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1 I N T R O D U C TI O N

G r a p h n e u r al n et w o r k s ( G N N s) h a v e a c hi e v e d c o n si d e r a bl e
s u c c e s s i n st ati c g r a p h r e p r e s e nt ati o n l e a r ni n g f o r m a n y
t a s k s [ 1]. M a n y e xi sti n g st u di e s, s u c h a s S T G C N [ 2] a n d
G r a p h W a v e N et [ 3], h a v e s u c c e s sf ull y e xt e n d e d G N N s t o
ti m e s e ri e s f o r e c a sti n g. A m o n g t h e s e m et h o d s, eit h e r fi r st-
o r d e r a p p r o xi m ati o n of C h e b y C o n v [ 4] o r g r a p h diff u si o n
[ 5] i s t y pi c all y u s e d t o m o d el ti m e s e ri e s r el ati o n s, w h e r e a
st r o n g a s s u m pti o n of l o c al h o m o p hil e s – a p r o p e rt y w h e r e
c o n n e ct e d n o d e s a r e a s s u m e d t o h a v e si mil a r f e at u r e s o r
st at e s – i s m a d e [ 6]. T hi s a s s u m pti o n i s i n h e r e nt i n t h e s e
m et h o d s w h e r e t h e g r a p h c o n v ol uti o n i s a p p r o xi m at e d
b y a g g r e g ati n g i nf o r m ati o n f r o m n ei g h b o ri n g n o d e s. T h u s,
t h e y a r e o nl y c a p a bl e of m o d eli n g p o siti v e c orr el ati o n s
b et w e e n ti m e s e ri e s t h at e x hi bit st r o n g si mil a riti e s, a n d w e

• Mi n g Ji n a n d S hir ui P a n are wit h t he S c h o ol of I nf or m ati o n a n d C o m m u-
ni c ati o n Te c h n ol o g y, Grif fit h U ni versit y, G ol d C o ast, A ustr ali a. E- m ail:
mi n gji ne d u @ g m ail. c o m, s. p a n @ grif fit h.e d u. a u;

• G u a n gsi S hi a n d Y u a n- F a n g Li are wit h t he De p art me nt of D at a S cie n ce
a n d AI, M o n as h U ni versit y, Mel b o ur ne, A ustr ali a. E- m ail: { g u a n gsi.s hi,
y u a nf a n g.li } @ m o n as h.e d u;

• B o Xi o n g is wit h I nter n ati o n al M a x Pl a n k Rese arc h S c h o ol f or I ntelli ge nt
S yste ms a n d t he U ni versit y of St utt g art, St utt g art, Ger m a n y. E- m ail:
b o. xi o n g @ ki. u ni-st utt g art. de;

• Ti a n  Z h o u is  wit h  Ali b a b a  Gr o u p,  H a n g z h o u,  C hi n a.  E- m ail:
ti a n. zt @ ali b a b a-i n c. c o m;

• Fl or a D. S ali m is wit h t he S c h o ol of C o m p uter S cie n ce a n d E n gi-
neeri n g, U ni versit y of Ne w S o ut h W ales, S y d ne y, A ustr ali a. E- m ail:
fl or a.s ali m @ u ns w.e d u. a u;

• Li a n g Z h a o is wit h t he De p art me nt of C o m p uter S cie n ce at E m or y
U ni versit y, Atl a nt a, U S A. E- m ail: li a n g. z h a o @e m or y.e d u.

• Li n gfei  W u is  wit h  A n yti me. AI,  Ne w  Yor k,  U S A.  E- m ail:
te d d y.lf w u @ g m ail. c o m.

• Qi n gs o n g We n is wit h S q uirrel Ai Le ar ni n g, Belle v ue, U S. E- m ail:
qi n gs o n ge d u @ g m ail. c o m.

• Mi n g Ji n a n d G u a n gsi S hi c o ntri b ute d e q u all y t o t his w or k.
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Fi g. 1: Diff e r e ntl y si g n e d s p ati al r el ati o n s b et w e e n ti m e
s e ri e s i n a r e al- w o rl d t r af fi c ( P e M S 0 7) d at a s et. L eft : Vi s u-
ali z ati o n of f o u r r a n d o ml y s el e ct e d t r af fi c s e n s o r r e a di n g s.
Ri g ht : S p ati al r el ati o n s b et w e e n ti m e s e ri e s m a y b e diff e r e nt
i n t w o wi n d o w s ( e. g., A a n d B a r e p o siti v el y a n d n e g ati v el y
c o r r el at e d i n wi n d o w s 1 a n d 2, r e s p e cti v el y), w h e r e t h e
( w ei g ht e d) e d g e s b et w e e n t h e s e n s o r s n o r m all y i n di c at e
t h ei r c o r r el ati o n st r e n gt h s b ut n ot r e fl e ct t h e si g n s. U nli k e
m o st s p ati o-t e m p o r al G N N s t h at a g g r e g at e t h e n ei g h b o r-
h o o d i nf o r m ati o n wit h o ut c o n si d e ri n g c o r r el ati o n si g n s,
s p e ct r al-t e m p o r al G N N s g o b e y o n d l o w- p a s s filt e ri n g b y
l e a r ni n g t o a g g r e g at e o r diff e r e nti at e s u c h i nf o r m ati o n.

d e n ot e t hi s b r a n c h of m et h o d s a s m e s s a g e- p a s si n g- b a s e d
s p ati o-t e m p o r al G N N s ( M P- S T G N N S ). N e v e rt h el e s s, h o w
t o m o d el r e al- w o rl d m ulti v a ri at e ti m e s e ri e s wit h c o m-
pl e x s p ati al d e p e n d e n ci e s t h at e v ol v e r e m ai n s a n o p e n
q u e sti o n. T hi s c o m pl e xit y i s d e pi ct e d i n Fi g. 1 wit hi n a
wi d el y a d o pt e d r e al- w o rl d t r af fi c d at a s et, i n w hi c h diff er-
e ntl y si g n e d r el ati o n s b et w e e n ti m e s e ri e s a r e e vi d e nt. F o r
e x a m pl e, i n t h e fi r st wi n d o w ( w 1 ) of t r af fi c v ol u m e, t h e
r e a di n g s f r o m s e n s o r A a n d B a r e p o siti v el y c o r r el at e d, b ut
t hi s i s n ot t h e c a s e i n t h e s e c o n d wi n d o w (w 2 ) of d at a.

E xi sti n g M P- S T G N N S oft e n st r u g gl e wit h c a pt u ri n g
c o m pl e x, d y n a mi c r el ati o n s hi p s i n ti m e s e ri e s d at a, a n d
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their limitations stem from a lack of expressiveness, which
we define as the ability of a model to accurately represent
a wide range of temporal and spatial dependencies within
the data. The expressive power of a spatio-temporal GNN
is crucial for effective time series forecasting because it
determines the model’s capacity to capture intricate patterns
and relationships that are inherent in real-world time se-
ries. Spectral-temporal GNNs (SPTGNNS), as an advanced
abstraction of MP-STGNNS, shed light on modeling dif-
ferently signed time series correlations by approximating
graph convolutions with a broad range of graph spectral
filters beyond low-pass filtering [7], [8]. This is evidenced
by a recent work [9] in multivariate time series forecast-
ing. Although it demonstrated competitive performance,
the theoretical foundations of SPTGNNS remain under-
researched, which hinders the understanding of SPTGNNS
and the development of follow-up research within this
model family. Accordingly, in this research, we identify
several unresolved fundamental questions:

Q1. What is the general formulation of SPTGNNS?

Q2. How expressive are SPTGNNS in modeling time series data?

Q3. When does this model family fail to generalize well?

Q4. How to design provably expressive SPTGNNS for effective

time series forecasting?

In this work, we establish a series of theoretical results
summarized in Fig. 2 to answer these questions. We begin
by formulating a general framework of SPTGNNS (Q1;
Sec. 4.1), and then prove its universality of linear models
(i.e., linear SPTGNNS are powerful enough to represent
arbitrary time series) under mild assumptions through the
lens of discrete-time dynamic graphs (DTDGs) [10] and
spectral GNNs [13]. We further discuss related constraints
from various aspects (Q3; Sec. 4.2) to make our theorem
useful in practice on any valid instantiations. After this, we
extend the classic color-refinement algorithm [14] on DT-
DGs and prove that the expressive power of SPTGNNS is
theoretically bounded by the proposed temporal 1-WL test
(Q2; Sec. 4.2). To answer the last question (Q4; Sec. 4.3), we
prove that under mild assumptions, linear SPTGNNS are
sufficient to produce expressive time series representations
with orthogonal function bases and individual spectral fil-
ters in their graph and temporal frequency-domain models.
Our results, for the first time, unravel the capabilities of
SPTGNNS and outline a blueprint for designing powerful
GNN-based time series models.

Drawing from and to validate these theoretical insights,
we present a straightforward, yet effective and novel SPT-
GNN instantiation, named TGGC (short for Temporal Graph
Gegenbauer Convolution), that well generalizes the related
work in time series forecasting, such as STGCN [2] and
StemGNN [9]. Though our primary goal is not to achieve
state-of-the-art performance, our method, remarkably, is
very efficient and significantly outperforms numerous ex-
isting models on several time series benchmarks and fore-
casting settings with minimal designs. The proposed TGGC
building block encompasses only simple linear spatial and
temporal frequency-domain models. Comprehensive exper-

Summary of the theoretical results

SPTGNNS ⪰ Linear SPTGNNS Prop. 1
Linear SPTGNNS is universal under mild conditions Thm. 1
Linear SPTGNNS ⪯ Temporal 1-WL test Thm. 2
Temporal 1-WL test identifies non-isomorphic nodes Prop. 2
Conditions of non-isomorphic node pairs in DTDGs Prop. 3
Constructing graph spectral filters in linear SPTGNNS Thm. 3
Choosing function bases in temporal space projections Lem. 1
Linear reduced-order TSFs ∼= Linear TSFs Lem. 2
Constructing temp. spectral filters in linear SPTGNNS Thm. 4

Fig. 2: An overview of the theoretical results in this work.

iments on synthetic and real-world datasets demonstrate
that: (1) our approach excels at learning time series re-
lations of different signs compared to MP-STGNNS; (2)
our design principles, e.g., orthogonal bases and individual
filtering, are crucial for SPTGNNS to perform well; (3) our
instantiation (TGGC) can be readily augmented with non-
linearities and other common model choices. Finally, and
more importantly, our findings pave the way for devising a
broader array of provably expressive SPTGNNS and thus
shed light on subsequent research. Our main contributions
in this work are summarized as follows.

