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ABSTRACT

Research question answering requires accurate retrieval and con-
textual understanding of scientific literature. However, current
Retrieval-Augmented Generation (RAG) methods often struggle
to balance complex document relationships with precise informa-
tion retrieval. In this paper, we introduce Contextualized Graph
Retrieval-Augmented Generation (CG-RAG), a novel framework
that integrates sparse and dense retrieval signals within graph
structures to enhance retrieval efficiency and subsequently im-
prove generation quality for research question answering. First,
we propose a contextual graph representation for citation graphs,
effectively capturing both explicit and implicit connections within
and across documents. Next, we introduce Lexical-Semantic Graph
Retrieval (LeSeGR), which seamlessly integrates sparse and dense
retrieval signals with graph encoding. It bridges the gap between
lexical precision and semantic understanding in citation graph re-
trieval, demonstrating generalizability to existing graph retrieval
and hybrid retrieval methods. Finally, we present a context-aware
generation strategy that utilizes the retrieved graph-structured in-
formation to generate precise and contextually enriched responses
using large language models (LLMs). Extensive experiments on
research question answering benchmarks across multiple domains
demonstrate that our CG-RAG framework significantly outper-
forms RAG methods combined with various state-of-the-art re-
trieval approaches, delivering superior retrieval accuracy and gen-
eration quality.
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1 INTRODUCTION

Question answering is a critical domain recently driven by ad-
vancements in Large Language Models (LLMs). While LLMs ex-
hibit exceptional capabilities in addressing commonsense questions
[2,13, 20], their pre-trained knowledge inevitably becomes outdated
over time, rendering them insufficient for delivering timely, precise,
and comprehensive answers, particularly for complex scientific
and domain-specific questions. Additionally, the substantial cost of
continuously fine-tuning and updating LLMs makes maintaining
their relevance impractical.

For open-domain question answering, which requires relevant
contexts for precise answers, Retrieval-Augmented Generation
(RAG) [21] offers a promising solution. By integrating external
knowledge, RAG addresses the limitations of static pre-trained
LLMs, enabling access to up-to-date, domain-specific information
and thereby enhancing answer accuracy [34, 36, 42]. RAG comprises
two components: a retriever, which identifies relevant information
from the database based on the query, and a generator, which uti-
lizes the retrieved information to construct responses. The quality
of generation heavily depends on the effectiveness of the retrieval
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Figure 1: Illustration of retrieval-augmented research question answering using: (a) sparse retrieval based on lexical matches,
(b) dense retrieval based on semantic relevance, and (c) contextualized retrieval leveraging graph context, i.e., interactions

between documents. | represents the dense embedding, where deeper colors indicate a higher semantic relevance to the question.

in red highlights the matched terms between questions and documents, while in blue highlights the

matched terms between documents.

process [45, 47]. Traditional retrieval methods primarily focus on
lexical and semantic relevance to evaluate the relevance between
documents and queries, utilizing sparse and dense retrieval sig-
nals, respectively [25, 48]. For graph-based databases, however,
these methods fall short, as they fail to account for intricate inter-
document relationships. For example, simple retrieval methods
often overlook critical citation links in paper citation networks,
which are essential for capturing nuanced connections between
documents.

Unlike typical QA tasks, which range from layman-level to
domain-expert-level based on well-curated documents or knowl-
edge graphs, this paper focuses on more challenging QA at the
research frontier, which can only be addressed by analyzing the
body of research papers, a task referred to as research question
answering. Research question answering necessitates considering
connections between documents through citation links to ensure
comprehensiveness [10, 24, 38]. In citation graphs, the relevant
papers are connected not only semantically but also via citation
links, encapsulating structured contextual information. Leveraging
this contextual information is essential for enhancing both retrieval
accuracy and the quality of generated responses, as illustrated in
Figure 1. Specifically, as shown in Figure 1(c), each paper requires
an evaluation of lexical and semantic relevance, as well as its cita-
tions to other relevant documents. For instance, a paper focused
on "graph representation learning” is theoretically correlated to
a query on "node classification,’ but it cannot be retrieved using
sparse or dense retrieval alone. When multi-hop citation links are
considered, however, it becomes highly relevant. Notably, not all
citation-linked papers are pertinent to the query, requiring an ap-
proach that integrates lexical and semantic relevance, structural
patterns, and graph-based context to ensure accurate retrieval.

To tackle this problem, we propose Contextualized Graph
Retrieval-Augmented Generation (CG-RAG), a novel framework
tailored for research question answering. An important considera-
tion of research question answering is that research paper content
is highly heterogeneous: for instance, the information in the re-
lated work, methodology, and experimental sections each serve
different purposes and answer distinct types of questions. There-
fore, effective modeling requires breaking down documents into
semantic chunks—coherent sections representing specific aspects
of a research paper. To achieve this, we mathematically construct a
citation graph at the chunk level, where each chunk represents a
semantically meaningful module of the paper. These chunks form a
graph structure with intra-paper and inter-paper connections, cap-
turing both internal coherence and external relationships. To rep-
resent this, we introduce the Contextual Citation Graph, which
decomposes citation graphs into chunk-level granularity, enabling
fine-grained relationship discovery.

