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Abstract

Dataflow analysis is a fundamental code analysis technique that identifies depen-
dencies between program values. Traditional approaches typically necessitate
successful compilation and expert customization, hindering their applicability and
usability for analyzing uncompilable programs with evolving analysis needs in real-
world scenarios. This paper presents LLMDFA, an LLM-powered compilation-free
and customizable dataflow analysis framework. To address hallucinations for reli-
able results, we decompose the problem into several subtasks and introduce a series
of novel strategies. Specifically, we leverage LLMs to synthesize code that out-
sources delicate reasoning to external expert tools, such as using a parsing library
to extract program values of interest and invoking an automated theorem prover
to validate path feasibility. Additionally, we adopt a few-shot chain-of-thought
prompting to summarize dataflow facts in individual functions, aligning the LLMs
with the program semantics of small code snippets to mitigate hallucinations. We
evaluate LLMDFA on synthetic programs to detect three representative types of
bugs and on real-world Android applications for customized bug detection. On
average, LLMDFA achieves 87.10% precision and 80.77% recall, surpassing exist-
ing techniques with F1 score improvements of up to 0.35. We have open-sourced
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LLMDFA at https://github.com/chengpeng-wang/LLMDFA.

1 Introduction

.. . 1 public class Demo {
Dataflow analysis is a formal method that iden- 2 public static int foo(int a, int b){
tifies the dependence between values in a pro- 3 if (Math.abs(b) > 1)
gram [1]. Its primary objective is to determine 4 System.out.print(a / b);//sink: b, safe
. 5 return b;

whether the value of a variable defined at a par- 6
ticular line, referred to as a source, affects the 7 public static void main(Stringl] args){
value of another variable used at a subsequent 8 intx
. . R .. 9 x = Integer.parselnt(args[@]);//source: x
line, referred to as a sink. This crucial informa- 19 inty=x%x+1;
tion offers valuable insights into various down- g int z = x / y; //sink: y, safe

. . . . Z = X3
stream applications, sqch as program optimiza- ;3 U 2%y 5,
tion [2] and bug detection [3, 4].‘In Figure L for 14 System.out.print(x / y);//sink: y, buggy
example, we can regard the variable z at line 9 %2 }}

as a source and the divisors at lines 4, 11, and 14
as sinks and eventually detect a divide-by-zero

Figure 1: An example of DBZ bug

(DBZ) bug at line 14. The intuition is that z at line 9 comes from user input and can be zero. If it can

flow to the divisors, DBZ bugs may occur.

Despite decades of effort, current dataflow analysis techniques have drawbacks in terms of
applicability and usability. First, many scenarios where dataflow analysis is needed involve
incomplete and uncompilable programs, e.g., on-the-fly code flaw analysis in Integrated Development
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Environments (IDEs). However, current techniques typically rely on intermediate representations
(IRs) generated by compiler frontends, such as LLVM IR [5] produced by the Clang compiler, as
shown in Figure 2(a). This reliance limits their applicability in analyzing incomplete programs,
leading to the failure of analysis. Second, specific downstream tasks require customizing the analysis
to fit specific needs, such as the detection of a specific bug type. In the DBZ detection, for example,
the user has to extract variables potentially assigned with zero (sources) and variables used as the
divisors (sinks). It is a challenging task for non-experts since they need a deep understanding of
program representation (e.g., LLVM IR) for customization. This limitation hinders the usability
of classical approaches to address evolving software analysis needs in real-world scenarios [6].

In the past year, there has been a vast proliferation of software engineering applications built upon
large language models (LLMs), from which we observe the exceptional performance of LLMs in
comprehending code snippets [7, 8, 9, 10]. Specifically, by treating LLMs as code interpreters and
devising appropriate prompts, we can directly obtain semantic properties from source code. For
instance, by constructing a prompt like “Does the value of the variable z used at line 13 depend
on the value of variable x defined at line 97, we can ascertain the dataflow fact between the two
program values. Likewise, we can leverage LLMs to automate the extraction of specific sources
and sinks by describing their characteristics as prompts. This empowers developers to tailor dataflow
analysis to their specific requirements. As shown in Figure 2(b), such LLM-powered dataflow
analysis gets rid of compilation and avoids complicated customization. In the rest of this paper, our
demonstration is consistently within the context of a downstream task, and our references to sources
and sinks specifically pertain to that task.

However, instantiating dataflow analysis using LLMs is far from trivial, as their hallucina-
tions [11, 12, 13] threaten the reliability of results. First, the misidentification of sources and sinks
leads to dataflow facts that are irrelevant to the user’s interest, directly resulting in incorrect results of
dataflow analysis. Second, sources and sinks can be distributed across multiple functions, entailing an-
alyzing a large body of code that likely exceeds the input context limit. In addition, incorrect dataflow
facts in single functions can accumulate and magnify, thereby impacting the overall performance.
Third, the validity of a dataflow fact depends on the feasibility of the program path inducing the
dataflow fact. If the path condition is deemed unsatisfiable, no concrete execution will occur along that
path [4]. Regrettably, deciding the satisfiability of a logical constraint is a complex reasoning task that
LLMs cannot effectively solve [14]. In Figure 1, for example, gpt-3.5-turbo-0125 reports a DBZ
bug at line 4 as a false positive because it cannot discover the unsatisfiable branch condition at line 3.

This paper presents LLMDFA, an LLM-powered compilation-free and customizable dataflow analysis.
To mitigate hallucination, we decompose the analysis into three sub-problems, namely source/sink
extraction, dataflow summarization, and path feasibility validation, which target more manageable
tasks or smaller-sized programs. Technically, we introduce two innovative designs to solve the three
sub-problems. First, instead of directly prompting LLMs, we leverage LLMs as code synthesizers
to delegate the analysis to external expert tools like parsing libraries and SMT solvers [15], which
effectively mitigates the hallucinations in the source/sink extraction and path feasibility validation.
Second, we employ a few-shot chain-of-thought (CoT) prompting strategy [16] to make LLMs aligned
with program semantics, which enables LLMDFA to overcome the hallucination in summarizing
dataflow facts of single functions. Compared to traditional dataflow analysis, LLMDFA offers distinct
advantages in terms of applicability and autonomy. It can be applied to incomplete programs, includ-
ing those in the development phase. Additionally, it can autonomously create and utilize new tools
with minimal human intervention, requiring no particular expertise in customizing dataflow analysis.

We evaluate LLMDFA in the context of bug detection. Specifically, we choose Divide-by-Zero
(DBZ), Cross-Site-Scripting (XSS)!, and OS Command Injection (OSCI)? in Juliet Test Suite [17]

'Tn an XSS bug, a dataflow fact across variables denoting different websites allows undesirable execution.
2Using an external input for OS command construction can lead to an OSCI bug.



for the evaluation. LLMDFA achieves high precision and recall when using different LLMs. For
example, equipped with gpt-3.5-turbo-0125, it obtains 73.75%/100.0%/100.0% precision and
92.16%/92.31%/78.38% recall in the DBZ/XSS/OSCI detection. LLMDFA substantially outperforms
a classic dataflow analyzer CodeFuseQuery [18] and an end-to-end solution based on few-shot CoT
prompting, improving the average F1 score by 0.23 and 0.36, respectively. Besides, we evaluate
LLMDFA upon real-world Android malware applications in TaintBench [19] and achieve 74.63%
precision and 60.24% recall. It surpasses the two baselines with improvements in the F1 score of 0.12
and 0.35, respectively. To the best of our knowledge, LLMDFA is the first trial that leverages LLMs
to achieve compilation-free and customizable dataflow analysis. It offers valuable insights into future
works in analyzing programs using LLMs, such as program verification [20, 10] and repair [9].

