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This review summarizes the rigorous mathematical theory behind the lattice Boltzmann 
equation (LBE). Relevant properties of the Boltzmann equation and a derivation of the LBE 
from the Boltzmann equation are presented. A summary of some important LBE models is 
provided. Focus is given to results from the numerical analysis of the LBE as a solver for 
the nearly incompressible Navier-Stokes equations with appropriate boundary conditions. 
A number of numerical results are provided to demonstrate the efficacy of the lattice 
Boltzmann method.
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1. Introduction

The lattice Boltzmann equation (LBE) has become a popular means of computational fluid dynamics (CFD) in the recent 
two decades for simulations of near incompressible flows. In particular, the LBE has found popular applications for near 
incompressible flows with complex and/or moving boundaries, thus, it has been successfully used to simulate a wide variety 
of flow phenomena, such as micro-scale phenomena of polymer chains or bio-molecules in solvent fluids [1–7] confined in a 
nano-pore [8,9], flows of biological systems [10], interfacial flows [11–17], flow-structure interactions [18–21], the rheology 
of red blood cells (RBCs) [22–25] and suspensions in fluids [26–32], flows through realistic porous media [33–44] and in 
geology [45], to the aerodynamics of insects [46–49], automobiles [50–52], and aircraft [53], or turbulent flows [54–60]. The 
LBE is particularly popular among those novices who want to write a working CFD code overnight, mostly because of the 
extremely simple appearance of the basic LBE algorithm. The number of publications on the LBE and its applications has 
been growing rapidly over the last two decades. There have been numerous reviews [28,61–64] and monographs [65–71]
on the LBE method, and they are mostly devoted to the applications of the method. However, there exists no review or 
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monograph which focuses on the definitive and rigorous analysis of the LBE method to elucidate why and how the method 
works, from the perspective of numerical analysis. The intent of this review is to fill this void.

Historically, the LBE [72–76] was inspired by the lattice-gas cellular automata [77–80]. However, it was soon under-
stood that a linearized collision term can be used in the LBE to enhance computational efficiency [73,74], and further, the 
eigenfunctions of the linearized collision operator in the LBE form an orthogonal basis which can be used to expand the dis-
tribution functions [75,76]. These developments [74–76] culminated in the generalized LBE [81], which is a system of finite 
moments evolving in discrete phase space-time, and the collision is modeled by linear relaxations with constant relaxation 
rates.

On the other hand, it has also been shown that the LBE can be directly derived from the linearized Boltzmann equation 
[82–85]. Due to its kinetic origin, the LBE differs in principle from all traditional CFD methods based on direct discretizations 
of the Navier-Stokes equations, such as finite difference, finite volume, finite element, and spectral methods. In spite of its 
kinetic origin, the LBE is a CFD solver for nearly incompressible Navier-Stokes equations, and analysis would reveal that, 
beneath its surface, the lattice Boltzmann (LB) schemes are equivalent to some existing finite-difference schemes [86–88]
with the artificial compressibility method [89–91], but with some features unique to the LBE. In addition, the analysis of 
the LBE often relies on Chapman-Enskog singular perturbation expansion, which is not conventional for traditional methods 
in CFD. These factors contribute to the fact that the LBE is not well understood or appreciated in the CFD community at 
large, in spite of a growing interest in the method. This review intends to emphasize the mathematical validity of the LBE, 
and to elucidate its pros and cons based on analysis.

To focus on the rigorous analysis of the LBE method, this review will be restricted to the LBE for simple fluid flows and 
will not discuss the LBE for complex fluids such as immiscible fluids with distinctive interfaces (cf., e.g., [15,16,39,43,92–98]). 
The remainder of this review is organized as follows. Section 2 provides a brief discussion of the Boltzmann equation, em-
phasizing the derivation of the hydrodynamic equation and transport coefficients. Section 3 presents the essential features 
of the LBE, including its connection to the linearized Boltzmann equation, some key mathematical properties of the LBE, and 
the LBE models for various flow systems. Section 4 focuses on the rigorous numerical analysis of the LBE, which includes 
derivation of macroscopic equations from the LBE, and convergence and stability proofs for the LBE algorithm. Section 5
discusses the local linear analysis of Fourier and von Neumann, which has been used to optimize the LBE. Section 6 is 
devoted to the forcing term and various boundaries and initial conditions in the LBE. A particular emphasis is given to 
the bounce-back type schemes to realize Dirichlet or Neumann boundary conditions. Section 7 discusses very briefly a grid 
refinement scheme for the LBE. Section 8 provides several examples to demonstrate the capability of the LBE as a method 
to simulate hydrodynamic flows. Two types of examples are shown. The first are relatively simple test cases which are used 
to verify the order of convergence, such as the Poiseuille flow and a flow with double shear layers in 2D; and the second 
are high-Reynolds-number flows which are computationally challenging, such as flows past a sphere or a car body. Finally, 
Section 9 discusses some outstanding issues in the LBE and concludes this review. For the convenience of the readers, a list 
of symbols is provided. Although the bibliography includes over four hundred selected references, they are neither compre-
hensive nor complete, nevertheless, from the authors’ perspective they represent the progresses made in the field over the 
past two decades.

2. The Boltzmann equation and kinetic theory

This section provides a very brief summary of the Boltzmann equation [99–108] — its properties and solution methods 
in connection with the macroscopic equations, which are relevant to the analysis of the lattice Boltzmann equation to be 
discussed in the next section. Three solution methods will be mentioned: specifically the Hilbert method, the Chapman-
Enskog method, and Grad’s moment method.

2.1. The Boltzmann equation and some of its essential properties

Starting from the Liouville theorem for the distribution function in the N-particle phase space of an N-particle Hamilto-
nian system and via the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy of coarse-graining (cf., e.g., [101,102]), 
i.e., by integrating over (N − 1)-particle phase space, and the assumption of stosszahlansatz that two particles entering a 
collision have no correlation so their joint distribution function can be factorized into the product of their individual dis-
tribution functions, the Boltzmann equation for the time-dependent single particle (mass) distribution function f (r, ξ , t) in 
single-particle phase space Γ := (r, ξ) of the particle position r and velocity ξ is deduced in the so-called Boltzmann-Grad 
limit [101,102,105,108,109] of large number density n and finite mean free path � (cf., Sec. 2.2 for more discussion on �) as 
the following:

∂t f + ξ · ∂r f + a · ∂ξ f =Q[ f , f∗], (2.1a)

Q[ f , f∗] = 1

m

∫
dξ∗d�dε B(�, ξ , ξ∗)

[
f ′ f ′∗ − f f∗

]
, (2.1b)

where the notation has been borrowed from the monograph by Harris [101]: f∗ := f (r, ξ∗, t) and f ′∗ := f (r, ξ ′∗, t); (ξ , ξ∗)
and (ξ ′, ξ ′∗) denote the pre-collision and post-collision particle velocity pairs, respectively; ε is the polar angle on the plane 
2
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Fig. 1. Illustration of an elastic binary collision. The dashed line is the apse line. The particle trajectory is unbounded, i.e., the interaction potential U (r21) is 
assumed to be purely repulsive thus.

perpendicular to the velocity difference vector V := ξ∗ − ξ [101], and � is the angle between the apse line and V or V ′
(cf. Fig. 1), and it is related to the deflection angle θ : θ = π − 2� or � = (π − θ)/2 (cf. Fig. 1); a = F/m is the acceleration 
due to an external force F , m is the particle mass which is usually assumed to be 1 unless otherwise specified; Q is the 
collision operator; and B(�, ξ , ξ∗) ≥ 0 is the collision kernel depending on the inter-particle potential U [99–103]. Fig. 1
illustrates the variables in the collision integral Eq. (2.1b).

For an elastic collision or reversible particle dynamics between two indistinguishable particles, the collision kernel 
B(�, ξ , ξ∗) is invariant under the following coordinate transforms (cf., e.g., [110,111]):

(�, ξ , ξ∗) �→ (�, ξ∗, ξ), (�, ξ , ξ∗) �→ (�, ξ ′, ξ ′∗), (�, ξ , ξ∗) �→ (�, ξ ′∗, ξ ′),
therefore,

B(�, ξ , ξ∗) = B(�, ξ ′, ξ ′∗) and B(�, ξ , ξ∗) = B(�, ξ∗, ξ), (2.2)

which simply states the reversibility of elastic binary collision and the indistinguishability of particles. In particular, with 
any spherically symmetric central-force potential U (r1, r2) = U (|r2 − r1|) := U (r21), r12 := |r1 − r2|, between two particles 
at r1 and r2, one has |ξ∗ − ξ | = |ξ ′∗ − ξ ′| := V and

B(�, ξ , ξ∗) = B(�, |ξ∗ − ξ |) = B(�, V ), (2.3)

hence satisfying (2.2) automatically.
For an elastic binary collision under the influence of the central-force potential U and with the impact parameter b (cf. 

Fig. 1):

B(�, V ) = 2V b

∣∣∣∣dbdθ

∣∣∣∣ , �(b, V ) =
χ0∫
0

dχ√
1− χ2 − 4U (b/χ)

mV 2

, χ := b

r
, (2.4)

where χ0 is the positive root of 1 − χ2
0 − 4U (b/χ0)/mV 2 = 0, corresponding to the particle trajectory r(θ) at its apse (cf. 

Fig. 1).
The collision cross section σ(�, V ) is related to B(θ, V ) by

σ(θ, V ) sin θ dθdε = 1

V
B(�, V )d�dε. (2.5)

It is interesting to note that for the so-called Maxwell molecules [112–114], ∇U (r) ∝ r−5, then B = B(�), leading to a 
considerable simplification of the collision term Q[ f , f∗].

Consider the following linear integral operator on a function φ(ξ ):

I[φ(ξ)] :=
∫

φ(ξ)Q[ f , f∗]dξ , (2.6)

then the symmetries of B(�, ξ , ξ∗) given by (2.2) directly lead to

I[φ(ξ)] = 1

4

(
I[φ(ξ)] +I[φ(ξ∗)] −I[φ(ξ ′)] −I[φ(ξ ′∗)]

)
. (2.7)

Note that while it is not indicated in the left-hand side of (2.6), I[φ(ξ)] indeed depends on f . A function φ(ξ ) is a collisional 
invariant if and only if

φ(ξ) + φ(ξ∗) = φ(ξ ′) + φ(ξ ′∗) or φ + φ∗ = φ′ + φ′∗. (2.8)
3
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The symmetries of the elastic collision between two indistinguishable particles, as stated by (2.2), lead to several significant 
consequences of the Boltzmann equation (2.1a). The first is that the collision term Q obeys the microscopic conservation 
laws for mass, momentum, and energy:∫

dξ

⎛⎝ 1
ξ

1
2ξ2

⎞⎠ Q[ f , f∗] =
⎛⎝ 0

0
0

⎞⎠ , (2.9)

where ξ2 := ξ · ξ . Furthermore, the functions {1, ξ , ξ2/2} are the only collisional invariants, and they form a basis span-
ning the null space of the collision operator Q. We will use the following notation for the collisional invariants and the 
corresponding conserved moments:

ϕ0 := 1, ϕ1,2,3 := ξx,y,z, ϕ4 := ξ2/2, (2.10a)


0 := ρ, 
1,2,3 := ρux,y,z, 
4 := ρ(u2 + dϑ)/2, (2.10b)

where d is the dimension of the space r ∈ Rd , u2 := u · u, ϑ := kBT /m, kB is the Boltzmann constant and T is the tem-
perature; so ρ := ρ(r, t), u := u(r, t), and ϑ := ϑ(r, t) are the local hydrodynamic variables, i.e., mass density, macroscopic 
velocity, and specific thermal energy, respectively.

