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Abstract
In this work, from a theoretical lens, we aim
to understand why large language model (LLM)
empowered agents are able to solve decision-
making problems in the physical world. To this
end, consider a hierarchical reinforcement learn-
ing (RL) model where the LLM Planner and the
Actor perform high-level task planning and low-
level execution, respectively. Under this model,
the LLM Planner navigates a partially observ-
able Markov decision process (POMDP) by it-
eratively generating language-based subgoals via
prompting. Under proper assumptions on the
pretraining data, we prove that the pretrained
LLM Planner effectively performs Bayesian ag-
gregated imitation learning (BAIL) through in-
context learning. Additionally, we highlight the
necessity for exploration beyond the subgoals de-
rived from BAIL by proving that naively exe-
cuting the subgoals returned by LLM leads to
a linear regret. As a remedy, we introduce an
!-greedy exploration strategy to BAIL, which is
proven to incur sublinear regret when the pre-
training error is small. Finally, we extend our
theoretical framework to include scenarios where
the LLM Planner serves as a world model for in-
ferring the transition model of the environment
and to multi-agent settings, enabling coordina-
tion among multiple Actors.

1. Introduction
The advent of large language models (LLMs) such as GPT-
4 (OpenAI, 2023) and Llama 2 (Touvron et al., 2023) has
marked a significant leap in artificial intelligence, thanks
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to their striking capabilities in understanding language and
performing complex reasoning tasks. These capabilities
of LLMs have led to the emergence of LLM-empowered
agents (LLM Agents), where LLMs are used in conjunc-
tion with tools or actuators to solve decision-making prob-
lems in the physical world. LLM Agents have showcased
promising empirical successes in a wide range of applica-
tions, including autonomous driving (Wang et al., 2023b;
Fu et al., 2024), robotics (Brohan et al., 2023; Li et al.,
2023a), and personal assistance (Liu et al., 2023; Notting-
ham et al., 2023). This progress signifies a crucial ad-
vancement in the creation of intelligent decision-making
systems, distinguished by a high degree of autonomy and
seamless human-AI collaboration.

LLMs only take natural languages as input. To bridge the
language and physical domains, LLM-agents typically in-
corporate three critical components: an LLM Planner, a
physical Actor, and a multimodal Reporter, functioning re-
spectively as the brain, hands, and eyes of the LLM-agent,
respectively. Specifically, upon receiving a task described
by a human user, the LLM Planner breaks down the over-
all task into a series of subgoals. Subsequently, the Ac-
tor implements each subgoal in the physical world through
a sequence of actions. Meanwhile, the Reporter monitors
changes in the physical world and conveys this informa-
tion back to the LLM Planner in natural language form.
This dynamic interaction among Planner, Actor, and Re-
porter empowers LLM Agents to understand the environ-
ment, formulate informed decisions, and execute actions
effectively, thus seamlessly integrating high-level linguis-
tic subgoals with low-level physical task execution.

The revolutionary approach of LLM Agents represents
a paradigm shift away from traditional learning-based
decision-making systems. Unlike these conventional sys-
tems, LLM Agents are not tailored to any specific task. In-
stead, they rely on the synergy of their three distinct com-
ponentseach trained separately and often for different ob-
jectives. In particular, the LLM Planner is trained to predict
the next token in a sequence on vast document data. More-
over, when deployed to solve a task, the way to interact
with the LLM Planner is via prompting with the LLM fixed.
The Actor, as language-conditioned policies, can be trained
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Planner

ReporterActor

You are going to … [High-level Task]. 

- Previously, you have done … [Historical 
Trajectory from the Memory Buffer]. 

- Now, you see … [Environmental 
Observation from Reporter]. 

Which sub-goal should we tackle next?

Prompt

Reasoning from the given 
contextual information, you 
could try doing… [Sub-
goal] at next step.

Copy. Agent will … [Sub-
goal] (or … [Exploration]).

Low-level Skill Sets

Low-level Planning

High-level Planning

Given [Sub-goal], actor takes [Action 1], 
[Action 2], … ,[Action n] sequentially.

def execute_action_1 (): … 
def execute_action_2 (): … 
… 
def execute_action_n (): …

Inputs (Perception)

…

Human User

Outputs

After taking low-
level actions, we 
observe … [Env. 
Observation].

Figure 1. Overview of the Planner-Actor-Reporter (PAR) system
as LLM Agents. Acting as a central controller, the Planner con-
ducts the high-level planning by storing the history and reasoning
through the iterative use of the ICL ability of LLMs, coupled with
explorations. The Actor handles low-level planning and executes
subgoals using pre-programmed skill sets, and the Reporter per-
ceives and processes multimodal information from environment
to reinforce the ongoing planning.

by RL or imitation learning. Moreover, the Reporter, as a
multimodal model, is trained to translate the physical states
(e.g., images) into natural language. This unique configura-
tion prompts critical research questions regarding the the-
oretical underpinnings of LLM Agents, particularly con-
cerning their decision-making effectiveness.

In this work, we make an initial step toward developing
a theoretical framework for understanding the dynamics
and effectiveness of LLM Agents. Specifically, we aim to
answer the following questions: (a) What is a theoretical
model for understanding the performance of LLM Agents?
(b) How do pretrained LLMs solve decision-making prob-
lems in the physical world via prompting? (c) How does an
LLM Agent address the exploration-exploitation tradeoff?
(d) How do the statistical errors of the pretrained LLM and
Reporter affect the overall performance of the LLM Agent?

To address Question (a), we propose analyzing LLM
Agents within a hierarchical reinforcement learning frame-
work (Barto & Mahadevan, 2003; Pateria et al., 2021), po-
sitioning the LLM Planner and the Actor as policies op-
erating within high-level POMDPs and low-level MDPs,
respectively (§3.1). Both levels share the same state space-
namely, the physical statethough the LLM Planner does not
directly observe this state but instead receives a language-
based description from the Reporter, effectively navigating
a POMDP. The action space of the high-level POMDP is

the set of language subgoals. Meanwhile, the state transi-
tion kernel is determined by the pretrained Actor, and thus
is associated with a variable z that summarizes its depen-
dency on low-level Actor. Such a variable is unknown to
the LLM Planner. After pretraining, without prior knowl-
edge of the Actor’s quality or the physical environment,
the LLM Planner attempts to solve the high-level POMDP
by iteratively generating a sequence of subgoals based on
feedback from Reporter via prompting. Under this frame-
work, the overall performance of the LLM Agent can be
captured by the regret in terms of finding the optimal policy
of the hierarchical RL problem in the online setting (§3.2).

Furthermore, to answer Question (b), we prove that when
pretraining data includes a mixture of expert trajectories,
during the prompting stage, the pretrained LLM Planner es-
sentially performs Bayesian aggregated imitation learning
(BAIL) through in-context learning (Theorem 4.2). This
process involves constructing a posterior distribution over
the hidden parameter z of the transition kernel, followed
by generating subgoals that emulate a randomly selected
expert policy, weighted according to this posterior distribu-
tion. Such a Bayesian learning mechanism is encoded by
the LLM architecture and is achieved via prompting.

However, since the LLM has no prior knowledge of the
physical environment, it needs to guide the Actor to explore
the physical environment. We prove that merely adhering
to BAIL-derived subgoals can lead to the inadequate explo-
ration, resulting in a linear regret (Proposition 4.3). To mit-
igate this, i.e., Question (c), we introduce an !-greedy ex-
ploration strategy, which occasionally deviates from BAIL
subgoals in favor of exploration, significantly enhancing
learning efficacy by ensuring a sublinear regret (Theorem
4.6). Specifically, to address Question (d) we establish that
the regret is bounded by a sum of two terms (Theorem 5.7):
a
√
T -regret related to the number of episodes the LLM

Agent is deployed to the hierarchical RL problem, and an
additional term representing the statistical error from pre-
training the LLM Planner and Reporter via maximum like-
lihood estimation (MLE) and contrastive learning, respec-
tively (Theorem 5.3, 5.5).

Finally, we extend our analysis to scenarios where the
Planner utilizes the LLM as world model for inferring the
upper-level POMDP’s transition model via Bayesian model
aggregation (Proposition B.1, Corollary B.3). Our theoret-
ical framework also accommodates a multi-agent context,
where the LLM Planner coordinates with a collaborative
team of low-level actors (Corollary B.4).

2. Preliminaries and Related Works
Large Language Models and In-Context Learning. The
Large Language Models (LLMs) such as ChatGPT (Brown
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et al., 2020), GPT-4 (OpenAI, 2023), Llama (Touvron et al.,
2023), Gemini (Team et al., 2023), are pretrained on vast
text corpora to predict in an autoregressive manner. Start-
ing from an initial token ℓ1 ∈ L ⊆ Rd, where d denotes the
token vector dimension and L denotes the language space,
the LLM, with parameters θ ∈ Θ, predicts the next to-
ken with ℓt+1 ∼ LLMθ(· |St), where St = (ℓ1, . . . , ℓt) and
t ∈ N. Each token ℓt ∈ L specifies a word or the word’s
position, and the token sequence St resides in the space
of token sequences L∗. Such an autoregressive generating
process terminates when stop sequence token is generated.

Unlike fine-tuned models customized for specific domains
or tasks, LLMs showcase comparable capabilities by learn-
ing from the informative prompts (Li et al., 2022; Liu et al.,
2022b), which is known as in-context learning (ICL, Brown
et al., 2020). Assume that prompt pt

t
= (ℓ1, . . . , ℓt) ∈ L∗,

is generated based on a latent variable z ∈ Z autoregres-
sively. The token follows a generating distribution such
that ℓt ∼ P(· |pt

t−1
, z) and pt

t
= (pt

t−1
, ℓt), where Z

represents the space of hidden information or latent con-
cepts. This latent structure is commonly employed in lan-
guage models, including topic models like LDA (Blei et al.,
2003), BERT (Devlin et al., 2018), generative models like
VAE (Kusner et al., 2017), T5 (Raffel et al., 2020). Such an
assumption is also widely adopted in the theoretical analy-
sis of ICL (Xie et al., 2021; Zhang et al., 2023). Following
this, we build upon the framework attributing the ICL capa-
bility to Bayesian inference Xie et al. (2021); Jiang (2023);
Zhang et al. (2023), which posits that the pretrained LLM
predicts the next token with probability by aggregating the
generating distribution concerning latent variable z ∈ Z
over the posterior distribution. Moreover, a series of practi-
cal experiments, including Wang et al. (2023a); Ahuja et al.
(2023), provide empirical support for Bayesian statement.

LLM Agents. LLMs, as highlighted in (OpenAI, 2023),
are powerful tools for task planning (Wei et al., 2022a;
Hu & Shu, 2023). The success of LLM Agents marks a
shift from the task-specific policies to a pretrain-finetune-
prompt paradigm (Mandi et al., 2023; Brohan et al., 2023;
Lin et al., 2023a; Hao et al., 2023; Liu et al., 2023).
By breaking down the complex tasks into subgoals, LLM
Agent facilitates effective zero-shot resource allocation
across environments. Envision a scenario where a robotic
arm is tasked with “move a teapot from the stove to a shelf ”,
a task for which the robotic arm may not be pretrained.
However, leveraging LLMs allows the decomposition of
the task into a sequence of executable subgoals: “grasp the
teapot”, “lift the teapot”, “move the teapot to the shelf ”,
and “release the teapot”. We formalize this approach into
a hierarchical LLM-empowered planning framework and
provide a detailed theoretical analysis of its performance.

More related works are deferred to §A.1 due to space limit.

3. Theoretical Framework for LLM Agent
To formalize the architecture of LLM Agents, we propose
a general theoretical framework—Planner-Actor-Reporter
(PAR) system. Furthermore, the problem is modeled as a
hierarchical RL problem (Pateria et al., 2021). Specifically,
the Planner, empowered by LLMs, conducts high-level task
planning within the language space; the Actor, pretrained
before deployment, undertakes low-level motion planning
within the physical world; and the Reporter, equipped with
a sensor to sense the physical environment, processes the
information and feeds it back to the Planner, bridging the
gap between language space and the physical world (see
§3.1). Additionally, we present the performance metric and
pretraining methods of LLMs for the Planner and transla-
tors for the Reporter in §3.2.

3.1. Planner-Actor-Reporter System

In this section, we delve into details of the PAR system un-
der Hierarchical Markov Decision Process (HMDP). At
the high level, the Planner empowered by LLM handles
task planning by decomposing tasks into subgoals to solve
a language-conditioned Partially Observable Markov De-
cision Process (POMDP) with a finite horizon H . At the
low level, the Actor translates these subgoals into the ac-
tionable steps in the physical world to handle a language-
conditioned Markov Decision Process (MDP) with a finite
horizon Ha

1. Please refer to Figure 2 for an overview of
the hierarchical interactive process.

Low-level MDP. Let G ⊆ L be the space of language
subgoals, S and A respectively denote the space of phys-
ical states and actions. At high-level step h, the low-level
MDP is specified by a transition kernel Th = {T

h,h̄
}
h̄∈[Ha]

and the rewards that depends on a subgoal g ∈ G. Follow-
ing this, the Actor is modelled as a language-conditioned
policy µ = {µg}g∈G , where µg = {µ

h̄
(·|·, g)}

h̄∈[Ha]
and

µ
h̄

: S × G &→ ∆(A). Assume that the Actor stops at
step Ha+1, regardless of the subgoal achievement. Subse-
quently, the Planner receives the observation of the current
state s̄h,Ha+1 from the Reporter, and sends a new subgoal
to the Actor based on the historical feedback.

High-level POMDP. Assume that each low-level episode
corresponds to a single high-level action of Planner. Thus,
the high-level POMDP reuses the physical state space S as
the state space, but takes the subgoal space G as the action
space instead. Following this, the high-level transition ker-
nel is jointly determined by the low-level policy µ and the
physical transition kernel T such that

Pz,h(s
′ | s, g) = P

!
s̄h,Ha+1 = s

′ |
s̄h,1 = s, a

h,1:h̄
∼ µg, s̄h,2:h̄+1

∼ Th

"
,

1Throughout the paper, we use the notation ·̄ to distinguish
low-level elements from their high-level counterparts.
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where we write z = (T, µ). Since the LLM-empowered
Planner cannot directly process the physical states, it relies
on some (partial) observations generated by the Reporter.
Specifically, let oh ∈ O describe the physical state sh ∈ S
in language through a translation distribution O : O &→
∆(S), where O ⊆ L denotes the space of observations. At
each step h ∈ [H], a reward rh(oh,ω) ∈ [0, 1] is obtained,
which depends on both the observation and the task ω ∈ Ω
assigned by human users. Here, Ω ⊆ L denotes the space
of potential tasks in language.

Interactive Protocol. The Planner aims to determine a
sequence of subgoal {gh}h∈[H] such that when the Actor is
equipped with policy π = {πh}h∈[H], these subgoals max-
imize the expected sum of rewards. During task planning,
the Planner must infer both Actor’s intention, i.e., policy
µ, and the environment, i.e., physical transition kernel T,
from the historical information. Thus, z constitutes all the
latent information to the high-level Planner, and denote Z
as the space of all potential latent variables with |Z| < ∞.
To summarize, the interactive protocol is as below: at the
beginning of each episode t, Planner receives a task ωt. At
step h, each module follows:

Module 1: Planner. After collecting o
t

h
from Reporter,

the Planner leverages LLMs for recommendations on task
decomposition, and the policy is denoted by πt

h,LLM : T ∗ ×
(O × G)h−1 × O × Ω &→ ∆(G), where T ∗ represents
the space of the trajectory sequence with arbitrary length.
LLM’s recommendations are obtained by invoking the ICL
ability with the history-dependent prompt:

ptt
h
= Ht ∪

#
ωt

, τ t
h

$
, Ht =

t−1%

i=1

#
ωi
, τ i

H

$
, (1)

where Ht ∈ T ∗ denotes the historical context and τ t
h
=

{ot
1
, g

t

1
, . . . , o

t

h
} is the trajectory until h-th step. In the PAR

system, Planner retains autonomy and is not obligated to
follow LLM’s recommendations. Let πt

h
be the Planner’s

policy, which partially leverages the LLM’s recommenda-
tion πt

h,LLM(· | τ th,ωt) = LLMθ(· |ptth). The Planner selects
g
t

h
∼ πt

h
(· | τ t

h
,ωt), and sends it to the Actor.

Module 2: Actor. Upon receiving g
t

h
from Planner, the

Actor plans to implement gt
h

in physical world with given
skill sets, denoted by a subgoal-conditioned policy µ =
{µg}g∈G . Then, a sequence of actions {a

h,h̄
}
h̄∈[Ha]

is exe-
cuted, where the dynamics follows a

h,h̄
∼ µ

h̄
(· | s̄

h,h̄
, g

t

h
),

s̄
h,h̄+1

∼ T
h,h̄

(· | s̄
h,h̄

, a
h,h̄

) starting from s̄h,1 = s
t

h
. The

low-level episode concludes at st
h+1

= s̄h,Ha+1.

