
On Computational Problems for Infinite Argumentation
Frameworks: The Complexity of Finding Acceptable
Extensions?

Uri Andrews1,†, Luca San Mauro2,⇤,†

1Department of Mathematics, University of Wisconsin, USA
2Department of Philosophy, University of Bari, Italy

Abstract
This paper investigates in�nite argumentation frameworks. We introduce computability theoretic machinery as a robust
method of evaluating, in the in�nite setting, the complexity of the main computational issues arising from admissible,
complete, and stable semantics: in particular, for each of these semantics, we measure the complexity of credulous and
skeptical acceptance of arguments, and that of determining existence and uniqueness of extensions. We also propose a way of
using Turing degrees to classify, for a given in�nite argumentation framework, the exact di�culty of computing an extension
in a given semantics and show that these problems give rise to a rich class of complexities.

Keywords
in�nite argumentation frameworks, computability theory, analytic and co-analytic sets, admissible extensions, stable exten-
sions, complete extensions, Turing degrees

1. Introduction
Abstract argumentation theory is a fundamental research
area in AI, providing a powerful paradigm for reasoning
about knowledge representation andmulti-agent systems.
Historically, the focus has predominantly been on �nite
argumentation frameworks (AFs), leaving the in�nite
case relatively unexplored. As noted in [1], this oversight
poses signi�cant theoretical, conceptual, and practical
limitations.
Firstly, in�nite frameworks align naturally with

Dung’s seminal approach [2], whose results do not pre-
suppose �niteness. Secondly, representing argumenta-
tion scenarios in an in�nite manner captures the inher-
ently nonmonotonic nature of argumentation, where ar-
guments can always be challenged by the emergence of
new information, making any �xed limit on the space
of arguments somewhat arti�cial. Moreover, if one con-
ceives an argumentative scenario with arguments being
added as time proceeds, e.g., the collection of scienti�c
studies, then in�nite frameworks naturally emerge as
the union of the argumentation frameworks that we see
at each �nite time. Thirdly, in�nite AFs may arise in

NMR 2024, 22nd International Workshop on Nonmonotonic Reasoning
November 2-4, 2024, Hanoi, Vietnam
?
A condensed version of this article was submitted to SAFA 2024
and an expanded version was submitted to FCR 2024.

⇤Corresponding author.
†
These authors contributed equally.
� andrews@math.wisc.edu (U. Andrews);
luca.sanmauro@gmail.com (L. San Mauro)
� https://math.wisc.edu/~andrews (U. Andrews);
https://www.lucasanmauro.com/ (L. San Mauro)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

practical contexts, such as logic programming [3] and
the logical analysis of multi-agent or distributed systems
[4] (the substantial introduction of [1] provides other
concrete examples of applications of in�nite AFs, e.g., to
multiagent negotiations).

Fortunately, recent years have seen a growing interest
in in�nite AFs, with special focus on how the existence
and interplay of various semantics—well-understood for
�nite AFs—are a�ected in the in�nite realm (see, e.g.,
[5, 6, 7, 8, 9]). This increasing recognition underscores
the importance of in�nite AFs for a broad understanding
of argumentation theory.
However, the literature still lacks a comprehensive

framework for systematically exploring all logical as-
pects of in�nite AFs, particularly regarding their core
computational issues. A signi�cant research avenue in
�nite AFs has been determining the algorithmic complex-
ity of tasks associated with �nding coherent collections
of arguments (up to suitable collection of semantics),
with numerous complexity theoretic results highlight-
ing their inherent computational intractability (see, e.g.,
[10, 11, 12]). To our knowledge, no analogous study has
been conducted for in�nite AFs.

This paper addresses this gap by initiating a systematic
study of the complexity of computational problems in
in�nite AFs. For this endeavor, we bring into the subject
of argumentation theory the machinery of computability
theory, which may be regarded as an in�nitary com-
panion of computational complexity theory and abounds
with concepts and hierarchies for measuring the complex-
ity of computing and de�ning countably in�nite objects,
providing the appropriate machinery for this endeavor.
The application of computability theoretic tools out-

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:andrews@math.wisc.edu
mailto:luca.sanmauro@gmail.com
https://math.wisc.edu/~andrews
https://www.lucasanmauro.com/
https://creativecommons.org/licenses/by/4.0

side of mathematical logic is a well-established idea. Over
the past decades, computability theory has been applied
to a wide array of mathematical disciplines, and com-
putability theoretic concepts have found applications in
other formal subjects, such as theoretical computer sci-
ence, economics, and linguistics (see, e.g., [13, 14, 15]).

The present paper, we argue, provides compelling ev-
idence of the bene�ts of viewing in�nite AFs through
computability theoretic lenses. We assess the complex-
ity of many computational problems—both established
and novel—within our framework, illustrating their un-
decidability while providing precise measures of their
complexity.

Organization of the paper

Section 2 brie�y reviews the main semantic concepts
from argumentation theory that are relevant to this pa-
per, along with the fundamental computational problems
associated with them. In Section 3, we introduce the key
notions of computability theory employed in the work
and we de�ne the concept of computable AFs and the
computational issues that emerges from it. Finally, in
Sections 4 through 5, we determine the lower and upper
bounds of the complexity for our computational prob-
lems: a critical technique for achieving hardness results
involves suitably encoding trees into AFs. Our main re-
sults are collected in Tables 2 and 3.

2. Argumentation theoretic
background

To keep our paper self-contained, we now brie�y review
some key concepts of Dung-style argumentation theory,
focusing on the semantics notions considered in this
paper and the fundamental computational problems asso-
ciated with them (the surveys [16, 17] o�er an overview
of these topics).
An argumentation framework (AF) F is a pair

(AF , RF) consisting of a set AF of arguments and an
attack relation RF ✓ AF ⇥ AF . If some argument a
attacks some argument b, we may write a ⇢ b instead
of (a, b) 2 RF . Collections of arguments S ✓ AF are
called extensions. For an extensionS, the symbolsS+ and
S� denote, respectively, the arguments that S attacks
and the arguments that attack S:

S+ = {x : (9y 2 S)(y ⇢ x)};
S� = {x : (9y 2 S)(x ⇢ y)}.

S defends an argument a, if any argument that attacks
a is attacked by some argument in S (i.e., {a}� ✓ S+).
The characteristic function of F is the following mapping
fF which sends subsets of AF to subsets of AF :

fF (S) := {x : x is defended by S}.

