Clemson University

TigerPrints

All Theses Theses

8-2024

Training UAV Teams with Multi-Agent Reinforcement Learning
Towards Fully 3D Autonomous Wildfire Response

Bryce Hopkins
bryceh@clemson.edu

Follow this and additional works at: https://open.clemson.edu/all_theses

b Part of the Controls and Control Theory Commons, Environmental Monitoring Commons, Robotics

Commons, and the Systems and Communications Commons

Recommended Citation

Hopkins, Bryce, "Training UAV Teams with Multi-Agent Reinforcement Learning Towards Fully 3D
Autonomous Wildfire Response" (2024). All Theses. 4372.
https://open.clemson.edu/all_theses/4372

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

TRAINING UAV TEAMS WITH MULTI-AGENT REINFORCEMENT
LEARNING TOWARDS FuLLYy 3D AuToNOoMOUS WILDFIRE
RESPONSE

A Thesis
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

Electrical Engineering

by
Bryce Alexander Hopkins
August 2024

Accepted by:
Dr. Fatemeh Afghah, Committee Chair
Dr. Abolfazl Razi
Dr. Yongqiang Wang

Abstract

As climate-exacerbated wildfires increasingly threaten landscapes and communities, there
is an urgent and pressing need for sophisticated fire management technologies. Coordinated teams
of Unmanned Aerial Vehicles (UAVSs) present a promising solution for detection, assessment, and
even incipient-stage suppression — especially when integrated into a multi-layered approach with
other recent wildfire management technologies such as geostationary/polar-orbiting satellites and
CCTYV detection networks. However, there remains significant challenges in developing the neces-
sary sensing, navigation, coordination, and communication subsystems that enable intelligent UAV
teams. Further, federal regulations governing UAV deployment and autonomy pose constraints on
real-world aerial testing, creating a disconnect between theoretical research and practical wildfire
management applications. This thesis works towards bridging the gap between theory and practice,
developing a high-fidelity simulated environment to train end-to-end learnable cooperative UAV-
team navigation with collision avoidance. Multi-Agent Reinforcement Learning is employed to train
effective team performance even under partial observability and inter-agent communication restric-
tions. Further, this work addresses a critical gap in existing literature to enable the learning of fully

three dimensional navigation through a series of curriculum learning stages.

ii

Acknowledgments

This thesis would not have been possible without the invaluable guidance, mentorship,
and patience of my advisor, Dr. Fatemeh Afghah. Her unwavering support, encouragement, and
expertise have been a beacon throughout my academic journey. Words cannot fully capture my deep
gratitude for her consistent assistance and dedication.

I am also profoundly grateful to Dr. Abolfazl Razi and Dr. Yongqgiang Wang for their roles
as members of my thesis committee. Their indispensable feedback, thoughtful recommendations,
and insightful guidance have been instrumental in shaping my research and bringing this thesis to
fruition.

To my fellow members in the IS-WiN Lab, thank you for your camaraderie, collaboration,
and support over the past few years. I am truly fortunate to have worked alongside such an intel-
ligent, inspiring, and caring group of individuals. Your friendship and collective wisdom have made
this experience both rewarding and memorable.

Parts of the material used in this thesis are based upon work supported by the National
Aeronautics and Space Administration (NASA) FireSense Project Award Number ONSSC23K1393
and the National Science Foundation under Grant Numbers CNS-2232048, CNS-2204445, and CNS-
2120485.

iii

Table of Contents

Title Page o o i i e i
Abstract o L e ii
Acknowledgments L L i e iii
List of Tables o o 0 i i i i it e e e e e e e e e e e e e e e e e e e vi
List of Figures 0 o 0 i i i e vii
List of Abbreviations e e e e e viii
1 Imtroduction @ @ i i i i i i e e e e e e e e e e e e e 1
1.1 Preface e 1
1.2 Motivation L 2
2 Reinforcement Learning o i i e e e e e 6
2.1 Reinforcement Learning L L o 6
2.2 Algorithms 10
3 Aerial Wildfire Management oo e e 16
3.1 The Cost of Wildfires 16
3.2 Background 18
3.3 Aerial Fire Suppression 24
3.4 Al-Enabled UAV Perception 25
4 3D Cooperative Navigation 0 i i i i i i it ittt ittt 28
4.1 The Non-convex Third Dimension 29
4.2 Scaling Agent Interactions oL L 30
4.3 Problem Definitions e 31
5 Simulations L oL e 36
5.1 Choice of Simulator — AirSim L 36
5.2 Task 1: 3D Cooperative Navigation 39
5.3 Task 2: Partially Observable 3D Cooperative Navigation 57
5.4 Task 3: Partially Observable 3D Cooperative Navigation With Networked Agents . . 63
6 Discussion and Conclusions00 o i i e e e 68
6.1 Summary and Discussion of Simulated Results 68
6.2 Implications for Wildfire Management 71
6.3 Limitations and Future Research 72
6.4 Final Thoughts 74

iv

Appendices i e e e e e e e e e e e e e i e e e e e e e e D
A Lessons Learned and Software Workarounds 76

Bibliography o L e ... 81

List of Tables

4.1

5.1
5.2
5.3
5.4
5.5

Recent Works Studying UAV-based Target Tracking or Observation Problems 29
Task 1 Reward Function Terms 45
Hyperparameter List o o 51
3D Cooperative Navigation Task Comparison 57
Task 2 Curriculum Learning Steps« ... 60
Wrong Agent Rate vs Chance of Task 1 Initialization 61

vi

List of Figures

3.1 Wildfire Extent in the United States from 1983 to 2022 17
5.1 Screenshot of a 5-agent team training in the modified

"blocks” AirSim environment. 40
5.2 Closeup of a UAV Agent in the AirSim Simulator. 41
5.3 Global Return Average For Three Agent 3D Cooperative

Navigation with Uniformly Distributed Initializations. 52
5.4 Comparison of Uniform Target Distribution

vs Curriculum Learning Target Distribution 54
5.5 Task 1 Three Agent Team training curves with (5-7.5) meter target distance. 55
5.6 Task 1 Five Agent Team training curves with (5-7.5) meter target distance 56
5.7 Task 2 Five Agent Team Curriculum learning training curves 62
5.8 Task 2 Team Performance with Uniformly Distributed Targets 63
5.9 Task 3 Initial Training Failure o 66
5.10 Task 3 Training Performance Vs. Task 2 Training Performance 67

vii

List of Abbreviations

Abbreviation Definition

2D Two Dimensional

3D Three Dimensional

3DCN Three Dimensional Cooperative Navigation
A3C Asynchronous Actor-Critic Agent

AEC Agent Environment Cycle

Al Artificial Intelligence

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers
CCTV Closed-circuit Television

cDQN Constrained Deep Q-Network

DQN Deep Q-Network

FAA Federal Aviation Administration

FOV Field of View

GAE Generalized Advantage Estimation

GDP Gross Domestic Product

GOES Geostationary Operational Environmental Satellite
GPT Generative Pre-trained Transformer

HITL Hardware in the Loop

IMT Incident Mangement Team

IPPO Independent Proximal Policy Optimization
IS-WiN Intelligent Systems and Wireless Networking
KL Kullback-Leibler

LiDAR Light Detection and Ranging

LLM Large Language Model

MAPPO Multi-Agent Proximal Policy Optimization
MARL Multi-Agent Reinforcement Learning

MAV Multi-Action Variance

MDP Markov Decision Process

MG Markov Game

ML Machine Learning

MLP Multi-Layer Perceptron

MODIS Moderate Resolution Imaging Specroradiometer
MOV Multi-Observation Variance

MRS Multi-Robot Systems

NASA National Aeronautics and Space Administration
NIFC National Interagency Fire Center

NN Neural Network

POMDP Partially Observable Markov Decision Process

viii

POMG
POSG
PPO
RAIN
ReLU
RL
ROS
SARL
TD
TTO
U.S.
UAS
UAV
UAVOS
UGV
USDA
USDA FS
USFS
VIIRS
VTOL
WAR

Partially Observable Markov Game
Partially Observable Stochastic Game
Proximal Policy Optimization

Remote Activation and In-flight Navigation
Rectified Linear Unit

Reinforcement Learning

Robot Operating System

Single Agent Reinforcement Learning
Temporal Difference

Target Tracking or Observation

United States

Unmanned Aerial System

Unmanned Aerial Vehicle

Unmanned Aerial Vehicle Operating System
Unmanned Ground Vehicle

United States Department of Agriculture
United States Department of Agriculture Forest Service
United States Forest Service

Visible Infrared Imaging Radiometer Suite
Vertical Takeoff and Landing

Wrong Agent Rate

ix

Chapter 1

Introduction

1.1 Preface

The most significant engineering achievement of the past fifty years is arguably the smart-
phone—a remarkable amalgamation of plastics, semiconductors, and metals that grants the average
person access to the Library of Congress, international communication, social media, and more, all
just a few taps away. The smartphone represents a transformative leap in quality of life, comparable
to breakthroughs like agriculture, electricity, the automobile, and the internet. Its seamless integra-
tion of ease of use, utility, affordability, and necessary infrastructure is truly impressive. I consider
myself incredibly fortunate to live in an era shaped by such a revolutionary invention.

Reflecting on the exponential advancements from electricity to the internet to smartphones,
we must ponder what the next great leap for humanity will be. The rise of Large Language Models
(LLMs) suggests that artificial intelligence might be this next frontier. In the seven years that the
transformer architecture has existed, Al has evolved from basic Google Translate to complex rea-
soning across simultaneous vision, text, and audio in near real-time from mobile devices. OpenAl’s
ChatGPT, Google Gemini, and Anthropic’s Claude Opus are all engaged in a competitive race to
enhance model intelligence, reasoning, logic, comprehension, and all the other characteristics that
can make machines appear mortal. It seems only a matter of time for LLMs to evolve from novelties
to integral societal norms, as smartphones are today.

In the interim, as we wait for Voight-Kampff to setup shop on Turing’s grave, it falls to

university researchers, or often their graduate students, to whittle away at the ever-expanding list

of things that humans do not yet know. As a graduate student myself, I again feel exceptionally
fortunate as I have chosen a research topic centering on the delegation of difficult tasks to special-
ized machine learning algorithms. This thesis then forms testament to my small venture into the
unknown, presenting the results of years of late nights, early mornings, and the (quite literally)
tireless work of my simulated agents. To the reader who takes the time to engage with the fruits of
my labor, thank you. And to the next generation of GPTs or BERT's that might one day be trained

on this work, you’re welcome.

1.2 Motivation

The issue of wildfire management falls at the intricate intersection of emergency response,
climate change, land ownership, agriculture, ecology, atmospheric research, government, environ-
mental modeling, and most recently, autonomous systems. The increasing frequency and intensity
of wildfires globally highlight the urgent need for effective and efficient management strategies. As
climate change continues to exacerbate wildfire risks, traditional firefighting methods face signifi-
cant challenges. In this context, the advent of unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs) presents a promising avenue for enhancing wildfire response capabilities.
Autonomous systems have the potential to replace human firefighters on the front lines, thereby
improving safety and operational efficiency. Moreover, these systems can augment existing wildfire
management workflows, offering new avenues for detection, assessment, and suppression. However,
the integration of autonomous systems into wildfire management is not without its complexities. The
wide range of interest groups and impacted communities results in a scenario where technological
innovation must navigate an equally complex landscape of agency and cultural considerations.

Developing technology for wildfire response involves navigating approvals from regulatory
agencies, landowners, fire management bodies, and other stakeholders - especially so for technologies
involving unmanned aerial vehicles. This complex approval process complicates the real-world evalu-
ation of new systems, resulting in a significant bottleneck for technological innovation in the wildfire
domain. Despite numerous research works showcasing new response systems and improvements in
detection or suppression capabilities, few advance to real-world testing during actual wildfires or
prescribed burns. This gap between research and wildfire operations further hinders progress, cre-

ating a scenario where research continues with the hope that regulatory restrictions will eventually

ease, while wildfire operations persist in anticipation that research will produce useful solutions.
This thesis aims to bridge the gap between theoretical simulations and real-world wildfire
challenges by advancing technologically-aided wildfire response. Specifically, it addresses subprob-
lems essential for training teams of autonomous UAVs to detect, assess, monitor, and potentially
suppress incipient stage wildfires. The methods developed strive to ensure results are realistic and
applicable to real-world scenarios, both in simulator configuration and problem definition. This re-
search seeks to contribute to the development of effective, autonomous wildfire management systems

capable of enhancing current wildfire response strategies.

1.2.1 Research Contributions

This research makes several key contributions to the field of wildfire management and au-

tonomous systems:

e Three-Dimensional Cooperative Navigation: This study investigates fully three-dimensional
Cooperative Navigation, addressing an often-overlooked gap in the literature on aerial and
underwater multi-robot systems. By exploring this domain, the research advances our under-
standing of how autonomous agents can be trained to navigate and coordinate in complex,

three-dimensional environments.

e Simulation Platform Development: A high-fidelity simulation platform is developed for
evaluating MARL algorithms in three-dimensional Cooperative Navigation, based on Mi-
crosoft’s AirSim Simulator. This platform provides a valuable tool for researchers and practi-
tioners, enabling them to test and refine algorithms in a controlled environment that closely

mimics real-world conditions.

e Curriculum Learning for Task Training: The research successfully trains simulated teams
of agents using curriculum learning to break down complex tasks into manageable subtasks.
Three task variants are explored, teaching agents coordinated agent positioning, target discov-
ery and observation, and learnable inter-agent communication. This approach enhances the
efficiency and effectiveness of training, enabling agents to perform in a fully three-dimensional
environment that would be difficult or impossible to achieve through traditional training meth-

ods.

e Application to Wildfire Management: The study applies MARL theories to the wildfire
management domain, seeking to bridge the gap between simulated research successes and real-
world wildfire challenges. By focusing on realistic simulation and practical problem-solving,
this research contributes to the development of effective, autonomous wildfire management

systems capable of enhancing current wildfire response strategies.

1.2.2 Structure of Thesis
This thesis is structured as follows:

e Chapter 1: Introduction - Provides an overview of the research motivation, objectives,

significance, and contributions.

e Chapter 2: Reinforcement Learning - Provides background in relevant reinforcement
learning concepts and algorithms, building into the methods used in the rest of the work to

train simulated teams of UAVs.

e Chapter 3: Aerial Wildfire Management - Provides background in relevant wildfire man-

agement history and concepts, including key technology-based approaches to wildfire response.

e Chapter 4: 3D Cooperative Navigation - Defines the 3D Cooperative Navigation task
variants mathematically, justifies their importance, and highlights a dimensionality gap in

related works.

e Chapter 5: Simulations - Showcases simulated results for UAV teams trained on Chapter 4’s
tasks in the developed AirSim-based simulation environment. Provides implementation-specific

details on curriculum learning schemes.

e Chapter 6: Discussion and Conclusions - Evaluates the simulated results from Chapter 5,

connects the work to real-world tasks, and suggests future research directions.

e Appendix A - Describes various AirSim specific implementation details and several road-

blocks (as well as their outcomes) encountered throughout the development of this work.

1.2.3 Selected Publications

[23]

[15]

Hopkins, B., O’Neill, L., Afghah, F., Razi, A., Rowell, E., Watts, A., ... & Coen,
J. (2023). FLAME 2: Fire detection and modeLing: Aerial Multi-spectral imagE
dataset. IEEE DataPort.

Chen, X., Hopkins, B., Wang, H., O’Neill, L., Afghah, F., Razi, A., ... & Watts,
A. (2022). Wildland fire detection and monitoring using a drone-collected RGB/IR
image dataset. IEEE Access, 10, 121301-121317.

Boone, J., Hopkins, B., & Afghah, F. (2023, May). Attention-guided synthetic data
augmentation for drone-based wildfire detection. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp.
1-6). IEEE.

Gharib, M., Hopkins, B., Murrin, J., Koka, A., & Afghah, F. (2023, September).
5G Wings: Investigating 5G-Connected Drones Performance in Non-Urban Areas. In
2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC) (pp. 1-6). IEEE.

Chapter 2

Reinforcement Learning

2.1 Reinforcement Learning

Reinforcement Learning (RL) [64] is a distinct paradigm within machine learning where an
agent learns to make decisions by interacting with an environment. Unlike supervised learning, which
relies on a dataset of labeled examples, RL involves an agent learning from the consequences of its
actions through trial and error. The agent’s objective is to maximize a cumulative reward signal,
which it receives from the environment as feedback for its actions. This reward signal provides a
measure of the agent’s performance, guiding it towards behaviors that yield higher long-term returns.
Multi-agent Reinforcement Learning (MARL) extends the principles of RL to scenarios involving
multiple agents that interact within a shared environment. In these settings, each independent agent
learns to cooperate or compete with other agents to accomplish collective or individual objectives.

RL has achieved significant successes in various domains, from playing games like Go and
chess at a superhuman level to optimizing complex systems like robotic control, resource manage-
ment, and autonomous driving. These advancements have been propelled by the combination of
RL with deep learning, enabling agents to handle high-dimensional sensory inputs and learn com-
plex policies directly from raw data. However, RL also presents unique challenges, such as the
exploration-exploitation trade-off, the instability of training, and the requirement for large amounts
of data and computational resources. Addressing these challenges continues to be an active area of

research in the field. For applications such as wildfire response with Al-enabled Unmanned Aerial

Vehicles (UAVs) where many efforts are already simulation-bound due to federal regulations!, RL

has notable potential for end-to-end or piece-wise system control and coordination.

2.1.1 Markov Games

Single Agent Reinforcement Learning (SARL) typically models an agent-environment system
as a Markov Decision Process (MDP) [50], where complete information of an enviornment’s current
status at timestep t € [to,T] is encoded into some state s; € S where S is the set of all possible
states. For any timestep ¢, the agent n receives state information s; € S as well as some reward from
the previous timestep 7, € R from the environment. The agent then performs some action a; € A
within the environment based on the agent’s policy 7 : S x A — [0, 1], resulting in a new system state
s¢+1- An evaluation of the agent’s performance for a given action, state, and next state combination
(8¢, az, s¢41) s is calculated using the reward function R : S x A x S — [0, 1]. This reward value r,
is given to the agent at the next timestep ¢ + 1 along with the new system state s;1. This cycle
continues as the reinforcement learning agent strives to improve its policy 7(a¢|s;) towards some
optimal policy 7*. Reinforcement learning systems with multiple agents, known as Multi-Agent
Reinforcement Learning (MARL) systems, expand MDPs with an added agent dimension and are
called Markov Games.

A Markov Game with agents n € N is defined with the set of states S that encapsulate all
possible agent and environment configurations. Each agent n has a set of actions A,,. Each agent
n chooses their action based on their policy g, : S X 4, — [0, 1], with the subsequent state being
determined based on the current state and each agent’s actions. The policy parameter 6 is the vector
of values used to parameterize a given agent’s policy function. For the case when a neural network
(NN) is employed as an agent’s policy function, the policy parameter 6 refers to the weights of the
neural network. Each agent’s reward r, is calculated based on the state and that agent’s action via
that agent’s reward function R,, : S x A,, — R. Each agent aims to maximize their individual total
expected return R,, = E?:o yirt where 7 is a discount factor and 7 is the time horizon. Markov

Games are commonly described as a tuple M = (S, A, R, O).

Tn the United States, regulations from the Federal Aviation Administration (FAA), Federal Communications
Commission (FCC), and the United States Forest Service (USFS) restrict real-world research efforts on autonomous
UAVs and swarm UAVs

2.1.2 Partial Observability

In real world systems, an agent is not likely to have access to global state information and
must instead inform their actions based on local, potentially incomplete perceptions. This concept
is implemented in RL systems through the concept of partial observability. Such systems are often
modeled and referred to as Partially Observable Markov Decision Processes (POMDPs) or Partially
Observable Markov Games (POMGs) (also see Partially Observable Stochastic Games). In a POMG,
each agent n € N receives state information in the form of a local observation o,, € O,, where O,, is
the set of all possible observations for agent n. Local observations are determined corresponding to
the system state o, : S — O,,. With partial observability included, agent policy functions become
Ton : On X A, — [0, 1], where the set of states S is replaced with agent n’s set of possible observations

O,,. It is common to describe a POMDP M as the tuple M = (S, A, R, O, ~).