Module 3: Reporter. After the low-level episode con-
cludes, the Reporter collects and reports the current state st

h

via observation o
t

h+1
generated from Oγ(· | sth+1

), where
Oγ : S &→ ∆(O) denotes the distribution of the pretrained

translator. Subsequently, the observation o
t

h+1
of the cur-

rent state is sent back to the Planner, reinforcing to the on-
going task planning.

The strength of the PAR system lies in its resemblance to
RL (Sutton & Barto, 2018), allowing the Planner to itera-
tively adjust its planning strategy based on feedback from
the Reporter. Moreover, the Reporter empowers the system
to process the real-time information and the integration of
multiple modalities of raw data like RGB, images, LiDAR,
audio, and text (Li et al., 2023b; Xu et al., 2023). The Ac-
tor’s skill sets can be pretrained using goal-conditioned RL
(Chane-Sane et al., 2021; Liu et al., 2022a), language-to-
environment grounding (Brohan et al., 2023; Huang et al.,
2022) or pre-programmed manually (Singh et al., 2023).

3.2. Performance Metric and Pretraining

Performance Metric. In this paper, we focus on the per-
formance of high-level Planner, and regard the low-level
Actor as an autonomous agent that can use the pretrained
skill sets following a fixed policy. For any latent variable
z ∈ Z and policy π = {πh}h∈[H] with πh : (O× G)h−1 ×
O × Ω &→ ∆(G), the value function is defined as

Jz(π,ω) := Eπ

&
H'

h=1

rh (oh,ω)

(
, (2)

where the expectation is taken concerning the initial state
s1 ∼ ρ, policy π, ground-truth translation distribution O,
and transition kernel Pz . For all (z,ω) ∈ Z×Ω, there exists
an optimal policy π∗

z
(ω) = argmaxπ∈ΠJz(π,ω), where

Π = {π = {πh}h∈[H],πh : (O×G)h−1×O×Ω &→ ∆(G)}.

To characterize the performance under practical setting, we
denote )Jz(π,ω) as the value function concerning the pre-
trained translator O!γ , and for all ω ∈ Ω, let )π∗

z
(ω) =

argmaxπ∈Π
)Jz(π,ω) be the optimal policy in practice.

Then, the regret under practical setting is defined as

Reg
z
(T ) :=

T'

t=1

EHt

*
)Jz()π∗

z
,ωt)− )Jz()πt

,ωt)
+
, (3)

where {)πt}t∈[T ] represents the Planner’s policy empow-
ered by a pretrained LLM!θ and the expectation is taken with
respect to the context Ht defined in (1) generated by taking
{)πi}i<t sequentially. Here, we focus on the performance
when the Planner collaborates with a pretrained PAR sys-
tem in an environment characterized by z and pretrained
Reporter. Our goal is to design a sample-efficient algorithm
that achieves a sublinear regret, i.e., Reg

z
(T ) = o(T ).

Pretraining Dataset Collection. The pretraining dataset
contains Np independent T -episode samples such that D =
{Dn}n∈[Np]

with Dn = {z} ∪ {ωt
, τ t

H
, g

t,∗
1:H

, s
t

1:H
}t∈[Tp]

.
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sh−1 sh sh+1

ohoh−1

ghgh−1

πh ( ⋅ |τh)𝕆 ( ⋅ |sh)

ℙz,h ( ⋅ |sh, gh)

… …

gh

s̄h−1,Ha s̄h,2 … s̄h,Ha

ah,1 ah,2 ah,Ha

𝕋h,1 ( ⋅ | s̄h,1, ah,1)

μ1 ( ⋅ | s̄h,1, gh)

…… …

z = (𝕋, μ) 𝕋

s̄h,1(sh) s̄h,Ha+1(sh+1)

μHa( ⋅ | s̄h,Ha
, gh)

𝕋h,Ha+1( ⋅ | s̄h,Ha
, ah,Ha)

Planner

Actor Reporter

gh

s̄h,2 … s̄h,Ha
s̄h,1(sh) s̄h,Ha+1(sh+1)

oh+1

ah,1 ah,2 ah,Ha

Figure 2. Illustration of structure of HMDP. The low-level MDP is featured by transition kernel T, which characterizes the dynamics of
the physical environment. The high-level transition is a result of a sequence of low-level actions in the physical environment, guided by
policies µ = {µg}g∈G . Thus, high-level POMDP incorporates latent information z = (T, µ) originated from the low-level.

For each sample, z ∼ PZ specifies a low-level MDP with
language-conditioned policies and ωt∼PΩ specifies the se-
quence of high-level tasks. Here, PZ and PΩ denote the
prior distributions. We assume that the joint distribution of
each data point D in the dataset, denoted by PD, follows

PD(D) = PZ(z) ·
Tp,

t=1

PΩ(ω
t) ·

H,

h=1

π∗
z,h

(gt,∗
h

| τ t
h
,ωt)

·O(ot
h
| st

h
) · πb

h
(gt

h
| τ t

h
,ωt) · Pz,h(s

t

h+1
| st

h
, g

t

h
), (4)

where πb = {πb

h
}h∈[H] is the behavior policy that features

how the contextual information is collected, and then ad-
ditionally the label, i.e., optimal subgoal, is sampled from
the optimal policy π∗

z
by experts. Subsequently, the latent

information z is hidden from the context.

LLM Pretraining. To pretrain LLMs, we adopt a super-
vised learning approach concerning the transformer struc-
ture, aligning with the celebrated LLMs such as BERT and
GPT (Devlin et al., 2018; Brown et al., 2020). Specifically,
the pretraining data is constructed based on D. For clarity,
we extract the language data without expert knowledge and
write the collected data into a sequence of ordered tokens,
i.e., sentences or paragraphs. For the n-th sample Dn, let

(ℓn
1
, . . . , ℓn

T̄p
) :=

!
ωn,t

, o
n,t

1
, g

n,t

1
, . . . , o

n,t

H−1
, g

n,t

H−1
, o

n,t

H

"
t∈[Tp]

,

with a length of T̄p = 2HTp, which contains Tp episodes
with one task, H observations and H − 1 subgoals. Fol-
lowing this, LLM’s pretraining dataset is autoregressively
constructed with the expert guidance, denoted by DLLM =
{(ℓ̃n

t
, S

n

t
)}(n,t)∈[Np]×[T̄p]

, where S
n

t+1
= (Sn

t
, ℓn

t
) and let

-
ℓ̃n
t′ = g

n,t,∗
h

if t′ = 2H(t− 1) + 2h+ 1,

ℓ̃n
t′ = g

n,t

h
otherwise.

In other words, when pretraining to predict the next sub-
goal, we replace the one sampled from the behavior pol-

icy with the one from the optimal policy. In practice, sen-
tences with expert knowledge can be collected from on-
line knowledge platforms such as Wikipedia (Merity et al.,
2016; Reid et al., 2022). Following the pretraining al-
gorithm of BERT and GPT, the objective is to minimize
the cross-entropy loss, which can be summarized as )θ =
argminθ∈Θ LCE(θ;DLLM) with

LCE(θ;DLLM) := )EDLLM
[− log LLMθ(ℓ |S)] , (5)

and LLM!θ is the pretrained LLM by algorithm in (5). More
details are deferred to §5.1.

Translator Pretraining. To pretrain translators, we em-
ploy a self-supervised contrastive learning approach, which
aligns with celebrated vision-language models such as
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021).
Let DRep be the contrastive pretraining dataset for transla-
tors, which is also constructed upon the dataset D. Follow-
ing the framework adopted in (Qiu et al., 2022; Zhang et al.,
2022), for each observation-state pair (o, s) ∈ D, a positive
or a negative data point, labelled as y = 1 and y = 0, is
generated with equal probability, following that

- Positive Data: Collect (o, s) with label y = 1.
- Negative Data: Collect (o, s−) with label y = 0, where
s
− is sampled from negative sampling distribution P− ∈
∆(O) with a full support on the domain of interest.

Denote PC as the joint distribution of data collected by
the process above. The learning algorithm follows that
)γ = argminγ∈Γ LCT(γ;DRep), where the contrastive loss
LCT(γ;DRep) is defined as

LCT(γ;DRep) := )EDRep
[y · log

!
1 + fγ(o, s)

−1
"

+ (1− y) · log (1 + fγ(o, s))]. (6)

Consider function class Fγ with finite elements with Fγ ⊆
(S × O &→ R) serving as a set of candidate functions that
approximates the ground-truth likelihood ratio f

∗(·, ·) =
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O(· | ·)/P−(·) (see Lemma D.2 for justification). Follow-
ing this, the pretrained translator for the Reporter by the al-
gorithm in (6) is thus defined as O!γ(· | ·) = f!γ(·, ·) · P−(·).
More details are deferred to §5.2.
Remark 3.1. In (4), we assume that all pretraining data
is generated from a joint distribution PD, and then split
for pretraining of LLM and Reporter. In practice, the
pretraining dataset for the Reporter can consist of paired
observation-state data collected from any arbitrary distribu-
tion, as long as (i) the LLM and Reporter “speak” the same
language, i.e., shared O, and (ii) the coverage assumption
can hold (see Assumption 5.6).

4. LLM Planning via Bayesian Aggregated
Imitation Learning

In this section, we show that LLMs can conduct high-level
planning through Bayesian aggregated imitation learning
(BAIL) in §4.1, leveraging the ICL ability of LLMs with
the history-dependent prompts. However, depending solely
on LLM’s recommendations proves insufficient for achiev-
ing sample efficiency under the worst case (see Proposition
4.3). Following this, we propose a planning algorithm for
Planner in §4.2, leveraging LLMs for expert recommenda-
tions, in addition to an exploration strategy.

4.1. Bayesian Aggregated Imitation Learning

In this subsection, we show that the LLM conducts high-
level task planning via BAIL, integrating both Bayesian
model averaging (BMA, Hoeting et al., 1999) during the
online planning and imitation learning (IL, Ross & Bag-
nell, 2010) during the offline pretraining. Intuitively, pre-
trained over DLLM, LLM approximates the conditional dis-
tribution LLM(ℓ = · |S) = PD(ℓ = · |S), where PD is
the joint distribution in (4) and the randomness introduced
by the latent variable is aggregated, i.e., PD(ℓ = · |S) =
Ez∼PD(·|S) [PD(ℓ = · |S, z)]. Here, PD(ℓ = · |S, z) can
be viewed as a generating distribution with a known z and
is then aggregated over the posterior distribution PD(z =
· |S), aligning with the form of BMA (Zhang et al., 2023).
We temporarily consider the perfect setting.

Definition 4.1 (Perfect Setting). We say the PAR system is
perfectly pretrained if (i) O!γ(· | s) = O(· | s) for all s ∈ S ,
(ii) LLM!θ(· |St) = LLM(· |St) for all St = (ℓ1, . . . , ℓt) ∈
L∗ with length t ≤ T̄p.

The assumption states that the Reporter and LLMs can re-
port and predict with ground-truth distributions employed
based on the joint distribution PD. During ICL, we invoke
LLMs by history-dependent ptt

h
= Ht∪{ωt

, τ t
h
} ∈ L∗ for

all (h, t) ∈ [H]× [T ]. Conditioned on latent variable z and
ptt

h
, the generating distribution is the optimal policy such

that PD(· |ptth, z) = π∗
z,h

(· | τ t
h
,ωt), which is independent

Algorithm 1 Planning with PAR System - Planner
1: Input: Policy πexp with η ∈ (0, 1), cZ > 0, |Z| ∈ N.
2: Initialize: H0 ← ∅, ! ← (H log(cZ |Z|

√
T )/Tη)1/2.

3: for episode t from 1 to T do
4: Receive the high-level task ωt from the human user.
5: Sample It ∼ Bernuolli(!).
6: for step h from 1 to H do
7: Collect the observation o

t

h
from the Reporter.

8: Set ptt
h
← Ht ∪ {ωt

, τ t
h
}.

9: Sample g
t

h,LLM ∼ LLM(· |ptt
h
) via prompting.

10: If It = 1 then set gt
h
← g

t

h,LLM,
else sample g

t

h
∼ πh,exp(· | τ th).

11: Send the subgoal gt
h

to the Actor.
12: end for
13: Update Ht+1 ← Ht ∪ {ωt

, τ t
H
}.

14: end for

of historical Ht. In this sense, LLMs imitate expert poli-
cies during pretraining. The proposition below shows that
LLMs conduct task planning via BAIL.

Proposition 4.2 (LLM Performs BAIL). Assume that the
pretraining data distribution is given by (4). Under the per-
fect setting in Definition 4.1, for all (h, t) ∈ [H]× [T ], the
LLM conducts task planning via BAIL, following that

πt

h,LLM

!
· | τ t

h
,ωt

"
=

'

z∈Z
π∗
z,h

!
· | τ t

h
,ωt

"
PD

!
z |ptt

h

"
,

where the prompt is defined in (1).

Proposition 4.2 suggests that LLMs provide recommenda-
tions following a two-fold procedure: Firstly, LLMs com-
pute the posterior belief of each latent variable z ∈ Z from
ptt

h
. Secondly, LLMs aggregate the optimal policies over

posterior probability and provide recommendations.

4.2. LLM-Empowered Planning Algorithm

Following the arguments above, we propose a planning al-
gorithm for the Planner within a perfect PAR system. From
a high level, the process of task planning is an implemen-
tation of policies from imitation learning (Ross & Bagnell,
2010; Ross et al., 2011) with two key distinctions: (i) Plan-
ner collaborates with LLM, a “nascent” expert that learns
the hidden intricacies of the external world from updating
prompts; (ii) different from behavior cloning or inverse RL,
Planner does not aim to comprehend LLM’s behaviors. In-
stead, the imitation is accomplished during the offline pre-
training, and Planner shall selectively adhere to LLM’s sug-
gestions during online planning. Next, we show that task
planning solely guided by LLMs fails to achieve sample
efficiency in the worst case.

Proposition 4.3 (Hard-to-Distinguish Example). Suppose
that Definition 4.1 holds. Given any T ∈ N, there exists an
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HMDP and specific latent varibale z ∈ Z such that if Plan-
ner strictly follows LLM’s recommended policies in Propo-
sition 4.2, it holds that Reg

z
(T ) ≥ 0.5T · (1− 1/|Z|)T .

Proposition 4.3 indicates that relying solely on LLMs for
task planning can result in a suboptimal Ω(T ) regret in the
worst case when |Z| = T . Thus, additional exploration is
essential to discern the latent information about the external
world, a parallel to the practical implementations in latent
imitation learning (Edwards et al., 2019; Kidambi et al.,
2021) and LLM-based reasoning (Hao et al., 2023; Not-
tingham et al., 2023). In practice, while the language model
can guide achieving a goal, it’s important to note that this
guidance is not grounded in real-world observations. Thus,
as pointed out by (Grigsby et al., 2023), the information
provided in narratives might be arbitrarily wrong, which
highlights the need for exploration to navigate new envi-
ronments effectively. Similar to !-greedy algorithms (To-
kic & Palm, 2011; Dann et al., 2022), we provide a simple
but efficient algorithm for LLM-empowered task planning.
Algorithm 1 gives the pseudocode. In each episode, the
Planner performs two main steps:

- Policy Decision (Line 5): Randomly decide whether to
execute the exploration policy πexp or follow the LLM’s
recommendations within this episode with probability !.

- Planning with LLMs (Line 7− 10): If Planner decides
to follow the LLM’s recommendations, it is obtained by
prompting LLMs with ptt

h
= Ht ∪ {ωt

, τ t
h
}, equiva-

lently sampling from LLM(· |ptt
h
). Otherwise, the Plan-

ner takes sub-goal from πh,exp(· | τ th).

In conventional !-greedy algorithms, explorations are taken
uniformly over the action space G, i.e., πexp = UnifG . Re-
cent work has extended it to a collection of distributions
(e.g., softmax, Gaussian noise) for function approximation
(Dann et al., 2022). Following this, we instead consider
a broader class of exploration strategies that satisfy the η-
distinguishability property below.

Definition 4.4 (η-distinguishability). We say an explo-
ration policy πexp = {πh,exp}h∈[H] is η-distinguishable if
there exists aconstant η > 0 such that for all z, z′ ∈ Z with
z ∕= z

′, it holds that D2

H

!
Pπexp
z (τH),Pπexp

z′ (τH)
"
≥ η.

η-distinguishability implies the existence of an exploration
policy πexp that could well-distinguish the models with an
η-gap in Hellinger distance concerning the distribution of
whole trajectory, which also impose condition over model
seperation. Next, we introduce the assumption over priori.

Assumption 4.5 (Prior coverage). There exists a constant
cZ > 0 such that sup

z,z′
PZ(z

′
)

PZ(z)
≤ cZ .

The assumption asserts a bounded ratio of priors, implying
that each z ∈ Z has a non-negligible prior probability. The

assumption is intuitive, as a negligible priori suggests such
a scenario almost surely does not occur, rendering the plan-
ning in such scenarios unnecessary. Now, we are ready to
present the main theorem of Planner under perfect setting.