All AFs investigated in this paper are in�nite.
A semantics � assigns to every AF F a set of exten-

sions �(F) which are deemed as acceptable. A huge
number of semantics, fueled by di�erent motivations,
have been proposed and analyzed. Here, we focus on
three prominent choices, whose computational aspects
are well-understood in the �nite setting: admissible, com-
plete, and stable semantics (abbreviated by ad, stb, co, re-
spectively).
Let F = (AF , RF) be an AF. Denote by cf(F) the

collection of extensions of F which are con�ict-free (i.e.,
S 2 cf(F) i� a 6⇢ b, for all a, b 2 S). Then, for S 2
cf(F),

• S 2 ad(F) i� S is self-defending (i.e., S ✓
fF (S));

• S 2 co(F) i� S is a �xed point of fF (i.e., S =
fF (S));

• S 2 stb(F), i� S attacks all arguments outside
of it (i.e., S+ = AF r S).

In discussing the complete extensions, we will also
brie�y mention the grounded extension, which is the
unique smallest �xed point of fF ; in any AF, the
grounded extension always exists [2, Theorem 3].

For a given semantics �, the following are some well-
known computational problems related to �:

• Cred� (for credulous acceptance) is the decision
problem whose accepting instances are the pairs
(F , a) so that a 2 S for some S 2 �(F);

• Skept� (for skeptical acceptance) is the decision
problem whose accepting instances are the pairs
(F , a) so that a 2 S for all S 2 �(F);

• Exist� is the decision problem whose accepting
instances are the AFs F so that �(F) 6= ;;

• NE� is the decision problem whose instances are
the AFs F so that �(F)r {;} 6= ;;

• Uni� is the decision problem whose accepting
instances are the AFs F so that |�(F)| = 1.

In formal argumentation theory, evaluating the compu-
tational complexity of the aforementioned problems for
various semantics has been a noteworthy research thread
for more than 20 years[17]. Table 1 collects known com-
plexity results for the admissible, stable, and complete
semantics. This analysis refers only to �nite AFs. In the
next section, we introduce our computability theoretic
perspective that allows us to tackle complexity issues
concerning in�nite AFs.

� Cred� Skept� Exist� NE� Uni�
ad NP-c trivial trivial NP-c coNP-c
stb NP-c coNP-c NP-c NP-c DP-c
co NP-c P-c trivial NP-c coNP-c

Table 1
Computational problems for finite AFs. C-c denotes complete-
ness for the class C.

3. Computational problems for
AFs through the lens of
computability theory

In this section, we introduce computable AFs and we
revisit the computational problems of the last section
through the lens of computability theory. We aim at con-
veying the main ideas without delving into too many
technical details. A more formal and comprehensive ex-
position of the fundamentals of computability theory can
be found, e.g., in the textbooks [18]. We begin by estab-
lishing standard notation and terminology for some com-
binatorial notions that appear frequently in our proofs.

3.1. Sequences, strings, and trees
As is common in computability theory, we denote the set
of natural numbers by !. Since there is no risk of ambigu-
ity, we simply refer to the elements of ! as numbers. The
symbol !! denotes the set of all functions from ! to !.
For our purposes, it is convenient to represent elements
of !! as in�nite sequences of numbers (where the i+1th
bit of ⇡ 2 !! will be the output of the function ⇡ on in-
put i). We denote by 01 the in�nite sequence consisting
of only 0’s (or, equivalently, the constant function to 0).
The restriction of an in�nite sequence ⇡ 2 !! to its �rst
n bits is denoted by ⇡ �n.
We use standard notation and terminology about

strings: The set of all �nite strings of numbers is denoted
by !<! . The symbol � denotes the empty string. The
concatenation of strings �, ⌧ is denoted by �_⌧ . The
length of a string � is denoted by |�|. If there is ⇢ so that
�_⇢ = ⌧ , we say that � is a pre�x of ⌧ and we write
� � ⌧ . Similarly, if ⇡ 2 !! and � = ⇡ �n for some n,
we write � � ⇡.

In order to formulate our problems as subsets of !,
it will be convenient to encode pairs of numbers into
single numbers. The pairing function does this. Fix p :
! ⇥ ! ! ! to be a computable bijection. We adopt the
common habit of denoting p(x, y) by hx, yi.
The encodings discussed in Section 4 heavily rely on

the di�culty of calculating paths through trees. As is
common in computability theory, we say that a tree is
a set T ✓ !<! closed under pre�xes. We picture trees
growing upwards, with �_i to the left of �_j, when-

ever i < j. A path ⇡ 2 !! through a tree T ✓ !<!

is an in�nite sequence so that ⇡ �n 2 T , for all num-
bers n. The set of paths through a tree T is denoted by
[T]. T is well-founded if [T] = ; and otherwise is ill-
founded. Note that we follow the standard terminology
in computability theory requiring that paths be in�nite.
Indeed, if one were to allow paths to be �nite, then these
notions trivialize, since one could computably �nd a path
through any given computable tree. For example, the set
of strings

T := {�} [{�,�_1 : (8n < |�|)(�(n) = 0)}

is an ill-founded tree with [T] = {01}.
If T contains strings of arbitrary length, then T has

in�nite height. Note that there are trees of in�nite height
which are well-founded, e.g., T = {�} [{n_� : |�| 
n}.

3.2. Computable argumentation
frameworks

A basic problem that one encounters when attempting
to calibrate the algorithmic complexity of in�nite AFs is
that of describing in�nite objects in a �nitary way. Com-
putability theory o�ers a wide range of tools designed
for this endeavour. Here, we will concentrate on AFs
that are computably presentable, in the sense that there
are Turing machines (or, equivalently, modern computer
programs) that, in �nitely many steps, decide whether a
given pair of arguments belongs to the attack relation.

Notation. Let (�e)e2! be a uniform enumeration of all
partial computable functions from ! to {0, 1}.

De�nition 3.1. A number e is a computable index for
an AF F = (AF , RF) with AF = {an : n 2 !} so that

�e(hn,mi) =
(
1 if an ⇢ am

0 otherwise.

An AFF is computable, if it has a computable index e 2 !.

We use the notation Fe to refer to the AF with com-
putable index e (note that every computable AF possesses
in�nitely many computable indices.).