2 Preliminaries and Problem Formulation

Definition 1. (Control Flow Graph) The control flow graph (CFG) of a given program P is a labeled
directed graph G := (5, Ey). Here, s € S is a statement in the program. For any (s,s’) € S x S,
Ey(s, s') is the boolean expression under which that s’ is executed just after s.

Figure 3 shows a (partial) CFG of the program in Figure 1. ..."’{;;fb}! V.2 !

It depicts several important program facts, such as individual Mam.absd{)’;’il ””””
branch conditions and caller-callee relation. To simplify for-  {7/Z ‘ﬂ{ Systen.out.printin(a / b);]
mulation, we introduce V., VL, V1, and V,, that contain ~ ~~~““true

parameters (of the function), return values, arguments (passed (systen.out.printin(x / y); )
to invoked functions), and output values in a function f, re-
spectively, which can be easily derived from CFG. Two dashed
boxes in Figure 3 show the assignments from arguments to parameters and from the return value to
the output value. Based on CFG, we can examine how a program value propagates via dataflow facts.

Figure 3: An example of CFG

Definition 2. (Dataflow Fact) There is a dataflow fact from the variable a at line m to the variable b
at b at line n, denoted by a@/,,, — bQ/,,, if the value of a can affect the value of b.

In Figure 1, the variable z is assigned with the value of the variable x at line 12 and used as the
second argument at line 13. Hence, we have x@Q/{g <— @15, 2@Q015 — 2@{;3, and xQly — z@Q/13.
Dataflow facts are crucial for many downstream tasks, such as bug detection [4] and program
slicing [1]. Specifically, sensitive information leakage, which may cause XSS bugs [21], can be
detected by identifying dataflow facts from sensitive data to leaked data. For other bug types,
additional restrictions may be imposed on dataflow facts. In the DBZ detection, for example, we
constrain that a dataflow fact connects two equal values.

The execution of a statement s can be guarded by a condition. A precise analysis should be path
sensitive, i.e., validating the feasibility of a fact-inducing path according to the path condition.

Definition 3. (Path Condition) The path condition of a program path p := s;,8;, - -+ s, is ¥(p) =
NAi< j<n—1 Ey(sq;,54,,), where s; is the statement at line i; and can be executed just before s, , .

We have the dataflow fact t@Q¢g — b@/, in Figure 1. However, the statement at line 4 is guarded
by Math.abs(b) > 0. It is evaluated to be false as the parameter b is passed with 0. Hence, the
dataflow fact z@Q¢9 — b@/¢, cannot occur in any concrete execution. A path-insensitive analysis
would introduce a false positive at line 4 in the DBZ detection.

Our Problem. In real-world downstream applications, dataflow analysis focuses on the dataflow
facts between specific kinds of variables referred to as sources and sinks. In the DBZ detection [22],
for example, we need to identify the variables that could potentially yield zero values as sources and
set the divisors as sinks. Lastly, we formulate the dataflow analysis problem as follows.

Given the source code of a program P and its CFG G, identify the dataflow facts from user-
specified sources v, € Vspe and sinks vgink € Vsing in a path-sensitive manner.

As demonstrated in Section 1, existing dataflow analysis techniques [23, 24, 4] heavily rely on
compilation and pose the difficulty of customization, which hinders their applicability and usability [6].
Although several machine learning-based bug detection techniques [25, 26] enable compilation-free
analysis, they cannot answer a general dataflow analysis question formulated above and struggle to
support the customization for different bug types without a large training dataset. To fill the research
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Figure 4: The workflow of LLMDFA consists of three phases

gap, we aim to propose a new paradigm of dataflow analysis in this work. Specifically, we realize the
exceptional performance of LLMs in program comprehension [27, 28], highlighting the potential
for identifying dataflow facts. Besides, LLMs demonstrate a strong capability of understanding
natural language [29, 30], and thus, can effectively comprehend the developers’ intents based on
natural language descriptions that specify sources and sinks. Moreover, LLMs posses remarkable
program synthesis capabilities that facilitate the synthesis of tools invoking external experts to tackle
domain-specific problems. Inspired by these observations, we attempt to instantiate dataflow analysis
without laborious compilation steps and intricate customization procedures by harnessing the power
of LLMs and domain-specific experts.

3 Method

We propose LLMDFA, a compilation-free and customizable dataflow analysis, which takes a program
and its CFG as input. To resolve hallucinations, we split the analysis into three phases in Figure 4.

* Source/Sink Extraction: For a dataflow analysis application, such as DBZ detection, LLMDFA
first extracts sources and sinks, which are the start and end points of dataflow facts of our interests.

e Dataflow Summarization: Based on the extracted sources ( é,C) and sinks (VS{M) of a given

function f, LLMDFA identifies the dataflow facts from v € V./ U me U Vout tov' € Vf-nk U

v U Vret as summaries, which form inter-procedural dataflow paths from sources to sinks.
. Path feasibility Validation: For each dataflow path from sources to sinks, LLMDFA collects its
path condition and validates path feasibility, eventually reporting bugs induced by feasible paths.

The rest of this section demonstrates the detailed technical designs in the three phases.

3.1 Phase I: Source/Sink Extraction

Extracting sources and sinks is non-trivial with LLMs. First, querying LLMs whether each line
contains sources or sinks is expensive. Second, the hallucinations of LLMs may induce incorrect
sources and sinks. To tackle these issues, we utilize LLMs to synthesize script programs using parsing
libraries as sources/sink extractors. By traversing the abstract syntax tree (AST) of a given program,
script programs can identify sources/sinks at a low cost, yielding deterministic and explainable results.

As shown in the left part of Figure 4, the synthesis requires a specification S depicting sources/sinks,
example programs &,pe. With sources/sinks, and their ASTs 7. Given a phase description D, an

)

extractor ag := oy’ is generated by the conditional probability pg after a specific number of fixes:

(0) Npe( |D17 S, gspec, T) (1)
a(E) Npe(' | Dh 87 gSpEca T, O(i_l))7 1<:<t (2)
@(ag‘)v gspec) = X{t} (Z), 0 < 7 <t (3)

Here x (i) checks whether i is equal to ¢. @(ag), Espec) = 11if and only if the script synthesized in

the i-th round identifies sources and sinks in £,p,¢. With no false positives or negatives. As formulated
by Equations (1)~(3), LLMDFA iteratively fixes a script, utilizing the execution result (denoted by
OU=1) of the script synthesized in the previous round, until the newly synthesized one correctly
identifies sources and sinks in the example programs. Notably, our extractor synthesis is a one-time
effort. The synthesized extractors can be reused when analyzing different functions. As an example,
Figure 12 in Appendix A.2.3 shows an example program with sources/sinks and the synthesized sink
extractor for DBZ detection. The code highlighted in grey is generated by LLMs, while the rest is the
skeleton provided manually. We also list our prompt template in Figure 9 of Appendix A.2.2.



3.2 Phase II: Dataflow Summarization

. . . Question oemm T T~
We realize that an inter-procedural dataflow factis the i prompt: @ ? DR "@
concatenation of multiple intra-procedural dataflow x@%g z@%13
f f
facts fromv € VI UV, UV], tov € V] U Result: (vy) (vy) (va) (v)
v g UVTfet in single functions f. By identifying intra- x@2, x@?¢1, 2@¢, @45

procedural dataflow facts as function summaries, we
can significantly reduce the prompt length. Besides,
a summary can be induced by one or more operations with specific patterns, such as direct uses and
assignments. For example, the summary z@/y < z@¢; 5 in Figure 5 is introduced by the assignment
at line 12 and the direct use of the variable z at line 13. Offering few-shot examples with detailed
explanations would expose typical patterns of dataflow facts that form function summaries, which
can align LLMs with program semantics, prompting their ability in dataflow summarization.

