Improving Out-of-Vocabulary Hashing in Recommendation

Systems
William Shiao* Mingxuan Ju Zhichun Guo
wshia002@ucr.edu mju@snap.com zguo5@nd.edu
University of California, Riverside Snap Inc. University of Notre Dame

Riverside, CA, USA

Bellevue, WA, USA

Notre Dame, IN, USA

Xin Chen Evangelos E. Papalexakis Tong Zhao
xin.chen@snap.com epapalex@cs.ucr.edu tong@snap.com
Snap Inc. University of California, Riverside Snap Inc.

Palo Alto, CA, USA

Neil Shah
nshah@snap.com
Snap Inc.
Bellevue, WA, USA

Abstract

Recommendation systems (RS) are an increasingly relevant area
for both academic and industry researchers, given their widespread
impact on the daily online experiences of billions of users. In real
applications, one common challenge is recommending new users
and items unseen (out-of-vocabulary, or OOV) at training time, i.e.
the inductive setting. Additionally, modern RS also faces challenges
in ID embedding table size. To handle large cardinality user/item
embeddings, memory intensive embedding tables are required. The
size of OOV user/item IDs are often large and varies. As a result of
both issues, existing solutions applied in practice are often naive,
such as assigning OOV or hashed users/items to a fix set of ran-
dom buckets. In this work, we tackle the cold-start OOV and ID
embedding memory problem and propose approaches that better
leverage available user/item features and memory-efficient hashing
at the embedding table level. We discuss plug-and-play approaches
that are easily applicable to RS models and improve inductive per-
formance without negatively impacting transductive performance.
Through our extensive evaluation, we find that proposed methods
that exploit feature similarity using LSH consistently outperform
alternatives on a majority of model-dataset combinations, with the
best one showing a mean improvement of 3.74% over the industry
standard baseline in recommendation performance. We release our
code and hope our work helps practitioners make more informed de-
cisions for efficiently hashing OOV in their RS and further inspires
academic research into improving OOV support in RS.

CCS Concepts

« Information systems — Recommender systems.

Keywords

recommendation systems, cold-start, out-of-vocabulary, hashing

Riverside, CA, USA

Bellevue, WA, USA

Yozen Liu
yliu2@snap.com
Snap Inc.

Santa Monica, CA, USA

Figure 1: Comparison between transductive (left) and induc-
tive (right) settings. In the transductive setting, RS are evalu-
ated on interactions between users and items observed during
training time (i.e., bold links). Whereas in the inductive set-
ting, besides transductive interactions, RS are also evaluated
on interactions related to users and items unseen during the
training (i.e., both bold and dash links).

1 Introduction

Recommendation systems (RS) suggest items to users and have
found wide adoption across a variety of domains. For example, they
have been used to recommend advertisements [52, 53], movies [14],
friends [40, 44], and products [7, 28] to users. These methods are
studied in both academia and industry, but many aspects often differ
between academic and industrial recommendation systems [42].
One such difference is their evaluation methodology.

RS research in academia primarily focuses on the transductive
setting [45, 50], where a portion of interactions are masked out
for validation and testing. Such a setting assumes that all users
and items in the dataset are seen during training. However, in
industrial RS environments, there is often a constant influx of new,
or out-of-vocabulary (OOV), users and items that were not seen at
training time, i.e., the inductive setting which correspond to new
users and/or items showing up at validation and testing. Almost
all production models are deployed to be utilized in an (at least
partially) inductive setting, but a recent survey [42] found that

*Work done during first author’s internship at Snap Inc.



Preprint, 2025, Bellevue, US

only about 10%! of 88 recent RS papers evaluated their models

in the fully inductive setting, in which OOV users and items are

considered. Similarly, existing state-of-the-art models [3, 53, 59]

also use embedding tables for sparse ID features, which face similar

issues when encountering values unseen at training time since a

model would not have an existing row in the embedding table for

unseen values.

Modern RS also face challenges with their large memory foot-
print in user/item ID embedding tables. Large cardinality in practice
of the user/item IDs leads to slower training time, increase in cost
and hardware requirement or infeasibility during serving. To tackle
this problem, hashing is a common way to improve memory effi-
ciency of embedding tables by reducing the large ID space to a fix
number of buckets [5, 10, 30, 57, 61].

As a result, industrial practitioners often use primitive methods
such as random hashing to a fixed number of OOV buckets whose
values are updated during training [1] 2. While simple to implement,
these primitive methods can easily map two very different OOV
users/items to the same embedding bucket, i.e. embedding collision,
and can greatly affect the recommendation performance [29, 60]. In
Figure 2, we show that there exists a clear gap between inductive
and transductive performance for all datasets with random OOV
bucket assignment. This demonstrates the importance of properly
hashing OOV values and leads us to the following question: Can
we re-imagine how we hash OOV users and items to improve
the inductive capability of RS?

While many methods in literature could potentially be used to
solve this problem, we constrain our search to methods that meet
criteria important to industry practitioners:

o Efficient: the OOV embedding method should run in sub-linear
time with respect to the total number of users/items.

o Maintains Transductive Performance: active users and popular
items are often the platform’s main income sources. Hence, the
OOV embedding method should not sacrifice the base model’s
performance on non-OOV items.

o Model-Agnostic: the OOV embedding method should be applica-
ble to RS with different model architectures.

Given the above criteria, this work explores existing and pro-
poses new OOV embedding methods. These methods range from
simply using a zero vector to feature-similarity-based methods.
In our experiments, we thoroughly evaluate nine different OOV
embedding methods (detailed in Section 3) to provide a broad empir-
ical understanding of the performance of different OOV strategies.
Among the 9 OOV methods, inspired by feature-based cold-start
work [24], we propose using several feature-based methods, which
utilize feature information to compensate for OOV values. In par-
ticular, we propose two locality-sensitive hashing (LSH) [11] based
methods that exploit feature-similarity consistently outperform
other feature or non-feature-based methods in most models-dataset
combinations, with the best method showing a mean improvement
of 3.74% over the industry-standard random bucket assignment
method.

!based on an estimate from Figure 1 of [42].

2Some examples of industry usage are https://engineering.linkedin.com/blog/2023/
enhancing-homepage-feed-relevance-by-harnessing-the-power- of-lar, https://blog.
taboola.com/preparing-for-the-unexpected/ and in the Monolith source code [29].

