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Abstract

Temporal Domain Generalization (TDG) addresses the challenge of training pre-
dictive models under temporally varying data distributions. Traditional TDG
approaches typically focus on domain data collected at fixed, discrete time in-
tervals, which limits their capability to capture the inherent dynamics within
continuous-evolving and irregularly-observed temporal domains. To overcome
this, this work formalizes the concept of Continuous Temporal Domain General-
ization (CTDG), where domain data are derived from continuous times and are
collected at arbitrary times. CTDG tackles critical challenges including: 1) Charac-
terizing the continuous dynamics of both data and models, 2) Learning complex
high-dimensional nonlinear dynamics, and 3) Optimizing and controlling the gen-
eralization across continuous temporal domains. To address them, we propose a
Koopman operator-driven continuous temporal domain generalization (Koodos)
framework. We formulate the problem within a continuous dynamic system and
leverage the Koopman theory to learn the underlying dynamics; the framework
is further enhanced with a comprehensive optimization strategy equipped with
analysis and control driven by prior knowledge of the dynamics patterns. Extensive
experiments demonstrate the effectiveness and efficiency of our approach. The
code can be found at: https://github.com/Zekun-Cai/Koodos.

1 Introduction
In practice, the distribution of training data often differs from that of test data, leading to a failure
in generalizing models outside their training environments. Domain Generalization (DG) [49; 46;
21; 14; 40] is a machine learning strategy designed to learn a generalized model that performs well
on the unseen target domain. The task becomes particularly pronounced in dynamic environments
where the statistical properties of the target domains change over time [16; 33; 4], prompting the
development of Temporal Domain Generalization (TDG) [27; 39; 41; 2; 55; 57]. TDG recognizes
that domain shifts are temporally correlated. It extends DG approaches by modeling domains as a
sequence rather than as categorical entities, making it especially beneficial in fields where data is
inherently time-varying.

Existing works in TDG typically concentrate on the discrete temporal domain, where domains are
defined by distinct "points in time" with fixed time intervals, such as second-by-second data (Rot
2-Moons [48]) and annual data (Yearbook [54]). In this framework, data bounded in a time interval
are considered as a detached domain, and TDG approaches primarily employ probabilistic models to
predict domain evolutions. For example, LSSAE [41] employs a probabilistic generative model to
analyze latent structures within domains; DRAIN [2] builds a Bayesian framework to predict future
model parameters, and TKNets [57] constructs domain transition matrix derived from the data.
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Figure 1: An example of continuous temporal domain generalization. Consider training classification
models for public opinion prediction via tweets, where the training domains are only available at
specific political events (e.g., presidential debates), we wish to generalize the model to any future
based on the underlying data distribution drift within the time-irregularly distributed training domains.

However, in practice, data may not always occur or be observed at discrete, regularly spaced time
points. Instead, events and observations unfold irregularly and unpredictably in the time dimension,
leading to temporal domains distributed irregularly and sparsely over continuous time. Formally, this
paper introduces a problem termed Continuous Temporal Domain Generalization (CTDG), where
both seen and unseen tasks reside in different domains at continuous, irregular time points. Fig. 1
illustrates an example of public opinion prediction after political events via Twitter data. Unlike the
assumption in traditional TDG that the temporal regularly domains, the data are collected for the
times near political events that may occur in arbitrary times. In the meanwhile, the domain data evolve
constantly and continuously over time, e.g., active users increase, new friendships are formed, and
age and gender distribution changes. Correspondingly, the ideal classifier should gradually change
with the domain at random moments to counter the data distribution change over time. Finally, we
are concerned with the state of the predictive model at any moment in the future. CTDG is ubiquitous
in other fields. For example, in disaster management, relevant data are collected during and following
disasters, which may occur at any time throughout the year. In healthcare, critical information about
diagnosis and treatment is typically only documented during episodes of care rather than evenly
throughout the lifetime. Hence, the CTDG task necessitates the characterization of the continuous
dynamics of irregular time-distributed domains, which cannot be handled by existing TDG methods
designed for discrete-dynamics and fixed-interval times.

Despite the importance of CTDG, it is still a highly open research area that is not well explored
because of several critical hurdles in: 1) Characterizing data dynamics and their impact on model
dynamics. The irregular times of the temporal domains require us to characterize the continuous
dynamics of the data and, hence, the model dynamics ultimately. However, the continuous-time
data dynamics are unknown and need to be learned across arbitrary time points. Furthermore, it
is imperative yet challenging to know how the model evolves according to the data dynamics in
continuous times. Therefore, we don’t have a direct observation of the data dynamics and the
model dynamics we want to learn, which prevents us from existing continuous time modeling
techniques. 2) Learning the underlying dynamics of over-parametrized models. Deep neural
networks (e.g., Multi-Layer Perceptron and Convolutional Neural Network) are highly nonlinear and
over-parametrized, and hence, the evolutionary dynamics of model states over continuous time are
high-dimensional and nonlinear. Consequently, the principal dynamics reside in a great number of
latent dimensions. Properly representing and mapping these dynamics into a learnable space remains
a challenge. 3) Jointly optimizing the model and its dynamics under possible inductive bias.
The model learning for individual domains will be entangled with the learning of the continuous
dynamics across these models. Furthermore, in many situations, we may have some high-level prior
knowledge about the dynamics, such as whether there are convergent, divergent, or periodic patterns.
It is an important yet open topic to embed them into the CTDG problem-solving.

To address all the challenges, we propose the Koopman operator-driven continuous temporal domain
generalization framework (Koodos). Specifically, the Koodos framework articulates the evolutionary
continuity of the predictive models in CTDG, then leverages a continuous dynamic approach to model
its smooth evolution over time. Koodos further simplifies the nonlinear model system by projecting
them into a linearized space via the Koopman Theory. Finally, Koodos provides an interface that
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reveals the internal model dynamic characteristics, as well as incorporates prior knowledge and
constraints directly into the joint learning process.

2 Related works
Domain Generalization (DG) and Domain Adaptation (DA). DG approaches attempt to learn
a model from multiple source domains that generalize well to an unseen domain [38; 37; 28; 5;
13; 56]. Existing DG methods can be classified into three strategies [49]: (1) Data manipulation
techniques, such as data augmentation [45; 46; 57] and data generation [32; 40]; (2) Representation
learning focuses on extracting domain-invariant features [17; 18] and disentangling domain-shared
from domain-specific features [30]; (3) Learning strategies encompass ensemble learning [34],
meta-learning [26; 14; 9], and gradient-based approaches [21]. Unlike DG, DA methods require
simultaneously accessing source and target domain data to facilitate alignment and adaptation
[50; 51; 29]. The technique includes domain-invariant learning [17; 47; 35; 48; 53], domain mapping
[6; 20; 15; 31], ensemble methods [43], and so on. Both DG and DA are limited to considering
generalization across categorical domains, which treats domains as individuals but ignores the
smooth evolution of them over time.

Temporal Domain Generalization (TDG). TDG is an emerging field that extends traditional DG
techniques to address challenges associated with time-varying data distributions. TDG decouples time
from the domain and constructs domain sequences to capture its evolutionary relationships. S-MLDG
[27] pioneers a sequential domain DG framework based on meta-learning. Gradient Interpolation (GI)
[39] proposes to extrapolate the generalized model by supervising the first-order Taylor expansion
of the learned function. LSSAE [41] deploys a probabilistic framework to explore the underlying
structure in the latent space of predictive models. DRAIN [2] constructs a recurrent neural network
that dynamically generates model parameters to adapt to changing domains. TKNets [57] minimize
the divergence between forecasted and actual domain data distributions to capture temporal patterns.

