogue of unramified division algebras (this point of view is justified, for
instance, by Example 4.1). From this perspective, Theorem 4.3 can be thought of
as a partial analogue of Lemma 2.5. Although we refer the reader to [9] for the
details, we would like to point out that the proof of Theorem 4.3 is based on an
entirely new approach to good reduction of simple algebraic groups that shows that
the existence of good reduction can be characterized in terms of the presence of
maximal tori with certain specific properties.

In the case of finitely generated fields, we have the following consequence.

COROLLARY 4.4. Let G be an absolutely almost simple algebraic group over
an infinite finitely generated field K, and let V be a divisorial set of places of K.
Assume that char K # 2 if G is of type By (¢ > 2). Then there exists a finite subset
S CV such that every G' € geng(G) has good reduction at allv € V' \ S.

In particular, it follows that the truth of Conjecture 4.2 for all divisorial
sets V' would yield the finiteness of geny (K) for any absolutely almost simple
algebraic K-group G. In other words, the Finiteness Conjecture provides a
uniform approach for resolving one important aspect of the genus problem for
algebraic groups. Continuing the parallel with division algebras, we thus see that,
in this context, the Finiteness Conjecture plays a role analogous to that of our
finiteness results for the unramified Brauer group in the study of the genus of a
division algebra.

5. Overview of results

In this section, we will give a brief overview of some available results on
Conjecture 4.2 and the genus problem. The reader can consult [24] for a more
detailed account.

To begin with, Conjecture 4.2 has been settled completely for algebraic tori.
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THEOREM 5.1 (cf. [26, Theorem 1.1], [27, Corollary 5.2]). Let K be a finitely
generated field and V' be a divisorial set of places of K. Then for any d > 1, the
set of K-isomorphism classes of d-dimensional K-tori that have good reduction at
all v € V and for which the degree [Kr : K| of the minimal splitting field is prime
to the characteristic exponent of K, is finite.

Turning now to semisimple groups, we first note that in the classical setting
when K is a number field and V' is any set consisting of almost all nonarchmidean
places of K, Conjecture 4.2 can be reduced to the consideration of absolutely almost
simple groups, in which case the assertion follows from well-known results on the
Galois cohomology of algebraic groups and the description of groups with good
reduction over p-adic fields (see [24, Proposition 5.2]). The general case, however,
presents a number of new challenges.

Here are some representative results. First, we have the following statement for
inner forms of type A,, over (essentially arbitrary) finitely generated fields, which
is derived from our finiteness results for the unramified Brauer group (discussed
in §2).

THEOREM 5.2 ([5]). Let K be a finitely generated field, V a divisorial set of
discrete valuations of K, and n > 2 an integer prime to char K. Then the number
of K-isomorphism classes of groups of the form SLi a, where A is a central simple
K-algebra of degree n, that have good reduction at all v € V| is finite.

Using this statement, together with Theorems 2.3 and 4.3 and some additional
considerations involving generic tori, we obtain the next result concerning the genus.

THEOREM 5.3 (cf. [3, Theorem 5.3] and [4, Theorem 6.3]).

(1) Let D be a central division algebra of exponent two over the field of rational
functions K = k(xy,...,2,), where k is either a number field or a finite
field of characteristic # 2. Then for G = SL,, p (m > 1), the genus
geng (G) reduces to a single element.

(2) Let G = SLy,.p, where D is a central division algebra over a finitely
generated field K of degree prime to char K. Then geny (G) is finite.

Next, following Kato [16], we say that a field K is a 2-dimensional global field
if it is either the function field k(C') of a smooth geometrically integral curve C
over a number field k or the funcion field Fy(S) of a smooth geometrically integral
surface S over a finite field IF,.

THEOREM 5.4 (cf. [7, Theorem 1.1]). Let K be a two-dimensional global field
of characteristic # 2 and let V' be a divisorial set of discrete valuations of K.
Fiz an integer n > 5. Then the set of K-isomorphism classes of spinor groups
G = Spin,,(¢) of nondegenerate quadratic forms in n variables over K that have
good reduction at all v € V is finite.

Using Voevodksy’s resolution of Milnor’s conjecture on quadratic forms, we
reduce the proof of this result to the analysis of finiteness properties of unramified
cohomology with po-coefficients, which we verify in the case of 2-dimensional global
fields. Similar statements are also available for some special unitary groups of types
A, and C,, and for groups of type G3. We note that if n is odd, then all K-forms of
G = Spin,, (q) are of the form G’ = Spin,,(¢’), with ¢’ a non-degenerate quadratic
form over K in n variables, Theorem 5.4 yields Conjecture 4.2 in this case.
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Turning now to the genus, we have the following statements for spinor groups,
groups of type Go, and groups of type F4 that split over a quadratic extension.

THEOREM 5.5 (cf. [7, Theorem 1.2], [26, Theorem 5.5]). Suppose K is either
a 2-dimensional global field of characteristic # 2 or the field of rational functions
k(x,y) in two variables over a number field k. Let G = Spin,,(q) be the spinor
group of a nondegenerate quadratic form q over K of odd dimension n > 5. Then
gen (G) is finite.
THEOREM 5.6 ((cf. [7, Theorems 9.1 and 9.3] and [26, Proposition 5.3]). Let
G be a simple algebraic K-group of type Gs.
(1) If K is the field of rational functions k(x), where k is a number field, then

|gen (G)| = 1.
(2) If k is a number field and K is one of the following:
o K =k(z1,...,2.) is the field of rational functions in any (finite) number

of variables;

o K =k(C) is the function field of a smooth geometrically integral curve C
over k;

o K = k(X) is the function field of a Severi-Brauer variety X over k as-
sociated with a central division algebra D over k of degree £, where { is
either odd or £ = 2,

then geng (G) is finite.
THEOREM 5.7 (cf. [9, Theorems 1.10 and 1.11]).

(1) Let k be a number field, and set K = k(x). Then for any simple algebraic
k-group G of type F4 that splits over a quadratic extension of K, the genus
geng (G) is trivial.

(2) Let K be either a 2-dimensional global field of characteristic # 2,3 or the
field of rational functions k(x,y) in two variables over a number field k.
Then for any simple K-group G of type Fy that splits over a quadratic
extension of K, the genus geng (G) is finite.

To conclude this section, we would like to mention a couple of results dealing
with a newly-discovered phenomenon that we refer to as “killing the genus by a
purely transcendental extension” — the reason for this choice of terminology is that,
in the two cases considered below, the genus essentially becomes as small as possible
after passing to a suitable purely transcendental extension.

THEOREM 5.8 (cf. [9, Theorem 1.5]). Let A be a central simple algebra of
degree n over a finitely generated field k, and let G = SLy 4. Assume that char k is
prime ton, and let K = k(x1,...,2,-1) be the field of rational functions in (n—1)
variables. Then geny (G xj K) consists of (the isomorphism classes of) groups of
the form H xj, K, where H = SLy p and B is a central simple algebra of degree n
such that its class [B] in the Brauer group Br(k) generates the same subgroup as

the class [A].

The proof uses Amitsur’s theorem on generic splitting fields [1], and a result
of D. Saltman [28], [29] on function fields of Severi-Brauer varieties.

THEOREM 5.9 (cf. [9, Theorem 1.6]). Let G be a group of type Go over a finitely
generated field k of characteristic # 2,3, and let K = k(x1,...,x¢) be the field of
rational functions in 6 variables. Then geny (G xy K) reduces to a single element.
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The proof relies on properties of Pfister forms.
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