William Shiao et al.

1.0 T T T
[ Evaluation Type
09 F B 1nductive 1
[ E=J Transductive
S osf ]
R~ :
2 o7f ]
0.6 [ ]
051

LastFM-artists H&M Yelp-2018

Figure 2: Comparison of inductive vs transductive perfor-
mance with Wide & Deep models, where OOV (inductive)
values are hashed with trained random buckets. We see a
clear gap in inductive performance and transductive perfor-
mance, showing the importance of properly handling OOV
values. It is worth noting that even a difference of 0.01 is
often significant for large datasets.

To properly evaluate OOV methods under inductive settings,
we also create appropriate inductive datasets, as existing public
datasets are (1) transductive and (2) lack user/item features. Such
limitations directly contradict the setting faced in industrial recom-
mendation systems, where we usually have rich feature information
for both users and items and many OOV values. Therefore, we aug-
ment three existing open-source datasets and perform a time-based
split such that unseen items naturally appear during evaluation.
Furthermore, we also created a proprietary industrial dataset from
a large social media company containing rich feature information
to evaluate OOV methods properly under real applications.

Our contributions can be summarized as the following,

o To the best of our knowledge, our work is the first to provide a
comprehensive empirical understanding of the performances of
various OOV methods for RS.

o We demonstrate that a class of proposed feature-aware, efficient
locality-sensitive hashing-based OOV embedders that exploit
feature-similarity consistently outperform existing approaches
in inductive performance.

e We provide realistic inductive datasets by augmenting and split-
ting three open-source datasets, enabling experiments on induc-
tive performance and OOV methods of RS, which will be publicly
available upon the release of this manuscript.

o We will open-source our evaluation framework, a major exten-
sion of the popular RecBole [64] RS library that adds inductive
and OOV support to encourage future research in this area.

2 Preliminaries

In this section, we formally define OOV values and the user/item
recommendation system problem. We detail the difference between
the two classes of RS model setups that we study, delineated by the
use of contextual features: context-free vs. context-aware models
since OOV handling behaves differently for each class of models.

Notation. We denote the set of users as U and the set of items as
I . We denote the set of interactions as R € U x I . For flexibility, let



Improving Out-of-Vocabulary Hashing in Recommendation Systems

Context-Free Models

© i

V ‘

User ltem
Embedding

Embedding
Table Table

Recommendation
Model

Preprint, 2025, Bellevue, US

Context-Aware Models

@ = |u

[userID] [itemID] (sparsefeatures ]' dense features |

Sparse
Embedding Neural
Table Network(s)

Recommendation
Model

Figure 3: Typical structure of context-aware and context-free recommendation models.

R be the interaction matrix such that R, ; =1 &= (u,i) € R. Let
m = |U| and n = |I| be the number of users and items, respectively.
Let U € R™*4 and I € R"™*? be the user/item feature matrices.
We assume? that both feature matrices are of dimension d. For a
given user u € U, we have the associated contextual features U,.
Similarly, for a given item i € T, we have the associated features I;.
cmean(-) : R™4 — R is the column-wise mean of a matrix.

We split the set of users and items based on a time ¢. All user-
s/items appearing before time t are considered a part of the training
set, users Uprain € U and items Jypaiq C 7. The set of training
interactions Rirain C R is also similarly created.

OOV Values. We consider a value Out-Of-Vocabulary (OOV) if
it is a categorical value that does not exist at training time but
appears at inference time. Formally, a user u is OOV if and only if
U & Upain Au € U and anitem i is OOV if and only if i & Jipain Ai €
T . We abbreviate non-OOV values as IV (In-Vocabulary).

Transductive vs. Inductive Settings. In the transductive setting,
RS models are evaluated on interactions between users and items
that are observed during the model training (i.e., Ueyal € Utrain
and Zeva) € Jirain)- Whereas in the inductive setting, besides trans-
ductive interactions, RS models are also evaluated on interactions
between users and items that do not appear during the model train-
ing (ie. q’[eval U Uirain # Uirain and Ieval U Zirain # Ztrain)-

2.1 Context-Free Models

Context-free models are the ones that do not use any additional
feature information other than the IDs of users or items. They are
also known as latent factor models [43] and are typically based on

3We assume users/item features to have the same dimension d for simplicity, but this
can be enforced in practice with a projection layer if user/item features have different
dimensions d,, and d; respectively.

matrix factorization (MF) [22, 23], with the goal of approximating
the training interaction matrix Ripain € R™*". Typically, they factor
Rirain into two matrices A € R™*9 and B € R4 such that Ryyain ~
ABT. The rows of A and B are the user and item embeddings,
respectively.

These embeddings can be learned in a variety of ways. For ex-
ample, the Non-negative Matrix Factorization (NMF) [25] of the
interaction matrix can be computed via non-negative least squares
or gradient descent. In this work, we focus on two popular context-
free models: Bayesian Personalized Ranking (BPR) [38] and Direc-
tAU [50]. BPR is a pairwise ranking model that learns user and
item embeddings by maximizing the likelihood of observed inter-
actions. Unlike BPR which utilizes negative sampling for training,
DirectAU [50] is a loss function that instead directly optimizes for
alignment and uniformity — factors that have been shown to be
important for representation quality [54]. It is worth noting that
these are often used as retrieval models in production [44], which
is why we evaluate them as such in our experiments.

2.2 Context-Aware Models

Context-aware models utilize complimentary contextual features
in addition to the user or item IDs. They are often based on the
two-tower architecture [17], where each tower is responsible for
embedding the user and item features, respectively. The two towers
output embeddings of the same dimensionality, allowing them to
be directly compared to produce a score for each user-item pair.
However, these models are very dependent on the quality of the
input contextual features. In production, practitioners often produce
cross-features [4] that capture the interactions between features.
As such, we focus on 3 context-aware models that incorporate
these cross-features: Wide & Deep [4], eXtreme Deep Factorization



Preprint, 2025, Bellevue, US

Machine (xDeepFM) [26], and Deep & Cross Networks V2 (DCN-
V2) [53]. We focus on these models as they are three of the most
popular context-aware models in practice. The models are often
used during the ranking or re-ranking stage in production pipelines.
Hence, we evaluate them using ranking metrics in our experiments.