Despite these studies, traditional TDG methods are limited to requiring domains presented in discrete
time, which disrupts the inherent continuity of changes in data distribution, and the generalization can
only be carried forward by very limited steps. No work treats time as a continuous variable, thereby
failing to capture the full dynamics of evolving domains and generalize to any moment in the future.

Continuous Dynamical Systems (CDS). CDS are fundamental in understanding how systems evolve
without the constraints of discrete intervals. They are the study of the dynamics for systems defined
by differential equations. The linear multistep method or the Runge-Kutta method can solve the
Order Differential Equations (ODEs) [19]. Distinguishing from traditional methods, Neural ODEs
[11] represent a significant advancement in the field of CDS. It defines a hidden state as a solution to
the ODEs initial-value problem, and parameterizes the derivatives of the hidden state using a neural
network. The hidden state can then be evaluated at any desired time using a numerical ODEs solver.
Many recent studies have proposed on which to learn differential equations from data [42; 22; 23; 36].

3 Problem definition
Continuous Temporal Domain Generalization (CTDG): We address prediction tasks where the
data distribution evolves over time. In predictive modeling, a domain D(t) is defined as a dataset
collected at time t consisting of instances {(x(t)

i , y
(t)
i ) ∈ X (t) × Y(t)}N(t)

i=1 , where x
(t)
i , y(t)i and

N(t) represent the feature, target and the number of instances at time t, and X (t), Y(t) denote the
input feature space and label space at time t, respectively. We focus on the existence of gradual
concept drift across continuous time, indicating that domain conditional probability distributions
P (Y (t)|X(t)), with X(t) and Y (t) representing the random variables for features and targets at time
t, change smoothly and seamlessly over continuous time like streams without abrupt jumps.

During training, we are provided with a sequence of observed domains {D(t1),D(t2), . . . ,D(tT )}
collected at arbitrary times T = {t1, t2, . . . , tT }, where ti ∈ R+ and t1 < t2 < . . . < tT . For each
domain D(ti) at time ti ∈ T , we learn the predictive model g(·; θ(ti)) : X (ti) → Y(ti), where
θ(ti) denotes the parameters of function g at timestamp ti. We model the dynamics across the
parameters {θ(t1), θ(t2), . . . , θ(tT )}, and finally predict the parameters θ(s) for the predictive model
g(·; θ(s)) : X (s) → Y(s) at any given time s /∈ T . For simplicity, in subsequent, we will use Di,
Xi, Yi, θi to represent D(ti), X(ti), Y (ti), θ(ti) at time ti.

Unlike traditional temporal domain generalization approaches [39; 2; 52; 57] that divide time into
discrete intervals and require domain data be collected at fixed time steps, the CTDG problem
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Figure 2: Macro-flows and micro-constraints in the proposed model framework.

treats time as continuous variable, allowing for the time points in training and test set to be any
arbitrary positive real numbers, and requiring models to deal with the temporal domains as continuous
streams. CTDG problem poses several unprecedented, substantial challenges in: 1) Characterizing the
continuous dynamics of data and how that decides model dynamics; 2) Modeling the low-dimensional
continuous dynamics of the predictive model, which are embedded in high-dimensional space due
to over-parametrization; and 3) Optimizing and analyzing the continuous predictive model system,
including the application of inductive biases to control its behavior.

4 Methodology

In this section, we outline our strategies to tackle the problem of CTDG by overcoming its substantial
challenges. First, to learn the continuous drifts of data and models, we synchronize between the
evolving domain and the model by establishing the continuity of the model parameters over time,
which is ensured through the formulation of differential equations as elaborated in Section 4.1. To
fill the gap between high-dimensional model parameters and low-dimensional model continuous
dynamics, we simplify the representation of complex dynamics into a principal, well-characterized
Koopman space as is detailed in Section 4.2. To jointly learn the model and its dynamics under
additional inductive bias, in Section 4.3, we design a series of organized loss functions to form an
efficient end-to-end optimization strategy. Overall, as shown in Fig. 2(a), there are three dynamic
flows in our system, which are the Data Flow, the Model Flow, and the Koopman Representation Flow.
Through the proposed framework, we aim to ensure not only that the model responds to the statistical
variations inherent in the data, but also that the characteristics of the three flows are consistent.

4.1 Characterizing the continuous dynamics of the data and the model

In this section, we explore the relationship between the evolving continuous domains and the
corresponding dynamics of the predictive models. We demonstrate that the dynamics of temporal
domains lead to the internal update of the predictive model continuously over time in Theorem 1.
Following this, we develop a learnable dynamic system for the continuous state of the model by
synchronizing the behaviors of the domain and model.
Assumption 1. Consider the gradual concept drift within the continuous temporal domains. It is
assumed that the conditional probability distribution Pt(Y |X) changes continuously over time, and
its dynamics are characterized by a function f , which models the variations in the distribution.
Theorem 1. (Continuous Evolution of Model Parameters) Given Assumption 1, it follows that the
parameters θt of the predictive model g(·; θt) also evolve continuously over time, and its dynamics
are jointly determined by the current state of the model and the function f .

Proof. The temporal derivative of the functional space g(·; θt) represents its evolution in direct
response to the changes in the conditional probability distribution. Without loss of generality, the
ground-truth functional space can be modeled by an ordinary differential equation:

dg(·; θt)/dt = f(g(·; θt), t). (1)

Applying the chain rule to decompose the temporal derivative of g:

d

dt
g(·; θt) =

n∑
i=1

∂g

∂θt,i

dθt,i
dt

= Jg(θt)
dθt
dt

, (2)
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where Jg(θt) is the Jacobian matrix of g with respect to θt.

By equating the Eq. 2 to the expression involving f :

Jg(θt)
dθt
dt

= f(g(·; θt), t). (3)

Assuming that Jg(θt) is invertible, the ground-truth derivative of θt with respect to time is given by:

dθt
dt

= Jg(θt)
−1f(g(·; θt), t). (4)

It is known from the Proof that the evolution continuity of θt follows from a differential equation.
Eq. 4 identifies a dynamic framework for the predictive model parameters, which provides a strong
motivation to develop dynamic systems for them.

The principal challenge arises from the unknown dynamics enclosed in f , which prevents getting θt by
direct mathematical computation. Recognizing this, we propose a learning-based approach to model
the parameter dynamics from the observed domains. We construct a learnable parameter dynamics
function h(θt, t;ϕ), parameterized by ϕ, optimized to topological conjugation between the model
dynamics and the data dynamics. Topological conjugation guarantees that the parameter’s orbits
faithfully characterize the underlying data dynamics, thereby ensuring the model’s generalization
capability across all time. Specifically, as illustrated in Fig. 2(a) of the Data Flow and the Model Flow,
assuming a conceptual perfect mapping ξ from the data space to the parameter space, topological
conjugation suggests that the composition of the learned dynamic h after ξ should behave identically
to applying ξ after the dynamics f , i.e., h ◦ ξ = ξ ◦ f holds, where ◦ represents function composition.
In the CTDG problem, the objective of conjugation is to optimize the model dynamics h and the
predictive parameters θ simultaneously, to minimize the discrepancy between the dynamically derived
parameters from h and those obtained through direct training, formulated as follows:

ϕ = argmin
ϕ

∑T

i=1

∑i

j=1
∥θi, θj→i

i ∥2, (5)

where ∥ · ∥2 denotes the Euclidean norm, and each θi is determined by:

θi = argmin
θi

L(Yi, g(Xi; θi)), (6)

and θj→i
i is defined as the integral parameters at ti obtained from tj < ti:

θj→i
i = θj +

∫ ti

tj

h(θτ , τ ;ϕ) dτ. (7)

Here, L symbolizes the loss function tailored to the prediction task. By employing Eq. 7, the model
dynamics are defined for all observation time, and ϕ can be obtained by optimizing Eq. 5 and Eq.
6 via gradient descent. After that, the parameters of the predictive model can be calculated at any
specific time using ODE solvers.