Figure 5: A summary discovered via CoT

Based on the insight, we introduce a few-shot CoT prompting to facilitate the dataflow summarization,
which corresponds to the middle part of Figure 4. Given a phase description D5 and a list of examples
with explanations £;,.,, the response can be generated by the conditional probability:

r Npe( | D2a Sfl()’wa U7 Ul7 P) (4)
where v € VL, UV, UV, v € V)  UV/ UVZ, and P is the program under the analysis.

Based on the response r, we can determine the existence of the dataflow fact between v and v’.
Concretely, we construct the prompt according to the template shown in Figure 10 of Appendix A.2.2.
Particularly, the examples cover the typical patterns of dataflow facts, and meanwhile, the explanations
depict reasoning process in detail. Both designs are pretty crucial for the few-shot CoT prompting.
Lastly, we ask LLMs to reason step by step and offer an explanation along with the Yes/No answer.

Consider z@Q/¢g and z@/;3 in Figure 1. As shown in Figure 5, LLMDFA discovers intermediate
program values, i.e., @¢;5 and z@/15, and eventually obtains the dataflow fact @l — 2@/ 3step
by step. Hence, the strategy of few-shot CoT prompting helps LLMs to better align with program
semantics, significantly reducing hallucination in reasoning dataflow facts within single functions.

3.3 Phase III: Path Feasibility Validation

Validating path feasibility is a complicated reasoning task that involves determining the satisfiability
of a path condition. Although LLMs cannot achieve adequate performance in complex reasoning
tasks [14], several off-the-shelf domain-specific experts, such as SMT solvers, can be utilized
by LLMs. For example, the Python binding of Z3 solver [15] enables us to solve constraints in
Python code. Hence, we propose to synthesize a Python script program that encodes and solves
path conditions according to path information. Decoupling constraint solving from path condition
collection can substantially mitigate the hallucination in path feasibility validation.

The right part of Figure 4 shows the workflow of the path feasibility validation. Based on the dataflow
facts stitched from summaries, LLMDFA first leverages a parser to extract the path information, such
as the branches exercised by the program path and the branch conditions. Notably, the parser receives
the program lines appearing in the summaries as inputs and does not need to be reimplemented for
different forms of sources and sinks. Based on the derived path info Z and the phase description Ds,

a script program oy = agj) is eventually generated after a specific number of fixes as follows:

ol? ~ py(- | D5, T) ®)
alf ~po(- | Dy, T, err™V), 1<i<t ©)
err® = err #£e 0<i < (t—1) D

Particularly, we utilize the error message of executing the script synthesized in -7 "
. . > K port
a previous round ((¢ — 1)-th round), denoted by errG—1 and feed it to LLMs | = solver()
to conduct the fixing in the ¢-th round. Concretely, we design the prompt :: d;'(';(;: g)
template shown by Figure 11 in Appendix A.2.2. It should be noted that | s.add(abs(b) > 1)
the synthesis process has to be repeated for each source-sink pair, which is | Print(s-check())
different from the one-time effort paid in the extractor synthesis. Consider Figure 6: A‘ script
x@fy < b@/, in Figure 1. We offer the branch condition Math.abs (b) > 1 invoking Z3 solver

and other path information in a prompt and obtain a script in Figure 6. To ease the synthesis, we offer




Table 1: The performance of LLMDFA in the overall detection and the three phases when using
different LLMs. P, R, and F1 indicate the precision, recall, and F1 score, respectively.

Bug Phase gpt-3.5 gpt-4 gemini-1.0 claude-3
P% RO F1 |[P% R% F1 | P% R%) F1 | P% R% F1
Extract 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00
Summarize 9095 9757 094 | 9532 9843 097 | 8357 8247 083 | 8926 9238 091
Validate 81.58 9920 090 | 89.76 100.00 0.95| 79.83 9373 0.86 | 8574 9452 0.90
Detection 73.75 92.16 0.82 | 81.38 9575 0.87 | 66.57 7421 0.70 | 7691 82.67 0.80
Extract 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00
Summarize  86.52 9625 091 | 97.84 9976 099 | 88.79 9731 093 | 9417 97.83 0.96

DBZ

XSS Validate 100.00  100.00 1.00 | 100.00 98.91 0.99 | 100.00 99.07 1.00 | 100.00 95.29 0.98
Detection  100.00 92.31 0.96 | 100.0 98.64 0.99 | 100.00 94.60 0.97 | 100.0 86.49 0.93

Extract 100.00  100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00 | 100.00 100.00 1.00

0SCI Summarize  89.57 8576 0.88 | 9458 93.12 094 | 8721 9654 092 | 9826 97.87 098

Validate 100.00 97.14 0.99 | 100.00 100.00 1.00 | 100.00 98.13  0.99 | 100.00 100.00 1.00
Detection  100.00 78.38 0.88 | 100.00 89.19 0.94 | 100.00 94.59 0.97 | 100.00 97.30 0.99

lines 1, 2, and 6 in a skeleton. We refine the script at most three times. If the script is buggy after
three trials, LLMDFA enforces LLMs to determine path feasibility based on the path information.

4 Evaluation

We implement LLMDFA as a prototype analyzing Java programs. Utilizing the parsing library
tree-sitter [31], LLMDFA obtains the parameters, return values, callers/callees, and sources/sinks.
We configure LLMDFA with four LLMs across various architectures, namely gpt-3.5-turbo-0125,
gpt-4-turbo-preview, gemini-1.0-pro, and claude-3-opus. We proceeded to evaluate the
performance of LLMDFA through extensive experiments, with the total cost amounting to 1622.02
USD. In the rest of the paper, we use gpt-3.5, gpt-4, gemini-1.0, and claude-3 for short
without ambiguity. To reduce the randomness, we set the temperature to O so that LLMDFA performs
greedy decoding without any sampling strategy.

4.1 Dataset

Synthetic Benchmark. Juliet Test Suite [17] is a benchmark widely used to evaluate static analyzers.
Considering the high impact and representativeness, we choose divide-by-zero (DBZ), cross-site-
scripting (XSS), and OS Command Injection (OSCI) for evaluation. As illustrated in Section 2,
the dataflow facts inducing DBZ bugs are more restrictive than the ones inducing XSS bugs, as the
values in the former should be equal instead of just being dependent. The OSCI bugs share the same
forms of dataflow facts as XSS bugs, while their sources and sinks have different forms. Indicated
by comments, there are 1,850 DBZ, 666 XSS, and 444 OSCI bugs in total. To avoid the leakage of
ground truth, we remove comments and obfuscate code before the evaluation.

Real-World Programs. We choose TaintBench Suite [19], which consists of 39 real-world Android
malware applications. Due to the reliance on Gradle in an old version, we cannot compile the
applications in our environment. Besides, each application is equipped with specific sources and
sinks that are customized to its unique functionality. For instance, if the argument of the function
startService depends on the return value of the function getDisplayOriginatingAddress, it may result
in the leakage of user address information. The highly customized sources and sinks require us
to tailor dataflow analysis for each application. Therefore, TaintBench serves as ideal subjects for
evaluating LLMDFA in a compilation-free and customizable scenario.

4.2 Performance of LLMDFA

Setup and Metrics. We evaluate LLMDFA upon Juliet Test Suite to measure its precision, recall, and
F1 score. Apart from the overall detection, we also measure the performance of each phase to quantify
its effectiveness. Specifically, we diff the sources/sinks labeled in the benchmark and the identified
ones to measure the performance of source/sink extraction. Besides, we measure the precision and
recall of dataflow summarization by manually examining the value pairs investigated by LLMDFA.
Lastly, we manually examine generated path conditions and compute the precision and recall of
identifying feasible paths. Due to the lack of explicit ground truth in the benchmark, we would
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Figure 7: The comparison of LLMDFA, CodeFuseQuery, Pinpoint, and LLM-based end-to-end
analysis. LLMDFA and LLM-based end-to-end analysis are powered with gpt-3.5

have to make laborious efforts to examine thousands of program paths. To simplify examination, we
choose 37 programs for each bug type to measure the performance of the last two phases, as other
programs only differ from the selected ones in terms of sources and sinks.