• To our knowledge, we are the first to theoretically
ground spatio-temporal graph learning in the context
of time series forecasting using the frequency analy-
sis. This proves the expressiveness of this family of
methods for time series modeling and helps identify
situations in which they may fall short.

• We establish a general framework for spectral-temporal
graph neural networks (SPTGNNS) and answer the
question of how to design provably expressive SPT-
GNNS for effective time series forecasting. This is ex-
emplified by our simple, yet effective and novel imple-
mentation, named Temporal Graph Gegenbauer Convolu-
tion (TGGC), which contains only linear components
and operates entirely in the frequency domain.

• We demonstrate that TGGC can outperform the most
representative and related models, and its advanced
nonlinear variant (TGGC†) consistently surpasses other
competitive counterparts. Our comprehensive evalu-
ation also explicitly demonstrates that our approach
excels at learning time series relations of different signs.

The structure of this paper is outlined as follows: Sec. 2
provides an overview of the related work, examining var-
ious facets in detail. Sec. 3 delineates the notations and
introduces essential background knowledge. Sec. 4 presents
a theoretical framework to deepen the understanding of
SPTGNNS, addressing the research questions set forth.
Sec. 5 showcases our theoretical insights through a novel
and straightforward implementation known as TGGC, in-
cluding its advanced variant TGGC†. Our research findings
are evaluated and shared in Sec. 6, and a concise conclusion
encapsulating our discoveries can be found in Sec. 7.

2 RELATED WORK

In this section, we provide a concise overview of pertinent
literature, encompassing contemporary time series forecast-
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ing models, spatio-temporal graph neural networks, and
recent advancements in spectral graph neural networks.

2.1 Deep Time Series Forecasting
Time series forecasting has been extensively researched over
time. Traditional approaches primarily focus on statisti-
cal models, such as vector autoregressive (VAR) [15] and
autoregressive integrated moving average (ARIMA) [16].
Deep learning-based approaches, on the other hand, have
achieved great success in recent years. For example, re-
current neural network (RNN) and its variants, e.g., FC-
LSTM [17], are capable to well model univariate time se-
ries. TCN [18] improves these methods by modeling mul-
tivariate time series as a unified entity and considering
the dependencies between different variables. Follow-up
research, such as LSTNet [19] and DeepState [20], proposes
more complex models to handle interlaced temporal and
spatial clues by marrying sequential models with convo-
lution networks or state space models. Recently, Trans-
former [21]-based approaches have made great leaps, es-
pecially in long-term forecasting [22]. For these methods,
an encoder-decoder architecture is normally applied with
improved self- and cross-attention, e.g., logsparse atten-
tion [23], locality-sensitive hashing [24], and probability
sparse attention [25]. As time series can be viewed as a
signal of mixed seasonalities, Zhou et al. further propose
FEDformer [26] and a follow-up work FiLM [27] to rethink
how spectral analysis benefits time series forecasting. Nev-
ertheless, these methods do not explicitly model inter-time
series relationships (i.e., spatial dependencies).

2.2 Spatio-Temporal Graph Neural Networks
A line of research explores capturing time series rela-
tions using GNNs. For instance, DCRNN [28] combines
recurrent units with graph diffusion [5] to simultane-
ously capture temporal and spatial dependencies, while
Graph WaveNet [3] interleaves TCN [18] and graph dif-
fusion layers. Subsequent studies, such as STSGCN [29],
STFGNN [30], STGODE [31] and G-SWaN [32], adopt sim-
ilar principles but other ingenious designs to better char-
acterize underlying spatio-temporal clues. However, these
methods struggle to model differently signed time series
relations since their graph convolutions operate under the
umbrella of message passing, which serves as low-pass
filtering assuming local homophiles. Some STGNNS, such
as ASTGCN [33] and LSGCN [34], directly employ Cheb-
Conv [4] for capturing time series dependencies. However,
their graph convolutions using the Chebyshev basis, along
with the intuitive temporal models they utilize, result in
sub-optimal solutions. Consequently, the expressiveness of
most STGNNS remains limited. Spectral-temporal graph
neural networks (SPTGNNS), on the other hand, first make
it possible to fill the gap by (properly) approximating both
graph and temporal convolutions with a broad range of
filters in spectral domains, allowing for more accurate pat-
tern extraction and modeling. A representative work in this
category is StemGNN [9]. However, it faces two funda-
mental limitations: (1) its direct application of ChebConv
is sub-optimal, and (2) although its temporal FDMs employ
orthogonal space projections, they fail to make proper mul-
tidimensional and multivariate predictions as discussed.

2.3 Spectral Graph Neural Networks
Spectral graph neural networks are grounded in spectral
graph signal filtering, where graph convolutions are approx-
imated by truncated polynomials with finite degrees. These
graph spectral filters can be either trainable or not. Examples
with predefined spectral filters include APPNP [35] and
GraphHeat [36], as illustrated in [7]. Another branch of work
employs different polynomials with trainable coefficients
(i.e., filter weights) to approximate effective graph con-
volutions. For instance, ChebConv [4] utilizes Chebyshev
polynomials, inspiring the development of many popular
spatial GNNs with simplifications [37], [38]. BernNet [7] em-
ploys Bernstein polynomials but can only express positive
filter functions due to regularization constraints. Another
example is [39] that implements the graph convolution with
auto-regressive moving average (ARMA) filters. Recently,
JacobiConv [13] demonstrated that graph spectral filtering
with Jacobi polynomial approximation is highly effective on
a wide range of graphs under mild constraints. Although
spectral GNNs pave the way for SPTGNNS, they primarily
focus on modeling static graph-structured data without the
knowledge telling how to effectively convolute on dynamic
graphs for modeling time series data.

3 PRELIMINARY

In time series forecasting, given a series of historical
observations X ∈ RN×T×D encompassing N different
D-dimensional variables across T time steps, we aim to
learn a function f(·) : X 7→ Ŷ, where the errors between
the forecasting results Ŷ ∈ RN×H×D and ground-truth
Y are minimized with the following mean squared loss:
1
H

∑H
t=1 ||Ŷt −Yt||2F . H denotes the forecasting horizon. In

this work, we learn an adjacency matrix A ∈ RN×N from
the input window X to describe the connection strength
between N variables, as in [9]. We use Xt := X:,t,: ∈ RN×D

to denote the observations at a specific time t, and
Xn := Xn,:,: ∈ RT×D as a time series of a specific variable
n with T time steps and D feature dimensions.

Graph Spectral Filtering. For simplicity and modeling the
multivariate time series from the graph perspective, we
let Gt = (A,Xt) denote an undirected graph snapshot at
a specific time t with the node features Xt. In a graph
snapshot, A and its degree matrix D ∈ RN×N s.t. Di,i =∑N

j=1 Ai,j ; thus, its normalized graph Laplacian matrix
L̂ = D− 1

2 (D − A)D− 1
2 is symmetric and can be proven

to be positive semi-definite. We let its eigendecomposition
of L̂ to be L̂ = UΛU⊤, where Λ and U are matrices of
eigenvalues and eigenvectors. Below, we define the graph
convolution to filter the input signals in the spectral domain
w.r.t. the node connectivity.

Definition 1 (Graph Convolution). Assume there is a filter
function of eigenvalues g(·) : [0, 2] 7→ R, we define the graph
convolution on Gt as filtering the input signal Xt with the
spectral filter:

g(Λ) ⋆Xt := Ug(Λ)U⊤Xt. (1)

The ⋆ operator is rooted in the graph Fourier trans-
form, where the frequency components of input signal
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U⊤Xt are transformed with g(Λ) before being projected
back using U. However, directly computing Eq. 1 can be
computationally expensive due to the eigendecomposition
involved. To address this, we approximate the learnable
filter function gθ(Λ) with a truncated K-degree polynomial
expansion [40]:

gθ(λ) :=
K∑

k=0

Θk,:Pk(λ). (2)

Thus, the graph spectral filtering takes the form:

Ugθ(Λ)U⊤Xt :=
K∑

k=0

Θk,:UPk(Λ)U⊤Xt=
K∑

k=0

Θk,:Pk(L̂)Xt.

(3)
If we let gθ(L̂) =

∑K
k=0 Θk,:Pk(L̂), then the graph

convolution is redefined as: g(Λ) ⋆Xt := gθ(L̂)Xt.

Orthogonal Time Series Representations. Time series can
be analyzed in both time and spectral domains. In this work,
we focus on modeling time series using sparse orthogonal
representations, which are effective in helping disentangle
and identify underlying patterns such as periodicities and
in reducing modeling complexity. Specifically, for an input
signal of the nth variable, we represent Xn by a set of
orthogonal components X̃n. As per Lemma 1, numerous
orthogonal projections can serve as space projections for
our objectives, e.g., [41]. In this study, we employ Fourier
transformations by default in our proposed method (Sec. 5).

Definition 2. Discrete Fourier transformation (DFT) on time
series takes measurements at discrete intervals, and transforms
observations into frequency-dependent amplitudes:

X̃n(k) =

T−1∑
t=0

Xn(t)e
−2πikt/T , k = {0, 1, · · · , T − 1}. (4)

Inverse transformation (IDFT) maps a signal from the frequency
domain back to the time domain:

Xn(t) =
1

T

T−1∑
k=0

X̃n(k)e
2πikt/T , t = {0, 1, · · · , T − 1}. (5)

4 A THEORETICAL FRAMEWORK OF SPECTRAL-
TEMPORAL GRAPH NEURAL NETWORKS

We address all research questions in this section. We first
introduce the general formulation of SPTGNNS and then
unravel the expressive power of this family of methods
within an established theoretical framework. On this basis,
we further shed light on the design of powerful SPTGNNS
with relevant theoretical justifications and proofs.

4.1 General Formulation
Overall Architecture. We illustrate the general formulation
of SPTGNNS in Fig. 3, where we stack M building
blocks to capture spatial and temporal dependencies in
spectral domains. Without loss of generality, we formulate
this framework with the minimum redundancy and a
straightforward optimization objective, where common
add-ons in prior arts, e.g., spectral attention [26], can be

!ℱ ℱ"#"$#%
M×

$% &'(, * '’')!