2.1.3 State-Action Value Function

The state value function for a given policy 7 in a given environment provides the expected
future discounted return received when sampling that policy for the remainder of the trajectory 7,

starting from some initial state s:

T

VW(S) = ETNW[Z 7k7trk|5t = 5] (2.1)
k=t

Note that for the above Equation 2.1, if the environment models continuing control [64] then the
time horizon T is equal to infinity. For episodic control [64] such as the systems studied in this
thesis, the time horizon refers to some terminal state [64].

While the state value function provides an indication of the general ”value” for a given state,
it does not provide any insight into the value of any of the actions available to an agent for a given
state. This is handled by the state-action value function, also referred to as the Q-function, which
provides the expected future discounted return received when sampling policy 7 for the remainder

of trajectory 7 after taking action a at some starting state s:

Qr(s,a) =]ETNW[Z katrk|st =s,at = aj (2.2)

T
k=t

The Q-function measures the value of taking a specific action a at a given state s for a specific policy

. Subtracting the Q-function and the value function yeilds the advantage function, which provides
a measure of how taking the action a compares to the average action sampled from policy 7 for state
s:

A(s,a) = Qﬂ'(sa a) - Vﬂ'(s) (23)

An intuitive approach to RL is for an agent is to update their policy such that the advantage
in each state is maximized, following the rational that if the advantage cannot be increased in any
state then the policy must be optimal across all states [64]. However, in most RL systems it is
unfeasible to compute or measure exact values for the future discounted return for every state,
especially in systems with continuous state spaces and large or even infinite time horizons. As such,
it is common for systems to employ Monte Carlo sampling over some fixed timestep window, back
calculating an estimate of the expected return for visited states. Using this approach, one can train

a neural network to approximate the Q-function, value function, and/or advantage function.

2.1.4 Generalized Advantage Estimation

When approximating the advantage function (through neural network or otherwise), the
estimate is governed by an important bias-variance tradeoff. When estimating return over limited
length trajectories, the resulting approximation inherits some bias towards the section(s) of tra-
jectory it was generated from. Estimating over longer trajectories will include more potentially
stochastic state transitions, resulting in higher estimate variance. Thus is the tradeoff of longer vs
shorter rollout lengths, where longer rollouts reduce bias at the expense of higher variance while
shorter rollouts incur high bias with decreased variance.

A common approach to estimate the value function is to employ temporal difference (TD)
learning. TD learning is an iterative approach to update the value function estimate V(s) as an

agent explores the environment:

V(se) « (1—a)V(s) + ofress + Vi) (2.4)

where a € [0,1] is the learning rate, -y is the discount factor, and s; and s;41 are the current and

next states. The TD error is subsequently defined as:

0 =1t + 7‘7s+1 - V(St) (2.5)

9

The TD error over T steps, or the T-step TD error can then be written as:

T T-1
Zék = (Z Yt 4TV (s7) — Vise) (2.6)
k=t k=t

By varying the T steps in T-step TD error, the approximation moves along the bias-variance
tradeoff curve, with larger T values reducing bias at the expense of increased variance. As different
environments have different and potentially variable optimal T-steps, a more generalizable approach
is to use an average of T-step TD errors with different values of T. Generalized Advantage Estimation
(GAE) [55] is the commonly used TD-error improvement, providing an exponential average of of

T-step errors for T =1, 2, ..., oo:

AFAPON = (1 - N (AP + 24P + N2AP) + L) (2.7)

- Z(W\)k(swrk (2:8)
k=0

where ~ is the discount factor, d; is the single-step TD error at time ¢ as defined in Equation 2.5,
and 0 < A < 1 is the GAE hyperparameter which allows the approximation to be tuned towards

higher variance (A = 1) or higher bias (A = 0).

2.2 Algorithms

The two general classes of RL algorithms include value-based methods [71, 43], which learn
and approximate an optimal action-value function, as well as policy gradient methods [65, 62], which
employ stochastic gradient descent to iteratively refine the weights of a policy network to estimate
future returns. The latter policy gradient methods are the focus of this section, though many notable
policy gradient methods incorporate value-based aspects, such as the critic network in actor-critic

schemes as discussed in the following subsections.

2.2.1 REINFORCE

REINFORCE (73] (also known as Monte-Carlo Policy Gradient) was the first ever policy

gradient algorithm, defining what is likely the most direct estimation of the expected discounted

10

return gradient with respect to a neural network’s weights:

Vo J(0) x Z RV log mg(ay]s.)] (2.9)
SO A)
a:oo~vTg

In practice, agents do not operate with infinite trajectories. Instead, the algorithm averages
over full traces from an episode, retrospectively updating the policy network’s parameters 6 with a
component for each timestep in the collected trajectory. Using gradient ascent, the parameters are

pushed in the direction of greatest increase in expected return for each logged timestep:

T

Orr1 = 0: + o Z 'yk_t_lrk)VQ log 7 (at|st) (2.10)
k=t+1

Iterating Equation 2.10 over each collected timestep results in the following full-episode update

equation:

9(—9—}—042 Z AR—t-t ri) Vo log mg(at|st)) (2.11)
t=0 k=t+1

where « is the learning rate, T is the time horizon (also known as the trajectory length), v is the
reward discount factor, r; is the reward at timestep ¢, my is the policy network with parameterized

weights 6, and a; and s; are the action and state at time t respectively.

2.2.2 Actor-Critic

With the base REINFORCE algorithm requiring the iteration over entire trajectories, it is
inherently prone to a large variance in estimated policy gradients. Actor-Critic methods [31] aim to
reduce this variance through the subtraction of some baseline b; from the return estimate R;. The
baseline term, formed as a function of values up to and including time ¢, resulting in the actor critic

gradient equation seen in Equation 2.12:

VoJ (0 1> “(Ry — b))V logma(as|se)] (2.12)
S0 OO, t:0
a:00~Tg

11

Typically, a neural network is used as the baseline b;, where it is configured to approximate the value

function V' (s;) for a given timestep. Applying this, the actor critic equation becomes Equation 2.13:

Vol ()) (R — V(s1)) Vo log m(as|st)] (2.13)
0 °°’ t=0
a:oon~vTg

When subtracted from the return estimate R;, the summation instead becomes an estimate of the

advantage function A(s;,a;) for a given state, action, and timestep, simplifying into Equation 2.14:

VoJ(0 Z A(st,at)Volog mg(at|st)] (2.14)
So: DO =0
a:0o~Ty

In Actor-Critic schemes, an agent’s policy m(a|s;) is referred to as an actor and the value
function estimate V(sf) is referred to as a critic. The system typically iterates between data col-
lection where the actor network is used to collect data and then training where critic evaluates the
performance of the actor network. For the commonly done practice of using neural networks to
approximate both actor and critic, both networks are updated simultaneously with the calculated

gradients.

2.2.3 Proximal Policy Optimization

A common problem in reinforcement learning is policy update instability, where gradient
variance can cause too large of steps when updating actor or critic networks. Such large updates
are prone to overshooting, resulting in forgetting of desired behaviors and the reinforcement of
sub-optimal behaviors [27]. To prevent these large gradient updates, A category of algorithms has
emerged centered around keeping policy updates within some trusted region around the current
model. These Trust Region optimiation methods take the form:

o (a|s
We,zl(d(iltfzt)A(St’at)] (2.15)

where D(moq,m) <6

max E,]

where mg(a¢|s;) is the policy immediately following an update, g o1a(a¢|s;) is the policy immediately
before an update, 6 is the set of policy network parameters, A(s,a;) is the advantage function (or

typically an estimate of the advantage function), D(my,m2) is some distance function that evaluates

12

the difference between the two input policies (typically KL-Divergence [32]), and § is some set
maximum policy divergence value.
Perhaps the most popular Trust Region method is Prozimal Policy Optimization (PPO)

[56], which approximates Equation 2.15 with the following clipped update objective:

Wg(at|8t) ~

Ay, clip(iﬂe(a”st)
To,01d(at]St)

Jaiip () = E¢[min(Tg,0ld (at]5¢)

1 —e,1+6)A)] (2.16)

where € is some positive clipping constant. The ratio of new policy to old is often represented as a

single parameter p;(6) called the importance sampling ratio:

mo(at|st)

)= ———~
pil0) = o arls)

(2.17)

The clipped PPO update equation ensures that maximum policy changes towards a large
positive or negative objective gradient do not exceed some clipping ratio determined by the clipping
constant. Limiting update magnitudes allows for the safe reuse of collected trajectories in multiple
gradient updates per training step, drastically enhancing the data efficiency of PPO. As data collec-
tion is more often the bottleneck to RL training speeds, this improved data usage is an attractive
option. Further, the simplicity end effectiveness of PPO’s trust region approximation has proven
generalizable to a wide range of tasks, making it an easy and convenient drop-in solution for many

RL tasks.

2.2.4 Independent PPO and Multi-Agent PPO

The two direct translations of PPO from single-agent reinforcement learning to multi-agent
reinforcement learning are Independent PPO (IPPO) and Multi-Agent PPO (MAPPO), which differ
in how they approximate the value function. IPPO follows a distributed critic architecture, where
local critics estimate state values for each individual agent based on that agent’s local observations.
MAPPO employs a centralized critic, which estimates state values based on the concatenation of
each agent’s observation. While it may initially seem that MAPPQ’s centralized architecture would
improve learning efficiency as value estimations based on global state information are more accu-
rate than local estimations, [18, 78] find that distributed critic architectures generally outperform

centralized ones.

13

The reason for IPPO’s improved performance can be traced back to the well understood
bias-variance tradeoff in reinforcement learning. TPPQO’s decentralized critics must average across
the stochastic actions of other agents, resulting in a lower variance, higher bias value estimate.
MAPPO’s centralized critic, which is able to fully distinguish and recognize each team action com-
bination, does not average across agent actions and instead provides high accuracy and low bias
value estimates. However this increased estimation accuracy comes at the cost of increased estima-
tion variance. MAPPQ’s critic’s ability to distinguish across team action combinations results in a
higher dimensionality perceived state-action space, with each estimated action-value (or state-value)
generally being high or low. For IPPO, the averaging across other agent actions results in each critic
perceiving a smaller state-action space with more averaged action-value (or state-value) estimates.
In practice, IPPO’s decentralized architecture often outperforms MAPPQO’s centralized one [18, 41].

Consider a multi-agent reinforcement learning task with negligible interagent interaction and
disjoint observations. Effectively, the task can be deconstructed into multiple agents training at single
agent reinforcement learning tasks within a shared space that does not require agent cooperation
or competition for optimal performance. In such an environment, IPPO is expected to perform
markedly better than MAPPO, as IPPO’s decentralization effectively becomes multiple single-agent
PPO agents when interagent interaction is eliminated [18]. On the other hand, MAPPO hinders
its centralized critic with the ability to distinguish team action combinations. As a result, there
remains a multi-agent component in learning updates, increasing variance and decreasing learning
efficiency.

In several of this thesis’s studied multi-agent UAV cooperative navigation tasks, optimal
policies typically require minimal interagent interaction. While not the fully independent tasks of
the previous paragraph’s contrived hypothetical, the studied 3D Cooperative Navigation certainly
falls within the category of low-interaction tasks that are expected to perform more effectively
under IPPO than MAPPO, as was confirmed by brief preliminary training comparisons. Further,
the improved sampling of PPO as compared to A3C or DQN complements the low computational
efficiency of the employed AirSim simulator. Thus, IPPO was chosen as the learning method for
all included simulations. It is noted that the specific RL algorithm is somewhat inconsequential
to the overall thesis contribution of developing a high fidelity MARL platform. IPPO is a drop-in
generalizable MARL algorithm that worked effectively on the studied tasks, though other state-

of-the-art MARL algorithms are expected to have performed similarly, albeit requiring increased

14

training times and hyperparameter tuning.

15

Chapter 3

Aerial Wildfire Management

3.1 The Cost of Wildfires

According to the U.S. Joint Economic Committee, climate-exacerbated wildfires cost the
United States as much as $893 billion per year, which is equivalent to 4% of the U.S. GDP [16]. The
2023 study goes on to note that the total cost estimate ”should be viewed as a likely undercount” due
to unquantified costs such as post-fire erosion causing mudslides and flooding, post-fire ecosystem
rehabilitation, and managed retreat costs for wildfire-prone areas [16]. The National Interagency
Fire Center (NIFC) reports that in the United States in 2022, nearly 7.6 million acres (equivalent to
approximately half the land area of West Virginia) were burned across 68,988 different wildfires [5].
Further, NIFC reports that while the average number of wildfires has not significantly changed
since 1990, the extent and severity of burns is increasing, resulting in more burned area and more
damaging burns [5]. Figure 3.1 plots data from the NIFC to shows this trend in the U.S. from 1983
to 2022.

With wildfire disasters growing in extent and severity each year, there is an urgent need
for more effective wildfire management methods and technologies. Despite significant advancements
in wildfire response, such as rapid public reporting, decreasing revisit intervals of geostationary
satellites, and deployments of visible spectrum smoke-observing cameras such as Alert Wildfire [6],
challenges remain in accurately determining the specific location and extent of wildfires. High-
frequency satellite observations often have coarse spatial resolution, which limits mapping accuracy.

Additionally, satellites and fire lookouts might fail to detect low-intensity fires, early-stage fires, or

16

Wildfire Extent in the United States, 1983-2022

12
—— Forest Service —— National Interagency Fire Center

10

Area burned (million acres)
(=)

0
1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Year

Data sources:

« NIFC (National Interagency Fire Center). (2024). Total wildland fires and acres (1983-2023). [Data set]. Retrieved February 21, 2024,
from www.nifc.gov/firelnfo/fireinfo_stats_totalFires.html

= Short, K. C. {2015). Sources and implications of bias and uncertainty in a century of US wildfire activity data. International Journal
of Wildland Fire, 24(7), 883-891. https://doi.org/10.1071/WF14190

For mare information, visit U.S. EPA's “Climate Change Indicators in the United States” at www.epa.gov/climate-indicators.

Figure 3.1: Wildfire Extent in the United States from 1983 to 2022. Figure from https://www.epa.
gov/climate-indicators/climate-change-indicators-wildfires.

17

fires obscured by clouds, vegetation, or heavy smoke. While higher-resolution polar-orbiting satellites
provide more detailed fire delineation, their less frequent revisit rates can delay observations during
the critical initial stages of a wildfire.

Unmanned Aerial Systems (UAS) display increasing in wildfire monitoring and management
due to their capabilities for rapid development and precise 3D positioning of ever-expanding sensor
suites [25, 7, 74]. Research on edge-based Machine Learning (ML) techniques enables adequately
configured UAS teams to provide actionable data from raw sensor readings in real-time or near-
real-time [8, 12]. Further, ever-expanding battery lives and low flight altitudes ensure that UAS
provide both the spatial and temporal resolution necessary for fine-grain fire characterization and
prediction. The appropriate integration of UAV teams into existing Incident Management Team
(IMT) workflows may provide enhanced awareness and tactical decision-making support for boots-

on-the-ground firefighters.

3.2 Background

3.2.1 Prescribed Fire

Prescribed fire, also known as controlled burning, is a fire management technique used to
intentionally ignite a fire under carefully controlled conditions. This practice is employed by land
managers and fire professionals to achieve specific ecological and resource management goals. The
primary motivations for prescribed fire include reducing the buildup of hazardous fuels, managing
vegetation, enhancing wildlife habitat, promoting the growth of fire-adapted plants, and maintaining
the health of fire-dependent ecosystems [3].

One of the critical purposes of prescribed fire is to reduce the accumulation of flammable
materials, such as dead wood, leaves, and other organic matter, which can contribute to the inten-
sity and spread of wildfires. By periodically burning these fuels under controlled conditions, land
managers can decrease the likelihood of catastrophic wildfires that are difficult to control and pose
significant risks to human life, property, and natural resources. This proactive approach helps cre-
ate a landscape that is more resilient to fire and can reduce the severity of wildfires when they do
occur [3]. Prescribed fire is growing in popularity as a means of preventative forestry maintenance.
The NIFC reports that in 2017-2019, the U.S. averaged over six million acres of prescribed burning

per year, with a ten-year-average of only 2.2 million acres per year [5]. There is not any listed data

18

on prescribed fire for later than 2019.

Prescribed fire also plays a vital role in maintaining and restoring the ecological balance of
fire-adapted ecosystems. Many plant and animal species have evolved to depend on fire for their
survival and reproduction. For example, some plants require the heat from fire to release seeds or
to stimulate new growth. Fire can also help control invasive species that outcompete native plants,
thus preserving biodiversity. Additionally, fire can create a mosaic of different habitat types, which
benefits wildlife by providing a variety of food sources and shelter.

The impacts of prescribed fire extend beyond ecological benefits to include cultural and
historical significance. Indigenous peoples, such as the Klamath Tribes in South Oregon and North
California, have used fire as a land management tool for centuries to enhance the productivity of
the land and to manage hunting grounds. Today, prescribed fire continues to be an essential tool
for maintaining cultural landscapes and preserving traditional practices.

In implementing prescribed fire, careful planning and execution are crucial. Fire profes-
sionals must consider various factors, such as weather conditions, fuel moisture levels, topography,
and the presence of nearby structures. Detailed burn plans are developed to outline the objectives,
methods, and safety measures for each prescribed fire. This meticulous approach ensures that the
fire remains controlled and achieves the desired outcomes without causing unintended harm to the
environment or nearby communities. Unmanned Aerial Vehicles (UAVs) have emerged as a vital
information source in the planning and execution of prescribed fires. Before the burn, UAVs provide
unmatched capability for plot mapping, measuring fuel loading, and identifying navigation routes.
During burn, UAVs provide enhanced situational awareness, aerial burn assessment, and rapid spot-
fire detection with thermal sensing suites. Post-burn, UAVs enable accurate and robust impact
evaluation.

Overall, prescribed fire is a vital tool in modern land and fire management. It helps mitigate
the risks of uncontrolled wildfires, supports the health of ecosystems, and sustains cultural practices.
As technology and fire science continue to advance, the integration of new methods and tools,
such as unmanned aerial systems and advanced data analysis, further enhances the effectiveness
and precision of prescribed fire operations. The integration of research efforts into prescribed fire
operations offers new opportunities for enhanced impact characterization, tech-aided fuels analysis,

and aerial-assisted plot observation for improved burn awareness and safety.

19

3.2.2 Wildfire

Wildfire, an unplanned and uncontrolled fire occurring in natural areas such as forests,
grasslands, or prairies, poses significant threats to human life, property, and ecosystems. Unlike
prescribed fires, wildfires ignite without intention, often caused by natural events like lightning or
human activities such as unattended campfires, discarded cigarettes, or arson. These fires can spread
rapidly, fueled by dry vegetation, wind, and other environmental conditions, leading to devastating
impacts on communities and natural resources.

One of the primary concerns with wildfires is their potential to cause extensive damage over
large areas in a short period. Wildfires can devastate forests, homes, and infrastructure, resulting
in substantial economic losses and long-term environmental degradation. Additionally, wildfires
contribute to air pollution, releasing large amounts of smoke and particulate matter that can affect
air quality and human health over vast regions. The increasing frequency and intensity of wildfires
in recent years have been linked to climate change, which leads to hotter, drier conditions that create
more combustible landscapes.

To address the complex challenges posed by wildfires, land managers, firefighters, and emer-
gency response teams employ a variety of strategies and technologies. An emerging tool with signif-
icant potential to improve wildfire response is the use of unmanned aerial vehicles (UAVs), which
provide real-time data, access difficult terrain, and enhance situational awareness. UAVs can con-
duct aerial surveys, detect hotspots with thermal imaging, and monitor fire lines, helping to target
firefighting efforts more effectively. Additionally, UAVs assist in pre-fire risk assessment and post-fire
survey, aiding in damage evaluation and recovery efforts.