Result. As shown in Table 1, LLMDFA achieves high performance in each phase and the over-
all detection when it is powered with different LLMs. Equipped with gpt-3.5, for example, it
achieves the precision of 73.75%/100%/100%, the recall of 92.16%/92.31%/78.38%, and the F1
score of 0.82/0.96/0.88, in the DBZ/XSS/OSCI detection. Besides, LLMDFA synthesizes all the
source/sink extractors successfully for the three bug types. In the DBZ/XSS/OSCI detection, the
dataflow summarization achieves 90.95%/86.52%/89.57 precision and 97.57%/96.25%/85.76% recall,
and meanwhile, the path feasibility validation achieves 81.58%/100.00%/100.00% precision and
99.20%/100.00%/97.14% recall. When utilizing other LLMs, LLMDFA achieves the precision
and recall comparable to those obtained using gpt-3.5. While the precision of the DBZ detection
powered by gemini-1.0 is slightly lower at 66.57% than other LLMs, the performance remains
satisfactory, exhibiting superiority over the baselines in Section 4.3. LLMDFA successfully synthe-
sizes the extractors and script programs encoding path conditions with only a few iterations, which is
demonstrated in Appendix A.3.1 and A.3.2. Lastly, it is found that the average financial costs of the
DBZ, XSS, and OSCI detection are 0.14 USD, 0.05 USD, and 0.04 USD, respectively. Such a cost is
in line with works of a similar nature, such as [32], which takes 0.42 USD to repair a bug. Notably,
the extractor synthesis is one-time for a given bug type. Hence, the financial cost of the detection
in practice is even lower. Overall, the statistics show the generality, effectiveness, and efficiency of
LLMDFA in detecting dataflow-related bugs.

4.3 Comparison with Baselines

Classical Dataflow Analysis. We choose two industrial static analyzers, namely CodeFuseQuery [18]
and Pinpoint [4], for comparison. Specifically, CodeFuseQuery does not depend on any compilation
process and derives dataflow facts from the ASTs of programs, while Pinpoint requires the compilation
and takes as input the LLVM IR generated by a compiler. As shown by Figure 7, CodeFuseQuery
achieves 29.41%/92.26%/87.46% precision, 81.08%/79.67%/54.05% recall, and 0.43/0.86/0.67 F1
score in detecting the DBZ/XSS/OSCI bugs. The low precision of the DBZ detection is attributed to
its path-insensitive analysis. The low recall of CodeFuseQuery is caused by the lack of the support of
analyzing complex program constructs. For example, the inability to analyze global variables causes
missing dataflow facts, which causes more false negatives.

Besides, Pinpoint obtains 93.78%/100.00%/100.00% precision, 63.19%/47.49%/31.35% recall, and
0.76/0.64/0.48 F1 score in the detection of DBZ/XSS/OSCI bugs. Due to the lack of comprehensive
modeling and customized support for source and sink, Pinpoint misses a large number of buggy
dataflow paths, which eventually result in low recall. Although it achieves a high precision of 93.78%
in DBZ detection, LLMDFA demonstrates superior capabilities in detecting DBZ bugs, delivering
not only satisfactory precision but also significantly higher recall and F1 scores.

LLM-based End-to-End Analysis. We adopt few-shot CoT prompting to detect the DBZ, XSS, and
OSCI bugs. Specifically, we construct few-shot examples to cover all the forms of sources and sinks,
and meanwhile, explain the origin of a bug step by step. Figure 7 shows the performance comparison
when using gpt-3.5. LLMDFA exhibits superiority over LLM-based end-to-end analysis in detecting
three kinds of bugs. Although the recall of LLMDFA is slightly lower than the baseline in the OSCI
detection, the precision of the former is much higher than the latter. We obtain the same findings
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Figure 8: The comparison of LLMDFA and ablations using gpt-3.5

from the results of the analysis powered by the other three LLMs, which are shown by Figure 14
in Appendix A.3.3. In Appendix A.4.1, we offer typical cases where the LLM-based end-to-end
analysis identifies wrong dataflow facts due to hallucinations.

4.4 Ablation Studies

Setup and Metrics. We introduce three ablations, namely NoSynExt, NoCoT, and NoSynVal and
measure their performance in detecting the DBZ, XSS, and OSCI bugs. Specifically, NoSynExt
directly leverages LLMs to extract sources and sinks. NoCoT provides the descriptions of dataflow
facts in prompts and summarizes dataflow facts without few-shot CoT prompting.NoSynVal validates
path feasibility with LLMs directly without synthesizing programs invoking SMT solvers.

Result. Figure 8 shows the comparison results of the ablations using gpt-3.5. First, LLMDFA
has an overwhelming superiority over NoSynExt and NoCoT. Although NoCoT achieves 86.8%
precision while LLMDFA obtains 73.7% precision in the DBZ detection, LLMDFA has much
larger recall and F1 score than NoCoT. The key reason is that NoCoT is unable to identify complex
dataflow facts, which causes the low recall of NoCoT. Second, NoSynExt introduces false positives
in many cases because of the low precision of source/sink extraction in both the DBZ, XSS, and
OSCI detection. Third, it should be noted that LLMDFA does not show significant superiority over
NoSynVal in the XSS and OSCI detection because the corresponding benchmark programs do not
contain any XSS or OSCI bug-inducing infeasible paths. Also, LLMDFA may encode the path
condition incorrectly and accept the infeasible path, eventually causing false positives. As shown
by Figure 15 in Appendix A.3.4, We can obtain similar findings when using other three LLMs.
Although the precisions vary among different LLMs and bug types, LLMDFA is always superior
to the ablations, demonstrating its effectiveness in mitigating the hallucinations in LLM-powered
dataflow analysis. We also offer several examples of mitigated hallucinations in Appendix A.4.1.

4.5 Evaluation upon Real-world Programs

Table 2 shows the basic statistics of TantBench Suite [19]. Particularly, there are 53 different forms
of source-sink pairs in total and an application contain 7.9 different forms of source-sink pairs
on average. The diversity of source-sink pairs necessitates the customization of dataflow analysis.
Considering the resource cost of invoking LLMs and the manual cost of comparing detection results
with the ground truth, we run LLMDFA with gpt-3.5 for randomly selected source/sink pairs, which
constitute 80 out of the 203 dataflow paths in the ground truth. As shown in Table 3, LLMDFA
achieves the precision of 75.38% and the recall of 61.25%. The false positives and negatives are
mainly caused by the hallucinations in the dataflow summarization. Listing 8 in Appendix A.4.3
shows a false negative example when LLMDFA fails to detect the dataflow path from the return value
of the function query to the argument of the function write. Specifically, LLMDFA fails to capture the
summary of processResults, which contains complex program structures, such as a try-catch block
and a while statement, ultimately resulting in the failure to report the intended dataflow path. We also
present a false positive example by Listing 8 Appendix A.4.3.

We also compare LLMDFA with the end-to-end analysis and CodeFuseQuery. Specifically, we adopt
a few-shot CoT prompting strategy to conduct the end-to-end analysis and customize CodeFuseQuery
by designing specific queries to capture dataflow paths accordingly. As shown by Table 3, the
end-to-end analysis only achieves a precision of 43.48% and a recall of 25.00%. The precision
and recall are primarily affected by the incorrect identification of sources and sinks. When dealing



Table 2: The statistics of TaintBench, including
the total number of program lines, functions, and
source-sink pairs, along with the maximal and
average number per application.

