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Abstract

This paper investigates infinite argumentation frameworks. We introduce computability theoretic ma-
chinery as a robust method of evaluating, in the infinite setting, the complexity of the main computational
issues arising from admissible, complete, and stable semantics: in particular, for each of these semantics,
we measure the complexity of credulous and skeptical acceptance of arguments, and that of determining
existence and uniqueness of extensions. We also propose a way of using Turing degrees to classify, for
a given infinite argumentation framework, the exact difficulty of computing an extension in a given
semantics and show that these problems give rise to a rich class of complexities.
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1. Introduction

Abstract argumentation theory is a fundamental research area in Al, providing a powerful
paradigm for reasoning about knowledge representation and multi-agent systems. Historically,
the focus has predominantly been on finite argumentation frameworks (AFs), leaving the
infinite case relatively unexplored. As noted in [1], this oversight poses significant theoretical,
conceptual, and practical limitations.

Firstly, infinite frameworks align naturally with Dung’s seminal approach [2], whose results
do not presuppose finiteness. Secondly, representing argumentation scenarios in an infinite
manner captures the inherently nonmonotonic nature of argumentation, where arguments can
always be challenged by the emergence of new information, making any fixed limit on the space
arguments or attacks somewhat artificial. Thirdly, infinite AFs often arise in practical contexts,
such as logic programming [3] and the logical analysis of multi-agent or distributed systems [4]
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(the substantial introduction of [1] provides other concrete examples of applications of infinite
AFs, e.g., to multiagent negotiations).

Fortunately, recent years have seen a growing interest in infinite AFs, with special focus
on how the existence and interplay of various semantics—well-understood for finite AFs—are
affected in the infinite realm (see, e.g., [5, 6, 7, 8, 9]). This increasing recognition underscores
the importance of infinite AFs for a broad understanding of argumentation theory.

However, the literature still lacks a comprehensive framework for systematically exploring
all logical aspects of infinite AFs, particularly regarding their core computational issues. A
significant research avenue in finite AFs has been determining the algorithmic complexity of
tasks associated with finding acceptable collections of arguments (up to suitable collection of
semantics), with numerous complexity theoretic results highlighting their inherent computa-
tional difficulty (see, e.g., [10, 11, 12]). To our knowledge, no analog study has been conducted
for infinite AFs.

This paper addresses this gap by initiating a systematic study of the complexity of computa-
tional problems in infinite AFs. For this endeavor, we bring into the subject of argumentation
theory the machinery of computability theory, which may be regarded as an infinitary com-
panion of computational complexity theory and abounds with concepts and hierarchies for
measuring the complexity of computing or defining countably infinite objects.

The application of computability theoretic tools outside of mathematical logic is a well-
established idea. Over the past decades, computability theory has been applied to a wide array
of mathematical disciplines, and computability theoretic concepts have found applications in
other formal subjects, such as theoretical computer science, economics, and linguistics (see, e.g.,
[13, 14, 15]).

The present paper, we argue, provides compelling evidence of the benefits of viewing infinite
AFs through a computability theoretic lens. We assess the complexity of many computational
problems—both established and novel—within our framework, illustrating their undecidability
while providing precise measures of their complexity.

Organization of the paper

Section 2 briefly reviews the main semantic concepts from argumentation theory that are
relevant to this paper, along with the fundamental computational problems associated with
them. In Section 3, we introduce the key notions of computability theory employed in the
work and we define the concept of computable AFs and the computational issues emerging
from it. Finally, in Section 4, we provide lower bounds for the complexity of our computational
problems. Our results are collected in Table 2.

2. Argumentation theoretic background

To keep our paper self-contained, we now briefly review some key concepts of Dung-style
argumentation theory, focusing on the semantics notions considered in this paper and the fun-
damental computational problems associated with them (the surveys [16, 17] offer an overview
of these topics).
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An argumentation framework (AF) F is a pair (Ar, Rr) consisting of a set A of arguments
and an attack relation Rr C Ar x Ar. If some argument a attacks some argument b, we may
write @ — b instead of (a,b) € Rr. Collections of arguments S C A are called extensions.
For an extension S, the symbols ST and S~ denote, respectively, the arguments that S attacks
and the arguments that attack S:

St={z:Byes)(y— )}
ST ={z:(3yeS)(z—y)}

S defends an argument a, if any argument that attacks a is attacked by some argument in S
(e, {a}~ C ST). The characteristic function of F is the following mapping f7 which sends
subsets of Ar to subsets of Ar:

fr(S) :={z: zis defended by S}.

