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Abstract

This paper investigates infinite argumentation frameworks. We introduce computability theoretic machinery as a robust
method of evaluating, in the infinite setting, the complexity of the main computational issues arising from admissible,
complete, and stable semantics: in particular, for each of these semantics, we measure the complexity of credulous and
skeptical acceptance of arguments, and that of determining existence and uniqueness of extensions. We also propose a way of
using Turing degrees to classify, for a given infinite argumentation framework, the exact difficulty of computing an extension
in a given semantics and show that these problems give rise to a rich class of complexities.
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1. Introduction

Abstract argumentation theory is a fundamental research
area in Al, providing a powerful paradigm for reasoning
about knowledge representation and multi-agent systems.
Historically, the focus has predominantly been on finite
argumentation frameworks (AFs), leaving the infinite
case relatively unexplored. As noted in [1], this oversight
poses significant theoretical, conceptual, and practical
limitations.

Firstly, infinite frameworks align naturally with
Dung’s seminal approach [2], whose results do not pre-
suppose finiteness. Secondly, representing argumenta-
tion scenarios in an infinite manner captures the inher-
ently nonmonotonic nature of argumentation, where ar-
guments can always be challenged by the emergence of
new information, making any fixed limit on the space
of arguments somewhat artificial. Moreover, if one con-
ceives an argumentative scenario with arguments being
added as time proceeds, e.g., the collection of scientific
studies, then infinite frameworks naturally emerge as
the union of the argumentation frameworks that we see
at each finite time. Thirdly, infinite AFs may arise in
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practical contexts, such as logic programming [3] and
the logical analysis of multi-agent or distributed systems
[4] (the substantial introduction of [1] provides other
concrete examples of applications of infinite AFs, e.g., to
multiagent negotiations).

Fortunately, recent years have seen a growing interest
in infinite AFs, with special focus on how the existence
and interplay of various semantics—well-understood for
finite AFs—are affected in the infinite realm (see, e.g.,
[5, 6, 7, 8, 9]). This increasing recognition underscores
the importance of infinite AFs for a broad understanding
of argumentation theory.

However, the literature still lacks a comprehensive
framework for systematically exploring all logical as-
pects of infinite AFs, particularly regarding their core
computational issues. A significant research avenue in
finite AFs has been determining the algorithmic complex-
ity of tasks associated with finding coherent collections
of arguments (up to suitable collection of semantics),
with numerous complexity theoretic results highlight-
ing their inherent computational intractability (see, e.g.,
[10, 11, 12]). To our knowledge, no analogous study has
been conducted for infinite AFs.

This paper addresses this gap by initiating a systematic
study of the complexity of computational problems in
infinite AFs. For this endeavor, we bring into the subject
of argumentation theory the machinery of computability
theory, which may be regarded as an infinitary com-
panion of computational complexity theory and abounds
with concepts and hierarchies for measuring the complex-
ity of computing and defining countably infinite objects,
providing the appropriate machinery for this endeavor.

The application of computability theoretic tools out-
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side of mathematical logic is a well-established idea. Over
the past decades, computability theory has been applied
to a wide array of mathematical disciplines, and com-
putability theoretic concepts have found applications in
other formal subjects, such as theoretical computer sci-
ence, economics, and linguistics (see, e.g., [13, 14, 15]).

The present paper, we argue, provides compelling ev-
idence of the benefits of viewing infinite AFs through
computability theoretic lenses. We assess the complex-
ity of many computational problems—both established
and novel—within our framework, illustrating their un-
decidability while providing precise measures of their
complexity.

Organization of the paper

Section 2 briefly reviews the main semantic concepts
from argumentation theory that are relevant to this pa-
per, along with the fundamental computational problems
associated with them. In Section 3, we introduce the key
notions of computability theory employed in the work
and we define the concept of computable AFs and the
computational issues that emerges from it. Finally, in
Sections 4 through 5, we determine the lower and upper
bounds of the complexity for our computational prob-
lems: a critical technique for achieving hardness results
involves suitably encoding trees into AFs. Our main re-
sults are collected in Tables 2 and 3.

2. Argumentation theoretic
background

To keep our paper self-contained, we now briefly review
some key concepts of Dung-style argumentation theory,
focusing on the semantics notions considered in this
paper and the fundamental computational problems asso-
ciated with them (the surveys [16, 17] offer an overview
of these topics).

An argumentation framework (AF) F is a pair
(Ar, Rr) consisting of a set Ar of arguments and an
attack relation Rr C Ar x Ar. If some argument a
attacks some argument b, we may write a — b instead
of (a,b) € Rr. Collections of arguments S C Ar are
called extensions. For an extension S, the symbols S* and
S~ denote, respectively, the arguments that S attacks
and the arguments that attack S:

ST ={z:EyeS)(y— )}k

§ ={z: @y e Sz}
S defends an argument q, if any argument that attacks
a is attacked by some argument in S (ie., {a}~ C ST).

The characteristic function of F is the following mapping
fr which sends subsets of A r to subsets of Ax:

f7(S) :={z: xis defended by S}.

All AFs investigated in this paper are infinite.

