
Improving Out-of-Vocabulary Hashing in Recommendation
Systems

William Shiao*
wshia002@ucr.edu

University of California, Riverside

Riverside, CA, USA

Mingxuan Ju
mju@snap.com

Snap Inc.

Bellevue, WA, USA

Zhichun Guo
zguo5@nd.edu

University of Notre Dame

Notre Dame, IN, USA

Xin Chen
xin.chen@snap.com

Snap Inc.

Palo Alto, CA, USA

Evangelos E. Papalexakis
epapalex@cs.ucr.edu

University of California, Riverside

Riverside, CA, USA

Tong Zhao
tong@snap.com

Snap Inc.

Bellevue, WA, USA

Neil Shah
nshah@snap.com

Snap Inc.

Bellevue, WA, USA

Yozen Liu
yliu2@snap.com

Snap Inc.

Santa Monica, CA, USA

Abstract

Recommendation systems (RS) are an increasingly relevant area

for both academic and industry researchers, given their widespread

impact on the daily online experiences of billions of users. In real

applications, one common challenge is recommending new users

and items unseen (out-of-vocabulary, or OOV) at training time, i.e.

the inductive setting. Additionally, modern RS also faces challenges

in ID embedding table size. To handle large cardinality user/item

embeddings, memory intensive embedding tables are required. The

size of OOV user/item IDs are often large and varies. As a result of

both issues, existing solutions applied in practice are often naïve,

such as assigning OOV or hashed users/items to a �x set of ran-

dom buckets. In this work, we tackle the cold-start OOV and ID

embedding memory problem and propose approaches that better

leverage available user/item features and memory-e�cient hashing

at the embedding table level. We discuss plug-and-play approaches

that are easily applicable to RS models and improve inductive per-

formance without negatively impacting transductive performance.

Through our extensive evaluation, we �nd that proposed methods

that exploit feature similarity using LSH consistently outperform

alternatives on a majority of model-dataset combinations, with the

best one showing a mean improvement of 3.74% over the industry

standard baseline in recommendation performance. We release our

code and hope our work helps practitioners makemore informed de-

cisions for e�ciently hashing OOV in their RS and further inspires

academic research into improving OOV support in RS.

CCS Concepts

• Information systems→ Recommender systems.

Keywords

recommendation systems, cold-start, out-of-vocabulary, hashing

Figure 1: Comparison between transductive (left) and induc-

tive (right) settings. In the transductive setting, RS are evalu-

ated on interactions between users and items observed during

training time (i.e., bold links). Whereas in the inductive set-

ting, besides transductive interactions, RS are also evaluated

on interactions related to users and items unseen during the

training (i.e., both bold and dash links).

1 Introduction

Recommendation systems (RS) suggest items to users and have

found wide adoption across a variety of domains. For example, they

have been used to recommend advertisements [52, 53], movies [14],

friends [40, 44], and products [7, 28] to users. These methods are

studied in both academia and industry, but many aspects often di�er

between academic and industrial recommendation systems [42].

One such di�erence is their evaluation methodology.

RS research in academia primarily focuses on the transductive

setting [45, 50], where a portion of interactions are masked out

for validation and testing. Such a setting assumes that all users

and items in the dataset are seen during training. However, in

industrial RS environments, there is often a constant in�ux of new,

or out-of-vocabulary (OOV), users and items that were not seen at

training time, i.e., the inductive setting which correspond to new

users and/or items showing up at validation and testing. Almost

all production models are deployed to be utilized in an (at least

partially) inductive setting, but a recent survey [42] found that

*Work done during �rst author’s internship at Snap Inc.

Preprint, 2025, Bellevue, US William Shiao et al.

Machine (xDeepFM) [26], and Deep & Cross Networks V2 (DCN-

V2) [53]. We focus on these models as they are three of the most

popular context-aware models in practice. The models are often

used during the ranking or re-ranking stage in production pipelines.

Hence, we evaluate them using ranking metrics in our experiments.

The features used in context-aware models are typically cate-

gorized into two categories: sparse and dense. Sparse features are

categorical features that are typically one-hot or multi-hot encoded.

Dense features are continuous features. For example, in the case of

social media content recommendation, a user’s country could be

a sparse feature, and their mean daily app usage could be a dense

feature. Sparse features are typically embedded using an embedding

table where each row represents the embedding for that feature’s

ID. These tables are typically randomly initialized and gradually

updated during training. Dense features are typically either un-

modi�ed or passed through neural network layers. In this work,

we focus primarily on handling OOV values in sparse features-

speci�cally, the user/item IDs, which are most likely to be OOV in

production settings.