All AFs investigated in this paper are infinite.

A semantics o assigns to every AF F a set of extensions o (F) which are deemed as acceptable.
A huge number of semantics, fueled by different motivations, have been proposed and analyzed.
Here, we focus on three prominent choices, whose computational aspects are well-understood
in the finite setting: admissible, complete, and stable semantics (abbreviated by ad, co, stb,
respectively).

Let F = (Ar, Rr) be an AF. Denote by c¢f{F) the collection of extensions of F which are
conflict-free (ie., S € cflF) iff a /> b, for all a,b € S). Then, for S € cf(F),

« S € ad(F) iff S is self-defending (i.e., S C fr(5));
« S € co(F) iff S is a fixed point of fr (ie., S = fr(9));
S € stb(F), iff S attacks all arguments outside of it (i.e., ST = Ax \ S).

In discussing the complete extensions, we will also briefly mention the grounded extension,
which is the unique smallest fixed point of fr; in any AF, the grounded extension always exists
[2, Theorem 3].

For a given semantics o, the following are well-known computational problems related to o:

« Cred, (for credulous acceptance) is the decision problem whose accepting instances are
the pairs (F, a) so that a € S for some S € o(F);

« Skept, (for skeptical acceptance) is the decision problem whose accepting instances are
the pairs (F, a) so thata € S for all S € o(F);

- Exist, is the decision problem whose accepting instances are the AFs F so that o(F) # 0;

« NE, is the decision problem whose accepting instances are the AFs F so that o (F)~{0} #
0;

« Uni, is the decision problem whose accepting instances are the AFs F so that |o(F)| = 1.

In formal argumentation theory, evaluating the computational complexity of the aforemen-
tioned problems for various semantics has been a noteworthy research thread for more than 20
years [17]. Table 1 collects known complexity results for the admissible, stable, and complete
semantics. This analysis refers only to finite AFs. In the next section, we introduce our com-
putability theoretic perspective that allows us to tackle complexity issues concerning infinite
AFs.
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o Cred, | Skept, | Exist, | NE, Uni,
ad | NP-c trivial trivial | NP-c | coNP-c
stb | NP-c coNP-c | NP-c NP-c | DP-c
co | NP-c P-c trivial | NP-c | coNP-c

Table 1
Computational problems for finite AFs. C-c denotes completeness for the class C.

3. Computational problems for AFs through the lens of
computability theory

In this section, we introduce computable AFs and we revisit the computational problems of
the last section through the lens of computability theory. We aim at conveying the main ideas
without delving into too many technical details. A more formal and comprehensive exposition of
the fundamentals of computability theory can be found, e.g., in [18, 19]. We begin by establishing
standard notation and terminology for some combinatorial notions that appear frequently in
our proofs.

3.1. Sequences, strings, and trees

As is common in computability theory, we denote the set of natural numbers by w. Since there is
no risk of ambiguity, we simply refer to the elements of w as numbers. The symbol w* denotes
the set of all functions from w to w. For our purposes, it is convenient to represent elements of
w? as infinite sequences of numbers; we denote by 0°° the infinite sequence consisting of only
0’s (or, equivalently, the constant function to 0). The restriction of an infinite sequence 7 € w*
to its first n-many bits is denoted by 7 [,,.

We use standard notation and terminology about strings: The set of all finite strings of
numbers is denoted by w<“. The symbol A denotes the empty string. The concatenation of
strings o, 7 is denoted by o 7. The length of a string o is denoted by |o|. If there is p so that
0" p = T, we say that o is a prefix of T and we write o < 7. Similarly, if * € w<“ ando =7 [,
for some n, we write o < .

In order to formulate our problems as subsets of w, it will be convenient to encode pairs
of numbers into single numbers. The pairing function does this. Fixp: w X w = wtobe a
computable bijection. We adopt the common habit of denoting p(z,y) by (z, y).