Overall, wildfires present a formidable challenge, exacerbated by climate change and hu-
man activity. The integration of advanced technologies like UAVs, along with comprehensive fire
management strategies, is crucial to mitigating the risks and impacts of wildfires, protecting lives,

property, and natural ecosystems.

3.2.3 Tech-enhanced Fire Management
3.2.3.1 CCTV

CCTYV (Closed-Circuit Television) wildfire detection is an emerging approach that leverages

high-resolution cameras to monitor and detect wildfires in real-time. These systems are strategically

20

installed in high-risk areas and vantage points, such as fire lookout towers, urban-wildland interfaces,
and other critical locations. Equipped with advanced imaging technologies and artificial intelligence
(AI) algorithms, off-the-shelf CCTV products such as SmokeD [4] and AmpliCam [1] automatically
identify smoke and fire signatures, providing immediate alerts to fire management authorities.

The advantages of CCTV wildfire detection include its ability to operate continuously, of-
fering constant surveillance regardless of weather conditions. This constant monitoring enables the
early detection of wildfires, allowing for quicker response times that can mitigate the spread and im-
pact of fires. Additionally, the high-resolution imagery from CCTV systems provides detailed visual
information that helps in assessing fire behavior, verifying alarms, and supporting decision-making
processes for firefighting operations.

However, CCTV cameras are typically restricted to fire detection, with limited assessment
capabilities compared to UAS or satellites. While they can provide immediate and localized detec-
tion, their fixed positions and limited range of view constrain their ability to offer comprehensive
coverage and detailed assessment over larger areas. In contrast, UAS and satellite systems can cover
vast regions and provide multi-spectral data essential for understanding fire dynamics, mapping fire
perimeters, and assessing environmental impacts.

Moreover, the cost to coverage ratio for CCTV systems can be a significant limitation.
Installing and maintaining a network of high-resolution cameras over large and remote areas can be
expensive, and the need for robust network infrastructure adds to the overall cost. Despite these
challenges, CCTV systems can be effectively integrated with other monitoring technologies, such as
satellite data and unmanned aerial systems (UAS), to enhance overall wildfire detection capabilities.
This integration allows for a multi-layered approach to wildfire monitoring, combining the strengths
of each technology to improve accuracy and reliability.

Despite the promising potential of CCTV wildfire detection, challenges remain, such as
the potential for false alarms due to environmental factors and the initial cost of installation and
maintenance. Nevertheless, as technology and Al algorithms continue to advance, CCTV wildfire
detection is poised to become a vital component of comprehensive wildfire management strategies,

enhancing the ability to protect lives, property, and natural resources.

21

3.2.3.2 Satellites

Satellite-based wildfire detection and assessment have become crucial components in modern
wildfire management, though they are not without their limitations. Utilizing both geostationary and
polar-orbiting satellites, these systems offer extensive coverage and frequent updates. Geostationary
satellites, such as the GOES series [2], provide continuous observation of large areas, offering data
with high temporal resolution. This allows for near real-time detection of new fire ignitions and
monitoring of fire behavior as it evolves. However, the coarse spatial resolution of these satellites can
limit the precision of fire mapping and the identification of smaller fires or detailed fire characteristics.

Polar-orbiting satellites, like those in the MODIS [44] and VIIRS [45] programs, complement
these efforts with their higher spatial resolution, enabling more detailed mapping of fire perimeters
and burned areas. Yet, their significant revisit rates mean they only pass over the same location a
few times a day, which can delay critical observations during rapidly changing fire conditions. This
gap in continuous, fine-grain evaluation can hinder timely and accurate assessment of fire progression
and intensity.

These limitations in spatial and temporal resolution present challenges for wildfire manage-
ment, as high-frequency, high-detail data are crucial for effective response. Advanced algorithms and
machine learning techniques are being developed to improve the analysis of satellite imagery, but the
need for more frequent and detailed observations remains. Despite these gaps, satellite-based wild-
fire monitoring still provides valuable data that supports the development of fire models, improves
situational awareness, and aids in strategic planning. As technology continues to advance, enhanc-
ing or augmenting the spatial and temporal capabilities of satellite systems will be essential to fully

leverage their potential in safeguarding communities and managing natural resources effectively.

3.2.3.3 UAS

In wildfire management, UAS have proven invaluable for their ability to quickly survey large
areas, even in challenging conditions. They can fly at low altitudes, below cloud cover and smoke,
providing detailed imagery and thermal data that help firefighters understand the fire’s perimeter,
intensity, and progression. This information is crucial for making informed decisions about resource
allocation, evacuation orders, and strategic firefighting efforts. UAS can also identify hotspots and

flare-ups that might be missed by ground crews or traditional aerial assets, thereby improving overall

22

firefighting efficiency and safety. UAS-based fire monitoring operations have developed significant
interest by the research community in recent years, with many works studying the deployment of
both large [10] and small UAS [60, 42, 9, 24, 72] in the context of fire management.

For prescribed fires, UAS offer similar advantages. They enable precise monitoring of con-
trolled burns, ensuring that fire behavior remains within planned parameters. By providing real-time
data, UAS help land managers adjust burn operations as needed to achieve ecological and resource
management objectives. The ability to quickly assess post-burn conditions also aids in evaluating
the success of the prescribed fire and planning future management actions.

There are two primary types of UAVs used in the wildfire management domain: fixed-wing
and multirotor UAVs. Each offer distinct advantages and are well suited for different applications
from prevention and monitoring to active response and post-fire assessment. Fixed-wing UAVs,
with their extended flight times, higher speeds, and longer ranges, excel in large-scale land sur-
veys, wildlands patrols, and rapid mapping of fire borders. Their improved weather resilience allows
them to perform well in adverse conditions, providing stable data collection even in windy environ-
ments. However, their inability to hover and limited 3D mobility restrict their effectiveness in aerial
suppression efforts and targeted data collection.

On the other hand, multirotor UAVs provide vertical takeoff and landing (VTOL), hovering,
and robust 3D maneuverability, allowing for operations in rugged terrains and confined spaces. These
UAVs are capable of low-altitude hovering for precision data collection and targeted suppression of
incipient stage burns. Their ability to hover in place and navigate complex environments makes them
ideal for detailed inspections, spot monitoring, and close-up assessments of fire lines and structures.
However, multirotors typically have shorter flight times and lower speeds, limiting their operational
range and duration compared to fixed-wing UAVs. By integrating both types of UAVs, wildfire
management teams can leverage the broad, strategic assessments provided by fixed-wing UAVs and
the detailed, tactical support from multirotor UAVs, ultimately enhancing the overall effectiveness
of wildfire prevention, response, and recovery efforts.

This thesis focuses on the cooperative behaviors necessary for three-dimensional cooperative
pathing of multirotor UAV teams in wildfire domain tasks. Multirotor UAVs have shown improved
wildfire suppression capabilities, allowing for precise and targeted intervention during the early stages
of a fire. Their ability to hover and perform intricate 3D maneuvers makes them particularly effective

in navigating complex terrains and accessing areas that are otherwise difficult to reach. Further, their

23

omnidirectional flight capabilities present an interesting and challenging task for optimal pathing.
Moreover, modern fixed-wing UAVs increasingly offer VTOL and/or auxiliary hover functionalities,
allowing fixed-wings to utilize the developed hover-centric methods.

Despite their many benefits when authorized, the misuse of UAS by unauthorized opera-
tors has caused significant disruptions in wildfire management. Unauthorized drone incursions into
active wildfire zones have led to the grounding of firefighting aircraft, as safety protocols require
the immediate cessation of aerial operations to avoid potential collisions. The NIFC reports 19
separate pubic drone incursions in 2023, 10 of which resulted in the complete shutdown of aerial
firefighting efforts [5]. These interruptions can delay critical firefighting efforts, allowing wildfires
to spread unchecked and increasing the risk to firefighters and communities. The Federal Aviation
Administration (FAA) and other agencies have implemented strict regulations and public awareness
campaigns to mitigate this issue, emphasizing the importance of keeping the airspace clear for emer-
gency response efforts. Additionally, such incursions have created negative perceptions and pushback
from fire managers, complicating and hindering further efforts for authorized UAS integration into

standard fire management practices.

3.3 Aerial Fire Suppression

Aerial wildfire suppression methods encompass a range of techniques designed to combat
wildfires from the air, leveraging both manned and unmanned aerial platforms. One of the most
traditional and widely used methods is waterbombing, where aircraft, typically fixed-wing planes or
helicopters, drop water or fire retardants onto active fire areas. Waterbombing is effective in cooling
down hotspots, reducing fire intensity, and creating firebreaks to halt the fire’s advance. Helicopters
are especially versatile in this role due to their ability to hover and access remote or rugged terrain
that may be inaccessible to larger aircraft.

In recent years, advancements in unmanned aerial vehicle (UAV) technology have introduced
new methods for aerial wildfire suppression. UAV-based systems, such as those developed by UAVOS
(Unmanned Aerial Vehicle Operating System) [68] and RAIN (Remote Activation and In-flight
Navigation) [53], offer innovative approaches to firefighting. These UAVs are equipped to deliver
payloads of water, fire retardants, or foam to targeted areas with precision. They can operate

autonomously or under remote human control, making them ideal for accessing hazardous or hard-

24

to-reach locations. UAV-based methods are particularly valuable for initial attack efforts, rapidly
containing small fires before they escalate.

UAVOS, for instance, specializes in designing UAVSs capable of carrying firefighting payloads
while maintaining stability and maneuverability in challenging conditions [68]. These systems are
equipped with advanced navigation and firefighting technologies, allowing for effective response to
fire incidents. Similarly, RAIN systems focus on autonomous aerial firefighting operations, using Al
and real-time data to optimize firefighting strategies and resource allocation, such as in 2023 where
RAIN developed the first autonomous aerial firefighting helicopter [53].

While UAV-based methods show promise in augmenting traditional aerial firefighting capa-
bilities, they also face challenges such as payload capacity limitations and regulatory considerations
for airspace integration. Nevertheless, ongoing research and development in UAV technology con-
tinue to enhance their effectiveness and expand their role in wildfire suppression operations. Ongoing
competitions such as XPrize Wildfire [76] drive further interest and engagement in advanced aerial
wildfire suppression technologies. As technology advances, the integration of manned and unmanned
aerial firefighting methods offers a comprehensive approach to combating wildfires, ensuring swift

and coordinated responses to protect communities and natural environments.

3.4 Al-Enabled UAV Perception

Autonomous UAV-based wildfire management hinges on UAVs’ capability to detect, an-
alyze, and assess wildfire conditions. As sensor capabilities expand, integrating and interpreting
diverse data sources often relies on machine learning. These algorithms train analysis models using
extensive datasets of raw or processed data. The effectiveness of these models is heavily influenced
by the quality and quantity of the training data. However, stringent regulations governing UAV
data collection during prescribed fires and wildfires have resulted in a scarcity of publicly accessible
datasets of aerial UAS-collected data. This limitation significantly impedes research and devel-
opment of Al-driven analysis models in wildfire management. Part of the contributions in works
building to this thesis include the development of datasets and methods for edge-device wildfire
assessment through side-by-side multi-spectral imagery.

One of the most popular datatypes in UAV-based wildfire management is imagery. High

camera resolutions and sophisticated optical and digital zoom systems provide UAVs with advanced

25

reconnaissance capabilities and high definition views of ground objects, even when flying at high
altitudes. The ever-increasing popularity of coupled visual spectrum and infrared (long-wave or
short-wave) cameras on off-the-shelf UAVs drives innovation in the use of these input modalities for
the wildfire domain, as they typically have improved data availability as compared to other sensors.
Further, image processing and computer vision is a mature research domain, lending methods that
translate directly to detecting and assessing imagery of wildfires. This is compounded with the high
visibility of thermal radiations in the infrared spectrum, simplifying assessment.

Imagery stands out as a predominant data type in UAV-based wildfire management. UAVs
equipped with high-resolution cameras and sophisticated optical and digital zoom systems provide
detailed reconnaissance and high-definition views of ground objects, even at altitude. The increasing
adoption of visual spectrum and infrared (long-wave or short-wave) cameras on off-the-shelf UAVs
drives innovation in wildfire monitoring. The popularity of these sensors enhance data availability,
making them an essential datatype in aerial wildfire management. Moreover, computer vision, a well-
established field, contribute directly to wildfire imagery analysis, leveraging the high detectability
of thermal radiation in the infrared spectrum to simplify image processing and fire assessment.

There exist many datasets of purely visual spectrum aerial wildfire imagery [33, 34, 57, 19,
47, 46, 28, 17, 59], though few that provide side-by-side visual spectrum and infrared [61, 23]. Largely,
this is a result of the difficulty in collecting aerial data at prescribed fires. The majority of the visual-
spectrum-only sets collect imagery with web scraping. Using this method, it is near impossible to
amass a sizable collection of side-by-side multi-spectral samples. The two listed datasets of side-
by-side RGB/IR imagery include FLAME 1 [61] and FLAME 2 [23], both of which were each
collected from prescribed fires. There are currently no publicly available datasets of aerial side-
by-side visual spectrum and radiometric infrared imagery. Radiometric infrared cameras provide
per-pixel temperature values alongside the typically known color-mapped thermal image. This fine-
grain temperature measurements allow higher precision detection and assessment of fires, and can
simplify the process of labeling wildfire imagery datasets for supervised machine learning, as the
radiometric information can be used to algorithmically label data for many tasks.

One of the author’s major research efforts has been to collect, organize, and process the
data for FLAME 3, the upcoming third installment in the FLAME dataset series [61, 23]. FLAME
3 includes paired side-by-side visual spectrum and radiometric infrared imagery, enabling a new

generation of radiometric-based data driven wildfire assessment models designed specifically for

26

inference on UAVs. Further, the developed FLAME 3 data processing pipeline allows for semi-
automated imagery processing, including file organization, radiometric TIFF extraction, field of
view (FOV) corrections, RGB and Thermal image alignment, and temperature-based algorithmic
labeling.

The created FLAME 3 dataset works towards addressing the shortage of aerial wildfire
data in two ways. Firstly, it includes data from six different prescribed fires, with sufficient data
diversity to train a moderately-generalizable neural network. Secondly, the provided FLAME 3 data
processing pipeline simplifies the process of data processing and temperature extraction from DJI
brand thermal cameras, enabling researchers with the tools necessary to process their own collected
imagery. In this thesis’s overarching goal of developing the necessary subsystems to train cooperative
UAV teams for real world wildfire management, FLAME 3 enables the design and validation of neural
networks capable of wildfire detection and assessment. Future efforts may include integrating the
created imagery datasets with the AirSim Simulation environment utilized in Chapter 5 to train

simulated UAV teams with real-world imagery inputs.

27

Chapter 4

3D Cooperative Navigation

The advent of autonomous Unmanned Aerial Vehicles (UAVs) has revolutionized various
sectors, from surveillance and search-and-rescue operations to agricultural monitoring and logistics.
Central to the deployment of UAVs in these applications is necessary subtask of Cooperative Nav-
igation in Three Dimensions, henceforth referred to as 3D Cooperative Navigation or 3DCN. The
task involves a team of UAVs working together to navigate through a shared space, optimizing their
movements and interactions to achieve a common goal. For this thesis, that goal is to navigate to
specific locations within a three dimensional space.

In the base 3D Cooperative Navigation task, agents are randomly initialized in a 3D space.
Each agent is assigned an individual target location they are tasked with navigating towards in the
quickest or most efficient manner possible. Agents are punished for collisions with other agents or
with environmental obstacles and rewarded for proximity to their target. Various extensions of this
base problem, such as inter-agent communications networks, partial observability, and unassigned
target locations exist to expand the task’s applicability closer to real-world systems [29]. This thesis
focuses on three such task variants, each of which is defined in the following Section 4.3. Each of
the studied tasks in this section approximate subroutines expected for a team of cooperative UAVs
working to detect, observe, or suppress wildfires.

The studied 3D Cooperative Navigation task (and task variants) can be considered a con-
strained case in the grouping of tasks know as Target Tracking or Observation (TTO) tasks in the
Multi-Robot Systems (MRS) domain. In TTO tasks, a group of agents, each with individual move-

ment and sensing capabilities, aims to navigate such that each in a group of targets remains under

28

observation by at least one agent. TTO covers a wide range of applications, including but not lim-
ited to optimizing wireless UAV base-station coverage for ground users as studied in [79, 38, 37, 39],
ground target observation and tracking as studied in [80, 75, 70, 54, 69], and cooperative pathing
with obstacle avoidance as studied in [51]. Table 4.1 tabulates recent works on RL-coordinated UAV
teams.

Table 4.1: Recent Works Studying UAV-based Target Tracking or Observation Problems

Ref. | Year Num Num Target Environment Coordination
Agents | Targets | Mobility Complexity Method
80 2022 10 10 Mobile 2D Free Space Actor Critic
37 2022 7 140 Mobile 3D Urban Obstacles® Q-Learning
[79] | 2021 3 10 Mobile 2D & 3D Free Space cDQNP
[75] | 2021 2 1 Mobile 2D Free Space Soft Actor Critic
[51] | 2019 3 3 Stationary 2D Obstacles MADDPG¢
[38] | 2019 4 100 Mobile 3D Free Space® Q-Learning
[39] | 2019 4 40 Mobile 3D Free Space® Q-Learning
[70] | 2018 4 1 Mobile 2D Grid World UCTY

2 Problem definition effectively casts 3D problem into two dimensions.

b ¢cDQN - Constrained Deep Q-Network

¢ MADDPG - Multi-Agent Deep Deterministic Policy Gradients. See [40].
d UCT - Upper Confidence Tree

4.1 The Non-convex Third Dimension

In real-world applications, UAVs often operate in environments where the two-dimensional
plane is insufficient for effective task execution. For instance, urban landscapes, dense forests, and
indoor spaces present obstacles that necessitate 3D maneuvering. Further, fully autonomous Un-
manned Aerial Systems (UAS) often require autonomous takeoff and landing in a shared space, both
of which can be mapped to cooperative navigation problems. Focusing specifically on autonomous
drone-based wildfire response, even the most basic flat grasslands burns will require localized 3D
cooperative navigation to ensure efficient and safe suppressant delivery. UAVs must be able to
navigate cooperatively in three dimensions, avoiding collisions with both static obstacles and other
UAVs while maintaining formation and optimizing their path planning.

Despite the necessity of fully three dimensional team coordination and control schemes, the

majority of related works focus on the simpler two dimensional cooperative navigation task [80,

29

75, 51]. Of the works operating in three dimensions, many reduce the problem such that effective
solutions do not require significant vertical action [38, 39, 54, 70]. The authors only found a sin-
gle relevant work that studied fully three dimensional team navigation, [79], where Zhang et al.
(2021) employed a position-based movement scheme with Constrained Deep Q-Networks (¢cDQN)
to optimize the positioning of a team of aerial wireless base-stations. Further, Zhang et al. (2021)
found that providing agents with control over altitude positioning improved network performance
and ground user coverage as compared to casting their problem into two dimensions.

Through investigating fully 3D cooperative navigation, this thesis works towards bridging
the gap between theoretical RL works and real-world problems by improving the realism and appli-

cability of RL-coordinated UAV teams.

4.2 Scaling Agent Interactions

Intuitively, increasing the number of agents within a fixed size 3D Cooperative Navigation
environment results in a more difficult task. The increased agent density raises the probability
that agents will collide on direct paths towards uniformly distributed target locations. Further,
it is a common MARL analysis to evaluate algorithms and environments as the number of agents
increases, with the expected result being exponentially degraded performance as the number of
agents increases. Cooperative Navigation is no exception.

With additional agents, Multi-Action Variance (MAV) and Multi-Observation Variance
(MOV) increase, making learning for individual agents less stable [41]. This is especially so un-
der global observability, as is studied in Task 1. Each agent being able to distinguish the exact
state of every other agent results in very accurate, though variable, critic value estimates. As such,
decentralized critic architectures in systems with partial observability often provide stabler and more
effective training than centralized architectures [41, 18]. Decentralized critics estimate value with
local agent observations are required to average across the stochastic actions of other agents. In
expectation, their value estimates are less accurate, though significantly less variable [41]. As the
number of agents increases, the probability of collisions also increases. This increased inter-agent
interaction causes decentralized critics to depend more heavily on their stochastic action averaging,
which may increase bias significantly enough to impede learned performance. Thus, this work em-

ploys decentralized critic networks with sufficient simulation size (40x40x40 meter cube) and team

30

size (typically 5 agents) balancing to allow for the learning of effective collision avoidance behaviors.