Theorem 4.6 (Regret under Perfect Setting). Suppose that
Definition 4.1 and Assumption 4.5 hold. Given an η-
distinguishable exploration policy πexp and T ≤ Tp, Al-
gorithm 1 ensures

Reg
z
(T ) :=

T'

t=1

EHt

.
Jz(π

∗
z
,ωt)− Jz(π

t
,ωt)

/

≤ Õ
0
H

3
2

1
T/η · log(cZ |Z|

√
T )

2
,

for any z ∈ Z and {ωt}t∈[T ], if the Planner explores with
probability ! = (H log(cZ |Z|

√
T )/Tη)1/2.

Theorem 4.6 states that the Planner’s algorithm can attain a
Õ(

√
T ) regret for planning facilitated by LLMs. The mul-

tiplicative factor of the regret depends on the horizon of
the interactive process H , the reciprocal of coverage rate
η in Definition 4.4, and the logarithmic term log (cZ |Z|)
including both the cardinality of candidate models and the
prior coverage in Assumption 4.5, which jointly character-
izes the complexity of the physical world.
Remark 4.7. Lee et al. (2023) has demonstrated that a per-
fect decision-pretrained transformer, similar to the role of
LLM in ours, can attain a Õ(H

3
2

√
T ) Bayesian regret, i.e.,

Ez∼PZ [Reg(T )], via ICL. In comparison, we focus on a
more challenging setting that aims to control the frequen-
tist regret, which is closer to applications, and attain a com-
parable result with additional exploration.

5. Performance under Practical Setting
5.1. Pretraining Large Language Model

In this subsection, we elaborate on the pretraining of LLMs
using transformer architecture. We employ a supervised
learning algorithm minimizing the cross-entropy loss, i.e.,
)θ = argminθ∈Θ LCE(θ;DLLM), as detailed in (6). Follow-
ing this, the population risk follows that

Et[ESt
[DKL(LLM(·|St)0LLMθ(·|St)) + Ent(LLM(·|St))]],

where t ∼ Unif([T̄p]), St is distributed as the pretraining
distribution, and Ent(P) = Ex∼P[logP(x)] is the Shan-
non entropy. As the minimum is achieved at LLMθ(·|S) =
LLM(·|S), estimated LLM!θ and LLM are expected to con-
verge under the algorithm with a sufficiently large dataset.
Specifically, our design adopts a transformer function class
to stay consistent with the architectural choices of language
models like BERT and GPT. Specifically, a transformer
model comprises D sub-modules, with each sub-module
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incorporating a Multi-Head Attention (MHA) mechanism
and a fully connected Feed-Forward (FF) layer. Refer to
§A.3 for further details, and we specify two widely adopted
assumptions in the theoretical analysis of LLM pretraining
(Wies et al., 2023; Zhang et al., 2023).

Assumption 5.1 (Boundedness). For all z ∈ Z and t ≤
T̄p, there exists an absolute constant R > 0 such that all
St = (ℓ1, . . . , ℓt) ∼ PD(· | z) with St ∈ L∗ satisfies that
0St02,∞ ≤ R almost surely.

The boundedness assumption requires that the ℓ2-norm of
the magnitude of each token is upper bounded by R > 0,
and such an assumption holds in most settings.

Assumption 5.2 (Ambiguity). For all latent variable z ∈
Z , there exists a constant c0 > 0 such that for all ℓt+1 ∈ L
and St = (ℓ1, . . . , ℓt) ∈ L∗ with length t < T̄p, it holds
PD(ℓt+1 |St, z) ≥ c0.

The ambiguity assumption states that the generating distri-
bution is lower bounded, and the assumption is grounded
in reasoning as there may be multiple plausible choices for
the subsequent words to convey the same meaning. Next,
we present the performance of the pretrained LLMs.

Theorem 5.3 (Zhang et al. (2023)). Suppose that Assump-
tions 5.1 and 5.2 hold. With probability at least 1 − δ, the
pretrained model LLM!θ by the algorithm in (5) satisfies that

ĒDLLM

.
DTV

!
LLM(· |S), LLM!θ(· |S)

"/

≤ O
0

inf
θ∗∈Θ

1
ĒDLLM

[DKL (LLM(· |S), LLMθ∗(· |S))]+

t
1/4

mix
log 1

δ

(NpT̄p)1/4
+

3
tmix

NpT̄p

0
D̄ log

!
1 + B̄NpT̄p

"
+ log

1

δ

22

where B̄ and D̄ features the tranformer’s architecture, tmix

denotes the mixing time of Markov chain {St}t∈[T ]
2, and

NpT̄p is the size of dataset DLLM. See §A.3 for definitions.

Theorem 5.3 states that the total variation of the condi-
tional distribution, with expectation taken over the average
distribution of context S in DLLM (see Table 1 for defini-
tion), converges at O

!
(NpT̄p)

−1/2
"
. Note that the first two

terms represent the approximation error and deep neural
networks act as a universal approximator (Yarotsky, 2017)
such that the error would vanish with increasing volume of
network (Proposition C.4, Zhang et al., 2023). For nota-
tional simplicity, we denote the right-hand side of theorem
as ∆LLM(Np, Tp, H, δ).

2Note that {Sn

t }t∈[T ] directly satisfies Markov property since
Sn

t = (ℓn1 , . . . , ℓ
n

t ) and thus Sn

i ⊆ Sn

t for all i ≤ t.

5.2. Pretraining Observation-to-Language Translator

In this subsection, we work on pretraining of observation-
to-language translators under a self-supervised learning ar-
chitecture using the contrastive loss. Given function class

Fγ = {fγ(·, ·) : γ ∈ Γ, 0fγ0∞ ≤ BF , 01/fγ0∞ ≤ B
−
F },

with finite elements, and the contrastive loss LCT(γ;DRep)
in (6) is defined over Fγ . Note that the contrastive loss can
be equivalently written as the negative log-likelihood loss
of a binary discriminator, following that LCT(γ;DRep) =
)EDRep

[−Dγ(y |o, s)], where we define

Dγ(y |o, s) =
0

fγ(o, s)

1 + fγ(o, s)

2y 0
1

1 + fγ(o, s)

21−y

(7)

Based on the algorithm )γ = argminγ∈Γ LCT(γ;DRep), the
population loss follows that

E [DKL (Dγ(·|o, s)0D(·|o, s)) + Ent(D(·|o, s))] . (8)

As the minimum is attained at Dγ(· |o, s) = D(· |o, s),
where D(· |o, s) := PC(· |o, s) is the distribution of the
label conditioned on the (o, s) pair in contrastive data col-
lection, estimated D!γ(· |o, s) and D(· |o, s) are expected to
converge, and thus the learning target is the ground-truth
likelihood ratio f

∗(o, s) = O(o | s)/P−(o) (see Lemma
D.2). We assume the learning target f∗(o, s) is realizable
in Fγ , which is standard in literature (Qiu et al., 2022).

Assumption 5.4 (Realizability). Given a designated nega-
tive distribution P− ∈ ∆(O), there exists γ∗ ∈ Γ such that
fγ∗(o, s) = O(o | s)/P−(o) for all (o, s) ∈ O × S .

Next we present the performance of pretrained translator.

Theorem 5.5 (Pretrained Translator). Suppose that As-
sumption 5.4 holds. With probability at least 1 − δ, the
pretrained model O!γ by the algorithm in (7) satisfies that

ĒDRep
[DTV (O(· | s),O!γ(· | s))]

≤ O
0

BF (B
−
F )1/2

(NpTpH)1/2

1
log(NpTpH|Fγ |/δ)

2
,

where let O!γ(· | s) = f!γ(· | s) · P−(·) and |Fγ | denotes the
cardinality of the function class Fγ .

Theorem 5.5 posits that the average expectation of the total
variation of the translation distribution regarding DRep con-
verges at O

!
(NpTp)

−1/2
"
. For notational simplicity, write

the right-hand side of the theorem as ∆Rep(Np, Tp, H, δ).
Furthermore, the algorithm also ensures a more stringent
convergence guarantee concerning χ2-divergence:

ĒDRep
[χ2(O!γ(· | s)0O(· | s))] ≤ ∆Rep(Np, Tp, H, δ)2.
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5.3. Performance with Pretrained PAR System

In this subsection, we delve into the performance of task
planning with pretrained PAR system. We first introduce
the online coverage assumption, which pertains to the dis-
tribution of online planning trajectories under practical sce-
narios and trajectories in pretraining datasets.
Assumption 5.6 (Coverage). There exists absolute con-
stants λS > 0 and λR > 0 such that for all latent variable
z ∈ Z , t < T̄p and policy sequence {πi}i≤⌈t/2H⌉ from the
Planner, it holds that (i)

4⌈t/2H⌉
i=1

)Pπi
z
(S̃i) ≤ λS · P̄DLLM

(St)

for all ordered token sequence St = (S̃i)i≤⌈t/2H⌉ ∈ L∗,
where |S̃i| = 2H for all k < ⌈t/2H⌉, and (ii) P̄DRep

(s) ≥
λR for all state s ∈ S .

Here, )Pz denotes the distribution of the dynamic system
with the pretrained translator. The assumption asserts that
(i) distribution of the ICL prompts induced by policy se-
quences {πi}i≤⌈t/2H⌉ from the Planner under practical
scenarios is covered by the pretraining data, where ⌈t/2H⌉
denotes the number of episodes described in St. (ii) all
states s ∈ S are covered by the average distribution of
the Reporter’s pretraining dataset. Similar conditions are
adopted in ICL analysis (Zhang et al., 2023), decision pre-
trained transformer (Lee et al., 2023; Lin et al., 2023b) and
offline RL (Munos, 2005; Duan et al., 2020). Intuitively,
LLM and reporter cannot precisely plan or translate be-
yond the support of the pretraining dataset. These condi-
tions are achievable if an explorative behavior strategy πb

is deployed with a sufficiently large Np when collecting
data. We then present the main theorem regarding the prac-
tical performance.
Theorem 5.7 (Regret under Practical Setting). Suppose
that Assumptions 4.5, 5.1, 5.2, 5.4 and 5.6. Given an η-
distinguishable exploration policy πexp and T ≤ Tp, under
the practical setting, the Planner’s algorithm in Algorithm
1 ensures that

Reg
z
(T ) ≤ Õ

5
H

3
2

1
T/η · log(cZ |Z|

√
T )

+H
2
T ·∆p(Np, Tp, H, 1

√
T , ξ)

6
,

for any z ∈ Z and {ωt}t∈[T ]. The cumulative pretraining
error of PAR system follows that

∆p(Np, Tp, H, δ, ξ) = (ηλR)
−1 ·∆Rep(Np, Tp, H, δ)2

+ 2λ−1

R
·∆Rep(Np, Tp, H, δ) + λS ·∆LLM(Np, Tp, H, δ).

where ξ = (η,λS ,λR) are defined in Definition 4.4 and
Assumption 5.6, and pretraining errors ∆LLM and ∆Rep are
defined in Theorem 5.3 and Theorem 5.5. Under the prac-
tical setting, Planner should explore with probability

! =
!
H log

!
cZ |Z|

√
T
"
/Tη

"1/2

+H(ηλmin)
−1∆Rep(Np, Tp, H, 1/

√
T )2.

Theorem 5.7 reveals that, in comparison to perfect sce-
nario, the Planner can achieve an approximate Õ(

√
T ) re-

gret, but incorporating an additional pretraining error term
that could diminishe with an increase in the volume of pre-
training data. Besides, it underscores the necessity of ex-
ploration, where the Planner should explore with an addi-
tional H(ηλmin)

−1∆Rep(Np, Tp, H, δ)2 to handle the mis-
match between ground-truth and pretrained environment.
Remark 5.8. The challenge of establishing a performance
guarantee in a practical setting arises from the mismatch
between the ground-truth environment and the pretrained
one, leading to a distributional shift in posterior probability.
Besides, BAIL is realized through a pretrained LLM, which
introduces its pretraining error inaddition. In response, we
propose a novel regret decomposition and provide the con-
vergence rate of posterior probability with bounded pre-
training errors, distinguishing ours from the previous re-
sults in Lee et al. (2023); Liu et al. (2023).

Extentions. In §B.1, we discuss the design of the Planner
by taking LLMs as World Model (WM). Here, the Plan-
ner prompts the LLM to predict the next observation rather
than subgoals, alleviating the reliance on expert knowl-
edge. By leveraging model-based RL methods like Monte
Carlo Tree Search (MCTS) and Real-Time Dynamic Pro-
gramming (RTDP), the Planner utilizes the LLM-simulated
environment to optimize its strategies based on the contex-
tual information. As shown in Proposition B.1, the simu-
lated world model via ICL conforms to Bayesian Aggre-
gated World Model (BAWM). Hence, the LLM Planner
achieves Reg

z
(T ) ≤ Õ(H

7
T/η) +H

2
T ·∆p,wm under

practical setting with regularity conditions (see Corollary
B.3). Besides, we extend the results in §4 to accommodate
the scenario of multi-agent collaboration, i.e., K Actors. In
§B.2, we formulate the probelm as a cooperative hierarchi-
cal Markov Game (HMG) and establish a theoretical guar-
antee of Reg

z
(T ) ≤ Õ(

7
H3TK/η) under perfect sce-

nario (see Corollary B.4). The two extention correponds to
recent works on LLM planning as world model (Hu & Shu,
2023) and muti-agent collaboration (Mandi et al., 2023).

6. Conclusion
In this work, we embedded the LLM-empowered decision
making problem into a hierarchical RL, where at the high
level, the LLM Planner decomposes the user-specified task
into subgoals, and at the low level, the Actor(s) translate
the linguistic subgoals into physical realizations while pro-
viding feedbacks for augmenting the planning through a
trained reporter. Under the perfect setting, we characterize
the BAIL nature of the LLM-aided planning pipeline and
the nessecity of exploration even under the expert guidance.
We also shed light on how the training errors of both LLM
and reporter enter the ICL error under practical scenarios.
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Impact Statement
This work presents a theoretical exploration into the mech-
anisms underpinning LLM-empowered agents, focusing on
their potential to solve decision-making problems in the
physical world. The immediate societal impact of our the-
oretical study may not be directly observable. The insights
gained might be crucial for the future development of more
effective, efficient, and ethical LLM-empowered agents.
By advancing our understanding of how these agents func-
tion and interact with their environment, this research lays
the groundwork for engineering efforts that can translate
these theoretical foundations into practical applications.
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Appendix for
“From Words to Actions: Unveiling the Theoretical Underpinnings of

LLM-Driven Autonomous Systems”

A. Additional Background and Related Works
Notations. For some n ∈ N+, let [n] = {1, . . . , n}. Denote ∆(X ) as the probability simplex over X . Consider two
non-negative sequence {an}n≥0 and {bn}n≥0, if lim sup an/bn < ∞, we write it as an = O(bn) and use Õ to omit
logarithmic terms. Else if lim inf an/bn < ∞, we write an = Ω(bn). For continuum S , denote |S| as the cardinality. For
matrix X ∈ Rm×n, the ℓp,q-norm is defined as 0X0p,q = (

8
n

i=1
0X:,i0qp)1/q , where X:,i denotes the i-th column of X .

Table 1. Table of Notations.

Notation Meaning

Jz(·, ·), π∗
z (·) value function and optimal policy π∗

z (·) := argmaxπ J (π, ·) concerning ground-truth O
!Jz(·, ·), !π∗

z (·) value function and optimal policy !π∗
z (·) := argmaxπ

!J (π, ·) concerning pretrained O!γ

PD(·), PC(·) probability induced by the distribution of joint and contrastive data collection

πt

h,LLM, !πt

h,LLM πt

h,LLM(· | τ t

h,ω
t) = LLM(· | ptt

h
) and !πt

h,LLM(· | τ t

h,ω
t) = LLM!θ(· | pt

t

h
) at step h

Pz(·), !Pz(·) probability under environment featured by z, ground-truth O or pretrained O!γ

Pπ
z (·), !Pπ

z (·) probability under environment featured by z, policy π, ground-truth O or pretrained O!γ

PΩ(·), PZ(·) prior distributions of high-level tasks and latent variables

τ̆ i

h/t
τ̆ i

h/t
= τH for all i < t and τ̆ t

h/t
= τh

Pz(·|·,do ·) Pz(· | o1,do g1:h−1) =
"
o2:h−1

#
h−1
h′=1 Pz (oh′+1 | (o, g)1:h′) do2:h−1

Pt

LLM(·|·,do ·) Pt

LLM(· | o1,do g1:h−1) :=
"
o2:h−1

#
h−1
h′=1 PD (oh′+1 | (o, g)1:h′ ,Ht) do2:h−1

!Jt,LLM(·, ·), !πt,∗
LLM(·) value function of environment simulated by LLM!θ and !πt,∗

LLM(·) := argmaxπ
!Jt,LLM(π, ·)

Jt,LLM(·, ·),πt,∗
LLM(·) value function of environment simulated by perfect LLM and πt,∗

LLM(·) := argmaxπ Jt,LLM(π, ·)

Pt

LLM(·), !Pt

LLM(·) probability of environment simulated by perfect LLM or pretrained LLM!θ with Ht

DTV(P,Q) total variation distance, DTV(P,Q) := 1/2 · Ex∼P [|dQ(x)/dP (x)− 1|]

D2
H(P,Q) Helliger distance, D2

H(P,Q) := 1/2 · Ex∼P

$%&
dQ(x)/dP (x)− 1

'2(

DKL(P,Q) KL divergence, DKL(P$Q) := Ex∼P [log dP (x)/dQ(x)]

χ2(P,Q) χ2-divergence, χ2(P$Q) := Ex∼P [(dQ(x)/dP (x)− 1)2]

!ED[f ] Ē[f ] := 1/n ·
)

n

t=1 f(ℓt) given dataset D = {ℓt}t∈[n]

P̄D(·), ĒD[f ] P̄D(·) :=
)

N

n=1

)
T−1
t=0 PD(·|ℓn1:t)/NT and Ē[f ] := Eℓ∼P̄D [f(ℓ)] given D = {ℓn1:T }n∈[N ]

Elaboration on Contrastive Learning. As an example, the noise contrastive estimation (NCE, Gutmann & Hyvärinen,
2010) is one of the most widely adopted objectives in contrastive representation learning. From the theoretical lens, to
estimate unnormalized model pd with xi

iid∼ pd, additional noise data is sampled from a reference distribution pn and
the estimation is gained by maximizing )E[y · log(hγ(x)) + (1 − y) · log(1 − hγ(x))], where y = 1(x is not noise) and
h
∗(x) = pd(x)/(pd(x)+pn(x)). With slight modifications, we use a function class F to approximate the ratio pd/pn rather

than the relative probability h itself. In practice, the most commonly used contrastive training objectives are variations of
NCE and originated from the NLP domain (Schiappa et al., 2023) by sharing the same idea of minimizing the distance
between the positive pair and maximizing the distance between the negative pairs.