A semantics o assigns to every AF F a set of exten-
sions o (F) which are deemed as acceptable. A huge
number of semantics, fueled by different motivations,
have been proposed and analyzed. Here, we focus on
three prominent choices, whose computational aspects
are well-understood in the finite setting: admissible, com-
plete, and stable semantics (abbreviated by ad, stb, co, re-
spectively).

Let F = (Ar, Rr) be an AF. Denote by cf(F) the
collection of extensions of F which are conflict-free (i.e.,
S € cfiF)iffa ~ b, forall a,b € S). Then, for S €
fIF),

« S € ad(F) iff S is self-defending (ie., S C
fF(8));

« S € co(F)iff S is a fixed point of fr (ie., S =
f7(8));

« S € stb(F), iff S attacks all arguments outside
of it (i.e., ST = Ar < S).

In discussing the complete extensions, we will also
briefly mention the grounded extension, which is the
unique smallest fixed point of fr; in any AF, the
grounded extension always exists [2, Theorem 3].

For a given semantics o, the following are some well-
known computational problems related to o:

+ Cred, (for credulous acceptance) is the decision
problem whose accepting instances are the pairs
(F,a) sothat a € S for some S € o(F);

+ Skept  (for skeptical acceptance) is the decision
problem whose accepting instances are the pairs
(F,a) sothata € Sforall S € o(F);

« Exist, is the decision problem whose accepting
instances are the AFs F so that o(F) # (;

+ NE, is the decision problem whose instances are
the AFs F so that o (F) ~ {0} # 0;

+ Uni, is the decision problem whose accepting
instances are the AFs F so that |o(F)| = 1.

In formal argumentation theory, evaluating the compu-
tational complexity of the aforementioned problems for
various semantics has been a noteworthy research thread
for more than 20 years[17]. Table 1 collects known com-
plexity results for the admissible, stable, and complete
semantics. This analysis refers only to finite AFs. In the
next section, we introduce our computability theoretic
perspective that allows us to tackle complexity issues
concerning infinite AFs.



o Cred, | Skept, Existo NE, Unig

ad | NP-c trivial trivial NP-c | coNP-c

stb | NP-c coNP-c | NP-c NP-c | DP-c

co NP-c P-c trivial NP-c | coNP-c
Table 1

Computational problems for finite AFs. C-c denotes complete-
ness for the class C.

3. Computational problems for
AFs through the lens of
computability theory

In this section, we introduce computable AFs and we
revisit the computational problems of the last section
through the lens of computability theory. We aim at con-
veying the main ideas without delving into too many
technical details. A more formal and comprehensive ex-
position of the fundamentals of computability theory can
be found, e.g., in the textbooks [18]. We begin by estab-
lishing standard notation and terminology for some com-
binatorial notions that appear frequently in our proofs.

3.1. Sequences, strings, and trees

As is common in computability theory, we denote the set
of natural numbers by w. Since there is no risk of ambigu-
ity, we simply refer to the elements of w as numbers. The
symbol w* denotes the set of all functions from w to w.
For our purposes, it is convenient to represent elements
of w” as infinite sequences of numbers (where the i+ 1th
bit of 7 € w* will be the output of the function 7 on in-
put 7). We denote by 0°° the infinite sequence consisting
of only 0’s (or, equivalently, the constant function to 0).
The restriction of an infinite sequence ™ € w® to its first
n bits is denoted by 7 [4,.

We use standard notation and terminology about
strings: The set of all finite strings of numbers is denoted
by w<“. The symbol )\ denotes the empty string. The
concatenation of strings o, 7 is denoted by ¢ 7. The
length of a string o is denoted by |o|. If there is p so that
o p = T, we say that o is a prefix of 7 and we write
o = 7. Similarly, if 7 € w“ and o = 7 [, for some n,
we write o < .

In order to formulate our problems as subsets of w,
it will be convenient to encode pairs of numbers into
single numbers. The pairing function does this. Fix p :
w X w — w to be a computable bijection. We adopt the
common habit of denoting p(z, y) by (z, y).

The encodings discussed in Section 4 heavily rely on
the difficulty of calculating paths through trees. As is
common in computability theory, we say that a tree is
aset 7 C w<¥ closed under prefixes. We picture trees
growing upwards, with o™ ¢ to the left of 0™ j, when-

everi < j. A pathm € w® through a tree 7 C w<¥
is an infinite sequence so that = [, € 7, for all num-
bers n. The set of paths through a tree 7 is denoted by
[T]. T is well-founded if [T] = () and otherwise is ill-
founded. Note that we follow the standard terminology
in computability theory requiring that paths be infinite.
Indeed, if one were to allow paths to be finite, then these
notions trivialize, since one could computably find a path
through any given computable tree. For example, the set
of strings

T :={A\}U{o,071: (Vn < |o|)(c(n) =0)}

is an ill-founded tree with [T] = {0*°}.

If 7 contains strings of arbitrary length, then 7 has
infinite height. Note that there are trees of infinite height
which are well-founded, e.g., T = {A}U{n" 0 : |o] <

3.2. Computable argumentation
frameworks

A basic problem that one encounters when attempting
to calibrate the algorithmic complexity of infinite AFs is
that of describing infinite objects in a finitary way. Com-
putability theory offers a wide range of tools designed
for this endeavour. Here, we will concentrate on AFs
that are computably presentable, in the sense that there
are Turing machines (or, equivalently, modern computer
programs) that, in finitely many steps, decide whether a
given pair of arguments belongs to the attack relation.