Metric Total Max Avg
Program Line 1,376,214 260,797 35,287.03
Function 155,364 23,414 3,983.69
Source-sink Pair 53 17 7.9
Table 4: The performance of

LLMDFA upon Juliet Test Suite of

Table 3: The performance results upon Taint-
Bench. Al1~A3 are LLMDFA with gpt-3.5,
end-to-end analysis with gpt-3.5, and Code-
FuseQuery, respectively.

Analysis Precision Recall F1 Score
Al 75.38%  61.25% 0.67
A2 43.48%  25.00% 0.32
A3 72.92%  43.75% 0.55

Table 5: The performance of LLMDFA upon
the real-world benchmark SecBench.js

C/C++ version

Bug Type Precision Recacc  F1 Score
Precision Recacc FI Score Command Injection  94.44%  67.33% 079
DBZ 8571% 83.94% 84.77% Tainted Path 50.00%  100.00% 0.67
APT 100.00% 86.83%  92.92% Code Injection 90.91% 83.33% 0.87
OSCI  97.36%  73.68%  83.98% Overall 92.52%  71.74% 0.81

with large programs, a lengthy prompt can amplify the occurrence of false positives/negatives in
identifying sources/sinks and discovering dataflow facts between them. While CodeFuseQuery
achieves comparable precision to LLMDFA reaching 72.92%, its recall is significantly lower at only
43.75% compared to LLMDFA. Its low recall is mainly attributed to its limited ability to analyze
complex program constructs such as global variables and arrays. This observation is consistent with
the evaluation results obtained upon Juliet Test Suite. We do not evaluate the compilation-dependent
analyzer Pinpoint because the subjects in TaintBench cannot be compiled successfully due to an
outdated version of Gradle. Overall, the above statistics provide sufficient evidence of the potential
of LLMDFA in customizing dataflow analysis for real-world projects without compilation.

4.6 Multi-linguistic Support

Although the multi-linguistic support is not our main contribution, it is easy to extend LLMDFA
to support other languages due to its compilation-free design. Based on dataflow analysis theory,
we only need to construct the control flow graph with corresponding tree-sitter packages and then
reuse the current implementation. In our evaluation, we further migrate Java analysis to support
C/C++/JavaScript and evaluate it with gpt-3.5 upon the Juliet Test Suite for C/C++ and a real-world
JavaScript benchmark SecBench.js [33]. The Juliet Test Suite for C/C++ does not contain XSS
bugs. Hence, we chose another bug type, namely Absolute Path Traversal (APT), which is a typical
security vulnerability. As shown in Table 4, the performance of LLMDFA on C/C++ is equally good
as on Java. SecBench.js includes 138 vulnerabilities in JavaScript packages, covering command
injection, taint path, and code injection vulnerabilities, which have been assigned with CVE IDs due
to significant security impact. Table 5 shows that our compilation-free analysis upon SecBench.js
achieves 92.54% precision and 71.74% recall, which are comparable with the compilation-dependent
approach in [33]. Notably, the migration only requires the modification of no more than 100 lines of
code and mostly relates to the changes to AST node types and parser initialization.

4.7 Limitations and Future Works

First, the prompts can be lengthy in the few-shot CoT prompting, which can result in significant
token cost. Frequent prompting can also increase time overhead. Hence, LLMDFA is better suited
for analyzing specific program modules than the entire program. To make whole program analysis
practical, we may need to accelerate the inference or parallelize LLMDFA. Second, dataflow summa-
rization can be imprecise in the presence of large functions or sophisticated pointer operations, further
leading to incorrect results in identifying dataflow facts across functions. A potential improvement is
to fine-tune existing LLMs with the dataflow facts produced by classical dataflow analyzers. Third,
LLMDFA may not accurately encode path conditions and potentially compromise the soundness. Ap-
pendix A.4.2 presents several cases where LLMDFA encodes path conditions wrongly. It is possible
to investigate several patterns of path conditions and synthesize script programs to over-approximate
them, which could discard infeasible paths while retaining high recall simultaneously.



5 Related Work

Dataflow Analysis. Current dataflow analysis predominantly relies on IR code generated by semantic
analysis during the compilation, such as LLVM IR [5] and Soot IR [34]. Typically, SVF [24] and
Klee [35] analyze C/C++ programs based on LLVM IR code. Industrial analyzers like Infer [36] and
Semmle [23] also require successful builds to obtain necessary IR code for analysis. Consequently,
the reliance on compilation infrastructures restricts the applicability when target programs cannot be
compiled. Besides, existing techniques abstract semantics with formal structures, such as graphs [1]
and logical formulas [37], to compute dataflow facts of interests. However, semantic abstraction
differs greatly depending on analysis demands, such as the choices of sources/sinks and the precision
setting of the analysis. Hence, the customization of dataflow analysis requires laborious manual effort
and expert knowledge, which hinders its widespread adoption in real-world scenarios [6].

Machine Learning-based Program Analysis. The first line of studies derives program proper-
ties, such as library specifications [38, 39] and program invariants [40, 41], to augment classical
analyzers. For instance, USpec utilizes large codebases to predict aliasing relation [38]. SuSi em-
ploys classification models to infer the sources and sinks of sensitive information [39]. While these
techniques offer analyzers insightful guidance, they do not have any correctness guarantees due to
their inherent limitations. The second line of works targets data-driven bug detection with training
models [25, 42, 43]. Typically, [25] jointly trains an embedding model and a classification model
upon a large training dateset. Unlike LLMDFA, it cannot answer general dataflow queries upon two
specific program values. Similarly, Hoppity detects JavaScript bugs with the model trained upon a
large volume of buggy code [43]. The reliance to training data make these techniques difficult to
customize for specific analysis demands in the presence of a sufficient amount of training data.

LLMs for Program Analysis. The emergence of LLMs has created exciting opportunities for
various analysis tasks, including code completion [44], repair [9, 45], and comprehension [46].
Considerable research targets the reasoning abilities of LLMs through techniques such as CoT [16],
ToT [47], and accumulative reasoning [14]. However, only a few studies focus on domain-specific
reasoning for programs. Typically, several studies employ the CoT prompting to infer program
invariants [10, 48] and rank potential invariants [49]. Also, LLift retrieves function specifications
through prompting [50] to assist classical bug detectors. As far as we know, no previous studies have
solely relied on LLMs for program analysis. Our work formulates chain-like structures in dataflow
facts and the demonstrates the possibility of synthesizing new tools to avoid hallucinations in program
analysis. Our insight into mitigating hallucinations can be generalized to other software engineering
problems, such as program repair [45] and program synthesis [51, 52].

6 Conclusion

This paper presents LLMDFA, a LLM-powered compilation-free and customizable dataflow analysis.
To mitigate the hallucinations, it decomposes the whole analysis into three manageable sub-problems
and solves them with a series of strategies, including tool synthesis, few-shot CoT prompting, and
formal method-based validation. Our evaluation shows the remarkable performance of LLMDFA in
analyzing both synthetic and real-world programs. Our work demonstrates a promising paradigm for
reasoning code semantics, with the potential for generalization to other code-related tasks.
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A Appendix

A.1 Broader Impact

This paper presents work whose goal is to advance the field of machine learning, targeting a com-
plicated code-reasoning task, namely dataflow analysis. We have demonstrated the limitations of
our work above. We do not expect our work to have a negative broader impact, though leveraging
LLMs for code-reasoning tasks may come with certain risks, e.g., the leakage of source code in
private organizations and potential high token costs. Meanwhile, it is worth more discussions to
highlight that our work has the potential to dramatically change the field of software engineering with
the power of LLMs. Specifically, LLM-powered dataflow analysis not only enables the analysis of
incomplete programs with little customization but addresses other challenges in classical dataflow
analysis.