To synergize lexical and semantic retrieval signals inside and
across networked documents in citation graphs, we propose the
Lexical-Semantic Graph Retrieval (LeSeGR) method. This ap-
proach convolves over query-relevant subgraphs, where edges and
nodes are characterized by lexical and semantic relevance scores.
Importantly, we theoretically demonstrate that the existing post-
retrieval paradigm is a special case of our approach. When docu-
ments are contextually linked, entangling retrieval signals through
graph structures enhances retrieval performance. Finally, the sub-
graph embeddings are used as input to LLMs for generating final
answers. Our experiments conducted on citation graphs from di-
verse scientific domains demonstrate the superior retrieval and
generation effectiveness of CG-RAG. Furthermore, our evaluations
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reveal that retrieval-augmented LLMs equipped with CG-RAG out-
perform state-of-the-art retrieval strategies, significantly enhancing
the quality of LLM-generated responses.

The rest of the paper is organized as follows. Section 2 reviews re-
lated work on retrieval-augmented generation. Section 3 highlights
key aspects of retrieval-augmented research question answering
within the context of citation graphs. Section 4 introduces a novel
formulation that extends beyond the current retrieval paradigm and
details our proposed retrieval strategy and retrieval-augmented gen-
eration method. Section 5 presents experimental results, comparing
our approach with RAG frameworks using various state-of-the-art
retrieval methods for research question answering. Finally, Section
6 concludes the paper with key insights.

2 RELATED WORK

2.1 Information Retrieval

Information retrieval (IR) focuses on extracting relevant informa-
tion from large corpora. Two primary retrieval techniques domi-
nate the field: sparse retrieval and dense retrieval. Sparse retrieval
methods, such as TF-IDF [32] and BM25 [31], rely on term-based
representations to evaluate lexical matches between queries and
documents. These approaches perform well in scenarios where
exact term matching is essential, but they struggle with seman-
tic meaning. In contrast, dense retrieval methods leverage pre-
trained language models such as BERT [5] to encode queries and
documents as continuous, low-dimensional embeddings, captur-
ing semantic similarity through maximum inner product search
(MIPS) [16, 30, 43, 44]. Dense retrieval effectively overcomes the
lexical gap, retrieving semantically related results even when query
terms differ from the document’s terminology. Recently, hybrid
retrieval techniques have also emerged to combine the strengths
of sparse and dense methods while addressing their respective
limitations [25, 26, 29]. By integrating sparse and dense signals,
these approaches provide a robust solution for retrieving relevant
information from long and complex documents.

2.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a technique that inte-
grates external retrieval systems to enhance large language mod-
els (LLMs) [9, 21, 22]. Unlike traditional LLMs that rely solely on
pre-trained knowledge, RAG leverages external sources during in-
ference, enabling more accurate and up-to-date responses. This
makes RAG particularly effective for specialized tasks, such as
literature-based question answering [27, 46]. Naturally, current lit-
erature question-answering systems are predominantly built upon
RAG frameworks [1, 10, 35, 39], relying mainly on dense retrieval
combined with LLMs. Literature data, however, is inherently graph-
structured, where topological information, such as hierarchical
and citation relationships, plays a crucial role in the retrieval and
generation processes. As such, most existing literature question
answering methods fail to incorporate this structural context ef-
fectively. Recently, GraphRAG [6, 11, 12] was introduced to extend
RAG to graph-related scenarios, offering the potential to capture
complex interconnections in literature datasets by leveraging graph-
based relationships such as hierarchical and citation structures. In
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our study, we focus on leveraging graph context to enhance the
retrieval and generation processes in literature question answering.

3 RESEARCH QUESTION ANSWERING

Citation Graph. A citation Graph, G = (V, E, {dy}yecv), consists
of a node set V and an edge set E, where each node v € V is
associated with natural language attributes in a paper. These papers,
represented by D = {dy},ev, include textual information such as
abstracts, sections, and other relevant content.

Research Question Answering. Given a query g over the ci-
tation graph G, the objective of research question answering is to
generate an appropriate answer by leveraging the relevant infor-
mation retrieved from G. Formally, this objective is defined as:

n
Yig.G) = ily<i,q. G), 1
p0(Y1g.G) argmgxgpe(y ly<ir g, G) (1)

where 6 represents the parameters of the generative language
model, Y = {y;}}L, is the generated answer sequence, and y<;
denotes the prefix tokens of the sequence up to position i — 1.
The quality of the generated answer is highly dependent on
the effectiveness of the retrieval process within the citation graph.
Let f, denote the relevance scoring function for a retrieval system
o. Recent advances in graph-based retrieval leverage structural

information, formalized as:

fgraph : 9(fdense) 7 R, 2

where g(+) encodes topological information. These methods pri-
marily rely on dense representations, which often fail to capture
sparse lexical matches—essential in citation graphs for identifying
exact cross-references and key terms critical to retrieval accuracy.
Thus, integrating sparse and dense retrieval is essential. Existing
hybrid retrieval systems combine these signals via post-retrieval
fusion: fuybrid @ fsparse B fiense — R, where € denotes opera-
tions such as score fusion. Treating documents as isolated entities,
however, limits their effectiveness in structured databases such as
citation graphs. Designing a retrieval system that is both lexically
and semantically aware in graph retrieval remains an unresolved
challenge.