The encodings discussed in Section 4 heavily rely on the difficulty of calcuting paths through
trees. As is common in computability theory, we say that a tree is a set 7 C w<% closed under
prefixes. We picture trees growing upwards, with 077 to the left of 07 j, whenever i < j. A
path € w* through a tree 7 C w<Y is an infinite sequence so that 7 [,, € T, for all numbers n.
The set of paths through a tree 7 is denoted by [T]. T is well-founded if [T] = () and otherwise
is ill-founded. Note that we follow the standard terminology in computability theory requiring
that paths be infinite. Indeed, if one were to allow paths to be finite, then these notions trivialize,
since one could computably find a path through any given computable tree. For example, the
set of strings

T :={A\}U{o,071: (Vn < |o|)(c(n) =0)}
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is an ill-founded tree with [T] = {0°°}. If T contains strings of arbitrary length, then 7
has infinite height. Note that there are trees of infinite height which are well-founded, e.g.,
T={n"0:lo| <n}

3.2. Computable argumentation frameworks

A basic problem that one encounters when attempting to calibrate the algorithmic complexity
of infinite AFs is that of describing infinite objects in a finitary way. Computability theory offers
a wide range of tools designed for this endeavour. Here, we will concentrate on AFs that are
computably presentable, in the sense that there are Turing machines (or, equivalently, modern
computer programs) that, in finitely many steps, decide whether a given pair of arguments
belongs to the attack relation.

Notation. Let (®.).c. be a uniformly computable enumeration of all computable functions
from w to {0, 1}.

Definition 3.1. A number e is a computable index for an AF F = (Ar, Rr), if there is a
computable bijection f : w — Ar so that

Lif f(z) — f(y)

0  otherwise.

Pe((z,y) = {

An AF F is computably presented, if it has a computable index e € w.

We use the notation F, to refer to the AF with computable index e (note that every computable
AF possesses infinitely many computable indices.). We let a,, refer to the element of Ax, given

by f(n).

Remark 3.2. The collection of computable indices for AFs just defined is noncomputable (in
particular, any index e for a non-total computable function ®. cannot be a computable index
for an argumentation framework). There are alternative indexings that circumvent this issue;
yet, adopting another indexing would not alter the complexity of the computational problems
we analyze, though it would make the proofs slightly more cumbersome. Hence, we opt for the
simplicity of Definition 3.1.

The benefit of dealing with computable AFs is that the complexity of the decision problems
associated with them do not arise due to complexity of the argumentation framework itself,
but rather reflects the inherent complexity of the decision problem. Further, the computational
problems associated with computable AFs can be naturally represented as subsets of w, which
are suitable to be classified by computability theoretic means:

Definition 3.3. For a semantics o:
1. Cred? :={{e,a) ew: (IS € o(Fe))(a € 5)};
2. Skepty® :={(e,a) e w: (VS € o(Fe))(a € S)};
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3. Existy® :={e: (IS C Ax,))(S € o(Fe))};
4 NE® :={e: (S € a(F))(S#0)};
5 Uni® :={e: (AS C Ax,)(S € 0(Fe))}-

We also introduce new semantics which make sense only in the infinite setting. This is
motivated by the idea that, given an infinite AF, we might hope for our accepted sets to give us
infinitely much information:

1. S € infad(F) if and only if S € ad(F) and S is infinite;
2. S € infco(F) if and only if S € co(F) and S is infinite;
3. S € infstb(F) if and only if S € stb(F) and S is infinite.

In a sense, these new semantics give a measure of how much conflict lies in a given AF. For
example, if infad(F) = () for an AF F, then the size of any of its admissible extensions are
negligible in comparison to the size of F, suggesting that the attack relation in F prevents
simultaneously accepting any significant fraction of F-arguments.

As an illustration of why we might want to accept only infinite extensions, we consider that
a given infinite AF may contain a single argument b so that b attacks every other argument, and
every other argument attacks b. We imagine that b is a statement of extreme solipsism denying
the truth of any other statement. While {b} is a stable extension, it represents a negligible
fraction of arguments, and we may prefer not to accept it. In an infinite AF, any finite set is as
negligible as {b}, so we may prefer to accept only infinite extensions.

The complexity classes that most naturally match the problems of Definition 3.3 are those of
the >} and I1} sets. The X} sets are formally defined as those subsets of w that are definable
in the language of second-order arithmetic using a single second-order existential quantifier
ranging over subsets of w followed by number quantifiers and the first order functions and
relations (+, -, <, 0, 1, €); for more details, see [18, §16]. H% sets are the complements of Z%
sets.