The second consequence is that the solution of Q[ f , f ] = 0 is f = f (0) , the renowned local Maxwell-Boltzmann equilib-
rium distribution function:

f (0)(ρ, u, ϑ) := ρ

(2πϑ)d/2
exp

[
− (ξ − u) · (ξ − u)

2ϑ

]
, (2.11)

in which {ρ, u, ϑ} are the local hydrodynamic variables depending on (r, t). Thus the equilibrium (2.11) is fully and 
uniquely defined by the quantities conserved by the collision operator in the system, i.e., {ρ, u, ϑ}.

The third, and perhaps the most profound, consequence is the H-theorem. Define

H̄(t) :=
∫

H(r, t)dr, H(r, t) :=
∫

f ln f dξ , H(r, t) :=
∫
�

ξ f ln f dξ , (2.12)

where � is the region in Rd containing the gas. For any f satisfying the Boltzmann equation (2.1a), H obeys the following 
equation:

dH

dt
:= ∂t H + ∇ · H =

∫
Q[ f , f ] ln f dξ ≤ 0. (2.13)

For H(r, t) to exist, it is understood that f vanishes at ξ → ∞. Integrating (2.13) over � leads to [102]:

dH̄

dt
+

∫
∂�

(H − Hus) · n̂dS ≤ 0, (2.14)

where us is the velocity of boundary ∂�, and n̂ is the out-normal unit vector of the surface ∂V . Thus the H-theorem can 
be stated as follows (cf., e.g., [102]). For spatially homogeneous systems, ∂r f = 0, hence ∂t H = 0 according to (2.13), so H
never increases in time, and the equality holds (for suitable regularity of f ) if and only if f = f (0) is everywhere a local
Maxwellian f (0) given by (2.11), in which {ρ, u, ϑ} may vary. Furthermore, for the spatially inhomogeneous systems, H will 
never increase only if∫

∂�

(H − Hus) · n̂dS ≥ 0. (2.15)

The equality in (2.15) holds for the case when the molecules are specularly reflected at the boundary ∂�. And again, the 
equality in (2.14) holds only if f = f (0) is everywhere a local Maxwellian f (0) .

The H-theorem determines the direction of time, or the irreversibility, of a physical system, due to dissipation. In short, 
the Boltzmann equation (2.1a) encompasses the conservation laws and the irreversibility of the macroscopic hydrodynamics 
entirely.

2.2. Dimensionless Boltzmann equation

To analyze the Boltzmann equation (2.1a), relevant spatio-temporal scales in the system should be identified [104,106,
108]. The relevant microscopic spatio-temporal scales are the mean-free path � and the mean-free time τ ; and the relevant 
speed is a reference speed of sound: cs0 := (γ ϑ0)

1/2 = O (�/τ ), where ϑ0 is a reference thermal energy per unit mass, and 
4
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γ = 1 + 2/d. Suppose L and τ0 are the macroscopic characteristic spatial and temporal scales, respectively, and V0 is the 
characteristic macroscopic flow speed.

The collision term Q[ f , f ] defined in (2.1b) is of the dimension nςd−1V0, where ς is the effective particle radius (or 
effective interaction range) and n is the particle number density. In the thermodynamic limit of N → ∞, ς → 0, and m → 0, 
the Boltzmann-Grad limit (BGL) assumes that Nςd−1 ∼ O (1) and Nm ∼ O (1), thus � ∼ 1/(nςd−1) ∼ O (1).

Using the following scalings:

r → r/L, t → t/τ0, ξ → ξ/cs0, a → a/G, (2.16)

where G is a constant acceleration, and multiplying L/cs0 to both sides of (2.1a), we obtain the following dimensionless 
form of the Boltzmann equation:

St ∂t f + ξ ·∂x f + Ma2

Fr2
a·∂ξ f = 1

Kn
Q[ f , f ], (2.17)

where it has been assumed that � ∼ cs0τ ; St := L/τ0cs0 is the kinetic Strouhal number, Ma := V0/cs0 is the Mach number, 
Fr := V0/

√
LG is the Froude number, and Kn := �/L is the Knudsen number. If indeed V0 ∼ O (L/τ0), then St = Ma, and the 

dimensionless Boltzmann equation (2.17) reduces to the following:

∂t f + 1

Ma
ξ ·∂x f + Ma

Fr2
a·∂ξ f = 1

MaKn
Q[ f , f ]. (2.18)

One important task in kinetic theory is to derive hydrodynamic equations from the Boltzmann equation in some proper 
limits.

In hydrodynamic regimes, Kn is small by definition, i.e., Kn ∼ O (ε) 
 1, there are several hydrodynamic limits (cf., e.g., 
[102,106,108]). First, with Kn = O (ε), the compressible Euler equations are obtained in the zeroth-order approximation of 
f ≈ f (0); and with Ma = O (ε) and Kn = O (ε2), the incompressible Euler equations are obtained. If Ma ∼ Kn = O (ε), consid-
ering f ≈ f (0) + ε f (1) , the incompressible Navier-Stokes equations can be derived, and this is the so-called diffusive scaling. 
Finally, the compressible Navier-Stokes equations are obtained with Ma ∼ O (1) and by considering the viscous correction of 
f ≈ f (0) + ε f (1) , in the so-called acoustic scaling.

2.3. Hydrodynamic equations

The distribution function f can be characterized by its velocity moments:

M(n)(r, t) :=
∫

dξ ΨΨΨ(n) f (r, ξ , t) :=
〈
ΨΨΨ(n) f

〉
, (2.19)

where ΨΨΨ(n) := ΨΨΨ(n)
(ξ ) is an n-th order tensorial polynomial of ξ . The first few velocity moments of the distribution func-

tion, corresponding to the collisional invariants (cf. Sec. 2.1 and Eq. (2.9) in particular), are the familiar macroscopic variables 
in hydrodynamics:

∫
dξ

⎛⎝ 1
ξ

1
2ξ2

⎞⎠ f (r, ξ , t) = ρ

⎛⎝ 1
u

1
2

(
u2 + dϑ

)
⎞⎠ , (2.20)

where u2 := u · u. The Boltzmann equation (2.1a) can be cast into an infinite hierarchy of moment equations:

∂tM
(n) + ∇ ·M(n+1) =

〈
QΨΨΨ(n)

〉
, (2.21)

and the first few moment equations are the macroscopic conservation laws of mass, momentum, and energy:

∂tρ + ρu ·∇ρ = −ρ∇·u, (2.22a)

ρ∂tu + ρu ·∇u = −∇ ·ΠΠΠ, ΠΠΠ := 〈 f cc〉 , (2.22b)

ρ∂te + ρu ·∇e = −ΠΠΠ : ∇u − ∇ ·q, q := 1

2

〈
f cc2

〉
, (2.22c)

where c := ξ − u is the peculiar velocity, e := dϑ/2 is the specific total thermal energy, and the pressure tensor ΠΠΠ and 
the heat flux vector q in general cannot be expressed in terms of hydrodynamic variables (ρ, u, ϑ) and thus are unknown 
unless f is given. Kinetic theory provides various approximations of f to obtain the pressure tensor ΠΠΠ and the heat flux q, 
which are to be discussed next.
5
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2.4. Solution methods of the Boltzmann equation

This section will provide brief outlines of three solution methods for the Boltzmann equation: the Hilbert expansion, 
the Chapman-Enskog expansion, and the moment methods due to Maxwell [112–114] and Grad later [109]. These methods 
are chosen to be mentioned because of their relevance to the lattice Boltzmann equation. In this section, the forcing term 
a · ∂ξ f shall be neglected unless otherwise stated.

2.4.1. The Hilbert expansion
There are several approaches to solve the Boltzmann equation. The first one is to seek the so-called normal solutions of 

the Boltzmann equation, of which the initial value problem is fully determined by certain non-singular initial values of the 
hydrodynamic variables {ρ, u, ϑ}. In the Hilbert expansion, f is expanded about the equilibrium f (0) as a power series in 
the Knudsen number Kn := ε:

f = ∑∞
n=0 εn f (n), f (n) := f (0)φ(n), φ(0) = 1, (2.23)

and the hydrodynamic variables are expanded as a power series of ε as well:


i = ∑∞
n=0 εn


(n)
i , 


(n)
i := 〈

ϕi f (n)
〉
, 0 ≤ i ≤ (d + 1), (2.24)

where {ϕi |0 ≤ i ≤ d +1} are collisional invariants defined in (2.10a). With the acoustic scaling, the Boltzmann equation (2.17)
(with St = 1 and without the forcing term) is expanded as a hierarchy of Fredholm integral equations for f (n):

Q[ f (0), f (0)] = 0, n = 0, (2.25a)

2Q[ f (n), f (0)] = dt f
(n−1) −∑n−1

k=1Q[ f (k), f (n−k)], n ≥ 1, (2.25b)

where dt := ∂t + ξ ·∇, f (n) = 0 if n < 0, and the sum 
∑n−1

k=1 is zero if n < 1, the collision term is re-written in the following 
bilinear form due to the symmetries of B(�, ξ , ξ∗) given in (2.2):

Q[ f (n), f (k)] := 1

2m

∫
dξ∗d�dε B

[
f ′(n) f ′(k)∗ + f ′(k) f ′(n)∗ − f (n) f (k)∗ − f (k) f (n)∗

]
, (2.26)

and in particular, Q[ f (n), f (0)] is the linear operator L defined as the following:

f (0)L[φ(n)] := 2Q[ f (0), f (n)] = f (0)

m

∫
dξ∗d�dε B f (0)∗

[
φ′(n) + φ′(n)∗ − φ(n) − φ(n)∗

]
. (2.27)

Equations (2.25a) and (2.25b) are the homogeneous and inhomogeneous Fredholm equations of second kind (cf., e.g., 
[115,116]), respectively, and they can be concisely written in one equation:

f (0)L[φ(n)] = dt f
(n−1) −S(n−1), S(n−1) := ∑n−1

k=1Q[ f (k), f (n−k)]. (2.28)

For n = 0, the solution of the homogeneous equation Q[ f (0), f (0)] = 0 is the Maxwellian f (0)(ρ(0), u(0), ϑ(0)). For n ≥ 1, the 
only unknown in Eq. (2.28) is φ(n) on the left-hand side, and the source terms dt f (n−1) and S(n−1) on the right-hand side 
involve only f (k) for k ≤ n − 1, which have been obtained in previous orders. Thus, Eq. (2.28) is solved successively.

The solution of the inhomogeneous equation (2.28) consists of two parts: the general solution of the homogeneous 
equation f (0)L[φ(n)] = 0, which is φ(n)

0 = ∑d+1
i=0 γ (n)

i (r, t)ϕi(ξ), and the particular solution φ(n)

p of the inhomogeneous equation, 
which must be orthogonal to the general solution (the Fredholm solubility condition). Because {ϕi} are the collisional 
invariants, 〈ϕiQ[ f (k), f (n−k)]〉 = 0 is always satisfied, so the Fredholm solubility condition for (2.25b) reduces to 〈ϕidt f (n−1)〉 =
0 for 0 ≤ i ≤ (d − 1), which leads to the following equations:

∂t

(n−1)
i + ∇ · j(n−1)

i = 0, 
(n)

i := 〈ϕi f
(n)〉, j(n)

i := 〈ξϕi f
(n)〉. (2.29)

The above equations are the evolution equations for the coefficients {γ (n)

i (r, t)}, with the initial values of {
i} given. The 
infinite sum of the above equations is the compressible Euler equations for {ρ, u, ϑ} with ΠΠΠ = pI, where p := ρϑ is the 
ideal-gas equation of state and I is the d × d identity matrix, and q = 0.