Notation. Let (P.)ccw be a uniform enumeration of all
partial computable functions from w to {0, 1}.

Definition 3.1. A number e is a computable index for
an AF F = (Ar, Rr) with Ar = {an : n € w} so that

1 ifan — am

Pe((n,m)) —{

0  otherwise.

An AF F is computable, if it has a computable indexe € w.

We use the notation F. to refer to the AF with com-
putable index e (note that every computable AF possesses
infinitely many computable indices.).

Remark 3.2. The collection of computable indices for AFs
Jjust defined is noncomputable (in particular, any index e
for a non-total computable function ®. cannot be a com-
putable index for an argumentation framework). There
are alternative indexings that circumvent this issue; yet,
adopting another indexing would not alter the complexity
of the computational problems we analyze, though it would
make the proofs slightly more cumbersome. Hence, we opt
for the simplicity of Definition 3.1.



The benefit of dealing with computable AFs is that
the complexity of the decision problems associated with
them do not arise due to complexity of the argumenta-
tion framework itself, but rather reflects the inherent
complexity of the decision problem. Further, the compu-
tational problems associated with computable AFs can be
naturally represented as subsets of w, which are suitable
to be classified by computability theoretic means:

Definition 3.3. For a semantics o
1. Cred? := {{e,n) : (3S € o(F.))(an € 5)};
2. Skept>® := {{e,n) : (VS € o(Fe))(an € S)};
3 Exist® :={e: (3S C Az.))(S € o(F.))};
4 NEF :={e:(AS € o(F))(S#0)};
5 Uni® :={e: (S C Ax,)(S € o(F.))}.

We also introduce new semantics which make sense
only in the infinite setting. This is motivated by the idea
that, given an infinite AF, we might hope for our accepted
sets to give us infinitely much information.

1. S € infad(F) if and only if S € ad(F) and S is
infinite;

2. S € infco(F) if and only if S € co(F) and S is

infinite;

3. S € infstb(F) if and only if S € stb(F) and S is
infinite.

As an illustration of why we might want to accept
only infinite extensions, we consider that a given infinite
AF may contain a single argument b so that b attacks
every other argument, and every other argument attacks
b. We imagine that b is a statement of extreme solipsism
denying the truth of any other statement. While {b} is
a stable extension, it represents a negligible fraction of
arguments, and we may prefer not to accept it. In an
infinite AF, any finite set is as negligible as {b}, so we
may prefer to accept only infinite extensions.

The complexity classes that most naturally match the
problems of Definition 3.3 are those of the $1 and IT} sets.
The X7 sets are formally defined as those subsets of w that
are definable in the language of second-order arithmetic
using a single second-order existential quantifier ranging
over subsets of w followed by number quantifiers and the
first order functions and relations (+, -, <, 0, 1, €); for
more details, see [18, §16]. IT} sets are the complements
of 27 sets.

Proposition 3.4. Cred®, Exist2°, and NEY are 31, for
o € {ad, stb, co, infad, infstb, infco}.

Proof. We first consider o € {ad, stb, co}. To define
Credy®, we see from Definition 3.3: Credy® := {{e,n) €
w: (35 € o(Fe)(an € S))} uses a single existential
quantifier over sets S. This is similarly true for the def-
initions of Existg” and NES° in Definition 3.3. Thus, it
suffices to see that the condition S € o(F.) can be de-
fined with only quantification over arguments, which are
in bijection with w, not needing quantification over sets
of arguments.

Note that the definition of ST and S~ use only quanti-
fiers over arguments. Thus the definition of f#(.S) given
by a € fr(S) if and only if {a}~ C S* uses only
quantifiers over arguments. Finally, S € ad(F),S €
stb(F), S € co(F) are all defined from fr(S) and S+
using only quantifiers over arguments.

In the case of o € {infad, infstb, infco}, we need
to also observe that S being infinite is defined via
Ynam(am € S A m > n), which uses only quanti-
fiers over numbers. O

Proposition 3.5. Skept>® is H%, whenever o is in
{ad, stb, co, infad, infstb, infco}. Furthermore, for o €
{ad, co}, UniZ® isTI3.

Proof. The definition of Skept” in Definition 3.3 uses a
single universal set-quantifier followed by only number
quantifiers in the definition of o (Fe).

For o € {ad, co}, e € Uniy° if and only if there are
not two different o extensions (as there is always at least
one o extension). This is defined by the negation of the
following formula:

(351352)(3z € S1~S2 A S1 € 0(F.) A Sa € o(F.)).