4.2 Modeling nonlinear model dynamics by Koopman operators

The aforementioned learning approaches are, however, limited in efficient modeling and prediction
due to the entangled nonlinear dynamics in the high-dimensional parameters space. Identifying
strongly nonlinear dynamics through such space is particularly susceptible to overfitting [8], leading
to future predictive models eventually diverging from bifurcation to chaos. Despite the complexity of
h, it is governed by the data dynamics f , which are typically low-dimensional and exhibit simple,
predictable patterns. This suggests that the governing equations for h are sparse within the over-
parameterized space, and thus allow for a more simplified and manageable representation in a properly
transformed space. Motivated by this, we propose leveraging the well-established Koopman Theory
[24; 7] to represent these complex parameter dynamics. Koopman Theory provides a method for
the global linearization of any nonlinear dynamics. It expresses the complex dynamic system as an
infinite-dimensional Koopman operator acting on the Hilbert space of the system state measurement
functions, in which the nonlinear dynamics will become linearized.
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To facilitate this approach, the target is to identify a set of intrinsic coordinates φ that spans a
Koopman-invariant subspace. As illustrated in Fig. 2(a) of the Model Flow and Koopman Flow,
this transformation maps the parameters θ into a latent space z = φ(θ), with z resides in a low
n-dimensional space, Z = Rn, where the dynamics become more linearized. We also aim to find a
finite-dimensional approximation of the Koopman operator, denoted as K ∈ Rn×n, that acts on the
latent space and advances the observation of the state to the future K : Z → Z . After that we have:

dφ(θ)/dt = Kφ(θ). (8)

The z dynamics are easier to track because they principleize the dynamical system while maintaining
its characteristics. It gives us a tighter representation of the parameters within a linear space, which
allows us to learn the simple K operator instead of the complex coupled dynamics h(·;ϕ). Following
the transformation, the dynamics of the parameters can be expressed by:

zj→i
i = zj +

∫ ti

tj

Kzτ dτ, where zj = φ(θj). (9)

Finally, an inverse transformation provided by θj→i
i = φ−1(zj→i

i ) that maps Koopman space back to
the original parameter space. The relational among θ, K, φ, φ−1 and the Koopman invariant subspace
are bounded by a series of loss functions detailed in the next Section.

4.3 Joint optimization of model and its dynamics with prior knowledge

We introduce a comprehensive optimization approach designed to ensure that the system accurately
captures the dynamics of the data. This process requires the joint optimization of several intercon-
nected components under the optional constraint of additional prior knowledge about the underlying
dynamics: the predictive model parameters θ1:T , the transformation functions φ and φ−1, and the
Koopman operator K. Our primary objectives are threefold: 1) Ensuring high prediction accuracy, 2)
Maintaining consistency of parameters across different representations and transformations, and 3)
Learning the Koopman invariant subspaces effectively. Fig. 2(b) illustrates the role of each constraint
within our system: we manage two sets of states, intrinsic and integral, aligning across three spaces.

Predictive Model Parameters (θ): Each observation time corresponds to a predictive model, which
is tasked with making predictions and serving as the initial values for the dynamical system. They
are primarily optimized to minimize the prediction error Lintri of different domains:

Lintri =
∑T

i=1
L(Yi, g(Xi; θi)). (10)

Koopman Network Parameters (φ, φ−1, K): We estimate a function that transforms the parameters
of the predictive model into Koopman space. Meanwhile, these predictive model parameters must be
stable and consistent when converted between representations. This is realized by three constraints:

1. Reconstruction Loss: An autoencoder is leveraged to map parameter space to Koopman space by
encoder φ and back to the original space by decoder φ−1. Lrecon ensures consistency between θ
and its reconstructed form via transformations:

Lrecon =
∑T

i=1
∥θi, φ−1(φ(θi))∥2. (11)

2. Dynamic Fidelity Loss: This term ensures that the transformation produces a Koopman invariant
subspaces in which the dynamics can forward correctly. It measures the fit of the Koopman
operator K against the transferred parameter:

Ldyna =
∑T

i=1

∑i

j=1
∥zi, zj→i

i ∥2, (12)

where zi = φ(θi) and zj→i
i = zj +

∫ ti
tj

Kzτ dτ .

3. Consistency Loss: It measures the consistency between the original and the dynamic parameter
in the model space:

Lconsis =
∑T

i=1

∑i

j=1
∥θi, θj→i

i ∥2, where θj→i
i = φ−1(zj→i

i ) (13)
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Additionally, we load the dynamically integral parameters θj→i
i back into the predictive model to

evaluate its predictive capability, quantified by Linteg =
∑T

i=1

∑i
j=1 L(Yi, g(Xi; θ

j→i
i )). Finally,

the system optimizes the following combined loss to refine all components simultaneously:

{θ1:T , φ, φ−1,K} = argmin
θ1:T ,φ,φ−1,K

(αLintri + αLinteg + βLrecon + γLdyna + βLconsis), (14)

with α, β, and γ as adjustable weights to balance the magnitude of each term, ensuring that no single
term dominates during training.

During inference, given the moment ts, the model uses the state from the nearest observation moment
tobs as an initial value, integrating over the time interval [tobs, ts] in Koopman space to give the
generalized model state θobs→s

s at the desired test moment.

Analysis and Control of the Temporal Domain Generalization. Integrating Koopman theory
into continuous temporal domain modeling facilitates the application of optimization, estimation,
and control techniques, particularly through the spectral properties of the Koopman operator. We
remark that the Koopman operator serves as a pivotal interface for analyzing and controlling the
generalization process. Constraints imposed on the Koopman space will be equivalently mapped
to the Model space. For instance, the eigenvalues of K are crucial as they provide insights into the
system’s stability and dynamics, as illustrated below:

zj→i
i = zj +

∫ ti

tj

Kzτ dτ, where λi is an eigenvalue of K (15)

1. System Assessment. The generalization process is considered stable if all λi satisfy Re(λi) < 0.
Conversely, the presence of any λi such that Re(λi) > 0 indicates instability in the system. When
Re(λi) = 0, the system may exhibit oscillatory behavior. By analyzing the locations of these
poles in the complex plane, we can assess the system’s long-term dynamics, helping us identify
whether the generalized model is likely to collapse in the future.