The convergence of the Hilbert expansion establishes Hilbert’s theorem that the evolution of f (r, ξ , t) is uniquely deter-
mined by the initial values of only five hydrodynamic moments {
i(r, t)}. However, the Hilbert expansion cannot be used 
to derive the Navier-Stokes equation, because Eq. (2.28) gives the linearized Euler equation, usually inhomogeneous, and 
the second-order spatial derivative for the viscous stress in the Navier-Stokes equation will never appear, as can be seen in 
Eq. (2.29)
6
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2.4.2. The Chapman-Enskog expansion
The Chapman-Enskog (C-E) method is the device to derive the Navier-Stokes equations [99,103,106,109,117]. The key idea 

behind the C-E method is to expand the fluxes 〈ξϕi f 〉 which are non-conserved quantities, while leaving the hydrodynamic 
or conserved quantities unexpanded, i.e.,


i = 〈ϕi f 〉 = 〈
ϕi f

(0)
〉
. (2.30)

The C-E ansatz assumes that the spatio-temporal dependence of f is only through a functional dependence on the hydrody-
namic variables and their spatial derivatives:

f (r, ξ , t) = f (ξ ; ρ, u, ϑ) =⇒ ∂ f

∂t
=

∞∑
k=0

d+1∑
i=0

∂ f

∂(∇k
i)
· ∂(∇k
i)

∂t
, (2.31)

this implies that the time t has to be expanded implicitly through the expansion of the operator ∂t . This is accomplished 
by expanding the equations for the hydrodynamic variables to introduce the operator ∂(n)/∂t on {ρ, u, ϑ} as the following:

∂(0)ρ

∂t
= −∇ · (uρ),

∂(n)ρ

∂t
= 0, n ≥ 1, (2.32a)

∂(0)u

∂t
= −u · ∇u − 1

ρ
∇ ·ΠΠΠ(0)

,
∂(n)u

∂t
= − 1

ρ
∇ ·ΠΠΠ(n)

, n ≥ 1, (2.32b)

∂(0)ϑ

∂t
= −u · ∇ϑ − 2

3ρ

(
ΠΠΠ(0) : ∇u + ∇ · q(0)

)
,

∂(n)ϑ

∂t
= − 2

3ρ

(
ΠΠΠ(n) : ∇u + ∇ · q(n)

)
, n ≥ 1, (2.32c)

where both the pressure tensor ΠΠΠ and the heat flux q are expanded as series of ε:

ΠΠΠ= ∑∞
n=0 εnΠΠΠ(n)

, ΠΠΠ(n) := 〈
f (n)cc

〉
, (2.33a)

q = ∑∞
n=0 εnq(n), q(n) := 1

2

〈
f (n)cc2

〉
. (2.33b)

With the expansion of f defined by (2.23), ∂(n)/∂t by (2.32), and ΠΠΠ(n) and q(n) by (2.33), ∂ f /∂t can be recast in the 
following expansion of multiple time scales:

∂ f

∂t
=

∞∑
n=0

εn
n∑

m=0

∂(m)

∂t

(
ρ

∂

∂ρ
+ u · ∂

∂u
+ ϑ

∂

∂ϑ

)
f (n−m) :=

∞∑
n=0

εn
∂(n) f

∂t
. (2.34)

Consequently, one obtains a hierarchy of Fredholm integral equations identical to Eqs. (2.25) in form, except that the term 
dt f (n) in (2.25b) is replaced by:

d(n)

t f := ∂
(n)

t f + ξ · ∇ f (n) =
n∑

m=0

∂(m)

∂t

(
ρ

∂

∂ρ
+ u · ∂

∂u
+ ϑ

∂

∂ϑ

)
f (n−m) + ξ · ∇ f (n). (2.35)

The uniqueness of the solutions of the inhomogeneous integral equation requires the following solubility condition:〈
ϕi f

(n)
〉 = 0, n ≥ 1, 0 ≤ i ≤ (d + 1), (2.36)

which is equivalent to, and implies, (2.30), then the Fredholm orthogonal condition 
〈
ϕid

(n)

t f
〉 = 0 is

n∑
m=0

∂(m)

∂t

(
ρ

∂

∂ρ
+ u · ∂

∂u
+ ϑ

∂

∂ϑ

)〈
ϕi f

(n−m)
〉+ ∇ · 〈ξϕi f

(n)
〉 = 0. (2.37)

The only non-zero term in the sum of (2.37) is for m = n, thus the orthogonal condition is nothing more than the definition 
of ∂(n)

t 
i given in Eqs. (2.32). Therefore, not only the deviation from the equilibrium as a whole, but also the non-equilibrium 
distribution function f (n) at each given order n ≥ 1 has no contribution to the hydrodynamic variables {ρ, ρu, ϑ}, as 
required by the Fredholm solubility condition, but they do contribute to the fluxes.

For n = 0 the homogeneous integral equation (2.25a) leads to the equilibrium of local Maxwellian f (0)(ρ, u, ϑ), in 
which the hydrodynamic variables {ρ, u, ϑ} are exact in the sense that they are unexpanded; and the solubility condi-
tion 〈ϕi(d

(0) f (0)/dt)〉 = 0 yields the compressible Euler equations for an ideal gas with ΠΠΠ(0) = pI, p = ρϑ , and q(0) = 0.
7



P. Lallemand, L.-S. Luo, M. Krafczyk et al. Journal of Computational Physics 431 (2021) 109713
For n = 1, the solution φ(1) := f (1)/ f (0) obtained with the Chapman-Enskog analysis is

φ(1)(ξ) = 1

ρ

[√
2ϑ A · ∇ lnϑ +B : ∇u

]
, (2.38a)

L(A) = ρ

(
c̄ · c̄ − d + 2

2

)
c̄, A = A(ϑ, c̄)c̄, (2.38b)

L(B) = 2ρĈ, B = B(ϑ, c̄)Ĉ, Ĉ := c̄c̄ − 1

d
c̄2I, (2.38c)

where c̄ := c/
√

ϑ . Note that B(ϑ, c̄) here in (2.38c) is not the collision kernel. The result of φ(1) given by (2.38a) leads to

ΠΠΠ(1) = −2μ Σ̂ΣΣ := −σ̂σσ, Σ̂ΣΣ := ΣΣΣ− 1

d
(∇ ·u)I, ΣΣΣ := 1

2

[
(∇u) + (∇u)†

]
, (2.39a)

q(1) = −κ∇ϑ, (2.39b)

where † denotes the transpose, σ̂σσ is the traceless part of the shear stress tensor σσσ, ΣΣΣ is the rate of strain tensor, Σ̂ΣΣ is the 
traceless part of ΣΣΣ, and the dynamic viscosity μ and the heat diffusivity κ are given by B(ϑ, c̄) and A(ϑ, c̄) given by (2.38c)
and (2.38b), respectively:

μ = − ϑ

5ρ2

∫
dξ f (0) B :L(B) = −2ϑ

5ρ

∫
dc̄ f (0) B(ϑ, c̄)Ĉ : Ĉ, (2.40a)

κ = − 2ϑ

3ρ2

∫
dξ f (0) A ·L(A) = −2ϑ

3ρ

∫
dc̄ f (0) A(ϑ, c̄)

[
c̄ · c̄ − d + 2

2

]
c̄ · c̄, (2.40b)

where A(ϑ, c̄) and B(ϑ, c̄) are defined by (2.38b) and (2.38c), respectively. Beyond the compressible Navier-Stokes-Fourier 
(NSF) system, the Chapman-Enskog analysis can also lead to the Burnett and super-Burnett equations (cf., e.g., [102,109]), 
however, these higher-order systems are ill-posed and they are beyond the scope of this review.

It is useful to introduce the Reynolds number Re := V0L/ν and its relation to Kn and Ma. Since the kinematic (shear) 
viscosity is ν := μ/ρ ∼ �cs and cs = √

γ ϑ , then

Kn := �

L
∼ ν

Lcs
∼ ν

LV0

V0

cs
∼ Ma

Re
. (2.41)

The above relationship is also known as the von Kármán relationship, which can also be independently derived from the 
dimensional analysis of the viscous term of the Navier-Stokes equation. If Kn ∼ Ma ∼ O (ε) and Re ∼ O (1), the incompressible 
Navier-Stokes equations are invariant under the following diffusive scaling:

(r, t, u, p) −→ (εr, ε2t, ε−1u, ε−2p), (2.42)

where p is the pressure. Consequently, Fr ∼ O (Ma2) = O (ε2) with this scaling, which will be used later in Sec. 3.

2.4.3. Moment methods
With the Chapman-Enskog approach, it is difficult, if possible at all, to derive equations beyond the order of the super-

Burnett equations, i.e., f (3) , unless the collision term is simplified. An alternative approach, the method of moments, is 
considered to obtain the non-normal solutions. It was Maxwell who first realized that the r−5 force law eliminates the 
dependence of the collision cross section σ(χ, V ) or the collision kernel B(�, ξ , ξ∗) on the relative speed V := |ξ − ξ∗|
[101,112–114]. Consequently the hierarchical equations of moments (2.21) are drastically simplified, because the moment 
of the collision term, 

〈
ΨΨΨ(n)Q

〉
, does not generate moments of order higher than n, so the equations are not closed only 

due to the advection term ∇·M(n+1) . Maxwell devised an iterative procedure to solve the moment equations for ΨΨΨ(n) = cn , 
starting with vanishing collision term for moments of the order 2 or higher, i.e., 

〈
cnQ

〉 = 0 ∀n ≥ 2, which leads to the local 
equilibrium f (0) , and then proceeding with〈

cn[∂t f + ∇ ·(c + u) f ]〉[k+1] = 〈
cnQ

〉[k]
, (2.43)

where the superscript [k] indicates the iteration of order k. For the Maxwell molecules of the r−5 force law, both ΠΠΠ(1) and 
q(1) are identical to that obtained by the Chapman-Enskog expansion, but the higher-order results differ.

Grad proposed to expand the distribution function in terms of the tensorial Hermite orthogonal polynomials H(n)(c̄)
[109,118–120] defined as the following:

H(n)(c̄) = (−1)n
∇n
c̄ ω(c̄)

, ω(c̄) := exp (−c̄ · c̄/2)
3/2

, (2.44)

ω(c̄) (2π)

8
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or the recurrence relation

H(n)(c̄) = (c̄ − ∇̄c)H
(n−1)(c̄), (2.45)

and the first few tensorial Hermite polynomials are:

H(0) = 1, H(1) = c̄, H(2) = c̄c̄ − I, H (3)
i jk = c̄i c̄ j c̄k − (c̄iδ jk + c̄ jδki + c̄kδi j). (2.46)

The distribution function f is expanded in terms of H(n)(c̄) as the following:

f = f (0)
∑∞

n=0
1

n! a
(n)(r, t) : H(n)(c̄), (2.47a)

a(0) = 1, a(1) = 0, a(2) = 1

p
ΠΠΠ− I := 1

p
p, a(3) =

〈
f c3

〉
p
√

ϑ
, . . . , (2.47b)

where p = ρϑ , thus the Boltzmann equation becomes a hierarchy of equations for the expansion coefficients {a(n)|n ≥ 0}, 
which are the moments of f with respect to the Hermite polynomials {H(n)}. A closure of order n for {a(k)|0 ≤ k ≤ n} is 
attained by truncating the expansion (2.47a) to n-th order and omitting ∇ ·a(n+1) in the equation of a(n) . With n = 3 and 
retaining only the heat flux vector q = a(3)

αββ/2, where α, β ∈ {x, y, z} and the repeated indices imply summation, instead of 
the full a(3) tensor, the distribution function is approximated by

f = f (0)

[
1+ p̄ : c̄c̄

2
+ q̄ · c̄

2

(
1− c̄ · c̄

(d + 2)

)]
, p̄ := p

p
, q̄ := q

p
√

ϑ
. (2.48)

This is the renowned thirteen-moment system of Grad [119], which includes the evolution equations for ΠΠΠ and q and is 
beyond the Navier-Stokes-Fourier system. It should be pointed out that Grad’s 13-moment system is not hyperbolic globally 
[121,122], thus becomes ill-posed as an initial value problem when it loses hyperbolicity, and this problem has only been 
solved recently [122–125].