The features used in context-aware models are typically cate-
gorized into two categories: sparse and dense. Sparse features are
categorical features that are typically one-hot or multi-hot encoded.
Dense features are continuous features. For example, in the case of
social media content recommendation, a user’s country could be
a sparse feature, and their mean daily app usage could be a dense
feature. Sparse features are typically embedded using an embedding
table where each row represents the embedding for that feature’s
ID. These tables are typically randomly initialized and gradually
updated during training. Dense features are typically either un-
modified or passed through neural network layers. In this work,
we focus primarily on handling OOV values in sparse features-
specifically, the user/item IDs, which are most likely to be OOV in
production settings.

3 Towards a General OOV Embedder

The motivation for this work stems from how OOV users/items
are typically handled in real-world production settings. In practice,
OOV users/items are often assigned to a random bucket within
which all values share the same embedding or are simply assigned
completely random embeddings?. This clearly results in poor per-
formance for any pure ID-based models (e.g., factorization-based)
that rely on stored embeddings for users/items seen at training time.
However, even for models that use features, this can still result in
poor performance since poorly-assigned embeddings simply add
additional noise. For example, random bucket assignment for OOV
users means that two OOV users have the same chance to share an
embedding, regardless of how similar/different they are.

Since our goal is to improve OOV support for most general
recommendation systems, regardless of specific model architecture,
we limit the scope of our modifications to a component that is used
in almost all production recommendation systems: the embedding
table. In this work, we focus primarily on OOV support for unseen
user/item IDs, but the same ideas can also be easily extended to
improve support for unseen categorical values in other features.
This leads to the following formal definition of an OOV embedder:

OOV Embedders. A user OOV embedder fiser : U\ Uirain — R4
maps an OOV user to a real-valued embedding. An item OOV
embedder does the same: fitem : Z \ Zirain — RY,

For the sake of simplicity, we describe all the following OOV
embedders in terms of OOV users, but we use them for both OOV
users and items during evaluation. They can be easily converted to
item OOV embedders by substituting the appropriate variables.

3.1 Heuristic-based Embedders

In this work, we first introduce several heuristic-based OOV em-
bedding models that do not require additional trainable parameters.
These are straightforward to apply in practice due to their speed
and ease of implementation.

William Shiao et al.

| user ID | user features
d
( )
IVID
In-Vocabulary €
m User If not OOV
Embedding Table
If OOV OOV ID & features
\ J
IV embedding

0OV Embedding

—
P J oov

embedding

Model

Figure 4: How IV/OOV user IDs are handled under our frame-
work. Item IDs are handled the same way.

Zero Embedder. zero simply uses the zero vector for all OOV in-
puts. This is a simple solution sometimes used in Natural Language
Processing (NLP) for OOV words [31, 34]. Formally, frero(:) = {O}d.
For context-free models, all new users will randomly select items
(we ensure that items with the same score will be randomly se-
lected without bias towards their ID). For context-aware models,
all predictions will depend entirely on a user’s/item’s contextual
information.

Mean Embedder. mean uses the column-wise mean of the embed-
ding matrix for all OOV IDs. Note that users and items use their
respective means. Formally, for users, fmean(-) = cmean(U). For
context-free models, this means that the RS model will recommend
the same popular items to all new users and that all new items will
have the same probability of being recommended.

Fixed Random Embedder. rand returns a random floating point
vector for all OOV IDs. There are b fixed random vectors for each ID
type (e.g., user ID, item ID). This ensures that the model’s output is
deterministic for users/items. Formally, for a set of random vectors
V = {v € RY}, we have frand (*) = V() Where g is a random hash
function® Z — {1,2,...b}. This approach is similar to generating
a random vector, except that (a) the output for a given ID is deter-
ministic, and (b) the maximum amount of memory used is bounded
by b.

KNN Embedder. knn returns the mean of the k nearest neighbors
of a given point, as measured by the inner product of the features.
Formally, for a user u, we have fiu,(u) = % 2 aeK-Nearest(u) Ua-
With k = 2, this is similar to the double-hashing performed by
Zhang et al. [60], except that we use feature similarity instead of

>We use the three-round integer hash function from [56].



Improving Out-of-Vocabulary Hashing in Recommendation Systems Preprint, 2025, Bellevue, US

Table 1: Comparison of the different OOV embedders evaluated in this work. For applicable methods, 0 refers to the number of
parameters in the neural network, b refers to the number of buckets, and n is the number of input items. Features refer to

non-ID features. We assume the embedding dimensionality is constant for the complexity analysis.

Embedder | zero mean rand

r-bucket knn dhe fdhe dnn m-1lsh s-1sh

Requires training

Uses user/item ID

Uses trainble OOV buckets

Uses features

Same features — same embedding
Requires pre-processing
Complexity | O

Potential unique embeddings

X X X X% N\ X%

x X X X X X
CN X X X X%

- =
[
=
o

_ =
i
=
o

_- =
f
=

v X v v v v v
v X v v X X X
v X X X X v v
X v X v v v v
X v X X v v v
X v X X X X X
(1) <0(m)* 06 09 0B o) O
b >n >n >n >n >n b

random hashing to select rows. In order to meet the efficiency cri-
teria mentioned in Section 1, we use approximate nearest neighbor
search through libraries like FAISS [19] and SCaNN [12]. Each train-
ing ID’s k-nearest neighbors can optionally be pre-computed and
stored to prevent additional overhead during training.

3.2 Learning-based Embedders

We also consider a set of trained embedders that are optimized
during the training of the base model. As mentioned in Section 3.3,
we freeze the non-OOV parameters of the base model to avoid
affecting its transductive performance. Some of these methods use
an embedding table with b rows, where each row corresponds to
an OOV bucket. This value can be tuned depending on the expected
number of OOV values. In the following paragraphs, we introduce
several different learning-based OOV embedders. We describe how
these embedders are optimized in Section 3.3.

Random Buckets. r-bucket randomly assigns an embedding (de-
noted as a bucket) to a given OOV ID. This mapping is done with a
deterministic hash function® to ensure that the bucket mappings re-
main consistent. The chance of any bucket being selected is uniform.
Given o OOV IDs and b buckets, each bucket’s expected number
of OOV IDs is ©/s. This is similar to rand, except that the values in
each bucket are optimized during training. This is TensorFlow’s [1]
default approach for handling OOV values.