3 Towards a General OOV Embedder

The motivation for this work stems from how OOV users/items

are typically handled in real-world production settings. In practice,

OOV users/items are often assigned to a random bucket within

which all values share the same embedding or are simply assigned

completely random embeddings2. This clearly results in poor per-

formance for any pure ID-based models (e.g., factorization-based)

that rely on stored embeddings for users/items seen at training time.

However, even for models that use features, this can still result in

poor performance since poorly-assigned embeddings simply add

additional noise. For example, random bucket assignment for OOV

users means that two OOV users have the same chance to share an

embedding, regardless of how similar/di�erent they are.

Since our goal is to improve OOV support for most general

recommendation systems, regardless of speci�c model architecture,

we limit the scope of our modi�cations to a component that is used

in almost all production recommendation systems: the embedding

table. In this work, we focus primarily on OOV support for unseen

user/item IDs, but the same ideas can also be easily extended to

improve support for unseen categorical values in other features.

This leads to the following formal de�nition of an OOV embedder:

OOV Embedders. A user OOV embedder 5user : U\Utrain → R3

maps an OOV user to a real-valued embedding. An item OOV

embedder does the same: 5item : I \ Itrain → R3 .

For the sake of simplicity, we describe all the following OOV

embedders in terms of OOV users, but we use them for both OOV

users and items during evaluation. They can be easily converted to

item OOV embedders by substituting the appropriate variables.

3.1 Heuristic-based Embedders

In this work, we �rst introduce several heuristic-based OOV em-

bedding models that do not require additional trainable parameters.

These are straightforward to apply in practice due to their speed

and ease of implementation.

In-Vocabulary

User

Embedding Table

m

d

user ID user features

Check if

user ID is OOV

OOV Embedding

Model

IV ID

OOV ID & features

OOV

embedding

IV embedding

If OOVIf OOV

If not OOV

output embedding

Figure 4: How IV/OOV user IDs are handled under our frame-

work. Item IDs are handled the same way.

Zero Embedder. zero simply uses the zero vector for all OOV in-

puts. This is a simple solution sometimes used in Natural Language

Processing (NLP) for OOV words [31, 34]. Formally, 5zero (·) = {0}3 .

For context-free models, all new users will randomly select items

(we ensure that items with the same score will be randomly se-

lected without bias towards their ID). For context-aware models,

all predictions will depend entirely on a user’s/item’s contextual

information.

Mean Embedder. mean uses the column-wise mean of the embed-

ding matrix for all OOV IDs. Note that users and items use their

respective means. Formally, for users, 5mean (·) = cmean([). For

context-free models, this means that the RS model will recommend

the same popular items to all new users and that all new items will

have the same probability of being recommended.

Fixed Random Embedder. rand returns a random �oating point

vector for all OOV IDs. There are1 �xed random vectors for each ID

type (e.g., user ID, item ID). This ensures that the model’s output is

deterministic for users/items. Formally, for a set of random vectors

V = {v ∈ R3 }, we have 5rand (·) = V6 (D) where 6 is a random hash

function5 Z→ {1, 2, . . . 1}. This approach is similar to generating

a random vector, except that (a) the output for a given ID is deter-

ministic, and (b) the maximum amount of memory used is bounded

by 1.

KNN Embedder. knn returns the mean of the : nearest neighbors

of a given point, as measured by the inner product of the features.

Formally, for a user D, we have 5knn (D) =
1
:

∑
0∈K-Nearest(D) [0 .

With : = 2, this is similar to the double-hashing performed by

Zhang et al. [60], except that we use feature similarity instead of

5We use the three-round integer hash function from [56].

Improving Out-of-Vocabulary Hashing in Recommendation Systems Preprint, 2025, Bellevue, US

Table 1: Comparison of the di�erent OOV embedders evaluated in this work. For applicable methods, \ refers to the number of

parameters in the neural network, 1 refers to the number of buckets, and = is the number of input items. Features refer to

non-ID features. We assume the embedding dimensionality is constant for the complexity analysis.

Embedder zero mean rand r-bucket knn dhe fdhe dnn m-lsh s-lsh

Requires training ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Uses user/item ID ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗

Uses trainble OOV buckets ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Uses features ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Same features→ same embedding ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Requires pre-processing ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Complexity $ (1) $ (1) $ (1) $ (1) <$ (=)4 $ (\) $ (\) $ (\) $ (1) $ (1)

Potential unique embeddings 1 1 1 1 > = > = > = > = > = 1

random hashing to select rows. In order to meet the e�ciency cri-

teria mentioned in Section 1, we use approximate nearest neighbor

search through libraries like FAISS [19] and SCaNN [12]. Each train-

ing ID’s :-nearest neighbors can optionally be pre-computed and

stored to prevent additional overhead during training.