+

Fig. 3: The general formulation of SPTGNNS with M build-
ing blocks to predict future values Ŷ based on historical
observations X. We denote gθ(·) and Tϕ(·) as graph and
temporal spectral filters. F(·) and F−1(·) are forward and
inverse space projections.

easily incorporated. To achieve time series connectivity
without prior knowledge, we directly use the latent
correlation layer from [9], as this is not our primary focus.

Building Block. From the graph perspective and given the
adjacency matrix A, we can view the input signal X as
a particular DTDG with a sequence of regularly-sampled
static graph snapshots {Gt}T−1

t=0 , where node features evolve
but with fixed graph topology. In a SPTGNN block, we filter
X from the spatial and temporal perspectives in spectral
domains with graph spectral filters (GSFs) and temporal
spectral filters (TSFs). Formally, considering a single dimen-
sional input Xd := X:,:,d ∈ RN×T , we define a SPTGNN
block as follows without the residual connection:

Zd = Tϕd

(
gθd(L̂)Xd

)
= Tϕd

( K∑
k=0

Θk,dPk(L̂)Xd

)
. (6)

This formulation is straightforward. Tϕ(·) represents TSFs,
which work in conjunction with space projectors (detailed
in Sec. 4.3) to model temporal dependencies between node
embeddings across snapshots. The internal expansion cor-
responds to GSFs’ operation, which embeds node features
in each snapshot Gt by learning variable relations. The
above process can be understood in different ways. The
polynomial bases and coefficients generate distinct GSFs,
allowing the internal K-degree expansion in Eq. 6 to be
seen as a combination of different dynamic graph pro-
files at varying hops in the graph domain. Each profile
filters out a specific frequency signal. Temporal dependen-
cies are then modeled for each profile before aggregation:
Zd =

∑K
k=0 Tϕd

(
Θk,dPk(L̂)Xd

)
, which is equivalent to our

formulation. Alternatively, dynamic graph profiles can be
formed directly in the spectral domain, resulting in the for-
mulation in StemGNN [9] with increased model complexity.

4.2 Expressive Power of Spectral-Temporal GNNs
In this subsection, we develop a theoretical framework
bridging spectral and dynamic GNNs, elucidating the
expressive power of SPTGNNS for modeling multivariate
time series. All proofs are in Appendix A.

Linear GNNs. For a linear GNN on X ∈ RN×D ,
we define it using a trainable weight matrix
W ∈ RD×d and parameterized spectral filters gθ(L̂)
as Z̃ = gθ(L̂)XW ∈ RN×d. This simple linear GNN
can express any polynomial filter functions, denoted as
polynomial-filter-most-expressive (PFME), under mild
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Fig. 4: Multidimensional and multivariate predictions. Left: Multidimensional predictions within a snapshot require
individual filtration for each output dimension to preserve different information. Right: Individual filter is needed to
model each single-dimensional time series.

assumptions [13]. Its expressiveness establishes a lower
bound for spectral GNNs.

To examine the expressive power of SPTGNNS, we
generalize spectral GNNs to model dynamic graphs. For
simplicity, we initially consider linear GNNs with a single
linear mapping fϕ(·). To align with our formulation, Tϕ(·)
should also be linear functions; thus, Eq. 6 can be inter-
preted as a linear GNN extension, where fϕ(·) depends on
historical observations instead of a single graph snapshot.
Accordingly, linear SPTGNNS establish a lower bound for
the expressive power of SPTGNNS.

Proposition 1. A SPTGNN can differentiate any pair of nodes
at an arbitrary valid time that linear SPTGNNS can if Tϕ(·) can
express any linear time-variant functions.

Despite their simplicity, linear SPTGNNS retain the es-
sential operations of spectral filtering, specifically the use
of GSFs and TSFs that are integral to SPTGNNs, regardless
of the complexity of the model. We begin by defining the
universal approximation theorem for linear SPTGNNS.

Theorem 1. A linear SPTGNN can produce arbitrary dimen-
sional time series representations at any valid time iff: (1) L̂
has no repeated eigenvalues; (2) X encompasses all frequency
components with respect to the graph spectrum; (3) Tϕ(·) can
express any single-dimensional univariate time series.

Next, we separately explore these conditions and relate
them to practical spectral-temporal GNNs.

Multidimensional and Multivariate Prediction. In a
graph snapshot, each dimension may exhibit different
properties, necessitating distinct filters for processing [13].
An example with two-dimensional predictions is provided
in Fig. 4. A simple solution involves using multidimensional
polynomial coefficients, as explicitly shown in Eq. 6. A
concrete example is presented in [7], where given a
series of Bernstein bases, different polynomial coefficients
result in various Bernstein approximations, corresponding
to distinct GSFs. Similarly, when modeling temporal
clues between graph snapshots, either dimension in any
variable constitutes a unique time series requiring specific
filtering. An example of reconstructing a two-variate time
series of one dimension is in Fig. 4. In practice, we use
multidimensional masking and weight matrices for each
variable, forming a set of different TSFs (Sec. 4.3).

Frequency Components and Eigenvalues. GSFs can only

scale existing frequency components of specific eigenvalues.
Frequency components sharing the same eigenvalue will
be transformed by the same filter. For example, in a
graph with repeated eigenvalues due to its topology (e.g.,
a highly symmetric graph with three- or higher-order
automorphisms [13]), multiple frequency components
will be scaled by the same Pk(λ), thus affecting spectral
filtering. Additionally, for each graph snapshot, linear
SPTGNNS cannot generate new frequency components
if certain frequencies are missing from the original graph
spectrum. For instance, in Fig. 4, a frequency component
corresponding to λ = 1 cannot be generated with a
spectral filter. Although these two issues are challenging
to address, they are rare in real-world attributed graphs [13].

Universal Temporal Spectral Filtering. For a finite-length
one-dimensional univariate time series, it can be modeled
using a frequency-domain model (FDM), consisting of
sparse orthogonal space projectors and spectral filters.
Fig. 4 exemplifies modeling two time series with distinct
TSFs. However, this assumes that the time series is well-
represented in the transformed space. For instance, it
may fail to fully capture non-stationary components or
significant non-periodic trends that do not align with the
chosen orthogonal projector, such as DFT. Further details
are discussed in Sec. 4.3.

Nonlinearity. Nonlinear activation can be applied in both
GSFs and TSFs. In the first case, we examine the role
of element-wise nonlinearity over the spatial signal, i.e.,
σ(Xt), enabling frequency components to be mixed w.r.t.
the graph spectrum [13]. In the second case, we investigate
the role of nonlinearity over the temporal signal by studying
its equivalent effect σ′(·), as σ(Xn) = F−1

(
σ′(F(Xn))

)
.

Here, we have σ′(X̃n) = F
(
σ(F−1(X̃n))

)
, where different

components in X̃n are first mixed (e.g., via Eq. 5) and then
element-wise transformed by a nonlinear function σ(·)
before being redistributed (e.g., via Eq. 4). σ′(·) therefore
functions as a column-wise nonlinear transformation over
all frequency components. Consequently, a similar mixup
exists, allowing different components to transform into
each other in an orthogonal space, which may help mitigate
issues such as missing frequency components from both
spatial and temporal perspectives.

Connection to Dynamic Graph Isomorphism. Analyzing
the expressive power of GNNs is often laid on graph
isomorphism. In this context, we first define the temporal
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Weisfeiler-Lehman (WL) test and subsequently establish a
connection to linear SPTGNNS in Theorem 2.

Definition 3 (Temporal 1-WL test). Temporal 1-WL test on
discrete-time dynamic graphs G := {Gt}T−1

t=0 with a fixed node
set V is defined below with iterative graph coloring procedures:

1 Initialization: All node colors are initialized using
node features. In a snapshot at time t, we have ∀v ∈
V, c(0)(v, t) = Xt[v]. In the absence of node features, all
nodes get the same color.
2 Iteration: At step l, node colors are updated with an in-
jective (hash) function: ∀v ∈ V, t ∈ [1, T ), c(l+1)(v, t) =
HASH(c(l)(v, t), c(l)(v, t − 1), {{c(l)(u, t) : eu,v,t ∈
E(Gt)}}). When t = 0 or T = 1, node colors are refined
without c(l)(v, t− 1) in the hash function.
3 Termination: The test is performed on two dynamic
graphs in parallel, stopping when multisets of colors diverge
at the end time, returning non-isomorphic. Otherwise, it is
inconclusive.

The temporal 1-WL test on DTDGs is an extension of
the 1-WL test [42]. Based on this, we demonstrate that the
expressive power of linear SPTGNNS is bounded by the
temporal 1-WL test.

Theorem 2. For a linear SPTGNN with valid temporal FDMs
that can express arbitrary 1-dimensional univariate time series
and a K-degree polynomial basis in its GSFs, ∀u, v ∈ V,Zt[u] =
Zt[v] if C(K+1)(u, t) = C(K+1)(v, t). Zt[i] and C(K)(i, t)
represent node i’s embedding at time t in such a GNN and the
K-step temporal 1-WL test, respectively.

In other words, if a temporal 1-WL test cannot differenti-
ate two nodes at a specific time, then a linear SPTGNN will
fail as well. However, this seems to contradict Theorem 1,
where a linear SPTGNN assigns any two nodes with differ-
ent embeddings at a valid time step (under mild assump-
tions, regardless of whether they are isomorphic or not). For
the temporal 1-WL test, it may not be able to differentiate
some non-isomorphic temporal nodes and always assigns
isomorphic nodes with the same representation/color. We
provide examples in Fig. 5. To resolve this discrepancy, we
first prove that under mild conditions, i.e., a DTDG has no
multiple eigenvalues and missing frequency components,
the temporal 1-WL test can differentiate any non-isomorphic
nodes at a valid time.

Proposition 2. If a discrete-time dynamic graph with a fixed
graph topology at time t has no repeated eigenvalues in its normal-
ized graph Laplacian and has no missing frequency components
in each snapshot, then the temporal 1-WL is able to differentiate
all non-isomorphic nodes at time t.

We further prove that under the same assumptions, all
pairs of nodes are non-isomorphic.