4.3 Problem Definitions

This work investigates three variations of the 3D Cooperative Navigation task, each one
building on the previous to eventually approximate a task necessary for UAV teams to be effective
in wildfire management. Each of those three tasks, as well as the three employed Markov Game
modeling frameworks, are discussed in the following subsections. Chapter 5 overviews simulation

results from training UAV teams on each of the three described tasks.

4.3.1 Task 1: Assigned Targets

The first 3D Cooperative Navigation variant studied in this thesis investigates team pathing
in open space under the assumptions of global state observability and individual target assignments.
This is the most direct and basic implementation of 3D Cooperative Navigation, which ignores the
real-world aspects of target discovery, environmental uncertainty, and interagent communications.
Task 1 of this thesis implements a 3D cooperative navigation task based on the 2D cooperative
navigation task studied in [41]. Effective performance on this task requires agents to learn two main
behaviors: navigation towards a stationary target and the avoidance of collisions with other agents.
A team that is fully capable of performing this task would then be capable of precision flight routines
with built-in collision avoidance under the orchestration of a globally informed centralized controller.

The base 3D Cooperative Navigation task has the following properties:

e Individual target locations - Each agent has a single randomly initialized target location.

e Random agent initialization - Each agent is randomly initialized (position and velocity)

within the training area.

e Globally observable state - Each agent can see full information about the environment and

every other agent.

e Cooperative - Agents work together to each navigate to their individual target location. For

this basic task, this cooperation should primarily be collision avoidance.

31

e Individual rewards - Each agent has its own reward calculation. The team objective is to

maximize the globally averaged reward (not visible to individual agents)
e No communications - Agents are unable to communicate with other agents.
e Velocity control - Agents are controlled with velocity set-points

Task 1 is modeled as a Markov Game with tuple representation M; = (S, A, R, S). Each
agent n € N is initialized to a random location (z"(tg), y™(t0), 2™ (to) in some preset area (at least
Thuf away from other agents). Stationary objectives ¢" € Q7 are randomly initialized (at least
Tpuft apart) in that same preset area, where ¢ denotes the objective for agent n. There are seven
possible actions o™ € {1,2,...,7} available to each agent at any given time-step, corresponding to
increasing a velocity setpoint in the positive or negative direction of the Z, j, and Z axes as well as
an additional ”maintain velocity” action. Each agent n receives observation vector oy € S at each
timestep t where S is the set of all possible states. As the system is globally observable, observation
vectors include accurate positions and velocities for each agent and each agent’s objective location.
At each timestep, agents are given some reward value r}' based on that agent’s reward function
R, : S x A, = R. For this work, all agent reward functions are identical. The team’s task is for
each agent to learn a set of policies wév where each agent’s policy 7y produces the necessary actions
for each agent n to navigate as close as possible to that agent’s specified stationary objective ¢"
while avoiding collisions with other agents. Success is evaluated based on how quickly the team of
agents N is able to position each agent n € N at individual target locations ¢" as well as by how

often collisions between agents occur.

4.3.2 Task 2: Partial Observability

The second 3D Cooperative Navigation variant studied in this thesis focuses less on each
agent’s ability to navigate towards stationary objectives, instead focusing on target discovery under
partial observability. To ensure that agents learn desired exploration behaviors, Task 2 agents are
given a radius of observability ropserve, Where any object/target/agent outside of this radius from
the observing agent will not be included in that agent’s observations. Further, targets are changed
to be team-based rather than individually assigned. That is, any agent can receive a reward from
proximity to any objective location. Under this condition, agents encounter the well-known problem

in reinforcement learning of exploration versus exploitation. For each of the reward functions utilized

32

in this thesis, agents are penalized for proximity to other agents as a means of both teaching collision
avoidance and disincentivizing target sharing. Thus, for an agent that encounters an objective
location that is already occupied by a teammate, that agent must then decide whether to share the
objective or to continue exploring in hopes of finding a different objective.

The real-world analog to this Task is any communication-less search and observation prob-
lem, where there are diminishing returns for multiple agents observing a single target. For example,
a team of UAVs working to detect and suppress wildfires would need to efficiently search a given
section of geographically challenging forestry for fires, ensuring that at least one agent is continually
observing any detected burns. For a scenario depending even more firmly on three dimensional path
planning, wireless UAV base-stations require sufficiently adequate positioning schemes to discover
optimal positioning within potentially complicated and uncertain environments to supply wireless
ground users.

Task 2 is modeled as a Partially Observable Markov Game with tuple representation M; =
(S, A,R,O). Each agent n € N is initialized to a random location (z"(tg),y"™(t0), 2"(to) in some
preset area (at least rpug away from other agents). Stationary objectives ¢ € QV are randomly
initialized (at least rpu¢ apart) in that same preset area, where each agent is capable of receiving
reward from each objective. There are seven possible actions a™ € {1,2, ..., 7} available to each agent
at any given time-step, corresponding to increasing a velocity setpoint in the positive or negative
direction of the &, ¢, and Z axes as well as an additional ”"maintain velocity” action. Each agent n
receives observation vector of € O at each timestep ¢ where O is the set of all possible observation.
Each observation vector o} includes the accurate positions and velocities of each agent or objective
location within some fixed radius of observability 7opserve at timestep t. At each timestep, agents are
given some reward value r}* based on that agent’s reward function R,, : § x A,, — R. For this work,
all agent reward functions are identical. The team’s task is for each agent to learn a set of policies
Wév where each agent’s policy 7y produces the necessary actions for each agent n to discover and
then navigate as close as possible to the stationary objectives @@ while avoiding collisions with other
agents. Notably, the reward function R disincentives proximity to other agents, which results in the
behavior for objective sharing often being suboptimal. Success is evaluated based on how quickly
the team of agents IV is able to position each agent n € N at any target location g € @, how often

collisions between agents occur, and how often rewards are suboptimally shared.

33

4.3.3 Task 3: Agent Communication

A core impracticability of Task 2 it’s inherent assumption that agents are unable to com-
municate with each other in a task that clearly benefits from sharing information amongst agents.
A team of aerial UAVs responding to wildfires that is unable to communicate the locations and
severities of detected wildfires between agents is neither effective nor realistic. Thus Task 3 serves
as an improved real-world analog to team search and observation tasks. Further, comparing Task
3 performance against Task 2 provides a quantification of the improvement provided by inter-agent
communication networks.

Task 2 is modeled as a Partially Observable Markov Game with tuple representation M; =
(S,A,R,0). Each agent n € N is initialized to a random location (z™(to),y™(to),2"(to) in some
preset area (at least rpuz away from other agents). Stationary objectives ¢ € QY are randomly
initialized (at least rp,g apart) in that same preset area, where each agent is capable of receiving
reward from each objective. There are seven possible movement actions a™ € {1,2, ..., 7} available
to each agent at any given time-step, corresponding to increasing a velocity setpoint in the positive

or negative direction of the Z, ¢, and Z axes as well as an additional ”maintain velocity” action.

n

comm tO

Each agent also communicates some fixed number of real-valued floating point numbers ¢
other agents at each timestep. For the simulations conducted in Chapter 5, it was decided that

the number of values sent to other agents (referred to as ”communication actions”) was to be equal

n

nam € RY. Each communication action was generated from

to the number of agents. That is, a,
agents’ policy networks as a separate output layer. Each agent n receives observation vector of € O
at each timestep ¢ where O is the set of all possible observation. Each observation vector of includes
the accurate positions and velocities of each agent or objective location within some fixed radius of
observability Topserve at timestep t. Additionally, each observation vector includes the communication
actions of each other agent. At each timestep, agents are given some reward value r}* based on that
agent’s reward function R, : S x A,, — R. For this work, all agent reward functions are identical.
The team’s task is for each agent to learn a set of policies 7}’ where each agent’s policy 7} produces
the necessary actions for each agent n to discover and then navigate as close as possible to the
stationary objectives) while avoiding collisions with other agents. Notably, the reward function

R disincentives proximity to other agents, which results in the behavior for objective sharing often

being suboptimal. Success is evaluated based on how quickly the team of agents N is able to position

34

each agent n € N at any target location ¢ € @), how often collisions between agents occur, and how

often rewards are suboptimally shared.

35

Chapter 5

Simulations

5.1 Choice of Simulator — AirSim

Real world evaluations of MARL-coordinated UAV teams is costly, difficult, and, if outdoors,
federally regulated. Thus, studied methods are instead validated with simulation. As different works
investigate different aspects of coordinated learning under different application domains, there are a
corresponding variety of available simulators each boasting different features and shortcomings. For
this work, deciding upon the best simulator started with a list of required simulator capabilities and

traits:
e Fully 3D control of multiple Multirotor UAVs
e High Fidelity Physics
e Well Documented Python API

As well as a list of desired simulator capabilities and traits:

Parallelization — Fully Steppable Physics

Multi-Agent Reinforcement Learning Support

Robust Camera Integrations

e UAV Firmware Integrations

Computational Efficiency

36

Based on the above specs, preliminary searching identified four likely candidate simulators:
Flightmare [63], Gazebo [30], Gym-Pybullet-Drones [48], and AirSim [58]. Each of these simulators

are discussed indepentently in the following subsections:

5.1.1 Flightmare

Flightmare [63] was released in 2021 by a team at the University of Zurich as a configurable
platform for quadrotor simulation. The simulator was built using a configurable rendering engine
built on Unity and a decoupled physics engine. The decoupling of physics and rendering provides
users with strong controls over computational efficiency in their simulation, with "headless” physics
simulations dramatically improving computational speed. Flightmare also boasts a large multi-
modal sensor suite, with particularly strong LIDAR integration. Due to its relatively short age,
however, Flightmare suffers from a lack of documentation and sample code. Further, Flightmare
does not include out-of-the-box multi-agent reinforcement learning support. Overall, Flightmare
provides many of the desired features, though falls short in terms of documentation and multi-agent

support.

5.1.2 Gazebo

Gazebo [30] released in 2004 by a research team at the University of Southern California
and has remained an industry contender ever since. With a robust physics engine and excellent
programmatic interfaces, Gazebo offers an open-source platform best suited for robotics simulations.
Strong Robot Operating System (ROS) support and integration further solidifies Gazebo’s status in
the robotics community. The main drawback of Gazebo as compared to other simulation options is a
lack of realistic rendering. As Gazebo was released before any of the major modern rendering engines
(Unity and Unreal) were released, it instead utilizes the outdated OGRE engine. While there are
plugins available to provide other rendering options, such as Ignition, visualization remains a weak
aspect of the simulator. Gazebo also suffers from relatively high barriers to entry. As the simulator
has been around for almost two decades, there are a variety of different complex features available
in the simulator. The resulting large quantity of documentation and tutorials can make it difficult

to find specific desired information.

37

5.1.3 Gym-Pybullet-Drones

Gym-Pybullet-Drones was released in 2021 as a Gymnasium compatible environment for
single and multi-agent reinforcement learning of quadcopter control. The simulator focuses predom-
inantly on lower-level controls, with minimalistic Pybullet rendering. Notably, the simulator was
built from the ground up with Python (and ROS) SARL and MARL training. The limited render-
ing enables impressive parallelization and computation speed-up, able to run a single drone without
vision at 15.5x real-time or a ten agent team at 2.1x real-time on a medium-end system. Unfortu-
nately, the simulator suffers from a severe lack of documentation, largely relying on a small base
of sample code in-place of typical documentation. Without reliable documentation or sufficiently

realistic rendering, Gym-Pybullet-Drones was found unsuitable for this thesis.

5.1.4 AirSim

The AirSim Simulator [58] was released in 2017 by Microsoft as a platform to validate
UAS algorithms and machine learning models. The simulator was built on a linked Unreal Engine
rendering and physics engine, offering high fidelity physics as well as impressive visualization re-
alism. The open-source platform supports software-in-the-loop and hardware-in-the-loop for many
popular flight controllers, which results in strong translations from simulation performance to real
world performance. Support for a variety of vehicles including cars and multirotors make AirSim
a versatile choice for researchers working on different autonomous systems. AirSim was developed
with flexibility in mind, with support for custom environments, vehicles, and sensors. As an Unreal
Engine plugin, AirSim can be dropped into any Unreal environment. One notable shortcoming is
the linked render and physics engine falls short in computational efficiency - a trade-off made to
improve simulation fidelity. Similarly, the simulated flight controllers favor realism at the expense of
limited parallelization options and significant temporal overhead during resetting (discussed further
in Appendix A.3).

The AirSim simulator was selected as the best available simulator for evaluating the methods
of this thesis. Its high fidelity physics engine, expansive sensor suite, streamlined camera integra-
tions, detailed environment modeling through Unreal Engine, flight controller hardware-in-the-loop
capabilities, and robust documentation meet each of the required specs while also providing a foun-

dation for future research. The only area where AirSim was found to be significantly lacking was

38

in computational efficiency. It’s linked physics and rendering engine hiders parallelism and largely
restricts simulation to real-time. For use in reinforcement learning, which often requires enormous
quantities of data, this shortcoming is not to be overlooked.

For the eventual overall task of training UAV teams to assist wildfire management, AirSim’s
Unreal plugin nature allows for detailed real-world modeling through the use of other Unreal projects
and plugins, invaluable for effective wildfire simulation. While such efforts are outside of the scope
of this thesis, future works may delve into configuring AirSim as a platform for collecting aerial
wildfire data. Further discussion of these specific future plans as well as additional rationale for the
choice of AirSim is included in Appendix A.1 Of the other considered simulators, Flightmare is the
only other simulator that allows for similar environmental fidelity through Unity, though does not
provide a workable multi-agent API and thus is unsuitable for the task.

AirSim exposes a Python API for interacting with simulated actors® that was used to create
a PettingZoo [66] Parallel API environment for 3D Cooperative Navigation. This PettingZoo envi-
ronment was wrapped with an environment wrapper for PettingZoo environments from torchrl [13]
to allow the usage of modules from torchrl and pytorch [49]. More information about python imple-
mentation specifics can be found in Appendix A.5.

AirSim provides a few basic environments that are compatible with the package. The
provided ”Blocks” environment was lightly modified to minimize computational overhead during
training. A screenshot of the resulting flat plane simulation can be seen below in Figure 5.1. The
white Square on the ground plane indicates horizontal simulation borders. The orange dots indicate
target locations and the purple ones show agent initialization points. A closeup of an agent can be

seen in Figure 5.2.
5.2 Task 1: 3D Cooperative Navigation
Task 1’s problem definition can be found in Section 4.3.1.

5.2.1 Learning Scheme

This section overviews the environment and learning modules used to train agents for Task 1.

17 actors” refers to any simulated object in Unreal Engine, including agents, obstacles, and other static or mobile
meshes.

39

Vehicle is already armed
Colision#2 with Cube.2 - OID 164

uccessiul

requestapiControl was 5
“Trace # | Total st2ps: 1113

Collsion Count)

Figure 5.1: Wide-view screenshot of a 5-agent team training in the modified ”blocks” AirSim en-
vironment. The white Square on the ground plane indicates horizontal simulation borders (40 x
40 x 40 meters). The orange spheres indicate target locations and the purple ones shows agent
initialization points. See Figure 5.2 for a closer view.

5.2.1.1 Action Space

The action space for Task 1 is quite simple, using velocity control to update each agent’s
velocity setpoint each timestep. Timesteps are regulated by the developed python 3D Cooperative
Navigation PettingZoo environment, with each step being 50 simulation frames long, or equivalently
0.417 second in simulated time with the 120 Hz physics engine At the beginning of each timestep,
each agent is provided a velocity setpoint that that agent’s simulated flight controller aims to meet.
This process is repeated at the next timestep, updating the setpoint. In total, there are seven
possible actions resulting in a discreet action space. There is an action for increasing the velocity
setpoint in each of the Cartesian XYZ directions as well as an action for decreasing the velocity
setpoint in each of the Cartesian XYZ directions. The seventh action is to make no change to the
velocity setpoint.

A consistent 1.0 m/s velocity setpoint stepsize is employed, with each new setpoint being an
offset to the UAV’s current velocity. This relative setpointing ensures that setpoints do not outpace

the speed at which flight controllers are able to accelerate each UAV, reducing the time-delay and

40

Figure 5.2: Closeup of a UAV Agent in the AirSim Simulator. The orange sphere displays a target
location and the purple one shows the agent’s initialization point.

41

time variance between when actions are sent to agents and when those actions meaningfully effect the
simulation. One notable disadvantage of this relative setpointing scheme is that, while agents have a
”maintain velocity” action, they do not inherently have a "hover” action. With each timestep being
near half a second long, the result is that agents often exhibit some minor ”bouncing” behavior as
they repeatedly overshoot their target locations. This behavior is minimized with sufficient training
as agents learn to zero out their velocities with appropriate setpoints.

This velocity setpoint based control scheme was employed for two reasons. Firstly, the
seven possible discreet actions dramatically reduces search space as compared to a continuous action
space. This simplification allows models to converge quicker, shortening training times. Secondly,
the velocity setpoint system provides a more realistic control scheme as compared to position-based
control or plain velocity control, despite position-based control’s prevalence in related MARL works
[79, 38, 39]. Having agent actions be acceleration based allows for a more direct translation into
the real-world, as low-level UAV control actions typically are provided as force/accelerations. For
most flight controllers, high-level control schemes such as position-based control require additional
control loops operating behind the scenes, with integral away from acceleration incurring additional
IMU error. Thus, position based control is less accurate than velocity which is less accurate than

acceleration.

5.2.1.2 Observation Space

Task 1 deals with a globally observable state space. That is, each agent observes the position
and velocity of itself and every other agent at each timestep. The agents also observe the position
of each individual target location regardless of how far those target locations are from the agent. As
positions and velocities are both floating point continuous values, the state space is continuous over
some bounded region as dictated by the simulation XYZ bounds and the maximum and minimum
velocities allowed by AirSim’s built in flight controllers. Each agent’s observation for a given timestep

is a vector with the following entries:

e X, Y, Z position of the agent in simulation coordinates [meters]
e X, Y, Z velocity of the agent in simulation coordinates [meters/second]
e relative X, Y, Z position of the agent’s target location in simulation coordinates [meters]

e For each other agent in the simulation (sorted by euclidean distance from the observing agent:

42

— relative X, Y, Z position of the other agent in simulation coordinates [meters|
— X, Y, Z velocity of the agent in simulation coordinates [meters/second]

— relative X, Y, Z position of the other agent’s target location in simulation coordinates

[meters]

Each UAV’s observation provides the relative position of other UAV agents, which reduces
the size of the observation space as it ensures transitionally identical system states appear the same
in observation. With other agent and target locations all provided with relative coordinates, it may
not initially seem like providing the agent with its own absolute simulation coordinates is necessary,
as it reduces the translational independence provided by relative observations. However, the absolute
self positioning allows the agent to learn to stay within some desired simulation range, which was
found provide more benefit than harm to the team’s learning rate.

Another key choice was to sort the observations for other UAV agents based on how far
those other agents were from the observing agent. This was done (1) to drastically simplify the
subtask of learning collision avoidance and (2) to provide a better baseline framework to compare
with Task 2’s partial observability. By sorting the observation, agent’s can learn collision avoidance
by avoiding the given nearest agent, rather than learning to avoid collisions with each other agent
individually. This change showed a dramatic improvement to both learning efficiency and system
scalability, as agents could learn suitable collision avoidance with a larger number of other agents if

they were explicitly told which other UAV was closest and therefore most likely to cause a collision.

5.2.1.3 Actors

Each agent’s policy network is modeled as a Multi-Layer Perceptron (MLP) with a torherl
Probabilistic Actor output. Probabilistic actors allow for of on-policy exploration by adding stochas-
ticity to nerual network outputs. Rather than taking the maximum of the policy network’s MLP
outputs to choose an action, the Probabilistic Actor uses those outputs to populate a categorical
distribution, improving agent exploration.