Remark 3.2. The collection of computable indices for AFs
just de�ned is noncomputable (in particular, any index e
for a non-total computable function �e cannot be a com-
putable index for an argumentation framework). There
are alternative indexings that circumvent this issue; yet,
adopting another indexing would not alter the complexity
of the computational problems we analyze, though it would
make the proofs slightly more cumbersome. Hence, we opt
for the simplicity of De�nition 3.1.

The bene�t of dealing with computable AFs is that
the complexity of the decision problems associated with
them do not arise due to complexity of the argumenta-
tion framework itself, but rather re�ects the inherent
complexity of the decision problem. Further, the compu-
tational problems associated with computable AFs can be
naturally represented as subsets of !, which are suitable
to be classi�ed by computability theoretic means:

De�nition 3.3. For a semantics �:

1. Cred1� := {he, ni : (9S 2 �(Fe))(an 2 S)};

2. Skept1� := {he, ni : (8S 2 �(Fe))(an 2 S)};

3. Exist1� := {e : (9S ✓ AFe))(S 2 �(Fe))};

4. NE1� := {e : (9S 2 �(Fe))(S 6= ;)};

5. Uni1� := {e : (9!S ✓ AFe)(S 2 �(Fe))}.

We also introduce new semantics which make sense
only in the in�nite setting. This is motivated by the idea
that, given an in�nite AF, we might hope for our accepted
sets to give us in�nitely much information.

1. S 2 infad(F) if and only if S 2 ad(F) and S is
in�nite;

2. S 2 infco(F) if and only if S 2 co(F) and S is
in�nite;

3. S 2 infstb(F) if and only if S 2 stb(F) and S is
in�nite.

As an illustration of why we might want to accept
only in�nite extensions, we consider that a given in�nite
AF may contain a single argument b so that b attacks
every other argument, and every other argument attacks
b. We imagine that b is a statement of extreme solipsism
denying the truth of any other statement. While {b} is
a stable extension, it represents a negligible fraction of
arguments, and we may prefer not to accept it. In an
in�nite AF, any �nite set is as negligible as {b}, so we
may prefer to accept only in�nite extensions.

The complexity classes that most naturally match the
problems of De�nition 3.3 are those of the⌃1

1 and⇧1
1 sets.

The⌃1
1 sets are formally de�ned as those subsets of! that

are de�nable in the language of second-order arithmetic
using a single second-order existential quanti�er ranging
over subsets of ! followed by number quanti�ers and the
�rst order functions and relations (+, ·, <, 0, 1,2); for
more details, see [18, §16]. ⇧1

1 sets are the complements
of ⌃1

1 sets.

Proposition 3.4. Cred1� , Exist1� , and NE1� are ⌃1
1, for

� 2 {ad, stb, co, infad, infstb, infco}.

Proof. We �rst consider � 2 {ad, stb, co}. To de�ne
Cred1� , we see from De�nition 3.3: Cred1� := {he, ni 2
! : (9S 2 �(Fe)(an 2 S))} uses a single existential
quanti�er over sets S. This is similarly true for the def-
initions of Exist1� and NE1

� in De�nition 3.3. Thus, it
su�ces to see that the condition S 2 �(Fe) can be de-
�ned with only quanti�cation over arguments, which are
in bijection with !, not needing quanti�cation over sets
of arguments.

Note that the de�nition of S+ and S� use only quanti-
�ers over arguments. Thus the de�nition of fF (S) given
by a 2 fF (S) if and only if {a}� ✓ S+ uses only
quanti�ers over arguments. Finally, S 2 ad(F), S 2
stb(F), S 2 co(F) are all de�ned from fF (S) and S+

using only quanti�ers over arguments.
In the case of � 2 {infad, infstb, infco}, we need

to also observe that S being in�nite is de�ned via
8n9m(am 2 S ^ m > n), which uses only quanti-
�ers over numbers.

Proposition 3.5. Skept1� is ⇧1
1, whenever � is in

{ad, stb, co, infad, infstb, infco}. Furthermore, for � 2
{ad, co}, Uni1� is ⇧1

1.

Proof. The de�nition of Skept1� in De�nition 3.3 uses a
single universal set-quanti�er followed by only number
quanti�ers in the de�nition of �(Fe).
For � 2 {ad, co}, e 2 Uni1� if and only if there are

not two di�erent � extensions (as there is always at least
one � extension). This is de�ned by the negation of the
following formula:

(9S19S2)(9x 2 S1rS2 ^ S1 2 �(Fe)^ S2 2 �(Fe)).

Note that 9S19S2 can be replaced by a single existen-
tial quanti�er by encoding the pair (S1, S2) as a single
set {h1, xi : x 2 S1} [{h2, yi : y 2 S2}. This shows
that Uni1� is the complement of a ⌃1

1 set, thus is⇧1
1.

Remark 3.6. The above argument does not su�ce to
show that Uni1stb is also⇧

1
1, since some AFs have no stable

extension. The most obvious de�nition says there exists
one stable extension and there does not exist two, which
gives a de�nition which is a conjunction of a ⌃1

1 and
a ⇧1

1 condition, i.e., a so-called d-⌃1
1 de�nition. This is

analogous to the fact that in the �nite case Unistb is DP-
complete. Similarly, the argument above does not show
that Uni1� is ⇧1

1 for � 2 {infad, infstb, infco}. Yet, it is
true that Uni1� is⇧1

1 for � 2 {stb, infad, infstb, infco} as
we show below in Corollaries 5.5,5.10, and 5.14.

We note that knowing that a problem is ⌃1
1 does not

necessarily mean the problem is complicated. This only
gives an upper-bound for its complexity. Sometimes,
a simpler de�nition is achievable. As an example, we
consider Credcf := {he, ni : (9S 2 cf(Fe))(an 2 S)}.

Though the given de�nition is ⌃1
1, to know if an argu-

ment an belongs to a con�ict-free extension of Fe, it
su�ces to check whether an is non-self-defeating, i.e.,
an 6⇢ an, which is equivalent to checking the com-
putable fact that �e(hn, ni) = 0. In contrast, we will
show that for the computational problems associated to
the admissible, stable, and complete semantics, the use
of the quanti�er ranging over all sets cannot be avoided.
We will heavily rely on the following fundamental

theorem by Kleene which o�ers a natural way of repre-
senting ⌃1

1 sets:

Theorem 3.7 (Kleene [19]). A set X ✓ ! is ⌃1
1 if and

only if there is a computable sequence of computable trees
(T X

n)n2! so that n 2 X i� T X
n is ill-founded.