A.1. More Related Works

Autorgressive Large Language Models and In-Context Learning. Most commercial Large Language Models (LLMs),
including ChatGPT (Brown et al., 2020), GPT-4 (OpenAI, 2023), Llama (Touvron et al., 2023), and Gemini (Team et al.,
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2023), operate in an autoregressive manner. These LLMs exhibit robust reasoning capabilities, and a crucial aspect of
their reasoning prowess is the in-context learning (ICL) ability. This ability is further enhanced through additional training
stages (Iyer et al., 2022), careful selection and arrangement of informative demonstrations (Liu et al., 2021; Kim et al.,
2022), explicit instruction (Honovich et al., 2022), and the use of prompts to stimulate chain of thoughts (Wei et al., 2022b).
Theoretical understanding of ICL is an active area of research. Since the real-world datasets used for LLM pretraining are
difficult to model theoretically and are very large, ICL has also been studied in stylized setups (Xie et al., 2021; Garg
et al., 2022; Chan et al., 2022; Hahn & Goyal, 2023; Zhang et al., 2023). In this paper, we build upon the framework
attributing the ICL capability to Bayesian inference (Xie et al., 2021; Jiang, 2023; Zhang et al., 2023), a series of practical
experiments, including Wang et al. (2023a); Ahuja et al. (2023), provide empirical support for this Bayesian statement.
Our work leverages the ICL ability of LLM with detailed examination under the Bayesian framework.

LLM-empowered Agents. In the task-planning and decision-making problems, symbolic planners have commonly been
employed to transform them into search problems (Bonet & Geffner, 2001; Ghallab et al., 2004) or to design distinct rein-
forcement learning or control policies for each specific scenario. Recent empirical studies have shifted towards leveraging
LLMs as symbolic planners in various domains, including robotic control (Mandi et al., 2023; Brohan et al., 2023; Li et al.,
2023a; Du et al., 2023), autonomous driving (Wang et al., 2023b; Fu et al., 2024) and personal decision assistance (Li
et al., 2022; Lin et al., 2023a; Hu et al., 2023; Liu et al., 2023; Nottingham et al., 2023). Another recent line of research
has been dedicated to devising diverse prompting schemes to enhance the reasoning capability of LLMs (Wei et al., 2022b;
Yao et al., 2023a;b; Hao et al., 2023). Despite their considerable empirical success, there is a lack of comprehensive the-
oretical analysis of LLM Agent. In this paper, we formalize the problem into a general framework with a hierarchical
structure and design RL-like prompts to facilitate planning with provable performance. Two recent works by Liu et al.
(2023) and Lee et al. (2023) also aim to establish provable algorithms for planning with LLMs or Decision-pretrained
Transformers (DPT). In comparison, we discuss both the plausibility of taking LLMs as an action generator (Lee et al.,
2023) and simulated world model (Liu et al., 2023). Furthermore, we provide a statistical guarantee for pretrained models
and conduct a detailed examination of the algorithm’s performance in practical settings, bringing our analysis closer to
real-world applications.

A.2. Hierarchical Markov Decision Process

In this subsection, we present a formalized definition of the HMDP model introduced in §3.1.

Low-level MDP. Define G as the space of high-level actions. For fixed g ∈ G and high-level step h ∈ [H], the low-
level MDP is defined as Mh(g) = (S,A, Ha,Th, r̄g), where S is the state space, A is the low-level action space, Ha

is the number of steps, Th = {T
h,h̄

}
h̄∈[Ha]

is the transition kernel, and r̄ = {r̄
h̄
}
h̄∈[Ha]

is the reward function with
r̄
h̄
: S×A×G &→ R. The low-level agent follows policy µ = {µg}g∈G , where µg = {µ

h̄
}
h̄∈[Ha]

and µ
h̄
: S×G &→ ∆(A).

High-level POMDP. Define Ω be the space of disclosed variables, and we write z = (T, µ) to feature the low-level
environment. Each low-level episode corresponds to a single high-level action. Given fixed pair (z,ω) ∈ Z × Ω, the
POMDP is characterized by W(z,ω) = (S,O,G, H,Pz, rω), where O is the observation space, O = {Oh}h∈[H] is
the emission distribution with Oh : O &→ ∆(S), r = {rh}h∈[H] is the reward function with rh : O × Ω &→ R, and
Pz = {Pz,h}h∈[H] is the high-level transition kernel following that

Pz,h(s
′ | s, g) = P

!
s̄h,Ha+1 = s

′ | s̄h,1 = s, a
h,1:h̄

∼ µg, s̄h,2:h̄+1
∼ Th

"
,

for all h ∈ [H]. The space of state S and latent variable z are inherited from the low-level MDP.

Furthermore, for the high-level POMDP, the state value function of policy π, the state value function is defined as

V
π
z,h

(s, τ,ω) = Eπ

&
H'

h′=h

rh′(oh′ ,ω)
999sh = s, τh = τ

(
, (9)

where trajectory τh ∈ (O × G)h−1 ×O, and similarly we define the state-action value function as

Q
π
z,h

(s, τ, g,ω) = Eπ

&
H'

h′=h

rh′(oh′ ,ω)
999sh = s, τh = τ, gh = g

(
, (10)
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where expectation is taken concerning the policy π, transition kernel Pz , and emission distribution O. Besides, for all
h ∈ [H], denote the probability of observing trajectory τh under policy π as

Pπ
z
(τh) = π(τh) · Pz(τh), Pz(τh) =

h−1,

h′=1

P(oh′+1 | τh′ , gh′), π(τh) =

h−1,

h′=1

πh(gh′ | τh′), (11)

where Pz(τh) denotes the part of the probability of τh that is incurred by the dynamic environment independent of policies,
π(τh) denotes the part that can be attributed to the randomness of policy.

A.3. LLM Pretraining under Transformer Architecture

Transformer and Attention Mechanism. Consider a sequence of N input vectors {hi}ni=1
⊂ Rd, written as an in-

put matrix H = [h1, . . . ,hn]
⊤ ∈ Rn×d, where each hi is a row of H (also a token). Consider K ∈ Rns×d and

V ∈ Rns×ds , then the (softmax) attention mechanism maps these input vectors using the function attn(H,K,V) =
Softmax(HK⊤)V ∈ Rn×ds , where softmax function is applied row-wisely and normalize each vector via the exponential
function such that [Softmax(h)]i = exp(hi)/

8
d

j=1
exp(hj) for all i ∈ [d]. To approximate sophisticated functions, prac-

titioners use Multi-head Attention (MHA) instead, which forwards the input vectors into h attention modules in parallel
with h ∈ N as a hyperparameter and outputs the sum of these sub-modules. Denote W = {(WH

i
,WK

i
,WV

i
)}h

i=1
as

the set of weight matrices, the MHA outputs Mha(H,W) =
8

h

i=1
attn(HWH

i
,HWK

i
,HWV

i
), where WH

i
∈ Rd×dh ,

WK

i
∈ Rd×dh and WV

i
∈ Rd×d for all i ∈ [h], and dh is usually set to d/h (Michel et al., 2019). Based on the definitions

above, we are ready to present the transformer architecture employed in LLMs like BERT and GPT (Devlin et al., 2018;
Brown et al., 2020). Detailedly, the transformer network has D sub-modules, consisting of an MHA and Feed-Forward
(FF) fully-connected layer. Given input matrix H(0) = H ∈ Rn×d, in the j-th layer for j ∈ [D], it first takes the out-
put from the (t − 1)-th layer H(t−1) as the input matrix, and forwards it to the MHA module with a projection function

Proj[·] and a residual link. After receiving intermediate H
(t) ∈ Rn×d, the FF module maps each row through a same

single-hidden layer neural network with dF neurons such that ReLU(H
(t)

A
(t)

1
)A

(t)

2
, where A(t)

1
∈ Rd×dF , A(t)

2
∈ RdF×d,

and [ReLU(X)]i,j = max{Xi,j , 0}. Specifically, the output of the t-th layer with t ∈ [D] can be summarized as below:

H
(t)

= Proj
*
Mha

5
H(t−1)

,W(t)

6
+ γ

(t)

1
H(t−1)

+
, H(t) = Proj

*
ReLU(H

(t)

A
(t)

1
)A

(t)

2
+ γ

(t)

2
H

(t)
+
,

where γ(t)

1
and γ

(t)

2
features the allocation of residual link. The final output of the transformer is the probability of the next

token via a softmax distribution such that

H(D+1) = Softmax
5
1⊤H(D)A(D+1)

/Nγ(D+1)

6
,

where A(D+1) ∈ Rd×dE denotes the weight matrix with dimension dE ∈ N and γ(D+1) ∈ (0, 1] is the fixed temperature
parameter. Let θ(t) =

!
W(t)

,A(t)
,γ(t)

"
for all t ∈ [D], where A(t) = (A

(t)

1
,A

(t)

2
) and γ(t) = (γ

(t)

1
, γ

(t)

2
), and denote

θ(D+1) = (A(D+1)
, γ). Hence, the parameter of the whole transformer architecture is the concatenation of parameters in

each layer such that θ = (θ(1)
, . . . ,θ(D+1)), and we consider a bounded parameter space, which is defined as below

Θ := {θ |0A(t)

1
0F ≤ BA,1, 0A(t)

2
0F ≤ BA,2, 0A(D+1),⊤01,2 ≤ BA, |γ(t)

1
| ≤ 1, |γ(t)

2
| ≤ 1,

|γ(D+1)| ≤ 1, 0WH,(t)

i
0 ≤ BH , 0WK,(t)

i
0 ≤ BK , 0WV,(t)

i
0 ≤ BV , ∀(i, t) ∈ [h]× [D]}.

To facilitate the expression of Theorem 5.3, we further define D̄ = D
2
d · (dh + dF + d) + dE · d and B̄ =

γ−1
RhBA,1BA,2BABHBKBV , where R is (almost surely) the upper bound of the magnitude of each token ℓ ∈ L in

token sequence St ∈ L∗, which is defined in Assumption 5.1.

Markov Chains. We follow the notations used in Paulin (2015); Zhang et al. (2023). Let Ω be a Polish space. The
transition kernel for a time-homogeneous Markov chain {Xi}∞i=1

supported on Ω is a probability distribution P(x, y) for
every x ∈ Ω. Given X1 = x1, · · · , Xt−1 = xt−1, the conditional distribution of Xt equals P(xt−1, y). A distribution π
is said to be a stationary distribution of this Markov chain if

:
x∈Ω

P(x, y) · π(x) = π(y). We adopt Pt(x, ·) to denote the
distribution of Xt conditioned on X1 = x. The mixing time of the chain is defined by

d(t) = sup
x∈Ω

DTV

!
Pt(x, ·),π

"
, tmix(ε) = min{t |d(t) ≤ ε}, tmix = tmix(1/4). (12)
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Algorithm 2 Planning with PAR System - Planner with LLM as WM
1: Input: Policy πexp with η ∈ (0, 1), parameter cZ > 0, Ns ∈ N, and |Z| ∈ N,
2: and reward function {rh}h∈[H] specified by the human user.
3: Initialize: H0 ← ∅, Ds

t
← ∅, ∀t ∈ [T ], and ! ← (H log(cZ |Z|

√
T )/Tη)1/2.

4: for episode t from 1 to T do
5: Receive the high-level task ωt from the human user.
6: Sample It ∼ Bernuolli(!).
7: for stimulation n from 1 to Ns do
8: Sample gt,s

n
∼ Unif(GH) and set ptt

1,n
← Ht ∪ {ot

1
, g

t,s

1,n
}.

9: for step h from 1 to H do
10: Set ptt

h,n
← Ht ∪

#
o
t

1,n
, g

t,s

1,n
, . . . , o

t,s

h,n
, g

t,s

h,n

$
.

11: Predict õt
h+1,n

∼ LLM(· |ptt
h,n

) via prompting LLM.
12: end for
13: Update Ds

t
← Ds

t
∪
#
o
t

1,n
, g

t,s

1,n
, . . . , o

t,s

H−1,n
, g

t,s

H−1,n
, o

t,s

H,n

$
.

14: end for
15: for step h from 1 to H do
16: Collect the observation o

t

h
from the Reporter.

17: Calculate πt

LLM ← OPTIMAL-PLANNING(ωt
,Ds

t
, {rh})

18: Sample g
t

h
∼ (1− It) · πt

h,LLM(· |ωt
, τ t

h
) + It · πt

h,exp(· | τ th).
19: Send the subgoal gt

h
to the Actor.

20: end for
21: Update Ht+1 ← Ht ∪ {ωt

, τ t
H
}.

22: end for

B. Extentions
B.1. LLM Planning via Bayesian Aggregated World Model

Recall that the pretraining algorithm in §3.2 also equips LLM with the capability to predict observation generation, i.e.,
Ph(oh | (o, g)1:h−1). Existing literature has shown the benefits of augmenting the reasoning process with predicted world
states, as it endows LLMs with a more grounded inference without reliance on expert knowledge (Hu & Shu, 2023). Specif-
ically, the Planner interactively prompts LLM to internally simulate entire trajectories grounded on historical feedback. By
leveraging model-based RL methods such as Monte Carlo Tree Search (Browne et al., 2012) and Real-Time Dynamic Pro-
gramming (Barto et al., 1995), the Planner utilizes the LLM-simulated environment to optimize its strategies. The planning
protocol is as follows: at the beginning of t-th episode, Planner iteratively prompts LLM with initial observation o1, his-
tory Ht, and subgoals g1:H sequentially to predict observations o1:H . Subsequently, a simulation dataset Ds

t
is collected,

allowing the Planner to compute the optimal policy with rewards specified by the human users, using methods such as
MCTS. We first show that the LLM-simulated environment conforms to a Bayesian Aggregated World Model (BAWM),
and is formalized as follows.

Proposition B.1 (LLM as BAWM). Assume that the distribution of pretraining data is given by (4). Under the perfect
setting in Definition 4.1, for each (h, t) ∈ [H]× [T ], the LLM serves as a Bayesian aggregated world model, following that

Pt

LLM(· |o1,do g1:h−1) =
'

z∈Z
Pz (· |o1,do g1:h−1) · PD (z |Ht) , (13)

where the marginal distributions are defined as Pz(· |o1,do g1:h−1) =
:
o2:h−1

4
h−1

h′=1
Pz (oh′+1 | (o, g)1:h′) do2:h−1 and

Pt

LLM(· |o1,do g1:h−1) =
:
o2:h−1

4
h−1

h′=1
PD (oh′+1 | (o, g)1:h′ ,Ht) do2:h−1.

Proof of Propoition B.1. Please refer to §E.1 for a detailed proof.

Note that the generation distribution Pt

LLM(· | (o, g)1:h) = LLM(· | (o, g)1:h,Ht) is non-stationary, since PD(z | (o, g)1:h,Ht)
fluctuates with simulated part (o, g)1:h due to the autoregressive manner of LLMs. Instead, Proposition B.1 posits that the
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Algorithm 3 Multi-Agent Planning with PAR System - Planner
1: Input: Policy πexp with η ∈ (0, 1), parameter cZ > 0, and |Z| ∈ N.
2: Initialize: H0 ← ∅, and ! ← (HK log(cZ |Z|

√
T )/Tη)1/2.