2.5. Linearized model equations

The collision term in the Boltzmann equation (2.1a) is a nonlinear integral Q in d + 2 dimensional space (cf. the defi-
nition of Q[ f , f∗] in (2.1a)). To make the solution of the Boltzmann equation more manageable, the collision term is often 
linearized based on the practical consideration that most flows may not be too far from the equilibrium. Perhaps the most 
general model equation based on the linearized collision term is that of Gross and Jackson [126].

Consider the linear operator L (cf. Eqs. (2.26) and (2.27)), the linearized Boltzmann equation is:

∂t f + ξ ·∂x f = f (0)L[φ] − a·∂ξ f , f := f (0) (1 + φ) . (2.49)

Denote LM the linearized collision operator for Maxwell molecules with eigenfunctions {ϕi} and the corresponding eigen-
values {λi}, thus φ can be expanded in terms of {ϕi}:

φ = ∑∞
i=1αiϕi, LM[φ] = ∑∞

i=1αiλiϕi, (2.50)

where {ϕi} are orthogonal with respect to the Maxwellian equilibrium f (0) . The linearized collision operator LM can be 
approximated by the Gross-Jackson model [126] which replaces the eigenvalues λi for i ≥ N by a constant λN , leaving only 
a finite number, N , of distinctive eigenvalues, i.e.,

LN [φ] :=
N−1∑
i=0

αiλiϕi − λN

∞∑
i=N

αiϕi =
N−1∑
i=0

αi(λi + λN)ϕi − λNφ

=
[
N−1∑
i=0

αi(λi + λN)ϕi + λN

]
− λN(1+ φ) :=JN − λN(1+ φ), (2.51)

where LN is also called the mutilated linearized operator. The first d + 2 eigenfunctions are the collisional invariants, i.e., 
λi = 0 for 0 ≤ i ≤ d + 1. Hence, by choosing N = d + 2 leaves only one free parameter in LN , which is the renowned 
single-relaxation time model due to Bhatnagar, Gross, and Krook (BGK) [127]; and with N = (d + 2) + 1, there are two 
distinctive eigenvalues (or relaxation rates) λi , the Gross-Jackson model reduces to that of Shakhov [128], in which both 
shear viscosity and the heat diffusivity can be independently adjusted. The Gross-Jackson model has been generalized for 
arbitrary inter-particle potentials [129].
9
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2.6. Kinetic boundary conditions

The Boltzmann equation must be supplemented with appropriate boundary conditions, which describe the particle-wall 
interaction in the presence of a solid wall. The particle-wall interaction is described by the kernel Bw(ξ ′, ξ , r) which is 
the probability that a particle with incident velocity ξ ′ which strikes the wall at r will emerge with velocity ξ at r. The 
simplest models for the boundary conditions are the bounce-back and specular reflections. The former implies velocity at 
the wall vanishes with respect to the wall velocity uw, and the latter imposes the reflection symmetry about the normal of 
the boundary plane, which ensures that the velocity component normal to the wall vanishes at the wall at rest.

Perhaps the most widely used boundary conditions in kinetic theory are the Maxwell diffusive reflection model, which 
assumes that the particles striking a boundary are completely thermalized by the wall with the velocity uw and temperature 
Tw (accommodation effect). Slightly more general boundary conditions are to consider that a fraction α of the particles is 
diffusively deflected, while the remaining fraction (1 − α) is specularly reflected, such that

Bw(ξ ′, ξ , r) = (1− α)δ(ξ ′ − ξ + 2n̂(n̂ · ξ)) + α(n̂ · ξ) f (0)(ρw, uw, Tw), (2.52)

where δ(·) is the Dirac delta function, and n̂ is the out-normal unit vector at the collision point of the wall such that 
ξ ′ · n̂ < 0 and ξ · n̂ > 0, and f (0)(ρw, uw, Tw) is the Maxwellian equilibrium defined in (2.11), i.e., the wall equilibrium. Also,

(n̂ · ξ) f (ξ) = −
∫

n̂·ξ ′≤0

(n̂ · ξ ′) f (ξ ′)Bw(ξ ′, ξ , r)dξ ′. (2.53)

The normalization condition of Bw(ξ ′, ξ , r),∫
ξ ·n̂>0

Bw(ξ ′, ξ , r)dξ = 1, (2.54)

leads to ρw = √
2π/RTw, where R is the gas constant. The parameter α in (2.52) is the so-called (momentum) accom-

modation coefficient. The cases of α = 1 and α = 0 correspond to total diffusive deflection and total specular reflection, 
respectively. One deficiency of the Maxwell boundary conditions (2.52) is that they do not distinguish the accommoda-
tion effects of momentum and energy, nor that between the tangential and normal momentum, which may be different 
[102,130,131].

In closing this very brief discourse on the Boltzmann equation and kinetic theory, we would like to remark that, while in 
principle the Boltzmann equation was constructed for rarefied gases in which the correlations are neglected (stosszahlansatz), 
nonetheless, it can be extended to more complicated fluid systems. For dense gases, the Enskog equation is a natural 
extension [99–101], and for particles with internal structures, the generalizations include the Boltzmann-Curtiss model and 
its quantum counterpart, the Wang Chang-Uhlenbeck model (cf. [102, §II.4] for a brief discussion and [132]). There exists 
also kinetic theory for complex fluids such as polymers [133,134]. However, it should be noted that the kinetic theory of 
polymers [133,134] differs from the kinetic theory of gases. In the case of polymers, the Stokes hydrodynamic equations are 
given, and a distribution of bead and spring objects suspended in such a fluid is considered. In addition, kinetic theory can 
be used to derive the equations of state and transport coefficients for dense gases or more complex fluids, which are to be 
used in continuum theory. Most importantly, kinetic theory serves as the bridge between macroscopic continuum theory 
and underlying microscopic physics, and forms the basis of coarse-grained models.

3. The lattice Boltzmann equation

This section summarizes key mathematical properties and features of the lattice Boltzmann equation: The first is about 
the explicit connection between the LBE and the continuous Boltzmann equation with a linearized collision model, including 
the low-Mach number expansion of the distribution function discussed in Sec. 3.1, the coherent discretization of phase-
space and time which is unique to the LBE in Sec. 3.2, Sec. 3.3, and Sec. 3.4, and the construction of the collision models 
based on moments of the distribution function in Sec. 3.5. The second part concerns the numerical efficiency related to the 
over-relaxation feature of the LBE in Sec. 3.6. The LBE model for one conserved scalar, i.e., the LBE model for the advection-
diffusion equation, and the LBE models for thermal flows are discussed in Sec. 3.7 and Sec. 3.8, respectively. And finally, the 
third part deals with the LBE model based on the cumulants, as opposed to moments, of the distribution function and some 
recent developments in Sec. 3.9 and Sec. 3.10, respectively.

We should start with a mathematical description of the LBE first. The lattice Boltzmann equation comprises three ingre-
dients:

(a) A symmetric discrete velocity set Xq := {ξ i ∈ Zd|0 ≤ i ≤ (q − 1)} = −Xq , and the corresponding set of distribution 
functions on a d dimensional lattice δxZd of a lattice spacing δx and with a discrete time tn := nδt of a time step size 
δt , n ∈N0, i.e., { f i(x j, tn)| f i : δxZd × δtN0 �→R};
10
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(b) A local collision process Q i[{ fk(x j, tn)|∀ k}] which respects necessary conservation laws;
(c) And finally an evolution equation:

f i(x j + ξ iδt, tn + δt) = f i(x j, tn) + Q i[{ fk(x j, tn)|∀k}] + Gi, (3.1)

where Gi comes from an external forcing.

What is special about the LBE is that the lattice space δxZd , the discrete velocity set Xq , and the discrete time step size δt
are tied together such that

x j + ξ iδt ∈ δxZd, ∀ x j ∈ δxZd and ∀ ξ i ∈Xq. (3.2)

In the remainder of this section, the lattice Boltzmann equation (3.1) will be directly derived from the linearized Boltzmann 
equation.

As will be shown later, the discrete velocity set Xq = {ξ i |0 ≤ i ≤ (q − 1)} in the LBE is symmetric by construction, i.e., 
Xq = −Xq , therefore,∑

iξ
2k+1
i = ∑

i(ξ iξ i)
kξ i = 0.

This property of Xq is related to an expansion of the distribution function around u = 0, as employed below. It will also be 
shown that for each discrete velocity ξ i , there is a corresponding quadrature weight coefficient wi satisfying the following 
normalization condition:∑

i wi = 1. (3.3)

3.1. Truncated expansions of distributions and linearized collision term

Two essential steps are required to derive the LBE from the Boltzmann equation with a linearized collision term (2.49). 
The first is the truncation of the distribution functions f (0) (cf. (2.11)) and f expanded in terms of the Hermite polynomials 
(cf. Sec. 2.4.3), which is equivalent to the low-Mach-number expansion, and the second is a coherent discretization of the 
phase space Γ := (r, ξ) and the time t .

The first step is straightforward. The expansions of f (0) and f in terms of the tensor Hermite polynomials {H(n)} are:

f (0) = ρ
e−ξ̄ ·ξ̄/2

(2πϑ)d/2

∞∑
n=0

1

n! ū
n : H(n)(ξ̄), ūn := ūū · · · ū︸ ︷︷ ︸

n

, (3.4a)

f = ρ
e−ξ̄ ·ξ̄/2

(2πϑ)d/2

∞∑
n=0

1

n!b
(n) : H(n)(ξ̄), b(n) := (2πϑ)d/2

ρ
〈H(n)(ξ̄) f 〉, (3.4b)

where ū := u/
√

ϑ , ξ̄ := ξ/
√

ϑ , and ūn denotes the n-th order tensor produced by the tensor product of n ū’s; b(0) = 1 and 
b(1) = ū. The coefficient b(n) is the same as a(n) defined in (2.47a), except that for b(n) here the variable is the normalized 
particle velocity ξ̄ , as opposed to the normalized peculiar velocity c̄ in (2.47a). With f given in (3.4b), we have

a · ∂ξ f = −ρ
e−ξ̄ ·ξ̄/2

(2πϑ)d/2

∞∑
n=0

1

n! (ab
(n)) : H(n+1)(ξ̄). (3.5)

It is clear that the number of the linearly independent moments is equal to the number of discrete velocities, q, for the 
moments are linear combinations of the distribution functions, therefore the number of independent eigenfunctions H(n) in 
a truncated expansion of f (0) or f is also fixed to be q. For a system with dc conservative moments, there are only q − dc
dissipative moments; consequently, there are at most an equal number of independently adjustable eigenvalues {λi} in the 
collision term if the symmetry of the moments is not considered. The LBE is in fact a discrete version of the Gross-Jackson 
model.