3.2 Learning-based Embedders

We also consider a set of trained embedders that are optimized

during the training of the base model. As mentioned in Section 3.3,

we freeze the non-OOV parameters of the base model to avoid

a�ecting its transductive performance. Some of these methods use

an embedding table with 1 rows, where each row corresponds to

an OOV bucket. This value can be tuned depending on the expected

number of OOV values. In the following paragraphs, we introduce

several di�erent learning-based OOV embedders. We describe how

these embedders are optimized in Section 3.3.

Random Buckets. r-bucket randomly assigns an embedding (de-

noted as a bucket) to a given OOV ID. This mapping is done with a

deterministic hash function5 to ensure that the bucket mappings re-

main consistent. The chance of any bucket being selected is uniform.

Given > OOV IDs and 1 buckets, each bucket’s expected number

of OOV IDs is >/1. This is similar to rand, except that the values in

each bucket are optimized during training. This is TensorFlow’s [1]

default approach for handling OOV values.

DHE. Deep Hash Embedding (DHE) [21] substitutes a deep neu-

ral network for the embedding table. To ensure determinism for a

given ID, they �rst compute many hashes on that ID and use those

as inputs to the neural network. We use SipHash [2] with di�erent

key values as the hash functions for our implementation. DHE was

originally created as a drop-in replacement for the main embedding

table in context-free methods, but we use it as an OOV embedded

(only on OOV IDs) since it naturally works in this case.

F-DHE. Kang et al. [21] mentions that DHE can also incorpo-

rate user features. fdhe uses the concatenation of the user/item

feature vector with the hash inputs (as with DHE) for the input to

a deep neural network. This incorporates user/item features into

the OOV embedding. However, compared to dnn, it also assigns

a unique embedding for each user/item ID, even if they share the

same features.

Algorithm 1: PyTorch-style pseudocode for the m-lsh

OOV embedder.

1 # row_features: vector of the user/item features.

2 # oov_table: OOV embedding table.

3 # Each row of the table is an OOV bucket

4 def lsh_embed(row_features, oov_table):

5 # lsh_hash is a binary vector

6 lsh_hash = random_projection(row_features)

7 # get col-wise mean of rows where vec is 1

8 return oov_table[lsh_hash].mean(axis=1)

9 # oov_table is updated via backpropagation

DNN. dnn is a simple feed-forward deep neural network that

takes in the user/item features as input and outputs a real-valued

vector. This embedder can be viewed as a modi�cation to fdhe that

omits the hash-related features. As a result, users/items with the

same features will share the same embedding.

Mean LSH. m-lsh is a locality-sensitive hashing (LSH) [6] based

OOV embedder. It uses a randomprojectionmatrix tomap a user/item

ID to a binary vector. It then uses this binary vector to index into

the OOV embedding table and returns the column-wise mean of

the rows where the binary vector is 1. This helps ensure that simi-

lar users/items have similar embeddings, even if their LSH vector

is not exactly the same. The projection matrix remains constant,

but the OOV embedding table values are updated during training.

PyTorch-style pseudocode for this embedder can be found below

in Algorithm 1.

Single LSH. s-lsh is similar to m-lsh but instead treats the bi-

nary vector as a single index into the OOV embedding table. This

means similar users/items with the same LSH vector will have

the same embedding. Conversely, users/items with di�erent LSH

hashes will have completely di�erent embeddings. As with m-lsh,

the projection matrix remains constant, but the OOV embedding

table values are updated during training.

For all of the embedders, we implement per-feature normalization

— we normalize each feature vector individually before concatenat-

ing them together. This is done to ensure that the distance between

two users/items is not dominated by a single feature. Otherwise,

long, dense features (like content embeddings) or lists of categorical

Preprint, 2025, Bellevue, US William Shiao et al.

features (like watch history) could dominate the similarity compu-

tations for OOV embedding methods like KNN.

3.3 OOV Embedder Training

The training procedure does not need to be modi�ed for the un-

trained OOV embedders (Section 3.1) — they can be applied to a

pre-trainedmodel. However, trained embedders (Section 3.2) add ad-

ditional parameters that need to be optimized over OOV users/items.

With a time-based inductive dataset split (details in Section 4), our

training set contains only IV values, and the test set contains OOV

values. OOV embedders are only used on OOV values so there is

no training data for their parameters if only use the training set.

As such, there are two main ways to generate OOV data in training

for optimizing our OOV embedders: (1) withhold training data and

use it as OOV samples or (2) generate synthetic OOV samples from

the training data.

Withholding Data. Withholding training data to use as OOV

samples is the simplest method, but it also reduces the amount of

data available for training. This also complicates evaluation when

benchmarking trained embedders against untrained embedders

since the untrained embedders do not have access to the withheld

data. Reducing the amount of data available for transductive train-

ing worsens transductive performance, violating the criteria de�ned

in Section 1. For this reason, we choose to use synthetic OOV sam-

ples. However, the withholding data approach may be useful in

production settings where we often cannot a�ord to maintain a

unique embedding table entry for every user/item and may treat

low-frequency IDs as OOV values.