To improve learning efficiency, policy network parameters were shared between agents, which
dramatically increases the amount of experiences each agent has access to during learning while also
limiting inconsistency due to agents learning at different rates. Typically, the key disadvantage

of sharing policy network parameters is that it ensures each agent’s policy is identical and thus

43

discourages heterogeneous behaviors and subtask delegation that may allow teams to perform more
optimally on a task. However, for the base 3D Cooperative Navigation in Task 1, the optimal policies
do not require agent heterogeneity. As such, sharing policy parameters is an easy and effective way

to reduce training times and improve convergence properties.

5.2.1.4 Critics

Each agent’s critic network is modeled as a Multi-Layer Perceptron (MLP) identical in
shape and architecture to the agent policy networks. Following the results and analysis of [41],
this thesis employs decentralized critic networks that estimate the state-value function using local
agent observation-action histories rather than global state-action histories. As centralized critics are
able to distinguish between team action combinations, they are able to make more accurate state-
value estimations, however this reduction in bias comes at the expense of higher variance due to
sharper state-value estimates [41]. Decentralized critics instead only have access to the local agent’s
action and must average over the stochastic possibilities of each other agent’s action, resulting in
reduced variance at the cost of increased bias towards the local observation history [41]. As 3D
Cooperative Navigation imposes fairly minimal agent interaction requirements for optimal policies,
the reductions to variance provided by a decentralized critic provide significant benefit over the more

accurate state-value estimates provided by centralized critics.

5.2.1.5 Reward Function

As with any reinforcement learning task, the employed reward function is critically impor-
tant to effective learning. The reward function designed for the 3D Cooperative Navigation task is
composed of five terms, as tabulated in the following Table 5.1, with the total reward given to each

agent being the sum of each of that agent’s five reward terms as per the following:

n __ n n n n n
Ty =T+ o+ Tg 74 + 75, (5.1)

where 7y is the total reward given to agent n at timestep ¢ and 77, for i = 1,2,...,5 are the five
reward terms for agent n at timestep t. Note that the magnitude each of the reward function
terms are rather small such that r}'; € [—2.75,1.35]. While range of optimal reward magnitudes

is somewhat debated by the community, it was found that larger reward function scaling resulted

44

in training instability as large magnitude rewards forces gradient and PPO clipping for each policy
update. This same reward function is utilized in each subsequent tasks, with minor variations as

necessary to preserve partial observability and to allow for unassigned targets.

Table 5.1: Task 1 Reward Function Terms

Term ‘ Name ‘ Purpose ‘ Min ‘ Max ‘ Equation
0 1lisi
iy Collision Reward Punish collisions -1 0 1o CO ot
’ —1 collision
" Neighbor Distance . . . 2
Ty Reward Avoid collision -0.36 0 —0.01(6 — min(NAD, 6))
Goal Distance Reward proximity . 1.7
T Reward to target 0 0.6 0.01(10 — min(GD, 10))
Directional Velocity Encourage motion |l v D ‘
ris Reward towards target | 070 | 075 | 005 velll, (1 ‘ Tvell ~ TGDT ’)
n Out of Bounds Punish going 1 0 0 in bounds
"5, Reward out of bounds B —1 out of bounds

NAD = Nearest Agent Distance [meters]
GD = Goal Distance [meters]
vel = Agent XYZ Velocity Vector [meters/second]

Significant efforts were spent iteratively refining and balancing each reward term to improve
learnability. For example, the exponents on the second and third reward term have been balanced
such that the reward gradient disincentives movement towards other agents even if that movement
brings the agent closer to the target location, teaching agents to avoid near-collisions as well as
collisions. Further, fourth reward term for directional velocity has been scaled such that it provides
minimal positive or negative reward for the typical velocities exhibited during training. The result
is that agents will only receive an impactfully strong positive or negative velocity reward term is at
the start of training when policies are near random, and late into training when agents are learning

to navigate towards targets more rapidly.

5.2.1.6 IPPO Loss

The chosen learning method for Task 1 (as well as all subsequent tasks) was Independent
Proximal Policy Optimization (IPPO) [18], which has been shown to outperform Mutli-Agent Prox-
imal Policy Optimization (MAPPO) [18] on the majority of tasks, especially those that require
minimal agent interactions for optimal policies such as 3D Cooperative Navigation [41]. The trade-

offs of IPPO vs MAPPO are discussed further in Section 2.2.4.

45

Specifically, agents are trained using torchrl’s ClipPPOLoss module, using torchrl’s General-
ized Advantage Estimation estimator module to provide state value estimates in the loss calculation.
The hyperparameters for both of these modules are discussed further in the following Section 5.2.2.
Finally, the Adam Optimizer was employed to apply gradient descent/ascent to the policy and critic

network weights based on the Clipped IPPO loss.

5.2.2 Hyperparameters

As with most reinforcement learning tasks, the implemented version of cooperative navi-
gation has a long laundry list of hyperparameters that must be carefully tuned to allow system
convergence towards stable and effective policies. Table 5.2.2 overviews the various hyperparam-
eters used in each studied task. The remainder of this subsection discusses each of the different
hyperparams and why they were chosen or how they were tuned for their use in Task 1. For the
hyperparams that varied between tasks, those discrepencies are discussed in the sections dedicated

to those tasks.

e Steps per Batch - Total number of steps collected per data collection cycle. Needs to
be sufficiently large to provide an adequate sampling of how the policy interacts with the
environment, though the number of steps per batch is directly proportional to how long it
takes to collect those samples. By trial and error, it was found that 4096 provided consistent,
low variance policy updates. With a single simulation running with the hyperparameters in
Table 5.2 around 40 minutes to collect 4096 samples. For a typical 30 iteration collection-

training cycle, this results in a 20 hour runtime.

e Max Steps Per Trace - Maximum number of timesteps before the environment will auto-
matically be reset. To encourage early exploration, this was kept quite low at 32 steps/trace,
which was found to be approximately double the timesteps needed for optimal policies to cross
the simulation area. With the relative velocity setpointing used for movement actions, random
actions are strongly biased towards increasing an agent’s velocity. As a result, agents lose
control quickly during initial training. By restricting how long each mission can be, the agents
center their learning on exploring the immediate area surrounding their spawn location, which

complements the imposed curriculum learning schemes in each task.

e Number of Epochs - Number of learning steps conducted on each batch of data collected

46

during collection phases. Chosen to be 32, with the rationale of that decision discussed with

minibatch size.

Minibatch Size - Size of the minibatch used during each epoch in each learning phase. Chosen
to be 256, which includes enough timesteps to ensure reliable gradient estimations while also
limiting how greedily the training phase consumes the collected data. When multiplied with
the number of epochs (32), this gives the total number of timesteps that are processed per
learning phase: 32 %256 = 8192 = 2% 4096. This configuration results in each collected sample

being used twice in the learning phase.

Learning Rate - Coefficient for policy update magnitudes. Used by the Adam optimizer.
Initial configuration used le-4, though with sufficient Steps per Batch updates were consistent

enough to allow 3e-4 learning rate, hastening convergence.

Max Gradient Norm - Clips gradients to have a maximum magnitude of 1.0. This is
commonly done in machine learning works to prevent too large of a model update. It was
configured during initial difficulties with model convergence and kept in after those difficulties

were resolved.

PPO Clip Epsilon - Maximum policy change ratio used in Clipped Proximal Policy Opti-

mization Loss. The default value of 0.2 was employed, following [18].

GAE Gamma - Discount factor used in Generalized Advantage Estimation. Larger values
result in advantage estimates based more strongly on expected return from future states.
Smaller values focus on the more immediate reward from an action. Typical values are [0.8,
0.9997]. As the reward function was designed such that the best action at a given state typically
does not depend significantly on future actions (in general, simply moving towards a target
location is sufficient), the somewhat low value of 0.95 was employed initially and then later
reduced to 0.90 for Task 2 and Task 3. This lower value reduced agent look-ahead to allow
for faster training, dramatically improving convergence properties as compared to using 0.95

or 0.99.

GAE Lambda - Generalized Advantage Estimation bias-variance knob. Larger values tune
the approximation towards higher variance, lower values towards higher bias. Typical values

range in [0.9, 1]. This value was chosen as a middle-ground 0.95, which was experimentally

47

determined to be effective at Task 1. Larger values resulted in unsteady training, smaller

values appeared to reduce training effectiveness.

PPO Entropy - Coefficient for optional entropy term in PPO loss. Larger values encourage
more exploration. Followed [18] and used le-3 for Task 1. Unused in Task 2 and 3 due to

limitations of torchrl.

Share Policy Params - Determines whether separate policy networks are trained for each
agent or if one policy network is updated with every agent’s experiences. This was set to True
to enable more rapid and stable training, at the cost that heterogeneous team behaviors may

not be easily learnable with homogeneous agent policies.

Policy Activation Func - Activation function used at the output of each layer of the policy

neural networks. The industry standard ReLLU was used.

Policy Network Depth - Number of hidden layers in the policy nerual networks. Sufficient

output performance and training efficiency was found with four hidden layers.

Policy Network Width - Number of neurons per hidden layer in the policy nerual networks.
Sufficient output performance and training efficiency was found with 256 neurons per hidden

layer.

Share Critic Params - Determines whether separate critic networks are trained for each
agent (each only able to access that local agent’s observation history) or if one global critic
network provides state-value estimates for each agent. This was set to True to enable more
rapid and stable training. As each agent has the same observation structure and objective
function, sharing critic parameters allows the critic to aggregate reward estimates from each
agent, dramatically improving training time. Several other works including [18, 41] agree that
decentralized critics provide better convergence properties than centralied ones for tasks with

minimal inter-agent interactions, such as the 3D Cooperative Navigation task.

Critic Activation Func - Activation function used at the output of each layer of the critic

neural networks. The industry standard ReLU was used.

Critic Network Depth - Number of hidden layers in the critic nerual networks. Sufficient

output performance and training efficiency was found with four hidden layers.

48

e Critic Network Width - Number of neurons per hidden layer in the policy nerual networks.
Sufficient output performance and training efficiency was found with 256 neurons per hidden

layer.

e Optimizer - Optimizer that manages how neural network weights are updated for a given loss

gradient. The commonly used Adam optimizer was employed.

e Loss Function - The function used to map policy network outputs, critic network outputs,
and rewards into loss gradients to be used by the optimizer for updating policy weights.
Following [18], ClippedPPOLoss was used with decentralized critic networks, also known as
Independent Proximal Policy Optimization (IPPO). Per [18] and [78], this decentralized train-
ing architecture often outperforms centralized ones, especially on similar tasks where optimal

policies require minimal inter-agent interaction.

e Value Estimator - The algorithm used to estimate the value of states. Used Generalized
Advantage Estimation (GAE) [55] for its ability to tune the bias-variance tradeoff. See section

2.1.4 for more information on GAE hyperparameters.

e Simulation Bounds [m] - Side lengths for the rectangular prism shaped environment that
simulated agents are restricted to, in simulation coordinates. The number of agents and the
volume of the simulation must be balanced appropriately, as increasing the agent density
drastically increases the task difficulty. Too large of a simulation will not allow agents to learn
collision avoidance, too small will hinder learning. 40 m x 40 m x 40 m was found to be a good

middle-point for 5 agents with uniformly distributed agents and targets.

e Max Velocity - Maximum velocity that agent velocity setpoints can be. Attempts to increase
the setpoint past this value will clip the setpoint to the set maximum velocity. 20 m/s was
found to be sufficiently high that it never actually clipped any movement actions, as the
simulation space is only 40 m across, the velocity step size is 1 m/s/step, and steps only occur

at roughly 2 Hz.

e Velocity Step Size - How large each change to an agent’s relative velocity setpoint is per
action. This value corresponds to how rapidly agents are able to accelerate. Larger values

allow for more nimble, faster agents at the expense of movement precision. 1 m/s/step was

49

found to work well with the rate of actions, which (calculated from the Simulation Frame Rate

and Frames per Step) is about 2 Hz.

e Simulation Frame Rate - How many physics engine updates per second of clock time. This
value is locked at 120 Hz by Unreal Engine, though notably degrades if the application is not
focused or if the computer running the application is unable to keep up with the computation
rate. Can be modified in effect by altering the ratio of clock time to simulation time, though
such changes were found to have other negative effects as discussed further in Appendix A.

Such efforts were not pursued further than initial experimentation.

e Frames per Step - Number of simulation frames before a new action is given to agents.
Chosen to be 50 due to initial belief that the simulation frame rate was 100 Hz, resulting in
an action rate of 2 Hz. Once it was discovered that the simulation frame rate was actually 120
Hz, the Frames per Step was never corrected as agents seemed to be training effectively at 50

frames per action.

5.2.3 Optimizing Training Performance on Task 1

This section provides training outputs for different training configurations and curriculum
learning schemes used to solve Task 1, including analysis of the learned behaviors. Further conclu-

sions and implications of the included results are discussed in Section 6.

5.2.3.1 Uniformly Distributed Initialization

Initial attempts at training three agents towards Task 1 utilized uniformly distributed targets
and agents within the simulation bounds. However, this configuration suffered from severe gradient
instability. Agent policies updates suffered from high variance and failed to converged towards
behaviors that satisfied the task within the allowed 100 episodes. Despite various efforts restructuring
the reward function, allowing additional training, and significant hyperparameter tuning, the three
agent system did not produce reliable policy updates towards desired behavior. Figure 5.3 shows
the global reward averaged over each episode for one such 100 epoch training runs. As can be seen,
high variance policy updates resulted in high training instability. Note also that the vertical reward

axis is not normalized with respect to episode duration and thus shows five digit reward values.

50

Table 5.2: Hyperparameter List

Task 3 Value

’ Hyperparameter \ Task 1 Value | Task 2 Value
Steps per Batch 4096
Max Steps Per Trace 32
Number of Epochs® 32
Minibatch Size 256
Learning Rate 3e-4
Max Gradient Norm 1.0
PPO Clip Epsilon 0.2
GAE Gamma 0.95 \ 0.90
GAE Lambda 0.95
PPO Entropy le-3 \ entropy disabled
Share Policy Params True
Policy Activation Func ReLU
Policy Network Depth 4
Policy Network Width 256
Share Critic Params True
Critic Activation Func ReLLU
Critic Network Depth 4
Critic Network Width 256
Optimizer Adam
Loss Function ClipPPOLoss
Value Estimator GAE
Simulation Bounds [m)] 40 x 40 x 40
Max Velocity 20 m/s
Velocity Step Size 1m/s
Simulation Frame Rate 120 Hz
Frames per Step 50

2 FEpochs refers to the number of minibatch policy updates performed per collection-training episode.

51

Mean Global Episode Reward

50000 -

40000 - I

30000 -

Reward

20000

10000 A

T
0 20 40 60 80 100
Training lterations

Figure 5.3: Global Return Average For Three Agent 3D Cooperative Navigation with Uniformly
Distributed Initializations. Severe return gradient variance prevents effective training.

This is corrected in future plots. With the un-normalized reward, optimal policies should result in
approximately 600,000 reward per Episode.

It was observed during this preliminary unstable training that the vast majority of time
during data collection was spent 1) resetting the environment after a collision or agent going out
of bounds and 2) with agents flying in seemingly unmotivated directions. The temporal overhead
associated by resetting was lessened by overriding AirSim’s default command to reset a simulation
with custom code that employed agent teleportation rather than flight controller state resets. The
details of this improvement are detailed in Appendix A. The second phenomenon appears to have
been an artifact of the relative velocity setpointing system used to execute agent actions. As each
action increases or decreases a velocity setpoint, fully random policies are significantly biased towards

increasing the agent’s speed. Further, with uniformly distributed targets and agents in a sufficiently

52

large space, linear paths in random directions have a low probability of ever moving close enough to
a target location to obtain a large positive reward. The resulting negative feedback loop results in
agents that are unable to sufficiently explore the space through random actions alone. This problem
is especially severe in a fully three dimensional space. Similar works generally restrict the problem
to two dimensions [80, 75, 51] or utilize a position-based action system [79, 37, 38, 39] that, while

less realistic, is more resilient to this vicious cycle limiting exploration.

5.2.3.2 Enhancing Early Exploration with Curriculum Learning

When presented with the problem of an agent failing to learn in a task that is too difficult,
there are two approaches to lessen the skill-gap: increasing the agent’s capacity to match the task
or decreasing the task’s difficulty to match the agent. Generally, the optimal solution in terms of
final policy performance is some combination of the two. The previous subsection discussed several
methods for increasing agent capacity — tuning hyperparameters, optimizing how the agent effects
or observes the environment, and improving system efficiency to allow for more training steps. This
subsection instead focuses on improving performance by instead reducing task difficulty to match
the agent’s capabilities, then gradually increasing task difficulty back to the original, previously
unsolvable level. This process is referred to in the reinforcement learning community as Curriculum
Learning [20] or Auto-Curriculum Learning [22, 26] when the difficulty is automatically adjusted to
match the agents’ abilities.

For Task 1’s 3D Cooperative Navigation, the primary difficulty of the task originates from
the low probability of random actions receiving positive reward. This is caused by uniformly dis-
tributed targets and agents spread across a large three dimensional space. By varying the average
distance between an agent and their target in the space, one can effectively vary the difficulty of the
task. Further, it is expected that once an agent learns to navigate towards a specific target (repre-
sented by a relative XYZ position value in that agent’s global observation), that agent will be able to
learn from variations of Task 1 with any initial distance between agent and target. The vicious cycle
of restricted early exploration becomes a virtuous cycle as the agent learns to make a first action
towards that agent’s target, as the reward density increases with proximity to their target. Thus,
the first and only necessary curriculum learning step for Task 1 is to modify the target location
initialization distribution to be at a random location within some sphere surrounding that agent’s

initialization. This range was chosen to be between 5.0 and 7.5 meters from the agent, falling well

53

(a) Uniformly Distributed Agents and Targets (b) Curriculum Learning Distributed Agents and
Targets

Figure 5.4: Comparison of Uniform Target Distribution vs Curriculum Learning Target Distribu-
tion. Purple balls show agent initialization points, yellow/orange balls show target locations. The
curriculum learning distribution in (b) has targets initialized 5-10 meters from the agent initializa-
tions.

within the 10 meter range at which the agent begins receiving positive reward from target proximity,
as defined in Table 5.1. Figure 5.4 depicts the system with a uniform target distribution compared
against the 5.0 - 7.5 meter distribution.

Under the easier curriculum learning task, the three Agent team rapidly learns an effective
policy, resulting in the smooth learning curves shown in Figure 5.5. The top left plot shows the
average global reward averaged across each episode, showing a steady, gradual increase as the agents
trained. This smooth plot indicates low variance policy updates and agents that are well suited to
thir given task. The second plot (top row) shows the episode and agent averaged collision reward
for an episode (axis is negative). This curve rapidly plateaus to zero, indicating that agents learned
to completely avoid collisions with other agents. The third and fourth plots (still top row) should be
interpreted in tandem. The third shows the episode and agent averaged reward penalty for proximity
to other agents, the fourth shows the positive reward for proximity to the designated target location.
The target proximity reward plot shows a gradual increase, indicating that agents learned how to
navigate towards their targets quickly and then hover near those targets for the remainder of the

episode. The third plot shows that agents learned to get closer to other agents, which incurred larger

54

Mean Global Episode Reward Mean Collision Episode Reward Mean Nearest Agent Episode Reward Mean Goal Distance Episode Reward
0.000 AN ————————— —
~0.24
ZGoni 045
g —
~0.002 025 0.40
2 -0.003 =028 035
5
-0.004 =927 3o
0
—0.0 E
0.005 0.28 58
5 ~0.006 020
- 0.20
—~
~/ R0 -0.30 !