Proposition 3.4. For o € {ad, stb, co, infad, infstb, infco}, Cred>®, Exist>°, NEX°, are X},

Proof. We first consider o € {ad, stb, co}. To define CredS°, we see from Definition 3.3:
Cred? := {(e,a) € w : (IS € o(Fc)(a € 5))} uses a single existential quantifier over
sets S. This is similarly true for the definitions of Exist;° and NES° in Definition 3.3. Thus,
it suffices to see that the condition S € o(F,) can be defined with only quantification over
arguments (which are encoded as numbers), not needing quantification over sets of arguments.
Note that the definition of S and S~ uses only quantifiers over arguments. Thus, the definition
of fr(S) given by a € f£(S) if and only if {a}~ C ST uses only quantifiers over arguments.
Finally, S € ad(F),S € stb(F),S € co(F) are all defined from fz(S) and ST using only
quantifiers over arguments.

In the case of o € {infad, infstb, infco}, we need to also observe that S being infinite is
defined via Vnam(a,, € S A m > n), which uses only quantifiers over numbers. O
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Proposition 3.5. For o € {ad, stb, co, infad, infstb, infco}, Skept=" is I1} and, for o € {ad, co},
Uni® is 1},

Proof. The definition of SkeptS® in Definition 3.3 uses a single universal set-quantifier followed
by only number quantifiers in the definition of o (F).

For o € {ad, co}, e € Uni® if and only if there are not two different o extensions (as there is
always at least one o extension). This is defined by the negation of the following formula:

(351352)(Fx € S1 N S2) A St € o(Fe) A S2 € o(Fe)).

Note that 35735, can be replaced by a single existential quantifier by encoding the pair
(S1,52) as a single set {(1,z) : © € S1} U {(2,y) : y € S2}. This shows that UniJ° is the
complement of a %] set, thus is II3. O

Remark 3.6. The above argument does not suffice to show that Uni%j, is also I3, since some
AFs have no stable extension. The most obvious definition says there exists one stable extension
and there does not exist two, which gives a definition which is a conjunction of a E% and a
H% condition, i.e., a so-called d—E} definition. This is analogous to the fact that in the finite
case Unigy is DP-complete. Similarly, the argument above does not show that Uni%° is I1} for
o € {infad, infstb, infco}. It is true that Unil® is I1} for o € {stb, infad, infstb, infco}, but we
will not include a proof in this paper.

We note that knowing that a problem is ¥ does not necessarily mean the problem is
complicated. This only gives an upper bound for its complexity. Sometimes, a simpler definition
is achievable. As an example, we consider Cred,:= {(a,e) : (35 € ¢f[F.))(a € S)}. Though
the given definition is 1, to know if an argument a belongs to a conflict-free extension of F,
it suffices to check whether a is non-self-defeating, i.e., a ~ a, which is equivalent to checking
the computable fact that ®.({f~'(a), f'(a))) = 0. In contrast, we will show that for the
computational problems associated to the admissible, stable, and complete semantics, the use of
the quantifier ranging over all sets cannot be avoided.

We will heavily rely on the following fundamental theorem by Kleene which offers a natural
way of representing X} sets:

Theorem 3.7 (Kleene [20]). A set X C w is X} if and only if there is a computable sequence of
computable trees (T,;X )new so thatn € X iff T,;X is ill-founded.

We call (7,%) . a tree-sequence for X. As a corollary of Kleene’s theorem, one obtains that
the problem of deciding which computable trees in w<* are ill-founded (or well-founded) is as
hard as any other 1 (resp., IT}) problem.

Theorem 3.7 gives a reason to consider the 3 sets as the natural infinite analogs of the NP
problems. Namely, given an ill-founded computable tree 7 and a sequence 7 which is a path
through 7, it’s relatively simple to check that = € [T] (it requires checking infinitely many
simple facts: 7 [, € T, for each n), but finding a sequence m € [T']—or even knowing whether
there exists a sequence m € [T]—is a far harder problem.

Our main goal is to exactly characterize the complexity of the computational problems
described in Definition 3.3. To do so, we need to show that they are complete for their respective
complexity classes. The following definition formalizes this notion.
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Definition 3.8. Let T be a complexity class (e.g., T € {$1,T11}). A set V C w is [-hard, if for
every X € T there is a computable function f : w — w so that v € X if and only if f(x) € V. If
V isI'-hard and belongs to T, then it is I'-complete.