Note that 351355 can be replaced by a single existen-
tial quantifier by encoding the pair (S1, S2) as a single
set {(1,z) : . € S1} U{(2,y) : y € S2}. This shows
that UniS° is the complement of a £} set, thusis II{. [

Remark 3.6. The above argument does not suffice to
show that UniCs is also IT1, since some AFs have no stable
extension. The most obvious definition says there exists
one stable extension and there does not exist two, which
gives a definition which is a conjunction of a ¥{ and
a H% condition, i.e., a so-called d—E% definition. This is
analogous to the fact that in the finite case Uniyy is DP-
complete. Similarly, the argument above does not show
that UniS® is T17 for o € {infad, infsth, infco}. Yet, it is
true that UniZ® is T11 for o € {stb, infad, infstb, infco} as
we show below in Corollaries 5.5,5.10, and 5.14.

We note that knowing that a problem is 2} does not
necessarily mean the problem is complicated. This only
gives an upper-bound for its complexity. Sometimes,
a simpler definition is achievable. As an example, we
consider Credys := {(e,n) : (3S € ¢fiFe))(an € S)}.



Though the given definition is 31, to know if an argu-
ment a, belongs to a conflict-free extension of Fe, it
suffices to check whether a,, is non-self-defeating, i.e.,
an 7~ an, which is equivalent to checking the com-
putable fact that ®.((n,n)) = 0. In contrast, we will
show that for the computational problems associated to
the admissible, stable, and complete semantics, the use
of the quantifier ranging over all sets cannot be avoided.

We will heavily rely on the following fundamental
theorem by Kleene which offers a natural way of repre-
senting L] sets:

Theorem 3.7 (Kleene [19]). A set X C w is 31 if and
only if there is a computable sequence of computable trees
(T ) new sothatn € X iff T, is ill-founded.

We call (7, )new a tree-sequence for X. As a corollary
of Kleene’s theorem, one obtains that the problem of
deciding which computable trees in w<* are ill-founded
(or well-founded) is as hard as any other X1 (resp., IT{)
problem.

Theorem 3.7 gives a reason to consider the ¥ sets as
the natural infinite analogs of the NP problems. Namely,
given an ill-founded computable tree 7 and a sequence 7
which is a path through 7, it is relatively simple to check
that m € [T] (it requires checking infinitely many simple
facts: 7 [, € T, for each n), but finding a sequence 7 €
[T]—or even knowing whether there exists a sequence
m € [T]—is a far harder problem.

Our main goal is to exactly characterize the complexity
of the computational problems described in Definition
3.3. To do so, we need to show that they are complete
for their respective complexity classes. The following
definition formalizes this notion.

Definition 3.8. Let I' be a complexity class (e.g., ' €
{21,T3}). AsetV C w is T-hard, if for every X € T'
there is a computable function f : w — w so thatx € X
ifand only if f(x) € V. IfV isT'-hard and belongs to T,
then it is I"-complete.

Proposition 3.9. It follows from Theorem 3.7 that the
set of indices for ill-founded computable trees is a Y1-
complete set. Similarly, the set of indices for well-founded
computable trees is a I1} -complete set.

The following example is far less obvious, but will be
useful below to examine UniZ°.

Theorem 3.10 ([20, Theorem 18.11]). The set UB of in-
dices for computable trees with exactly one path is a I1} -
complete set.

Remark 3.11. The hardness in Theorem 3.10 is quite
easy. We can reduce the question of whether a tree 7 is
well-founded to whether a tree 7’ has two paths, where
T always has at least one path, by simply giving 7" one

more path than 7 (e.g. 7' = {170 :0 € T} U{o :
(Vn < |o|)a(n) = 0}). The fact that UB is itself TI is
the subtle part of this example.

Theorem 3.7 along with Definition 3.8 suggest a nat-
ural approach for gauging the complexity of the com-
putational problems of Definition 3.3. Namely, given
another ¥} (or IT1) set X, we translate the question ask-
ing whether n € X to the question of if the tree 7,
is ill-founded (resp., well-founded), and then we need
to computably find an instance of our computational
problem which should be accepted if and only if 7, is
ill-founded (resp., well-founded). This involves coding a
tree, or more precisely, the collection of paths through
a tree into the o extensions in an argumentation frame-
work. We do exactly this in Section 4.

Table 2 collects our results regarding complexities of
the computational problems examined for computable
argumentation frameworks.

Remark 3.12. As noted before, the E% sets are natural
analogs in the infinitary setting of the NP sets, and the
II7 sets are the natural analogs of the coNP sets. With
the exception of Skept?;’ and Unig;, Table 2 follows this
translation from Table 1 for the first three rows. These
two results mark surprising differences in the infinite
setting.

The trivial entries are due to the fact that §) is always
an admissible extension and the grounded extension is
always a complete extension.

3.3. Spectra of o extensions

We propose a way to more fully understand the complex-
ity of the problem of finding a o extension in a given AF

F.

Definition 3.13. For each e € w and semantics o, let
Spec;m (Fe) be the set of Turing degrees of non-empty sets
X Cwsothat{a, : n € X} isao extension in Fe.

The notion Spec,” (F.) exactly captures the difficulty
of computing a non-empty o extension in F.. We will
be relating the problem of computing a ¢ extension in
Fe to the problem of finding a path through a particular
tree. So, we define the analogous notion of the spectrum
of a tree.

Definition 3.14. Given any computable tree T, we let
Spec(T) be set of Turing degrees of paths X € [T].