2. Behavioral Constraints. Adding explicit constraints to K can guide the generalization toward
desired behaviors. This process not only facilitates the incorporation of prior knowledge about
domains but also tailors the system to specific characteristics. To name just a few, if the data
dynamics are known to be periodic, configuring K as K = B−BT , with B as learnable parameters,
ensures that the model system exhibits consistent periodic behavior since the eigenvalues of
B −BT are purely imaginary values. Additionally, employing a low-rank approximation such as
K = UV T , with U, V ∈ Rn×k and k < n, allows the model to concentrate on the most significant
dynamical features and explicitly control the degrees of freedom of the generalization process.

Theoretical Analysis. In this work, we theoretically proved that our proposed continuous-time TDG
method has a smaller or equal error compared to the discrete-time method for approximating temporal
distribution drift. This demonstrates that the ODE method provides a more accurate approximation
due to its consideration of the integral of changes over time, reducing the accumulation of errors
compared to the step-wise updates of the discrete-time methods.
Theorem 2 (Superiority of continuous-time methods over discrete-time methods (informal)).
Continuous-time methods have smaller or equal errors compared to discrete-time methods in ap-
proximating temporal distribution drift, due to its consideration of the integral of changes over time.

The formal version and proof of Theorem 2 are given in Appendix C. We also provide a detailed
model complexity analysis in Appendix A.1.4.

5 Experiment
In this section, we present the performance of the Koodos in comparison to other approaches through
both quantitative and qualitative analyses. Our evaluation aims at 1) assessing the generalizability of
Koodos in continuous temporal domains; 2) assessing whether Koodos captures the correct underlying
data dynamics; and 3) assessing whether Koodos can use inductive bias to guide the behavior of the
generalization. Detailed experiment settings (i.e., dataset details, baseline details, hyperparameter
settings, ablation study, scalability analysis, and sensitivity analysis) are demonstrated in Appendix
A.1. Besides, since the TDG is a special case of the CTDG, we also conducted experiments on the
traditional discrete temporal domain generalization task. Results are shown in Appendix B.
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Table 1: Performance comparison on continuous temporal domain datasets. The classification tasks
report Error rates (%) except for the AUC for the Twitter dataset. The regression tasks report MAE.
’N/A’ implies that the method does not support the task.

Model Classification Regression
2-Moons Rot-MNIST Twitter Yearbook Cyclone House

Offline 13.5 ± 0.3 6.6 ± 0.2 0.54 ± 0.09 8.6 ± 1.0 18.7 ± 1.4 19.9 ± 0.1
LastDomain 55.7 ± 0.5 74.2 ± 0.9 0.54 ± 0.12 11.3 ± 1.3 22.3 ± 0.7 20.6 ± 0.7
IncFinetune 51.9 ± 0.7 57.1 ± 1.4 0.52 ± 0.01 11.0 ± 0.8 19.9 ± 0.7 20.6 ± 0.2
IRM 15.6 ± 0.2 8.6 ± 0.4 0.53 ± 0.11 8.3 ± 0.5 18.0 ± 0.8 19.8 ± 0.2
V-REx 12.8 ± 0.2 8.6 ± 0.3 0.58 ± 0.05 8.9 ± 0.5 17.7 ± 0.5 20.2 ± 0.1
CIDA 18.7 ± 2.0 8.3 ± 0.7 0.63 ± 0.03 8.4 ± 0.8 17.0 ± 0.4 10.2 ± 1.0
TKNets 39.6 ± 1.2 37.7 ± 2.0 0.57 ± 0.04 8.4 ± 0.3 N/A N/A
DRAIN 53.2 ± 0.9 59.1 ± 2.3 0.57 ± 0.04 10.5 ± 1.0 23.6 ± 0.5 9.8 ± 0.1
DRAIN-∆t 46.2 ± 0.8 57.2± 1.8 0.59 ± 0.02 11.0 ± 1.2 26.2 ± 4.6 9.9 ± 0.1
DeepODE 17.8 ± 5.6 48.6 ± 3.2 0.64 ± 0.02 13.0 ± 2.1 18.5 ± 3.3 10.7 ± 0.4
Koodos (Ours) 2.8 ± 0.7 4.6 ± 0.1 0.71 ± 0.02 6.6 ± 1.3 16.4 ± 0.3 9.0 ± 0.2

Datasets. We compare with classification datasets: Rotated Moons (2-Moons), Rotated MNIST
(Rot-MNIST), Twitter Influenza Risk (Twitter), and Yearbook; and the regression datasets: Tropical
Cyclone Intensity (Cyclone), House Prices (House). More details can be found in Appendix A.1.1.

Baselines. We employ three categories of baselines: Practical baselines, including 1) Offline; 2)
LastDomain; 3) IncFinetune; 4) IRM [1]; 5) V-REx [25]. Discrete temporal domain generalization
methods, including 1) CIDA [48]; 2) TKNets [57]; 3) DRAIN [2]; 4) DRAIN-∆t. Continuous
temporal domain generalization methods, including 1) DeepODE [11]. Comparison method details
can be found in Appendix A.1.2.

Metrics. Error rate (%) is used for classification tasks. As the Twitter dataset has imbalanced labels,
the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve is used. Mean
Absolute Error (MAE) is used for regression tasks. All models were trained on training domains
and then deployed on all unseen test domains. Each method’s experiments were repeated five times,
with mean results and standard deviations reported. Detailed parameter settings for each dataset are
provided in Appendix A.1.3.

5.1 Quantitative analysis: generalization across continuous temporal domains
We first present the performance of our proposed method against baseline methods, highlighting
results from Table 1. Koodos exhibits outstanding generalizability across continuous temporal do-
mains. A key observation is that all baseline models struggle to handle synthetic datasets, particularly
challenged by the continuous and substantial concept drift (i.e., 18 degrees of rotation per second).
In real-world datasets, methods like CIDA, DRAIN, and DeepODE demonstrate effectiveness in
certain cases. However, the performance gap between them and Koodos highlights the importance
of explicitly considering continuous temporal modeling. For instance, while DRAIN attempts to
address domain dynamics through a probabilistic sequential approach via LSTM, this introduces
considerable errors due to the inherent discrete temporal. Moreover, while DRAIN-∆t and DeepODE
adjust for temporal irregularities accordingly, they fail to adequately synchronize the data and model
dynamics, leading to unsatisfactory results. In contrast, Koodos establishes a promising approach and
a benchmark in CTDG tasks, with quantitative analysis firmly confirming the approach’s superiority.

5.2 Qualitative analysis: data dynamics and the learned model dynamics
We conducted a qualitative comparison of different models by visualizing their decision boundaries
on the 2-Moons dataset, as depicted in Fig. 3. Each row represents a different method: DRAIN-∆t,
DeepODE, and Koodos, with the timeline at the bottom tracking progress through test domains.
DRAIN-∆t displays the highest error rate, showing substantial deviation from the anticipated
trajectories, especially after the third domain. We also observe that DRAIN-∆t seems to freeze
when predicting multiple steps, likely due to its underlying model, DRAIN, uses a recursive training
strategy within a single domain and is explicitly designed for one-step prediction. DeepODE shows a
relatively better performance. It benefits from leveraging ODEs to maintain continuity in the model
dynamics. However, the nonlinear variation of the predictive model parameters complicates its ability
to abstract and simplify the real dynamics. Its predictions start close to the desired paths but diverge
over time. Finally, Koodos exhibits the highest performance with clear and concise boundaries,
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Test Timeline

Koodos
Err: 2.1%

DeepODE
Err: 10.3%

DRAIN-∆𝑡
Err: 44.6%

Last Train Domain 

𝑡 = 35.0722 

Figure 3: Visualization of decision boundary of the 2-Moons dataset (purple and yellow show data
regions, red line shows the decision boundary). Top to bottom compares two baseline methods with
ours; left to right shows partial test domains (all test domains are marked with red points on the
timeline). All models are learned using data before the last train domain.