4 METHODOLOGY

4.1 Overview

To overcome these limitations, we propose Contextualized Graph
Retrieval-Augmented Generation (CG-RAG), introducing a novel re-
trieval method called Lexical-Semantic Graph Retrieval (LeSeGR),
which integrates discrete sparse signals and continuous dense sig-
nals in a manner that respects the graph topology. Formally, the
paradigm is defined as:

fentangled : g(fsparse ®f£1ense) — R, (3)

where ¢(-) is a graph encoder that incorporates structured con-
text during retrieval, and (X) represents the entangled fusion of
sparse and dense signals. The transition to fentangled offers greater
generality and capabilities, but requires addressing fundamental
challenges:
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e Section 4.2 introduces the contextual citation graph, which cap-
tures chunk-level cross-relationships by surrounding each chunk
with its relevant context.

e Section 4.3 introduces the Lexical-Semantic Graph Retrieval that
integrates sparse and dense signals within graph-based scenarios.
We prove that it encompasses existing hybrid retrieval meth-
ods based on post-retrieval approaches as a special case when
graph contextual information is absent and extends dense-signal-
only graph retrieval, highlighting its generalizability to current
retrieval frameworks.

o Section 4.4 introduces Contextualized Graph Retrieval-Augmented
Generation that leverages retrieved contextual subgraphs by
LeSeGR to improve the quality of generated responses.

4.2 Contextual Citation Graph

Research paper content is highly diverse, with sections like related
work, methodology, and experiments serving distinct purposes
and answering different questions, necessitating the segmentation
of documents into semantic chunks that capture specific aspects.
Given a citation graph G = (V, E, {dy}yev), each document d,, is
decomposed into a set of chunks C,, with all chunks collectively
forming C = |J,ey Cy. Chunks may reference each other within
the same document (intra-connections) or across different docu-
ments (inter-connections). Intra-connections are explicit, such as a
section referencing earlier subsections within the same paper, while
inter-connections occur when one paper cites another without ex-
plicitly linking to specific chunks within it. Intra-document links
typically provide highly relevant context, whereas inter-document
links offer supplementary but less significant information. To cap-
ture these interactions during retrieval, we propose the hierarchical
citation graph, modeling relationships both within and across docu-
ments. Formally, it is defined as G = (V, E,C), where C = {c;};cy
represents the set of chunks.

4.2.1 Chunk Node. Each chunk ¢; € C corresponds to a fixed-
length segment of text extracted from a document in the citation
graph G. Specifically, documents are divided into chunks with a
maximum token length of [, such that a document with a total token
length of L is divided into [%] chunks. These chunks serve as the
nodes in the hierarchical citation graph G.

4.2.2  Chunk-Chunk Edge. The edges in G represent relationships
between chunks, capturing both intra- and inter-document con-
nections. Edge weights reflect the strength and nature of these
relationships.

Intra-document Edges connect chunks within the same docu-
ment, preserving the logical flow and structural hierarchy of the text.
When c;, ¢cj € Cy, an edge is established if a structural dependency
exists between them, such as adjacency or explicit cross-references.
Adjacency refers to the logical connection between two consecutive
chunks, where c; precedes c;, resulting in an edge c; — c;. Explicit
cross-references occur when c; refers to cj, establishing an edge
Cj — Cj.

Inter-document Edges, in contrast, connect chunks across differ-
ent documents. For a chunk ¢; € Cy, the Top-n relevant chunks in
Cy are linked to ¢; if (v,u) € E. The relevance r;j between c; and
cj is computed using the relevance scoring functions fsparse and
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Sparse sparse sparse
fdense: fSparse (Cip ,C P ) + fdense (c?ense, c?ense), where Cip

J
and c?ense are the sparse and dense representations of chunk c;,

respectively, and similarly for c;.

4.3 Lexical-Semantic Graph Retrieval (LeSeGR)

Given a hierarchical citation graph G = (V,E,C,w), the represen-
tation of each chunk ¢; € C is designed to combine the advantages
of sparse lexical vectors and dense semantic vectors. Additionally,
if the contexts around ¢; contain relevant information, the repre-
sentation incorporates contributions from these contextual chunks.
This forms the basis of an entangled representation, integrating
both sparse-dense fusion and graph contextual information.