Table 3 collects our results on spectra of extensions.



o Cred3® SkeptS° Existsg® NES® Unig®

ad $1-c4.234 | trivial trivial $1-c4234 | Hi-c4335
sth $1-c4234 | Hi-c4435 | £1c4.2,34 | ©1-c4.234 | H-c43,5.10
co $1-c42,34 | Hi-c* 35 | trivial $1-c42,34 | i-c4335
infad | ©1-c4.234 | T1-c4435 | ©{-c4.2,34 | ©{-c4.2,34 | TI1-c4355
infstb | X1-c4.23.4 | Tj-c4435 | X1-c4.2,34 | Xi-c4.2,34 | Ii-c4.35.10
infoo | X1-c4.234 | Tj-c4.435 | X1-c4.2,34 | X1-c4.2,34 | T1-c4.3,5.14

Table 2

Computational problems for computable AFs. C-c denotes completeness for the class C. The entry with an asterisk is not fully
proved in this paper. Rather, the TI1-hardness for Skept>® is deferred to future work focusing on the grounded semantics. It is
included in the table here (though partially unproved) to give a more complete picture. The numbers in each cell of the table
refer to the Theorem number providing the lower bound and upper bounds for the result in that cell.

o Spec;‘(b

ad Exactly Spec(T)
stb Exactly Spec(T)
co Any Spec(T)
infad | Exactly Spec(T)
infstb | Exactly Spec(7)
infco | Any Spec(T)

Table 3

For any computable tree 7, there is a computable argumen-
tation framework Fe so that Spec(7) = Spec;‘@(]-'e). When
o € {ad, stb, infad, infstb}, the converse also holds. Namely,
for every e, there is a computable tree so that Spec;g)(]-'e) =
Spec(T"). We do not know how to attain a corresponding up-
per bound for the complete or infinite complete cases.

4. Encoding a tree into an
argumentation framework

Given a tree 7 C w<*, we will define an argumentation
framework 77 = (A7, R”). The set of arguments A”
of F7 is computable and consists of {a, : ¢ € T}U{b, :
o € T} U{c}. The attack relation R” of F” contains
all and only the following edges:

Forallo € T,
1. by — by
2. by — ag;
3. ag — br,if|o| = |7| + 1;
4. a5 — ar,iflo| =|7|+ 1and 7 £ o;
5. ¢ a, forevery T € T;
6. ay — cC.

Figure 1 gives an example of our encoding for a fi-
nite tree. We next consider which extensions in F' are
admissible, stable, or complete.

Notation. For 7 € [T], let Sy be the set {as : 0 < 7}.

Lemma 4.1. A non-empty extension S of F is stable
iff S is complete iff S is admissible iff S is exactly Sr for
somem € [T].

Proof. Stable always implies complete, which always im-
plies admissible. It is straightforward to check that S is
stable for any 7 € [T, so we need only show that any
non-empty admissible extension is exactly some Sr. Sup-
pose that S is admissible. Observe that ¢ and b, cannot
be in S since these are self-defeating. So some a, € S
since S is non-empty. Note that since ¢ — a,, we must
have a) € S. Next, observe that if a, € S, then there
must be some 7 so that a-~; € S: this is because some
element of S must defend a, from b, and such an ele-
ment must be an a, with |o| = |7| + 1. But it must have
7 < o as otherwise a, would attack ar. It follows that
S contains S for some 7w € [T]. Since S is stable, S
cannot properly contain S, so S = Sr. O

We are now in a position to obtain hardness results for
the computational problems described in Definition 3.3.

Theorem 4.2. The following hold:

1. for o € {ad, stb, co, infad, infstb, infco}, NE is
$1-hard;

2. for o € {stb, infad, infstb, infco}, Exist>® is X1~
hard;

3. for o € {ad, stb, co, infad, infstb, infco}, Credy
is ©1-hard.

Proof. 1. Let X € X1 and let (7,7 )necw be a tree-
sequence for X, as given by Theorem 3.7. To show ¥1-
hardness, we need to produce a computable function
fsothatn € X if and only if f(n) € NE®. We let

f(n) be a computable index for F 7. . Then Lemma 4.1
shows that n € X if and only if 77X is ill-founded if

and only if F 7" has a non-empty o extension for each
o € {ad, stb, co, infad, infstb, infco}.

2. For each of these o, the empty set is not a o ex-
tension, so Exist;° = NEZ°, which we showed above is
Y1-hard.



Figure 1: Example of our encoding of trees into AFs: the left-side represents the tree {), 0,1, 10, 11}, the right-side is the
resulting AF. When applied to trees T of infinite height, [T'] will be encoded into the stable, complete, and admissible extensions
of Fr. For the example shown in the figure, the only admissible extension of F7 is the empty one, since [T'] = 0.

3. In the proof of 1. above, we reduced a given . set X

X X
to NEZ® by sending n to F7» . Note that 7= has a non-
empty o extension if and only if a is in some o extension.
Thus sending n to (e, ax) where € is a computable index

for F7n' shows that Cred2® is ¥1-hard. O

Theorem 4.3. Foro € {ad, stb, co, infad, infstb, infco},
Uni%® is I13 -hard.