Time Time

(b) DRAIN (c) DeepODE

Training Model 
Embedding Model Extrapolation

Model Interpolation

TimeLast Train Domain

First Train Domain

(a) Koodos

Figure 4: Interpolated and extrapolated predictive model trajectories. Left: Koodos captures the
essence of generalization through the harmonious synchronization of model and data dynamics;
Middle: DRAIN, as a probabilistic model, fails to capture continuous dynamics, which is presented
as jumps from one random state to another. Right: DeepODE demonstrates a certain degree of
continuity, but the dynamics are incorrect.

consistently aligning with the actual dynamics and maintaining high fidelity across all tested domains,
showcasing its robustness in continuous temporal domain modeling and generalization.

Fig. 4(a) demonstrates the space-time evolution of the generalization process of Koodos. By applying
t-SNE, the predictive model parameters are reduced to a 2-dimensional representation space, plotted
against the time on the Z-axis. We used Koodos to interpolate the model states (35 seconds displayed
in blue-yellow line) among the training domain states (marked by blue docs) in steps of 0.2 seconds,
and similarly extrapolated 75 steps (15 seconds displayed in red line). The visualization clearly shows
that Koodos synchronizes the model dynamics with the data dynamics: the interpolation creates a
cohesive, upward-spiraling trajectory transitioning from the first to the last training domain, while the
extrapolation correctly extends this trajectory outward into a new area, demonstrating the effective of
Koodos from another intuitive way. We also show the space-time evolution of baseline models in Fig.
4(b,c), in which we do not find meaningful patterns of the generalization process.

5.3 Analysis and control of the generalization process

The learned Koopman operator provides valuable insights into the dynamics of generalized predictive
models. We analyze the behavior of the learned Koodos model on the 2-Moons dataset, focusing on
the eigenvalues of the Koopman operator. As illustrated in Fig. 5(a), the eigenvalues are distributed
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(a) Without Inductive Bias (b) With Inductive Bias

Figure 5: Eigenvalue distribution of the Koopman operator. Left: K as learnable; Right: K = B−BT

with B as learnable.

Training Model 
Embedding Model Extrapolation

Model Interpolation

Time
Last Train Domain

First Train Domain

𝒕 =35

Long Extrapolation
𝒕 =70

(a) Without Inductive Bias

Time

Last Train Domain

First Train Domain

Long Extrapolation
𝒕 = 𝟏𝟐0

(b) With Inductive Bias

𝒕 =35

Figure 6: Extremely long-term extrapolated predictive model trajectories in uncontrolled and con-
trolled settings. Left: K as learnable; Right: K = B −BT with B as learnable.

across both stable (Re<0) and unstable (Re>0) regions on the complex plane. The spectral distribution
suggests that while Koodos performs effectively across all tested domains, it will eventually diverge
towards instability and finally collapse. To validate, we extended the extrapolation of the Koodos to
an extremely long-term (i.e., 35 seconds future). Results depicted in Fig. 6(a) demonstrate that the
generalized model’s trajectory significantly deviates from the anticipated spiral path, suggesting that
extremely long-term generalization will end up with the accumulation of errors.

Fortunately, Koodos’s innovative design allows it to incorporate knowledge that extends beyond
the observable data. By configuring the Koopman operator as K = B − BT , we ensure that all
eigenvalues of the final learned K are purely imaginary (termed Koodos+), promoting stable and
periodic behavior. This adjustment is reflected in Fig. 5(b), where the eigenvalues are tightly clustered
around the imaginary axis. As shown in Fig. 6(b), the embeddings and trajectories of Koodos+
are cohesive and maintain stability over extended periods. Remarkably, even with 85 seconds of
extrapolation, Koodos+ shows no signs of performance degradation, highlighting the significance of
human inductive bias in improving the robustness and reliability of the generalization process.

6 Conclusion
We tackle the problem of continuous temporal domain generalization by proposing a continuous
dynamic system network, Koodos. We characterize the dynamics of the data and determine its
impacts on model dynamics. The Koopman operator is further learned to represent the underlying
dynamics. We also design a comprehensive optimization framework equipped with analysis and
control tools. Extensive experiments show the efficiency of our design.
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A Appendix

A.1 Experimental details

A.1.1 Dataset details

In this paper, we explore a variety of datasets to analyze the performance of machine learning models
under conditions of continuous temporal domain. We employ the following datasets:

1. Rotated 2-Moons This dataset is a variant of the classic 2-entangled moons dataset, where
the lower and upper moon-shaped clusters are labeled 0 and 1, and each contains 500
instances. We randomly generated 50 distinct timestamps from the continuous real number
time interval [0, 50]. Each timestamp corresponds to a specific domain, with each domain
created by rotating the moons 18◦ counterclockwise per unit of time. The continuous concept
drift is represented by the progressive positional changes of the moon-shaped clusters.

2. Rotated MNIST This dataset is a variant of the classic MNIST dataset [12], comprising
images of handwritten digits from 0 to 9. We randomly generated 50 distinct timestamps
from the continuous real number time interval [0, 50]. Each timestamp corresponds to a
specific domain, within which we randomly selected 1,000 images from the MNIST dataset
and rotated them 18◦ counterclockwise per unit of time. Similar to 2-Moons, the continuous
concept drift means the rotation of the images.

3. Twitter The Twitter dataset [58; 3] utilizes tweet data to predict flu intensity. We randomly
collected streaming tweets starting at 50 arbitrary timestamps lasting 7 days during the
2010-2014 flu seasons and then examined the volume of disease-related terms to predict
current flu trends. The result is validated against the Influenza-Like Illness (ILI) activity
levels reported by the Centers for Disease Control and Prevention (CDC). The continuous
concept drift in this dataset is characterized by the fluctuations in tweet volumes over the
years and the variation in flu activity throughout the season.

4. Yearbook The Yearbook dataset [54] consists of frontal-facing yearbook portraits collected
between 1930 and 2013 from 128 high schools. The task is to classify gender from images.
We randomly sampled 40 years of data from the 84-year dataset, with each year representing
a domain to represent the incomplete temporal domain collection process, which resulted
in variable time intervals between consecutive domains. The Yearbook dataset provides a
visual record of evolving fashion styles and social norms across the decades.

5. Cyclone The Cyclone dataset [10] is collected by satellite remote sensing and is dedicated
to the task of tropical cyclone imagery to wind intensity. When each cyclone occurs, the
satellite collects a series of images for its entire life cycle as a domain, with the date of
its occurrence representing a temporal domain time. We focused on cyclone data from the
West Pacific region covering 2014 to 2016 and formed 72 continuous domains. The dataset
is event-triggered, and the variation in wind strength associated with the seasonal dates
results in a continuous concept drift.

6. House This dataset comprises housing price data from 2013 to 2019 and is utilized for a
regression task to predict the price of a house given the features. We extracted sales data for
one-month durations across 40 arbitrary time periods from 2013 through 2019. The concept
drift in this dataset is how the housing price changes over time for a certain region.