First, classical dataflow analyzers mainly depend on specific versions of IRs. As a compilation
infrastructure evolves, the version of the IR code can change, requiring the implementation to migrate
to support the analysis of new IRs. For example, the Clang compiler has undergone ten major version
updates in the past decade [53], resulting in differences between IRs generated by different compiler
versions. The IR differences necessitate tremendous manual efforts to migrate the dataflow analysis
implementation for each version update in the long term. However, an LLM-powered dataflow
analysis directly operates on the source code and supports different language standards.

Second, classical dataflow analysis lies in the various abstractions and precision settings [54],
especially pointer analysis, a fundamental pre-analysis in the classical dataflow analysis workflow.
Specifically, the developers of dataflow analyzers have to consider different precision settings, such
as Anderson-style pointer analysis [55] and Steensgaard’s pointer analysis [56], and implement
the analysis algorithms accordingly. This process demands significant implementation effort. In
contrast, LLMs, being aligned with program semantics, serve as interpreters of program semantics
and eliminate the need to propose abstractions and implement analysis under specific precision
settings. Instead, we can interact with LLMs by prompting them to query the program facts of interest
very conveniently.

A.2  Prompt of LLMDFA and Baseline

This section presents more details of prompt design in LLMDFA and the end-to-end analysis,
including the basic principle, prompt templates, and the forms of the examples used in few-shot
prompting.

A.2.1 Prompt Design Principle of LLMDFA

To facilitate the synthesis of src/sink extractors, we enumerate the various types of sources and
sinks derived from the definition of dataflow-related bugs. Specifically, we follow the comments
in Juliet Test Suite and manually specify different forms of sources and sinks. To support dataflow
summarization, we present illustrative examples showcasing different dataflow patterns, including
the dataflow facts resulting from direct uses, assignments, and load/store operations upon pointers.
Regarding the script synthesis for path feasibility validation, we do not offer examples and instead
provide a basic skeleton of a Python script program. We then prompt LLMs to complete the script
based on the provided path information.

A.2.2 Prompt Templates of LLMDFA

The detailed prompt templates used in the DBZ detection are shown in Figure 9, Figure 10, and
Figure 11. For other bug types, the prompt templates are similar. Notably, all the examples in the
prompts consist of no more than six lines of code. When writing the examples and explanations, we
maintain a consistent program structure and sentence format, which can be easily achieved via simple
copy-and-paste operations and minor modifications upon specific statements or expressions. This
process requires no specialized expertise and entails minimal manual effort.

A.2.3 Example Program and Sink Extractor for DBZ Detection

Figure 12 shows the example program and the synthesized sink extractor in the DBZ detection.
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Role: You are a good programmer and familiar with AST of programs.
Description: Please write the Python script traversing AST and identify sources/sinks for data flow analysis.

Source/Sink Info: There are several forms of sources/sinks: [Spec]. Also, we offer several example programs
containing sources/sinks and their corresponding ASTs: [Example Programs + ASTs]

Synthesis Task: Please write a Python script to extract the sources/sinks on AST. You may refer to the AST
structure of the example programs, and a skeleton AST traverser program. [skeleton]

Fixing Task: Here is the synthesized result of last round: [script]. When executing the script, we encounter the
following error: [error message]. Here are missed sources/sinks are missed: [missed ones]. Here are the variables
misidentified as sources/sinks: [incorrect ones]. Please fix it and return a runnable script.

Figure 9: The prompt template of the source/sink extractor synthesis in the DBZ detection

Role: You are a good Java programmer. You are good at understanding the semantics of Java programs.
Description: Determine whether two variables at two lines have the same value.

Here are several rules:

(1) If they are the same variable and not overwritten between two lines, the answer should be yes.

(2) If the variable a is assigned with the value of the variable b, then answer should be yes. [Other rules]

Here are several examples:

Example 1: User: [Program] [Question]

System: [Answer: Yes] [Explanation: y is assigned with x at line 2 and not over-written between lines 2 and 3.
Hence, the value of y at line 3 is the same as x defined at line 1. The answer is Yes.]

[Other examples]

Question: Now I give you a function: [FUNCTION]

Please answer: Does [VAR1] used at line [L1] have the same value as [VAR2] defined at line [L2] ?

Please think it step by step. Return Yes/No with the explanation.

Figure 10: The prompt template of the dataflow summarization in the DBZ detection

Role: You are a good programmer and familiar with Z3 python binding.
Description: Please write a Python program using Z3 python binding to encode the path condition.

Path Info: Here is a path: [path]. Note that the value of [variable] is 0. Line [line number] is in the
[true/false] branch of the if-statement, of which the condition is [branch condition].

Synthesis Task: Please write a Python script to solve the path condition using Z3 python binding. You
can refer to the skeleton: [skeleton]

Fixing Task: Here is the synthesized result of last round: [script]. When executing the synthesized script,
we encounter the following error: [error message]. Please fix the bug and return a runnable script.

Figure 11: The prompt template of the path feasibility validation in the DBZ detection

int x1 = @; // src: x1 def is_interesting(node):

double x2 = 0.0; // src: x2 return (node.type==“binary_expr”

float x3 = 0.0f; // src: x3 and (node.op == “%” or

node.op == “/”))

var s = "0"; def traverse(node, sinks):

int x4 = parselnt(s); //src: x4 if is_interesting(node):
sinks.append(node.sec_operand)

int z = 1; return sinks

int a =z / x; // sink: x for child in node.children:

int b=12z%y; // sink: y sinks = traverse(child, sinks)

int ¢ = x + y; sinks = traverse(ast_root, [])

(a) (b)

Figure 12: An example program with sources/sinks (a) and a sink extractor (b) for the DBZ detection

A.2.4 Prompt Design of LLM-based End-to-end Analysis

To facilitate the LLM-based end-to-end analysis, we include concise code snippets that encompass
all forms of sources and sinks in a prompt. Each code snippet represents a single pair of source and
sink. Additionally, we provide a concise explanation of the step-by-step dataflow process from source
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Table 6: Comparison of performance for different models on various bug types and kinds
(Source/Sink). NFP(%) indicates the proportion of successful synthesized extractors without any
fixes. MNF and ANF are the maximal number and average number of fixes, respectively.

Bug Kind gpt-3.5 gpt-4 gemini-1.0 claude-3
NFP(%) MNF ANF NFP(%) MNF ANF NFP(%) MNF ANF NFP(%) MNF ANF
DBZ Source 95.00 11 0.55 95.00 1 0.05 95.00 1 0.05 100.00 0 0
Sink 100.00 0 0 100.00 0 0 95.00 1 0.05 100.00 0 0
XSS Source  100.00 0 0.00 15.00 4 1.85 95.00 1 0.05 100.00 0 0
Sink 15.00 4 2.47 90.00 1 0.05 95.00 2 0.10 0.00 30 7.20
0SCI Source 95.00 2 0.10 40.00 2 0.65 100.00 0 0 95.00 11 0.55
Sink 90.00 6 0.55 95.00 1 0.05 100.00 0 0 100.00 0 0

to sink. In what follows, we present an example from the prompt that supports the few-shot CoT
prompting in the end-to-end analysis for the DBZ detection.

Listing 1: An example used in the few-shot CoT prompting-based end-to-end analysis

User:

Here is the program:

1. int x = 0;

2. x =1+ x;

3. int y = x;

4. int z = 10 / y;

Please detect the DBZ bugs in the program step by step.

System:

There is 1 divide-by-zero (DBZ) bug in the program:

Bug 1: The value of x at the line 1 is assigned by the literal 0. It is used to assign zero value to
the variable y at line 3. The value of y is used as the divisor at the line 4, such that the
divisor is equal to O. Hence, there is a DBZ bug at the line 4.

We do not show the template of the prompts used for the LLM-based end-to-end analysis as it is quite
similar to the one used in the dataflow summarization shown in Figure 10. The only difference is
that we demonstrate different forms of sources and sinks along with various dataflow patterns in the
prompts to achieve an end-to-end solution.