Proposition 3. If a discrete-time dynamic graph with a fixed
graph topology has no multiple eigenvalues in its normalized
graph Laplacian and has no missing frequency components in
each snapshot, then no automorphism exists.

Therefore, we close the gap and demonstrate that the ex-
pressive power of linear SPTGNNS is theoretically bounded
by the proposed temporal 1-WL test.
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Fig. 5: Two examples of temporal 1-WL test on non-
attributive discrete-time dynamic graphs. The left test fails
to distinguish non-isomorphic nodes at t1, e.g., A and C,
while the right example demonstrates a successful test.

4.3 Design of Spectral Filters

In this section, we outline a blueprint for designing pow-
erful SPTGNNS, with all proofs available in Appendix A.
We initially explore the optimal acquisition of spatial node
embeddings within individual snapshots, focusing on the
selection of the polynomial basis, Pk(·), for linear SPT-
GNNS.

Theorem 3. For a linear SPTGNN optimized with mean
squared loss, any complete polynomial bases result in the same
expressive power, but an orthonormal basis guarantees the max-
imum convergence rate if its weight function matches the graph
signal density.

This theorem guides the design of GSFs for learning
node embeddings in each snapshot w.r.t. the optimiza-
tion of coefficients. Following this, we discuss the optimal
modeling of temporal clues between snapshots in spectral
domains. We begin by analyzing the function bases in space
projectors.

Lemma 1. A time series with data points xj(t) can be ex-
pressed by Q uncorrelated components zi(t) with an orthogo-
nal (properly selected and possibly complex) projector [43], i.e.,
xj(t) =

∑Q
i=1 eijzi(t). The eigenvectors ei are orthogonal and

determine the relationship between the data points xj(t).

By stabilizing the statistical properties of the input time
series, DFT is robust and general enough to represent it in
the spectral domain. Additionally, operating on all spectral
components is normally unnecessary [26], [44]. Consider
a multivariate time series X1(t), · · · ,XN (t), where each
T -length univariate time series Xi(t) is transformed into
a vector ai = (ai,1, · · · , ai,T )⊤ ∈ RT×1 through a space
projection. We form matrix A = (a1,a2, · · · ,aN )⊤ ∈ RN×T

and apply a linear spectral filter as AW. Note that A
does not denote the adjacency matrix here. We then ran-
domly select S < T columns in A using the masking
matrix S ∈ {0, 1}S×T , obtaining compact representation
A′ = AS⊤ and linear spectral filtration as A′W. We
demonstrate that, under mild conditions, A′W preserves
most information from AW. By projecting each column
vector of A into the subspace spanned by column vectors in
A′, we obtain PA′(A) = A′(A′)†A. Let Ak represent A’s
approximation by its k largest singular value decomposi-
tion. The lemma below shows ||AW−PA′(A)W||F is close
to ||W||F ||A − Ak||F if the number of randomly sampled
columns S is on the order of k2.

Lemma 2. Suppose the projection of A by A′ is PA′(A), and the
coherence measure of A is µ(A) = Ω(k/N), then with a high
probability, the error between AW and PA′(A)W is bounded
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by ||AW − PA′(A)W||F ≤ (1 + ϵ)||W||F ||A − Ak||F if
S = O(k2/ϵ2).

The lemmas above show that in most cases we can ex-
press a 1-dimensional time series with (1) orthogonal space
projectors and (2) a reduced-order linear spectral filter. For
practical application on D-dimensional multivariate time
series data, we simply extend dimensions in S and W.

Theorem 4. Assuming accurate node embeddings in each snap-
shot, a linear SPTGNN can, with high probability, produce
expressive time series representations at valid times if its temporal
FDMs consist of: (1) linear orthogonal space projectors; (2)
individual reduced-order linear spectral filters.

4.4 Connection to Related Work

Most of the deep time series models approximate expres-
sive temporal filters with deep neural networks and learn
important patterns directly in the time domain, e.g., TCN
[18], where some complex properties (e.g., periodicity) may
not be well modeled. Our work generalizes these methods in
two ways: (1) when learning on univariate time series data,
our temporal frequency-domain models guarantee that the
most significant properties are well modeled with high
probability (Lemma 1 and Lemma 2); (2) when learning
on multivariate time series data, our framework models
diverse inter-relations between time series (Fig. 1) and
intra-relations within time series with theoretical evidence.
Compared to MP-STGNNS, our framework has two major
advantages: (1) it can model differently signed time series
relations by learning a wide range of graph spectral filters
(e.g., low-pass and high-pass), while MP-STGNNs only
capture positive correlations between time series exhibiting
strong similarities; (2) on this basis, it can express any mul-
tivariate time series under mild assumptions with provably
expressive temporal frequency-domain models, while MP-
STGNNS approximate effective temporal filtering in time
domains with deep neural networks. Even compared to
STGNNS employing ChebyConv, our proposal generalizes
them well: (1) we provide a blueprint for designing effective
graph spectral filters and point out that using Chebyshev
basis is sub-optimal; (2) instead of approximating expressive
temporal models with deep neural networks, we detail how
to simply construct them in frequency domains. Therefore,
our results generalize most STGNNS effectively. Although
there are few studies on SPTGNNS, such as StemGNN [9],
we are not only the first to define the general formu-
lation and provide a theoretical framework to generalize
this branch of methods but also free from the limitations
of StemGNN mentioned above. Compared with spectral
GNNs, such as BernNet [7] and JacobiConv [13], our work
extends graph convolution to model dynamic graphs com-
prising a sequence of regularly sampled graph snapshots.

5 METHODOLOGY: TEMPORAL GRAPH GEGEN-
BAUER CONVOLUTION

In this section, we present a straightforward yet effective
instantiation mainly based on the discussion in Sec. 4.3. We
first outline the basic formulation of the proposed Temporal
Graph Gegenbauer Convolution (TGGC) and then connect
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Fig. 6: An illustration of Temporal Graph Gegenbauer Con-
volution (TGGC), where gθ(·), Tϕ1

(·), and Tϕ2
(·) are GSFs

and two different TSFs. We use DFT and IDFT as F(·) and
F−1(·) in our implementation. See Fig. 3 for other notations.

it to other common practices. For the sake of clarity, we
primarily present the canonical TGGC, which contains only
linear components in its building blocks and strictly inherits
the basic formulation presented in Fig. 3. Our primary aim
here is not to achieve state-of-the-art performance, but
rather to validate our theoretical insights through the
examination of TGGC (and its advanced nonlienar variant,
TGGC†). Fig. 6 depicts the overall architecture of TGGC,
which simply stacks M building blocks as the pattern
machine. Each block encompasses a graph convolution and
two temporal frequency-domain models.

Graph Gegenbauer Convolution. We implement Pk(·) in
GSFs using the Gegenbauer basis due to its (1) generality
and simplicity among orthogonal polynomials, (2)
universality regarding its weight function, and (3) reduced
model tuning expense. See the last paragraph in this section
for a detailed justification. The Gegenbauer basis has the
form Pα

k (x) =
1
k [2x(k+α−1)Pα

k−1(x)−(k+2α−2)Pα
k−2(x)],

with Pα
0 (x) = 1 and Pα

1 (x) = 2αx for k < 2. Specifically,
Pα
k (x), k = 0, 1, ... are orthogonal on the interval [−1, 1]

w.r.t. the weight function (1 − x2)α−1/2. Based on this,
we rewrite Pk(L̂) in Eq. 6 as Pα

k (I − L̂) = Pα
k (Â),

and the corresponding graph frequency-domain model
(convolution) is defined as

∑K
k=0 θkP

α
k (Â)X.

Temporal Frequency-Domain Models. When designing
temporal FDMs, linear orthogonal projections should be
approximately sparse to support dimension reduction, e.g.,
DFT. For spectral filters, we randomly select S frequency
components before filtration. Specifically, for components
f ∈ CT in F ∈ CN×T×D along N and D dimensions,
we denote sampled components as f ′ := fI ∈ CS ,
where I = {i0, · · · , iS−1} is a set of selection indices s.t.
∀s ∈ {0, . . . , S − 1} and is−1 < is. This is equivalent
to f ′ = f Ŝ⊤ with Ŝ ∈ {0, 1}S×T , where Ŝi,s = 1 if
i = is. Thus, a standard reduced-order TSF is defined as
f ′ = f Ŝ⊤W with a trainable weight matrix W ∈ CS×S .

TGGC Building Block. Suppose Z̃ =
∑K

k=0 θkP
α
k (Â)X,

we discuss two linear toy temporal FDMs. We first consider
a basic coarse-grained filtering with the masking and weight
matrices S1 and Φ1:

1 F = F(Z̃), 2 F′ = PAD(FS⊤
1 Φ1), 3 Z′ = F−1(F′).

(7)
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Fig. 7: An illustration of tensor flow in fine-grained temporal
frequency-domain models.

Next, we consider an optional fine-grained filtering based
on time series decomposition, where S2 and Φ2 are opti-
mized to further capture the information in detailed signals
(e.g., seasonalities) while maintaining global time series
profiles (i.e., trends). We formulize this process below and
provide an illustration in Fig. 7.

1 Z′
t,Z

′
s = DECOMP(Z′), 2 Fs = F(Z′

s),

3 F′
s = PAD(FsS

⊤
2 Φ2), 4 Z = Z′

t + F−1(F′
s).

(8)
After stacking multiple blocks, we forecast by transforming
time series representations Z. For time series decomposition
DECOMP(·), we extract the trend information of a time series
x ∈ RT by conducting moving average with a window size
w on the input signal, i.e., x̃(t) =

(
x(t−w+1)+· · ·+x(t)

)
/w,

where we simply pad the first w − 1 data points with zeros
in x̃. After this, we obtain detailed time series information
(e.g., seasonality) by subtracting the trend from the input
signal. For the component padding PAD(·), we pad the
filtered signal tensors in both the coarse-grained and
fine-grained temporal FDMs with 0+ 0j, thereby reshaping
them from CN×S×D to CN×T×D . We illustrate this in Fig. 7.