0 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50
Training lterations Training lterations Training lterations. Training Iterations

Reward
Reward
Reward

Mean Directional Velocity Episode Reward Mean Out of Bounds Episode Reward Mean Mission Duration
10
— 0.00 30 e
28 P
0.002 —0.02 0.8
26
p 0000 . 00K 06 824
H g &
& -0.002 § -o0s @ 22

; €
04 E
F 20
-0.004 7008
V 18

0.2
-0.10

0.0
0 10 20 30 40 50 0 10 20 30 40 50 0.0 0.2 0.4 06 0.8 10 0 10 20 30 40 50

Training lterations Training lterations Training lterations

Figure 5.5: Task 1 Three Agent training curves with (5-7.5) meter target distance. Trained for 50
Episodes. The top left plot shows averaged global reward. The next five (left to right) show the five
reward terms individually. The bottom right plot shows average mission duration.

negative rewards. As the benefit from proximity to a target location outweighed the negative from
proximity to another agent, agents learned to prioritize getting close to their targets.

The second, third, and fourth plot together highlight the importance of a well balanced
reward function. Agents typically learn the largest positive and negative reward values first, then
the lesser reward terms. As seen in the Figure 5.5 plots, agents first learned to prioritize collision
avoidance and to avoid going out of bounds (plot six, second from the left on the bottom row),
then learned to next prioritize navigate to their target locations, and finally learned to do so while
maximizing distance to other agents. Plot five (bottom row, far left) shows the reward term for
velocity towards the target location. While this plot appears quite sharp and unstable, it should be
noted that the scale of the plot is magnitudes smaller than other reward terms. As agents hover
at target locations for the majority of well-trained missions, this velocity term really only impacts
the initial timesteps of moving to a target location (and any overshooting necessary to stay at that
target — see Section 5.2.1.1). The final eighth training plot (bottom right) shows the average mission
duration vs training episodes. As the only ways for an episode to end early are for agents to collide
or for agents to go out of bounds, this plot’s smooth upward arc indicates a similarly smooth learning
of simulation bounds and collision avoidance. Visual inspection of the team’s learned performance
confirmed the graphed findings, with agents effectively moving directly towards target locations and

then hovering until the end of the episode.

55

Mean Global Episode Reward Mean Collision Episode Reward Mean Nearest Agent Episode Reward Mean Goal Distance Episode Reward
2

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Training Iterations Training Iterations Training Iterations Training Iterations

Mean Directional Velocity Episode Reward Mean Out of Bounds Episode Reward Mean Mission Duration

-0.0125 26

Reward

b

°

(4
Time Steps
8OR

[20 40 60 80 0 20 40 60 80 0.0 02 04 06 08 10 0 20 40 60 80
Training lterations Training Iterations Training Iterations

Figure 5.6: Task 1 Five Agent training curves with (5-7.5) meter target distance. Trained for 90
Episodes. The top left plot shows averaged global reward. The next five (left to right) show the five
reward terms individually. The bottom right plot shows average mission duration.

5.2.3.3 Five Agent Curriculum Learning

The success of training Three agents on the curriculum learning task begged the question
of how many agents were capable of learning this easier task at a time. Scalability is a large issue in
Multi-Robot Systems, with system state space, multi-agent variance, and multi-observation variance
each increasing exponentially with the number of agents [41]. Thus, two additional agents were added
to the system and training was repeated, producing the training curves displayed in Figure 5.6.

The five agent team trained and performed quite similarly to the three agent team, with both
sets of training curves exhibiting near identical shapes. However there is a noticeably larger variance
present in the spikier training curves in the five agent case shown in Figure 5.6, indicating slightly
less stable training. Another significant change is that the five agent team never fully learns to avoid
collisions, as seen in the second plot showing the collision reward penalty term, which never quite
plateaus to zero. In addition to the increased number of agents increasing the scale of the problem,
they also increase the agent density, as the simulation space was not increased to accommodate the
extra agents. As the five agent team was able to learn to navigate to their targets but not fully
learn collision avoidance, it was believed that the task and learning methods were well suited to
five agents. As training teams takes very significant real world time investment (approximately 40
minutes of clock time per episode), further scalability assessments were reserved for more interesting

tasks, as discussed later in this thesis.

56

5.3 Task 2: Partially Observable 3D Cooperative Navigation

5.3.1 Expansions on Task 1

Task 1 served to validate that the developed curriculum learning scheme is capable of train-
ing fully three dimensional cooperative navigation teams in AirSim under idealistic conditions. How-
ever, the resulting teams’ policies lack applicability to real world tasks that impose partial observ-
ability, sensor errors and delays, dynamic environments with obstacles, localization error, and other
real-world challenges. For the eventual goal of developing a learnable way for a team of aerial agents
to autonomously detect, observe, and potentially suppress incipient stage wildfires, the Task 1 teams
are insufficient. As suppression and observation are predicated on capable detection, Task 2 focuses
specifically on training a team of aerial agents capable of detecting a set of unknown targets in a
partially observable setting.

Task 2 has two key differences from Task 1. Firstly, Task 2 imposes partial observability
with a basic binary distance filter. The position and velocity of agents and targets within the set
observation radius are fully visible while those outside the radius are not. While not entirely realistic,
modeling partial observability in this manner forces agents to learn behaviors for exploration and
encourages team-oriented behaviors. Task 3 delves deeper into the cooperation required for partial
observability by implementing an inter-agent communication network. The second key difference is
that the targets in Task 2 are no longer specific to any one agent. Any agent is able to receive a
positive reward for being in close proximity to any reward location. This better mirrors real world
observation tasks, where typically and agent is capable of monitoring each target with diminishing
returns for additional agents monitoring the same target. Table 5.3 summarizes the key properties

of the different 3D Cooperative Navigation Tasks variants that are studied in this thesis.

Table 5.3: 3D Cooperative Navigation Task Comparison

’ Property \ Task 1 \ Task 2 \ Task 3
Individual Targets True False False
Observation Distance [m] 00 10 10
Num Communication Channels 0 0 5

Task 2 expands the set of necessary skills that a team needs to learn in order to satisfy the

task. While Task 1 was solvable by agents capable of motivated flight towards a specific target while

57

avoiding collisions with other agents, Task 2 introduces the much more complicated task of target
discovery. Without globally observable states, agents must now work together to identify targets
and then coordinate which agent will fly to which target. Clearly, this task would be best suited
by implementing some form of information sharing through communication between agents. Thus,
Task 2 serves as a communication-less baseline to compare the against the results of Task 3, which

implements a learnable communication scheme.

5.3.2 Learning Scheme

Task 2’s environment and learning scheme are identical to Task 1, with modification made
to enable partial observability and unassigned targets. The necessary modifications are discussed in

the following subsections.

5.3.2.1 Observation Space

Task 2 modifies the base 3D Cooperative Navigation Observation Space in two key ways.
Firstly, the positions and velocities of objects outside of the set observation distance of 10 meters are
zero’d out. Objects within the radius of observation are considered fully visible, returning the same
relative position and velocity information included for Task 1. The second change is to unassign
targets such that any agent is rewarded for proximity to any target. To improve the learnability of
the unassigned targets, any observable targets are sorted by distance from the agent such that the
closest target to an agent appears in the same location in that agent’s observation vector at each

timestep. Applying these two changes, the new observation structure is as follows:
e X, Y, Z position of the agent in simulation coordinates [meters| (always visible)
e X, Y, Z velocity of the agent in simulation coordinates [meters/second] (always visible)
e For each other agent in the simulation (sorted by euclidean distance from the observing agent:

— relative X, Y, Z position of the other agent in simulation coordinates if within 10 meters.

Otherwise (0, 0, 0) [meters]

— X, Y, Z velocity of the agent in simulation coordinates if within 10 meters. Otherwise (0,

0, 0) [meters/second]

58

e For each target location in the simulation (sorted by euclidean distance from the observing

agent:

— relative X, Y, Z position of the target in simulation coordinates if within 10 meters.

Otherwise (0, 0, 0) [meters]

5.3.2.2 Reward Function

The reward function remains largely unchanged from Task 1, with the exception that rj ,,
the goal distance reward term, is modified to use the nearest target within the observation radius
rather than the agent’s assigned target. The remaining unchanged reward terms and their equations

are listed in Table 5.1.

5.3.3 Hyperparameters

Only two hyperparameters were changed between Task 1 and Task 2. Those changes are

detailed below:

¢ GAE Gamma - Discount factor used in Generalized Advantage Estimation. Larger values re-
sult in advantage estimates based more strongly on expected return from future states. Smaller
values focus on the more immediate reward from an action. This value was reduced from 0.95
to 0.90 for Task 2 and Task 3. This reduced agent look-ahead to allow for faster training, dra-
matically improving convergence properties on the more difficult tasks as compared to using

0.95 or 0.99.

e PPO Entropy - Coefficient for optional entropy term in PPO loss. Larger values encourage
more exploration. Task 1 followed [18] and used 1le-3. Due to limitations of torchrl, the PPO
entropy loss term was unused in Task 2 and Task 3. This limitation is discussed further in

Appendix A.

5.3.4 Curriculum Learning Results

As this task is effectively a more difficult variant of Task 1, a similar though more involved
curriculum learning method was implemented. While Task 1 is solvable with the capability to avoid

collisions and the ability to fly towards a target, Task 2 adds the additional requirement of being

59

able to discover targets if there are not any within observation distance. While controlling the
distance that target locations are able initialized with respect to agents provides a means to control
the difficulty of flying towards targets, it does not provide suitable control over the difficulty in
discovering new targets.

To provide this second axis of control, the initialization scheme for target locations is mod-
ified to allow multiple targets to spawn near some agents while others may have no nearby target.
The percentage rate at which a target will be initialized at the ”wrong” agent is referred to as the
Wrong Agent Rate. The number of target locations is still kept equal to the number of agents, so
if an agent spawns without a nearby target, it must explore the space until it finds one that may
or may not be already occupied by another agent. Both agents are able to simultaneously receive a
positive reward for being close to the target, though they will also receive a not insignificant punish-
ment for being close to each other. This may encourage agents to search around for a target that is
unoccupied rather than attempt to share with a teammate. Wrong Agent Rate also teaches agents
about prioritizing targets. An agent may observe two similarly distanced target locations nearby,
and would need to judge which one is optimal to fly towards. This is further complicated if there
are any other agents within observation range. With this new knob available to increase a task’s
difficulty in target discovery, a fresh five agent team was trained using the three curriculum learning

steps outlined in Table 5.4.

Table 5.4: Task 2 Curriculum Learning Steps

Curriculum Target Initialization Wrong Number of
Step Number | Distance (min, max) [m] | Agent Rate | Episodes
#1 (1, 3) 0% 30
#2 (5, 10) 5% 30
#3 (5, 10) 20% 30

As Wrong Agent Rate refers to the percentage chance of each individual target spawning
at a different agent than it would have normally, it is also valuable to consider the chance that
every agent will be initialized near a target as such an initialization is identical to the initialization
used in Task 1 curriculum learning. Table 5.5 lists this percentage for different numbers of agents,

calculated using the geometric distribution in the following Equation 5.2

% Chance = (1 — WAR)™ x 100 (5.2)

60

where % Chance refers to the chance of every agent being initialized near a target, which is equivalent
to the Task 1 curriculum learning initialization scheme, WAR is the wrong agent rate, and N is the
number of agents.

Table 5.5: Wrong Agent Rate vs Chance of Task 1 Initialization

Chance of Task 1 Initialization
Wrong Agent Rate | 3 Agents | 5 Agents | 7 Agents
0% 100% 100% 100%
5% 85.73% 77.37% 69.83%
10% 72.9% 59.04% 47.82%
15% 61.41% 44.37% 32.05%
20% 51.2% 32.76% 20.97%
40% 21.6% 7.77% 2.79%
60% 6.4% 1.02% 0.16%
80% 0.8% 0.03% 0%
100% 0% 0% 0%

Figure 5.7 shows the resulting training curves from the three-step curriculum learning pro-
cess outlines in Table 5.4. For the first 30 training episodes under Curriculum Learning Step #1,
the agents trained with 0% WAR and incredibly close target initializations. This task focused on
teaching the team how to stay within the simulation bounds and how to hover at the closest nearby
target location. Unsurprisingly, the sections of training figures for this step are very similar to those
observed for Task 1. As the team transitioned to Curriculum Learning Step #2, with further targets
and 5% WAR, there is a clear drop in average global reward. This drop is not completely a result
of agents performing worse on the more challenging task, but also a result of missions requiring
more timesteps spent navigating to target locations and less timesteps hovering at those locations.
The most optimal performance on Curriculum Learning Step #2 would receive less reward than
near optimal performance on Curriculum Learning Step #1. With the increase in WAR, it is seen
that agents begin to learn exploration behaviors, as evidenced by the gradual rise in goal distance
reward (top right plot) during episodes 30-60. It is also seen that increase in collisions as Curriculum
Learning Step #2 continues, which is caused by agents attempting to share reward locations too
closely, resulting in collisions.

Without any ability to communicate with one another, and with short mission durations,
agents do not learn how to disperse such that each agent has their own individual target. As a result,

when agents are spawned without a nearby target, they will roam and then hover at the first target

61

Mean Global Episode Reward Mean Collision Episode Reward Mean Nearest Agent Episode Reward Mean Goal Distance Episode Reward
-0.11
0.000

-0.002

~0.004

Reward
Reward

~0.006

o = N W & W

~0.008) 0.20

-1 ~0.010 -0.19

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Training Iterations Training Iterations Training Iterations Training Iterations

Mean Directional Velocity Episode Reward Mean Out of Bounds Episode Reward Mean Mission Duration

~0.0050 it 10

—0.0075 -0.01 26
~0.0100 ~0.02
—0.0125 —0.03

-0.0150 —0.04

Reward
Reward
Time Steps

—0.0175 -0.05 0.4
-0.0200 -0.06

~0.0225 -0.07 0.2 18

~0.0250 -0.08

[20 40 60 80 0 20 40 60 80 0.0 02 04 06 08 10 0 20 40 60 80
Training lterations. Training Iterations Training Iterations

Figure 5.7: Task 2 Five Agent Team Curriculum learning training curves. Trained for 90 total
Episodes,with changing curriculum every 30. The top left plot shows averaged global reward. The
next five (left to right) show the five reward terms individually. The bottom right plot shows average
mission duration.

they find, which is most often already occupied. With strong reward gradients encouraging both
agents to attempt to get as close to the target as possible, collisions occur often. As the learning
shifts to Curriculum Learning Step #3, which increases the WAR to 20%, we see that this problem
worsens slightly, with the average mission duration (bottom left plot) taking a sharp decline at
Episode 60. With the current communication-less configuration, the team appears unable to learn
effective group exploration behaviors.

To provide a difficult evaluation of the behaviors learned during the curriculum learning
steps, the trained team was then briefly fine-tuned on the task with uniformly distributed target
and agent initializations. Further, the maximum mission duration was increased to 256 timesteps
to provide ample time for navigation. The resulting training plot is shown in Figure 5.8. As seen
in the bottom right plot that shows average mission duration, the teams are generally collide before
the mission reaches the full 256 timesteps. This appears to be a result of the suboptimal target
sharing behaviors that were learned previously. With uniform agent and target distributions, it is
quite likely for multiple agents to find themselves attempting to navigate towards the same target
location. This typically results in a collision within a few timesteps as each agent attempts to hover
as close to the target as possible. After visually inspecting several training runs, this theory was
confirmed.

The visual inspection revealed another sub-optimal behavior. When agents find themselves

62

Mean Global Episode Reward Mean Collision Episode Reward Mean Nearest Agent Episode Reward Mean Goal Distance Episode Reward

024
1 -0.0030 -0.006
12 -0.0035 /\ ~0.008 \ //\ 022)
N \ _—
g 10 / ~0.0040 / -0.010 / \/ 020
4 /i N ~0.0045 //\\
H \

//\’—\/ i0:()!)55 /\

Reward

s o0 ®
2
—
[
{
N\
Reward

-0.014
0.16
~0.016
~0.0060

-0.018

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Training Iterations Training Iterations Training Iterations Training Iterations

Mean Directional Velocity Episode Reward Mean Out of Bounds Episode Reward Mean Mission Duration
-0.015 10

~0.020 ¥ /\\ . " //\///

-0.025

\ 52

//\ ~0.030 / \
" \ 6 | = \ o
© —0.0040 /\ § —0.035 \
H /7 \ H
& J X & —0.040 \ \ 04 @
~0.0045 \/ / \ ~0.045
0 2 4 6 8

Time Steps
g
g

~0.050 0.2 46

~0.055

0 2 4 6 8 0.0 02 04 06 08 10 0 2 4 6 8
Training lterations. Training Iterations Training Iterations

Figure 5.8: Task 2 Team Performance fine-tuned on Uniformly Distributed Targets and Agents.
The maximum mission duration was increased from 32 to 256 to provide ample time for navigation.
Reward terms are broken out into individual plots.

without a nearby target, they typically hover in place with slow lateral movement, generally towards
the center of the simulation. The expected more optimized behavior would be for them to search
around the environment until they find an unoccupied target. It is believed that this behavior is
likely caused by the current method of zeroing out observation vector fields for objects that are
outside the radius of observability. With the outlined curriculum learning steps, it is quite likely
that the policy networks are trained to focus almost entirely on navigating in the direction of the
nearest target location. With that nearest target location being zeroed out, the associated network
sections are also zeroed out and unable to contribute meaningfully towards actions. Further training
on curriculum learning tasks may train away from this suboptimal hovering policy, though without
any capacity for memory, agents may not be able to ever achieve fully optimal target discovery

behavior.

5.4 Task 3: Partially Observable 3D Cooperative Navigation

With Networked Agents

5.4.1 Expansions on Task 2

Task 3 includes the same partial observability and unassigned targets as from Task 2, with

an added learnable inter-agent communication network. The various specifics of this implementation

63

are discussed in the following subsections.

5.4.1.1 Action Space

The action space of Task 3 was expanded to include multiple communication actions. In
addition to the discreet movement action, agents provide several floating point values that are com-
municated to other agents on the next time step as a part of their observations. When determining
how many values each agent should be able to communicate to other agents each timestep, there
emerges a balancing act between ensuring that agents have sufficient capacity to communicate nec-
essary information while also maintaining a sufficiently small action and observation space to enable
effective training. A large number of communication channels would require a similarly large agent
policy and critic network to adequately commute actions and value from the increased observation
lengths. To this end, the number of communication channels was initially set to be equal to the

number of agents. Thus, the revised action space is as follows (new items are in bold):

e Movement Action — Discreet value within [1, 7] corresponding to a change in the agent’s relative

velocity setpoint.

e Communication Actions — For each agent in the simulation, append a continuous real-

valued number that is communicated to every other at the start of the following timestep.

5.4.1.2 Observation Space

The Task 3 observation space is expanded to accommodate the added communication ac-

tions, resulting in the following observation space structure (new items are in bold):
e X, Y, Z position of the agent in simulation coordinates [meters] (always visible)
e X, Y, Z velocity of the agent in simulation coordinates [meters/second] (always visible)
e For each other agent in the simulation (sorted by euclidean distance from the observing agent:

— relative X, Y, Z position of the other agent in simulation coordinates if within 10 meters.

Otherwise (0, 0, 0) [meters]

— X, Y, Z velocity of the agent in simulation coordinates if within 10 meters. Otherwise (0,

0, 0) [meters/second]

64

— Communication vector from that agent with length equal to the number of

agents

e For each target location in the simulation (sorted by euclidean distance from the observing

agent:

— relative X, Y, Z position of the target in simulation coordinates if within 10 meters.

Otherwise (0, 0, 0) [meters]

5.4.1.3 Actors

Implementing multiple action types in torchrl version 0.3.0 is not officially supported, requir-
ing several workarounds to implement with computable loss gradients. These different implementation-
specific workarounds are discussed further in Appendix A. One key result of these limitations is that
each communication action must be modeled by some distribution through a stochastic actor. As
such, each communicated value is sampled from a Normal distribution where the average and vari-
ance of the distribution are each additional outputs from the policy network. That is, for every
value that the agent communicates, it requires two separate neural network outputs. The effect of
this distribution sampling is that there will be some inherent stochasticity to communicated values,
especially so during early training. It is expected that after sufficient learning, agents will learn to
minimize the output Gaussian variance such that the network may communicate with higher preci-
sion. Future system evaluations may fix the communication variance parameter to some set value,

modeling a communications channel with some Gaussian error present in the communicated values.