DHE. Deep Hash Embedding (DHE) [21] substitutes a deep neu-
ral network for the embedding table. To ensure determinism for a
given ID, they first compute many hashes on that ID and use those
as inputs to the neural network. We use SipHash [2] with different
key values as the hash functions for our implementation. DHE was
originally created as a drop-in replacement for the main embedding
table in context-free methods, but we use it as an OOV embedded
(only on OOV IDs) since it naturally works in this case.

F-DHE. Kang et al. [21] mentions that DHE can also incorpo-
rate user features. fdhe uses the concatenation of the user/item
feature vector with the hash inputs (as with DHE) for the input to
a deep neural network. This incorporates user/item features into
the OOV embedding. However, compared to dnn, it also assigns
a unique embedding for each user/item ID, even if they share the
same features.

Algorithm 1: PyTorch-style pseudocode for the m-1sh
OOV embedder.

1 # row_features: vector of the user/item features.
2 # oov_table: 00V embedding table.

5 # Each row of the table is an 00V bucket

+ def lsh_embed(row_features, oov_table):

5 # 1lsh_hash is a binary vector

6 1sh_hash = random_projection(row_features)
7 # get col-wise mean of rows where vec is 1
8 return oov_table[1lsh_hash].mean(axis=1)

9 # oov_table is updated via backpropagation

DNN. dnn is a simple feed-forward deep neural network that
takes in the user/item features as input and outputs a real-valued
vector. This embedder can be viewed as a modification to fdhe that
omits the hash-related features. As a result, users/items with the
same features will share the same embedding.

Mean LSH. m-1sh is a locality-sensitive hashing (LSH) [6] based
OOV embedder. It uses a random projection matrix to map a user/item
ID to a binary vector. It then uses this binary vector to index into
the OOV embedding table and returns the column-wise mean of
the rows where the binary vector is 1. This helps ensure that simi-
lar users/items have similar embeddings, even if their LSH vector
is not exactly the same. The projection matrix remains constant,
but the OOV embedding table values are updated during training.
PyTorch-style pseudocode for this embedder can be found below
in Algorithm 1.

Single LSH. s-1sh is similar to m-1sh but instead treats the bi-
nary vector as a single index into the OOV embedding table. This
means similar users/items with the same LSH vector will have
the same embedding. Conversely, users/items with different LSH
hashes will have completely different embeddings. As with m-1sh,
the projection matrix remains constant, but the OOV embedding
table values are updated during training.

For all of the embedders, we implement per-feature normalization
— we normalize each feature vector individually before concatenat-
ing them together. This is done to ensure that the distance between
two users/items is not dominated by a single feature. Otherwise,
long, dense features (like content embeddings) or lists of categorical



Preprint, 2025, Bellevue, US

features (like watch history) could dominate the similarity compu-
tations for OOV embedding methods like KNN.

3.3 OOV Embedder Training

The training procedure does not need to be modified for the un-
trained OOV embedders (Section 3.1) — they can be applied to a
pre-trained model. However, trained embedders (Section 3.2) add ad-
ditional parameters that need to be optimized over OOV users/items.
With a time-based inductive dataset split (details in Section 4), our
training set contains only IV values, and the test set contains OOV
values. OOV embedders are only used on OOV values so there is
no training data for their parameters if only use the training set.
As such, there are two main ways to generate OOV data in training
for optimizing our OOV embedders: (1) withhold training data and
use it as OOV samples or (2) generate synthetic OOV samples from
the training data.

Withholding Data. Withholding training data to use as OOV
samples is the simplest method, but it also reduces the amount of
data available for training. This also complicates evaluation when
benchmarking trained embedders against untrained embedders
since the untrained embedders do not have access to the withheld
data. Reducing the amount of data available for transductive train-
ing worsens transductive performance, violating the criteria defined
in Section 1. For this reason, we choose to use synthetic OOV sam-
ples. However, the withholding data approach may be useful in
production settings where we often cannot afford to maintain a
unique embedding table entry for every user/item and may treat
low-frequency IDs as OOV values.

Synthetic Data. A simple way to train OOV embedders with-
out affecting existing performance is to generate synthetic OOV
samples. For each user/item, we create an OOV version of it that
has the same interactions. We then select a subset with ratio a of
the OOV samples each epoch to use for training. We then perform
feature masking, a common augmentation for self-supervised learn-
ing [47, 66], with mask rate f§ on the features of the OOV samples.
This ensures that generated samples do not have the exact same
features as the input samples. There are three types of OOV interac-
tions: (IV user) — (OOV item), (OOV user) — (IV item), and (OOV
user) — (OOV item). We generate each type with equal probability
— although, in practice, this can be tuned to match the expected
distribution of OOV interactions in production.

Maintaining Transductive Performance. When training our OOV
embedder, our aim is to maintain the performance of the trans-
ductive portion of the model. For example, with synthetic training,
interactions that only involve one OOV user/item will result in
undesirable updates to the main embedding table. To avoid this, we
split each epoch into two training steps. In the first step, we train
the model on the original training data — as we normally would in
transductive training. There are no OOV values at this point, so it
does not affect any trainable parameters in the OOV embedder. In
the second step, we freeze the main embedding table weights and
train the model on the synthetic OOV samples. The only parame-
ters that can be updated at this step are those of the OOV embedder.
We also checkpoint and restore the optimizer state before and after

William Shiao et al.

the second step. This ensures that the OOV training does not affect
the transductive portion of the model.

4 Datasets

As mentioned in Section 2, following suggestions from recent
works [18, 46], we split the datasets based on a time t. We select ¢ for
each dataset by computing the first time each user/item appeared.
We then select a time t such that 20% of the users/items are OOV.
Formally, select ¢ such that |Uiain| + |Zirain| = 0.8(n + m). This
results in a naturally different distribution of OOV users compared
to OOV items for each of the four datasets. Plots of the relative
user/item distributions can be seen in Figure 5. These dataset splits
will help facilitate future benchmarking in the inductive setting.

We benchmark various transductive recommendation system
methods across four different datasets. Below, we briefly describe
how we processed each of the datasets. Representative statistics for
each dataset can be found in Table 2.