Algorithm 1 Lexical-Semantic Graph Retrieval.

Require: Citation graph G = (V, E, {dy}yev), Query q
Ensure: A list of contextual subgraphs {G}
1: »Initialize graph structures and representations.
. if cached contextual graph G exists then
Load G = (V,E,C)
else
Generate G = (V,E,C) from G
Cache G for future use
end if
. »Initialize sparse and dense representations for the query and
all chunks.
?parse) cElense
10: gParse gdense  ¢harse and dense encoders for g
11: »Compute initial query relevance for all chunks.
12: for each chunk ¢; € C do
13: §qi — fsparseqsparse, Cls_parse)
14: aij — MLP¢,(C?CHSE ) C(}ense)
15: end for
16: »Perform message passing through the graph.

17: for each layer k = 1,...,K do

RS LI I N

« sparse and dense encoders for V¢; € C

> Sparse Signal
> Dense Signal

18: for each chunk ¢; € C do

19: >Compute messages from neighbors and itself.
20: m(© — MSGK®) (84, - aij - b )Vj e (i UN ()
21: >Aggregate messages.

2 b — AGGH) ((ml®) | j e (i} UN(i)})

23: end for

24: end for

25: >Compute relevance scores with entangled representations.
26: for each chunk ¢; € C do

2 5(q.¢i) — faense(q™¢ )

28: end for

29: »Select top-relevant chunks and construct subgraphs.

30: S(G;q) < Top-N contextual subgraphs based on s(g, c;)

31: >Return the retrieved subgraphs.

32: return S(G; q)

The entangled representation of ¢; is obtained through a graph
encoder, such as a GNN, which aggregates information based on
the contextual graph:

H; = go (b}, 64, ij | j € (i UN (D)), @
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where ® denotes the parameters of the graph encoder, and hﬁ.o) =

cdense jg the initial dense representation of ¢ j. The terms dq; and

a;;j control the message passing, ensuring that only relevant infor-
mation is propagated. Specifically, the message contribution from a
neighboring chunk c; to ¢; and the subsequent update are defined
as:

k k
m® = MsGH) (5qj-a,-j.h§. >), )

hlgkn) - aga ({mﬁk) | je{i} uN(i)}), (6)

where h'® is the representation of c; at layer k. The term J4; eval-
uates the relevance between the query and the context, while a;;
measures the relevance between the central chunk ¢; and its neigh-
boring chunks c;. Specifically, dgi, the sparse relevance between a
query g and a chunk c;, is computed as:

5qi _ fsparse(qiparses Ciparse). (7)
where fsparse indicates a relevance scoring function used in sparse
retrieval such as cosine similarity and dot product. This incorpo-
rates sparse relevance into the dense embedding during message
passing. To model the dense interaction between c; and its neigh-
boring chunks ¢; € N (i), a;j is calculated as:

aij = MLP (¢ © ), (®)

where «a;; is defined as 1, © represents element-wise subtraction
to compute the feature difference, and MLPy parameterized by ¢,
adaptively assesses the relevance between chunks.

This entangled representation framework integrates sparse and
dense features while leveraging structural information from the
graph context, ensuring that each chunk’s representation reflects
both its intrinsic relevance and its contextual relationships.

Given a query q over the chunk set C of a citation graph G, the
relevance scoring function fentangled (g ¢i) : @ X C — Riis:

s(g,ci) = fdense(qdense’ H;), )

where fiense indicates a relevance scoring function used in dense
retrieval, q4¢75€ represents the dense vector of the query, and H;
denotes the entangled representation of the chunk c;. The overall
algorithm is depicted in Algorithm 1.

ProprosSITION 4.1 (LESEGR GENERALITY). Post-retrieval methods
with the metric fuyprid * fsparse P fiaense — R, represent a special
case of the proposed Lexical-Semantic Graph Retrieval (LeSeGR). This
holds when no additional relevant contextual information exists for
any chunk in the citation graph, reducing LeSeGR to existing hybrid
retrieval used post-retrieval fusion.

Proor. The entangled representation of a chunk c; is given by:

H; = AGG({(h) | j € (i} UN())) = AGG(Lim;), 2ym (),
(10)

gk) and mE\I;) denote messages from the central chunk c;

and its neighboring chunks at layer k, respectively. The weights A;
and A are typically equal and defined as W

where m

When the AGG function is defined as either mean or sum, both
of which satisfy the distributive law, the relevance score s(g, c;), as
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Figure 2: Overview of Contextualized Graph Retrieval-
Augmented Generation.

defined in Equation 9, can be expanded as:
k k
5(6:¢1) = frense (0275, AGG(1im ™), 1pm'})) (11)

k k
© Aiﬁiense(qdenses m,( )) + ANﬁiense(qdensea mg\/) ). (12)

When no relevant neighbors exist (i.e., N (i) = 0), the second term
vanishes, leaving:

k k
5(g ¢1) o Ai faense (05, m ) = 1igi faense (4275, 0F)). (13)