Advanced Implementation. Although the proposed TGGC
model offers a straightforward and effective demonstra-
tion of the concepts, its performance can be enhanced by
incorporating nonlinearities and other common modeling
choices. TGGC† is different from TGGC in two aspects: (1)
we incorporate ReLU activation in both graph convolution
and temporal FDMs, and (2) we implement the spectral
filters in fine-grained temporal FDMs with the proposed
spectral attention. An illustration is in Fig. 8. We first decom-
pose the input signal via Z′

t,Z
′
s = DECOMP(Z′). After this,

we generate the query matrix Q = σ(Φ2,1Z
′
t) ∈ RN×T×D ,

key matrix K = σ(Φ2,2Z
′
s) ∈ RN×T×D , and value ma-

trix V = σ(Φ2,3Z
′
s) ∈ RN×T×D , where σ(·) denotes the

ReLU activation, and Φ2,i are learnable weights. Then, we
project all three matrices into the frequency domain with
sparse components, i.e., Q̃ = F(Q)S⊤

2,1 ∈ CN×S×D , K̃ =

F(K)S⊤
2,2 ∈ CN×S×D , and Ṽ = F(V)S⊤

2,3 ∈ CN×S×D .
Finally, we extract informative information with

F′
s = ATTENTION(Q̃, K̃, Ṽ) = SOFTMAX(

Q̃K̃⊤√
nqdq

)Ṽ, (9)

and we finally have Z = Z′
t + F−1

(
PAD(F′

s)
)
.

Connection to Other Polynomial Bases. We compare our
design in TGGC with other common practices in approx-
imating graph convolutions: Monomial, Chebyshev, Bern-
stein, and Jacobi bases. For non-orthogonal polynomials,
our method with the Gegenbauer basis guarantees faster
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Fig. 8: An illustration of tensor flow in fine-grained temporal
frequency-domain models using spectral attention.

model convergences (Theorem 3) and better empirical per-
formances in most cases. Specifically, for the Monomial
basis (1 − λ)k, it is non-orthogonal for arbitrary choices
of weight functions [13]. Although the Bernstein basis(K
k

)
(1− λ

2 )
K−k(λ2 )

k is also non-orthogonal, existing studies
show that a small conditional number of the Hessian matrix
κ(H) may still be achieved to enable fast convergence,
where κ(H) can also be lower than using Monomial basis
[45]. While the Bernstein basis is better than the Monomial
basis in approximating graph convolutions, our implemen-
tation with the Gegenbauer basis guarantees the minimum
κ(H) to be achieved in most cases; thus, it is more desired.
We provide examples in Fig. 9 showing that the weight
functions of Gegenbauer polynomials fit graph signal den-
sities well in most cases. We also confirm this in Tab. 6.
Compared with other orthogonal polynomials, we know
that: (1) our basis is a generalization of the second-kind
Chebyshev basis; (2) though our choice is a particular form
of the Jacobi basis, the orthogonality of the Gegenbauer
basis is well-posed in most real-world scenarios concerning
its weight function. Particularly, the second-kind Chebyshev
basis is a particular case of the Gegenbauer basis with α = 1
and only orthogonal w.r.t. a particular weight

√
1− λ2.

Though the Gegenbauer basis forms a particular case of
the Jacobi basis with both of its parameters set to α − 1

2 ,
we show that the orthogonality of the Gegenbauer basis is
well-posed on common real-world graphs w.r.t. its weight
function (1 − λ2)α−

1
2 as shown in Fig. 9. Thus, we adopt

the Gegenbauer basis as a simpler solution for our purpose
with only minor performance degradation (Tab. 6).

6 EVALUATION

TABLE 1: Statistics of eight different real-world time series
datasets used in our work.

Statistic PeMS03 PeMS04 PeMS07 PeMS08 Electricity Solar Weather ECG
# of time series 358 307 228 170 321 137 21 140
# of data points 26,209 16,992 12,672 17,856 26,304 52,560 52,696 5,000
Sampling rate 5 min 5 min 5 min 5 min 1 hour 10 min 10 min -
Predefined graph Yes Yes Yes Yes No No No No

In this section, we evaluate the effectiveness and effi-
ciency of our proposal on 8 real-world datasets by compar-
ing TGGC and TGGC† with over 20 different baselines. To
empirically validate our findings, we further perform exten-
sive ablation studies and present a variety of visualizations
using both synthetic and real-world examples.

6.1 Experiment Details
Datasets. For short-term forecasting, we evaluate on
3 time series and 4 traffic datasets commonly used as
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(a) PeMS03 Dataset (b) PeMS04 Dataset (c) PeMS07 Dataset (d) PeMS08 Dataset

Fig. 9: Signal density of predefined graphs on different datasets at a randomly selected time step versus the best-fitted
weight functions of three different orthogonal polynomials.

TABLE 2: Short-term forecasting results on four traffic
benchmarks (Part I). We use the bold and underline fonts
to indicate the best and second-best results. We follow [9]
for the experimental setting when compared to TGGC.

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE
PeMS03 PeMS04 PeMS07 PeMS08

LSTNET [19] 19.07 29.67 24.04 37.38 2.34 4.26 20.26 31.69
DEEPSTATE [20] 15.59 20.21 26.50 33.00 3.95 6.49 19.34 27.18
DEEPGLO [46] 17.25 23.25 25.45 35.90 3.01 5.25 15.12 25.22
DCRNN [28] 18.18 30.31 24.70 38.12 2.25 4.04 17.86 27.83
STGCN [2] 17.49 30.12 22.70 35.50 2.25 4.04 18.02 27.83
GWNET [3] 19.85 32.94 26.85 39.70 - - 19.13 28.16
STEMGNN [9] 14.32 21.64 20.24 32.15 2.14 4.01 15.83 24.93
TGGC (Ours) 13.52 21.74 18.77 29.92 1.92 3.35 14.55 22.73

benchmarks for forecasting models. The PeMS03, 04, 07,
and 08 datasets are derived from traffic sensors in highway
systems throughout California’s metropolitan areas 1. They
are sampled every 5 minutes. The Electricity dataset 2

contains electricity consumption data for 321 customers,
sampled hourly. The Weather dataset 3 features the one-year
records of 21 meteorological stations installed in Germany,
sampled every 10 minutes. The ECG dataset includes
5,000 records from 140 electrocardiograms in the URC time
series archive 4. For long-term forecasting, we utilize the
Electricity and Weather datasets, alongside an additional
Solar-Energy dataset2. This dataset consists of photovoltaic
production from 137 sites in Alabama in 2006, with a
10-minute sampling rate.

Baselines. We compare the proposed methods with a list
of representative and competitive baselines across different
datasets and tasks. In short-term forecasting, our baselines
include several deep time series methods: FC-LSTM [47],
TCN [18], LSTNet [19], DeepState [20], DeepGLO [46],
and SFM [48]. We also compare with a series of spatio-
temporal graph neural networks: DCRNN [28], STGCN [2],
Graph WaveNet [3], ASTGCN [33], STG2Seq [49],
LSGCN [34], STSGCN [29], STFGNN [30], STGODE [31],
and StemGNN [9]. In long-term forecasting, we further
compare with several state-of-the-art Transformer-based
models: FiLM [27], FEDformer [26], Autoformer [50],
Informer [25], LogTrans [23], and Reformer [24].

Implementation Details. All experiments are conducted

1. https://pems.dot.ca.gov/
2. https://github.com/laiguokun/multivariate-time-series-data
3. https://github.com/zhouhaoyi/Informer2020
4. https://www.cs.ucr.edu/∼eamonn/time series data/

TABLE 3: Short-term forecasting results on four traffic
benchmarks (Part II). We use the bold and underline fonts
to indicate the best and second-best results. We follow [51]
for the experimental setting when compared to TGGC†.

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE
PeMS03 PeMS04 PeMS07 PeMS08

ASTGCN [33] 17.34 29.56 22.93 35.22 3.14 6.18 18.25 28.06
MSTGCN [33] 19.54 31.93 23.96 37.21 3.54 6.14 19.00 29.15
STG2SEQ [49] 19.03 29.83 25.20 38.48 3.48 6.51 20.17 30.71
LSGCN [34] 17.94 29.85 21.53 33.86 3.05 5.98 17.73 26.76
STSGCN [29] 17.48 29.21 21.19 33.65 3.01 5.93 17.13 26.80
STFGNN [30] 16.77 28.34 20.48 32.51 2.90 5.79 16.94 26.25
STGODE [31] 16.50 27.84 20.84 32.82 2.97 5.66 16.81 25.97
TGGC† (Ours) 16.22 27.07 20.00 32.10 2.81 5.58 16.54 26.10

TABLE 4: Efficiency comparison of representative models:
Trainable parameters (M), time-per-epoch (s), and total
training time (min); ♢ indicates significantly larger values
compared to other methods.

Method PeMS03 PeMS04 PeMS07 PeMS08
LSTNET 0.4/2.2/3.8 0.3/1.3/2.3 0.2/0.9/1.5 0.2/1.0/1.7
DEEPGLO 0.6/14/8.3 0.6/8.5/6.0 0.3/6.2/6.6 0.3/5.9/4.2
DCRNN OOM 0.4/♢/♢ 0.4/♢/♢ 0.4/♢/♢
STGCN 0.3/25/13 0.3/14/6.9 0.2/8.6/4.1 0.2/8.0/5.0
STEMGNN 1.4/17/24 1.3/9.0/13 1.2/6.0/8.0 1.1/6.0/9.0
TGGC (Ours) 0.4/12/21 0.3/6.2/11 0.2/3.9/7.2 0.1/4.2/8.4

on 4 × Nvidia RTX 2080 Ti 11GB GPUs. We utilized the
Mean Absolute Forecasting Errors (MAE) and Root Mean
Squared Forecasting Errors (RMSE) as our primary metrics.
Our results are averaged over 5 runs.

For short-term forecasting, our default data splits are
60%-20%-20% for the PeMS03, 04, and 08 datasets, and 70%-
20%-10% for the others as per [9]. Min-max normalization is
applied to the ECG dataset, while Z-Score normalization is
employed for the rest. Using the past 1-hour observations
from four traffic datasets, we predict the next 15-minute
traffic volumes or speeds, a setting consistently adopted in
ablation studies and model efficiency comparisons. For the
Electricity dataset, the prior 24-hour readings forecast the
subsequent 1-hour consumption. The Solar-Energy dataset
employs the previous 4 hours of data to predict the next
half-hour production. The ECG dataset has a window size of
12 and a forecasting horizon of 3. All baseline configurations
are the same as in [9]. In Tab. 3, we compare to a series
of competitive STGNNs and follow the setup in [51] with
minor differences: we use the 60%-20%-20% data split across
all four datasets, and leverage the past 1-hour observations
to predict the next 1-hour traffic volume or speed.

https://pems.dot.ca.gov/
https://github.com/laiguokun/multivariate-time-series-data
https://github.com/zhouhaoyi/Informer2020
https://www.cs.ucr.edu/~eamonn/time_series_data/
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TABLE 5: Long-term forecasting results on three time series benchmarks. We follow [27] for the experimental setting when
compared to TGGC†.