3: for episode t from 1 to T do
4: Receive the high-level task ωt from the human user.
5: Sample It ∼ Bernuolli(!).
6: for step h from 1 to H do
7: Collect the observation o

t

h
from Reporter.

8: for Actor k from 1 to K do
9: Set ptt

h,k
← Ht ∪ {ωt

, o
t

1
,gt

1
, . . . , o

t

h
, k}.

10: Sample g
t

h,k,LLM ∼ LLM(· |ptt
h,k

) via prompting LLM.
11: end for
12: If It = 1 then gt

h
← gt

h,LLM, else sample gt

h
∼ πh,exp(· | τ th).

13: end for
14: Send the subgoal gt

h
to the Actors.

15: Update Ht+1 ← Ht ∪ {ωt
, τ t

H
}.

16: end for

marginal distribution has a stationary expression based on posterior aggregation. Akin to Assumption 5.6, we introduce
the coverage assumption.
Assumption B.2 (Strong Coverage). There exists absolute constants λS,1,λS,2 and λR such that for all z ∈ Z , length
t < T̄p and policy sequence {πi}i≤⌊t/2H⌋ from the Planner, it holds that (i)

4⌊t/2H⌋
i=1

)Pπi
z
(S̃i) ≤ λS,1 · P̄DLLM

((S̃i)i≤⌊t/2H⌋)

and P̄DLLM
(S̃⌈t/2H⌉|(S̃i)i≤⌊t/2H⌋) ≥ λS,2 for all ordered token sequence St = (S̃i)i≤⌈t/2H⌉ ∈ L∗, where |S̃i| = 2H for

all k < ⌈t/2H⌉, (ii) P̄DRep
(s) ≥ λR for all s ∈ S .

We remark that Assumption B.2 imposes a stronger condition over the coverage, particularly on the in-episode trajectory
S̃⌈t/2H⌉, Here, ⌈t/2H⌉ denotes the number of episodes described in St. The demand of the stronger assumption arises
from LLM now serving as a WM, necessitating more extensive information across all kinds of scenarios. Suppose that the
Planner can learn optimal policy )πt,∗

LLM = argmaxπ∈Π
)J t

LLM(π,ω) with sufficiently large simulation steps |Ds

t
|, where )J t

LLM

denotes the value function concerning LLM!θ and history Ht. Akin to Algorithm 1, the planning algorithm by taking LLM
as WM includes an !-greedy exploration with η-distinguishable πexp. The pseudocode is in Algorithm 2. The following
corollary presents the performance under practical settings.
Corollary B.3 (Regret under Practical Setting with LLM as World Model). Suppose that Assumptions 4.5, 5.1, 5.2, 5.4 and
5.6. Given an η-distinguishable exploration policy πexp and T ≤ Tp, under the practical setting, the Planner’s algorithm
in Algorithm 2 ensures that

Reg
z
(T ) ≤ Õ

5
H

1
T/η · log(cZ |Z|

√
T ) +H

2
T ·∆p,wm(Np, Tp, H, 1/

√
T , ξ)

6
,

for any z ∈ Z and {ωt}t∈[T ]. The cumulative pretraining error of the PAR system follows

∆p,wm(Np, Tp, H, δ, ξ) = 2(ηλR)
−1 ·∆Rep(Np, Tp, H, δ)2

+ 2λ−1

R
·∆Rep(Np, Tp, H, δ) + 2λS,1λ

−1

S,2
·∆LLM(Np, Tp, H, δ).

where ξ = (η,λS,1,λS,2,λR) are defined in Definition 4.4 and Assumption 5.6, and the errors ∆LLM and ∆Rep are
defined in Theorem 5.3 and Theorem 5.5. Under the practical setting, the Planner should explore with probability
! = (log(cZ |Z|

√
T )/Tη)1/2 +H(ηλmin)

−1∆Rep(Np, Tp, H, 1/
√
T )2.

Proof of Corollary B.3. Please refer to §E.2 for a detailed proof.

B.2. LLM-Empowered Multi-Agent Collaboration

To characterize the multi-agent interactive process, i.e., several Actors, of task planning, we consider a turn-based cooper-
ative hierarchical Markov Game (HMG), corresponding to HMDP in §3.1. Instead, HMG consists of a low-level language-
conditioned Markov Game (MG) and a high-level language-conditioned cooperative Partially Observable Markov Game
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(POMG). To extend this framework, we introduce the following modifications: (i) low-level MG: let K = [K] be the set of
Actors, and G = G1× · · ·×GK and A = A1× · · ·×AK be the space of subgoals and low-level actions. Low-level Actors
conduct planning following a joint policy µ = {µh}h∈[H] with µh : S × G &→ ∆(A), where {µh,k}k∈K can be correlated,
e.g., within zero-sum game, Stackelberg game (Başar & Olsder, 1998). (ii) high-level POMG: under cooperation, assume
that policies can be factorized as

πh(gh | τh−1,ω) =

K,

k=1

πh,k(gh,k | τh−1,ω), ∀h ∈ [H].

The remaining concepts are consistent with HMDP. Here, the Planner assumes the role of central controller and solves a
fully-cooperative POMG that aims to maximize a shared value function. Thus, the Planner should infer both the Actors’
intentions, i.e., joint policy µ, and the environment, i.e., transition kernel T, from the historical context, and then assign
subgoal for each Actor.

Specifically, the LLM’s recommendations are obtained by invoking the ICL ability of LLMs with the history-dependent
prompt akin to (1) sequentially for each Actor. For the k-th Actor, prompt LLM with ptt

h,k
= Ht ∪ {ωt

, τ t
h
, k}, where

denote Ht =
;

t−1

i=1
{ωi

, τ i
H
} and τ t

h
= {o1

h
,g1

h
, . . . , o

t

h
}. Under the perfect setting (see Definition 4.1), LLM’s joint policy

for recommendations follows:

πt

h,LLM

!
gt

h
| τ t

h
,ωt

"
=

,

k∈K

<
'

z∈Z
π∗
z,h,k

!
g
t

h,k
| τ t

h
,ωt

"
· PD

!
z |ptt

h

"
=
, (14)

which is akin to Proposition 4.2 and the proof of the statement is provided in §E.3. The pseudocode is presented in
Algorithm 3. Then, we give the performance guarantee under multi-agent scenarios with the perfect PAR system.

Corollary B.4 (Multi-agent Collaboration Regret under Perfect Setting). Suppose that Assumptions 4.1 and 4.5 hold.
Given an η-distinguishable exploration policy πexp and T ≤ Tp, the Planner’s algorithm in Algorithm 3 guarantees that

Reg
z
(T ) ≤ Õ

<
H

3
2

>
TK/η · log

5
cZ |Z|

√
T

6=
,

for any z ∈ Z and {ωt}t∈[T ], if Planner explores with ! = (HK log
5
cZ |Z|

√
T

6
/Tη)1/2.

Proof of Corollary B.4. Please refer to §E.3 for a detailed proof.

Corollary B.4 is akin to Theorem 4.6 with an additional
√
K in regret. Besides, the multi-agent space of latent variable

|Z| = |ZT|× |Zµ,m|, where Zµ,m is the space of joint policy, is generally larger than the single-agent space. Specifically,
if responses are uncorrelated, then we have log |Zµ,m| = K log |Zµ,s|, resulting in a

√
K times larger regret. The proof of

extension to practical setting is akin to Corollary B.4 based on derivations in Theorem 5.7, and is omitted.

C. Proof for Section 4: Perfect Setting
C.1. Proof of Proposition 4.2

Proof of Proposition 4.2. Note that for all h ∈ [H] and t ∈ [T ], we have

πt

h,LLM

!
g
t

h
| τ t

h
,ωt

"
=

'

z∈Z
PD

!
g
t

h
|ptt

h
, z
"
· PD

!
z |ptt

h

"

=
'

z∈Z
PD

!
g
t

h
|Ht, τ

t

h
,ωt

, z
"
· PD

!
z |ptt

h

"

=
'

z∈Z
π∗
z,h

!
· | τ t

h
,ωt

"
· PD

!
z |ptt

h

"
, (15)

where the second equation results from the law of total probability, the third equation follows the definition of prompts in
(1), and the last equation results from the generation distribution. □
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C.2. Proof of Theorem 4.6

Proof of Thereom 4.6. Recall that the Planner takes a mixture policy of πexp and πLLM such that

πt

h
(· | τ t

h
,ωt) ∼ (1− !) · πt

h,LLM(· | τ th,ωt) + ! · πh,exp(· | τ th), (16)

and Proposition 4.2 indicates that LLM’s recommended policies take the form:

πt

h,LLM

!
· | τ t

h
,ωt

"
=

'

z∈Z
π∗
z,h

!
· | τ t

h
,ωt

"
· PD

!
z |ptt

h

"
,

where ptt
h
= Ht ∪ τ t

h
with Ht =

#
ωi
, τ i

H

$
i∈[t−1]

, (17)

for all (h, t) ∈ [H]× [T ]. Following (16), given z ∈ Z and {ωt}t∈[T ], the regret is decomposed as

Reg(T ) =
T'

t=1

H'

h=1

EHt∼
"t−1

i=1 Pπi
z
E
(s

t
h,τ

t
h)∼Pπt

z

.!
π∗
z,h

− πh,exp

"
Q

∗
z,h

(st
h
, τ t

h
,ωt)

/
· !

? @A B
(i)

+

T'

t=1

H'

h=1

EHt∼
"t−1

i=1 Pπi
z
E
(s

t
h,τ

t
h)∼Pπt

z

.!
π∗
z,h

− πt

h,LLM

"
Q

∗
z,h

(st
h
, τ t

h
,ωt)

/
· (1− !)

? @A B
(ii)

≤
T'

t=1

H'

h=1

EHt∼
"t−1

i=1 Pπi
z
E
(s

t
h,τ

t
h)∼Pπt

z

.!
π∗
z,h

− πt

h,LLM

"
Q

∗
z,h

(st
h
, τ t

h
,ωt)

/
+HT !, (18)

where the second equation results from performance difference lemma (PDL, see Lemma F.4), and we write
πhQh(sh, τh,ω) = 〈πh(·|τh,ω), Qh(sh, τh, ·,ω)〉G , and Pπ

z
(τh) is defined in (11). Based on Lemma C.1, with proba-

bility at least 1− δ, the following event E1 holds: for all (h, t) ∈ [H]× [T ],
'

z′∈Z

'

i∈[t]

D
2

H

!
Pπi

z
(τ̆ i

h/t
),Pπi

z′ (τ̆ ih/t)
"
· PD(z

′ |ptt
h
) ≤ 2 log (cZ |Z|/δ) , (19)

where the randomness is incurred by ptt
h

and define τ̆ i
h/t

= τH for all i ∈ [t− 1] and τ̆ t
h/t

= τh for notational simplicity.
Suppose that event E1 in (19) holds, and denote X t

exp = {i ∈ [t] : πi = πexp} as the set of exploration episodes. Note that
for all (h, t, z′) ∈ [H]× [T ]× Z , it holds that

'

i∈[t]

D
2

H

!
Pπi

z
(τ̆ i

h/t
),Pπi

z′ (τ̆ ih/t)
"
≥

'

i∈X t−1
exp

D
2

H

!
Pπexp
z (τH),Pπexp

z′ (τH)
"
≥ η · |X t−1

exp |, (20)

where the last inequality results from πexp is η-distinguishable (see Definition 4.4) and the fact that D2

H
(P,Q) ≤ 1 for all

P,Q ∈ ∆(X ). Combine (19) and (20), we can get
'

z′ ∕=z

PD(z
′ |ptt

h
) ≤ min

#
2 log (cZ |Z|/δ) η−1

/|X t−1

exp |, 1
$
, (21)

for all (h, t) ∈ [H]× [T ]. Recall that (17) indicates that for all (h, t) ∈ [H]× [T ], we have
!
π∗
z,h

− πt

h,LLM

"
(· | τh,ω) =

'

z′ ∕=z

!
π∗
z,h

− π∗
z′,h

"
(· | τh,ω) · PD(z

′ |ptt
h
).

Based on Proposition 4.2 and conditioned on E1, it holds that
T'

t=1

H'

h=1

EHt∼
"t−1

i=1 Pπi
z
E
(s

t
h,τ

t
h)∼Pπt

z

.!
π∗
z,h

− πt

h,LLM

"
Q

∗
z,h

(st
h
, τ t

h
,ωt)

/

≤ H ·
T'

t=1

H'

h=1

'

z′ ∕=z

EHt∼
"t−1

i=1 Pπi
z
Eτt

h∼Pπt
z

&
PD(z

′ |ptt
h
)

(

≤ 2 log(cZ |Z|/δ)Hη−1 ·
T'

t=1

H'

h=1

E
.
min

#
1/|X t−1

exp |, 1
$/

, (22)
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Note that 1(πt = πexp)
iid∼ Bernuolli(!) for all t ∈ [T ]. Besides,the following event E2 holds:

T'

t=1

min
#
1/|X t−1

exp |, 1
$
≤ O(!−1 log(T log T/δ)). (23)

with probability at least 1− δ based on Lemma F.5. Combine (18), (22) and (23), we have

Reg
z
(T ) ≤

T'

t=1

H'

h=1

EHt∼
"t−1

i=1 Pπi
z
E
(s

t
h,τ

t
h)∼Pπt

z

.!
π∗
z,h

− πt

h,LLM

"
Q

∗
z,h

(sh, τh,ω
t)1 (E1 ∩ E2 holds)

/

+

T'

t=1

H'

h=1

EHt∼
"t−1

i=1 Pπi
z
E
(s

t
h,τ

t
h)∼Pπt

z

.!
π∗
z,h

− πt

h,LLM

"
Q

∗
z,h

(sh, τh,ω
t)1 (E1 ∩ E2 fails)

/
+HT !

≤ O
5
log(cZ |Z|/δ)H2 log(T log T/δ) · (η!)−1 +HT !+ 2HT δ

6

≤ Õ
5
H

3
2

7
log (cZ |Z|/δ)T/η

6
,

where we choose to expolre with probability ! = (H log (cZ |Z|/δ) /Tη)1/2. If we take δ = 1/
√
T in the arguments

above, then we can conclude the proof of Theorem 4.6. □

C.3. Proof of Lemma C.1

Lemma C.1. Suppose that Assumptions 4.1 and 4.5 hold. Given δ ∈ (0, 1) and ground-truth z ∈ Z , for all (h, t) ∈
[H]× [T ], with probability at least 1− δ, it holds

'

z′∈Z

'

i∈[t]

D
2

H

!
Pπi

z
(τ̆ i

h/t
),Pπi

z′ (τ̆ ih/t)
"
· PD(z

′ |ptt
h
) ≤ 2 log (cZ |Z|/δ) ,

where denote τ̆ i
h/t

= τH for all i < t and τ̆ t
h/t

= τh, and Pπ
z
(τh) is defined in (11).

Proof of Lemma C.1. The proof is rather standard (e.g., see (Geer, 2000)). Let Ft be the filtration induced by {ωi
, τ i

H
}i<t∪

{1(πi = πexp)}i∈[t]. For all (h, t, z′) ∈ [H]× [T ]×Z , with probability at least 1− δ, the information gain concerning z
′

satisfies that

Lh,t(z
′) =

t'

i=1

log

<
Pz′(τ̆ i

h/t
)

Pz(τ̆ ih/t)

=
≤ 2 logEF1:t

&
exp

<
1

2

t'

i=1

log
Pz′(τ̆ i

h/t
)

Pz(τ̆ ih/t)

=(
+ 2 log(|Z|/δ), (24)

where the inequality follows Lemma F.1 with λ = 1/2 and a union bound taken over Z . Besides,

EF1:t

&
exp

<
1

2

t'

i=1

log
Pz′(τ̆ i

h/t
)

Pz(τ̆ ih/t)

=(
=

t,

i=1

5
1−D

2

H

!
Pπi

z
(τ̆ i

h/t
),Pπi

z′ (τ̆ ih/t)
"6

. (25)

Combine (24), (25) and fact that log(1− x) ≤ −x for all x ≤ 1, it holds that

Lh,t(z
′) ≤ −2

t'

i=1

D
2

H

!
Pπi

z
(τ̆ i

h/t
),Pπi

z′ (τ̆ ih/t)
"
+ 2 log(|Z|/δ), (26)

with probability greater than 1 − δ. Based on the Donsker-Varadhan representation in Lemma F.2 and duality principle,
we have logEQ[e

f ] = sup
P∈∆(X )

{EP [f ]−DKL(P 0Q)}, where the supremum is taken at P (x) ∝ exp(f(x)) · Q(x).
Please refer to Lemma 4.10 in (Van Handel, 2014) for detailed proof. Based on the arguments above, for all (h, t, P ) ∈
[H]× [T ]×∆(Z), it holds

'

z′∈Z
Lh,t(z

′) · P (z′)−DKL

!
P 0PZ

"
≤

'

z′∈Z
Lh,t(z

′) · PD(z
′ |ptt

h
)−DKL

!
PD(· |ptth)0PZ

"
. (27)
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since PD(z
′ |ptt

h
) ∝ exp (Lh,t(z

′)) · PZ(z
′) for all (h, t) ∈ [H] × [T ]. Denote δz(·) as the Dirac distribution over the

singleton z. Following this, by taking P = δz in (27), we have

'

z′∈Z
Lh,t(z

′) · PD(z
′ |ptt

h
) ≥ DKL

!
PD(· |ptth)0PZ

"
+ logPZ(z) ≥ logPZ(z), (28)

where the first inequality uses DKL(δz(·)0PZ(·)) = − logPZ(z) based on the definitions. Therefore, for all (h, t) ∈
[H]× [T ], with probability at least 1− δ, it holds that

'

z′∈Z

'

i∈[t]

D
2

H

!
Pπi

z
(τ̆ i

h/t
),Pπi

z′ (τ̆ ih/t)
"
· PD(z

′ |ptt
h
) ≤ −1

2

'

z′∈Z
Lh,t(z

′) · PD(z
′ |ptt

h
) + log (|Z|/δ) ≤ 2 log (cZ |Z|/δ) ,

where the first inequality results from (25), and the last inequality follows (28) and Assumption 4.5, which indicates that
1/PZ(z) ≤ cZ |Z|. Thus, we conclude the proof of Lemma C.1. □

C.4. Proof of Proposition 4.3

Our construction of the hard-to-distinguish example is a natural extension to the hard instance for the contextual bandit
problem in Proposition 1 (Zhang, 2022).