Substituting hl(k) = c?ense, the relevance score simplifies to:

dense, cdense (14)

i .

s(g, ¢i) o 5qifdense(q
Taking the logarithm for further analysis:

log(s(g. i) o 1og(8qi) +1og(faense (qU¢, cdem5€)).  (15)

. o sparse .sparse . .
Since 6gi = fsparse(q .C; ), this becomes:

log(s(q, c)) o log( fiparse (qP2*¢, ;7)) (16)
+10g(fiense (115, censey), (17)

where the use of log(-) requires fsparse and fgense to be mapped
to R*. This requirement can be fulfilled by applying appropriate
activation functions or transformations to transform them from R
into the non-negative domain. In this case, the relevance score is
equivalent to the additive fusion of sparse and dense relevance, as
used in post-retrieval hybrid methods. Hence, when no contextual
information exists (N (i) = 0), our graph-contextualized retrieval
reduces to the post-retrieval fusion paradigm, demonstrating that
the latter is a specific instance of the former. O

When relevant graph contexts are present, the entangled frame-
work dynamically propagates and aggregates sparse and dense sig-
nals through structural relationships among neighboring chunks.
This enables the model to capture relational dependencies and
multi-hop connections in graphs, enhancing retrieval accuracy and
effectively utilizing sparse and dense signals from neighbors.

4.4 Contextualized Graph Retrieval-Augmented
Generation (CG-RAG)
Given a query q on a citation graph G, we use LeSeGR to retrieve

the top N chunks that are most relevant to the question. These
retrieved chunks, together with their contextual subgraph, are then
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used to generate the answer, as illustrated in Figure 2. Specifically,
for each selected chunk, its corresponding contextual subgraph G;
is retained for the generation phase, where G; = G[{i} U N (i)]
represents the induced subgraph consisting of chunk ¢; and its
direct neighbors. Formally, the set of contextual subgraphs for the
Top-N chunks is defined as:

U & (18)

S(G;q) =
c;i€Top-N(q,C)

where Top-N (g, C) represents the Top-N chunks ranked by s(g, ¢;).
This ensures the retrieval retains both the most relevant chunks
and their graph context for downstream tasks.

To effectively utilize the contextual information of each retrieved
chunk and adapt to various LLMs, including open-source models
such as LLaMA and closed-source models such as ChatGPT, we
first summarize the graph context and then concatenate this sum-
marized context with the central chunks to enhance generation.
Specifically, for each contextual subgraph G; € S(G; q), we prompt
the LLM to summarize the contextual information surrounding c;.
The summarized context is concatenated with the query to form
the final input for generating the answer. The generation process
over the citation graph G is formally defined as:

n
po(¥lg.G) = argmax [ | po(yily<i, Xg. Xc).  (19)
i=1

where 0 represents the LLM parameters, X4 = TextEmbedder(q) is
the query embedding, and X is the context embedding:

Xc = TextEmbedder ([Summarize(q, Gi (20)

gesgm):
representing the embeddings of the concatenated summarized con-
texts from the retrieved contextual subgraphs. The summarization
is performed by the LLM itself, extracting relevant information
from the contextual subgraph to aid in generating the final answer.

5 EXPERIMENT

We conduct experiments to evaluate the effectiveness (Section 5.2)
and efficiency (Section 5.3) of Contextualized Graph RAG, along
with an analysis of the individual contributions of our technical
designs (Section 5.4).

5.1 Settings

Datasets. Our experiments utilize two datasets: PubMedQA-1k
and PapersWithCodeQA. PubMedQA-1k is a publicly available
dataset, introduced by Jin et al., and comprises 1,000 question-
answer pairs designed for PubMed literature 1 with human-labeled
gold-standard retrieval and answer annotations. The original dataset,
however, lacks citation information between papers, which we ad-
dressed by extracting the references for each paper and constructing
a citation graph database with a total of 7,849 papers.

The PapersWithCodeQA dataset was collected from the Paper-
sWithCode website?, which tracks research papers across various
computer science fields. We used 84 leaderboards® spanning diverse
domains, including Computer Vision, Natural Language Processing,

!https://pubmed.ncbi.nlm.nih.gov/
Zhttps://paperswithcode.com/
3https://paperswithcode.com/sota
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Table 1: Example question-answering pairs and correspond-
ing evaluation metrics.

True or False: Do mitochondria play a role in remodelling lace

plant leaves during programmed cell death? Yes,

No or Maybe.

" Answer: Yes 7
" Metrics: Accuracy (Acc), F; Score.
Multiple Choice: ~ Which model achieves state-of-the-art* perfor-

mance on the ADE20K dataset for semantic seg-
mentation? (a) BEiT-3 (b) DINOv2 (c) ONE-PEACE
(d) EVA
 Answer: ©
" Metrics: Mean Reciprocal Rank (MRR), Hit@k.
Essay: Could you provide an overview of the model devel-
opment for semantic segmentation?