Proof. We first consider o € {ad, co}. Let X € TI} and

let (7°>%),.cw be a tree-sequence for its complement.
w~ X

Consider the sequence of AFs (F77  ),c.. Note that

() is an admissible extension in any AF and since every

argument in F T s attacked, () is also a complete
extension. Thus, F7r " hasa unique o extension if
and only if 7> is well founded if and only if n € X,
which shows that UniS$ and UniZ® are IT1-hard.

For the other o, () is not a o extension. We use Theorem
3.10 to show IT}-hardness. Let X be any II} set. Then
we get from Remark 3.11 a sequence of trees 7, so that
0% € [T,] for each n, and {n : T, has only one path}
is IT1-hard. It follows from Lemma 4.1 that this holds if
and only if F Ta has a unique o extension, which shows
the IT1-hardness of Uni%®. O

Theorem 4.4. For any o € {stb, infstb, infco, infad},
Skept>® is T11 -hard.

Proof. Let X be aTI} set. Then we get from Remark 3.11
a sequence of trees 7, so that 0°° € [7,] for each n,
and {n : T, has only one path} is TT{-hard. Then note
that (e, ao) € Skept>® where e is a computable index

for G, := F7 if and only if 7, only has paths m with
m(0) = 0 if and only if 7,, has only one path (see the
definition of 7,, in Remark 3.11) if and only if n € X.
This shows the I11-hardness of Skept>°. O

Theorem 4.5. For o € {ad, stb, co, infad, infstb, infco}
and for any computable tree T, there exists a computable

AF F. so that Spec.?(F.) = Spec(T).

Proof. Observe that for the AF 7, = F T it follows
from Lemma 4.1 that the non-empty o extensions are all
infinite and are in the same Turing degrees as the paths
through 7. O

5. Trees coding extensions in o(F)

In this section, we give upper bounds to the complexity of
Spec® for o € {ad, stb, infad, infstb} as well as giving
upper bounds for the complexity of Unig® for any o €
{stb, infad, infstb, infco}. We do this by describing how
to computably encode the collection of extensions in
o (F) into the set of paths through a tree.

The admissible case

Given a computable argumentation framework F, we
will describe a computable tree 77 so that the paths of
T7 encode the non-empty admissible extensions in JF.
We begin with an intuitive description of how a path 7
through the tree 77 will encode an admissible extension
S, and we give the formal definition of T7 below.



Branching in 77 will come in three flavors. The first
branching is used to give the least element of the admis-
sible extension S. This is to ensure that the extension is
non-empty. If we wished to allow the empty extension,
we could omit this branching. For any j > 0, the branch-
ing on level 2j serves to code whether or not j € S.
Branching on the odd levels serve to explain how S sat-
isfies the hypothesis of being an admissible extension. If
a; = a; is the nth element of some computable enumer-
ation of all attacking pairs of arguments, then o (2n + 1)
will be 0 if a; ¢ S and otherwise will be k + 1 where k
is least so that a € S and ax — a;.

Let F = (Ar, Rr) be a computable AF. Let (gn )new
be a computable sequence of all elements of Rx. If g, =
(ai,a;), we denote a; by g, and a; by g,'. We now
define the tree 77

Definition 5.1. Any given string o € w<“ defines two
subsets of arguments in Ar:

o In, = {as0)}U{a; : j > 0Ac(27) = 1}U{ax :
(F) (e +1) =k+ 1)} U{ai: (3)(0(2 +
D>0Ag =a)}

« Outy ={a; : 1 < 0o(0)}U{a; : j > 0N (2)) =
0}U{a; : (37)(c(25+1) = 0/\9;' =a;)}U{a; :
G2 +1)>i+1Aa; — g]_)}

We define T as the set of o so that

« Ins is conflict-free;

e Iny N Outy, =0

« If0 < 2§ < |o|, then o(27) € {0,1};

e If2j+1 < |o| and o(25 + 1) = k + 1, then
ak — g; -

Theorem 5.2. Let F be a (computable) argumentation
framework. Then the non-empty admissible extensions of
F are in (computable) bijection with the paths in T~ .

Proof. Given a non-empty admissible extension S of F,
we define the corresponding path 7 in 77 as follows. Let
m(0) be the least element of S. For j > 0, let m(25) = 1
ifa; € S and 7(25) = 0 otherwise. Let m(2n 4 1) be 0
if g ¢ S and be k + 1 where k is least so that a, € S
and ay — g,, otherwise. It is straightforward to check
that € [T7).

Given a path 7 through 77, first note that whenever
there is some o < 7 so that a,, € In,, then 7(2n) = 1.
This is because whenever o < 7, then In, C In,. Then
since 7 := T [max(|o|,2n+1) i i T7, we cannot have
7(2n) = Osince an, € In,. Thus w(2n) = 7(2n) = 1. It
follows that | J,, .. Inc = {an : 7(2n) = 1}. The same
argument shows that |, . Out, = {an : m(2n) = 0}.
Let S = {an : 7(2n) = 1}.

Note that S is conflict-free, since if a;,a; € S then
there is some long enough o < 7 so that a;,a; € In,.

Since o € T7, it follows that In, is conflict-free, so
a; %+ a;. Next, observe that S defends itself. If a; — a;
and a; € S, then there is some n so that g, = (a;, a;).
Then consider 0 = 7 [,4+1. We must have o(n) = k+1
for some k with ax € S and ag — a;.