Proof of Proposition 4.3. Suppose that the high-level POMDP is fully observable, i.e., O(s) = s, with H = 2 and |Ω|=1.
Consider S = {s1, s2, s3} with rewards r(s1) = 0.5, r(s2) = 1, r(s3) = 0, G = {g1, g2}, and Z = {z1, . . . , zN}.
Starting from initial state s1, the transition kernel follows

C
DE

DF

Pzi(s1 | s1, g1) = 1, Pzi(s2 | s1, g1) = 0, Pzi(s3 | s1, g1) = 0, ∀i ∈ [N ],

Pz1(s1 | s1, g2) = 0, Pz1(s1 | s1, g2) = 1, Pz1(s3 | s1, g2) = 0, if i = 1,

Pzi
(s1 | s1, g2) = 0, Pzi

(s2 | s1, g2) = pi, Pzi
(s3 | s1, g2) = 1− pi, if i ∕= 1,

where pi = 0.5(1− i

N
) for all i ∈ [N ]. For latent environment z1, the optimal policy is π∗

z1,1
(s1) = g2 and π∗

zi,1
(s1) = g1 if

i ∕= 1. Suppose that prior distribution PZ is uniform. At t = 1, without any information, the posterior P(· |pt
1
) degenerates

to prior PZ(·) = UnifZ(·). Hence, the LLM’s policy at first step follows that πLLM(· | s1) =
!
1− 1

N

"
· δg1(·) + 1

N
· δg2(·).

Since Pzi(s1 | s1, g1) = 1 and Pzi(s2 | s1, g1) = Pzi(s3 | s1, g1) = 0 for all i ∈ [N ], taking subgoal g1 provides no
information to differentiate zi from others, and the posterior remains uniform. Such situation, i.e., P(· |pt

t
) = UnifZ(·),

ends only if the LLM suggests taking g2 at some epsiode t. Consider the hard trajectory τhard = {s1, g1, s1}t∈[T ], where
LLM consistently adheres to the initial πLLM and keeps recommending subgoal g1. Thus, we have Pz1(τhard) = (1−1/N)T ,
indicating Reg

z1
(T ) ≥ 0.5T · (1− 1/N)T .

D. Proof for Section 5: Practical Setting
D.1. Proof of Theorem 5.5

Proof of Theorem 5.5. Recall that the binary discriminator for label y ∈ {0, 1} is defined as

Dγ(y |o, s) :=
0

fγ(o, s)

1 + fγ(o, s)

2y 0
1

1 + fγ(o, s)

21−y

,

and the contrastive learning algorithm in (6) follows )γ = argmaxγ∈Γ
)EDRep

.
logDγ(y |o, s)

/
, and thus f!γ is the maximum

likelihood estimator (MLE) concerning the dataset DRep. Based on Lemma F.3, the MLE-type algorithm ensures that, with
probability at least 1− δ, it holds that

Ē(o,s)∼DRep

.
D

2

TV
(D!γ(· |o, s),D(· |o, s))

/
≤ 2 log(NpTpH|Fγ |/δ)/NpTpH, (29)
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where D(· |o, s) = Dγ∗(· |o, s) with fγ∗ = f
∗ ∈ Fγ denotes the ground-truth discriminator based on the realizability in

Assumption 5.4. Based on the definition of total variation, it holds that

D
2

TV
(D!γ(· |o, s),D(· |o, s))

=

0
f!γ(o, s)− f

∗(o, s)

(1 + f!γ(o, s))(1 + f∗(o, s))

22

≤ 1

(1 +RF )2

0
f!γ(o, s)− f

∗(o, s)

1 + f∗(o, s)

22

=
1

(1 +RF )2

0
O!γ(o | s)−O(o | s)
P−(o) +O(o | s)

22

=
1

(1 +RF )2

0
Ō!γ(o | s)− Ō(o | s)

Ō(o | s)

22

, (30)

where the first inequality results from 0f0∞ ≤ RF for all f ∈ Fγ , the third equation arise from the definition that
Oγ(·|s) = fγ(·, s) · P−(·), and we write Ō(· | s) = 1

2
(O(· | s) + P−(·)) , Ōγ(· | s) = 1

2
(Oγ(· | s) + P−(·)). Moreover,

Ō(·|s) represents the marginal distribution derived from the joint distribution PC of collected dataset DRep (see data collec-
tion process in §3.2), as follows:

PC(o | s) = PC(o | s, y = 0) · PC(y = 0 | s) + PC(o | s, y = 1) · PC(y = 1 | s)
= PC(o | s, y = 0) · PC(y = 0) + PC(o | s, y = 1) · PC(y = 1) := Ō(o | s), (31)

where the second equation results from the fact that contrastive data are labeled independent of data itself such that
PC(s |y) = PC(s) for all y ∈ {0, 1}. Based on (31), we can get

Ē(o,s)∼DRep

&0
Ō!γ(o | s)− Ō(o | s)

Ō(o | s)

22
(
= Ēs∼DRep

&
Eo∼Ō(· | s)

&0
Ō!γ(· | s)− Ō(· | s)

Ō(· | s)

22
((

, (32)

where equations results from the fact that PC(o, s) = Ō(o | s) · PC(s) and definition of χ2-divergence. Therefore, combine
(30) and (32), it holds that

Ē(o,s)∼DRep

.
D

2

TV
(D!γ(· |o, s),D(· |o, s))

/
≤ 1

(1 +RF )2
· Ēs∼DRep

.
χ2

!
Ō!γ(· | s)0 Ō(· | s)

"/
. (33)

Based on the variational representation of f -divergenve (§7.13, Polyanskiy & Wu, 2022), we have

χ2
!
Ō!γ(· | s)0 Ō(· | s)

"
= sup

g:O 0→R

C
DE

DF

5
EŌ!γ

[g(o) | s]− EŌ[g(o) | s]
62

VarŌ[g(o) | s]

G
DH

DI

= sup
g:O 0→R

-!
EO!γ [g(o) | s]− EO[g(o) | s]

"2

4 ·VarO[g(o) | s]
· VarO[g(o) | s]
VarŌ[g(o) | s]

J

≥ sup
g:O 0→R,

EO[g(o)|s]=0

-!
EO!γ [g(o)|s]− EO[g(o) | s]

"2

4 ·VarO[g(o) | s]
· EO[g(o)2 | s]
EŌ[g(o)2 | s]

J
, (34)

where the second equation follows the defintions of Ō(· | s) and Ō!γ(· | s), and the inequality results from VarŌ[g(o)|s] =
EŌ[g(o)

2|s] if EO!γ [g(o)|s]=0. Furthermore, note that

EO[g(o)2 | s]
EŌ[g(o)2 | s]

= 2

0
1 +

EP− [g(o)2 | s]
EO[g(o)2 | s]

2−1

≤ 2

0
1 +

KKKK
P−(·)
O(· | s)

KKKK
∞

2−1

≤ 2(1 +B
−
F )−1

, (35)

as P−(·)/P(·|s) = f
∗ ∈ Fγ and 01/f0∞ ≤ B

−
F for all f ∈ F under the realizability in Assumption 5.4. Besides, it holds

that

sup
g:O 0→R,

EO[g(o)|s]=0

-!
EO!γ [g(o) | s]− EO[g(o) | s]

"2

VarO[g(o) | s]

J
= sup

g:O 0→R

-!
EO!γ [g(o) | s]− EO[g(o) | s]

"2

VarO[g(o) | s]

J

= χ2 (O!γ(· | s)0O(· | s)) , (36)
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Based on (29), (33), (34), (35) and (36), then we have

ĒDRep

.
χ2 (O!γ(· | s)0O(· | s))

/
≤ O

0
(1 +B

−
F )(1 +BF )

2

NpTpH
· log(NpTpH|F|/δ)

2
. (37)

Combine (37) and the divergence inequalities (§7.6, Polyanskiy & Wu, 2022), we have

ĒDRep
[DTV (O!γ(· | s)0O(· | s))] ≤ 1

2
· ĒDRep

L1
χ2 (O!γ(· | s)0O(· | s))

M

≤ 1

2
·
1
ĒDRep

[χ2 (O!γ(· | s)0O(· | s))] ≤ O
0

BF (B
−
F )1/2

(NpTpH)1/2

1
log(NpTpH|Fγ |/δ)

2
,

where the second inequality follows E[X] ≤
7
E[X2] and we finish the proof of Theorem 5.5. □

D.2. Proof of Theorem 5.7

Notations. Denote (J , )J ), (π∗
z
, )π∗

z
), and (Pz,h,

)Pz,h) as the value functions, optimal policies, and probability distribu-
tions under the environment concerning the ground-truth O and the pretrained O!γ . Furthermore, (πt

, )πt) are the Planner’s
policy empowered by perfect LLM or pretrained LLM!θ.

Proof of Theorem 5.7. Conditioned on the event E1 that both Theorem 5.3 and 5.5 hold, the regret under the practical
setting can be decomposed as

Reg
z
(T ) ≤

T'

t=1

)Jz()π∗
z
,ωt)− Jz()π∗

z
,ωt)

? @A B
(i)

+

T'

t=1

Jz()π∗
z
,ωt)− Jz(π

∗
z
,ωt)

? @A B
(ii)

+

T'

t=1

Jz(π
∗
z
,ωt)− )Jz(π

∗
z
,ωt)

? @A B
(iii)

+

T'

t=1

EHt

*
)Jz(π

∗
z
,ωt)− )Jz()πt

,ωt)
+

? @A B
(iv)

, (38)

and (ii) ≤ 0 results from the optimality such that Jz()π∗
z
,ωt) ≤ Jz(π

∗
z
,ωt) for all t ∈ [T ].

Step 1. Bound (i) and (iii) with Translator’s Pretraining Error.

For any policy sequence {πt}t≤T ⊆ Π and length T ∈ N, based on PDL in Lemma F.4, we have

T'

t=1

)Jz(πt,ω
t)− Jz(πt,ω

t)

=

T'

t=1

H'

h=1

E
(s

t
h,τ

t
h,g

t
h)∼Pπt

z

*
(Pz,h

)V πt

h
− )Pz,h

)V πt

h
)(st

h
, τ t

h
, g

t

h
,ωt)

+

≤ H

T'

t=1

H'

h=1

E
(s

t
h,τ

t
h,g

t
h)∼Pπt

z

*
DTV

5
Pz,h(·, · | sth, τ th, gth), )Pz,h(·, · | sth, gth, τ th)

6+

≤ H

T'

t=1

H'

h=1

E
(s

t
h,g

t
h)∼Pπt

z
Es

t
h+1∼Pz,h(· | sth,gt

h)

.
DTV

!
O(·|st

h+1
),O!γ(·|sth+1

)
"/

, (39)

where the last inequality results from the fact that for any f -divergence, it holds that

Df (PY |X ⊗ PX ,QY |X ⊗ PX) = EX∼PX
[Df (PY |X ,QY |X)],
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Based on (39), by taking policies π = )π∗
z

and π = π∗
z

respectively, we have

(i) + (iii) =
T'

t=1

)Jz()π∗
z
,ωt)− Jz()π∗

z
,ωt) +

T'

t=1

Jz(π
∗
z
,ωt)− )Jz(π

∗
z
,ωt)

≤ 2H2
T ·max

s∈S
{DTV (O(· | s),O!γ(· | s))} ≤ 2H2

Tλ−1

R
·∆Rep(Np, Tp, H, δ), (40)

where the last inequality results from Assumption 5.6 and Theorem 5.5.

Step 2. Bound (iv) with LLM’s and Translator’s Pretraining Errors

Recall that the Planner follows a mixture policy of πexp and )πLLM as

πt

h
(· | τ t

h
,ωt) ∼ (1− !) · )πt

h,LLM(· | τ th,ωt) + ! · πh,exp(·|τ th). (41)

Based on PDL in Lemma F.4, the performance difference in term (iv) can be decomposed as

(iv) =
T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
E
(s

t
h,τ

t
h)∼!P!πt

z

*
(π∗

z,h
− )πt

h
) )Qπ∗

z

h
(st

h
, τ t

h
,ωt)

+

=

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
E
(s

t
h,τ

t
h)∼!P!πt

z

*!
π∗
z,h

− )πt

h,LLM

" )Qπ∗
z

h
(st

h
, τ t

h
,ωt)

+
· (1− !)

+

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
E
(s

t
h,τ

t
h)∼!P!πt

z

*!
π∗
z,h

− πh,exp

" )Qπ∗
z

h
(st

h
, τ t

h
,ωt)

+
· !

≤ H

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

.
DTV

!
π∗
z,h

(· | τ t
h
,ωt), LLM!θ(· |pt

t

h
)
"/

+HT ! (42)

where we write πhQh(sh, τh,ω) = 〈πh(·|τh,ω), Qh(sh, τh, ·,ω)〉G for all h ∈ [H], and )Qπ
h

denotes the action value
function under the practical setting. Furthermore, we have

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

.
DTV

!
π∗
z,h

(· | τ t
h
,ωt), LLM!θ(· |pt

t

h
)
"/

≤
T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

.
DTV

!
LLM!θ(· |pt

t

h
), LLM(· |ptt

h
)
"/

+

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

.
DTV

!
π∗
z,h

(· | τ t
h
,ωt), LLM(· |ptt

h
)
"/

≤
T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

.
DTV

!
LLM!θ(· |pt

t

h
), LLM(· |ptt

h
)
"/

+

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

N

O
'

z′ ∕=z

PD(z
′ |ptt

h
)

P

Q , (43)

where the first inequality arises from the triangle inequality, and the second inequality results from Thoerem 4.2. Further-
more, the first term can be bounded by the pretraining error, following

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

.
DTV

!
LLM!θ(· |pt

t

h
), LLM(· |ptt

h
)
"/

≤ λS ·
T'

t=1

H'

h=1

Ēptth∼DLLM

.
DTV

!
LLM!θ(· |pt

t

h
), LLM(· |ptt

h
)
"/

,

= λSHT ·∆LLM(Np, Tp, H, δ), (44)
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where the last inequality follows Theorem 5.3 and Assumption 5.6. Under practical setting, ptt
h

is generated from practical
transition )Pz , mismatching PD(z |ptth) in pretraining. Let X t

exp = {i ∈ [t] : )πi = πexp} and write τ̆ i
h/t

= τ i
H

for all i < t

and τ̆ t
h/t

= τ t
h

. Define the information gains as

L
exp
h,t

(z′) =
'

i∈X t
exp

log

<
Pz′(τ̆ i

h/t
)

Pz(τ̆ ih/t)

=
, L

LLM
h,t

(z′) =
'

i∈[t]\X t
exp

log

<
Pz′(τ̆ i

h/t
)

Pz(τ̆ ih/t)

=
, (45)

where Pz(τh) is defined in (11). Based on the law of total probability, we have

PD(z
′ |ptt

h
) =

Pz′(ptt
h
) · PZ(z

′)8
z̃∈Z Pz̃(ptth) · PZ(z̃)

≤ Pz′(ptt
h
)

Pz(ptth)
· PZ(z

′)

PZ(z)
. (46)

Let E2 be the event that Lemma D.1 holds. Based on (46), (45) and conditioned on event E2, it holds that

'

z′ ∕=z

PD(z
′ |ptt

h
) ≤ min

C
E

F
'

z′ ∕=z

Pz′(ptt
h
)

Pz(ptth)
· PZ(z

′)