" Answer: .. Early models like FCN (Fully Convolutional Net-
works) laid the foundation by adapting classifi-
cation networks for pixel-level predictions ... Re-
cently, ONE-PEACE emerged as a state-of-the-art
model ...

" Metrics: Coherence, Consistency, Relevance

*Within the citation graph we collected.

Medical, and Graphs. For each leaderboard, we extracted the top 20
papers’ contents and references from arXiv* to construct a graph
database. The LaTeX content of each paper was preserved as its
textual attributes. The dataset comprises 12,171 papers, from which
we also crafted 924 questions centered on leaderboard analysis,
with ground truth answers derived directly from the leaderboards.
These include 420 True/False questions, 420 multiple-choice ques-
tions, and 84 generative questions. For generative questions, we
first provide the LLMs with the most relevant contexts labeled by
humans and allow the LLMs to generate answers. We then evalu-
ate the quality of retrieval-augmented generation by replacing the
human-selected contexts with those retrieved by different retrieval
methods.

Metrics. To comprehensively evaluate the performance of RAG
systems in retrieving relevant information and generating accurate,
contextually appropriate answers, we employ distinct metrics for
retrieval and question answering. For retrieval, we use Hit@1 and
Hit@3, which measure the proportion of queries where the cor-
rect chunk is ranked within the top-1 and top-3 retrieved results,
respectively.

For research question answering, example questions and used
evaluation metrics are presented in Table 1. For multiple-choice
questions, we use Mean Reciprocal Rank (MRR) and Hit@k to assess
ranking quality. For True/False questions, Accuracy (Acc) and F;
score evaluate classification performance. For generative tasks, we
leverage the UniEval model [49] to assess Coherence, Consistency,
and Relevance, which evaluate logical flow, factual accuracy, and
topical alignment, respectively. All metrics adhere to the principle
that higher values indicate better model performance.

Implementations. Experiments are conducted using two NVIDIA
A10 GPUs, with Graph Transformer [33] serving as the graph en-
coder. The configuration includes two layers, each featuring four

4https://arxiv.org/
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Table 2: Evaluation of the retrieval-augmented research question answering. The best performance is highlighted in BOLD,

while the second-best performance is underlined. Performance of our methods is highlighted .

PapersWithCodeQA PubMedQA

Category Method Acc Fy MRR Hit@1 Coherence Consistency Relevance Acc F
BM25 0.689 0.617 + 0.765  0.736 +  0.905 0.858 0.859 1 0.662 0.604

Sparse Doc2Query 0.705  0.629 : 0.748  0.731 : 0.914 0.833 0.852 : 0.684 0.614
BGE-M3 0.751 0.648 , 0810 0787 ,  0.934 0.876 0.863 | 0.722  0.644

MiniLM 0.730 0644 | 0782 0758 |, 0919 0.872 0.828 | 0712 0.641

LaBSE 0591 0552 | 0.677 0.643 |  0.875 0.545 0616 | 0.403 0.396

Dense mContriever 0523 0531 ! 0.647 0613 |  0.863 0.469 0438 1 0.288 0.271
E5 0.579  0.560 } 0.659  0.628 } 0.872 0.521 0.544 } 0363  0.360

SPAR 0611 0583 | 0.643  0.609 |,  0.886 0.549 0537 | 0392  0.384

Score Fusion 0739 0.656 |, 0.774 0749 |,  0.908 0.891 0.887 | 0.674 0613

Hvbrid ColBERT 0769 0.661 | 0.827 0778 |  0.927 0.884 0874 1 0.724  0.642
Y CLEAR 0.618 0575 ! 0.667 0.643 |  0.894 0.623 0.685 | 0.468 0.456

| | |

LeSeGR (Ours)  0.835 0.703 | 0.884 0.827 |  0.956 0.921 0.914 1 0.778 0.685

attention heads and a hidden dimension size of 1024. The maximum
chunk length is set to 8,192 tokens. Training is conducted using
CrossEntropy, with 10% of the samples labeled with gold-standard
retrieval, and optimized using the AdamW optimizer [23]. The rele-
vance scoring function for both dense and sparse representations is
dot product. For generation, GPT-4 is employed through the Ope-
nAI API, specifically leveraging the gpt-40-2024-05-13 model
version.