To more clearly illustrate the temporal arbitrariness of the continuous temporal domain, we plot
the time distribution of all domains for each dataset in Fig. 7, where the blue line represents the
timestamp of one specific domain. We use the last 30% domain of each dataset as test domains,
which are marked with gray shading.

A.1.2 Comparison methods

1. Practical Baseline (1) Offline Model: This model operates without temporal variations
and is trained using Empirical Risk Minimization (ERM) across all source domains. (2)
LastDomain: This model is also trained without temporal variations but focuses solely on
the last source domain using ERM. (3) IncFinetune: This approach begins by applying
the baseline method at the initial time point and subsequently fine-tunes the model at each
following time point using a lower learning rate. (4) IRM: IRM is to train a predictive model

15



Figure 7: The distribution of continuous temporal domain datasets along the time dimension. The
test domains are marked with gray shading.

over all distributions that do not rely on spurious correlations as much as possible. (5) V-REx:
Like IRM, V-REx performs causal identification, while also providing some robustness to
changes in the covariate shift by risk extrapolation.

2. Discrete Temporal Domain Generalization Baseline Continuous temporal domain tasks
require consideration of domains for the long future rather than a limited number of steps.
Existing methods are mainly unable to deal with this problem. Among them, although
DRAIN [2] is designed only for predicting one-step future prediction, its internal LSTM
structure has the potential of long-term future prediction, so we implemented DRAIN as a
discrete baseline. We implemented two versions of it: (1) DRAIN: This approach tackles the
temporal domain generalization problem by proposing a dynamic neural network, which
uses an LSTM to capture the evolving pattern of a neural network, during the test, DRAIN
will consider all future test domains as one domain, and utilizes the LSTM to predict the
future parameters of this target domain. (2) DRAIN-∆t: A variant of DRAIN, in which the
internal LSTM is changed to a continues recurrent units [44] to model irregular distributed
domains. Under this setting, DRAIN-∆t treats the test domains as an irregular time series
and predicts the model state at that given moment. We also added CIDA [48] and TKNets
[57] as comparisons. (3) CIDA treats the domain index as a continuous variable to help the
discriminator using a distance-based loss. (4) TKNets trains a prediction model for the target
domain by leveraging the evolving pattern among domains.

3. Continuous Temporal Domain Generalization Baseline There is currently no method to
generalize the model over the continuous time domain. However, we constructed a method
that can infer continuous states using a neural dynamical system. (1) DeepODE: We train a
deep neural Ordinary Differential Equations (NeuralODEs) [11] to model the continuous
dynamics of the predictive model parameters. DeepODE consists of three structures. It first
uses an encoder to embed the model parameters as dense vectors, then uses NeuralODEs to
infer their state in the desired future, and later uses a decoder to transfer the state back to the
parameters. DeepODE treats the first domain as an initial value and infers the state of future
training domains at once, using the inferred model’s performance on training domains to
optimize its autoencoder and NeuralODEs. In the testing phase, when a specific moment is
given, we use DeepODE to infer the prediction model parameters at that moment, and then
reload the estimated parameters into the prediction model for prediction.

A.1.3 Model configuration

We use autoencoder to achieve the φ and φ−1, which we call Encoder and Decoder in the following. A
linear transformation layer without bias (named Dynamic Model) is served as the Koopman operator.
In certain complex data dynamics, the Koopman operator needs to expand its dimensions (potentially
up to infinity) for a better approximation of the dynamics. Since it’s not feasible to increase the
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dimensions endlessly, we approximate the infinitely wide Koopman operator using multiple linear
layers with ReLU. In practice, we found that two linear layers work well enough. Additionally,
Predictive Models for each domain are trained to provide initial parameter values for Generalized
Models. We use NeuralODEs [11] as the ODEs solvers. For large models with massive parameters,
we treat the head network as a feature extractor shared by all domains, inferring only the state of the
remaining layers. All experiments are conducted on a 64-bit machine with two 20-core Intel Xeon
Silver 4210R CPU @ 2.40GHz, 378GB memory, and four NVIDIA GeForce RTX 3090. We use
Adam Optimizer for all experiments, and we specify the architecture as well as other details for each
dataset as follows:

1. Rotated 2-Moons The Predictive Model consists of 3 hidden layers, with a dimension of 50
each. We use a ReLU layer after each layer and a Sigmoid layer after the output layer. The
Encoder and Decoder are both a 4-layer Multi-Layer Perceptron (MLP), with dimensions of
[1024, 512, 128, 32] for each layer. A 32-dimensional linear layer Dynamic Model serves as
the Koopman operator. The learning rate for the Predictive Model is set at 1× 10−2, while
for the others is set at 1× 10−3.

2. Rotated MNIST The Prediction Model features a convolutional neural network architecture
comprising three convolutional layers with channel [32, 32, 64] and a kernel size of 3. Each
convolutional layer is followed by a ReLU layer and a max pooling layer with a kernel
size of 2. Following the flattening, the network includes two linear layers with dimensions
[128, 10]. A dropout layer is added between the linear layers to prevent overfitting. We treat
the convolutional layer as the feature extractor. The Encoder and Decoder are both a 4-layer
MLP with dimensions of [1024, 512, 128, 32]. A 32-dimensional two linear layers Dynamic
Model serves as the Koopman operator. The learning rate for all parts is set at 1× 10−3.

3. Twitter The Prediction Model consists of 3 hidden layers, with a dimension of [128, 32, 1].
We use the ReLU layer after each layer and a Sigmoid layer after the output layer. The
Encoder and Decoder are both a 4-layer MLP, with dimensions of [1024, 512, 128, 32] for
each layer. A 32-dimensional two linear layers Dynamic Model serves as the Koopman
operator. The learning rate for all parts is set at 1× 10−3.

4. Yearbook The Prediction Model features a convolutional neural network architecture com-
prising three convolutional layers with channel [32, 32, 64] and a kernel size of 3. Each
convolutional layer is followed by a ReLU layer and a max pooling layer with a kernel size of
2. Following the flattening, the network includes three hidden linear layers with dimensions
[128, 32, 1]. A dropout layer is added between the linear layers to prevent overfitting. The
convolutional layer is used as the feature extractor. The Encoder and Decoder are both a
4-layer MLP with dimensions of [1024, 512, 128, 32]. A 32-dimensional two linear layers
Dynamic Model serves as the Koopman operator. The learning rate is set at 1× 10−3.

5. Cyclone The Prediction Model features a convolutional neural network architecture com-
prising four convolutional layers with channel [32, 32, 64, 64] and a kernel size of 3. Each
convolutional layer is followed by a ReLU layer and a max pooling layer with a kernel size of
2. Following the flattening, the network includes three hidden linear layers with dimensions
[128, 32, 1]. We treat the convolutional layer as the feature extractor. The Encoder and
Decoder are both a 4-layer MLP, with dimensions of [1024, 512, 128, 32] for each layer.
A 32-dimensional 2 linear layers Dynamic Model serves as the Koopman operator. The
learning rate for all parts is set at 1× 10−3.

6. House The Prediction Model consists of 3 hidden layers with a dimension of 400. We use
the ReLU layer after each layer. The Encoder and Decoder are both a 4-layer MLP with
dimensions of [1024, 512, 128, 32]. A 32-dimensional two linear layers Dynamic Model
serves as the Koopman operator. The learning rate for all parts is set at 1× 10−3.