Method TGGC† (Ours) FILM [27] FEDFORMER [26] AUTOFORMER [50] INFORMER [25] LOGTRANS [23] REFORMER [24]

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

El
ec

tr
ic

ity 96 0.293 0.425 0.267 0.392 0.297 0.427 0.317 0.448 0.368 0.523 0.357 0.507 0.402 0.558
192 0.303 0.440 0.258 0.404 0.308 0.442 0.334 0.471 0.386 0.544 0.368 0.515 0.433 0.590
336 0.313 0.470 0.283 0.433 0.313 0.460 0.338 0.480 0.394 0.548 0.380 0.529 0.433 0.591

W
ea

th
er 96 0.235 0.408 0.262 0.446 0.296 0.465 0.336 0.515 0.384 0.547 0.490 0.677 0.596 0.830

192 0.286 0.468 0.288 0.478 0.336 0.525 0.367 0.554 0.544 0.773 0.589 0.811 0.638 0.867
336 0.317 0.515 0.323 0.516 0.380 0.582 0.395 0.599 0.523 0.760 0.652 0.892 0.596 0.799

So
la

r 96 0.242 0.443 0.311 0.557 0.363 0.448 0.552 0.787 0.264 0.469 0.262 0.467 0.255 0.451
192 0.263 0.470 0.356 0.595 0.354 0.483 0.674 0.856 0.280 0.487 0.284 0.489 0.274 0.475
336 0.271 0.478 0.370 0.628 0.372 0.518 0.937 1.131 0.285 0.496 0.295 0.512 0.278 0.491

TGGC STGCN (1𝑠𝑡)Synthetic Data

(a) Visualization of learned embeddings w.r.t. different time se-
ries correlations on a synthetic dataset. Types A and B represent
series groups with opposing trends (e.g., pink vs. green).

TGGC STGCN (1𝑠𝑡)PeMS07

(b) Visualization of learned embeddings w.r.t. different time
series correlations on PeMS07 dataset. Types A and B represent
series groups with opposing trends.

Fig. 10: Evaluation of learning differently signed time series relations.

TGGC STGCN (1𝑠𝑡) Graph WaveNetStemGNN

TGGC STGCN (1𝑠𝑡) Graph WaveNetStemGNN

Fig. 11: Additional comparison between learned embed-
dings w.r.t. different time series correlations on a synthetic
dataset presented in Fig. 10a (upper) and a subset of traffic
recordings in PeMS07 dataset as in Fig. 10b (lower). Types
A and B denote series groups exhibiting opposing trends.
Differently colored shading indicates distinct clusters.

For long-term forecasting, we adhere to [27], using a
70%-10%-20% split for all datasets. The Electricity dataset
uses 4 days of past observations to predict the next 4, 8, and
14 days. Both the Solar-Energy and Weather datasets employ
16-hour past data to predict the subsequent 16, 32, and 56
hours. Hyperparameter settings are detailed in Appendix B.

6.2 Main Results.

We evaluate against related work in terms of model effec-
tiveness (Tab. 2, Tab. 3, and Tab. 5) and efficiency (Tab. 4),
showcasing the potential of SPTGNNS for time series
forecasting. We compare our vanilla instantiation (TGGC)
with the most pertinent and representative works in Tab. 2
on four traffic benchmarks. Next, we assess our method
(TGGC†, the nonlinear version of TGGC) against a series

of competitive STGNNs in Tab. 3. The main differences here
are the data splits and forecasting horizons we followed in
[9] and [51] as mentioned above. Additionally, we report
long-term forecasting results in Tab. 5, comparing our ap-
proach with state-of-the-art Transformer models.

Our method consistently outperforms most baselines by
significant margins. In short-term forecasting, TGGC and
TGGC† achieve average performance gains of 7.3% and
1.7% w.r.t. the second-best results. Notably, we observe a
significant improvement (∼8%) over StemGNN [9], a spe-
cial case of our method with nonlinearities. Considerable
enhancements are also evident when compared to AST-
GCN [33] (∼9%) and LSGCN [34] (∼7%), which primarily
differ from StemGNN in temporal dependency modeling
and design nuances. In long-term forecasting, our method
further exhibits impressive performance, outperforming the
second-best results by about 3.3%. These results indicate
that even simple, yet appropriately configured SPTGNNS
(discussed in Sec. 4.3) are potent time series predictors. In
Tab. 4, we examine our method’s efficiency by comparing
TGGC to representative baselines. We find that TGGC
forms the simplest and most efficient SPTGNN to date com-
pared with StemGNN. In comparison to other STGNNS,
such as STGCN [2] and DCRNN [28], our method also
exhibits superior model efficiency across various aspects.
Though time series models like LSTNet [19] are faster in
training, they do not have spatial modules and thus less
effective.

6.3 Evaluation of Modeling Time Series Dependencies.

Our method, in contrast to most GNN-based approaches,
excels at learning different signed spatial relations between
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TABLE 6: Ablation study results. We use the bold and underline fonts to denote the best and second-best results in each
ablation block, respectively.

Variant MAE RMSE MAE RMSE MAE RMSE MAE RMSE
PeMS03 PeMS04 PeMS07 PeMS08

A.1 Monomial 27.64 43.52 59.41 120.18 5.68 8.73 29.36 43.37
A.2 Bernstein 27.38 43.17 55.17 105.13 5.57 8.64 27.57 40.28
A.3 Chebyshev 13.56 21.84 18.78 29.89 1.94 3.37 14.36 22.93
A.4 Gegenbauer 13.52 21.74 18.77 29.92 1.92 3.35 14.35 22.73
A.5 Jacobi 13.14 21.51 18.64 29.44 1.91 3.34 14.29 22.15

TGGC (Ours) 13.52 21.74 18.77 29.92 1.92 3.35 14.55 22.73
B.1 w/o MD-F 14.07 21.82 19.07 30.34 2.05 3.45 15.14 23.49
B.2 w/o MD-F† 13.62 21.73 18.92 30.11 1.96 3.40 15.06 23.25
B.3 w/o MV-F 13.80 21.77 19.12 30.50 1.97 3.44 15.12 23.58
B.4 w/o O-SP 13.72 21.75 19.10 30.42 2.03 3.53 15.38 28.84
B.5 w/o C-FDM 13.83 21.47 19.15 30.52 2.01 3.47 15.18 23.71
B.6 w/o F-FDM 13.71 21.59 18.81 29.96 1.93 3.39 14.88 23.10
TGGC† (Ours) 13.39 21.34 18.41 29.39 1.84 3.28 14.38 22.43
C.1 w/o NL 13.75 21.43 18.63 29.70 1.92 3.36 14.94 24.93
C.2 w/o S-Attn 13.42 21.38 18.50 29.53 1.86 3.30 14.43 22.54

time series (Fig. 1). Predetermined or learned graph topolo-
gies typically reflect the strength of underlying connectiv-
ity, yet strongly correlated time series might exhibit dis-
tinct properties (e.g., trends), which MP-STGNNS often
struggles to model effectively. To substantiate our claims,
we first visualize and compare the learned TGGC and
STGCN(1st) [2] representations (e.g., Z mentioned after
Eq. 8 in our method) using t-SNE [52] on two synthetic
time series groups with positive and negative correlations.
We create two groups of time series, each with a length of
2000. For the first group, we generate a sinusoidal signal and
develop 100 distinct instances with varying amplitudes and
injected random noise. Similarly, we generate another group
of data based on cosinusoidal oscillation. Fig. 10a reveals
that STGCN(1st) fails to differentiate between the two corre-
lation groups. This is because methods like STGCN(1st) ag-
gregate neighborhood information with a single perspective
(i.e., low-pass filtration). We further examine the learned
embeddings of two groups of randomly sampled time series
with opposing trends between TGGC and STGCN(1st) on a
real-world traffic dataset (Fig. 10b), where similar phenom-
ena can be observed.

Additional evaluation can be found in Fig. 11, where
we compare the learned time series embeddings from two
SPTGNNS (i.e., Ours and StemGNN [9]) and MP-STGNNS
(i.e., STGCN(1st) [2] and Graph WaveNet [3]). It is evident
that SPTGNNS excel in learning different signed spatial
relations between time series, yielding significantly distinct
representations with much higher clustering purities in both
cases, further substantiating our claims in the main text.

6.4 Ablation Studies.

We perform ablation studies from three perspectives. First,
we evaluate the GSFs in TGGC with different polynomial
bases (A.1 to A.5) in the first block. Next, we examine other
core designs in the second block: B.1 and B.2 apply identical
polynomial coefficients in GSFs and trainable weights in
temporal FDMs along D dimensions, respectively. B.3 uti-
lizes the same set of TSFs across N variables. B.4 replaces

Fig. 12: Model convergence comparison on PeMS07 dataset.
Left: lr = 0.01. Right: lr = 0.001.

orthogonal space projections with random transformations.
B.5 and B.6 separately remove the coarse-grained and fine-
grained temporal FDMs. Lastly, we evaluate add-ons that
make TGGC†. C.1 eliminates nonlinearities, and C.2 dis-
ables the spectral attention.

In the first block of results, we validate the discussion in
Sec. 5: (1) orthogonal polynomials (A.3 to A.5) yield signifi-
cantly better performance than non-orthogonal alternatives
(A.1 and A.2); (2) although the performance gaps between
A.3 to A.5 are minor, polynomial bases with orthogonality
that hold on more general weight functions tend to result
in better performances. The results of B.1 to B.3 support the
analysis of multidimensional and multivariate predictions
in Sec. 4.2, with various degradations observed. In B.4,
we see an average 4% MAE and 7% RMSE reduction,
confirming the related analysis in Sec. 4.3. The results of
B.5 and B.6 indicate that both implementations (Eq. 7 and
Eq. 8) are effective, with fine-grained temporal FDMs icing
on the cake. In the last block, we note a maximum 3.1%
and 0.8% improvement over TGGC by introducing nonlin-
earities (C.2) and spectral attention (C.1). Simply combining
both leads to even better performance (i.e., TGGC†).