Proposition 3.9. It follows from Theorem 3.7 that the set of indices for ill-founded computable
trees is a $1-complete set. Similarly, the set of indices for well-founded computable trees is a
I1}-complete set.

The following result is far less obvious, but will be useful below to examine Uni°.

Theorem 3.10 ([21, Theorem 18.11]). The set UB of indices for computable trees with exactly one
path is a I1} -complete set.

Remark 3.11. The hardness in Theorem 3.10 is quite easy. We can reduce the question of
whether a tree 7 is well-founded to whether a tree 7" has two paths, where 7' always has at
least one path, by simply giving 7" one more path than 7 (e.g. 7' = {170 : 0 € T} U {0 :
(Vn < |o|)o(n) = 0}). The fact that UB is itself IT} is the subtle part of Theorem 3.10.

Theorem 3.7 along with Definition 3.8 suggest a natural approach for gauging the complexity
of the computational problems of Definition 3.3. Namely, given another 1 (or I1}) set X, we
translate the question asking whether n € X to the question of if the tree 7,X is ill-founded
(resp., well-founded), and then we need to computably find an instance of our computational
problem which should be accepted if and only if 7,X is ill-founded (resp., well-founded). This
involves coding a tree, or more precisely, the collection of paths through a tree into the o
extensions in an argumentation framework. We do exactly this in Section 4.

Table 2 collects our results regarding complexities of the computational problems examined
for computable argumentation frameworks.

o Credy® Skept3® Existsg® NEY® Unig®

ad Nl-c4.43.4 | trivial trivial Yl-c4434 | -c4535
stb Yl-c4434 | Mi-c4.635 | Bi-c44,34 | ¥{-c44,34 | }-c45, 1
co Yl-c4.4,34 | TH-c* 35 | trivial Y1-c4.4,34 | I}-c4535
infad | Y1-c 44,34 | i-c4735 | X1-c4.4,34 | ©l-c4.4,34 | Tli-c 457
infstb | £1-c4.43.4 | 1i-c4.6,35 | X1-c4.4,34 | ¥i-c44,34 | I}l-c45, 1
infco | ©1-c4.434 | Ti-c4.6,35 | X1-c4.4,34 | Xi-c44,34 | Tli-c45, 1

Table 2

Computational problems for computable AFs. C-c denotes completeness for the class C. The numbers in
each cell of the table refer to the Theorem number providing the lower bound and upper bounds for the
result in that cell. The asterisk in the Skept?; cell reflects that this lower bound is not proved in this paper.
Rather, the I1}-hardness for Skept>® is deferred to future work focusing on the grounded semantics.
Note that (e, a) € Skepty, if and only if @ is in the unique grounded extension in F,. Similarly, the
dagger in several Uni° cells reflect that the upper bounds in these cases are not proved in this paper.
(See Remark 3.6).

Remark 3.12. As noted before, the Y1 sets are natural analogs in the infinitary setting of the
NP sets, and the I1} sets are the natural analogs of the coNP sets. With the exception of Skept>?
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and UniS;, Table 2 follows this translation from Table 1 for the first three rows. These two
results mark surprising differences in the infinite setting.

The trivial entries are due to the fact that () is always an admissible extension and the grounded
extension is always a complete extension.

3.3. Spectra of ¢ extensions

We propose a way to more fully understand the complexity of the problem of finding a o
extension in a given AF F.

Definition 3.13. For each e € w and semantics o, let Spec;w(fe) be the set of Turing degrees of
non-empty sets X C w so that {a, : n € X} is a o extension in F..

The notion Spec;Q) (Fe) exactly captures the difficulty of computing a non-empty o extension
in F,. We will be relating the problem of computing a ¢ extension in F, to the problem of
finding a path through a particular tree. So, we define the analogous notion of the spectrum of
a tree.

Definition 3.14. Given any computable tree T, we let Spec(T ) be set of Turing degrees of paths

X € [T].
Our main result in this direction is the following:

Theorem 3.15. For o € {ad, stb, co, infad, infstb, infco} and for any computable iree T, there
exists a computable AF F, so that Spec,?(F.) = Spec(T).