Yelp. The Yelp-2018 dataset consists of user reviews of busi-
nesses on Yelp from the 2018 Yelp Dataset Challenge®. We start
with the version of the dataset provided by RecBole [64]. We then
sample 75% of the users/items and perform 5-core filtering. We also
clean up each feature by removing invalid values, normalizing float-
ing point values, and imputing missing values with scikit-learn [36].
We also remove low-frequency values in categorical features and
normalize all strings. Finally, we add text vectors for each business
name. We use 300-dimensional GloVe [37] vectors for this purpose.

LastFM. The LastFM-artists dataset [41] consists of user/artist
interactions on LastFM gathered in 2014. We start with the LastFM-
1b version of the dataset provided by RecBole [64] and sample 10%
of the users and items. We perform the feature cleaning as with the
Yelp-2018 dataset and add GloVe vectors for each artist’s name.

H&M. The H&M dataset consists of user/item purchases on the
H&M website. The raw dataset is taken from the H&M Kaggle
competition’ and we sample 30% of the users/items. We compute
GloVe vectors for each item’s name and use a pre-trained Vision
Transformer [8] to extract features from each item’s image. We also
perform the same feature cleaning as with the Yelp-2018 dataset.

Content. The Content dataset is a proprietary user-item inter-
action dataset from a large social platform serving hundreds of
millions of daily active users. The data is gathered from 5 days of
production traffic over users sampled from a single country. We
only collect users who are 18 years old and above. The Content
dataset has rich user/item features as with many production rec-
ommendation systems. Unfortunately, due to the large number of
features, we were unable to train any context-aware models with
our RecBole-based [64] evaluation framework.



Improving Out-of-Vocabulary Hashing in Recommendation Systems

Preprint, 2025, Bellevue, US

Table 2: Statistics for each of the datasets used in this work. The number of float/dense features counts the number of distinct
dense vectors, not the total number of floating point values (e.g., text embeddings count as a single float feature).

Dataset | IV Users / Items OOV Users /Items Mean User/Item Deg. # User/Item Cat. Feat. # User / Item Float Feat.
Yelp-2018 126,379 / 79,238 28,140/ 13,078 13.74 / 21.92 3/17 18/6
LastFM-artists 11,962/ 76,152 342 /17,190 53.69/ 8.39 1/2 45/1
H&M 200,749 / 18,871 36,961 /7,024 12.76 / 135.71 7/12 0/3
Content 74,700 / 30,757 6,610 / 3,941 24.47 / 59.42 57 /339 172/ 899
30004 —=~ Split Time == Split Time == Split Time 5000 —; Split Time
[ Users 2000 EE Items O Users 4000
E 2000 | B Items Mm § [ Users § £ 3000
“ o004 ||||\|||‘ < 1000 °© 8 2000
0 0 il 1000
1.1 1.2 1.3 1.4 15 1.1 1.2 1.3 1.4 17800 18000 18200 18400 0

Date

(a) Yelp-2018

Date
(b) LastFM-artists

Date

(c) H&M (d) Content

Figure 5: Visualization of where the inductive split occurs on the datasets. The x-axis is the time that the user/item first appeared.
Everything to the left of the split time is used for training and validation. The remainder is used for evaluation.

Table 3: OOV user AUC of context-aware methods with different OOV embedding methods. Higher is better. The best-performing
method in each column is bolded, and the second-best is underlined. Rows are sorted from lowest mean rank to highest mean
rank. Reported results are the best in a hyperparameter grid search across 5 runs.

| H&M | LastFM-artists | Yelp-2018
OOV Method | DCNV2  WideDeep xDeepFM | DCNV2 WideDeep xDeepFM | DCNV2 WideDeep xDeepFM

fdhe | 66.07 68.51 721 85.53 83.25 75.88 71.24 75.87 68.86

dhe | 69.09 68.55 74.12 86.15 84.97 59.74 70.57 67.15 71.48
zero | 7106 71.21 69.06 81.57 86.57 84.75 71.16 72.43 76.04

knn | 63.71 63.13 63.61 83.9 84.79 83.2 72.73 73.42 75.04

rand | 55.17 70.49 66.76 82.14 86.64 85.52 78.95 74.75 73.68
r-bucket | 65.48 70.61 68.37 87.13 85.79 84.24 79.88 70.97 76.04
dnn | 63.87 717 71.09 86.65 84.71 86.19 76.23 77.89 82.26
s-1sh | 73.03 72.61 70.64 86.37 79.71 85.86 78.52 76.03 80.68
mean | 67.72 70.72 66.12 86.49 85.79 85.16 74.9 79.82 73.88
m-lsh | 70.69 71.65 71.3 86.93 86.67 86.78 79.96 76.35 82.48

5 Experimental Evaluation

5.1 Evaluation Details

As mentioned in Section 2, we evaluate our OOV embedding meth-
ods on 5 different models: 2 context-free and 3 context-aware. We in-
tentionally select popular, well-established industry-standard base
models to allow us to draw widely applicable conclusions.

Evaluation Metrics. We evaluate the ranking and retrieval models
separately. Following conventions from existing work [38, 52, 53,
58], we use ndcg@k (where k=20) for retrieval models and AUROC
for ranking models. In Tables 3 and 4, we report the inductive
performance of OOV users. It is worth noting that the transductive
performance of IV users to IV items remains the same due to how
we train the OOV embedding models (see Section 3.3).
Chttps://www.yelp.com/dataset

Thttps://www.kaggle.com/competitions/h-and-m-personalized-fashion-
recommendations

Experimental Details. All models utilize a fork of the RecBole [63,
64] framework for experiments, in which we have made extensive
modifications to the framework and models to support OOV val-
ues and swap between different OOV embedder types. We also
added support for filtered evaluation on a subset of users/items. We
were very careful to facilitate the easy addition of OOV support
to new models. We run all experiments on Google Cloud Plat-
form (GCP). Experiments are conducted on Google Compute En-
gine instances with NVIDIA Tesla P100 GPUs. The code, datasets,
and hyperparameters for each of our experiments and embed-
ders are available at: https://github.com/snap-research/improving-
inductive-oov-recsys.