6.5 Additional Analysis
Model Convergence. We compare model convergence
between STGCN(1st) [2], StemGNN [9], and TGGC across
two scenarios with different learning rates in Fig. 12.
Our implementation with Gegenbauer bases has the
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(a) Study on the Gegenbauer
parameter α.

(b) Study on the polynomial
degree K

(c) Study on the number of se-
lected modes S.

(d) Study on the number of
building blocks M .

Fig. 13: Study on important parameters in TGGC.

(a) Predictions on 1st se-
lected period on PeMS08

(b) Predictions on 2nd se-
lected period on PeMS08

(c) Predictions on 1st se-
lected period on PeMS04

(d) Predictions on 2nd se-
lected period on PeMS04

Fig. 14: Showcases of model forecasts on different datasets.

fastest convergence rate in both cases, further confirming
Theorem 3 with ablation studies. Also, as anticipated,
STGCN(1st) is more tractable than StemGNN w.r.t. the
model training due to certain relaxations but at the cost of
model effectiveness.

Parameter Sensitivity. The results of parameter study
are in Fig. 13, and we have the following observations:
(1) adjusting the α in Gegenbauer polynomials impacts
model performance variably across datasets. For instance,
a smaller α is generally favored in three PeMS datasets, as
depicted in Fig. 13a; (2) the polynomial degree should not
be too small to avoid information loss, as demonstrated by
the poor performance when K = 1 in Fig. 13b. In practice,
we set K between 3 and 5, as higher degrees do not bring
additional performance gains; (3) similarly, setting S too

small or too large is not desirable, as shown in Fig. 13c. This
is to prevent information loss and mitigate the impact of
noise; (4) stacking more building blocks seems unnecessary;
even a single TGGC block already yields competitive
performance, according to Fig. 13d.

Showcases. Forecasting visualizations are presented
in Fig. 14. We juxtapose TGGC with StemGNN and
STGCN(1st) using the PeMS08 and PeMS04 datasets.
The visualizations capture forecasts from two randomly
selected sensors during distinct periods from the test sets.
In every instance, TGGC markedly surpasses the other two
baselines.

Additional Experiments. Refer to Appendix C for details.
Specifically, (1) we evaluate TGGC against additional base-
lines on other time series benchmarks; (2) we provide the
statistics of our forecasting results.

7 CONCLUSION

In this study, we provide the general formulation of spectral-
temporal graph neural networks (SPTGNNS), laying down
a theoretical framework for this category of methods. The
key insights derived include: (1) under modest assump-
tions, SPTGNNS can achieve universality; (2) the use of
orthogonal bases and individual spectral filters are pivotal
in crafting potent GNN-based time series models. To val-
idate our theoretical findings, we introduce an innovative
yet straightforward spectral-temporal graph neural network
(TGGC) and its enhanced variant (TGGC†). Both consis-
tently surpass the majority of baseline methods across di-
verse real-world benchmarks. Our findings shed light on the
follow-up research and pave the way for devising a broader
array of provably expressive SPTGNNS. A limitation of our
approach is that SPTGNNS may face challenges in handling
specific types of time series data, such as the underlying
graph topology is highly symmetric and node attributes ex-
hibit strong non-stationary or non-periodic behavior. These
cases, while rare, can pose difficulties for our method and
will necessitate further refinement of the development of
more adaptive models. In addition to addressing this lim-
itation, future research will also explore specific scenarios
such as time-evolving graph structures and investigating
the applicability of our theories to other tasks, such as time
series classification and anomaly detection.
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APPENDIX A
PROOFS

A.1 Proof of Theorem 1

Theorem 1. A linear SPTGNN can produce arbitrary dimen-
sional time series representations at any valid time iff: (1) L̂
has no repeated eigenvalues; (2) X encompasses all frequency
components with respect to the graph spectrum; (3) Tϕ(·) can
express any single-dimensional univariate time series.

Proof. Let us assume that t = 1 (i.e., there is only one
snapshot Gt of the graph {Gt}T−1

t=0 ), Tϕ(·) reduces to lin-
ear functions of a graph snapshot and the linear spectral-
temporal GNN reduces to a linear spectral GNN, which can
be equivalently written as:

Zt = gθ(L̂)XtΦ ∈ RN×D. (10)

We first prove the universality theorem of linear spectral
GNNs in a graph snapshot on the basis of Theorem 4.1 in
[13]. In other words, assuming X̃t = U⊤Xt has non-zero
row vectors and L̂ has unique eigenvalues, we first aim to
prove that for any Zt,d ∈ RN×1, there is a linear spectral
GNN to produce it. We assume there exists ϕ∗ ∈ RD s.t. all
elements in X̃tϕ

∗ are non-zero. Considering a case where
(X̃tϕ)i = 0 and letting the solution space to be Si, we know
that Si is a proper subspace of RD as the i-th row of X̃t is
non-zero. Therefore, RD \ ∪N

i=1Si ̸= ∅, and we know that all
vectors ϕ in RD \∪N

i=1Si are valid to form ϕ∗. We then filter
X̃tϕ

∗ to get Zt,d. Firstly, we let Z̃t,d = U⊤Zt,d and assume
there is a polynomial with N − 1 order:

pi := gθ(λi),

=
N−1∑
k=0

θkλ
k
i s.t. pi = Z̃t,d[i]/(X̃tϕ

∗)i , ∀i ∈ {1, · · · , N}.

(11)
On this basis, the polynomial coefficients θ is the solu-

tion of a linear system Bθ = p where Bi,j = λj−1
i . Since λi

are different from each other, B⊤ turns to a nonsingular
Vandermonde matrix, where a solution θ always exists.
Therefore, a linear spectral GNN can produce any one-
dimensional prediction under certain assumptions.

The above proof states that linear spectral GNNs can
produce any one-dimensional prediction if L̂ has no re-
peated eigenvalues (i.e., condition 1) and the node features
X contain all frequency components w.r.t. graph spectrum
(i.e., condition 2). When t ≥ 2, Tϕ(·) turns to linear functions
over all historical observations of graph snapshots. In order
to distinguish between different historical graph snapshots,
Tϕ(·) must be universal approximations of all historical
graph snapshots, implying that Tϕ(·) is able to express
any one-dimensional univariate time series (i.e., condition
3).

A.2 Proof of Theorem 2

Theorem 2. For a linear SPTGNN with valid temporal FDMs
that can express arbitrary 1-dimensional univariate time series
and a K-degree polynomial basis in its GSFs, ∀u, v ∈ V,Zt[u] =
Zt[v] if C(K+1)(u, t) = C(K+1)(v, t). Zt[i] and C(K)(i, t)

represent node i’s embedding at time t in such a GNN and the
K-step temporal 1-WL test, respectively.

Proof. Given valid temporal frequency-domain models (i.e.,
space projectors and TSFs) and a K-degree polynomial
filter function, the prediction of a linear SPTGNN can be
formulated as follows.

Z = Tϕ

(
K∑

k=0

ΘkPk(L̂)X

)
. (12)

For ease of reading, we redefine Tϕ(·) as the combination
of space projections and TSFs in the following proof. Let us
assume t = 1 (i.e., there is only one snapshot Gt of the
graph {Gt}T−1

t=0 ), Tϕ(·) reduces to linear functions of a single
graph snapshot and a linear SPTGNN reduces to a linear
spectral GNN. Using the framework in [36], Eq. 12 can be
viewed as a k + 1-layer GNN. The output of the last layer
in GNN produces the output of linear spectral GNNs [13].
According to the proof of Lemma 2 in [36], if WL node labels
C(K+1)(u) = C(K+1)(v), the corresponding GNN’s node
features should be the same at any iteration. Therefore, for
all nodes ∀u, v ∈ V,Z[u] = Z[v] if C(K+1)(u) = C(K+1)(v).

When t ≥ 2, we have a DTDG defined as a sequence
of graph snapshots (G1,G2, . . .) that are sampled at regular
intervals, and each snapshot is a static graph. Note that
any DTDGs can be equivalently converted to continuous-
time temporal graphs (CTDGs). The CTDG can be equiv-
alently viewed as time-stamped multi-graphs with times-
tamped edges, i.e., G(t) = {(uk, vk, tk) | tk < t}. According
to Proposition 6 in [42], the expressive power of dynamic
GNN with injective message passing is bounded by the
temporal WL test on G(t). Since Tϕ(·) is a set of linear
functions over all historical observations of graph snap-
shots, i.e., Tϕ(·) represents linear transformations of G(t).
The defined SPTGNN, i.e., Z = Tϕ(

∑K
k=0 ΘkPk(L̂)X),

should be as expressive as dynamic GNN with injec-
tive message passing. Hence, if temporal WL node labels
C(K+1)(u, t) = C(K+1)(v, t), the corresponding GNN’s
node features should be the same at any timestamp t and
at any iteration. Therefore, for all nodes ∀u, v ∈ V,Zt[u] =
Zt[v] if C(K+1)(u, t) = C(K+1)(v, t).

A.3 Proof of Proposition 2

Proposition 2. If a discrete-time dynamic graph with a fixed
graph topology at time t has no repeated eigenvalues in its normal-
ized graph Laplacian and has no missing frequency components
in each snapshot, then the temporal 1-WL is able to differentiate
all non-isomorphic nodes at time t.

Proof. Assume there are no repeated eigenvalues and miss-
ing frequency components w.r.t. graph spectrum in a
DTDG with fixed topology and time-evolving features, i.e.,
{Gt}T−1

t=0 .
According to Corollary 4.4 in [13], we know that if a

graph has no repeated eigenvalues and missing frequency
components, then 1-WL test can differentiate any pair
of non-isomorphic nodes. We denote the colors of two
nodes u and v in Gt after L 1-WL interactions as C(L)(u, t)
and C(L)(v, t) s.t. C(L)(u, t) ̸= C(L)(v, t) if u and v are
non-isomorphic. On this basis, we consider two scenarios in
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Gt+1: (1) two or more non-isomorphic nodes have identical
initial colors; (2) none of the non-isomorphic nodes have
identical colors. Under the assumptions in this proposition,
the 1-WL test can differentiate u and v in Gt+1 on both cases
with different

C(L)(u, t+1) := HASH(c(L−1)(u, t+1), {{c(L−1)(m, t+1) :
eu,m,t+1 ∈ E(Gt+1)}})

and

C(L)(v, t+1) := HASH(c(L−1)(v, t+1), {{c(L−1)(m, t+1) :
ev,m,t+1 ∈ E(Gt+1)}}).