PZ(z)
, 1

G
H

I

≤ min

C
E

FcZ
'

z′ ∕=z

exp
5
L
exp
h,t

(z′) + L
LLM
h,t

(z′)
6
, 1

G
H

I

≤ min

C
E

FcZ
'

z′ ∕=z

exp
5
t ·Hλ−1

R
∆Rep(Np, Tp, H, δ)2 − 2η|X t

exp|+ 8 log(|Z|/δ) + 2η
6
, 1

G
H

I

≤ min

C
E

FcZ
'

z′ ∕=z

exp
5
−
!
η!−Hλ−1

R
∆Rep(Np, Tp, H, δ)2

"
t+ 8 log(|Z|/δ) + 2η

6
, 1

G
H

I

≤ min
R
cZ · exp

5
−
!
η!−Hλ−1

R
∆Rep(Np, Tp, H, δ)2

"
t+ 9 log(|Z|/δ) + 2η

6
, 1
S

(47)

for all (h, t) ∈ [H]×[T ], where the second inequality follows Assumption 4.5. Here, we suppose that |X t

exp|/t = ! for sim-
plicity, which is attainable if we explore at a fixed fraction during episodes. Assume that η! ≥ Hλ−1

R
∆Rep(Np, Tp, H, δ)2

holds temporarily. Following (47) and condition on event E2, there exists a large constant c0 > 0 such that

T'

t=1

H'

h=1

'

z′ ∕=z

PD(z
′ |ptt

h
) ≤ c0 ·H log(cZ |Z|/δ) ·

!
η!−Hλ−1

R
∆Rep(Np, Tp, H, δ)2

"−1

, (48)

where we use the fact that there exists constant c0 > 0 such that
8

T

t=1
min{c3 exp(−c1t+ c2), 1} ≤ c0 · c−1

1
(c2 + log c3)

for c1 ≤ 1. Furthermore, based on (48), we can show that

T'

t=1

H'

h=1

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

N

O
'

z′ ∕=z

PD(z
′ |ptt

h
)

P

Q

≤
T'

t=1

H'

h=1

'

z′ ∕=z

EHt∼
"t−1

i=1
!P!πi
z
Eτt

h∼!P!πt
z

.
PD(z

′ |ptt
h
)1 (E2 holds)

/
+ 2HT δ

≤ c0 ·H log(cZ |Z|/δ) ·
!
η!−Hλ−1

R
∆Rep(Np, Tp, H, δ)2

"−1

+ 2HT δ. (49)

Combine (42), (47), (44) and (49), it holds that

(iv) ≤ c0 ·H2 log(cZ |Z|/δ) ·
!
η!−Hλ−1

R
·∆Rep(Np, Tp, H, δ)2

"−1

? @A B
(v)

+HTη−1
!
η!−Hλ−1

R
·∆Rep(Np, Tp, H, δ)2

"
? @A B

(vi)

+λSH
2
T ·∆LLM(Np, Tp, H, δ)

+H
2
T (ηλR)

−1 ·∆Rep(Np, Tp, H, δ)2 + 2HT δ, (50)
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If we explore with probability ! = H(ηλR)
−1 · ∆Rep(Np, Tp, H, δ)2 + (H log (cZ |Z|/δ) /Tη)1/2, which satisfies the

condition that η! ≥ Hλ−1

R
∆Rep(Np, Tp, H, δ)2 assumed in (47), then we have

(v) + (vi) ≤ O
5
H

3
2

7
log(cZ |Z|/δ) · T/η

6
. (51)

Step 3. Conclude the Proof based on Step 1 and Step 2.

Combine (38), (40), (50) and (51), the regret under the practical setting follows

Reg
z
(T ) ≤ (i) + (iii) + (iv) +HT · P(E1 fails)

= O
5
H

3
2

7
log(cZ |Z|/δ) · T/η

? @A B
Planning error

+H
2
T ·∆p(Np, Tp, H, δ, ξ)

6

? @A B
Pretraining error

+4HT δ, (52)

where the cumulative pretraining error of the imperfectly pretrained PAR system follows

∆p(Np, Tp, H, δ, ξ) = (ηλR)
−1 ·∆Rep(Np, Tp, H, δ)2

+ 2λ−1

R
·∆Rep(Np, Tp, H, δ) + λS ·∆LLM(Np, Tp, H, δ).

Here, ξ = (η,λS ,λR) denotes the set of distinguishability and coverage coefficients in Definition 4.4 and Assumption 5.6,
and ∆LLM(Np, Tp, H, δ) and ∆Rep(Np, Tp, H, δ) are pretraining errors defined in Theorem 5.3 and Theorem 5.5. By taking
δ = 1/

√
T , we complete the proof of Theorem 5.7. □

D.3. Proof of Lemma D.1

In this subsection, we provide a detailed examination of the posterior concentration when there exists a mismatch between
the ground-truth environment and the practical environment with pretrained modules. The argument is formalized below.
Lemma D.1. Suppose that Assumption 4.5 and Theorem 5.5 hold. For all (z′, h, t) ∈ Z × [H] × [T ], with probability at
least 1− 2δ, it holds that

(i). LLLM
h,t

(z′) ≤
!
t− |X t

exp|
"
Hλ−1

R
·∆Rep(Np, Tp, H, δ)2 + 4 log(|Z|/δ),

(ii). Lexp
h,t

(z′) ≤ |X t

exp|Hλ−1

R
·∆Rep(Np, Tp, H, δ)2 + 4 log(|Z|/δ)− 2η · |X t

exp|+ 2η,

where L
LLM
h,t

(z′) and L
exp
h,t

(z′) are the information gain defined in (45).

Proof of Lemma D.1. Let Ft be the filtration induced by {ωi
, τ i

H
}i<t ∪ {1(πi = πexp)}i∈[t]. Consider a fixed tuple

(z′, h, t) ∈ Z × [H]× [T ], it holds that

)Pz(L
LLM
h,t

(z′) ≥ βLLM
h,t

) ≤ inf
λ≥0

EF1:t

.
exp(λ · (LLLM

h,t
(z′)− βLLM

h,t
))
/

= inf
λ≥0

E"
i∈[t]\Xt

exp

!P!πi
z

N

Oexp

T

U
'

i∈[t]\X t
exp

λ · log
<
P!πi

z′ (τ̆ i
h/t

)

P!πi

z
(τ̆ i

h/t
)

=
− λ · βLLM

h,t

V

W

P

Q

= inf
λ≥0

,

i∈[t]\X t
exp

EP!πi
z

N

O
<
P!πi

z′ (τ̆ i
h/t

)

P!πi

z
(τ̆ i

h/t
)

=λ

·
)P!πi

z′ (τ̆ i
h/t

)

P!πi

z
(τ̆ i

h/t
)

P

Q · exp
!
−λ · βLLM

h,t

"

≤ inf
λ≥0

,

i∈[t]\X t
exp

EP!πi
z

N

O
<
P!πi

z′ (τ̆ i
h/t

)

P!πi

z
(τ̆ i

h/t
)

=2λ
P

Q
1/2

EP!πi
z

N

O
<)P!πi

z′ (τ̆ i
h/t

)

P!πi

z
(τ̆ i

h/t
)

=2
P

Q
1/2

· exp
!
−λ · βLLM

h,t

"
,

where the first inequality is a natural corollary to Lemma F.1, and the last inequality follows the Cauchy-Swartz inequality.
By taking λ = 1

4
, for all (h, t) ∈ [H]× [T ], we have

EP!πi
z

N

O
<
P!πi

z′ (τ̆ i
h/t

)

P!πi

z
(τ̆ i

h/t
)

=1/2
P

Q
1/2

EP!πi
z

N

O
<)P!πi

z′ (τ̆ i
h/t

)

P!πi

z
(τ̆ i

h/t
)

=2
P

Q
1/2

≤
1
1 + χ2

!
P!πi

z′ (τ̆ i
h/t

)0 )P!πi

z
(τ̆ i

h/t
)
"
. (53)
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Based on Theorem 5.5 and Assumption 4.5, for any policy π ∈ Π, it holds that

1 + χ2
!
Pπ
z′(τh)0 )Pπ

z
(τh)

"
≤ 1 + χ2

!
Pπ
z′(τh, s1:h)0 )Pπ

z
(τh, s1:h)

"

≤ 1 + χ2

<
h,

h′=1

Pπ
z′(gh, sh+1 | τh, sh) ·O(oh | sh)0

h,

h′=1

Pπ
z′(gh, sh+1 | τh, sh) ·O!γ(oh | sh)

=

≤
!
1 + max

s∈S

#
χ2

!
O(· | s)0O!γ(· | s)

"$"H ≤
!
1 + λ−1

R
·∆Rep(Np, Tp, H, δ)2

"H
, (54)

where the first inequality follows data processing inequality and the second inequality arises from the tensorization (Theo-
rem 7.32 and §7.12, Polyanskiy & Wu, 2022). To ensure that LLLM

h,t
(z′) ≤ βLLM

h,t
holds for all (z′, h, t) ∈ Z × [H]× [T ] with

probability at least 1− δ, we let

,

i∈[t]\X t
exp

1
1 + χ2

!
P!πi

z′ (τ̆ i
h/t

)0 )P!πi

z
(τ̆ i

h/t
)
"
· exp

<
−
βLLM
h,t

4

=
=

δ

|Z| ,

with a union bound taken over Z , since Lemma F.1 has ensured the inequality holds for all (h, t) ∈ [H] × [T ]. Thus, the
constant βLLM

h,t
is then chosen as

βLLM
h,t

= 2
'

i∈[t]\X t
exp

log
5
1 + χ2

!
P!πi

z′ (τ̆ ih/t)0 )P!πi

z
(τ̆ i

h/t
)
"6

+ 4 log(|Z|/δ)

≤
!
t− |X t

exp|
"
·H log

!
1 + λ−1

R
·∆Rep(Np, Tp, H, δ)2

"
+ 4 log(|Z|/δ)

≤
!
t− |X t

exp|
"
·Hλ−1

R
·∆Rep(Np, Tp, H, δ)2 + 4 log(|Z|/δ),

which is based on (53), (54) by taking a union bound over Z , and the last inequality results from log(1 + x) ≤ x for all
x ≥ 0. Similarly, for the exploration episodes, we let

)Pz(L
exp
h,t

(z′) ≥ βexp
h,t

) ≤ inf
λ≥0

E
*
exp(λ · (Lexp

h,t
− βexp

h,t
))
+

≤
,

i∈X t
exp

1
1−D

2

H

!
P!πi

z′ (τ̆ i
h/t

),P!πi

z
(τ̆ i

h/t
)
"
·
1
1 + χ2

!
P!πi

z′ (τ̆ i
h/t

)0 )P!πi

z
(τ̆ i

h/t
)
"
· exp

0
−1

4
βexp
h,t

2
.

Furthermore, based on Definition 4.4, the expolration episodes satisfies that
'

i∈X t
exp

D
2

H

!
P!πi

z′ (τ̆ ih/t),P
!πi

z
(τ̆ i

h/t
)
"
≥

'

i∈X t−1
exp

D
2

H

!
P!πi

z′ (τH),P!πi

z
(τH)

"
≥ η · |X t−1

exp |. (55)

To ensure that Lexp
h,t

(z′) ≤ βexp
h,t

holds for all (z′, h, t) ∈ Z × [H]× [T ] with high probability, we take

,

i∈[t]\X t
exp

1
1−D

2

H

!
P!πi

z′ (τ̆ i
h/t

),P!πi

z
(τ̆ i

h/t
)
"
·
1
1 + χ2

!
P!πi

z′ (τ̆ i
h/t

)0 )P!πi

z
(τ̆ i

h/t
)
"
· exp

<
−
βexp
h,t

4

=
=

δ

|Z| ,

with a union bound taken over Z , and thus the constant βexp
h,t

is chosen as

βexp
h,t

= 2
'

i∈X t
exp

log
5
1−D

2

H

5
P!πi

z′ (τ̆ ih/t),P
!πi

z
(τ̆ i

h/t
)
66

+ 2
'

i∈X t
exp

log
5
1 + χ2

!
P!πi

z′ (τ̆ ih/t)0 )P!πi

z
(τ̆ i

h/t
)
"6

+ 4 log(|Z|/δ)

≤ |X t

exp| ·H log
!
1 + λ−1

R
·∆Rep(Np, Tp, H, δ)2

"
+ 4 log(|Z|/δ)− 2η · |X t−1

exp |
≤ |X t

exp| ·Hλ−1

R
·∆Rep(Np, Tp, H, δ)2 + 4 log(|Z|/δ)− 2η · (|X t

exp|− 1),

where the first inequality results from (54), (55) and facts that log(1 − x) ≤ −x for all x ≤ 1 and log(1 + x) ≤ x for all
x ≥ 0, and then we complete the proof of Lemma D.1. □
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D.4. Proof of Lemma D.2

Lemma D.2 (Learning Target of Contrastive Loss). For any observation-state pair (o, s) ∈ O × S sampled from the
contrastive collection process, the learning target is f∗(o, s) = O(o | s)/P−(o).

Proof of Lemma D.2. For any (o, s) ∈ O × S , the posterior probability of label y follows that

D(y |o, s) := PC(y |o, s) =
PC(o | s, y) · PC(s |y)8

y∈{0,1} PC(o | s, y) · PC(s |y)
,

where the equation follows Baye’s Theorem and PC(y = 0) = PC(y = 1) = 1/2. Moreover, the contrastive data collection
process in §3.2 indicates that

PC(· | s, y = 0) = O(· | s), PC(· | s, y = 1) = P−(·), (56)

and data are labeled independent of data itself, such that PC(s |y) = PC(s). Thus, PC(y |o, s) = PC(o | s, y)/(P−(o) +
O(o | s)). Recall that the population risk is

RCT(γ;DRep) = E [DKL (Dγ(·|o, s)0D(·|o, s)) + Ent(D(·|o, s))] .
As the minimum is attained at Dγ(· |o, s) = D(· |o, s). Following (7), the learning target follows

PC(o | s, y)
P−(o) +O(o | s) =

0
f
∗(o, s)

1 + f∗(o, s)

2y 0
1

1 + f∗(o, s)

21−y

. (57)

By solving the equation in (57), the learning target follows that f∗(o, s) = O(o | s)/P−(o) for the contrastive loss in (6),
and then we conclude the proof of Lemma D.2. □

E. Proof for Section B: Extentions
E.1. Proof of Proposition B.1

Proof of Proposition B.1. Based on the law of total probability, it holds that

PD (oh | (o, g)1:h−1,Ht) =
'

z∈Z
Pz (oh | (o, g)1:h−1) · PD (z | (o, g)1:h−1,Ht) (58)

Furthermore, based on Baye’s theorem, we have

PD (z | (o, g)1:h−1,Ht) =

4
h−2

h′=1
Pz (oh′+1 | (o, g)1:h′)

4
h−2

h′=1
PD (oh′+1 | (o, g)1:h′ ,Ht)

· PD(z |Ht), (59)

Hence, (58) and (59) jointly indicates that
h−1,

h′=1

PD (oh′+1 | (o, g)1:h′ ,Ht) = PD (oh | (o, g)1:h−1,Ht) ·
h−2,

h′=1

PD (oh′+1 | (o, g)1:h′ ,Ht)

=
'

z∈Z
Pz (oh | (o, g)1:h−1) ·

h−2,

h′=1

Pz (oh′+1 | (o, g)1:h′) · PD(z |Ht)

=
'

z∈Z

<
h−1,

h′=1

Pz (oh′+1 | (o, g)1:h′)

=
· PD(z |Ht). (60)

Thus, following the definition of marginal distributions, it holds that

Pt

LLM (oh |o1,do g1:h−1) =

X

o2:h−1

h−1,

h′=1

PD (oh′+1 | (o, g)1:h′ ,Ht) do2:h−1

=
'

z∈Z

<X

o2:h−1

h−1,

h′=1

Pz (oh′+1 | (o, g)1:h′) do2:h−1

=
· PD(z |Ht)

=
'

z∈Z
Pz (oh |o1,do g1:h−1) · PD(z |Ht),

29



From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems

where the second equation follows (60) and then we complete the proof of Proposition B.1.

E.2. Proof of Corollary B.3

Notations. Denote (J , )J ) and (π∗
z
, )π∗

z
), and (Pz,h,

)Pz,h) as the value functions, optimal policies, and probability under
the environment concerning the ground-truth O and the pretrained O!γ . Let ( )Jt,LLM, )πt,∗

LLM) denote the value function of
the environment simulated by pretrained LLM!θ and its optimal policy; Jt,LLM denote the value function of the environment
simulated by perfect LLM; (Pt

LLM,
)Pt

LLM) are the probability under environment simulated by perfect LLM or pretrained LLM!θ.

Proof of Corollary B.3. Condition on the event E1 that both Theorem 5.3 and 5.5 hold, the regret can be decomposed as

Reg
z
(T ) ≤

T'

t=1

)Jz()π∗
z
,ωt)− Jz()π∗

z
,ωt)

? @A B
(i)

+

T'

t=1

EHt

*
Jz()π∗

z
,ωt)− )Jt,LLM()π∗

z
,ωt)

+

? @A B
(ii)

+

T'

t=1

EHt

*
)Jt,LLM()π∗

z
,ωt)− )Jt,LLM()πt

,ωt)
+

? @A B
(iii)

+

T'

t=1

EHt

*
)Jt,LLM()πt

,ωt)− Jz()πt
,ωt)

+

? @A B
(iv)

+

T'

t=1

EHt

*
Jz()πt

,ωt)− )Jz()πt
,ωt)

+

? @A B
(v)

. (61)

Step 1. Bound (i) and (v) with Translator’s Pretraining Error.