We call (T X
n)n2! a tree-sequence forX . As a corollary

of Kleene’s theorem, one obtains that the problem of
deciding which computable trees in !<! are ill-founded
(or well-founded) is as hard as any other ⌃1

1 (resp., ⇧1
1)

problem.
Theorem 3.7 gives a reason to consider the ⌃1

1 sets as
the natural in�nite analogs of the NP problems. Namely,
given an ill-founded computable tree T and a sequence ⇡
which is a path through T , it is relatively simple to check
that ⇡ 2 [T] (it requires checking in�nitely many simple
facts: ⇡ �n 2 T , for each n), but �nding a sequence ⇡ 2
[T]—or even knowing whether there exists a sequence
⇡ 2 [T]—is a far harder problem.

Our main goal is to exactly characterize the complexity
of the computational problems described in De�nition
3.3. To do so, we need to show that they are complete
for their respective complexity classes. The following
de�nition formalizes this notion.

De�nition 3.8. Let � be a complexity class (e.g., � 2
{⌃1

1,⇧
1
1}). A set V ✓ ! is �-hard, if for every X 2 �

there is a computable function f : ! ! ! so that x 2 X
if and only if f(x) 2 V . If V is �-hard and belongs to �,
then it is �-complete.

Proposition 3.9. It follows from Theorem 3.7 that the
set of indices for ill-founded computable trees is a ⌃1

1-
complete set. Similarly, the set of indices for well-founded
computable trees is a ⇧1

1-complete set.

The following example is far less obvious, but will be
useful below to examine Uni1� .

Theorem 3.10 ([20, Theorem 18.11]). The set UB of in-
dices for computable trees with exactly one path is a ⇧1

1-
complete set.

Remark 3.11. The hardness in Theorem 3.10 is quite
easy. We can reduce the question of whether a tree T is
well-founded to whether a tree T 0 has two paths, where
T 0 always has at least one path, by simply giving T 0 one

more path than T (e.g. T 0 = {1_� : � 2 T } [{� :
(8n < |�|)�(n) = 0}). The fact that UB is itself ⇧1

1 is
the subtle part of this example.

Theorem 3.7 along with De�nition 3.8 suggest a nat-
ural approach for gauging the complexity of the com-
putational problems of De�nition 3.3. Namely, given
another ⌃1

1 (or ⇧1
1) set X , we translate the question ask-

ing whether n 2 X to the question of if the tree T X
n

is ill-founded (resp., well-founded), and then we need
to computably �nd an instance of our computational
problem which should be accepted if and only if T X

n is
ill-founded (resp., well-founded). This involves coding a
tree, or more precisely, the collection of paths through
a tree into the � extensions in an argumentation frame-
work. We do exactly this in Section 4.

Table 2 collects our results regarding complexities of
the computational problems examined for computable
argumentation frameworks.

Remark 3.12. As noted before, the ⌃1
1 sets are natural

analogs in the in�nitary setting of the NP sets, and the
⇧1

1 sets are the natural analogs of the coNP sets. With
the exception of Skept1co and Uni1stb , Table 2 follows this
translation from Table 1 for the �rst three rows. These
two results mark surprising di�erences in the in�nite
setting.

The trivial entries are due to the fact that ; is always
an admissible extension and the grounded extension is
always a complete extension.

3.3. Spectra of � extensions
We propose a way to more fully understand the complex-
ity of the problem of �nding a � extension in a given AF
F .

De�nition 3.13. For each e 2 ! and semantics �, let
Spec¬;

� (Fe) be the set of Turing degrees of non-empty sets
X ✓ ! so that {an : n 2 X} is a � extension in Fe.

The notion Spec¬;
� (Fe) exactly captures the di�culty

of computing a non-empty � extension in Fe. We will
be relating the problem of computing a � extension in
Fe to the problem of �nding a path through a particular
tree. So, we de�ne the analogous notion of the spectrum
of a tree.

De�nition 3.14. Given any computable tree T , we let
Spec(T) be set of Turing degrees of pathsX 2 [T].

Table 3 collects our results on spectra of extensions.

� Cred1� Skept1� Exists1� NE1� Uni1�
ad ⌃1

1-c 4.2,3.4 trivial trivial ⌃1
1-c 4.2 3.4 ⇧1

1-c 4.3,3.5
stb ⌃1

1-c 4.2,3.4 ⇧1
1-c 4.4,3.5 ⌃1

1-c 4.2, 3.4 ⌃1
1-c 4.2,3.4 ⇧1

1-c 4.3, 5.10
co ⌃1

1-c 4.2, 3.4 ⇧1
1-c ⇤, 3.5 trivial ⌃1

1-c 4.2, 3.4 ⇧1
1-c 4.3,3.5

infad ⌃1
1-c 4.2,3.4 ⇧1

1-c 4.4,3.5 ⌃1
1-c 4.2, 3.4 ⌃1

1-c 4.2, 3.4 ⇧1
1-c 4.3,5.5

infstb ⌃1
1-c 4.2,3.4 ⇧1

1-c 4.4,3.5 ⌃1
1-c 4.2, 3.4 ⌃1

1-c 4.2, 3.4 ⇧1
1-c 4.3,5.10

infco ⌃1
1-c 4.2,3.4 ⇧1

1-c 4.4,3.5 ⌃1
1-c 4.2, 3.4 ⌃1

1-c 4.2, 3.4 ⇧1
1-c 4.3, 5.14

Table 2
Computational problems for computable AFs. C-c denotes completeness for the class C. The entry with an asterisk is not fully
proved in this paper. Rather, the ⇧1

1-hardness for Skept
1
co is deferred to future work focusing on the grounded semantics. It is

included in the table here (though partially unproved) to give a more complete picture. The numbers in each cell of the table
refer to the Theorem number providing the lower bound and upper bounds for the result in that cell.

� Spec¬;
�

ad Exactly Spec(T)
stb Exactly Spec(T)
co Any Spec(T)
infad Exactly Spec(T)
infstb Exactly Spec(T)
infco Any Spec(T)

Table 3
For any computable tree T , there is a computable argumen-
tation framework Fe so that Spec(T) = Spec¬;

� (Fe). When
� 2 {ad, stb, infad, infstb}, the converse also holds. Namely,
for every e, there is a computable tree so that Spec¬;

� (Fe) =
Spec(T). We do not know how to attain a corresponding up-
per bound for the complete or infinite complete cases.