When o € {ad, stb, infad, infstb}, future work will show the converse, namely that for every
e, there is a computable tree so that Spec;@ (Fe) = Spec(T). Table 3 collects our results on
Spectra of extensions.

o Spec;(D

ad Exactly Spec(T)
stb Exactly Spec(T)
co Any Spec(T)
infad | Exactly Spec(T)
infstb | Exactly Spec(T)
infco | Any Spec(T)

Table 3

In this paper, we show that for any computable tree T, there is a computable argumentation framework
F. so that Spec(T) = Spec;?(F.). When o € {ad, stb, infad, infstb}, future work will show the
converse. Namely that for every e, there is a computable tree so that Spec;w(]—'e) = Spec(T). We do
not know how to attain a corresponding upper bound for the complete or infinite complete cases.

We now discuss some consequences of these characterizations on the problem of, given a
computable argumentation framework, computing some o extension. The hyperarithmetical
sets are, in a very general sense, considered the collection of constructible subsets of the
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natural numbers. Formally, a set is hyperarithmetical if and only if it is both ¥1 and II}.
The hyperarithmetical degrees are particularly useful as a yardstick of complexity because a
set X is hyperarithmetical if and only if it is computed from a set Y which can be reached
by (transfinitely) iterating the halting jump operator. Thus, the number of iterations of the
halting jump needed to compute X yields a useful yardstick for the complexity of X. For more
information about the hyperarithmetical hierarchy, see [19, Chapter 5].

Proposition 3.16. For each o € {ad, stb, co, infad, infstb, infco}, there is a computable argumen-
tation framework F, which has continuum many non-empty o extensions, yet no hyperarithmetical
non-empty o extension.

(We take this to mean that there is no uniform way to construct—even with arbitrary access to
the halting jump operator—a o extension).

Proof. There exists a computable tree with uncountably many paths yet no hyperarithmetical
path [18, Corollary XLI(b)]. Applying Theorem 3.15 to this tree yields a computable argumen-
tation framework with uncountably many non-empty o extensions, yet no hyperarithmetical
non-empty o extension. O

In the case of Proposition 3.16, there are o extensions that are not particularly computationally
powerful. They are not hyperarithmetical, but they also compute no hyperarithmetical sets. We
can think of them as on the side of the hyperarithmetical hierarchy, thus simply not measured
by the yardstick. This is always the case if an infinite AF has continuum many o extensions.
On the other hand, if a computable argumentation framework has a unique o extension, the
picture is quite different. In forthcoming work, we will settle the following conjecture.

Conjecture 3.17. Let o be in{ad, stb, co, infad, infstb, infco} and suppose that F, is a computable
argumentation framework with a unique non-empty o extension. Then, the non-empty o extension
of F¢ is hyperarithmetical.

On the other hand, we can show that there is no bound in the hyperarithmetical hierarchy
on how complicated this extension might be.

Theorem 3.18. Let o be in {ad, stb, co, infad, infstb, infco} and let H be a hyperarithmetical set.
Then, there exists a computable AF F, with a single non-empty o extension X so that X computes
H.

Proof. This follows from Theorem 3.15 by encoding a tree with a single path 7 so that 7 computes
H. Such a tree is known to exist for any hyperarithmetical H [18, Corollary XLIV(d)]. O

4. Encoding a tree into an argumentation framework

This section is devoted to our hardness results: we provide lower bounds for the complexity of our
computational problems. In particular, given a tree T C w<%, we will define an argumentation
framework F7 = (A7, RT). The set of arguments A7 of F7 is computable and consists of
{ay : 0 € T}U{b, : ¢ € T}. The attack relation R7 of 7 contains all and only the following
edges: Forallo € T,
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Figure 1: Example of our encoding of trees into AFs: the left-side represents the tree {)\,0,1,10, 11},
the right-side is the resulting AF. When applied to trees T of infinite height, [T'] will be encoded into
the stable, complete, and admissible extensions of Fr. Let’s stress that, for the example shown in the
figure, the only admissible extension of F7 is the empty one.

1. by — by

2. by — ag;

3. ag — by, if o] =|7| + 1;

4. ay — ap,if|o| = ||+ 1and T A 0.

Figure 1 gives an example of our encoding for a finite tree. We next consider which extensions
in 7 are admissible, stable, or complete.

Notation. For 7 € [T]and n € w, let S} be the set {a, : 0 < wand |o| > n}.