5.4.1.4 Loss Function

To make the communication values learnable, a second Clipped PPO Loss module is added
to the learning loop. For a given batch of collected trajectories, the clipped IPPO loss is calculated
for movement actions and then a second clipped IPPO loss term is calculated for communication
actions. Neural network weights are updated with a step from the Adam optimizer based on the

sum of both action and communication loss gradients.

65

Mean Global Episode Reward Mean Collision Episode Reward Mean Nearest Agent Episode Reward Mean Goal Distance Episode Reward

0 0.000
0,095
03 T -0.0025 ;
02 ~0.002 /_ \/ 0,090
~0.0030
B 01 -0.003 ® ®
H g g § 0085
& oo & —0.004 & -0.0035 &
-01 ~0.005 0.080
~0.0040
-02 -0.006 o7
-03 ~0.007 ~0.0045
o 5 10 15 20 25 30 [J 5 10 15 20 25 30 0o 5 10 15 20 25 30 [} 5 10 15 20 25 30
Training Iterations Training lterations Training Iterations Training lterations
Mean Directional Velocity Episode Reward Mean Out of Bounds Episode Reward Mean Mission Duration
10
— 215
0.0100 —
-0.0125 \ 08 210
~0.0150 FR.020) 205
06 8
T 00175 T ooss g
s s 7 200
& -0.0200 H g
~0.060 94 E 19.5
-0.0225
19.0
~0.0250 / ~0.065 0.2
—0.0275 \/\— a5
-0.070
00

0 5 0 15 20 25 30 0 5 0 15 20 25 3 0.0 02 04 0.6 08 10 o 5 0 15 20 25 30
Training Iterations Training lterations Training lterations

Figure 5.9: Task 3 Initial Training Failure. Trained task 2 team with enabled communication network
was trained on Task 2 Curriculum Learning Step #3. Plots show near-random actions.

5.4.2 Training Performance

Initially, the trained team from Task 2 simply had its communication network enabled.
However, as the communication network constitutes a major portion of agent policy networks, these
efforts were met with failure. The resulting training curve when training the Task 2 team on Task 2
Curriculum Learning Step # 3 is plotted in Figure 5.9. As can be seen in said figure, enabling the
untrained communication network resulted in catastrophic forgetting and near-random actions. The
team was unable to relearn any desired behaviors on Curriculum Learning Step #3, which highlights
the importance of first training on easier task to enable learning on more difficult ones.

Without a pre-trained team with communication capabilities, a new team was trained using
the curriculum learning steps from Task 2 (see Table 5.4), with similar curriculum transitions every
30 epochs. The resulting training plots can be seen in Figure 5.10.

Reviewing Figure 5.10, there is a clear performance increase when providing teams with
interagent communications. Most notably, the team exhibits improved collision avoidance behaviors
as evidenced by plot 2’s (top, second from right) reduced collision penalty and plot 3’s (top, third
from right) penalty for proximity to other agents. This indicates that the team is generally staying
further away from one another, resulting in less collisions. This is further confirmed by visual
inspection of team performance, indicating that agents shared objectives less often and, when they
did share objectives, tended to occupy opposing sides of the target.

The Task 3’s higher average reward (plot 1, top left) results from improved collision avoid-

66

Mean Global Episode Reward Mean Collision Episode Reward Mean Nearest Agent Episode Reward Mean Goal Distance Episode Reward

— Task2: No Comm 0000, —— Task2: No Comm 0.000 T I S Sl 03s — Task2: No Comm
0 —— Task3: With Comm —— Task3: With Comm —0.025 —— Task3: With Comm
—0.002
8 —0.050 0.30
~0.004 —
e 6 ® 0.00¢ ° 0.075 ®
£ £ 2 —0.100 g 023
g a & -0.006] &
-0125
2 020
—0.008 ~0.150
0 75 — Task2: No Comm G
—0.010 —— Task3: With Comm)
-2 ~0.200
o 20 40 60 80 o 20 40 60 80 o 20 40 60 80 o 20 40 60 80
Training Iterations Training Iterations Training lterations Training Iterations
Mean Directional Velocity Episode Reward Mean Out of Bounds Episode Reward Mean Mission Duration
—0.005 10 30
— 28
-0.010 08
—0.015 26
B ~0.020 L g2
H &
— v
§ -0025 o 22
0.030 ¥ E
—o. 20
—0.035 0.2
—— Task2: No Comm -0.07 —— Task2: No Comm 18 —— Task2: No Comm
-0.040 —— Task3: With Comm —0.08 —— Task3: With Comm —— Task3: With Comm
0.0 16
o 20 40 60 80 o 20 40 60 80 0.0 0.2 0.4 0.6 08 10 o 20 40 60 80

Training lterations Training lterations. Training lterations

Figure 5.10: Task 3 Training Performance Vs. Task 2 Training Performance, using the curriculum
learning steps outlined in Table 5.4. The Task 2 team (blue) does not have interagent communication
while the Task 3 team (red) does.

ance rather than improved target proximity. In fact, the team appears to get slightly worse at
occupying targets, as indicated by plot 4 (top right), which shows the reward term for proximity
to target. This is expected, as agents that avoid sharing a target will need to travel further to get
to an unoccupied one. This trend is backed up by the increased average mission duration in plot 8
(bottom right), which shows the Task 3 team episodes last notably longer. This is a direct result of
the improved collision avoidance (both through reduced target sharing and improved pathing) that
interagent communication provides.

It should be noted that adding interagent communications is not without downsides. The
Task 3 training curves are significantly more jagged and variable than the Task 2 curves, which
indicates less stable training. This indicates the importance of appropriately tuning the hyperpa-
rameter for how many floating point values each agent is able to communicate with other agents
at each timestep. Too many values increases observation and action space dimensionality, hinder-
ing training. Too few values limits agent communications and prevents the learning of necessary
coordination behaviors. Further work may investigate training performance as the number of com-
municated values changes, expecting to find some optimal value that balances policy update variance

with task performance.

67

Chapter 6

Discussion and Conclusions

6.1 Summary and Discussion of Simulated Results

6.1.1 Task 1
6.1.1.1 Summary

Task one requires a team of agents to navigate to individual targets with global state ob-
servability. Initially, teams were unable to effectively learn at the task due to insufficient early
exploration of the environment in a negative feedback loop. A curriculum learning scheme was cre-
ated, parameterizing the environment to control the difficulty of finding targets for agents. By first
training on a simpler subtask where agents are initialized in close proximity to their targets, agents
learned effective policies for navigating towards close targets and then hovering at those targets for
the remainder of the episode.

After first training on the easier curriculum learning task, teams showed impressive perfor-
mance on the original task with uniform agent and target distributions, indicating that the easier
curriculum learning task taught sufficient behaviors to enable learning on the more difficult original
task. Notably, training on the curriculum learning task resulted in consistent policy improvements
with low variance in state-value estimates. Teams were able to learn complete collision avoidance,
with the later half of training iterations showing zero collisions. Essentially, a drone that is first
taught how to hover is better equipped to then learn collision avoidance than a randomly initialized

agent.

68

6.1.1.2 Implications

With individually assigned objective locations and global observability, Task 1 aligns with
the real world task of arranging a team of UAVs into desired locations with automated collision
avoidance. This could be achieved using the learned Task 1 policies. A sufficiently configured
centralized coordinator could manage communication with agents to provide accurate positions and
velocities, emulating global state observability. By sending each agent a series of waypoints, the
central coordinator could arrange agents into any desired configuration. As the agents were trained
with uniform agent initializations, the policies should generalize effectively to any 3D pattern or
orientation.

Specific to wildfire management, a team of UAVs might detect a fire and need to move
into specific positions to fully observe burn progression or for organized suppression efforts, like a
sequential deployment of chemical suppressant onto a certain section of fire. A central coordinator (or
some leader-follower drone scheme) would allow the precise positioning in an arbitrary fully three
dimensional space. While the learned policies indicated full collision avoidance in the simulated
results, there was not any testing conducted to evaluate collision avoidance on challenging hand-

picked navigation operations. Future work may include such evaluations.

6.1.2 Task 2

6.1.2.1 Summary

Task two focuses on 3D Cooperative Navigation with partial observability and unassigned
target locations. Agents must learn the same navigation and collision avoidance behaviors as in Task
1, with the addition of learning to first discover targets. To provide an additional knob of control on
the difficulty of target discovery, a new parameter was added to environment initialization: Wrong
Agent Rate. With this, targets were sometimes initialized with a different agent than they would
have been using Task 1 initialization. That is, some agents may be spawned in close proximity to
two or three targets while others may be spawned without a target within observation radius. As
such, a higher Wrong Agent Rate would force agents to learn behaviors for target discovery.

Using the two curriculum learning parameters, a three step curriculum learning plan was
created, aiming to sequentially train agents in navigating towards the nearest target, collision avoid-

ance, and target discovery. Notably, agents had no means of communicating with each other. As

69

such, agents without an observed target would wander generally towards the center of the simulation
until a target was spotted, after which they would quickly fly towards that target. More often than
not, this resulted in the suboptimal behavior of target sharing in which two agents aim to observe
the same target. Both agents receive a negative reward for proximity to each other, which should

train agents to prioritize finding unique targets.

6.1.2.2 Implications

The curriculum learning trained team was evaluated on Task 2 with uniformly distributed
agents and targets, validating the curriculum learning methodology. The team displayed two key
suboptimal behaviors: target sharing and slow searching for new targets. However, the team was able
to continue learning and performing on the uniformly distributed task where a randomly initialized
team would fail. Thus, the curriculum learning methods proved effective at training agents towards
fully three dimensional cooperative navigation with partial observability. With continued training
on the uniformly distributed task or with additional curriculum learning steps, it is expected that
agents would be able to improve policies away from the previously discussed suboptimalities. How-
ever, without systems for agent memory or interagent communication, optimal team-based target

discovery is likely out of reach.

6.1.3 Task 3

Task 3 is identical as Task 2, with an added learnable inter-agent communication network.

6.1.4 Summary

Initial attempts to enable the dormant communication network of the trained Task 2 team
resulted in near-random action selection, as if policy networks were freshly created. This, in retro-
spect, is because they effectively were. The combined movement and communication policy network
was quickly overwhelmed by such a large section suddenly being enabled, immediately devolving
into chaos. The initial failed training efforts served as a potent reminder of the need for curriculum
learning to enable training on 3D Cooperative Navigation.

Subsequent efforts at retraining the network from scratch proved quite successful, with the

Task 3 team’s communication network allowing them to surpass the Task 2 team in all studied met-

70

rics, as was expected. Most notably, the interagent communication network reduced target sharing,
with agents displaying an inclination towards unoccupied targets when feasible. It is expected that
continued training with longer mission durations would eventually fully dissuade target sharing. The
learned reduction in target sharing resulted in a corresponding decrease in collisions between agents,

further highlighting the value of interagent communication.

6.1.5 Implications

Interagent communication is an essential part of real-world cooperative UAV teams. Ef-
fective communication allows UAVs to share critical information such as the location of hotspots,
environmental changes, and strategic maneuvers, which is crucial for coordinated wildfire man-
agement operations. In a dynamic and rapidly evolving wildfire scenario, the ability of UAVs to
communicate in real-time ensures that the team can adapt quickly to changing conditions, distribute
tasks efficiently, and optimize their collective efforts for fire detection, assessment, and suppression.
The success of such a basic learnable interagent communication scheme in this work highlighted both
the potential for improved target discovery and collision avoidance behaviors as well as the training
instability inherent with increasing task complexity. Further work may investigate this tradeoff by
training various teams with different communication capacities, though such robust analysis might
be best tested once simulator computational efficiency has been improved (see Appendix A.3).

Task 3 represents the most realistic 3D Cooperative Navigation task variant studied in this
thesis, including both partial observability and interagent communication. Coupled with the high-
fidelity AirSim simulation environment, the successful end-to-end training of a UAV team in Task 3

represents a promising avenue for future fully-integrated autonomous wildfire response solutions.

6.2 Implications for Wildfire Management

In wildfire management, there is a notable gap between simulated works and real-world
wildfire management operations. This thesis worked towards bridging that gap by employing high-
fidelity simulations in AirSim. In exchange for a significant reduction in computational efficiency,
the developed systems are robust and reliable, increasing the likelihood of successful real-world de-
ployment. The simulation platform developed is modular, with capacity for customized wildfire

environments and camera integration for further increased realism. This adaptability allows re-

71

searchers and practitioners to tailor the simulation to specific scenarios, enhancing its utility and
applicability to various wildfire management challenges.

Furthermore, this work addressed a largely unnoticed gap in related works regarding di-
mensionality. By developing methods to successfully train teams of autonomous agents in fully
three-dimensional Cooperative Navigation, MARL methods become more applicable to wildfire man-
agement tasks. Fully utilizing verticality allows UAV agents to enhance their capabilities for de-
tection, assessment, and even suppression. This added dimension significantly improves the agents’
operational effectiveness, enabling them to navigate complex terrain, gain better vantage points for
monitoring, and deploy suppression mechanisms more efficiently.

The implications of these advancements are profound for wildfire management. Autonomous
UAVs trained through these methods can potentially transform how wildfires are detected and man-
aged, providing rapid, real-time data and intervention capabilities. This can lead to faster response
times, more accurate assessments of wildfire spread and intensity, and more effective deployment of

suppression resources, ultimately reducing the impact and damage caused by wildfires.

6.3 Limitations and Future Research

6.3.1 Vectorized Environments

By far the most significant limitation of the developed simulation environment is a lack
of computational efficiency. AirSim’s linked rendering and physics engine prevented all efforts at
vectoring environments such that multiple simulated teams could train at the same time. Further,
the provided sim-time controls were found to be highly damaging to simulation fidelity. Thus, the
simulations conducted in this work are locked to a 1:1 ratio of sim-time to clock-time.

As reinforcement learning is known for requiring large amounts of data, commonly requiring
millions or tens of millions of timesteps for well-trained agents, this puts the simulated environment
at a severe disadvantage. Optimizations to AirSim’s built-in simulation reset method as well as
a variety of enhancements to early environment exploration were able to make up in part for the
platform’s computational inefficiency. Appendix A.2 goes further into specific improvements. The
employed curriculum learning methods allowed teams to learn complex tasks with access to hundreds
of thousands of timesteps, where traditional learning methods would require millions or fail entirely.

For the three-step curriculum learning method used for Task 2, a total of 90 episodes were employed,

72

each with 4096 timesteps, totaling 368,640 simulated timesteps - a total real-world training time of
approximately 60 hours.

A clear direction for improvement of the platform and work would be to further improve
computational efficiency. Significant efforts have been made towards vectorizing the simulator (see
Appendix A.3), though were ultimately met in failure. The ability to simultaneously train multiple
teams within the simulation would result in dramatic training speedups, without any compromises
to environment fidelity. Such speedups would enable more robust analyses and ablation studies of

the developed methods in realistic time frames.

6.3.2 Imagery-Based Detection

One of the core simplifications of the 3D Cooperative Navigation environments was the use
of radius-based observations (at least for tasks with partial observability). Effectively, if objects
were within some set observation distance of the observing agent, the properties of those objects
are assumed to be fully visible to that agent. Clearly, this assumption is not realistic. Real world
autonomous UAVs will likely depend on a variety of sensor fusions to detection their surround-
ings, predominantly using distance sensors, LIiDAR cameras, visual spectrum cameras, and infrared
cameras. One of the core reasons why AirSim was selected is for it’s superb sensor and camera
integrations. With minor modification, the platform can be reconfigured to instead use onboard
gimbal cameras as input rather than the radius-based observation method.

Given the author’s past works collecting and processing real-world wildfire imagery with
UAVs [23, 15, 11], the environment was designed with the plan to eventually integrate collected
imagery from the FLAME 2 or FLAME 3 datasets into simulations, effectively training simulated
teams to detect and monitor real-world wildfires. Unfortunately, this scheme was never realized as
it was found that camera-based inputs were computationally prohibitive (both in terms of training
difficulty and computation overhead) for the given deadline. Future works would continue these

efforts, bringing the simulated methods closer to real-world wildfire management.

6.3.3 Simulation

One of the main limitations is the reliance on simulated environments, which, despite being

high-fidelity, may not capture all the complexities and unpredictabilities of real-world scenarios and

73

flight dynamics. Future research should focus on bridging this gap by conducting field tests and real-
world evaluations of the developed systems. Integrating Hardware-in-the-Loop (HITL) simulations
within AirSim could be an effective intermediate step. HITL allows for the incorporation of real-
world hardware into the training processes, which can help in identifying and addressing discrepancies
between simulated and real-world performance. By using actual UAVs flight controllers, software
stacks, and other relevant hardware components in conjunction with the simulation environment,
researchers can gain insights into practical challenges such as sensor noise, hardware limitations, and
real-time processing constraints. This approach can simplify the transition from simulation to real-
world deployment by providing a more accurate and practical testing ground for the autonomous

systems.

6.4 Final Thoughts

In conclusion, this research represents a significant step forward in the development of
autonomous systems for wildfire management. By addressing key challenges in three-dimensional
Cooperative Navigation and leveraging the power of multi-agent reinforcement learning and cur-
riculum learning, this study provides valuable insights and tools for future advancements. The
successful training of autonomous agents in complex, three-dimensional tasks not only enhances our
understanding of MARL but also opens new possibilities for improving wildfire response strategies.

As climate change continues to increase the frequency and intensity of wildfires, the need
for innovative and effective solutions has never been more urgent. This research contributes to this
pressing need, offering a promising pathway towards more efficient and effective wildfire manage-
ment practices. By bridging the gap between theoretical simulations and real-world applications,
and by providing a robust and adaptable simulation platform, this thesis lays the groundwork for
future research and development in the field. The integration of autonomous systems into wildfire
management holds the potential to significantly improve response times, operational efficiency, and
overall effectiveness in combating one of the most challenging natural disasters facing our world

today.

74

Appendices

75

Appendix A Lessons Learned and Software Workarounds

A.1 Further Comments on Simulator Choice

The AirSim simulator [58] provides several attractive features for training UAV teams on
realistic wildfire response tasks, many of which were unutilized or underutilized in this work. Several

of the more interesting features are listed:

e Realism — AirSim is built on Unreal Engine, a state of the art simulation and rendering
engine known for its ability to model real-world environments with high fidelity. A wealth
of marketplace assets allows level designers to drop in 3D scans of real world forestry and
other ultra-realistic assets directly into an Unreal Engine stage. When considering the optimal
simulation and rendering engine for creating convincing forest fire recreations, Unreal Engine
is a very strong candidate. This does however come at the cost of computational efficiency,
resulting in some non-ideal properties for multi-agent reinforcement learning, as is discussed

in further sections of this Appendix.

e Camera Integrations — AirSim boasts flexible image collection and manipulation APIs,
which allow the simulator to be used to collect imagery data and to train reinforcement learning
agents on real-time camera feeds. This works especially well when coupled with Unreal Engine’s
capacity for hyper-realism. Further, external real-world imagery can be integrated into training
workflows to allow RL agents to train on real world wildfire data, including multi-spectral
imagery like that in FLAME 1 [61] or FLAME 2 [23]. Such an adequately configured simulator

would further bridge the gap between real-world wildfire tasks and theoretical research works.

e Real-Time Hardware-In-The-Loop (HITL) — A key gap of many theoretical UAV works
is the modeling of conventional UAV flight controllers, which themselves are a source of error
and variance. AirSim allows for HITL with popular hardware platforms such as Pixhawk,
common firmwares such as PX4, and standard messaging protocols like MavLink. This is
not to say that AirSim is unique in providing real-time HITL. The Gazebo simulator [30] has
several packages including Hector [35] and RotorS[21] that can be modified to provide similar

functionality.

e Wind and Weather APIs — AirSim includes programmatic control over some basic weather/environmental

aspects including simulated time of day, wind, rain, snow, dust, and fog. Such variable condi-

76

tions would allow the training of more generalizable, robust RL agents that are able to operate
in uncertain environments. Further, if the provided weather controls are unsuitable for an
application, additional weather effect plugins can be installed from the Unreal Marketplace

and dropped into Unreal stages to provide more flexibility.