Therefore, no matter whether C(L)(u, t) and C(L)(v, t)
are identical or not (they are different in fact as mentioned),
we have nonidentical

C(L)(u, t + 1) := HASH(c(L−1)(u, t +
1), c(L−1)(u, t), {{c(L−1)(m, t+ 1) : eu,m,t+1 ∈ E(Gt+1)}})

and

C(L)(v, t + 1) := HASH(c(L−1)(v, t +
1), c(L−1)(v, t), {{c(L−1)(m, t+ 1) : ev,m,t+1 ∈ E(Gt+1)}})

in the temporal 1-WL test, where C(L)(u, t) := c(L−1)(u, t)
and C(L)(v, t) := c(L−1)(v, t).

A.4 Proof of Proposition 3
Proposition 3. If a discrete-time dynamic graph with a fixed
graph topology has no multiple eigenvalues in its normalized
graph Laplacian and has no missing frequency components in
each snapshot, then no automorphism exists.

Proof. Given a DTDG {Gt}T−1
t=0 consists of T static graph

snapshots with fixed graph topology and time-evolving
node features, we first prove that all pairs of nodes are non-
isomorphic.

In a snapshot Gt, assume there is a permutation matrix
P, we have

L̂ := P⊤L̂P = PUΛU⊤P⊤, (13)

and we know

Λ := U⊤PUΛU⊤P⊤U = VΛV⊤, (14)

where V is an orthogonal matrix. Since all diagonal ele-
ments in Λ are different because we assume no repeated
eigenvalues, then the eigenspace of each eigenvalue has
only one dimension [13]; thus, we have U⊤PU = D, where
D is a diagonal matrix s.t. V := D with ±1 elements.
Now considering the node features Xt := PXt, we have
X̂t = VX̂t; thus (I − D)X̂t = 0 based on the above
discussion. If there are no missing frequency components
in X̂t, i.e., no zero row vectors, we have D = I and know
that

P = UDU⊤ = I. (15)

Hence, we prove that all nodes in a graph snapshot
Gt are non-isomorphic. In {Gt}T−1

t=0 , we have V := D
always holds across all snapshots if its normalized graph

Laplacian has no repeated eigenvalues. On this basis, if there
are no missing frequency components by giving Xt, ∀t ∈
{0, 1, . . . , T − 1}, all pairs of nodes are non-isomorphic in
an attributed DTDG with fixed graph topology.

A.5 Proof of Theorem 3

Theorem 3. For a linear SPTGNN optimized with mean
squared loss, any complete polynomial bases result in the same
expressive power, but an orthonormal basis guarantees the max-
imum convergence rate if its weight function matches the graph
signal density.

Proof. Directly analyzing Eq. 6 is complex and unnecessary
to study the effectiveness of different polynomial bases
when learning time series relations at each time step. Since
optimizing the spectral-temporal GNNs formulated in Eq. 6
can be understood as a two-step (i.e., graph-then-temporal)
optimization problem, we directly analyze the optimization
of Θ w.r.t. the formulation below based on the squared loss
L = 1

2 ||Zt − Yt||2F on a graph snapshot Gt with the target
Yt.

Zt =
K∑

k=0

ΘkPk(L̂)Xt. (16)

This is a convex optimization problem, thus the con-
vergence rate of gradient descent relates to the condition
number of the Hessian matrix [53]. In other words, the
convergence rate reaches the maximum if κ(H) reaches the
minimum. We have Hk1,k2 defined as follows that is similar
in [13].

∂L
∂Θk1

∂Θk2

= X⊤
t Pk2(L̂)Pk1(L̂)Xt,

=
n∑

i=1

Pk2
(λi)Pk1

(λi)X̃t[λi].
(17)

This equation can be written as a Riemann sum as
follows.

∂L
∂Θk1

∂Θk2

=
n∑

i=1

Pk2
(λi)Pk1

(λi)
F (λi)− F (λi−1)

λi − λi−1
(λi−λi−1).

(18)
In the above formula, F (λi) :=

∑
λj≤λi

(X̃t[λj ])
2 and

F (λi)−F (λi−1)
λi−λi−1

denotes the graph signal density at the fre-
quency λi. When n → ∞, we have the (k1, k2) element in
H rewrite as follows.

Hk1,k2
=

∫ 2

λ=0
Pk2

(λ)Pk1
(λ)

∆F (λ)

∆λ
dλ. (19)

We know that κ(H) reaches the minimum if H is a
diagonal matrix, which tells that the polynomial bases, e.g.,
Pk1

(λ) and Pk2
(λ), should be orthogonal w.r.t. the weight

function ∆F (λ)
∆λ .
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A.6 Proof of Lemma 2
Lemma 2. Suppose the projection of A by A′ is PA′(A), and the
coherence measure of A is µ(A) = Ω(k/N), then with a high
probability, the error between AW and PA′(A)W is bounded
by ||AW − PA′(A)W||F ≤ (1 + ϵ)||W||F ||A − Ak||F if
S = O(k2/ϵ2).

Proof. Similar to the analysis in Theorem 3 from [54] and
Theorem 1 from [26], we have

||AW − PA′(A)W||F ≤ ||W||F ||A− PA′(A)||F
= ||W||F ||A−A′(A′)†A||F
≤ ||W||F ||A− (AS⊤)(AkS

⊤)†Ak||F .
(20)

Then, following Theorem 5 from [54], if S = O(k2/ϵ2 ×
µ(A)N/k), we can obtain the following result with a prob-
ability at least 0.7

||A− (AS⊤)(AkS
⊤)†Ak||F ≤ (1 + ϵ)||A−Ak||F . (21)

Since µ(A) = Ω(k/N), when S = O(k2/ϵ2) together
with Eq. 20 and Eq. 21, we can obtain the final bound as

||AW − PA′(A)W||F ≤ (1 + ϵ)||W||F ||A−Ak||F . (22)

APPENDIX B
ADDITIONAL EXPERIMENTAL SETTINGS

The detailed hyperparameter configurations are in Tab. 7
and Tab. 8.

TABLE 7: The hyperparameter setting of our method for
short-term time series forecasting.

Hyperparameters PeMS03 PeMS04 PeMS07 PeMS08 Electricity Solar ECG
Gegenbauer parameter α 3.08 0.47 1 1 1.2 1.2 1.2
# polynomial degree K 4 4 4 4 4 4 4
# selected component S 5 4 5 5 5 5 5
# building block M 2 2 2 2 2 2 2
Training batch size B 32 64 50 50 50 50 50
Model learning rate η 0.0003 0.001 0.001 0.001 0.001 0.001 0.001

TABLE 8: The hyperparameter setting of our method for
long-term time series forecasting.

Hyperparameters α β K S M B η
Electricity 1 1 4 14 5 50 0.001
Solar-Energy 1 1 4 50 5 50 0.001
Weather 0.81 0.90 4 26 3 64 0.0003

APPENDIX C
ADDITIONAL RESULTS

C.1 Additional Forecasting Results
We provide our supplementary short-term forecasting re-
sults in Tab. 9, from which the following observations
can be made: (1) TGGC, in most cases, outperforms all
baseline methods by substantial margins, with an average
improvement of 35% compared to the best deep time series
baselines; (2) it generally outperforms StemGNN, although
the performance gaps are not very significant under this
experimental setting.

TABLE 9: Additional short-term forecasting results on three
time series benchmarks, where we follow [9] for the exper-
imental setting and baseline results. We use the bold and
underline fonts to indicate the best and second-best results.

Method MAE RMSE MAE RMSE MAE RMSE
Electricity Solar ECG

FC-LSTM [47] 0.62 0.20 0.13 0.19 0.32 0.54
TCN [18] 0.07 0.51 0.06 0.06 0.10 0.30
LSTNet [19] 0.06 0.07 0.07 0.19 0.08 0.12
DeepState [20] 0.06 0.67 0.06 0.25 0.09 0.76
DeepGLO [46] 0.08 0.14 0.09 0.14 0.09 0.15
SFM [48] 0.08 0.13 0.05 0.09 0.17 0.58
GWNet [3] 0.07 0.53 0.09 0.14 0.09 0.15
StemGNN [9] 0.04 0.06 0.03 0.07 0.05 0.07
TGGC (Ours) 0.05 0.07 0.02 0.04 0.04 0.06

C.2 Main Result Statistics
Tab. 10 and Tab. 11 present the average performances and
95% confidence intervals for our results reported in Tab. 2,
Tab. 3, and Tab. 5 with 5 individual runs.

TABLE 10: Short-term forecasting results showing our aver-
age performances ±95% confidence intervals, respectively.

Method TGGC TGGC†

MAE RMSE MAE RMSE

PeMS03 3 13.52 ± 0.226 21.74 ± 0.687 - -
12 - - 16.22 ± 0.475 27.07 ± 0.623

PeMS04 3 18.77 ± 0.142 29.92 ± 0.150 - -
12 - - 20.00 ± 0.300 32.10 ± 0.452

PeMS07 3 1.92 ± 0.029 3.35 ± 0.093 - -
12 - - 2.81 ± 0.035 5.58 ± 0.066

PeMS08 3 14.55 ± 0.245 22.73 ± 0.274 - -
12 - - 16.54 ± 0.981 26.10 ± 0.825

TABLE 11: Long-term forecasting results showing our aver-
age performances ±95% confidence intervals, respectively.

Method TGGC†

MAE RMSE

Electricity
96 0.293 ± 0.004 0.425 ± 0.006

192 0.303 ± 0.006 0.440 ± 0.007
336 0.313 ± 0.007 0.470 ± 0.005

Weather
96 0.235 ± 0.014 0.408 ± 0.029

192 0.286 ± 0.021 0.468 ± 0.041
336 0.317 ± 0.019 0.515 ± 0.036

Solar
96 0.242 ± 0.005 0.443 ± 0.009

192 0.263 ± 0.004 0.470 ± 0.010
336 0.271 ± 0.004 0.478 ± 0.009
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