Lemma 4.1. A non-empty extension S of F' is admissible iff S is exactly S™ for somen € [T]
andn € w.

Proof. (=): Suppose that S # () belongs to ad(F 7). First, observe that no b, can be in S, as all
such arguments are self-defeating and S must be conflict-free. Next, observe that, if a, € S,
then there must be some 7 so that a,~; € S: this is because some element of S must defend
a, from b, and such an element must be an a, with |o| = |7| + 1. But it must have 7 < o as
otherwise a, would attack a,.

Finally, take p of minimal length so a, € S. Then the previous paragraph shows that S
contains S,Irp ' for some 7 € [T] with p < 7. Since p was chosen of minimal length, no a, with
7 shorter can be in S. Moreover, no a, with |7| > |p| and 7 £ 7 can be in S, as otherwise S
would not be conflict-free. Thus, S = S,‘rp |.

(<): Any element which attacks ayy,, is itself attacked by either a, , or ary, . ,,s0 S} C

Trr(S). O

Lemma 4.2. An extension S of F' is stable iff S is exactly SO for some T € [T].
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Proof. (=): Suppose that S € stb(F7 ). Then, since S is admissible, we know S = S™ for some
7 € [T] and n € w. Since by is the only the argument that attacks a) and by ¢ .S, it must be
the case that ay € S. Thus, n = 0.

(<): Observe that S is conflict-free and any other argument of F7 is contained in (S2)*.
Thus, S is a stable extension of F7 . O

Lemma 4.3. A non-empty extension S of F7 is complete iff S is SO for some w € [T].

Proof. (=): Suppose that S # () belongs to co(F” ). Since complete extensions are admissible,
we see that S = S7, for some X € [T] and n € w. But observe that if n > 0, then .S would not
be complete: indeed, a, with 0 = 7 [,—1 would be defended by S but not in S. Thus, n must
be equal to 0.

(<=): This follows since SY is stable and all stable extensions are complete. O

We are now in a position to obtain hardness results for the computational problems described
in Definition 3.3.

Theorem 4.4. The following hold:
1. for o € {ad, stb, co, infad, infstb, infco}, NE is ¥:1-hard;
2. for o € {stb, infad, infstb, infco}, Exist>® is X1 -hard;
3. foro € {ad, stb, co, infad, infstb, infco}, Cred>° is X1 -hard.

Proof. 1. Let X € % and let (7,X),,c. be a tree-sequence for X, as given by Theorem 3.7. To
show Y}-hardness, we need to produce a computable function f so that n € X if and only if
f(n) € NES°. We let f(n) be a computable index for FTi" . Then Lemmas 4.1, 4.2, and 4.3 prove
that n € X if and only if 7,X is ill-founded if and only if F 7" has a non-empty o extension for
each o € {ad, stb, co, infad, infstb, infco}.

2. For each of these o, the empty set is not a o extension, so Exist;® = NEZ°, which we
showed above is ¥}-hard.

3. In the proof of 1. above, we reduced a given 1 set X to NEZ® by sending n to FTi* . Note
that 77+ has a non-empty o extension if and only a) is in some ¢ extension. Thus sending n
to the (e, ay) where e is a computable index for F 7" shows that Cred2” is X}-hard. O

Theorem 4.5. For o € {ad, stb, co, infad, infstb, infco}, Uni® is 11} -hard.

Proof. We first consider o € {ad, co}. Let X € TI} and let (7,°>%),.c,, be a tree-sequence for
its complement. For n € w, consider the sequence of AFs F 72> Note that () is an admissible
extension in any AF and since every argument in F 722> is attacked, 0 is also a complete
extension. Thus, 77+~ has a unique o extension if and only if 7> is well founded if and
only if n € X, which shows that Uni®} and Uni%S are IT}-hard.

For the other o, () is not a o extension. We use Theorem 3.10 to show H}—hardness. Let X be
any I11 set. Then we get from Remark 3.11 a sequence of trees 7, so that 0% € [7,] for each n,
and {n : 7,/ has only one path} is I1}-hard. It follows from Lemmas 4.1, 4.2, and 4.3 that this is
if and only if 77+ has a unique o extension, which shows that I1}-hardness of UniZ®. O
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Theorem 4.6. For any o € {stb, infstb, infco}, Skept>® is I13-hard.