A few remarks are in order here. First, the expansion of f in terms of {H(n)} is identical to Grad’s moment method 
[101,119], except that the variable of H(n) is the dimensionless peculiar velocity c̄ := (ξ − u)/

√
ϑ in Grad’s expansion, as 

opposed to the dimensionless particle velocity ξ̄ in the LBE [135]. The Prandtl number, Pr, can be easily adjusted by tuning 
the relaxation rates for the contracted third-order moments and the off-diagonal second-order moments related to the 
components of the stress tensor. However, the expansion of the equilibrium f (0) is unique to the LBE, it can be seen as 
the Taylor expansion in powers of ū := u/

√
ϑ [83,84], which is essentially the local Mach number. Thus the expansion is 

effectively a low-Mach-number expansion. Also, the coefficients {b(n)} are implicitly computed in the LBE — they are not 
required as inputs in the LBE calculations.

Second, when the velocity space ξ is discretized to {ξ i |0 ≤ i ≤ (q − 1)}, the tensor Hermite polynomials {H(n)} will be 
replaced by their counterparts on the discrete velocity set Xq := {ξ i}, as discussed later in Sec. 3.2.
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Fig. 2. Some discrete velocity sets in 2D and 3D. From left to right: D2Q7, D2Q9, and D3Q27 velocities. In D3Q27 velocity set, red, blue, and green indicate 
velocities in groups F6 of speed 1c, E12 of speed 

√
2c, and V8 of speed 

√
3c, respectively. Note that D2Q9 and D3Q27 sets are the tensor product of D1Q3 

set in 2D and 3D, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Third, to recover the athermal Stokes or Navier-Stokes equations [81,83,84,135], it is necessary and sufficient to retain 
the terms up to or including u2 in f (0) , respectively, provided that the discrete velocity set Xq is sufficiently large to retain 
the required tenor structures (cf., e.g., [136]), that is, not only the hydrodynamic variables, but also their fluxes, must be 
accurately simulated. By athermal we mean that the energy is not a conserved variable in the model.

And fourth, if the expansion of f (0) (thus implicitly the expansion of f ) retains terms only up to u2, then the error is of 
the order O (u3) (cf., e.g., [137]). However, the equilibria of second-order expansion in u are not the only source of this error, 
more importantly, it is due to the defect that the discrete velocity set cannot accommodate the corresponding third-order 
tensor moment M(3) (cf., e.g., [136]). Therefore, complete removal of O (u3) error requires the equilibria including all the 
terms up to third order and a sufficiently large number of discrete velocities to accommodate all the tensor moments up to 
the order three. More discussion on this issue is deferred to Sec. 3.8.

3.2. Discretization of velocity space ξ based on quadrature

The next step is to discretize the velocity space ξ . For athermal flows, the discretized velocity space {ξ i} must satisfy the 
following quadrature rules to conserve the mass and momentum [83,84]:∑

i f i =
∑

i f
(0)
i =

∫
f dξ =

∫
f (0)dξ = ρ, (3.6a)

∑
i f iξ i =

∑
i f

(0)
i ξ i =

∫
f ξdξ =

∫
f (0)ξdξ = ρu, (3.6b)

where f i := f i(r, t) and f (0)
i := f (0)

i (r, t) are the distributions and equilibria corresponding to the discrete velocity ξ i , re-
spectively. We will restrict ourselves to the athermal LBE model for now, so ϑ is a fixed constant, and reserve the discussion 
of thermal LBE model to Sec. 3.8.

We will use the notation DdQq for a model in d dimensional space with q discrete velocities. With the polar coordinates 
in 2D, one can derive the D2Q7 model (cf. Fig. 2), of which discrete velocities include a zero velocity and six velocities 
evenly distributed on a circle, i.e., ξ0 = (0, 0), and

ξ i = (cos[(i − 1)π/3], sin[(i − 1)π/3])c, i = 1, 2, . . .6, (3.7)

where c := δx/δt = √
2ϑ is the unit of velocity. The D2Q7 model evolves on the triangular lattice in 2D.

With Cartesian coordinates in 2D, one can derive the D2Q9 model with the following discrete velocities:

ξ i =
⎧⎨⎩ (0, 0), i = 0,

(1, 0)c, (0, 1)c, (−1, 0)c, (0, −1)c, i = 1, 2, 3, 4,
(1, 1)c, (−1, 1)c, (−1, −1)c, (1, −1)c, i = 5, 6, 7, 8,

(3.8)

where c := δx/δt = √
3ϑ , which differs from the value of c for D2Q7 model on the triangular lattice. It should be noted that 

the discrete velocity set of the D2Q9 model is the tensor product of two velocity sets of the D1Q3 model [83,84], and the 
D2Q9 model evolves on a square lattice.

Similarly, with Cartesian coordinates in 3D, a number of models evolving on cubic lattices can be derived [84,138,139]. 
The discrete velocities are generated from the rotation of a cube, which has one center (O1), six faces (F6), eight vertices 
(V8), and twelve edges (E12). The combinations of these symmetry groups form the D3Q13 (O1 ∪ E12) [138], D3Q15 
(O1 ∪F6 ∪V8), D3Q19 (O1 ∪F6 ∪E12), and D3Q27 (O1 ∪F6 ∪V8 ∪E12) models. The D3Q27 model is in fact the tensor 
product of three velocity sets of the D1Q3 model in three coordinates {x, y, z}. For these 3D LB models, c := √

3ϑ . In 
12
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summary, if the equilibrium is obtained by the Taylor expansion of the Maxwellian [83,84], then for the LB models on 
square lattice in 2D and cubic lattice in 3D, c = √

3ϑ .

3.3. Discretization of time t

The Boltzmann equation with a fixed set of discrete velocities Xq = {ξ i} can be written as a differential equation along 
the characteristic (r′, t′) := (r + ξ s, t + s) parameterized by s [83,84]:

d

ds
fi(r + ξ i s, t + s) = Q i(r + ξ i s, t + s) + Gi(r + ξ i s, t + s),

d

ds
:= ∂s + ξ i · ∇, (3.9)

where Q i is a collision term to be discussed in detail later (in Sec. 3.5) and Gi is the forcing term coming from a · ∂ξ f . 
Integrating both sides of Eq. (3.9) along the characteristic in the interval s ∈ [0, δt] and approximating the integrand on the 
right-hand side by the trapezoidal rule give [140–142]:

f i(r + ξ iδt, t + δt) − f i(r, t) =1

2
δt [Q i(r, t) + Q i(r + ξ iδt, t + δt)] (3.10)

+ 1

2
δt [Gi(r, t) + Gi(r + ξ iδt, t + δt)]+ O (δ3t ).

The above equation is implicit because of the dependence of Q i(r+ ξ iδt , t+ δt) and Gi(r+ ξ iδt , t+ δt) on f i(r+ ξ iδt , t+ δt). 
However, it can be made explicit by the following change of variable [140,141]:

f̄ i(r, t) := f i(r, t) − 1

2
δt [Q i(r, t) + Gi(r, t)] , (3.11)

so that Eq. (3.10) becomes:

f̄ i(r + ξ iδt, t + δt) − f̄ i(r, t) = δt [Q i(r, t) + Gi(r, t)]+ O (δ3t ). (3.12)

Note that the change of variable from f i to f̄ i due to the collision term Q i does not affect the conserved moments ρ and 
ρu because they are collisional invariants; but it does affect non-conserved moments.

The forcing term Gi does affect the momentum and higher order moments, which are to be discussed next. Assuming 
that a due to an external force field is independent of the velocity ξ for the sake of simplicity, then the first few velocity 
moments of the forcing term, G := −a · ∂ξ f (cf. Eq. (3.5)), are the following [141,143,144]:

〈G〉 = 0, 〈ξG〉 = ρa, 〈ξξG〉 = ρ (au + ua) , (3.13)

therefore, the forcing term G can be consistently approximated by the following expansion in terms of the tensor Hermite 
polynomials {H(n)} up to second order [141,143,144]:

Gi = wiρ

[
ξ̄ i · ā + 1

2
(ξ̄ i ξ̄ i − I) : (āū + ūā)

]
= wiρ

[
H(1)(ξ̄ i) · ā + 1

2
H(2)(ξ̄ i) : (āū + ūā)

]
, (3.14)

where ā := a/
√

ϑ .
The mass density ρ is not affected by the discrete forcing term Gi , but the momentum ρu is. The equilibrium value of 

the velocity in f̄ (0)
i (ρ, u∗) can be modified to account for this effect [143,144]:

ρu∗ := ∑
i ξ i f̄ i =

∑
i ξ i f i −

1

2
δtρa = ρ

(
u − 1

2
δta

)
. (3.15)

The implementations of the forcing term will be discussed more later in Sec. 6.1.

3.4. Coherent discretization of phase space (r, ξ) and time t

In the LBE, the discretization of space r is done coherently with that of velocity ξ and time t as follows. The discretized 
space {x j} is required to form a lattice with the lattice spacing δx , i.e., x j ∈ δxZd . Furthermore, it is also required that the 
unit of the discrete velocities {ξ i} is c := δx/δt = √

3ϑ and

x j + ξ iδt ∈ δxZd, ∀x j ∈ δxZd, ∀ξ i ∈ X, (3.16)

that is, the particle with the velocity ξ i hops from one lattice point x j to another x j′ = x j + ξ iδt in one discrete time step 
δt . In this manner, the discretization of phase space Γ := (r, ξ) and time t are closely tied together, i.e., they are discretized 
coherently.
13
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The lattice Boltzmann equation in fully discretized phase space and time can be expressed in the following concise vector 
form:

f̄(x j + ξδt, tn + δt) − f̄(x j, tn) = δt
[
Q(x j, tn) + G(x j, tn)

]
, (3.17)

where the symbols in the upright bold-font are q-dimensional vectors in Rq , specifically, with ξ0 := 0,

f̄(x j + ξδt, tn + δt) := ( f̄0(x j, tn + δt), f̄1(x j + ξ1δt, tn + δt), . . . , f̄b(x j + ξbδt, tn + δt))
†,

f̄(x j, tn) := ( f̄0(x j, tn), f̄1(x j, tn), . . . , f̄b(x j, tn))
†,

Q(x j, tn) := (Q 0(x j, tn), Q 1(x j, tn), . . . , Qb(x j, tn))
†,

G(x j, tn) := (G0(x j, tn), G1(x j, tn), . . . , Gb(x j, tn))
†,

where † denotes the transpose, b := (q − 1) is the number of non-zero discrete velocities ξ i �= 0, and Gi is given by (3.14)
or otherwise provided.

3.5. Collision models

We now specify the collision operator Q in the LBE (3.17). Given q number of discrete velocities {ξ i}, the corresponding 
distributions { f i} can be linearly mapped to an equal number of velocity moments {mi} without losing or gaining any 
information. The moments, especially the low-order ones, have clear physical significance and thus are convenient to be 
used in collision process — the effect of the LM in (2.50) or LN in (2.51) in fact consists of the relaxation of its eigenmodes. 
Since the velocity space ξ is discretized into a finite set {ξ i}, the set of the eigenfunctions of L is also finite.

The construction of the orthogonal polynomials on a finite, discrete velocity set {ξ i} is not unique. We will follow 
the methodology proposed by d’Humières [81] — the orthogonal polynomials are obtained by applying the Gram-Schmidt 
procedure to orthogonalize combinations of monomials ξ k

i of the same order. We will restrict our discussion to 2D space 
and focus on the D2Q9 model in what follows. Denote {ψi(ξ)} the orthogonal polynomials on {ξ i} with a unit weight, then

〈ψi(ξ), ψ j(ξ)〉 := ∑q−1
k=0ψi(ξk)ψ j(ξk) = �i · � j = |�i|2δi j, (3.18)

where �i ∈ Rq is an eigenvector of Q, whose elements are ψi(ξk), 0 ≤ k ≤ (q − 1). The first three orthogonal polynomials 
corresponding to the conserved moments are

ψ0(ξ) = |ξ |0 = 1, ψ1(ξ) = ξx, ψ2(ξ) = ξy, (3.19)

where ξx and ξy and the x and y component of ξ . The remaining six orthogonal polynomials for non-conserved moments 
are:

ψ3(ξ) = ξ2
x − ξ2

y , ψ4(ξ) = ξxξy, ψ5(ξ) = −4|ξ |0 + 3|ξ |2,
ψ6,7(ξ) = (−5|ξ |0 + 3|ξ |2)ξx,y, ψ8 = 4|ξ |0 − 21

2
|ξ |2 + 9

2
|ξ |4.