Synthetic Data. A simple way to train OOV embedders with-

out a�ecting existing performance is to generate synthetic OOV

samples. For each user/item, we create an OOV version of it that

has the same interactions. We then select a subset with ratio U of

the OOV samples each epoch to use for training. We then perform

feature masking, a common augmentation for self-supervised learn-

ing [47, 66], with mask rate V on the features of the OOV samples.

This ensures that generated samples do not have the exact same

features as the input samples. There are three types of OOV interac-

tions: (IV user) → (OOV item), (OOV user) → (IV item), and (OOV

user)→ (OOV item). We generate each type with equal probability

— although, in practice, this can be tuned to match the expected

distribution of OOV interactions in production.

Maintaining Transductive Performance. When training our OOV

embedder, our aim is to maintain the performance of the trans-

ductive portion of the model. For example, with synthetic training,

interactions that only involve one OOV user/item will result in

undesirable updates to the main embedding table. To avoid this, we

split each epoch into two training steps. In the �rst step, we train

the model on the original training data — as we normally would in

transductive training. There are no OOV values at this point, so it

does not a�ect any trainable parameters in the OOV embedder. In

the second step, we freeze the main embedding table weights and

train the model on the synthetic OOV samples. The only parame-

ters that can be updated at this step are those of the OOV embedder.

We also checkpoint and restore the optimizer state before and after

the second step. This ensures that the OOV training does not a�ect

the transductive portion of the model.

4 Datasets

As mentioned in Section 2, following suggestions from recent

works [18, 46], we split the datasets based on a time C . We select C for

each dataset by computing the �rst time each user/item appeared.

We then select a time C such that 20% of the users/items are OOV.

Formally, select C such that |Utrain | + |Itrain | ≈ 0.8(= +<). This

results in a naturally di�erent distribution of OOV users compared

to OOV items for each of the four datasets. Plots of the relative

user/item distributions can be seen in Figure 5. These dataset splits

will help facilitate future benchmarking in the inductive setting.

We benchmark various transductive recommendation system

methods across four di�erent datasets. Below, we brie�y describe

how we processed each of the datasets. Representative statistics for

each dataset can be found in Table 2.

Yelp. The Yelp-2018 dataset consists of user reviews of busi-

nesses on Yelp from the 2018 Yelp Dataset Challenge6. We start

with the version of the dataset provided by RecBole [64]. We then

sample 75% of the users/items and perform 5-core �ltering. We also

clean up each feature by removing invalid values, normalizing �oat-

ing point values, and imputing missing values with scikit-learn [36].

We also remove low-frequency values in categorical features and

normalize all strings. Finally, we add text vectors for each business

name. We use 300-dimensional GloVe [37] vectors for this purpose.

LastFM. The LastFM-artists dataset [41] consists of user/artist

interactions on LastFM gathered in 2014. We start with the LastFM-

1b version of the dataset provided by RecBole [64] and sample 10%

of the users and items. We perform the feature cleaning as with the

Yelp-2018 dataset and add GloVe vectors for each artist’s name.

H&M. The H&M dataset consists of user/item purchases on the

H&M website. The raw dataset is taken from the H&M Kaggle

competition7 and we sample 30% of the users/items. We compute

GloVe vectors for each item’s name and use a pre-trained Vision

Transformer [8] to extract features from each item’s image. We also

perform the same feature cleaning as with the Yelp-2018 dataset.

Content. The Content dataset is a proprietary user-item inter-

action dataset from a large social platform serving hundreds of

millions of daily active users. The data is gathered from 5 days of

production tra�c over users sampled from a single country. We

only collect users who are 18 years old and above. The Content

dataset has rich user/item features as with many production rec-

ommendation systems. Unfortunately, due to the large number of

features, we were unable to train any context-aware models with

our RecBole-based [64] evaluation framework.

Preprint, 2025, Bellevue, US William Shiao et al.

method is m-lsh and the worst is fdhe. Unfortunately, we were

unable to train context-aware models on Content (even in the

transductive setting) using our RecBole-based framework due to

the large number of features and resulting stability issues. We make

the following observations:

Table 4: OOV user NDCG@20 of context-free methods with

di�erent OOV embedding methods. Higher is better. The

best-performing method in each column is bolded and the

second-best is underlined.