4. Encoding a tree into an
argumentation framework

Given a tree T ✓ !<! , we will de�ne an argumentation
framework FT = (AT , RT). The set of arguments AT

ofFT is computable and consists of {a� : � 2 T }[{b� :
� 2 T } [{c}. The attack relation RT of FT contains
all and only the following edges:
For all � 2 T ,

1. b� ⇢ b� ;

2. b� ⇢ a� ;

3. a� ⇢ b⌧ , if |�| = |⌧ |+ 1;

4. a� ⇢ a⌧ , if |�| = |⌧ |+ 1 and ⌧ 6� �;

5. c ⇢ a⌧ for every ⌧ 2 T ;

6. a� ⇢ c.

Figure 1 gives an example of our encoding for a �-
nite tree. We next consider which extensions in FT are
admissible, stable, or complete.

Notation. For ⇡ 2 [T], let S⇡ be the set {a� : � � ⇡}.

Lemma 4.1. A non-empty extension S of FT is stable
i� S is complete i� S is admissible i� S is exactly S⇡ for
some ⇡ 2 [T].

Proof. Stable always implies complete, which always im-
plies admissible. It is straightforward to check that S⇡ is
stable for any ⇡ 2 [T], so we need only show that any
non-empty admissible extension is exactly some S⇡ . Sup-
pose that S is admissible. Observe that c and b� cannot
be in S since these are self-defeating. So some a� 2 S
since S is non-empty. Note that since c ⇢ a� , we must
have a� 2 S. Next, observe that if a⌧ 2 S, then there
must be some i so that a⌧_i 2 S: this is because some
element of S must defend a⌧ from b⌧ and such an ele-
ment must be an a� with |�| = |⌧ |+1. But it must have
⌧ � � as otherwise a� would attack a⌧ . It follows that
S contains S⇡ for some ⇡ 2 [T]. Since S⇡ is stable, S
cannot properly contain S⇡ , so S = S⇡ .

We are now in a position to obtain hardness results for
the computational problems described in De�nition 3.3.

Theorem 4.2. The following hold:

1. for � 2 {ad, stb, co, infad, infstb, infco}, NE1� is
⌃1

1-hard;

2. for � 2 {stb, infad, infstb, infco}, Exist1� is ⌃1
1-

hard;

3. for � 2 {ad, stb, co, infad, infstb, infco}, Cred1�
is ⌃1

1-hard.

Proof. 1. Let X 2 ⌃1
1 and let (T X

n)n2! be a tree-
sequence forX , as given by Theorem 3.7. To show ⌃1

1-
hardness, we need to produce a computable function
f so that n 2 X if and only if f(n) 2 NE1

� . We let
f(n) be a computable index for FT X

n . Then Lemma 4.1
shows that n 2 X if and only if T X

n is ill-founded if
and only if FT X

n has a non-empty � extension for each
� 2 {ad, stb, co, infad, infstb, infco}.

2. For each of these �, the empty set is not a � ex-
tension, so Exist1� = NE1

� , which we showed above is
⌃1

1-hard.

�

0 1

10 11

c

a� b�

a0 b0 a1 b1

a10 b10 a11 b11

Figure 1: Example of our encoding of trees into AFs: the le�-side represents the tree {�, 0, 1, 10, 11}, the right-side is the
resulting AF. When applied to trees T of infinite height, [T]will be encoded into the stable, complete, and admissible extensions
of FT . For the example shown in the figure, the only admissible extension of FT is the empty one, since [T] = ;.

3. In the proof of 1. above, we reduced a given⌃1
1 setX

to NE1
� by sending n toFT X

n . Note thatFT X
n has a non-

empty� extension if and only if a� is in some� extension.
Thus sending n to he, a�i where e is a computable index
for FT X

n shows that Cred1� is ⌃1
1-hard.

Theorem 4.3. For � 2 {ad, stb, co, infad, infstb, infco},
Uni1� is ⇧1

1-hard.

Proof. We �rst consider � 2 {ad, co}. Let X 2 ⇧1
1 and

let (T !rX
n)n2! be a tree-sequence for its complement.

Consider the sequence of AFs (FT !rX
n)n2! . Note that

; is an admissible extension in any AF and since every
argument in FT !rX

n is attacked, ; is also a complete
extension. Thus, FT !rX

n has a unique � extension if
and only if T !rX

n is well founded if and only if n 2 X ,
which shows that Uni1ad and Uni1co are ⇧1

1-hard.
For the other�, ; is not a� extension. We use Theorem

3.10 to show ⇧1
1-hardness. Let X be any ⇧1

1 set. Then
we get from Remark 3.11 a sequence of trees T 0

n so that
01 2 [T 0

n] for each n, and {n : T 0
n has only one path}

is ⇧1
1-hard. It follows from Lemma 4.1 that this holds if

and only if FT 0
n has a unique � extension, which shows

the ⇧1
1-hardness of Uni1� .

Theorem 4.4. For any � 2 {stb, infstb, infco, infad},
Skept1� is ⇧1

1-hard.

Proof. LetX be a⇧1
1 set. Then we get from Remark 3.11

a sequence of trees T 0
n so that 01 2 [T 0

n] for each n,
and {n : T 0

n has only one path} is ⇧1
1-hard. Then note

that he, a0i 2 Skept1� where e is a computable index

for Gn := FT 0
n
if and only if T 0

n only has paths ⇡ with
⇡(0) = 0 if and only if T 0

n has only one path (see the
de�nition of T 0

n in Remark 3.11) if and only if n 2 X .
This shows the ⇧1

1-hardness of Skept1� .

Theorem 4.5. For � 2 {ad, stb, co, infad, infstb, infco}
and for any computable tree T , there exists a computable
AF Fe so that Spec¬;

� (Fe) = Spec(T).

Proof. Observe that for the AF Fe = FT , it follows
from Lemma 4.1 that the non-empty � extensions are all
in�nite and are in the same Turing degrees as the paths
through T .

5. Trees coding extensions in �(F)

In this section, we give upper bounds to the complexity of
Spec¬;

� for � 2 {ad, stb, infad, infstb} as well as giving
upper bounds for the complexity of Uni1� for any � 2
{stb, infad, infstb, infco}. We do this by describing how
to computably encode the collection of extensions in
�(F) into the set of paths through a tree.