A.1.4 Complexity analysis

In our framework, coordinate transformations between spaces are implemented using an autoencoder
achieved by MLP. The complexity of these transformations is described by a linear relationship in
terms of N , expressed as O(2(Nd + E) + F ), where N denotes the number of parameters θ in
the predictive models, d denotes the number of neurons in the first MLP layer, E denotes for the
number of parameters remaining in the autoencoder, and F denotes the number of parameters in the
Koopman operator. In many deep learning tasks, significant portions of the model’s layers function as
representation learning and can be shared, resulting in a small N and controlled model complexity.
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Table 2: Ablation test results for different datasets.
Ablation 2-Moons Rot-MNIST Cyclone
✗Linteg 27.4 ± 20.3 42.7 ± 1.0 55.0 ± 1.0
✗Lrecon 3.2 ± 0.1 6.3 ± 0.3 17.2 ± 0.4
✗Ldyna 5.9 ± 5.1 31.7 ± 28.9 23.3 ± 4.9
✗Lconsis 30.5 ± 18.4 5.1 ± 0.4 17.4 ± 0.5
✗K.S 37.2 ± 7 OOM OOM
Koodos 2.8 ± 0.7 4.6 ± 0.1 16.4 ± 0.3

A.1.5 Ablation study

We conducted an ablation study to systematically assess the contribution of various constraints and
components within Koodos on two classification datasets: 2-Moons, Rot-MNIST, and a regression
dataset Cyclone. The results are summarized in the Table 2. For each test, specific loss constraints
were removed, indicated by ✗, and we also tested the effect of bypassing the Koopman Space but
learning dynamics directly in the parameter space, designated as ✗K.S.

As shown in the table, each component of constraints contributes to robust performance across all
tested datasets. The removal of particular elements has marked effects on model stability and accuracy.
Specifically, the absence of Linteg and Ldyna constraints leads to significant performance degradation,
highlighting their essential roles in learning the correct dynamics of the model through continuous
temporal domain data. Removing other constraints leads to unpredictable results on certain datasets
or a decline in effectiveness, indicating their importance in ensuring system effectiveness and stability
under various input conditions. The considerable increase in error observed with the ✗K.S on the
2-Moons dataset demonstrates the challenges associated with modeling nonlinear dynamics directly
in the parameter space, and the out-of-memory (OOM) problems with Rot-MNIST and Cyclone
upon the removal of the Koopman Space suggest that this component is not only pivotal but also
computationally demanding.

(a) Scalability for Parameter Size (b) Scalability for Domain Number

Figure 8: Scalability analysis w.r.t the number of parameters and the number of domains.

Table 3: Cost of training and testing time.
Model Train Time (s) Test Time (s)
DRAIN 67 <1
DeepODE 289 1
CIDA 610 3.05
TKNets 948 2
Koodos 566 2.83

A.1.6 Scalability analysis

We conducted a comprehensive analysis to evaluate the scalability of our system concerning both
the number of parameters of the predictive model and the number of domains, as shown in Fig. 8.
Computational times are normalized relative to the shortest time to provide a consistent basis.
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To explore how the size of predictive model parameters affects runtime, we experimented with various
configurations by varying the depth and number of neurons in the model. These configurations were
tested on the Cyclone dataset with parameter counts ranging from 2,000 to over one million. As
depicted in Fig. 8(a), there is a relatively linear and low growth rate in computation time as the
parameter size increases. This gradual increase suggests that the autoencoder in Koodos to encode
the parameter space into a Koopman space effectively mitigates the impact of increased parameter
scale, maintaining computational efficiency even as predictive model complexity grows.

To assess the effect of domain count on runtime, we generated synthetic 2-Moons datasets with
varying domain numbers: 10, 50, 100, 250, 500, 750, and 1000 domains, each with 200 training
instances categorized into two labels. The runtime is plotted against the number of domains in
Fig. 8(b), demonstrating a linear increase in computational time. This linear progression aligns
with expectations for a system processing a sequence of input domains through ODEs, indicating
predictable and manageable scalability as domain count increases.

We further conduct the model scalability analysis by comparing the running time of Koodos with
other state-of-the-art baselines: DRAIN, DeepODE, CIDA, and TKNets in the 2-Moons dataset. As
shown in Table 3, our model strikes a good balance between training time and effectiveness.

2‐Moons

House

Figure 9: Sensitivity analysis.

A.1.7 Sensitivity analysis

We conducted the sensitivity analysis on 2-Moons and House datasets to understand the hyperparam-
eters in Koodos: loss weights (α, β, γ) and the dimensions n of the Koopman operator K. The loss
weights are set based on the magnitude of each loss term. For instance, in the 2-Moons dataset, the
cross-entropy loss Lintri and Linteg are approximately 1 after convergence, the Lrecon and Lconsis

in the Model space are around 0.01, and Ldyna in the Koopman space is around 0.1. Accordingly, we
set the initial values of α, β, γ to 1, 100, and 10, respectively. We then adjust each term independently
within its respective range: α and γ are varied from 1 to 100, and β from 10 to 1000. The dimension
n of the Koopman operator varies from 16 to 2048. Fig. 9 shows the results.

It can be seen that: (1) Koodos exhibits stable behavior with controlled variance across a wide range of
hyperparameter values, evidencing its insensitivity to hyperparameter variations. (2) Setting the loss
weights of (α, β, γ) by the magnitude of each loss term is sufficient for achieving good performance,
and fine-tuning the weights may give better results. (3) A hundreds-dimension approximation of the
Koopman operator is sufficient to achieve good results. Too high may lead to overfitting.

A.1.8 Limitations

The limitation arises from the assumptions inherent in the research area of the temporal domain
generalization framework. TDG assumes that domain pattern drifts follow certain predictable, smooth
patterns, allowing for modeling future changes as a sequence. CTDG extends TDG to continuous
time, further generalizing the problem to handle domains collected at arbitrary times. Thus, their
assumptions are aligned in focusing on smooth, predictable concept drift. To address other kinds
of drift, alternative frameworks may be required. However, different frameworks can be combined
to address the full spectrum of domain generalization challenges. Exploring such a comprehensive
approach may represent a promising research direction.
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Table 4: Performance comparison on discrete temporal domain datasets. The classification tasks
report Error rates (%), and the regression tasks report MAE.

Model Classification Regression
2-Moons Rot-MNIST ONP Shuttle House Appliance

Offline 22.4 ± 4.6 18.6 ± 4.0 33.8 ± 0.6 0.77 ± 0.1 11.0 ± 0.36 10.2 ± 1.1
LastDomain 14.9 ± 0.9 17.2 ± 3.1 36.0 ± 0.2 0.91 ± 0.18 10.3 ± 0.16 9.1 ± 0.7
IncFinetune 16.7 ± 3.4 10.1 ± 0.8 34.0 ± 0.3 0.83 ± 0.07 9.7 ± 0.01 8.9 ± 0.5
CDOT 9.3 ± 1.0 14.2 ± 1.0 34.1 ± 0.0 0.94 ± 0.17 - -
CIDA 10.8 ± 1.6 9.3 ± 0.7 34.7 ± 0.6 - 9.7 ± 0.06 8.7 ± 0.2
GI 3.5 ± 1.4 7.7 ± 1.3 36.4 ± 0.8 0.29 ± 0.05 9.6 ± 0.02 8.2 ± 0.6
DRAIN 3.2 ± 1.2 7.5 ± 1.1 38.3 ± 1.2 0.26 ± 0.05 9.3 ± 0.14 6.4 ± 0.4
Koodos (Ours) 1.3 ± 0.4 7.0 ± 0.3 33.5 ± 0.4 0.24 ± 0.04 8.8 ± 0.19 4.8 ± 0.3

B Experiments on discrete temporal domain generalization

While our primary focus is on Continuous Temporal Domain Generalization (CTDG), we have also
conducted experiments in the more conventional context of Temporal Domain Generalization (TDG).
In essence, TDG can be seen as a specialized case of CTDG, where making the continuous system
with a step size fixed at 1. Such a setting does not affect the proper ability of the CTDG model to
capture the data dynamics and the corresponding model dynamics.