Finally, note that both the map from 7 to S and from S
to 7 are computable if F is computable and are inverses
of each other. O

Corollary 5.3. For every computable AF F, there exists
a computable tree T so that Spec,? (F.) = Spec(T).

Proof. Tt follows immediately from Theorem 5.2 that
Spec, ! (F.) = Spec(T7<). O

Corollary 5.4. For every computable AF F, there exists

~

a computable tree T so that Spec.ﬂ?ad(fe) = Spec(T).

n

Proof. The tree needed here is a slight alteration of the
tree 77. In 77, we made o (0) tell us the least k so
ar € S so as to ensure that S # (). We do the same on
infinitely many layers, e.g., instead of having o(2n) be 0
or 1 to tell us whether or not n € S, we have o(2n) tell
us the nth least number k so that a; € S. With the tree
altered like this, paths are in computable bijection with
the infinite admissible extensions. O

Corollary 5.5. Unijy,, is I3

Proof. e isin Uniaq if and only if the tree 7A— in Corollary
5.4 has a unique path. By Theorem 3.10, this is a IT{
condition. O

The stable case

Similarly, we can construct a tree encoding the stable
extensions by making o(n) = Oif a,, € S and otherwise
making o(n) be k + 1 where k is least so that a, € S
and ar — an.

Definition 5.6. Any given string 0 € w=* defines two
subsets of arguments in Ar:

o« Inp ={a; : 0(i) =0} U {aam,l
o(i) > 0};

« Out, = {a; : i < |lo|ANo(i) > 0} U {a; :
39)eo(j) >i+1ANa; — aj)}.

1< o] A

We define T as the set of o so that

« In, is conflict-free;
o Ing N Outy, =0
« Ifj <|o|ando(j) = k + 1, then ai, — aj;.

Theorem 5.7. Let F be a (computable) argumentation
framework. Then the stable extensions of F are in (com-
putable) bijection with the paths in T~ .



Proof. Given a stable extension S of F, we define the
corresponding path 7 in 77 as follows. For each n, let
m(n) be 0 if a, € S and let 7(n) be k + 1 where k
is least so that ax, € S and ax — a, otherwise. It is
straightforward to check that = € [T7].

Given a path 7 through T7, first note that whenever
there is some o < 7 so that a,, € In,, then w(n) = 0.
This is because whenever o < 7, then In, C In,. Then
sinceT =T [max(‘ﬂ,n“) is on T]:, we cannot have
7(n) # 0 since an, € In. and therefore cannot be in
Out,. It follows that | J__ _ Inc = {an : m(n) = 0}. Let
S ={an : m(n) = 0}.

Note that S is conflict-free, since if a;, a; € S, then
a; 7~ aj since 0 = T [max(s,j)+1 is in T7, and thus In,
is conflict-free. Next observe that for any n, either a,, €
S or there is some m so that a,, € S and a,, — an.
In particular, if 7(n) = 0, then a,, € S and otherwise
Gr(n)—1 € S and ar(n)—1 = Gn.

Finally, note that both the map from o to S and from S
to o are computable if F is computable and are inverses
of each other. O

o<m

Corollary 5.8. For any computable AF F. there exists a
computable tree T so that Spec,? (F.) = Spec(T).

Proof. This follows directly from Theorem 5.7 along with
the fact that ) is never a stable extension. O

Corollary 5.9. For any computable AF F. there exists a
computable tree T so that Spec;ﬁtb(}'e) = Spec(T).

Proof. We add layers of branching to the tree as in Corol-
lary 5.4 so that, e.g., 0(2n) = m means that m is the nth
least number so that a,, € S. This produces a tree 77
so that the paths are in computable bijection with the
infinite stable extensions of F. O

Corollary 5.10. Unig, and Unigyy, are 113

Proof. As the paths through 77 are in bijection with
the stable extensions, e € UniZj if and only if 77 has a
unique path. As the paths through T7 (see Corollary 5.9)
are in bijection with the infinite St,é\lble extensions in Fe,
we have e € Unipn if and only if T7¢ hasa unique path.
By Theorem 3.10, these are both H% conditions. O

The complete case

Given an argumentation framework F, we can similarly
construct a tree 77 so that paths through 77 code com-
plete extensions. In order to ensure that f7(S) C S, we
will need the paths in 77 to not only code sets S but
also their attacked sets S.

Given an extension S, we will let 7 € 77 encode S
and S as follows:

« 7(2n) = 0if an, € S and otherwise m(2n) =
k + 1 where k is least so aj, ¢ ST and ar, — an.

. m(2n+1) = 0ifa, ¢ ST and otherwise 7(2n +
1) = k + 1 where k is least so ar € S and
ax = an.