Dataset Yelp-2018 LastFM-artists H&M Content

Method BPR DAU BPR DAU BPR DAU BPR

zero 0.79 0.79 0.93 0.93 1.15 1.15 0.71

fdhe 0.99 1.06 0.34 0.35 1.97 2.02 1.32

dhe 1.12 1.11 0.59 0.40 2.09 1.96 1.39

rand 4.05 0.83 15.09 0.71 2.80 1.89 0.94

s-lsh 9.13 1.05 46.92 0.79 6.19 2.02 1.05

r-bucket 9.33 1.22 41.78 0.76 6.02 1.38 1.38

dnn 2.94 4.43 0.38 0.44 2.94 3.36 1.87

mean 9.40 2.89 48.38 0.12 6.15 1.94 3.74

m-lsh 9.49 1.49 47.85 1.13 6.16 2.15 2.02

knn 6.95 1.58 45.69 4.86 5.23 1.67 6.00

Context helps OOV embeddings. From Table 3, we can see that

incorporating contextual information generally helps OOV em-

beddings. 3/4 of the best-performing OOV embedding models uti-

lize context information. This aligns with our intuition: similar

users/items should have similar embeddings. This is true for both

context-free and context-aware models. In some cases, like with

xDeepFM on Yelp-2018, the gap in AU-ROC on OOV users is as

large as 6 points — showing that incorporating feature informa-

tion in OOV handling can drastically improve an RS’s ability to

generalize to OOV users/items.

LSH-based solutions perform well. Both m-lsh and s-lsh work

well for the context-aware models, with one of the two methods

performing the best on 6/9 model/dataset combinations, as shown

in Table 3. Across the context-aware model experiments, m-lsh

and s-lsh show a mean improvement of 3.74% and 2.58% over

r-bucket (a common industry standard2), respectively. They also

perform well compared to the next-best method, mean, showing

respective average improvements of 3.45% and 2.25%.

DHE-based solutions perform poorly. dhe and fdhe are the meth-

ods with the lowest average rank across the model/dataset combi-

nations shown in Table 3. Surprisingly, we �nd that zero generally

outperforms both dhe and fdhe. This is likely due to the additional

noise the multiple hash inputs introduce to DHE-style models — a

di�erent ID results in a completely di�erent embedding.

5.3 Context-Free Results

Table 4 shows the NDCG@20 for OOV users of BPR and DirectAU.

m-lsh has the highest mean rank of the di�erent OOV embedding

methods. Unlike in the context-aware setting, a relatively large gap

7The exact complexity here is di�cult to compute since we rely on approximate nearest
neighbor search [12, 19].

exists between di�erent base models on the same dataset. Surpris-

ingly, BPR outperforms DirectAU on OOV users across all three

datasets. We make the following observations about OOV embed-

ding methods on the context-free models:

Improving context-free OOV performance is di�cult. Both BPR

and DirectAU exhibit poor performance on most datasets, regard-

less of OOV embedder choice. This shows that it is di�cult to

encode feature information from OOV IDs in a useful manner for

context-free models.

OOV embedder choice is extremely important. From Table 4, we

can observe a large gap between the best-performing models on

each dataset and the worst-performing models for context-free

models. This is especially true for BPR on LastFM-artists, where

there is a 48.04 gap between the best-performing mean embedder

and the worst-performing fdhe embedder. fdhe and dhe exhibit

similarly poor performance across the four datasets.

5.4 Recommendations for Practitioners

Since the performance of each OOV embedder greatly depends on

the dataset and method, there is no silver bullet method. However,

based on the results of our experiments in Tables 3 and 4, we make

the following recommendations for practitioners aiming to improve

their performance on OOV users/items:

(1) If contextual information (features) is available, try

using m-lsh. Across our experiments, m-lsh generally performs

the best. An advantage of m-lsh over s-lsh is that it results in fewer

collisions (see Table 1). It can also be trivially computed directly on

the GPU and e�ciently implemented through data structures like

PyTorch’s [35] EmbeddingBag.

(2) If no features are available and collisions are not im-

portant, consider using mean. It is extremely cheap to compute

and, based on our experiments, is the best-performing untrained

OOV embedder. However, all IDs will receive the same embedding,

making it particularly problematic for context-free models.

(3) If only users or items have features, OOV embedding

methods can be mixed. For example, in a dataset with user fea-

tures but no item features, m-lsh could be used for users and mean

for items. This approach can also be used in any case where the

user/item ID distributions are signi�cantly di�erent.