(3.20)

For the D2Q9 model, the discrete velocities are given in (3.8), so the definitions (3.19) become

�0 = (1, 1, 1, 1, 1, 1, 1, 1, 1)†, (3.21a)

�1 = (0, 1, 0, −1, 0, 1, −1, −1, 1)†, (3.21b)

�2 = (0, 0, 1, 0, −1, 1, 1, −1, −1)†. (3.21c)

Note that �0, �1, and �2 are mutually orthogonal, but they are not normalized, and they span the null space of the collision 
operator. The components of �1 and �2 specify the order of the labeling of the discrete velocities {ξ i |0 ≤ i ≤ (q − 1)}. 
Another six orthogonal vectors can be generated by the above three, and they can be chosen to be:

�3 = (0, 1, −1, 1, −1, 0, 0, 0, 0)†, (3.22a)

�4 = (0, 0, 0, 0, 0, 1, −1, 1, −1)†, (3.22b)

�5 = (−4, −1, −1, −1, −1, 2, 2, 2, 2)†, (3.22c)

�6 = (0, −2, 0, 2, 0, 1, −1, −1, 1)†, (3.22d)

�7 = (0, 0, −2, 0, 2, 1, 1, −1, −1)†, (3.22e)

�8 = (4, −2, −2, −2, −2, 1, 1, 1, 1)†. (3.22f)
14
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Note that due to the discreteness of the velocity set {ξ i}, some polynomials are missing, so the polynomials {ψi} on 
{ξ i} cannot be arranged into complete n-th order tensors in an orderly fashion for a given order n ≥ 3 [136]. For example, 
there are only two third-order polynomials and one fourth-order one in the D2Q9 model, and it is impossible to construct 
a complete third-order tensor with the D2Q9 velocity set [136]. This is the cause of the cubic error in the viscous stress. 
The complete third-order tensor requires the D2Q13 model [136,145,146]. The incomplete tensors associated with discrete 
velocity sets generate anisotropy, and are the origin of some defects observed in the LBE simulations [147,148]. This issue 
was first mentioned in Sec. 3.1 and will be further discussed in Sec. 3.8.

The transform matrix M which maps the distributions to the moments can be given as the following:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

−4 −1 −1 −1 −1 2 2 2 2
0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1
4 −2 −2 −2 −2 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.23)

The rows of M are �†
i , 0 ≤ i ≤ 8, are mutually orthogonal, therefore

MM† = diag
(
|�0|2, |�1|2, . . . , |�8|2

)
is diagonal, hence M−1 can be easily obtained. If {�i} are normalized, M becomes an orthogonal matrix.

With M given, the moments can be easily obtained:

m = Mf, f = M−1m, (3.24)

where m := (m0, m1, . . . , m8)
†, m0 = ρ is the (mass) density, m1 = ρux and m2 = ρuy are the x and y component of the 

flow momentum, respectively, m3 and m4 are the second-order moments related to the components of the traceless stress 
tensor, m5 is the second-order moment related to the diagonal components of the stress tensor, m6 and m7 are third-order 
moments, which behave as the x- and y-components of a vector, and m8 is a fourth-order moment. The collision operator 
with multiple relaxation times (MRT) is naturally written in terms of relaxations of non-conserved moments:

Q = −M−1S
(
m−m(0)

)
, S := diag(1, . . . , 1︸ ︷︷ ︸

d+1

, sd+1, . . . , sb︸ ︷︷ ︸
q−(d+1)

), (3.25)

where S is the diagonal matrix of the relaxation rates {si} in the unit of δt = 1, of which si = 1 for the conserved moments 
with 0 ≤ i ≤ d, si ∈ (0, 2) for non-conserved moments; and m(0) is the vector of equilibrium moments:

m(0)
0 = ρ, m(0)

1,2 = ρux,y,

m(0)
3 = ρ(u2

x − u2
y), m(0)

4 = ρuxuy, m(0)
5 = −ρ(2 − 3u2),

m(0)
6,7 = −ρux,y, m(0)

8 = ρ(1 − 3u2).

(3.26)

Note that for the conserved moments, their equilibria are equal to themselves, i.e., m(0)
i = mi , for ρ and ρu := ρ(ux, uy)

in this case. The equilibrium moments {m(0)
i } can be constructed by linear analysis (or Fourier-von Neumann analysis, cf. 

Sec. 5 and [149–151]) and the above result is identical to the truncation of the Maxwell-Boltzmann equilibrium expanded 
in Hermite polynomials up to second-order (cf. (3.4b)), i.e., m(0) = M−1f(0) , and

f (0)
i = wiρ

{
1+ ξ̄ i · ū + 1

2

(
ξ̄ i ξ̄ i − I

) : ūū
}

= wiρ

{
H(0) + ū ·H(1)(ξ̄ i) + 1

2
ūū : H(2)(ξ̄ i)

}
, (3.27)

where H(n) is the n-th order Hermite tensor in d dimensions (cf. (2.44) and (2.46)); ū := u/cs, ξ̄ i := ξ i/cs; w0 = 4/9 for 
|ξ0| = 0, w1,2,3,4 = 1/9 for |ξ1,2,3,4| = 1, and w5,6,7,8 = 1/36 for |ξ5,6,7,8| =

√
2 [83,84], the flow mass density ρ and 

momentum ρu are given by:∑
i f i(x, t) = ∑

i f
(0)
i (x, t) = ρ(x, t), (3.28a)∑

i ξ i f i(x, t) = ∑
i ξ i f

(0)
i (x, t) = ρ(x, t)u(x, t). (3.28b)

The speed of sound cs in the LBE is determined by the trace of the symmetric second-order moment, i.e., the thermal 
energy:
15
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1

2

∫
(ξ − u) · (ξ − u) f dξ = d

2
ρϑ = d

2
ρc2s ,

and with the discrete velocities {ξ i} about u = 0, it leads to

c2s = 1

d

∑
i wiξ i · ξ i . (3.29)

Thus, cs = (1/
√
3)c for the D2Q9 model. In general, for athermal LBE models, cs depends solely on the discrete velocity set 

Xq and the corresponding weights {wi}, however, it can also be a tunable parameter to be determined by linear analysis 
[149,151].

The collision with multiple-relaxation times (MRT) can be rewritten as the following:

Q = M−1Sδm = M†ΨΨΨ−1Sδm = M†S′δm, (3.30)

where δm := m −m(0) , S′ := ΨΨΨ−1S, and specifically for the D2Q9 model,

ΨΨΨ−1 :=diag
(
|�0|2, |�1|2, . . . , |�8|2

)−1

=diag
(

1
9 , 1

6 , 1
6 , 1

4 , 1
4 , 1

36 , 1
12 , 1

12 , 1
36

) = 1
36diag(4,6,6,9,9,1,3,3,1).

(3.31)

The relaxation rates si are rescaled by |�i |2 in the pre-processing, then M† can be used to transfer m to f.
We emphasize that M given in the form of (3.23) is constructed to optimize algorithmic simplicity and computational 

efficiency. The matrix M has several symmetry properties allowing for efficient coding. One can simplify the collision process 
further by pre-processing S̃ := M−1 · SM, and write out the collision Q = −S̃δm explicitly in codes.

As aforementioned, the construction of the orthogonal polynomial set {ψi} is not unique. The orthogonality of the poly-
nomials {ψi} on {ξ i} given in (3.20) is with respect to a unity weight. The polynomials can also be constructed with respect 
to the weight {wi} corresponding to the velocity set {ξ i} (cf. (3.3)) [85,87,152–155]. In this case, the orthogonality (3.18)
becomes:

〈ψ ′
i (ξ), ψ ′

j(ξ)〉w := ∑q−1
k=0wiψ

′
i (ξk)ψ

′
j(ξk) = �′

i · �′
j = |�′

i|2δi j, (3.32)

and the new orthogonal polynomials {ψ ′
i } for the D2Q9 model are [85,87,154,155]:

ψ ′
3(ξ) = ξ2

x − ξ2
y , ψ ′

4(ξ) = ξxξy, ψ ′
5(ξ) = −2|ξ |0 + 3|ξ |2,

ψ ′
6,7(ξ) = (−4|ξ |0 + 3|ξ |2)ξx,y, ψ ′

8 = 2|ξ |0 − 15|ξ |2 + 9|ξ |4, (3.33)

and the corresponding equilibria of the non-conserved moments are:

m′(0)
3 = ρ(u2

x − u2
y), m′(0)

4 = ρuxuy, m′(0)
5 = 3ρu2, m′(0)

6,7,8 = 0. (3.34)

With the above equilibrium moments, the consequences of the weighted orthogonal polynomials become apparent — all the 
equilibria of the non-conserved moments are decoupled from the conserved moments ρ and ρu. This is essential for the 
fluctuating LBE in which thermal fluctuations cannot affect the conserved quantities [152–155]. In particular, by comparing 
(3.34) and (3.26), it can be seen that the equilibrium of m′

5, which is related to the diagonal components of the stress tensor, 
no longer has a projection on the density ρ , and the equilibria of two third-order moments, m6 and m7, no longer have 
the projections on ρux and ρuy , respectively. Hence, by using the weighted polynomials {ψ ′

i }, the boundary conditions in 
the LBE may be altered, because the decoupling between the third-order moments m6,7 and the momentum ρu affects the 
relationship between the relaxation rates of even and odd order moments (cf. (3.44) and Sec. 6.3).

3.6. The over-relaxation feature of the LBE

The change of variable from f to f̄ (cf. (3.11)) has important consequences [141]. First of all, it makes an implicit algorithm 
(3.10) explicit (3.12). Secondly, despite the appearance of having a first-order Euler method, the LBE is in fact a second-order 
accurate scheme [141,156]. Thirdly, the LBE can work in the over-relaxed regime making it rather efficient computationally. 
To elucidate the latter two points, as an example let’s first examine the lattice BGK model with the collision model of single 
relaxation time (SRT) τν in the continuous BGK counterpart:

QBGK := − 1

τν
[ f − f (0)]. (3.35)

In what follows, τν is used solely to denote the relaxation time in the above continuous BGK model, and it is the relaxation 
time in the lattice BGK equation for the distribution function f i without the correction of δt/2 as discussed in Sec. 3.3 (cf. 
(3.10) – (3.12)). If the first-order forward Euler method is applied to discretize (3.9) with the BGK collision model (3.35), 
then the equation for f i is [83,84]:
16
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f(x j + ξδt, tn + δt) = f(x j, tn) − δt

τν

[
f(x j, tn) − f(0)(ρ, u; x j, tn)

]+ δtG

=
(
1− δt

τν

)
f(x j, tn) + δt

τν
f(0)(ρ, u; x j, tn) + δtG. (3.36)

Therefore f(x j + ξδt , tn + δt) is in fact a convex combination of f(x j, tn) and f(0)(ρ, u; x j, tn) in (3.36), if the forcing term 
G is ignored and δt/τν ≤ 1 [141,156]. This of course imposes a severe restriction on τν ≥ δt , and thus the viscosity, ν , 
for ν = (2τν − δt)c2/6 ≥ δxc/6 (with ϑ = c2/3), which in turn would severely limit the Reynolds number Re := U L/ν . In 
contrast, (3.12) in terms of f̄ and with the BGK model (3.35) becomes:

f̄(x j + ξδt, tn + δt) = (1− β)f̄(x j, tn) + β f̄(0)(ρ, u; x j, tn) + δtG, (3.37)

f̄(0)(ρ, u; x j, tn) := f(0)(ρ, u∗; x j, tn) = f(0)(ρ, u; x j, tn) − δt

2
G, (3.38)

β := δt

τν + δt/2
,

where u∗ := u − aδt/2 (cf. (3.15) and pertinent discussion, and Sec. 6.1).
Eq. (3.37) is in fact the Crank-Nicolson discretization of (3.9) with the BGK collision model (3.35), and it is second-order 

accurate in δt [141]. The contrast between (3.37) and (3.36) indicates that the restriction on τν becomes τν > 0 for the 
system of f̄ (as opposed to τν/δt > 1/2 for the system of f), and the viscosity becomes ν = τν/3, which can be significantly 
reduced so long as the scheme is numerically stable, so the numerical efficiency is greatly enhanced. It must be noted that 
the above analysis can be immediately applied to the LBE with the MRT collision model [141].