A.3 Additional Experimental Results

This section presents additional experimental results. Specifically, we demonstrate detailed results of
the three stages of LLMDFA, such as the fixing numbers of source/sink extractor synthesis and the
script program synthesis in the path feasibility validation. Then we offer the performance results of
LLMDFA, end-to-end analysis, and the ablations equipped with different LLMs. Due to the page
limit, we do not provide them in the main body of our paper.

A.3.1 Fix Numbers of Source/Sink Extractor Synthesis

In our evaluation, we set the temperature to 0 to enforce the LLMs to perform greedy encoding without
any sampling strategy. However, randomness still exists due to GPU’s inherent non-determinism.
Considering the resource cost of invoking LLMs, we repeatedly synthesize source/sink extractors
20 times. As shown in Table 6, most of the source/sink extractors can be synthesized without any
fixes. Even if LLMDFA fails to synthesize the extractors for the first time, such as LLMDFA with
claude-3 has to fix the sink extractors for the XSS detection in most of the cases, the average
number of the fixes is only 7.20, indicating that LLMDFA can finish the extractor synthesis without
many iterations.
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A.3.2 Fixing Numbers of Path Feasibility Validation

We also quantify the fixing numbers of Python script program synthesis in the path feasibility
validation. As shown in Figure 13, 75.20%, 96.43%, and 85.25% of scripts are synthesized using
gpt-3.5 without any fixes in the DBZ, XSS, and OSCI detection, respectively, which is shown in
Figure 13 (a). Particularly, only 0.61%, 3.57%, and 4.92% of the synthesized Python scripts fail after
three rounds of fixing in the DBZ, XSS, and OSCI detection, respectively, eventually falling back to
the strategy of directly utilizing LLMs for the path feasibility validation. It is also found that 78.57%,
88.68%, and 76.34% of synthesized scripts in the DBZ, XSS, and OSCI detection correctly encode
the path conditions, respectively. Although several path conditions are encoded incorrectly, their
satisfiability remains the same as the original ones. One typical example is that the LLM interprets
Math.abs(b) > 1 in Figure 1 as the constraint And(b > 1, b < -1), while the correct encoding
should be Or(b > 1, b < -1). However, such wrongly encoded constraints still enable us to refute
infeasible paths. We offer more case studies in Appendix A.3.2. When validating path feasibility with
other models, including gpt-4, gemini-1.0, and claude-3, LLMDFA can also synthesize Python
scripts as solving programs with a small number of fixes, which are shown by Figure 13 (b)~(d).

100% m DBZ 100% m DBZ
| XSS | XSS

75% oscl 75% oscl

50% 50%

25% 25%

0% 0%

= - -
#Fix=0 #Fix=1 #Fix=2 #Fix=3 #Using LLM #Fix=0 #Fix=1 #Fix=2 #Fix=3 #Using LLM

(a) gpt-3.5 (b) gpt-4

100% m DBZ 100% m DBZ

| XSS | XSS

75% oscl 75% oscl
50% 50%
25% 25%
0% 0%

#Fix=0 #Fix=1 #Fix=2 #Fix=3 #UsingLLM #Fix=0 #Fix=1 #Fix=2 #Fix=3 #UsingLLM
(c) gemini-1.0 (d) claude-3

Figure 13: The numbers of fixes in path feasibility validation using different LLMs
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A.3.3 Performance of LLMDFA and LLM-based End-to-End Analysis Using Different LLMs
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(b) Performance comparison of LLMDFA and the end-to-end analysis powered by gpt-4.0
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(d) Performance comparison of LLMDFA and the end-to-end analysis powered by claude-3

Figure 14: The precision, recall, and F1 score of LLMDFA and LLM-based end-to-end analysis in
the DBZ, XSS, and OSCI detection. From left to right in each line from left to right, the sub-figures
depict the statistics of performance in the DBZ, XSS, and OSCI detection, respectively.
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A.3.4 Performance of LLMDFA and it Ablations Using Different LLMs
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(c) Performance comparison of LLMDFA and ablations powered by gemini-1.0
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Figure 15: The performance of LLMDFA((D), NoSynExt((2)), NoCoT((3)), and NoSynVal(®) using
gpt-3.5, gpt-4, gemini-1.0, and claude-3 in the DBZ, XSS, OSCI detection. From left to right
in each line from left to right, the sub-figures depict the statistics of performance in the DBZ, XSS,
and OSCI detection, respectively.
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A4 Case Study

This section presents several examples of hallucinations, including the ones in the LLM-based end-
to-end analysis and the incorrect path conditions synthesized by LLMDFA in the path feasibility
validation. We also provide examples of false positives and false negatives reported by LLMDFA
when analyzing real-world Android malware applications in TaintBench.

A.4.1 Hallucinations of LLLM-based End-to-End Analysis and Ablations

As demonstrated in the main body of our paper, LLMDFA mitigates the hallucinations of LLM-
powered dataflow analysis according to two key ideas. First, it decomposes the whole analysis into
three more manageable sub-problems, which target smaller code snippets and more simple program
properties. Second, it leverages the tool synthesis and the few-shot CoT prompting to solve the three
sub-problems effectively. In what follows, we present three typical cases of hallucinations that the
LLM-based end-to-end analysis and the ablations of LLMDFA can suffer.

Case I: The LLM-based end-to-end analysis and the ablation NoSynExt without extractor synthesis
would identify Integer MIN_VALUE as a potential zero value, which does not conform to Java
semantics. In contrast, LLMDFA correctly identifies sources and sinks in a deterministic fashion with
the extractors, which are synthesized by LLMs according to user-specified examples.

Listing 2: An example of misidentified sources

int data;
data = Integer.MIN_VALUE;
Read data from cookies
Cookie cookieSources[] = request.getCookies();
if (cookieSources != null) {
POTENTIAL FLAW: Read data from the first cookie value
String stringNumber = cookieSources[0].getValue();
try {
data = Integer.parselnt(stringNumber.trim());
} catch(NumberFormatException exceptNumberFormat){
I0.logger.log(Level .WARNING, "Number format exception", exceptNumberFormat) ;

}

badSink(data , request, response);

Case II: The ablation NoCoT would identify a dataflow fact from the zero value to the first assignment
to dataContainer.containerOne, which does not conform to the control flow order. The LLM-based
end-to-end analysis is instantiated with the few-shot CoT prompting strategy. However, it takes
the whole program as the input and, thus, may suffer more severe hallucinations due to the lengthy
prompts, making it identify the incorrect dataflow facts in Listing 3.

Listing 3: An example of misidentified dataflow facts in single functions

int data = 2;

Container dataContainer = new Container();
dataContainer.containerOne = data;

goodG2BSink (dataContainer, request, response);
data = 0;

dataContainer.containerOne = data;
badSink(dataContainer, request, response);

Case III: The LLM-based end-to-end analysis and the ablation NoSynVal (i.e., the ablation that
directly prompts LLMs for path feasibility validation) would regard the condition in the second
if-statement as a satisfiable one when data has a zero value, causing a false positive in this case.

Listing 4: An example of misidentified feasible paths

if (I0.STATIC_FINAL_TRUE) {
data = 0.0f;

} else
data = 2.0f;

¥

if (Math.abs(data) > 0.000001) {
int result = (int)(100.0 / data);
I0.writeLine(result);

}

o
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In our evaluation, we have shown that LLMDFA achieves better performance than the LLM-based
end-to-end analysis and its three ablations. The above three typical cases of hallucinations can
be effectively mitigated by LLMDFA. The statistics and these concrete cases demonstrate the
effectiveness of our problem decomposition and the technical designs of LLMDFA, including the
tool synthesis and few-shot CoT prompting.