6 Related Work

Cold-Start RS Methods. A known issue in recommendation sys-

tems is the cold-start problem [27], which is when low-degree users

and items receive poorer quality recommendations. In this work,

we look speci�cally at the problem of OOV users/items, which

means they occur exactly zero times in the training examples. How-

ever, cold-start methods often focus on the transductive setting

where all the users/items appear at train time (although some may

have very few interactions). Vartak et al. [48] focuses on the case

of OOV items and proposes a meta-learning approach that uses a

classi�er based on user history to adjust model parameters. Wang

et al. [51] extends Model-Agnostic Meta-Learning (MAML) [9] for

improving cold-start recommendation performance. The Aligning

Distillation (ALDI) framework [16] applies knowledge distillation

by treating warm items as teachers and cold items as students. Zhu

Improving Out-of-Vocabulary Hashing in Recommendation Systems Preprint, 2025, Bellevue, US

et al. [67] applies a transformation function consisting of a mixture-

of-experts model to transform feature information to collaborative

�ltering representations. DropoutNet [49] uses input dropout dur-

ing RS model training to improve the model’s generalization to

missing features. Lam et al. [24] proposes a probabilistic atpproach

to handling OOV users on MovieLens [14].

Cold-Start Graph Methods. Recommendation systems can be for-

mulated as a link prediction problem on a bipartite graph [32, 55],

where edges represent interactions between users and items. As

such, we also brie�y discuss existing literature focused on improv-

ing cold-start performance on graph-related tasks. These include

both training-based [15, 20, 33, 65] and augmentation-based [13,

39, 55, 62] approaches. However, due to model architecture and

training di�erences, they are not straightforward to apply to RS.

7 Conclusion

In this work, we explored the inductive setting in recommendation

systems, where we focused on �nding the best method to han-

dle previously unseen (OOV) values. We evaluated nine di�erent

OOV embedder methods that are e�cient, model-agnostic, and

guaranteed to maintain transductive performance. To the best of

our knowledge, this is the �rst comprehensive empirical study of

the performance of various OOV methods for recommendation

systems. Our results show that, of the nine methods, the locality-

sensitive-hashing-based methods tend to be the most e�ective in

improving inductive performance. Additionally, we augment and

re-release three inductive datasets to facilitate future study of in-

ductive performance and OOVmethods in recommendation system

problems. Furthermore, we derive a set of four recommendations

for industrial practitioners to improve their inductive recommenda-

tion systems performance and alleviate pain points in dealing with

OOV values. We hope this work encourages both academic and

industrial researchers to further explore the inductive and OOV

settings, considering their immediate practical impact in real-world,

production-scale recommendation systems.

Acknowledgments

UCR coauthors were partly supported by the National Science

Foundation under CAREER grant no. IIS 2046086 and were also

sponsored by the Combat Capabilities Development Command

Army Research Laboratory under Cooperative Agreement Num-

ber W911NF-13-2-0045 (ARL Cyber Security CRA). Any opinions,

�ndings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily re�ect

the views of the funding parties.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensor�ow.org/ Software available from tensor�ow.org.

[2] Jean-Philippe Aumasson and Daniel J Bernstein. 2012. SipHash: a fast short-input
PRF. In International Conference on Cryptology in India. Springer, 489–508.

[3] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple
Yet E�ective Graph Contrastive Learning for Recommendation. arXiv preprint
arXiv:2302.08191 (2023).

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[5] Benjamin Coleman, Wang-Cheng Kang, Matthew Fahrbach, Ruoxi Wang, Lichan
Hong, Ed H. Chi, and Derek Zhiyuan Cheng. 2023. Uni�ed Embedding: Battle-
Tested Feature Representations for Web-Scale ML Systems. In NeurIPS.

[6] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253–262.

[7] Ruihai Dong, Michael P O’Mahony, Markus Schaal, Kevin McCarthy, and Barry
Smyth. 2016. Combining similarity and sentiment in opinion mining for product
recommendation. Journal of Intelligent Information Systems 46, 2 (2016), 285–312.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[10] Benjamin Ghaemmaghami, Mustafa Ozdal, Rakesh Komuravelli, Dmitriy Korchev,
Dheevatsa Mudigere, Krishnakumar Nair, and Maxim Naumov. 2022. Learning to
Collide: Recommendation System Model Compression with Learned Hash Func-
tions. ArXiv abs/2203.15837 (2022). https://api.semanticscholar.org/CorpusID:
247794181

[11] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vldb, Vol. 99. 518–529.

[12] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector
quantization. In International Conference on Machine Learning. PMLR, PMLR,
Cambridge, MA, USA, 3887–3896.

[13] Zhichun Guo, Tong Zhao, Yozen Liu, Kaiwen Dong, William Shiao, Neil Shah, and
Nitesh V Chawla. 2024. Node Duplication Improves Cold-start Link Prediction.
arXiv preprint arXiv:2402.09711 (2024).

[14] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[15] Weihua Hu, Kaidi Cao, Kexin Huang, Edward W Huang, Karthik Subbian, and
Jure Leskovec. 2022. Tuneup: A training strategy for improving generalization
of graph neural networks. arXiv preprint arXiv:2210.14843 (2022).