Baseline methods. To evaluate the proposed graph-contextualized
retrieval method, we benchmark it against several state-of-the-art
baselines renowned for their effectiveness in the retrieval phase
across various RAG systems. These retrieval techniques are catego-
rized into three groups: sparse retrieval, dense retrieval, and hybrid
retrieval.

e Sparse Retrieval: BM25 [31], an advanced refinement of TF-IDF
[32], enhances relevance scoring by incorporating probabilistic
modeling, term saturation, and document length normalization,
providing robust performance in keyword-based retrieval tasks.
Doc2Query [28] improves sparse retrieval by generating synthetic
queries for documents using a pre-trained language model (PLM).
BGE-M3 [3] utilizes a multi-vector architecture to create robust
representations, integrating contrastive learning and knowledge
distillation techniques.

e Dense Retrieval: MiniLM [41] is a lightweight transformer
model that uses deep self-attention distillation to create dense em-
beddings. LaBSE [7] is a bilingual embedding model, leveraging
dual encoders and a large-scale parallel corpus to ensure semantic
alignment across languages. mContriever [14] employs unsuper-
vised contrastive learning to train dense retrievers, focusing on
encoding diverse and nuanced contextual information. E5 [40]
optimizes embeddings for text retrieval by integrating explicit
supervision from retrieval datasets and task-specific fine-tuning.
SPAR [4] employs salient phrase representation learning to bridge
dense and sparse retrieval, utilizing a dual encoder architecture
that explicitly models both phrase-level and document-level se-
mantics.

e Hybrid Retrieval: ScoreFusion [19] combines the output scores
of sparse and dense retrieval models to produce a unified ranking.
ColBERT [17] introduces late interaction to compute pairwise
term similarities between query and document embeddings, en-
abling efficient and fine-grained integration of sparse and dense
signals. CLEAR [8] employs a residual learning framework to
combine sparse and dense representations, ensuring complemen-
tary signals are utilized for improved retrieval performance.

5.2 Main Results

Our proposed Contextualized Graph Retrieval-Augmented Genera-
tion with LeSeGR achieves state-of-the-art performance across all
tasks and datasets, as shown in Table 2. For true/false questions,
LeSeGR significantly surpasses sparse, dense, and hybrid baselines
in both accuracy (Acc) and F; scores, demonstrating its capability
to effectively capture domain-specific terms and semantic nuances.
Hybrid methods such as ScoreFusion combine sparse and dense
signals but fail to achieve the deeper integration of retrieval sig-
nals offered by LeSeGR. Through its graph-structured integration,
LeSeGR dynamically propagates and entangles retrieval signals
from contextual information, fully leveraging the relationships em-
bedded in the graph structure. This advanced integration translates
to superior performance, particularly in metrics such as MRR and
Hit@1.

In generative tasks, our method demonstrates significant im-
provement in Coherence, Consistency, and Relevance by leveraging
its entangled sparse-dense representation and graph-based con-
textualization. Unlike hybrid baselines such as ColBERT, which
emphasizes token-level interactions but overlooks graph-level rela-
tionships, LeSeGR’s graph encoder dynamically aggregates signals
across interconnected chunks. This enhances contextual under-
standing, enabling high-quality and contextually rich text gener-
ation. For instance, LeSeGR achieves a Coherence score of 0.956
on PapersWithCodeQA, outperforming ColBERT’s 0.927. These
results underscore the unique strengths of LeSeGR in effectively
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Table 3: Evaluation of the retrieval effectiveness on the cita-
tion graph of PubMed (PubMedQA). The best performance is
highlighted in BOLD, while the second-best performance is
underlined.

Category Method Hit@1 Hit@3
BM25 0.835 0.912
Sparse Doc2Query 0.832 0.930
BGE-M3 0.915 0.960
MiniLM 0.887 0.945
LaBSE 0.305 0.471
Dense mContriever 0.472 0.496
E5 0.231 0.355
SPAR 0.256 0.385
Score Fusion 0.829 0.925
. ColBERT 0.913 0.968
Hybrid CLEAR 0470 0.612

LeSeGR (Ours) 0.961 0.987

bridging sparse and dense retrieval with graph-based contextu-
alization, thereby advancing the retrieval-augmented generation
process to new levels of effectiveness.

Table 3 demonstrates that LeSeGR significantly outperforms all
baselines in the retrieval phase, including sparse, dense, and hybrid
approaches. Our method achieves superior retrieval accuracy by
effectively entangling sparse and dense signals within the graph
structure, allowing contextual information to enhance relevance
scoring. Unlike post-retrieval fusion methods, such as ScoreFusion,
which combine sparse and dense signals after separate retrieval
processes, our approach dynamically integrates these signals dur-
ing retrieval, leading to more coherent and effective utilization of
both lexical and semantic information. Furthermore, while Col-
BERT performs token-level interactions for fine-grained relevance,
it operates at the query-document level without fully leveraging
the structural relationships present in citation graphs. In contrast,
our method extends relevance computation to the graph structure,
propagating and aggregating signals across related chunks to cap-
ture multi-hop and relational dependencies. This deeper integration
of graph context and entangled sparse-dense signals enables our
method to outperform ColBERT, achieving the highest Hit@1 and
Hit@3 scores.