The admissible case

Given a computable argumentation framework F , we
will describe a computable tree T F so that the paths of
T F encode the non-empty admissible extensions in F .
We begin with an intuitive description of how a path ⇡
through the tree T F will encode an admissible extension
S, and we give the formal de�nition of T F below.

Branching in T F will come in three �avors. The �rst
branching is used to give the least element of the admis-
sible extension S. This is to ensure that the extension is
non-empty. If we wished to allow the empty extension,
we could omit this branching. For any j > 0, the branch-
ing on level 2j serves to code whether or not j 2 S.
Branching on the odd levels serve to explain how S sat-
is�es the hypothesis of being an admissible extension. If
ai ⇢ aj is the nth element of some computable enumer-
ation of all attacking pairs of arguments, then �(2n+ 1)
will be 0 if aj /2 S and otherwise will be k + 1 where k
is least so that ak 2 S and ak ⇢ ai.

Let F = (AF , RF) be a computable AF. Let (gn)n2!

be a computable sequence of all elements of RF . If gn =
(ai, aj), we denote ai by g�n and aj by g+n . We now
de�ne the tree T F .

De�nition 5.1. Any given string � 2 !<! de�nes two
subsets of arguments in AF :

• In� = {a�(0)}[{aj : j > 0^�(2j) = 1}[{ak :
(9j)(�(2j + 1) = k + 1)} [{ai : (9j)(�(2j +
1) > 0 ^ g+j = ai)};

• Out� = {ai : i < �(0)}[{aj : j > 0^�(2j) =
0}[{ai : (9j)(�(2j+1) = 0^g+j = ai)}[{ai :

(9j)(�(2j + 1) > i+ 1 ^ ai ⇢ g�j)}.

We de�ne T F as the set of � so that

• In� is con�ict-free;
• In� \ Out� = ;
• If 0 < 2j < |�|, then �(2j) 2 {0, 1};
• If 2j + 1 < |�| and �(2j + 1) = k + 1, then
ak ⇢ g�j .

Theorem 5.2. Let F be a (computable) argumentation
framework. Then the non-empty admissible extensions of
F are in (computable) bijection with the paths in T F .

Proof. Given a non-empty admissible extension S of F ,
we de�ne the corresponding path ⇡ in T F as follows. Let
⇡(0) be the least element of S. For j > 0, let ⇡(2j) = 1
if aj 2 S and ⇡(2j) = 0 otherwise. Let ⇡(2n+ 1) be 0
if g+n /2 S and be k + 1 where k is least so that ak 2 S
and ak ⇢ g�n otherwise. It is straightforward to check
that ⇡ 2 [T F].

Given a path ⇡ through T F , �rst note that whenever
there is some � � ⇡ so that an 2 In� , then ⇡(2n) = 1.
This is because whenever � � ⌧ , then In� ✓ In⌧ . Then
since ⌧ := ⇡ �max(|�|,2n+1) is in T F , we cannot have
⌧(2n) = 0 since an 2 In⌧ . Thus ⇡(2n) = ⌧(2n) = 1. It
follows that

S
��⇡ In� = {an : ⇡(2n) = 1}. The same

argument shows that
S

��⇡ Out� = {an : ⇡(2n) = 0}.
Let S = {an : ⇡(2n) = 1}.
Note that S is con�ict-free, since if ai, aj 2 S then

there is some long enough � � ⇡ so that ai, aj 2 In� .

Since � 2 T F , it follows that In� is con�ict-free, so
ai 6⇢ aj . Next, observe that S defends itself. If ai ⇢ aj

and aj 2 S, then there is some n so that gn = (ai, aj).
Then consider � = ⇡ �n+1. We must have �(n) = k+1
for some k with ak 2 S and ak ⇢ ai.

Finally, note that both the map from ⇡ to S and from S
to ⇡ are computable if F is computable and are inverses
of each other.

Corollary 5.3. For every computable AF Fe, there exists
a computable tree T so that Spec¬;

ad (Fe) = Spec(T).

Proof. It follows immediately from Theorem 5.2 that
Spec¬;

ad (Fe) = Spec(T Fe).

Corollary 5.4. For every computable AF Fe, there exists
a computable tree bT so that Spec¬;

infad(Fe) = Spec(bT).

Proof. The tree needed here is a slight alteration of the
tree T F . In T F , we made �(0) tell us the least k so
ak 2 S so as to ensure that S 6= ;. We do the same on
in�nitely many layers, e.g., instead of having �(2n) be 0
or 1 to tell us whether or not n 2 S, we have �(2n) tell
us the nth least number k so that ak 2 S. With the tree
altered like this, paths are in computable bijection with
the in�nite admissible extensions.

Corollary 5.5. Uni1infad is ⇧1
1.

Proof. e is in Uniinfad if and only if the tree bT in Corollary
5.4 has a unique path. By Theorem 3.10, this is a ⇧1

1

condition.

The stable case

Similarly, we can construct a tree encoding the stable
extensions by making �(n) = 0 if an 2 S and otherwise
making �(n) be k + 1 where k is least so that ak 2 S
and ak ⇢ an.

De�nition 5.6. Any given string � 2 !<! de�nes two
subsets of arguments in AF :

• In� = {ai : �(i) = 0} [{a�(i)�1 : i < |�| ^
�(i) > 0};

• Out� = {ai : i < |�| ^ �(i) > 0} [{ai :
(9j)�(j) > i+ 1 ^ ai ⇢ aj)}.

We de�ne T F as the set of � so that

• In� is con�ict-free;
• In� \ Out� = ;
• If j < |�| and �(j) = k + 1, then ak ⇢ aj .

Theorem 5.7. Let F be a (computable) argumentation
framework. Then the stable extensions of F are in (com-
putable) bijection with the paths in T F .

Proof. Given a stable extension S of F , we de�ne the
corresponding path ⇡ in T F as follows. For each n, let
⇡(n) be 0 if an 2 S and let ⇡(n) be k + 1 where k
is least so that ak 2 S and ak ⇢ an otherwise. It is
straightforward to check that ⇡ 2 [T F].