[16] Feiran Huang, Zefan Wang, Xiao Huang, Yufeng Qian, Zhetao Li, and Hao Chen.
2023. Aligning distillation for cold-start item recommendation. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1147–1157.

[17] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2333–2338.

[18] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. 2023. A critical study on
data leakage in recommender system o�ine evaluation. ACM Transactions on
Information Systems 41, 3 (2023), 1–27.

[19] Je� Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[20] Mingxuan Ju, Tong Zhao, Wenhao Yu, Neil Shah, and Yanfang Ye. 2024. GRAPH-
PATCHER: mitigating degree bias for graph neural networks via test-time aug-
mentation. Advances in Neural Information Processing Systems 36 (2024).

[21] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting
Chen, Lichan Hong, and Ed H Chi. 2021. Learning to embed categorical features
without embedding tables for recommendation. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 840–850.

[22] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative �lteringmodel. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 426–434.

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[24] Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. 2008. Addressing
cold-start problem in recommendation systems. In Proceedings of the 2nd Inter-
national Conference on Ubiquitous Information Management and Communication
(Suwon, Korea) (ICUIMC ’08). Association for Computing Machinery, New York,
NY, USA, 208–211. doi:10.1145/1352793.1352837

[25] Daniel Lee and H Sebastian Seung. 2000. Algorithms for non-negative matrix
factorization. Advances in neural information processing systems 13 (2000).

[26] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD

Preprint, 2025, Bellevue, US William Shiao et al.

international conference on knowledge discovery & data mining. 1754–1763.
[27] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. 2014. Facing

the cold start problem in recommender systems. Expert systems with applications
41, 4 (2014), 2065–2073.

[28] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-
tions: Item-to-item collaborative �ltering. IEEE Internet computing 7, 1 (2003),
76–80.

[29] Zhuoran Liu, Leqi Zou, Xuan Zou, CaihuaWang, Biao Zhang, Da Tang, Bolin Zhu,
Yijie Zhu, Peng Wu, Ke Wang, et al. 2022. Monolith: real time recommendation
systemwith collisionless embedding table. arXiv preprint arXiv:2209.07663 (2022).

[30] Zhu-Ping Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Dandan Tang,
Bolin Zhu, Yijie Zhu, Pengfei Wu, K. Wang, and Youlong Cheng. 2022. Monolith:
Real Time Recommendation System with Collisionless Embedding Table. ArXiv
(2022).

[31] Johannes V Lochter, Renato M Silva, and Tiago A Almeida. 2020. Deep learning
models for representing out-of-vocabulary words. In Brazilian Conference on
Intelligent Systems. Springer, 418–434.

[32] Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wenqi Fan, Yao Ma, Tong
Zhao, Neil Shah, and Jiliang Tang. 2023. Revisiting link prediction: A data
perspective. arXiv preprint arXiv:2310.00793 (2023).

[33] Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wenqi Fan, Yao Ma, Tong
Zhao, Neil Shah, and Jiliang Tang. 2024. Revisiting Link Prediction: a data
perspective. In The Twelfth International Conference on Learning Representations.

[34] Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Ra�el, Manan Dey,
Matthias Gallé, Arun Raja, Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. 2021.
Between words and characters: a brief history of open-vocabulary modeling and
tokenization in nlp. arXiv preprint arXiv:2112.10508 (2021).

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 1–12.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[37] Je�rey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[38] Ste�en Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[39] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. Dropedge:
Towards deep graph convolutional networks on node classi�cation. arXiv preprint
arXiv:1907.10903 (2019).

[40] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph neural networks
for friend ranking in large-scale social platforms. In Proceedings of the Web
Conference 2021. 2535–2546.

[41] Markus Schedl. 2016. The lfm-1b dataset for music retrieval and recommendation.
In Proceedings of the 2016 ACM on international conference on multimedia retrieval.
103–110.

[42] Tobias Schnabel, Mengting Wan, and Longqi Yang. 2022. Situating Recommender
Systems in Practice: Towards Inductive Learning and Incremental Updates. arXiv
preprint arXiv:2211.06365 (2022).

[43] Shalin Shah. 2023. A Survey of Latent Factor Models for Recommender Systems
and Personalization. Authorea Preprints (2023).

[44] Jiahui Shi, Vivek Chaurasiya, Yozen Liu, Shubham Vij, Yan Wu, Satya Kanduri,
Neil Shah, Peicheng Yu, Nik Srivastava, Lei Shi, et al. 2023. Embedding Based
Retrieval in Friend Recommendation. (2023).

[45] Aixin Sun. 2023. On Challenges of Evaluating Recommender Systems in an
O�ine Setting. In Proceedings of the 17th ACM Conference on Recommender
Systems. 1284–1285.