5.2 Context-Aware Results

The OOV user evaluation results of context-aware models are dis-
played in Table 3. On average, the best-performing OOV embedding



Preprint, 2025, Bellevue, US

method is m-1sh and the worst is fdhe. Unfortunately, we were
unable to train context-aware models on Content (even in the
transductive setting) using our RecBole-based framework due to
the large number of features and resulting stability issues. We make
the following observations:

Table 4: OOV user NDCG @20 of context-free methods with
different OOV embedding methods. Higher is better. The
best-performing method in each column is bolded and the
second-best is underlined.

Dataset ‘ Yelp-2018 ‘ LastFM-artists ‘ H&M ‘ Content
Method | BPR DAU | BPR  DAU | BPR DAU | BPR
zero | 079 079 | 093 093 | 115 115 | 071

fdhe | 0.99 1.06 | 034 035 197 202 1.32

dhe | 112 1.11 | 059 040 | 209 1.96 1.39

rand | 405 083 | 1509  0.71 2.80 1.89 0.94
s-1sh | 9.13 1.05 | 4692 079 | 6.19 2.02 1.05
r-bucket | 933 122 | 41.78 076 | 6.02 138 1.38
dnn | 2.94 443 | 038 044 | 294 3.36 1.87

mean | 9.40 2.89 | 4838 012 | 615 194 | 3.74
m-lsh | 9.49 149 | 4785 113 | 616 215 2.02
knn | 6.95 158 | 4569  4.86 | 523 167 | 6.00

Context helps OOV embeddings. From Table 3, we can see that
incorporating contextual information generally helps OOV em-
beddings. 3/s of the best-performing OOV embedding models uti-
lize context information. This aligns with our intuition: similar
users/items should have similar embeddings. This is true for both
context-free and context-aware models. In some cases, like with
xDeepFM on Yelp-2018, the gap in AU-ROC on OOV users is as
large as 6 points — showing that incorporating feature informa-
tion in OOV handling can drastically improve an RS’s ability to
generalize to OOV users/items.

LSH-based solutions perform well. Both m-1sh and s-1sh work
well for the context-aware models, with one of the two methods
performing the best on ¢/s model/dataset combinations, as shown
in Table 3. Across the context-aware model experiments, m-1sh
and s-1sh show a mean improvement of 3.74% and 2.58% over
r-bucket (a common industry standard?), respectively. They also
perform well compared to the next-best method, mean, showing
respective average improvements of 3.45% and 2.25%.

DHE-based solutions perform poorly. dhe and fdhe are the meth-
ods with the lowest average rank across the model/dataset combi-
nations shown in Table 3. Surprisingly, we find that zero generally
outperforms both dhe and fdhe. This is likely due to the additional
noise the multiple hash inputs introduce to DHE-style models — a
different ID results in a completely different embedding.

5.3 Context-Free Results

Table 4 shows the NDCG@20 for OOV users of BPR and DirectAU.
m-1sh has the highest mean rank of the different OOV embedding
methods. Unlike in the context-aware setting, a relatively large gap

"The exact complexity here is difficult to compute since we rely on approximate nearest
neighbor search [12, 19].

William Shiao et al.

exists between different base models on the same dataset. Surpris-
ingly, BPR outperforms DirectAU on OOV users across all three
datasets. We make the following observations about OOV embed-
ding methods on the context-free models:

Improving context-free OOV performance is difficult. Both BPR
and DirectAU exhibit poor performance on most datasets, regard-
less of OOV embedder choice. This shows that it is difficult to
encode feature information from OOV IDs in a useful manner for
context-free models.

OOV embedder choice is extremely important. From Table 4, we
can observe a large gap between the best-performing models on
each dataset and the worst-performing models for context-free
models. This is especially true for BPR on LastFM-artists, where
there is a 48.04 gap between the best-performing mean embedder
and the worst-performing fdhe embedder. fdhe and dhe exhibit
similarly poor performance across the four datasets.

5.4 Recommendations for Practitioners

Since the performance of each OOV embedder greatly depends on
the dataset and method, there is no silver bullet method. However,
based on the results of our experiments in Tables 3 and 4, we make
the following recommendations for practitioners aiming to improve
their performance on OOV users/items:

(1) If contextual information (features) is available, try
using m-1sh. Across our experiments, m-1sh generally performs
the best. An advantage of m-1sh over s-1sh is that it results in fewer
collisions (see Table 1). It can also be trivially computed directly on
the GPU and efficiently implemented through data structures like
PyTorch’s [35] EmbeddingBag.

(2) If no features are available and collisions are not im-
portant, consider using mean. It is extremely cheap to compute
and, based on our experiments, is the best-performing untrained
OOV embedder. However, all IDs will receive the same embedding,
making it particularly problematic for context-free models.

(3) If only users or items have features, OOV embedding
methods can be mixed. For example, in a dataset with user fea-
tures but no item features, m-1sh could be used for users and mean
for items. This approach can also be used in any case where the
user/item ID distributions are significantly different.

6 Related Work

Cold-Start RS Methods. A known issue in recommendation sys-
tems is the cold-start problem [27], which is when low-degree users
and items receive poorer quality recommendations. In this work,
we look specifically at the problem of OOV users/items, which
means they occur exactly zero times in the training examples. How-
ever, cold-start methods often focus on the transductive setting
where all the users/items appear at train time (although some may
have very few interactions). Vartak et al. [48] focuses on the case
of OOV items and proposes a meta-learning approach that uses a
classifier based on user history to adjust model parameters. Wang
et al. [51] extends Model-Agnostic Meta-Learning (MAML) [9] for
improving cold-start recommendation performance. The Aligning
Distillation (ALDI) framework [16] applies knowledge distillation
by treating warm items as teachers and cold items as students. Zhu



Improving Out-of-Vocabulary Hashing in Recommendation Systems

et al. [67] applies a transformation function consisting of a mixture-
of-experts model to transform feature information to collaborative
filtering representations. DropoutNet [49] uses input dropout dur-
ing RS model training to improve the model’s generalization to
missing features. Lam et al. [24] proposes a probabilistic atpproach
to handling OOV users on MovieLens [14].

Cold-Start Graph Methods. Recommendation systems can be for-
mulated as a link prediction problem on a bipartite graph [32, 55],
where edges represent interactions between users and items. As
such, we also briefly discuss existing literature focused on improv-
ing cold-start performance on graph-related tasks. These include
both training-based [15, 20, 33, 65] and augmentation-based [13,
39, 55, 62] approaches. However, due to model architecture and
training differences, they are not straightforward to apply to RS.