Note that 7(2n) explains why a, is either in .S or it is
not in f£(S), Le., fx(S) C S, while 7(2n + 1) simply
verifies that the elements which 7 says are in ST are in

factin ST.
Formally, we define 77 as follows:

Definition 5.11. Any given string o € w=* defines four
subsets of arguments in Ar:

o In, = {a; :
H)=k+1}

« Outy = {a; : 0(2¢) # 0} U {a; :
1) >i+1Aa;— a;)}

« InSplus, = {a; : (Fj)(0(2f) > i+1Aa; —
aj)}U{a;s : 0(2¢ + 1) # 0}

« OutSplus, = {a; : (3j)o(27) =i+ 1} U {as :
0(2i+1) =0}

We define T as the set of o so that

o(2i) = 0} U {as : (3)(0(2) +

(F)o (25 +

1. Ins is conflict-free;

2. In, N Out, = 0;

3. InSplus, N OutSplus, = 0;

4. Ifo(2j) =k + 1, then ar, — a;;

5. Ifo(2j + 1) = k+ 1, then ar, — a;;

6. Forj,k < |o|, ifar € OutSplus_ and a; € Ins
then aj /= ag;

7. Forn,m < |o|, ifan € OutSplus_ and an, € Ing,
then an %~ am (i.e., o does not contradict S C

f7(9)).

Theorem 5.12. The complete extensions of F are in bi-
jection with the set of paths [T ].

Proof. Let S be any complete extension. We can define
m from S as described at the beginning of this section. It
is straightforward to verify that each condition (1-7) of
Definition 5.11 is satisfied by 7 [, for each n.

Given a path 7 € [T7], we can define sets S = {i :
m(2t) =0} and U = {i : (2 + 1) # 0}. We note that
when o < 7, In, C In,. It follows from this fact, as in
the previous theorems, that S = Ins. Similarly,
U =U,,InSplus,_.

Next we see that U = S*.Ifn € U, thenw(2n+1) #
0and by condition 5, we have ar(2,41)—1 attacks a,. But
then az(2ny1)—1 € Mrlyy, 9> S0 r(2ni1)—1 € S. Thus

o<



U C ST. On the other hand if n ¢ U, then condition
6 for all o of length > 2n + 1 ensures that there is no
a; € Ssoaj; — a,. Thus ST C U.

Finally, we verify that S is complete. S is clearly con-
flict free by Condition 1. Condition 7 ensures that any
am € Sisalsoin f£(S),sinceif n ¢ U, then an %~ am.
To see that f+(S) C S, note that any a, ¢ S has
m(n) # 0 and ar(n)—1 ¢ ST and Gr(n)—1 ™ Gn Dy
condition 4. Thus a,, ¢ f#(S). O

Remark 5.13. The map from paths = € [77] to com-
plete extensions S C A is computable, but to compute
7 € T7 we need both S and S*. Thus, we are able to
say that for any computable AF F., the set of Turing
degrees of pairs (S, S1) where S is a complete exten-
sion is always Spec(T") for a computable tree T, but note
that S and S* are not generally of the same Turing de-
gree. Thus, we are currently unable to fully characterize
SpeC;OQJ or Specﬁw

infco®

Corollary 5.14. Unigy, is II3.

Proof. We can alter the tree 77 as in Corollary 5.4 to get
anew tree 7 so that the paths through T are in bijection
with the infinite complete extensions. Then e € Unigy,

if and only if 7 has a unique path. Theorem 3.10 shows
that this is a II} condition. O

Corollary 5.15. Fixo € {ad, stb, co, infad, infstb, infco}
and suppose that F. has only countably many non-empty
o extensions. Then there is a hyperarithmetical set S so
that {an : n € S} is a o extension of Fe.

Proof. If o € {ad, stb, infad, infstb}, let T be a tree so
that Spec? (F.) = Spec(T). If o € {co, infco}, let T be
a tree so that the set of Turing degrees of pairs (.S, S+) of
o extensions is exactly Spec(7"). Then T is a computable
tree with countably many paths. By a classic result of
Kreisel [21, Theorem 3.9], 7 has a hyperarithmetical
path, which corresponds to a hyperarithmetical .S so that
{an : n € S} isa o extension of Fe. O

6. Conclusion

In this paper, we initiated a systematic exploration of
the complexity issues inherent to infinite argumenta-
tion frameworks. To pursue this direction, we employed
computability-theoretic techniques which are ideally
suited for assessing the complexity of infinite mathemati-
cal objects. Our focus was on the credulous and skeptical
acceptance of arguments, as well as the existence and
uniqueness of extensions, for admissible, complete, and
stable semantics. We introduced and explored new se-
mantics that are meaningful exclusively in the infinite
setting, concerning the existence of infinite extensions

that satisfy a given semantics o. The computational prob-
lems we examined were found to be maximally complex,
properly belonging to the complexity classes of ¥1 and
I1} sets.

A plethora of intriguing questions regarding the com-
plexity of infinite AFs remains open. First, we shall fill the
gaps that we left behind (such as proving the IT}-hardness
for Skept?y). Next, we aim at investigating whether the
computational problems considered in this paper become
more tractable if we restrict to special classes of AFs, such
as the finitary ones (i.e., those in which each argument
receives finitely many attacks only [7]). Finally, future
research will extend our analysis to analogous problems
associated with other key semantics for AFs, including
grounded, preferred, and ideal semantics. Given that the
definitions of these semantics are more intricate than
those we examined here, we anticipate the need for addi-
tional techniques to thoroughly analyze them.
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