[46] Aixin Sun. 2023. Take a Fresh Look at Recommender Systems from an Evaluation
Standpoint. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2629–2638.

[47] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L. Dyer, Rémi Munos, Petar Velickovic, and Michal Valko. 2022. Large-Scale
Representation Learning on Graphs via Bootstrapping. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, Virtual, 1–18. https://openreview.net/forum?id=0UXT6PpRpW

[48] Manasi Vartak, Arvind Thiagarajan, ConradoMiranda, Jeshua Bratman, andHugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations
for items. Advances in neural information processing systems 30 (2017).

[49] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. Dropoutnet: Ad-
dressing cold start in recommender systems. Advances in neural information
processing systems 30 (2017).

[50] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,
and Shaoping Ma. 2022. Towards representation alignment and uniformity in
collaborative �ltering. In Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. 1816–1825.
[51] Li Wang, Binbin Jin, Zhenya Huang, Hongke Zhao, Defu Lian, Qi Liu, and Enhong

Chen. 2021. Preference-Adaptive Meta-Learning for Cold-Start Recommendation..
In IJCAI. 1607–1614.

[52] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[53] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. Dcn v2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the web conference 2021.
1785–1797.

[54] TongzhouWang and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
Conference on Machine Learning. PMLR, 9929–9939.

[55] Yu Wang, Tong Zhao, Yuying Zhao, Yunchao Liu, Xueqi Cheng, Neil Shah, and
Tyler Derr. 2024. A topological perspective on demystifying gnn-based link
prediction performance. In ICLR.

[56] ChristopherWellons. 2018. Hash Function Prospector. https://github.com/skeeto/
hash-prospector.

[57] Xinyi Wu, Donald Loveland, Runjin Chen, Yozen Liu, Xin Chen, Leonardo Neves,
Ali Jadbabaie, Clark Mingxuan Ju, Neil Shah, and Tong Zhao. 2024. GraphHash:
Graph Clustering Enables Parameter E�ciency in Recommender Systems. arXiv
preprint arXiv:2412.17245 (2024).

[58] Liangwei Yang, Zhiwei Liu, ChenWang,Mingdai Yang, Xiaolong Liu, JingMa, and
Philip S Yu. 2023. Graph-based Alignment and Uniformity for Recommendation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. 4395–4399.

[59] Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and
Hongzhi Yin. 2023. XSimGCL: Towards extremely simple graph contrastive
learning for recommendation. IEEE Transactions on Knowledge and Data Engi-
neering (2023).

[60] Caojin Zhang, Yicun Liu, Yuanpu Xie, So�a Ira Ktena, Alykhan Tejani, Akshay
Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
et al. 2020. Model size reduction using frequency based double hashing for
recommender systems. In Proceedings of the 14th ACMConference on Recommender
Systems. 521–526.

[61] Caojin Zhang, Yicun Liu, Yuanpu Xie, So�a Ira Ktena, Alykhan Tejani, Ak-
shay Gupta, Pranay K. Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
Prasang Upadhyaya, Ferenc Huszár, and Wenzhe Shi. 2020. Model Size Reduc-
tion Using Frequency Based Double Hashing for Recommender Systems. In
Proceedings of the 14th ACM Conference on Recommender Systems.

[62] Tong Zhao, Gang Liu, DahengWang,Wenhao Yu, andMeng Jiang. 2022. Learning
from counterfactual links for link prediction. In International Conference on
Machine Learning. PMLR, PMLR, Cambridge, MA, 26911–26926.

[63] Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin,
Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, et al. 2022. RecBole 2.0:
towards a more up-to-date recommendation library. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management.

[64] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan,
Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. 2021. Recbole: Towards a
uni�ed, comprehensive and e�cient framework for recommendation algorithms.
In proceedings of the 30th acm international conference on information & knowledge
management.

[65] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang
Wang, and Karthik Subbian. 2021. Cold brew: Distilling graph node representa-
tions with incomplete or missing neighborhoods. arXiv preprint arXiv:2111.04840
(2021).

[66] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. CoRR abs/2006.04131 (2020),
1–17. arXiv:2006.04131 https://arxiv.org/abs/2006.04131

[67] Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. 2020. Recom-
mendation for new users and new items via randomized training and mixture-
of-experts transformation. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval. 1121–1130.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Context-Free Models
	2.2 Context-Aware Models

	3 Towards a General OOV Embedder
	3.1 Heuristic-based Embedders
	3.2 Learning-based Embedders
	3.3 OOV Embedder Training

	4 Datasets
	5 Experimental Evaluation
	5.1 Evaluation Details
	5.2 Context-Aware Results
	5.3 Context-Free Results
	5.4 Recommendations for Practitioners

	6 Related Work
	7 Conclusion
	References