Similar to (39) in the proof of Theorem 5.7, it holds that

(i) + (vi) ≤ 2H2
Tλ−1

R
·∆Rep(Np, Tp, H, δ), (62)

following the pretraining error in Theorem 5.5.

Step 2. Bound (iii) via Optimality in Planner’s Algorithm.

Recall that the Planner follows policy πt

h
(· | τ t

h
,ωt) ∼ (1− !) · )πt,∗

h,LLM(· | τ th,ωt) + ! · πh,exp(·|τ th). Then, it holds that

(iii) =
T'

t=1

EHt

*
)Jt,LLM()π∗

z
,ωt)− )Jt,LLM()πt,∗

LLM,ω
t)
+
+

T'

t=1

EHt

*
)Jt,LLM()πt,∗

LLM,ω
t)− )Jt,LLM()πt

,ωt)
+

≤
T'

t=1

EHt

*
)Jt,LLM()πt,∗

LLM,ω
t)− (1− !) · )Jt,LLM()πt,∗

LLM,ω
t)− ! · )Jt,LLM(πexp,ω

t)
+
≤ 2HT !, (63)

where the the first inequality results from the optimality of )πt,∗
LLM under simulated environment.

Step 3. Bound (ii) and (iv) with LLM’s Pretraining Error.

For any policy π ∈ Π, given history Ht, the performance difference follows
)Jt,LLM(π,ω

t)− Jz(π,ω
t) = )Jt,LLM(π,ω

t)− Jt,LLM(π,ω
t) + Jt,LLM(π,ω

t)− Jz(π,ω
t)

≤ E

&
H'

h=1

X

oh

5
)Pt

LLM (oh |o1,do g1:h−1)− Pt

LLM (oh |o1,do g1:h−1)
6
doh

(

? @A B
(vi)

+ sup
g1:H−1

H'

h=1

X

oh

!
Pt

LLM (oh |o1,do g1:h−1)− Pz (oh |o1,do g1:h−1)
"
doh

? @A B
(vii)

, (64)
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where the inequality arises from 0rh0∞ ≤ 1 depending solely on oh. Furthermore, we have
X

oh

)Pt

LLM (oh |o1,do g1:h−1)− Pt

LLM (oh |o1,do g1:h−1) doh

=

X

o2:h

)Pt

LLM (o2:h |o1,do g1:h−1)− Pt

LLM (o2:h |o1,do g1:h−1) do2:h

=

X

o2:h

<
h−1,

h′=1

)Pt

LLM (oh′+1 | (o, g)1:h′)−
h−1,

h′=1

Pt

LLM (oh′+1 | (o, g)1:h′)

=
do2:h. (65)

Following the arguments above, the difference can be decomposed as

h−1,

h′=1

)Pt

LLM (oh′+1 | (o, g)1:h′)−
h−1,

h′=1

Pt

LLM (oh′+1 | (o, g)1:h′)

=

h−1'

h′=1

5
)Pt

LLM (oh′+1 | (o, g)1:h′)− Pt

LLM (oh′+1 | (o, g)1:h′)
6

·
h−1,

k=h′+1

)Pt

LLM (ok+1 | (o, g)1:k) ·
h
′−1,

k=1

Pt

LLM (ok+1 | (o, g)1:k)

=

h−1'

h′=1

!
LLM!θ (oh′+1 | (o, g)1:h′ ,Ht)− LLM (oh′+1 | (o, g)1:h′ ,Ht)

"

·
h−1,

k=h′+1

)Pt

LLM (ok+1 | (o, g)1:k) ·
h
′−1,

k=1

Pt

LLM (ok+1 | (o, g)1:k) . (66)

Combine (65) and (66), it holds that

(vi) ≤
H'

h=1

X

o2:h

h−1'

h′=1

!
LLM!θ (oh′+1 | (o, g)1:h′ ,Ht)− LLM (oh′+1 | (o, g)1:h′ ,Ht)

"

·
h−1,

k=h′+1

)Pt

LLM (ok+1 | (o, g)1:k) ·
h
′−1,

k=1

Pt

LLM (ok+1 | (o, g)1:k) do2:h

≤
H'

h=1

h−1'

h′=1

E(o,g)1:h′ |Ht

.
DTV

!
LLM!θ (oh′+1 | (o, g)1:h′ ,Ht) , LLM (oh′+1 | (o, g)1:h′ ,Ht)

"/
. (67)

Following (67), for any policy π ∈ Π, we have

T'

t=1

EHt

*
)Jt,LLM(π,ω

t)− Jt,LLM(π,ω
t)
+

≤
T'

t=1

H'

h=1

h−1'

h′=1

EHtE(o,g)1:h′ |Ht

.
DTV

!
LLM!θ (oh′+1 | (o, g)1:h′ ,Ht) , LLM (oh′+1 | (o, g)1:h′ ,Ht)

"/

≤
T'

t=1

H'

h=1

h−1'

h′=1

λS,1λ
−1

S,2
· ĒDLLM

.
DTV

!
LLM!θ (oh′+1 | (o, g)1:h′ ,Ht) , LLM (oh′+1 | (o, g)1:h′ ,Ht)

"/

≤ H
2
TλS,1λ

−1

S,2
·∆LLM(Np, Tp, H, δ) (68)

where the first inequality follows Theorem 5.3 and Assumption B.2. Based on Proposition B.1, the term (vii) can be upper
bounded using the Bayesian aggregated arguments such that

(vii) = sup
g1:H−1

'

z′ ∕=z

H'

h=1

X

oh

(Pz′ (oh |o1,do g1:h−1)− Pz (oh |o1,do g1:h−1)) · PD(z
′ |Ht)doh ≤ H

'

z′ ∕=z

PD(z
′ |Ht).
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Following the arguments above, for any policy π ∈ Π, it holds that

T'

t=1

EHt

*
)Jt,LLM(π,ω

t)− Jz(π,ω
t)
+
≤ H

T'

t=1

'

z′ ∕=z

EHt [PD(z
′ |Ht)] , (69)

Combine (68), (69) and the similar concentration arguments of posterior probability in (48), denoted by event E2 (see proof
of Theorem 5.7 in §D.2), it holds that

(ii) + (iv) ≤
T'

t=1

EHt

*5
Jz()π∗

z
,ωt)− )Jt,LLM()π∗

z
,ωt)

6
· 1 (E2 holds)

+

+

T'

t=1

EHt

*5
)Jt,LLM()πt

,ωt)− Jz()πt
,ωt)

6
· 1 (E2 holds)

+
+ 2HT δ

≤ 2H2
TλS,1λ

−1

S,2
·∆LLM(Np, Tp, H, δ) + 2HT δ

+ c0 · 2H log(cZ |Z|/δ) ·
!
η!−Hλ−1

R
·∆Rep(Np, Tp, H, δ)2

"−1

(70)

Step 4. Conclude the Proof based on Step 1, Step 2, and Step 3.

Combine (62), (63) and (70), we have

Reg
z
(T ) ≤ c0 · 2H log(cZ |Z|/δ) ·

!
η!−Hλ−1

R
·∆Rep(Np, Tp, H, δ)2

"−1

? @A B
(viii)

+4HT δ

+ 2HTη−1
!
η!−Hλ−1

R
·∆Rep(Np, Tp, H, δ)2

"
? @A B

(ix)

+2H2
TλS,1λ

−1

S,2
·∆LLM(Np, Tp, H, δ)

+ 2H2
T (ηλR)

−1 ·∆Rep(Np, Tp, H, δ)2 + 2H2
Tλ−1

R
·∆Rep(Np, Tp, H, δ)

≤ O
5
H

7
log(cZ |Z|/δ) · T/η +H

2
T ·∆p,wm(Np, Tp, H, δ, ξ)

6
+ 4HT δ, (71)

if we choose ! = (log(cZ |Z|
√
T )/Tη)1/2 + H(ηλmin)

−1 · ∆Rep(Np, Tp, H, δ)2 to strike an exploration-exploitation
balance between (viii) and (ix). Thus, the cumulative pretraining error follows

∆p,wm(Np, Tp, H, δ, ξ) = 2(ηλR)
−1 ·∆Rep(Np, Tp, H, δ)2

+ 2λ−1

R
·∆Rep(Np, Tp, H, δ) + 2λS,1λ

−1

S,2
·∆LLM(Np, Tp, H, δ).

Here, ξ = (η,λS,1,λS,2,λR) denotes the set of distinguishability and coverage coefficients in Definition 4.4 and Assump-
tion 5.6, and ∆LLM(Np, Tp, H, δ) and ∆Rep(Np, Tp, H, δ) are pretraining errors defined in Theorem 5.3 and Theorem 5.5.
By taking δ = 1/

√
T , we complete the entire proof.

E.3. Proof of Corollary B.4

The proof is similar to that in §C.2.

Proof Sketch of Corollary B.4. We first verify the claim in (14), which is akin to Proposition 4.2. Note that for all
(h, t) ∈ [H]× [T ], based on the law of total probability, it holds that

πt

h,LLM

!
gt

h
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h
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"
=

,

k∈K
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!
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=
,
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<
'

z∈Z
P
!
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t

h,k
|ptt
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, z
"
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=

=
,
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<
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z∈Z
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h
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"
· PD
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z |ptt

h

"
=
, (72)
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where the first equation arises from the autoregressive manner of LLM, and the last equation follows the generating distri-
bution. The Planner takes a mixture policy of πexp and πLLM such that

πt

h
(gt

h
| τ t

h
,ωt) ∼ (1− !) · πt

h,LLM(g
t

h
| τ t

h
,ωt) + ! · πh,exp(g

t

h
| τ t

h
), (73)

for any (h, t) ∈ [H]× [T ] given an η-distinguishable policy πexp (see Definition 4.4). Given a sequence of high-level tasks
{ωt}t∈[T ], the regret can be decomposed as

Reg(T ) ≤
T'

t=1

H'

h=1
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z
E
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h
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/
+HT !, (74)

Recall that (17) indicates that for all (h, t) ∈ [H]× [T ], we have

!
π∗
z,h

− πt

h,LLM

"
(gh | τh,ω)

=
,

k∈K

<
'

z′∈Z
π∗
z′,h,k (gh,k | τh,ω) · PD

!
z
′ |ptt

h

"
=

−
,

k∈K
π∗
z,h,k

(gh,k | τh,ω)

≤ H

'

k∈K

T

U
'

z′ ∕=z

(π∗
z′,h,k − π∗

z,h,k
) (gh,k | τh,ω) · PD

!
z
′ |ptt

h

"
V

W

·
k−1,

k′=1

<
'

z′′∈Z
π∗
z′′,h,k′ (gh,k,k′ | τh,ω) · PD

!
z
′ |ptt

h

"
=

·
K,

k′=k+1

π∗
z,h

(gh,k | τh,ω).

Following this, we have
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!
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"
, (75)

for all (h, t) ∈ [H] × [T ]. Based on Lemma C.1 and the similar arguments in the proof Theorem 4.6 in §C.2, with
probability at least 1− δ, the following event E1 holds: for all (h, t) ∈ [H]× [T ],

'

z′ ∕=z

PD(z
′ |ptt

h
) ≤ O

!
min

#
log (cZ |Z|/δ) η−1

/|X t−1

exp |, 1
$"

, (76)

where X t

exp = {i ∈ [t] : πi = πexp} denotes the set of exploration episodes. Based on (72), (75) and conditioned on E1, it
holds that
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exp |, 1
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, (77)

Note that 1(πt = πexp)
iid∼ Bernuolli(!) for all t ∈ [T ]. Besides, with probability at least 1 − δ, the following event E2

holds:

T'

t=1

min
#
1/|X t−1

exp |, 1
$
≤ O(!−1 log(T log T/δ)). (78)
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based on Lemma F.5. Combine (74), (77) and (78), it follows that

Reg
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3
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7
TK/η · log (cZ |Z|/δ)

6
,

where we choose to expolre with probability ! = (HK log (cZ |Z|/δ) /Tη)1/2 in the last inequality. If we take δ = 1/
√
T

in the arguments above, then we conclude the proof of Corollary B.4. □

F. Technical Lemmas
Lemma F.1 (Martingale Concentration Inequality). Let X1, . . . , XT be a sequence of real-valued random variables
adapted to a filter (Ft)t≤T . For any δ ∈ (0, 1) and λ > 0, it holds that

P

T

U∃T ′ ∈ [T ] : −
T

′'

t=1

Xt ≥
T

′'

t=1

1

λ
logE [exp(−λXt)|Ft−1] +

1

λ
log (1/δ)

V

W ≤ δ.

Proof of Lemma F.1. See Lemma A.4 in Foster et al. (2021) and Theorem 13.2 in Zhang (2023) for detailed proof. Lemma
A.4 in Foster et al. (2021) is a special case by taking λ = 1.
Lemma F.2 (Donsker-Varadhan). Let P and Q be the probability measures over X , then

DKL(P 0Q) = sup
f∈F

{Ex∼P [f(x)]− logEx∼Q [exp(f(x))]} ,

where F = {f : X &→ R |Ex∼Q [exp(f(x))] ≤ ∞}.

Proof of Lemma F.2. See Donsker & Varadhan (1976) for detailed proof.
Lemma F.3 (MLE guarantee). Let F be finite function class and there exists f∗ ∈ F such that f∗(x, y) = P(y |x), where
P(y |x) is the conditional distribution for estimation. Given a dataset D = {xi, yi}i∈[N ] where xi ∼ PD(· |x1:i−1, y1:i−1)
and yi ∼ PD(· |xi) for all i ∈ [N ], we have

ĒD

*
D

2

TV

5
)f(x, ·), f∗(x, ·)

6+
≤ 2 log(N |F|/δ)/N

with propbability at least 1− δ, where )f is the maximum likelihood estimator such that

)f := argmax
f∈F

)ED [log f(x, y)] .

Proof of Lemma F.3. See Theorem 21 in Agarwal et al. (2020) for detailed proof.
Lemma F.4 (Performance Difference Lemma for POMDP). Consider policies π,π′ ∈ Π, it holds

J (π)− J (π′) =

H'
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Eπ

*
Q

π′

h
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π′

h
(sh, τh)

+
.

For fixed policy π ∈ Π under different POMDPs, denoted by M and M′, then it holds that
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π
h+1,M′ − Ph,M′V
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/
,

where Ph,MV
π
h+1,M′(sh, τh, gh) = 〈V π

h+1,M′(·, ·),Ph,M(·, · | sh, τh, gh)〉S×T ∗ .
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Lemma F.5. Let Xt

iid∼ Bernuolli(ρ) and Yt =
8

t

τ=1
Xτ . For any δ ∈ (0, 1) and ρ > 0, with probability greater than

1− δ, it holds that
8

T

t=1
min {1/Yt, 1} ≤ O(ρ−1 log(T log T/δ)).

Proof of Lemma F.5. Note that {Yt}t∈[T ] is non-decreasing and it holds that
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1

Yt

, 1
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= #{t ∈ [T ] : Yt = 0}+

'

t∈[T ]:Yt>0

1
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, (79)

and with probability at least 1− δ, the following event E0 holds:

t0 := #{t ∈ [T ] : Yt = 0} ≤ log(δ)

log(1− ρ)
≤ ρ−1 log(1/δ),

where the first inequality results from the property of Bernuolli random variable, and the second inequality uses fact that
log(1 − x) ≤ −x for all x ≤ 1. For notational simplicy, we write {t ∈ [T ] : Yt > 0} = {t0, . . . , t0 + 2NT − 1}. With
probability at least 1− δ, the following event En holds:

Yt0+2n =

t0+2
n'

τ=1
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t0+2
n'

τ=t0+1

Xt ≥ 2nρ−
7
2n−1 log(1/δ). (80)

based on the Hoeffding inequality. Suppose that {En}n∈[NT ] holds, then we have
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2n−1 log(1/δ), 1}

. (81)

Let n0 = 1 + ⌈log
2
(ρ−2 log(1/δ))⌉ such that ρ−

7
log(1/δ)/2n+1 ≥ ρ/2. Following (81), it holds
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1

Yt

≤
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n=0

2n +

NT'

n=n0+1

2ρ−1 ≤ 2n0+1 + 2ρ−1
NT ≤ 8ρ−2 log(1/δ) + 4ρ−1 log T. (82)

Combine (80) and (82), by taking a union bound over E0, . . . , ENT
, then we can get

T'

t=1

min

Y
1

Yt

, 1

Z
≤ 8ρ−2 log(2NT /δ) + 4ρ−1 log(2TNT /δ)

≤ 8ρ−2 log(4 log T/δ) + 4ρ−1 log(4T log T/δ) ≤ O(ρ−1 log(T log T/δ)),

where we use the fact that log
2
T ≤ 2 log T , and then we finish the proof of Lemma F.5.
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