Hence, with 1 > τν/δt > 0, the LBE (when formulated in terms of f̄) is operating in the over-relaxation regime of (3.9)
[141,156,157], which permits small viscosity so to achieve high Reynolds number in simulations. therefore is very useful, 
hence most LBE flow simulations are carried out in this regime (cf., e.g., [52,158,159]). It should be stressed that the over-
relaxation does not ease the intrinsic restriction on δt , or the Mach number, which is equivalent to the Courant-Friedrichs-
Lewy (CFL) number in the LBE. In addition, it should be cautioned that, while the LBE method operating in the over-
relaxation region is numerically efficient to simulation flows with small viscosity (equivalently high Reynolds number Re) 
when stable, it is by no means to imply that the LBE simulation adequately resolves the physics corresponding to the given 
Re.

3.7. The LB model for advection-diffusion equation

When the collision model in an LB model respects both mass and momentum conservation as discussed in the previous 
section, the LB model solves the incompressible Navier-Stokes equations for athermal fluid systems. If the collision respects 
the conservation for one scalar quantity, e.g., the mass conservation, the LB system models the advection-diffusion equation 
for the scalar field [160–170]. The LB system for the advection-diffusion equation of a scalar requires a fewer number of 
discrete velocities than that for the Navier-Stokes equations. In 2D, for example, the system of one conserved scalar can be 
simulated by the D2Q5 model, of which the discrete velocities are a subset of X9 defined in (3.8), i.e., {ξ i |0 ≤ i ≤ 4} in X9.

In the D2Q5 model, there are five moments {mi |0 ≤ i ≤ 4}: one zeroth-order, two first-order, and two second-order ones, 
and the corresponding transformation matrix, similar to M of (3.23) for the D2Q9 model:⎛⎜⎜⎜⎝

1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1

−4 1 1 1 1
0 1 −1 1 −1

⎞⎟⎟⎟⎠ . (3.39)

The orthogonal polynomials corresponding to four non-conserved moments are:

φ1(ξ) = ξx, φ2(ξ) = ξy, φ5(ξ) = −4+ 5|ξ |2, φ4(ξ) = ξ2
x − ξ2

y . (3.40)

Assuming the conserved quantity is the scalar m0 = ρ , then the equilibria in the D2Q5 model are chosen as the following:

m(0)
1 = ρu, m(0)

2 = ρv, m(0)
3 = aρ, m(0)

4 = 0, (3.41)

where a is a parameter to be determined, and (u, v) = u is the external advection velocity. The D2D5 model leads to the 
advection-diffusion equation satisfied by the conserved scalar ρ:

∂tρ + u · ∇ρ = κ∇2ρ. (3.42)
17
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There are three relaxation rates for the D2Q5 model, sκ for m1 and m2, and se and sν for m3 and m4 defined in (3.41), 
respectively. In the absence of an advective velocity u, the diffusion coefficient κ in (3.42) is determined by the parameter 
a and the relaxation rate sκ for the first-order moments:

κ = (4+ a)

10
σκ, σκ :=

(
1

sκ
− 1

2

)
, (3.43)

where the notation σi := (1/si −1/2) is used [171]. To attain the isotropy for the fourth-order (error) term in the advection-
diffusion equation derived from the D2Q5 model, σe and σν must satisfy the following relationship (cf. [172] and refs. 
therein):

σκσν =
(

1

sκ
− 1

2

)(
1

sν
− 1

2

)
= 1

6
. (3.44)

It is also possible to cancel the remaining fourth-order error terms. One way is to set σe = σν and

σκ =
√
3

6
, (3.45)

such that (3.44) leads to

σe = σν =
√
3

3
, (3.46)

thus the diffusivity κ is solely determined by the value of a:

κ =
√
3 (4+ a)

60
. (3.47)

The stability of the scheme requires −4 < a < 1, where the condition a < 1 is to avoid the instability due to “checkerboard” 
modes (cf. [167–169,172] and refs. therein).

In the presence of non-zero advection velocity u, the conserved variable ρ is correctly advected at velocity u provided 
it varies slowly in space. It can be shown that the effective diffusivity κ becomes velocity dependent in the D2Q5 model 
[173]. These defects of the model have been analyzed in detail [161,174], they can be removed by using a larger number of 
discrete velocities. It should also be noted that anisotropic diffusivity can be achieved by using different relaxation rates for 
the moments m1 and m2 and modified equilibria of m3 and m4 [160–163,168,175].

3.8. The thermal LBE

The LBE considered in the preceding discussion only respects the conservation of mass and momentum, as stipulated 
in conservation constraints (3.6) and the corresponding equilibria (3.20), so the energy is not a conserved quantity, hence 
the LBE so constructed is in principle athermal (as opposed to isothermal). For thermal flows, the conservation laws of mass, 
momentum, and energy must be respected simultaneously. For the Boltzmann equation, the total energy is given by the 
diagonal second-order moment of the velocity distribution function f (r, ξ , t):

ρE := 1
2

∫
ξ · ξ f dξ = 1

2

∫
ξ · ξ f (0)dξ = 1

2

∑
i ξ i · ξ i f i = 1

2

∑
i ξ i · ξ i f

(0)
i , (3.48)

which includes both the flow kinetic energy ρu · u/2 and the thermal energy dρϑ/2, i.e., for a Maxwellian equilibrium f (0)
i

in d dimensional space,

ρE = 1

2

∫
ξ i · ξ i f

(0)
i dξ = 1

2
ρu2 + d

2
ρϑ. (3.49)

It follows from the ideal gas equations of state for the pressure p = ρϑ and the internal energy ρe = p/(γ − 1), where 
γ := CP/CV is the ratio of the specific heats or the adiabatic exponent (cf., e.g., [176]), that

ρE = ρe + 1

2
ρu2 = p

γ − 1
+ 1

2
ρu2, (3.50)

thus in the Boltzmann equation for structureless particles, γ = 1 + 2/d in d dimensional space, which is a fixed constant, 
even though in reality γ depends on the degrees of freedom of constituent particles and temperature.

There are several approaches to model the energy conservation in the LBE. With the appropriate moment constraints 
including energy and heat fluxes, the Navier-Stokes-Fourier (NSF) system can be derived from the LBE [177–179]. Thus the 
most direct and obvious approach seems to be simply imposing the energy conservation condition (3.48) on the collision, 
i.e., the energy-conserving LBE which leads to the correct PDEs for the NSF system [177–182]. It should be mentioned that to 
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correctly model the NSF system, the energy-conserving LBE requires a larger number of discrete velocities than its athermal 
counterpart. It requires at least five velocities in 1D [183] with a fixed γ = 3, or seven velocities in 1D [179], thirteen in 2D 
[177], and twenty-seven in 3D [178]. However, it has also been found that the energy-conserving LBE with polynomial equi-
libria are endowed with some inherent defects. First, there exists an unphysical coupling between the longitudinal (acoustic) 
and shear modes [151], which leads to numerical instability for short wavelengths [182]. It must be emphasized that this 
coupling is a direct consequence of the space-time discretization described in preceding Sections 3.2–3.4. In addition, for 
the energy-conserving LBE with a linear collision model (cf. Eq. (3.25) and related discussion), achieving stability leads to a 
restriction on γ in a very narrow range of variation about 1.0 — the stable value of γ is neither 7/5 nor 5/3 (corresponding 
to diatomic and monatomic gases, respectively), and it does not depend on the temperature correctly as with real gases 
[151]. The point is that the energy-conserving LBE does not accommodate the degree of freedom for a tunable parameter 
γ . It should be stressed that the aforementioned defects are inherent to the energy-conserving LBE with no internal degrees 
of freedom derived in the preceding sections and cannot be removed by, e.g., increasing the number of discrete velocities 
alone. However, it should be stressed that this is perhaps not a pressing issue concerning LBE’s capability to simulate fully 
compressible viscous flow.

There are several avenues to circumvent the aforementioned defects. First, it has been observed that some shortcomings 
of the energy-conserving LBE can be easily removed by simply separating the energy conservation from the mass and 
momentum conservation in the spirit of Boussinesq approximation [151,184]. In 2D, for instance, the mass and momentum 
conservation is solved by the D2Q9 model, while the energy conservation can be separately solved by either a finite-
difference scheme [151,184,185] or the D2Q5 LB model [140,172,185–188]. In the approach with dual distribution functions, 
one set for mass-momentum conservation and the other for the energy conservation, the viscosity and heat diffusivity can 
be easily adjusted by the relaxation rates for the moments related to the viscous stresses and the energy fluxes, thus the 
Prandtl number Pr can be easily adjusted in a wide range. Also, the boundary conditions for the velocity and temperature 
fields can be consistently realized via the bounce-back boundary conditions [151,185], which are also easy to implement. 
The thermal LBE with dual distributions can adequately and effectively simulate near-incompressible thermal flows [172,
185,188,189] and enjoys some attractive properties, such as superior numerical stability while retaining the simplicity of the 
LBE algorithm [151]. Thus this approach appears to be the most widely used thermal LBE model [140,172,185,186,188,189].

Since the fully compressible Euler or NSF system can be derived from the LBE [81,177–182], there have been continuous 
efforts to extend the LBE for fully compressible thermal inviscid [190–199] or viscous flows [179,196,199–209] with shocks 
and contact discontinuities. There are essentially three approaches to extend the LBE for fully compressible flows. The 
first is to modify the equilibrium distribution function to extend the validity of the low-Mach number expansion. The 
equilibria of second-order polynomials in the LBE are basically the truncated Maclaurin series expansions of the Maxwellian 
(cf. Eq. (3.26) and (3.27)), which may become invalid when local Mach number grows sufficiently large, and thus are a 
major suspect responsible for the numerical instability observed in the thermal LBE. There are several alternative forms of 
the equilibria tailored to address this issue, i.e., the Maxwellian (i.e., the exponential) [196,204], the Dirac delta function 
[205–207], or polynomials of higher than second order [200,202,203,208]. However, it turns out that the Maxwellian type 
of equilibria [204] leads to a system of partial differential equations inconsistent with the Euler system at the leading order 
[195]. It is worth noting, in particular, that even though this system is shown to satisfy the entropic condition i.e., the H
theorem [204], it is nonetheless an ineffective approach for compressible flow simulation.

The second approach is to introduce the internal energy as an additional degree of freedom in the distribution functions 
[179,192–194,208–210] so to allow the adiabatic exponent γ to be an independent and tunable parameter.