Given a path ⇡ through T F , �rst note that whenever
there is some � � ⇡ so that an 2 In� , then ⇡(n) = 0.
This is because whenever � � ⌧ , then In� ✓ In⌧ . Then
since ⌧ = ⇡ �max(|�|,n+1) is on T F , we cannot have
⌧(n) 6= 0 since an 2 In⌧ and therefore cannot be in
Out⌧ . It follows that

S
��⇡ In� = {an : ⇡(n) = 0}. Let

S = {an : ⇡(n) = 0}.
Note that S is con�ict-free, since if ai, aj 2 S, then

ai 6⇢ aj since � = ⇡ �max(i,j)+1 is in T F , and thus In�
is con�ict-free. Next observe that for any n, either an 2
S or there is some m so that am 2 S and am ⇢ an.
In particular, if ⇡(n) = 0, then an 2 S and otherwise
a⇡(n)�1 2 S and a⇡(n)�1 ⇢ an.

Finally, note that both the map from � to S and from S
to � are computable if F is computable and are inverses
of each other.

Corollary 5.8. For any computable AF Fe there exists a
computable tree T so that Spec¬;

stb (Fe) = Spec(T).

Proof. This follows directly from Theorem 5.7 along with
the fact that ; is never a stable extension.

Corollary 5.9. For any computable AF Fe there exists a
computable tree T so that Spec¬;

infstb(Fe) = Spec(T).

Proof. We add layers of branching to the tree as in Corol-
lary 5.4 so that, e.g., �(2n) = mmeans thatm is the nth
least number so that an 2 S. This produces a tree dT F

so that the paths are in computable bijection with the
in�nite stable extensions of F .

Corollary 5.10. Uni1stb and Uni1infstb are ⇧1
1.

Proof. As the paths through T Fe are in bijection with
the stable extensions, e 2 Uni1stb if and only if T Fe has a
unique path. As the paths through bT F (see Corollary 5.9)
are in bijection with the in�nite stable extensions in Fe,
we have e 2 Uniinfstb if and only if bT Fe has a unique path.
By Theorem 3.10, these are both ⇧1

1 conditions.

The complete case

Given an argumentation framework F , we can similarly
construct a tree T F so that paths through T F code com-
plete extensions. In order to ensure that fF (S) ✓ S, we
will need the paths in T F to not only code sets S but
also their attacked sets S+.
Given an extension S, we will let ⇡ 2 T F encode S

and S+ as follows:

• ⇡(2n) = 0 if an 2 S and otherwise ⇡(2n) =
k+1 where k is least so ak /2 S+ and ak ⇢ an.

• ⇡(2n+1) = 0 if an /2 S+ and otherwise ⇡(2n+
1) = k + 1 where k is least so ak 2 S and
ak ⇢ an.

Note that ⇡(2n) explains why an is either in S or it is
not in fF (S), i.e., fF (S) ✓ S, while ⇡(2n+ 1) simply
veri�es that the elements which ⇡ says are in S+ are in
fact in S+.

Formally, we de�ne T F as follows:

De�nition 5.11. Any given string � 2 !<! de�nes four
subsets of arguments in AF :

• In� = {ai : �(2i) = 0} [{ak : (9j)(�(2j +
1) = k + 1}

• Out� = {ai : �(2i) 6= 0} [{ai : (9j)�(2j +
1) > i+ 1 ^ ai ⇢ aj)}

• InSplus� = {ai : (9j)(�(2j) > i + 1 ^ ai ⇢
aj)} [{ai : �(2i+ 1) 6= 0}

• OutSplus� = {ai : (9j)�(2j) = i + 1} [{ai :
�(2i+ 1) = 0}

We de�ne T F as the set of � so that

1. In� is con�ict-free;

2. In� \ Out� = ;;

3. InSplus� \ OutSplus� = ;;

4. If �(2j) = k + 1, then ak ⇢ aj ;

5. If �(2j + 1) = k + 1, then ak ⇢ aj ;

6. For j, k < |�|, if ak 2 OutSplus� and aj 2 In�
then aj 6⇢ ak ;

7. For n,m < |�|, if an 2 OutSplus� and am 2 In� ,
then an 6⇢ am (i.e., � does not contradict S ✓
fF (S)).

Theorem 5.12. The complete extensions of F are in bi-
jection with the set of paths [T F].

Proof. Let S be any complete extension. We can de�ne
⇡ from S as described at the beginning of this section. It
is straightforward to verify that each condition (1-7) of
De�nition 5.11 is satis�ed by ⇡ �n for each n.
Given a path ⇡ 2 [T F], we can de�ne sets S = {i :

⇡(2i) = 0} and U = {i : ⇡(2i+ 1) 6= 0}. We note that
when � � ⌧ , In� ✓ In⌧ . It follows from this fact, as in
the previous theorems, that S =

S
��⇡ In� . Similarly,

U =
S

��⇡ InSplus� .
Next we see thatU = S+. If n 2 U , then ⇡(2n+1) 6=

0 and by condition 5, we have a⇡(2n+1)�1 attacks an. But
then a⇡(2n+1)�1 2 In⇡�2n+2 , so a⇡(2n+1)�1 2 S. Thus

U ✓ S+. On the other hand if n /2 U , then condition
6 for all � of length > 2n + 1 ensures that there is no
aj 2 S so aj ⇢ an. Thus S+ ✓ U .

Finally, we verify that S is complete. S is clearly con-
�ict free by Condition 1. Condition 7 ensures that any
am 2 S is also in fF (S), since if n /2 U , then an 6⇢ am.
To see that fF (S) ✓ S, note that any an /2 S has
⇡(n) 6= 0 and a⇡(n)�1 /2 S+ and a⇡(n)�1 ⇢ an by
condition 4. Thus an /2 fF (S).

Remark 5.13. The map from paths ⇡ 2 [T F] to com-
plete extensions S ✓ AF is computable, but to compute
⇡ 2 T F we need both S and S+. Thus, we are able to
say that for any computable AF Fe, the set of Turing
degrees of pairs (S, S+) where S is a complete exten-
sion is always Spec(T) for a computable tree T , but note
that S and S+ are not generally of the same Turing de-
gree. Thus, we are currently unable to fully characterize
Spec¬;

co or Spec¬;
infco.

Corollary 5.14. Uni1infco is ⇧1
1.

Proof. We can alter the tree T Fe as in Corollary 5.4 to get
a new tree bT so that the paths through bT are in bijection
with the in�nite complete extensions. Then e 2 Uni1infco
if and only if bT has a unique path. Theorem 3.10 shows
that this is a ⇧1

1 condition.