Proof. Let X be aIl} set. Then we get from Remark 3.11 a sequence of trees 7, so that 0> € [7]
for each n, and {n : 7,, has only one path} is II}-hard. Then, note that (e, ap) € Skept>® where
e is a computale index for 7] if and only if 7,/ only has paths 7 with 7(0) = 0 if and only if 7,
has only one path (see the definition of 7,/ in Remark 3.11) if and only if n € X. This shows the
I1}-hardness of Skept>°. O

We note that the above argument does not work for infad since, even if 7 is the only path
through a tree 7', each S? is an infinite admissible extension in 77 and (,, S* = 0), so in any
T _
F', Skeptiipy = 0.

Theorem 4.7. Skepty,,  is 0} -hard.

Proof. Let X be a IT} set. We get from Remark 3.11 a sequence of trees 7, so that each has one
path 0°° € 7! and has another path extending 1 if and only if n ¢ X.

For each n € w, we construct an AF G,, = (4g,,, Rg,, ) slightly larger than F i In particular
Ag, = Az U{zo,v0, 71,91} Welet (w,2) € Rg, if

s w,z € Apry and (2,y) € Ryry

e w=y;and z = y;

e w=ux;and z = x1_;
ew=uwx;and z = y;

« w=vy; and z = a, where 0(0) = ¢

e w=a,witho(0) =dand z = y;_;

Lemma 4.8. An infinite S C Ag, is an admissible extension if and only if it equals a set
Sk U{@r(0)} for somem € [T)]] and k € w.

Proof. Let U be an infinite admissible extension. Note first that arguments g, y; and b, cannot
be in U since they are self-defeating. Then, since U is infinite, U must contain elements a, for
o € T,,. By the same argument as in Lemma 4.1, we get that U N A » = ST for some 7 € [7,,].
But then since each element of S} is attacked by y (), we must have () € U to defend them.
This excludes x1_(g) from U since U is conflict-free.

It is straightforward to check that each of these are in fact admissible extensions. O

Finally, note that x¢ is in every infinite admissible extension of G,, if and only if there is no
m € |7,]] which extends 1 if and only if n € X, showing that Skept;, g is I1}-hard. O

Theorem 4.9. For o € {ad, stb, co, infad, infstb, infco} and for any computable tree T, there
exists a computable AF F, so that Spec,?(F.) = Spec(T).

Proof. Observe that for the AF F, = F T it follows from Lemmas 4.1, 4.2, and 4.3 that the
non-empty o extensions are all infinite and are in the same Turing degrees as the paths through

T. O
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5. Conclusion and future work

In this paper, we initiated a systematic exploration of the complexity issues inherent to infinite
argumentation frameworks. To pursue this direction, we employed computability-theoretic
techniques which are ideally suited for assessing the complexity of infinite mathematical
objects. Our focus was on the credulous and skeptical acceptance of arguments, as well as
the existence and uniqueness of extensions, for admissible, complete, and stable semantics.
The computational problems we examined were found to be maximally complex, properly
belonging to the complexity classes of 3.} and I1} sets. We also introduced and explored new
semantics that are meaningful exclusively in the infinite setting, concerning the existence of
infinite extensions that satisfy a given semantics o.

It is natural to conceive of an argumentative scenario with arguments being added as time
proceeds, such as the ongoing accumulation of scientific studies. Then, infinite frameworks
naturally emerge as the union of the frameworks observed at each finite time. A key question,
then, is how the acceptance of arguments within the infinite framework F can be related to
the acceptance within the finite frameworks (F;) which have appeared by time ¢. Our results
show that, for complexity reasons alone, credulous and skeptical acceptance of arguments in F
cannot be understood in terms of any kind of limiting procedure applied to the same problems
in A t-

A plethora of intriguing questions regarding the complexity of infinite AFs remains open.
In forthcoming extensions of this work, we shall fill the gaps that we left behind (such as the
entries marked with a dagger in Table 2). Next, we will show that the techniques introduced
here enable the construction of a single argumentation framework witnessing our hardness
results, thereby proving that solving these problems is not only challenging for the entire class
of argumentation frameworks but also remains difficult for an individual, specific framework.

Finally, future research will extend our analysis to analogous problems associated with other
key semantics for AFs, including grounded, preferred, and ideal semantics. Given that the
definitions of these semantics are more intricate than those we examined here, we anticipate
the need for additional techniques to thoroughly analyze them.
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