7 Conclusion

In this work, we explored the inductive setting in recommendation
systems, where we focused on finding the best method to han-
dle previously unseen (OOV) values. We evaluated nine different
OOV embedder methods that are efficient, model-agnostic, and
guaranteed to maintain transductive performance. To the best of
our knowledge, this is the first comprehensive empirical study of
the performance of various OOV methods for recommendation
systems. Our results show that, of the nine methods, the locality-
sensitive-hashing-based methods tend to be the most effective in
improving inductive performance. Additionally, we augment and
re-release three inductive datasets to facilitate future study of in-
ductive performance and OOV methods in recommendation system
problems. Furthermore, we derive a set of four recommendations
for industrial practitioners to improve their inductive recommenda-
tion systems performance and alleviate pain points in dealing with
OOV values. We hope this work encourages both academic and
industrial researchers to further explore the inductive and OOV
settings, considering their immediate practical impact in real-world,
production-scale recommendation systems.

Acknowledgments

UCR coauthors were partly supported by the National Science
Foundation under CAREER grant no. IIS 2046086 and were also
sponsored by the Combat Capabilities Development Command
Army Research Laboratory under Cooperative Agreement Num-
ber W911NF-13-2-0045 (ARL Cyber Security CRA). Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the funding parties.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.
Jean-Philippe Aumasson and Daniel ] Bernstein. 2012. SipHash: a fast short-input
PRF. In International Conference on Cryptology in India. Springer, 489-508.

s

B3

[4

7

8

—
)

[10

[11

[12

[13

(14]

=
&

[16

(17]

(18

[20]

[21

[22

[23

[24

[25

[26

Preprint, 2025, Bellevue, US

Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple
Yet Effective Graph Contrastive Learning for Recommendation. arXiv preprint
arXiv:2302.08191 (2023).

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7-10.

Benjamin Coleman, Wang-Cheng Kang, Matthew Fahrbach, Ruoxi Wang, Lichan
Hong, Ed H. Chi, and Derek Zhiyuan Cheng. 2023. Unified Embedding: Battle-
Tested Feature Representations for Web-Scale ML Systems. In NeurIPS.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253-262.

Ruihai Dong, Michael P O’Mahony, Markus Schaal, Kevin McCarthy, and Barry
Smyth. 2016. Combining similarity and sentiment in opinion mining for product
recommendation. Journal of Intelligent Information Systems 46, 2 (2016), 285-312.
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126-1135.

Benjamin Ghaemmaghami, Mustafa Ozdal, Rakesh Komuravelli, Dmitriy Korchev,
Dheevatsa Mudigere, Krishnakumar Nair, and Maxim Naumov. 2022. Learning to
Collide: Recommendation System Model Compression with Learned Hash Func-
tions. ArXiv abs/2203.15837 (2022). https://api.semanticscholar.org/CorpusID:
247794181

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vidb, Vol. 99. 518-529.

Ruigi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector
quantization. In International Conference on Machine Learning. PMLR, PMLR,
Cambridge, MA, USA, 3887-3896.

Zhichun Guo, Tong Zhao, Yozen Liu, Kaiwen Dong, William Shiao, Neil Shah, and
Nitesh V Chawla. 2024. Node Duplication Improves Cold-start Link Prediction.
arXiv preprint arXiv:2402.09711 (2024).

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1-19.

Weihua Hu, Kaidi Cao, Kexin Huang, Edward W Huang, Karthik Subbian, and
Jure Leskovec. 2022. Tuneup: A training strategy for improving generalization
of graph neural networks. arXiv preprint arXiv:2210.14843 (2022).

Feiran Huang, Zefan Wang, Xiao Huang, Yufeng Qian, Zhetao Li, and Hao Chen.
2023. Aligning distillation for cold-start item recommendation. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1147-1157.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2333-2338.

Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. 2023. A critical study on
data leakage in recommender system offline evaluation. ACM Transactions on
Information Systems 41, 3 (2023), 1-27.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data 7, 3 (2019), 535-547.

Mingxuan Ju, Tong Zhao, Wenhao Yu, Neil Shah, and Yanfang Ye. 2024. GRAPH-
PATCHER: mitigating degree bias for graph neural networks via test-time aug-
mentation. Advances in Neural Information Processing Systems 36 (2024).
Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting
Chen, Lichan Hong, and Ed H Chi. 2021. Learning to embed categorical features
without embedding tables for recommendation. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 840-850.

Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 426-434.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30-37.

Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. 2008. Addressing
cold-start problem in recommendation systems. In Proceedings of the 2nd Inter-
national Conference on Ubiquitous Information Management and Communication
(Suwon, Korea) (ICUIMC ’08). Association for Computing Machinery, New York,
NY, USA, 208-211. doi:10.1145/1352793.1352837

Daniel Lee and H Sebastian Seung. 2000. Algorithms for non-negative matrix
factorization. Advances in neural information processing systems 13 (2000).
Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD



Preprint, 2025, Bellevue, US

[27]

[28]

[29

[30]

[31]

[32

[33]

[34

[35]

[36]

[37]

[38

[40]

[41

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50

international conference on knowledge discovery & data mining. 1754-1763.
Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. 2014. Facing
the cold start problem in recommender systems. Expert systems with applications
41, 4 (2014), 2065-2073.

Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-
tions: Item-to-item collaborative filtering. IEEE Internet computing 7, 1 (2003),
76-80.

Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin Zhu,
Yijie Zhu, Peng Wu, Ke Wang, et al. 2022. Monolith: real time recommendation
system with collisionless embedding table. arXiv preprint arXiv:2209.07663 (2022).
Zhu-Ping Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Dandan Tang,
Bolin Zhu, Yijie Zhu, Pengfei Wu, K. Wang, and Youlong Cheng. 2022. Monolith:
Real Time Recommendation System with Collisionless Embedding Table. ArXiv
(2022).

Johannes V Lochter, Renato M Silva, and Tiago A Almeida. 2020. Deep learning
models for representing out-of-vocabulary words. In Brazilian Conference on
Intelligent Systems. Springer, 418-434.

Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wengi Fan, Yao Ma, Tong
Zhao, Neil Shah, and Jiliang Tang. 2023. Revisiting link prediction: A data
perspective. arXiv preprint arXiv:2310.00793 (2023).

Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wengi Fan, Yao Ma, Tong
Zhao, Neil Shah, and Jiliang Tang. 2024. Revisiting Link Prediction: a data
perspective. In The Twelfth International Conference on Learning Representations.
Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey,
Matthias Gallé, Arun Raja, Chenglei Si, Wilson Y Lee, Benoit Sagot, et al. 2021.
Between words and characters: a brief history of open-vocabulary modeling and
tokenization in nlp. arXiv preprint arXiv:2112.10508 (2021).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 1-12.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532-1543.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. Dropedge:
Towards deep graph convolutional networks on node classification. arXiv preprint
arXiv:1907.10903 (2019).

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph neural networks
for friend ranking in large-scale social platforms. In Proceedings of the Web
Conference 2021. 2535-2546.

Markus Schedl. 2016. The 1fm-1b dataset for music retrieval and recommendation.
In Proceedings of the 2016 ACM on international conference on multimedia retrieval.
103-110.

Tobias Schnabel, Mengting Wan, and Longqi Yang. 2022. Situating Recommender
Systems in Practice: Towards Inductive Learning and Incremental Updates. arXiv
preprint arXiv:2211.06365 (2022).

Shalin Shah. 2023. A Survey of Latent Factor Models for Recommender Systems
and Personalization. Authorea Preprints (2023).

Jiahui Shi, Vivek Chaurasiya, Yozen Liu, Shubham Vij, Yan Wu, Satya Kanduri,
Neil Shah, Peicheng Yu, Nik Srivastava, Lei Shi, et al. 2023. Embedding Based
Retrieval in Friend Recommendation. (2023).

Aixin Sun. 2023. On Challenges of Evaluating Recommender Systems in an
Offline Setting. In Proceedings of the 17th ACM Conference on Recommender
Systems. 1284-1285.

Aixin Sun. 2023. Take a Fresh Look at Recommender Systems from an Evaluation
Standpoint. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2629-2638.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L. Dyer, Rémi Munos, Petar Velickovic, and Michal Valko. 2022. Large-Scale
Representation Learning on Graphs via Bootstrapping. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, Virtual, 1-18. https://openreview.net/forum?id=0UXT6PpRpW
Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, and Hugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations
for items. Advances in neural information processing systems 30 (2017).
Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. Dropoutnet: Ad-
dressing cold start in recommender systems. Advances in neural information
processing systems 30 (2017).

Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,
and Shaoping Ma. 2022. Towards representation alignment and uniformity in
collaborative filtering. In Proceedings of the 28th ACM SIGKDD Conference on

[51

[52

[53

o
=)

[55

[56

[57

[58

[60

[61

(63

[64

(65

[66

[67

William Shiao et al.

Knowledge Discovery and Data Mining. 1816-1825.

Li Wang, Binbin Jin, Zhenya Huang, Hongke Zhao, Defu Lian, Qi Liu, and Enhong
Chen. 2021. Preference-Adaptive Meta-Learning for Cold-Start Recommendation..
In IJCAL 1607-1614.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1-7.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. Den v2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the web conference 2021.
1785-1797.

Tongzhou Wang and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
Conference on Machine Learning. PMLR, 9929-9939.

Yu Wang, Tong Zhao, Yuying Zhao, Yunchao Liu, Xueqi Cheng, Neil Shah, and
Tyler Derr. 2024. A topological perspective on demystifying gnn-based link
prediction performance. In ICLR.

Christopher Wellons. 2018. Hash Function Prospector. https://github.com/skeeto/
hash-prospector.

Xinyi Wu, Donald Loveland, Runjin Chen, Yozen Liu, Xin Chen, Leonardo Neves,
Ali Jadbabaie, Clark Mingxuan Ju, Neil Shah, and Tong Zhao. 2024. GraphHash:
Graph Clustering Enables Parameter Efficiency in Recommender Systems. arXiv
preprint arXiv:2412.17245 (2024).

Liangwei Yang, Zhiwei Liu, Chen Wang, Mingdai Yang, Xiaolong Liu, Jing Ma, and
Philip S Yu. 2023. Graph-based Alignment and Uniformity for Recommendation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. 4395-4399.

Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and
Hongzhi Yin. 2023. XSimGCL: Towards extremely simple graph contrastive
learning for recommendation. IEEE Transactions on Knowledge and Data Engi-
neering (2023).

Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay
Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
et al. 2020. Model size reduction using frequency based double hashing for
recommender systems. In Proceedings of the 14th ACM Conference on Recommender
Systems. 521-526.

Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Ak-
shay Gupta, Pranay K. Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
Prasang Upadhyaya, Ferenc Huszar, and Wenzhe Shi. 2020. Model Size Reduc-
tion Using Frequency Based Double Hashing for Recommender Systems. In
Proceedings of the 14th ACM Conference on Recommender Systems.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. 2022. Learning
from counterfactual links for link prediction. In International Conference on
Machine Learning. PMLR, PMLR, Cambridge, MA, 26911-26926.

Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin,
Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wengi Sun, et al. 2022. RecBole 2.0:
towards a more up-to-date recommendation library. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management.
Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan,
Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. 2021. Recbole: Towards a
unified, comprehensive and efficient framework for recommendation algorithms.
In proceedings of the 30th acm international conference on information & knowledge
management.

Wengqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang
Wang, and Karthik Subbian. 2021. Cold brew: Distilling graph node representa-
tions with incomplete or missing neighborhoods. arXiv preprint arXiv:2111.04840
(2021).

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. CoRR abs/2006.04131 (2020),
1-17. arXiv:2006.04131 https://arxiv.org/abs/2006.04131

Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. 2020. Recom-
mendation for new users and new items via randomized training and mixture-
of-experts transformation. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval. 1121-1130.



	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Context-Free Models
	2.2 Context-Aware Models

	3 Towards a General OOV Embedder
	3.1 Heuristic-based Embedders
	3.2 Learning-based Embedders
	3.3 OOV Embedder Training

	4 Datasets
	5 Experimental Evaluation
	5.1 Evaluation Details
	5.2 Context-Aware Results
	5.3 Context-Free Results
	5.4 Recommendations for Practitioners

	6 Related Work
	7 Conclusion
	References