Corollary 5.15. Fix� 2 {ad, stb, co, infad, infstb, infco}
and suppose that Fe has only countably many non-empty
� extensions. Then there is a hyperarithmetical set S so
that {an : n 2 S} is a � extension of Fe.

Proof. If � 2 {ad, stb, infad, infstb}, let T be a tree so
that Spec¬;

� (Fe) = Spec(T). If � 2 {co, infco}, let T be
a tree so that the set of Turing degrees of pairs (S, S+) of
� extensions is exactly Spec(T). Then T is a computable
tree with countably many paths. By a classic result of
Kreisel [21, Theorem 3.9], T has a hyperarithmetical
path, which corresponds to a hyperarithmetical S so that
{an : n 2 S} is a � extension of Fe.

6. Conclusion
In this paper, we initiated a systematic exploration of
the complexity issues inherent to in�nite argumenta-
tion frameworks. To pursue this direction, we employed
computability-theoretic techniques which are ideally
suited for assessing the complexity of in�nite mathemati-
cal objects. Our focus was on the credulous and skeptical
acceptance of arguments, as well as the existence and
uniqueness of extensions, for admissible, complete, and
stable semantics. We introduced and explored new se-
mantics that are meaningful exclusively in the in�nite
setting, concerning the existence of in�nite extensions

that satisfy a given semantics �. The computational prob-
lems we examined were found to be maximally complex,
properly belonging to the complexity classes of ⌃1

1 and
⇧1

1 sets.
A plethora of intriguing questions regarding the com-

plexity of in�nite AFs remains open. First, we shall �ll the
gaps that we left behind (such as proving the⇧1

1-hardness
for Skept1co). Next, we aim at investigating whether the
computational problems considered in this paper become
more tractable if we restrict to special classes of AFs, such
as the �nitary ones (i.e., those in which each argument
receives �nitely many attacks only [7]). Finally, future
research will extend our analysis to analogous problems
associated with other key semantics for AFs, including
grounded, preferred, and ideal semantics. Given that the
de�nitions of these semantics are more intricate than
those we examined here, we anticipate the need for addi-
tional techniques to thoroughly analyze them.

Acknowledgments
Andrews was partially supported by NSF grant DMS-
2348792. San Mauro is a member of INDAM-GNSAGA.

References
[1] P. Baroni, F. Cerutti, P. E. Dunne, M. Giacomin, Au-

tomata for in�nite argumentation structures, Arti-
�cial Intelligence 203 (2013) 104–150.

[2] P. M. Dung, On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning,
logic programming and n-person games, Arti�cial
intelligence 77 (1995) 321–357.

[3] A. J. García, G. R. Simari, Defeasible logic program-
ming: An argumentative approach, Theory and
practice of logic programming 4 (2004) 95–138.

[4] P. Baroni, M. Giacomin, G. Guida, Self-stabilizing
defeat status computation: dealing with con�ict
management in multi-agent systems, Arti�cial In-
telligence 165 (2005) 187–259.

[5] B. Verheij, De�og: on the logical interpretation of
prima facie justi�ed assumptions, Journal of Logic
and Computation 13 (2003) 319–346.

[6] M. Caminada, N. Oren, Grounded semantics and
in�nitary argumentation frameworks, in: Proceed-
ings of the 26th Benelux Conference on Arti�cial
Intelligence, BNAIC, 2014, pp. 25–32.

[7] R. Baumann, C. Spanring, In�nite argumentation
frameworks: On the existence and uniqueness of
extensions, in: Advances in Knowledge Represen-
tation, Logic Programming, and Abstract Argumen-
tation: Essays Dedicated to Gerhard Brewka on the
Occasion of his 60th Birthday, Springer, 2015, pp.
281–295.

[8] P. Baroni, F. Cerutti, P. E. Dunne, M. Giacomin,
Computing with in�nite argumentation frame-
works: The case of afras, in: Theorie and Applica-
tions of Formal Argumentation: First International
Workshop, TAFA 2011. Barcelona, Spain, July 16-17,
2011, Springer, 2012, pp. 197–214.

[9] S. Bistarelli, F. Santini, et al., Weighted argumenta-
tion., FLAP 8 (2021) 1589–1622.

[10] P. E. Dunne, Coherence in �nite argument systems,
Arti�cial Intelligence 141 (2002) 187–203.

[11] P. E. Dunne, The computational complexity of ideal
semantics, Arti�cial Intelligence 173 (2009) 1559–
1591.

[12] W. Dvo�ák, S. Woltran, Complexity of semi-stable
and stage semantics in argumentation frameworks,
Information Processing Letters 110 (2010) 425–430.

[13] V. Brattka, P. Hertling, Handbook of computability
and complexity in analysis, Springer, 2021.

[14] K. V. Velupillai, Computable foundations for eco-
nomics, Routledge, 2012.

[15] G. Jäger, J. Rogers, Formal language theory: re�n-
ing the chomsky hierarchy, Philosophical Trans-
actions of the Royal Society B: Biological Sciences
367 (2012) 1956–1970.

[16] P. Baroni, M. Giacomin, Semantics of abstract ar-
gument systems, Argumentation in arti�cial intel-
ligence (2009) 25–44.

[17] P. E. Dunne, M. Wooldridge, Complexity of ab-
stract argumentation, Argumentation in arti�cial
intelligence (2009) 85–104.

[18] H. Rogers Jr, Theory of recursive functions and
e�ective computability, MIT press, 1987.

[19] S. C. Kleene, Arithmetical predicates and function
quanti�ers, Transactions of the American Mathe-
matical Society 79 (1955) 312–340.

[20] A. Kechris, Classical descriptive set theory, volume
156, Springer Science & Business Media, 2012.

[21] D. Cenzer, ⇧0
1 Classes in Computability Theory, in:

Studies in Logic and the Foundations of Mathemat-
ics, volume 140, Elsevier, 1999, pp. 37–85.

	1 Introduction
	2 Argumentation theoretic background
	3 Computational problems for AFs through the lens of computability theory
	3.1 Sequences, strings, and trees
	3.2 Computable argumentation frameworks
	3.3 Spectra of σ extensions

	4 Encoding a tree into an argumentation framework
	5 Trees coding extensions in σ(F)
	6 Conclusion