A.2 Resetting AirSim

One of the basic requirements for any reinforcement learning environment is the ability
to reset and reinitialize the environment state and any agent states. Such a routine is expected
to be called thousands of times over the course of a typical training regime, and is thus desired
to be computationally effective and minimally invasive. As is discussed further in the following
Appendix A.3, simulation resetting is also desired to be localized to a specific agent, team, or
environment within a simulation as to enable parallel training. AirSim’s provided API call for
resetting a simulation (both environment and agents) is workable, though generally inefficient at
this task, especially in a multi-agent setting.

AirSim’s reset API is applied to the whole simulation including all agents within. Effectively,
it restarts a new instance of the simulation, resetting each agent position to preset fixed points as
well as resetting each agent’s simulated flight controllers. Thus, for a task that requires any form of
random initialization, there must be some added customized code to have each agent arm, takeoff,
and then navigate to the desired starting locations. This is quite costly, adding a significant temporal
overhead to collect what may be very brief trajectories.

To enable the trainings presented in this thesis, a more efficient reset functionality was
created. AirSim provides the ability to teleport agents to arbitrary coordinates in simulation, though
notably they do not provide the ability to reset flight controllers. Without a means to reset agent
flight controllers, the typical behavior when teleporting a UAV agent is that the agent will crash or
ignore further commands due to flight controller failures. To avoid these limitations, the created reset
command first commands agents into a slow vertical ascent (2 meters/second) for approximately
a second before the teleport is enacted to ensure that agents have a relatively consistent flight
controller state before teleportation. Immediately after teleportation, the agents are commanded to
hover, allowing a second or two for internal flight controller states to settle. This process has been
found to allow arbitrary individualized agent reinitialization without invoking AirSim’s provided

reset command, with generally lower overhead. It is noted that AirSim’s reset command is called

77

every 1000 team resets to hard reset flight controller states. It is suspected that repeated soft resets

may accumulate error over time, potentially resulting in inconsistent agent behaviors.

A.3 AirSim in Parallel

The largest limitation of employing AirSim for reinforcement learning tasks is certainly the
lack of parallelization. Certain workaround allow the running of multiple simulation processes at a
time on a single computer, though such efforts are typically met with computation slowdown rather
than improvement, as the multiple processes compete for resources. Throughout the creation of
this thesis, significant efforts were dedicated towards creating a means of training multiple teams of
UAVs simultaneously within the same simulation. These efforts were mostly unsuccessful, as there
was no ready solution for resetting individual teams without impacting the training of other teams.
The reason for this can be found by investigating the procedure used to step an environment within

the simulation:
1. Pause the simulation (if not already paused)
2. Send each agent their individual actions
3. Unpause the simulation and continue for 50 frames
4. Pause the simulation
5. Calculate observations, rewards, and collisions for each agent.

While designing some centralized synchronous stepper to simultaneously step multiple envi-
ronments within a single simulation is feasible, the author was unable to devise a reasonable means
of resetting a single environment (see the procedure outlined in the above Appendix A.2) that would
not interfere with the stepping of other environments. It is a requirement of many stacked environ-
ment wrappers (torchrl, PettingZoo, SuperSuit, etc.) that stacked environments are able to be reset
individually. Thus, the effort to allow for multiple teams to train within AirSim simultaneously was

eventually abandoned.

A.4 Simulation Time vs Clock Time

AirSim has a linked physics and render engine through Unreal, which can cause difficulty

when attempting to improve computation efficiency. The physics engine runs at 120 Hz, with a

78

default 1:1 ratio of simulated time to clock time. When the application is not focused or if the
operating machine is under significant computational load, the physics engine refresh rate will drop,
resulting in slower simulation time than real-time. AirSim provides some limited controls to increase
the simulation speed above real-time. That is, rather than 120 simulation update ticks being equal
to one real simulated second, 90 or 60 simulation updates might be made per simulated second,
resulting in a 1.5 or 2.0 ratio between simulated time and clock time. While such speed increases
allow for faster training, they come at the cost of fidelity. Faster simulations are less accurate,
and it was found that the difference between simulation timings was sufficient for teams trained at
2:1 sim-time to clock-time were unable to demonstrate equivalent performance on 1:1 sim-time to
clock-time. As a result, all simulations in this thesis were conduced using the default 1:1 sim-time to
clock-time ratio. The remainder of this section is used to provide some basic temporal measurements
and calculations of the created 3D Cooperative Navigation AirSim environments.

For the training configurations used in this thesis, it was typical for an episode of 4096

training steps to take approximately 41 minutes on an unloaded system!

. Given a physics engine
target of 120 Hz and 50 frames per simulation step, a 4096 training step episode should ideally take
1706.67 seconds or 28.44 minutes. Thus, the created environment has approximately a 30% temporal
overhead for environment resetting, model weight updates, and intermittent computation slowdown

from competing processes. For the three stage curriculum learning process outlined for Task 2, 90

episodes each at 40 minutes results in approximately 60 hours total training time.

A.5 From PettingZoo to TorchRL

The most popular python package for single-agent reinforcement learning (SARL) is Ope-
nAD’s Gymnasium [14], which establishes a framework for defining and interacting with single-agent
RL environments. For multi-agent reinforcement learning (MARL), the Farama Foundation provides
PettingZoo [66], a python package designed as a multi-agent extension of Gymnasium. PettingZoo
introduces two MARL environment concepts: ”Parallel Environments” and ” Agent Environment
Cycle (AEC) Environments”. Parallel environments apply to tasks where every agent acts and
observes simultaneously. AEC environments describe turn based games where agents act and ob-
serve sequentially. PettingZoo also provides several wrappers to provide compatibility with popular

SARL Python libraries, such as Stable-baselines3 [52] and Supersuit[67]. Stable-baselines3 provides

LCPU: i7-10700K, GPU: RTX 3070ti, RAM: 32 GB, OS: Windows 10

79

ready-access benchmarks, algorithms, and evaluations for SARL tasks, and was initially intended
to be used with this project. Similarly, Supersuit provides wrappers for environment paralleliza-
tion/stacking as well as some imagery manipulations for training RL agents with camera inputs and
was intended for use in this thesis.

Initial efforts at training agents towards 3D Cooperative Navigation in AirSim employed a
custom made PettingZoo Parallel API environment. While the environment’s base functionalities
all worked as desired, AirSim requires the use of a MultirotorClient object to send and receive in-
formation from the simulator. This object depends on future objects and python’s asynchronous
communication library to manage the connection between python code and the Unreal Engine simu-
lation. Notably, this MultirotorClient object is incompatible with the commonly used python object
packing library Pickle and/or Cloudpickle. It was discovered that many of PettingZoo’s and Super-
suit’s environment wrappers have hidden dependencies on either the Pickle or Cloudpickle libraries,
preventing the usage of Supersuit and Stable-baselines3 with the created PettingZoo environment.
Despite various attempted workarounds such as RLLib [36] and other online ”solutions”, resolving
these incompatibilities proved unworkable.

After several weeks of debugging, TorchRL [13] was discovered as a near drop-in solution.
TorchRL is an open-source reinforcement learning python library developed by Meta in 2022 that
is built directly on pytorch [49], one of the most popular machine learning python frameworks.
TorchRL employs a ”dataset pillar” approach that provides excellent modularity and top-notch
compatibility with other RL libraries. Further, this approach considers both multi-agent tasks as
well as vectorized environments to both be simply another dimension to the data tensors. For a
programmer well-versed in tensor operations, the framework can be used for powerful operations with
relatively minimal learning overhead. Their provided wrapper for PettingZoo environments allowed
for the previously created 3D Cooperative Navigation environment to be used with TorchRL modules
with minimal required modification. Within a day or two of setup, the environment was configured

to train a team of agents using TorchRL and pytorch.

80

Bibliography

[1]
2]

3]

AmpliCam — Wildfire Detection Systems. https://www.amplicam.com/.

Geostationary Operational Environmental Satellites (GOES)R Series. https://www.goes-r.
gov/multimedia/dataAndImageryVideosGoes-17.html.

Prescribed fire — US Forest Service. https://www.fs.usda.gov/managing-land/
prescribed-fire.

Wildfire Detection Systems - Forest Fire Smoke Automatic Detection - SMOKED. https:
//smokedsystem. com/.

Wildfires and acres — National Interagency Fire Center. https://www.nifc.gov/
fire-information/statistics/wildfires.

ALERT Wildfire. https://wuw.alertwildfire.org/, 2018.

F. Afghah, M. Zaeri-Amirani, A. Razi, J. Chakareski, and E. Bentley. A coalition formation
approach to coordinated task allocation in heterogeneous (UAV) networks. In IEEE American
Control Conference (ACC’18), June 2018.

Fatemeh Afghah. Autonomous unmanned aerial vehicle systems in wildfire detection
and management-challenges and opportunities. In Erik Blasch, Frederica Darema, and Alex
Aved, editors, Dynamic Data Driven Applications Systems, pages 386-394, Cham, 2024.
Springer Nature Switzerland.

Fatemeh Afghah, Abolfazl Razi, Jacob Chakareski, and Jonathan Ashdown. Wildfire monitoring
in remote areas using autonomous unmanned aerial vehicles. In IEFE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 835-840,
2019.

V G Ambrosia, S Wegener, D V Zajkowski, S Buechel, F Enemoto, E Hinkley, B Lobitz, and
S Schoenung. The Tkhana UAS western states fire imaging missions: from concept to reality
(2006-2010). Geocarto Int. J., 26:85-101, 2011.

Julia Boone, Bryce Hopkins, and Fatemeh Afghah. Attention-guided synthetic data augmenta-
tion for drone-based wildfire detection. In IEEE INFOCOM 2023-IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), pages 1-6. IEEE, 2023.

Sayed Pedram Haeri Boroujeni, Abolfazl Razi, Sahand Khoshdel, Fatemeh Afghah, Janice L.
Coen, Leo O’Neill, Peter Fule, Adam Watts, Nick-Marios T. Kokolakis, and Kyriakos G.
Vamvoudakis. A comprehensive survey of research towards ai-enabled unmanned aerial sys-
tems in pre-, active-, and post-wildfire management. Information Fusion, 108:102369, 2024.

81

[13]

[22]

[23]

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng
Yang, Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library
for pytorch. arXiv preprint arXiv:2306.00577, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Xiwen Chen, Bryce Hopkins, Hao Wang, Leo O’Neill, Fatemeh Afghah, Abolfazl Razi, Peter
Fulé, Janice Coen, Eric Rowell, and Adam Watts. Wildland fire detection and monitoring using
a drone-collected rgh/ir image dataset. IEEE Access, 10:121301-121317, 2022.

United States Joint Economic Committee. Climate-exacerbated wildfires cost the U.S. between
394t0893 billion each year in economic costs and damages, 10 2023.

DataCluster Labs. Fire and smoke dataset, 2021.

Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk,
Philip HS Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need
in the starcraft multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Dincer, Baris. Wildfire detection image data, 2021.

Jeffrey L Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48(1):71-99, 1993.

Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Robot Operating Sys-
tem (ROS): The Complete Reference (Volume 1), chapter RotorS—A Modular Gazebo MAV
Simulator Framework, pages 595-625. Springer International Publishing, Cham, 2016.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Auto-
mated curriculum learning for neural networks. In international conference on machine learning,
pages 1311-1320. Pmlr, 2017.

Bryce Hopkins, Leo O’Neill, Fatemeh Afghah, Abolfazl Razi, Eric Rowell, Adam Watts, Peter
Fule, and Janice Coen. Flame 2: Fire detection and modeling: Aerial multi-spectral image
dataset, 2022.

Qiyuan Huang, Abolfazl Razi, Fatemeh Afghah, and Peter Fule. Wildfire spread modeling with
aerial image processing. In 2020 IEEE 21st International Symposium on ”A World of Wireless,
Mobile and Multimedia Networks” (WoWMoM), pages 335-340, 2020.

Shafkat Islam, Qiyuan Huang, Fatemeh Afghah, Peter Fule, and Abolfazl Razi. Fire frontline
monitoring by enabling uav-based virtual reality with adaptive imaging rate. In 2019 53rd
Asilomar Conference on Signals, Systems, and Computers, pages 368-372, 2019.

Mingi Sebastian Jiang. Learning Curricula in Open-Ended Worlds. PhD thesis, UCL (University
College London), 2023.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pages 267274,
2002.

Ali Khan and Bilal Hassan. Dataset for forest fire detection, August 2020.

Sahand Khoshdel, Qi Luo, and Fatemeh Afghah. Pyrotrack: Belief-based deep reinforcement
learning path planning for aerial wildfire monitoring in partially observable environments, 2024.

82

[30]

[34]

[35]

[39]

[40]

N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149-2154 vol.3, 2004.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and K. Miiller,
editors, Advances in Neural Information Processing Systems, volume 12. MIT Press, 1999.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79-86, 1951.

Christos Kyrkou and Theocharis Theocharides. Emergencynet: Efficient aerial image classifi-
cation for drone-based emergency monitoring using atrous convolutional feature fusion. IFEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:1687-1699,
2020.

Kyrkou, Christos and Theocharides, Theocharis. Deep-learning-based aerial image classification
for emergency response applications using unmanned aerial vehicles, 2019.

Junheng Li and Quan Nguyen. Force-and-moment-based model predictive control for achieving
highly dynamic locomotion on bipedal robots. In 2021 60th IEEE Conference on Decision and
Control (CDC), pages 1024-1030. IEEE, 2021.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. RLIlib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

Suhyeon Lim, Heejung Yu, and Howon Lee. Optimal tethered-uav deployment in a2g com-
munication networks: Multi-agent g-learning approach. IFEE Internet of Things Journal,
9(19):18539-18549, 2022.

Xiao Liu, Yuanwei Liu, and Yue Chen. Reinforcement learning in multiple-uav networks: De-
ployment and movement design. IEEE Transactions on Vehicular Technology, 68(8):8036-8049,
2019.

Xiao Liu, Yuanwei Liu, Yue Chen, and Lajos Hanzo. Trajectory design and power control for
multi-uav assisted wireless networks: A machine learning approach. IEEE Transactions on
Vehicular Technology, 68(8):7957-7969, 2019.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrasting centralized and
decentralized critics in multi-agent reinforcement learning. arXiv preprint arXiv:2102.04402,
2021.

Luis Merino, Fernando Caballero, Jose Ramiro Martinez de Dios, Ivan Maza, and Anibal Ollero.
Automatic forest fire monitoring and measurement using unmanned aerial vehicles. 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Earth Science Data Systems Nasa. MODIS — EarthData. https://www.earthdata.nasa.
gov/sensors/modis.

83

[45]

[46]
[47]
[48]

[49]

Earth Science Data Systems Nasa. VIIRS — EarthData. https://www.earthdata.nasa.gov/
sensors/viirs.

Moses Olafenwa. FireNET, August 2019.
Ritu Pande. Fire Detection from CCTV, 2019.

Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and Angela P. Schoellig.
Learning to fly—a gym environment with pybullet physics for reinforcement learning of multi-
agent quadcopter control. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 7512-7519, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An impera-
tive style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Han Qie, Dianxi Shi, Tianlong Shen, Xinhai Xu, Yuan Li, and Liujing Wang. Joint optimization
of multi-uav target assignment and path planning based on multi-agent reinforcement learning.
IEEE Access, 7:146264-146272, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021.

RAIN. Autonomous aircraft for wildfire response. /urlhttps://www.rain.aero/.

Pol Rosello and Mykel J Kochenderfer. Multi-agent reinforcement learning for multi-object
tracking. In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, pages 1397-1404, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint

arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXwv preprint arXiv:1707.06347, 2017.

Dhruvil Shah. Fire detection, July 2020.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual
and physical simulation for autonomous vehicles, 2017.

Alireza Shamsoshoara and Fatemeh Afghah. Airborne Fire Detection and Modeling Using Un-
manned Aerial Vehicles Imagery: Datasets and Approaches, pages 525-550. Springer Interna-
tional Publishing, Cham, 2023.

Alireza Shamsoshoara, Fatemeh Afghah, Abolfazl Razi, Liming Zheng, Peter Z Fulé, and Erik
Blasch. Aerial imagery pile burn detection using deep learning: The flame dataset. Computer
Networks, 193:108001, 2021.

Alireza, Shamsoshoara, Fatemeh Afghah, Abolfazl Razi, Liming Zheng, Peter Fulé, and Erik
Blasch. The flame dataset: Aerial imagery pile burn detection using drones (uavs), 2020.

84

[62]

[63]

[64]

[65]

[76]
[77]

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387-395. Pmlr, 2014.

Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza. Flight-
mare: A flexible quadrotor simulator. In Conference on Robot Learning, pages 1147-1157.
PMLR, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Advances in neural informa-
tion processing systems, 12, 1999.

J. K. Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sul-
livan, Luis Santos, Rodrigo Perez, Caroline Horsch, Clemens Dieffendahl, Niall L. Williams,
Yashas Lokesh, and Praveen Ravi. Pettingzoo: Gym for multi-agent reinforcement learning,
2021.

J. K. Terry, Benjamin Black, and Ananth Hari. Supersuit: Simple microwrappers for reinforce-
ment learning environments, 2020.

UAVOS. UAVOS deploys UVH 170 unmanned helicopter for wildfire support.
/urlhttps:/ /www.uavos.com/uavos-deploys-uvh-170-unmanned-helicopter-for-wildfire-
support/, 4 2024.

Alberto Viseras, Michael Meissner, and Juan Marchal. Wildfire front monitoring with multiple
uavs using deep g-learning. IEEE Access, 2021.

Tian Wang, Ruoxi Qin, Yang Chen, Hichem Snoussi, and Chang Choi. A reinforcement learning
approach for uav target searching and tracking. Multimedia Tools and Applications, 78:4347—
4364, 2019.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279-292, 1992.

Adam C. Watts, Vincent G. Ambrosia, and Everett A. Hinkley. Unmanned aircraft systems in
remote sensing and scientific research: Classification and considerations of use. Remote Sensing,
4(6):1671-1692, 2012.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229-256, 1992.

H. Wu, , H. Li, A. Shamsoshoara, A. Razi, and F. Afghah. Transfer learning for wildfire
identification in uav imagery. In 54th Annual Conference on Information Sciences and Systems
(CISS), 2020.

Zhaoyue Xia, Jun Du, Jingjing Wang, Chunxiao Jiang, Yong Ren, Gang Li, and Zhu Han. Multi-
agent reinforcement learning aided intelligent uav swarm for target tracking. IEEE Transactions
on Vehicular Technology, 71(1):931-945, 2022.

XPrize. XPRIZE Wildfire Competition. /urlhttps://www.xprize.org/prizes/wildfire, 4 2024.

Hongyi Zhang, Zhigiang Qi, Jingya Li, Anders Aronsson, Jan Bosch, and Helena Holmstrém
Olsson. 5g network on wings: A deep reinforcement learning approach to the uav-based inte-
grated access and backhaul. arXiv preprint arXiv:2202.02006, 2022.

85

[78] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Bagar. Fully decentralized
multi-agent reinforcement learning with networked agents, 2018.

[79] Wengi Zhang, Qiang Wang, Xiao Liu, Yuanwei Liu, and Yue Chen. Three-dimension trajectory
design for multi-uav wireless network with deep reinforcement learning. IEEE Transactions on
Vehicular Technology, 70(1):600-612, 2021.

[80] Wenhong ZHOU, Jie LI, Zhihong LIU, and Lincheng SHEN. Improving multi-target cooperative
tracking guidance for uav swarms using multi-agent reinforcement learning. Chinese Journal of
Aeronautics, 35(7):100-112, 2022.

86

	Training UAV Teams with Multi-Agent Reinforcement Learning Towards Fully 3D Autonomous Wildfire Response
	Recommended Citation