5.3 Efficiency Analysis

As shown in Table 4, LeSeGR demonstrates competitive retrieval
efficiency on the citation graph of arXiv (PapersWithCodeQA). It
strikes a balance between memory usage and latency, leveraging
GPU computation effectively. LeSeGR achieves faster query latency
(403.94 ms) compared to ColBERT (561.91 ms) while maintaining
a moderate GPU memory footprint (1,921 MB). In contrast, Score-
Fusion exhibits high CPU memory usage (5,655 MB) and slower
query speeds, whereas LeSeGR optimizes GPU utilization by inte-
grating both sparse and dense retrieval signals into the message
passing process of the graph encoder. Additionally, LeSeGR outper-
forms CLEAR in query speed while maintaining similar memory
usage. These results highlight LeSeGR’s efficiency and scalability

Yuntong et al.

for large-scale graph-based retrieval tasks without compromising
effectiveness.

Table 4: Evaluation of the retrieval efficiency on the citation
graph of arXiv (PapersWithCodeQA).

CPU & GPU Memory Indexing & Query Latency

Method

(MB) (MB) (ms) (ms)
Score Fusion 5,655 770 43.94 1,580.14
ColBERT 0 12,674 12.40 561.91
CLEAR 0 1,538 205.36 16.07
LeSeGR 0 1,921 19.22 403.94

5.4 Ablation Studies

The ablation studies performed for each influential factor in LeSeGR
is shown in Table 5. In this experiment, we evaluate LeSeGR on the
citation graph of PubMed, which contains 7,849 papers. Our main
observations are as follows:

Table 5: Ablation studies on PubMedQA. The default settings
of LeSeGR are marked with *.

Factor Setting Hit@1 Hit@3
Graph GAT 0.939 0.968
Encod GCN 0.955 0.976
neoder Graph Transformer®  0.961  0.987
2 0.931 0.949
Top-n
Context 8 0.950 0.984
ontex 4 0.961  0.987
TF-IDF 0.903 0.962
Sparse BM25 0.919 0.962
Signal Doc2Query 0.926 0.964
BGE-M3* 0.961 0.987
E5 0.676 0.765
Dense .
Sienal mContriever 0.838 0.883
1gna MiniLM* 0.961  0.987

e Graph Encoder. Among Graph Attention Networks (GAT)
[37], Graph Convolutional Networks (GCN) [18], and Graph
Transformer [33], Graph Transformer achieves the highest Hit@1
and Hit@3 scores of 0.961 and 0.987, respectively. Notably, regard-
less of which graph encoder is employed, our LeSeGR method
still consistently achieves the best retrieval performance when
compared to the baselines in Table 3. This underscores LeSeGR’s
superior ability to model complex relationships and effectively
aggregate contextual information for retrieval.

e Top-n Context. We further assess three configurations for the
number of contexts connected via inter-document edges, i.e.,
Top-n. The n = 4 setting achieves the best results, striking a bal-
ance between sufficient contextual inclusion and noise reduction.
Smaller values, such as n = 2, restrict the scope of context, while
larger values, such as n = 8, may introduce irrelevant informa-
tion, diluting the positive impact of relevant context and reducing
retrieval effectiveness. It is anticipated that if the chunk length
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is sufficiently large, retaining only the top-1 relevant chunk will
suffice.

Retrieval Signals. We compare four sparse representation
methods. BGE-M3 outperforms other sparse encoders, achieving
the highest scores, as its ability to integrate lexical and semantic
features is critical for domain-specific term matching. TF-IDF and
BM25, while strong in lexical precision, lack semantic adaptability.
In addition, we also compare three dense representation methods,
with MiniLM delivering the best performance. MiniLM’s compact
representation effectively captures semantic nuances, making
it better suited for diverse queries and documents. As a whole,
however, combining two expressive retrieval models with our
LeSeGR framework results in stronger retrieval performance.
Notably, the performance of LeSeGR appears to be primarily
constrained by the quality of the dense retrieval signal.

6 CONCLUSION

In this work, we introduce Lexical-Semantic Graph Retrieval (LeSeGR),
anovel framework that integrates sparse, dense, and graph-structured
retrieval signals for complex and structured database. Based on
LeSeGR, we present Contextualized Graph Retrieval-Augmented
Generation (CG-RAG) for research question answering. By leverag-
ing a contextual citation graph, our approach effectively captures
intra- and inter-document relationships, enabling a dynamic prop-
agation of contextual information through an entangled hybrid
retrieval paradigm. This paradigm bridges lexical precision and se-
mantic understanding while generalizing to existing retrieval meth-
ods. Furthermore, CG-RAG incorporates a graph-aware generation
strategy, enhancing the contextual richness of generated responses.
Extensive experiments across multiple citation networks demon-
strate the superior performance of CG-RAG based on LeSeGR,
achieving state-of-the-art results in retrieval metrics such as Hit@1
and generation metrics such as Coherence and Relevance. Our find-
ings underscore the effectiveness of graph-contextualized represen-
tations in advancing the capabilities of retrieval-augmented gen-
eration for citation graphs, setting a new benchmark for retrieval-
augmented research question answering.
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