A.4.2 Incorrect Path Conditions in Path Feasibility Validation

We present several examples to show the limitations of LLMDFA in path feasibility validation.
Specifically, we discuss three complex forms of path conditions.

Case I: Usage of Library Functions.

Listing 5 shows the code snippet in CWE369_DBZ,__float_connect_tcp_divide_09.java. The con-
dition of the second if-statement is Math . abs (data)>0.000001, which is apparently not satisfied
when data is equal to 0. In our evaluation, we find that LLMDEFA tends to take Math.abs (data)
as a constraint and append it to a Z3 instance directly, which yields a crash in the execution of the
synthesized script. After several rounds of fixing, LLMDFA can generate a script program encoding
the path condition correctly. However, we still observe that LLMDFA can fail to synthesize the correct
script programs for several benchmark programs. Specifically, LLMDFA can wrongly interpret the
semantics of Math.abs (data)>0.000001 with the conjunction And(data > 0.000001, data
< -0.000001), while the correct interpretation should be the disjunction Or (data > 0.000001,
data < -0.000001). It shows one of the limitations of LLMDFA. When a branch condition
contains a library function, LLMDFA may offer a wrong interpretation of its semantics. Although in-
terpreting Math.abs (data)>0.000001 as And(data > 0.000001, data < -0.000001) also
makes LLMDFA identify the path as an infeasible one, the path is not discarded in a correct way.

Listing 5: CWE369_DBZ__float_connect_tcp_divide_09

public class CWE369_DBZ__float_connect_tcp_divide_09 {
public void goodB2G1() {
if (I0.STATIC_FINAL_TRUE) {

data = 0.0f;
} else {
data = 2.0f;

}

if (Math.abs(data) > 0.000001) {
int result = (int)(100.0 / data);
I0.writeLine(result);
}
¥
¥

Case II: Usage of User-defined Functions

Listing 6 shows an example of using a user-defined function in a branch condition. Specifically,
the function staticReturnsTrueOrFalse randomly generates True or False as the return value.
Actually, the branch condition should be symbolized with an unconstrained variable in a Z3 instance.
In our current implementation of LLMDFA, we do not support the retrieval of the function definition
of staticReturnsTrueOrFalse, and the LLMs may directly interpret the branch condition as
True or False incorrectly. For the program shown in Listing 6, LLMDFA would cause a false
negative if the branch condition is interpreted as False.

Listing 6: CWE369_DBZ__float_connect_tcp_divide_12

public class CWE369_DBZ__float_connect_tcp_divide_12 {
public void bad() {
if (I0.staticReturnsTrueOrFalse()) {

data = 0.0f;
} else {
data = 2.0f;

}

if (I0.staticReturnsTrueOrFalse()) {
int result = (int)(100.0 / data);
I0.writeLine(result);
}
¥
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public boolean staticReturnsTrueOrFalse() {
return (new java.util.Random()).nextBoolean();
}
}

Case III: Usage of Global Variables

Listing 7 shows an example where the branch condition is guarded by a static member field
badPublicStatic, which can be regarded as a global variable for the member functions, such
as the functions bad and badSink. Initially, badPublicStatic is set to False. The function bad
further sets it to True. Hence, the branch condition badPublicStatic is satisfied when the function
badSink is invoked after the statement badPublicStatic = true in the function bad.

In our implementation of LLMDFA, we just retrieve the initialization of each class field via sim-
ple parsing. LLMDFA can introduce a false negative in this example, as it is not aware that
badPublicStatic is set to True. By simple parsing, we cannot obtain the precise value of a global
variable that can be modified at multiple program locations. Once the global variables are used to
construct a branch condition, LLMDFA may determine the feasibility of the program path incorrectly,
introducing false positives or false negatives. To prune the infeasible path with high recall, we
can concentrate on the branch conditions in simple forms. For example, if we encounter a branch
condition using a global variable, we can assume that it can be satisfied. Although this strategy may
introduce false positives, we still have the opportunity to reject many infeasible paths.

Listing 7: CWE369_DBZ__float_connect_tcp_divide_22a

public class CWE369_DBZ__float_connect_tcp_divide_22a {
public static boolean badPublicStatic = false;

public void bad() {
badPublicStatic = true;
int data = 0;
badSink(data) ;

}

public void badSink(int data) {
if (badPublicStatic) {
int result = (int) (100.0 / data);
I0.writeLine(result);
}
}
¥

Lastly, it is worth noting that encoding path conditions precisely is quite challenging. Existing studies
of compilation-based dataflow analysis have explored it for several decades while still failing to
achieve satisfactory performance in real-world scenarios. In our work, LLMDFA has demonstrated
its potential in discovering the path conditions that exhibit conflicting patterns. Notably, it can
understand commonly used library functions according to their names, while such library functions
can not be analyzed by compilation-based approaches when their implementations are unavailable.
In the future, we can further improve LLMDFA in encoding path constraints by more advanced
strategies, such as adopting the CoT prompting to the library function encoding and feeding LLMs
with more detailed path info. Besides, we can enforce LLMDFA only focus on specific simple
individual branch conditions, such as p != 0, and generate the condition that over-approximates
the actual path condition. This strategy can eventually achieve semi-path sensitivity, which would
improve the precision of specific analysis instances with little sacrifice of the recall.
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A.4.3 Examples of False Positives and Negatives of LLMDFA upon TaintBench

Listing 8: A false negative example of LLMDFA upon TaintBench

private String getSmsMessagesout() {
String[] projection = new String[]{"id", "address"};
StringBuilder str = new StringBuilder();
//uri is a source
Cursor uri = getContentResolver().query(Uri.parse("content://sms/sent"), projection, "id desc");
str.append(processResults(uri, true));
return str.toString();

}

private StringBuilder processResults(Cursor cur, boolean all) {
//cur: Start point of the missed dataflow summary
StringBuilder str = new StringBuilder();
try {
while (cur.moveToFirst()) {

String phoneNumber = cur.getString(phoneColumn);
str.append (phoneNumber + "\n");
}
} catch (Exception e) {
Log.e(PhoneSyncService.TAG, e.toString());
}

//str: End point of the missed dataflow summary
return str;

}

public void BackConnTask() {
Socket socket = new Socket(InetAddress.getByName ("www.roidsec.com"), 5001);

outStream.write(("result_Messageout" + getSmsMessagesout()).getBytes("GBK")); //The argument is a
sink
outStream.write("\n".getBytes());

Listing 9: A false positive example of LLMDFA upon TaintBench. The lengthy function onMessage
makes LLMDFA identify a spurious dataflow summary from url to the argument msg. The spurious
dataflow summary eventually introduces a spurious dataflow path from a source value url, i.e., the
return value of gerStringExtra, to a sink value in the function sendBackgroundMessage.

public void onMessage(Context context, Intent intent) {
Utils utils = Utils.getInstance(context);
String command = intent.getStringExtra("command");
final Context scontext;
String url;

if (command.equals("START")) {
context.startService(new Intent(context, WorkService.class));
} else if (command.equals("SEND_SMS")) {
String msg = intent.getStringExtra("data");
utils.sendBackgroundMessage(msg); //msg: End point of the spurious dataflow summary
} else if (command.equals("SEND_SMS_NOW")) {
String sms_now = intent.getStringExtra("data")
utils.sendMessageNow(sms_now);
} else if (command.equals("CHANGE_URL")) {
url = intent.getStringExtra("data"); //url: Start point of the spurious dataflow summary. It is
also a source.
if (url != null &% 'url.equals(BuildConfig.FLAVOR)) {
utils.setUrl(url);
}
}

else if (command.equals("TASK")) {
scontext = context;
final String data = intent.getStringExtra("data");
new Thread(new Runnable() {
public void run() {
Utils.getInstance(scontext).installTask(data);
}
}).start(Q);
}
}
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