In TDG experiments, we follow the problem definition in DRAIN [2]. Formally, a sequence of
data domains is collected over discrete time intervals. Each domain, denoted as Dt, corresponds
to a dataset collected at a specific time t where t = 1, 2, ..., T . We have a sequence of domains
{D1,D2, ...,DT }, where each domain Dt = {(xt

i, y
t
i)}

Nt
i=1 consists of Nt instances with features

xt
i ∈ Xt and labels yti ∈ Yt, and Xt and Yt represent the random variables for features and targets.

The goal in TDG is to train a predictive model g(Xt; θt) on these historical domains, and modeling
the dynamics of {θ1, θ2, ..., θT }, then predict the θT+1 for the unseen future domain DT+1 at time
t = T + 1, finally do the prediction task Y ∗

T+1 = g(XT+1; θT+1).

We have replicated the experimental setups typically used in TDG research. Specifically, we used
datasets, settings, and hyperparameters from the DRAIN [2]. We compare with the following
classification datasets: Rotated Moons (2-Moons), Rotated MNIST (Rot-MNIST), Online News
Popularity (ONP), and Shuttle; and the following regression datasets: House prices dataset (House),
Appliances energy prediction dataset (Appliance). Note that the first two datasets differ from datasets
used in our CTDG main experiments in Exp. 5, as here they are time-regularly distributed and only
have 1-step future domain to predict. We keep the architecture of the predictive model for each
dataset the same as DRAIN [2].

Performance comparison of all methods in terms of misclassification Error (in %) for classification
tasks and mean absolute error (MAE) for regression tasks. All experiments are repeated 5 times for
each method, and we report the average results and the standard deviation in the quantitative analysis.

The results are shown in Table 4. The Koodos model consistently outperforms all baselines across
various datasets, demonstrating its robustness and superior adaptability also made to traditional
temporal domain generalization tasks. Notably, Koodos significantly reduces error margins, especially
in real-world datasets such as House and Appliance. The exceptional performance of Koodos can
be attributed to its fundamental continuous dynamic system design, which effectively captures and
synchronizes dynamic changes in data and models.
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C Theorem proofs

Assumptions
1. Continuous Data Distribution Drift: - Let p(t) be the data distribution at time t. - Assume p(t)

is continuously differentiable, and the drift dp(t)
dt is Lipschitz continuous with constant L.

2. Training and Target Domains: - The model is trained on a sequence of training domains
{p(ti)}Ti=1 where t1 < t2 < . . . < tT . - The target domain is at a future time s, with the data
distribution p(s). - The time intervals ∆ti = ti+1 − ti can be arbitrary.

3. Model Training: - For the ODE model, let x(t) be the state at time t, governed by the ODE:
dx(t)

dt
= f(x(t), t),

where f is a smooth function. - For the RNN model, let hti be the state at discrete time ti, updated
by:

hti+1
= hti +∆ti · ϕ(hti , xti),

where ϕ is a smooth function and xti is the input at time ti.

4. Generalization Error: - The generalization error on the target domain p(s) depends on the
accumulated training errors and the error propagation from the last training domain p(tT ) to the
target domain p(s).
Theorem 3 (Formal version of Theorem 2). Given the assumptions, a continuous-time method using
an Ordinary Differential Equation (ODE) provides a smaller or equal generalization error on an
unseen target domain compared to a discrete-time method using a Recurrent Neural Network (RNN),
due to its more accurate approximation of the data distribution drift over time.

Proof. Below is the formal proof:

Accumulated Training Error
1. ODE Model: - The state x(t+∆ti) can be approximated by the ODE integral:

x(ti +∆ti) = x(ti) +

∫ ti+∆ti

ti

f(x(τ), τ) dτ. (16)

- Using the Taylor series expansion for f(x(t), t):

x(ti +∆ti) = x(ti) + f(x(ti), ti)∆ti +
(∆ti)

2

2

∂f

∂t
+O((∆ti)

3). (17)

- The error for one step is:
ErrorODE, step = O((∆ti)

2). (18)
- The accumulated error over T steps is:

ErrorODE, train =
T−1∑
i=1

O((∆ti)
2). (19)

- Given that the intervals ∆ti can be large, the accumulated error becomes:

ErrorODE, train = O

(
T−1∑
i=1

(∆ti)
2

)
. (20)

2. RNN Model: - The state hti+1
is updated as:
hti+1 = hti +∆ti · ϕ(hti , xti). (21)

- Assuming hti ≈ x(ti) and ϕ(hti , xti) ≈ f(x(ti), ti), the error for one step is:
ErrorRNN, step = O(∆ti). (22)

- The accumulated error over T steps is:

ErrorRNN, train =
T−1∑
i=1

O(∆ti). (23)

- Given that the intervals ∆ti can be large, the accumulated error becomes:

ErrorRNN, train = O

(
T−1∑
i=1

∆ti

)
. (24)
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Error Propagation to Target Domain

1. ODE Model: - To handle an arbitrary future time s, we integrate the error over many small steps
from tT to s:

ErrorODE, target ≈ ErrorODE, train +

∫ s

tT

O((τ − tT )
2) dτ. (25)

- Since τ ranges from tT to s:

ErrorODE, target ≈ ErrorODE, train +O((s− tT )
3). (26)

2. RNN Model: - Similarly, the error propagation to the target domain s involves many small steps:

ErrorRNN, target ≈ ErrorRNN, train +
K−1∑
k=0

O(∆tk), (27)

- where K is the number of small steps from tT to s and ∆tk are the small intervals:

ErrorRNN, target ≈ ErrorRNN, train +O(s− tT ). (28)

Generalization Error Comparison

- For the ODE model:

ErrorODE, target ≈ O

(
T−1∑
i=1

(∆ti)
2

)
+O((s− tT )

3). (29)

- For the RNN model:

ErrorRNN, target ≈ O

(
T−1∑
i=1

∆ti

)
+O(s− tT ). (30)

- Since (∆ti)
2 is much smaller than ∆ti for any ∆ti, and (s− tT )

3 is much smaller than s− tT , we
have:

ErrorODE, target ≤ ErrorRNN, target. (31)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a section to discuss our paper’s limitation in Appendix
A.1.8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provided all assumptions and proofs for theories in our paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided comprehensive information as well as the source code of our
method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided open-access data and code to reproduce our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided the necessary details to run our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We are closely following existing literature in reporting the experimental
results and error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the necessary details on the computing resources we used in our
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no potential negative societal impact found in this work. Our research
is foundational research and not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited and cited licenses of existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided proper documents for our released code and data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve these.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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