The third approach is to abandon the approximation of the transport term ∂t f + ξ ·∇ f in the Boltzmann equation (2.1a)
by exact “hopping” on lattice (cf. Eq. (3.17)):

f̃(r j + ξδt, tn + δt) = f̃∗(r j, tn), r j, r j + ξ i ∈Zd,

where f̃∗ denotes the post-collision value of f̃. Instead, the particle velocity ξ i is decomposed into the local flow velocity 
u and the peculiar velocity c i := ξ i − u is fixed as a constant discrete velocity set, thus the “hopping” by ξ i is adapted to 
the local flow velocity u and no longer from one lattice node to another, and interpolations or other means have to be 
used to obtain values of f̃ on the underlying lattice [205–207]. Alternatively, the transport term can also be approximated 
with finite-difference schemes (or otherwise), such as backward Euler with respect to ξ i [193], second-order total variation 
diminishing (TVD) scheme [194], Crank-Nicholson [208], or Beam-Warming method [179]. These “off-lattice” approaches 
immediately avoid the numerical instability intrinsic to the simple hopping-collision algorithm of the LBE [151]. It should 
also be noted that the above approaches are usually used in combination to effectively overcome the numerical instabilities 
in the thermal LBE. In addition, one can use asymmetric velocity sets, i.e., Vq �= −Vq , such that 

∑
i c i = U �= 0. In essence, 

the use of the asymmetric velocity means that the expansions of the distribution functions are about the non-zero velocity 
U , instead of at the rest frame of reference with U = 0. Because U may vary in space, so does the asymmetric velocity set. 
Consequently, one of the important properties of the LBE, i.e., ∇ · ξ i f i = ξ i · ∇ f i no longer holds. In any event, the model of 
this type has yet to subject to rigorous analyses and tests.

Many of the aforementioned thermal LBE schemes have successfully simulated 1D shocks, i.e., the Sod tests [190–192,194,
196,197,201], viscous flows [179,196,200,202,203,205,208] or more complex compressible flows with strong shocks, such as 
compressible flows over a forward-facing step [207]. It should be pointed out that the off-lattice approach must utilize 
19



P. Lallemand, L.-S. Luo, M. Krafczyk et al. Journal of Computational Physics 431 (2021) 109713
interpolations of some sort to approximate advection, which inevitably increase the higher-order numerical viscosities and 
therefore also improve the numerical stability. A specific effect of interpolations is that they annihilate the checker-board or 
staggered modes, which are the eigen-modes of the collision operator with the eigenvalue −1 [149,211].

The error of O (u3) due to the approximation of the equilibria using the second-order polynomial of H(n) is the leading 
order error in terms of Ma which can be significant for high-speed compressible flows, and there have been a considerable 
effort to remove the u3 error [145,146,200,202,203,208,212–216]. To illustrate the origin of the cubic error, D2Q9 model 
with the BGK collision model can serve as an example for the sake of simplicity. The second-order moment is

m(2) = ∑
iξ iξ i f i = τνϑρ[(∇u) + (∇u)†] + τν∇ · ρuuu, (3.51)

where τν is the relaxation time in the BGK model. The error term of ∇ ·ρuuu is due to the second-order truncation of the 
equilibrium f (0)

i (cf. Eq. (3.27)). This term cannot be eliminated by including O (u3) terms in f (0)
i , because for the discrete 

velocities {ξ i} with the components of {−1, 0, +1}, ξ3
iα = ξiα , α ∈ {x, y}, consequently ∑i ξ

3
i f i =

∑
i ξ i f i . That is, the third-

order moment is incomplete and its non-zero components linearly depend on the first-order ones. Thus, a complete removal 
of the cubic error term ∇ ·ρuuu requires not only the equilibria with the terms of u3, but also the discrete velocity set 
which can accommodate independent third-order moments [145,146,200,213]. A recently proposed model that replaces the 
velocities of (±1, ±1, ±1) in D3Q27 model with that of (±1/2, ±1/2, ±1/2) can effectively eliminate the cubic error term 
[217].

It has been shown that it requires 39 velocities in 3D to fully eliminate the cubic error by brute force [213], which 
significantly enhances the computational cost and communication band width requirement. Since degeneracies of moments 
are at the root of this problem, off-lattice velocity sets determined by the higher-order Gauss-Hermite quadratures have 
been proposed [218,219], however, this approach requires interpolation of distribution functions between lattice points 
which increases computational cost and may also introduce numerical instability [85] as well as dissipation at grid scales 
[151]. However, with the number of velocities less than the required order of symmetry, partial elimination of some terms 
related to cubic error is possible. For example, the D2Q17 model [146] with correct equilibria [212,220] can eliminate some 
terms of ∇ ·ρuuu. Even with the D2Q9 model, some cubic terms can be included in the equilibria [220]. Using u-dependent 
relaxation times for the mode corresponding to the diagonal components of the stress tensor can mitigate the remaining 
problems, reducing the error from O (Ma3) to O (Ma5) [159,214]. A cancellation of the cubic term can also be realized by 
explicitly including the necessary terms obtained by finite difference [215]. For multi-phase or multi-component flows, 
explicit inclusion of the density gradient ∇ρ in the forcing term can eliminate the term uuu · ∇ρ , which is significant in 
the interface region [216,221].

It is a fair observation that the thermal LBE for fully compressible flows is not as mature as its athermal counterpart. 
Much of the efforts along this direction are from the physics perspective based on the kinetic theory, as indicated in the 
preceding discussions, and not so much on the numerics pertaining to the compressible flows. Thus, it should be noted 
that correct and effective numerical techniques are essential for compressible flow simulations. For instance, the lattice 
Boltzmann schemes with a symmetric discrete velocity set are in fact connected to the central difference schemes [86,87,
222], while the techniques based on upwind method are prevailing and preferred treatments for compressible flows (cf., e.g., 
[223]), and yet they have not been effectively incorporated into the LB method [220,224–230]. Nevertheless, the efforts to 
reformulate the LBE using some mature techniques which have been widely used in CFD have begun [198,199,231–236], but 
the benefits, if any, of these approaches remain to be seen. The issue one must keep in mind is how to make the LB method 
effective for the compressible flow simulation while maintaining its simplicity and numerical efficiency. Clearly, much more 
analysis along this direction is still waiting to be done.

Finally, we would like to mention that the LBE has been successfully applied to simulate aeroacoustics [237–251]. The 
reason attributing to the success of the LBE simulation of aeroacoustics seems to be the fact that the LBE has a relatively 
low numerical dissipation [149,151] thus high fidelity.

3.9. Cumulant lattice Boltzmann equation (CLBE)

Before we proceed to discuss the details of the cumulant LBE, a brief introduction of some pertaining concepts seems to 
be in order. For a probability density distribution function f (x), its moments {μn}

μn := 〈xn〉 :=
∫

xn f (x)dx, n ≥ 0, (3.52)

can be generated by the moment generating function of f (x) (cf., e.g., [252])

m(t) := 〈etx〉 :=
∫

f (x)etx dx =
∑
n

tn

n!μn. (3.53)

It is sometime convenient to use the moments about the mean, i.e.,

χn := 〈(x − μ1)
n〉 :=

∫
(x− μ1)

n f (x)dx, (3.54)
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of which the generating function is

M(t) := 〈et(x−μ1)〉 :=
∫

f (x)et(x−μ1) dx =
∑
n

tn

n!χn. (3.55)

Obviously,

μn = dnm(t)

dtn

∣∣∣∣
t=0

and χn = dnM(t)

dtn

∣∣∣∣
t=0

.

Suppose

κ(t) := lnm(t) := κ0 + κ1t + κ2

2! t
2 + · · · + κn

n! t
n + · · · , (3.56)

then the function κ(t) is the cumulant generating function for cumulants {κi}, i.e., κn = dnκ(t)/dtn at t = 0. It can be seen 
that the first few cumulants are:

κi = μi, κ2,3 = χ2,3, κ4 = χ4 − 3χ2
2 .

The usefulness of the cumulant representation can be seen through the example of the normal distribution

f (x) = 1

σ
√
2π

e−(x−x0)2/2σ 2
,

which has an infinite number of nonzero moments, but only two non-zero cumulants:

κ1 = x0, κ2 = 1

σ 2
, κn = 0 ∀n ≥ 3.

The MRT LBE derived in the preceding sections is based on the moments of the microscopic velocity ξ . The cumulant 
LBE is based on the moments of the peculiar velocity c := (ξ − u) [253–257]. Let F (x, K , t) be the generating function of 
the distribution function f (x, c, t), i.e., F (x, K , t) := 〈eK ·c f 〉, then the corresponding cumulants are [159]:

Clmn(x, t) := c−(l+m+n) ∂ l∂m∂n ln F

∂Kl
x∂K

m
y ∂Kn

z

∣∣∣∣∣
K=0

, K := (Kx, K y, Kz). (3.57)

For the Maxwell-Boltzmann equilibrium f (0) ,

ln F (0) = ln(ρ/ρ0) − K · u + c2ϑ

2
K · K , (3.58)

thus the equilibrium has (d + 2) non-zero cumulants in d dimensions in terms of ρ , u and ϑ .
The collision in terms of the cumulants {Clmn} can be taken to be:

C∗
lmn = Clmn − slmn

[
Clmn − C (0)

lmn

]
, (3.59)

where Clmn and C∗
lmn denote the pre- and post-collision value of a cumulant, C (0)

lmn denotes the equilibrium of Clmn , and 
slmn ∈ (0, 2) is the relaxation rate for the cumulant Clmn . When ln F is given in terms of a finite number of cumulants 
{Clmn}, the distribution function, f (x, ξ , t) can be obtained by inverse Fourier transform of F . In the case of the LBE, 
the finite number of linearly independent cumulants {Clmn} is equal to that of the discrete velocities {ξ i}. However, the 
higher-order cumulants depend on the lower-order ones in a complicated nonlinear manner [253–257]. For this reason, the 
cumulant LBE with an SRT collision model differs significantly from its LBGK counterpart based on the moments, because 
the relaxation of a lower-order moment affects that for the next order moment, which is not the case for the LBE based on 
moments, which are orthogonal to each other.

Perhaps the most noteworthy feature of the cumulant presentation is the elimination of redundancy of the moment rep-
resentation. As demonstrated in Eq. (3.58), the equilibrium has only nonzero cumulants up to second order, all higher order 
cumulants are zero. In contrast, there is an infinite number of nonzero moments of the equilibrium, which are products of 
ρ , u and ϑ . Thus, the non-zero higher-order cumulants represent the nonequilibrium information which is not present in 
lower-order cumulants. It is also observed that the cumulant LBE has superior stability [258] which cannot be explained by 
linear analysis.
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3.10. Other models and further developments

The lattice Boltzmann equation has also been developed for viscoelastic fluids [150,259–261] and magnetohydrodynam-
ics [262–265]. The gist of these LBE models is the construction of certain second-order tensors and relaxation processes 
(collision operator) appropriate to the physics. In addition, the fluctuating LBE [152,153,155,266–268] has been formulated 
to simulate fluctuating hydrodynamics [269]. The fluctuating LBE relies on the correct implementation of the viscous stress 
tensor with fluctuations so that the fluctuation-dissipation theorem is obeyed. To do so, the orthogonal basis must be 
constructed with respect to the weights {wi} (cf. (3.33) and related discussions) [85,270].

It has been revealed that the LBE has direct connections to finite difference scheme [86,87,222,271] and the artificial 
compressibility method [90,91]. These revelations help us understand the LBE in terms of our knowledge about existing 
methods.

Another notable development is to extending the capability of the LBE beyond the hydrodynamics of NSF system. Since 
the number of discrete velocity is equal to that of moments in the LBE, the LBE capable of solving the kinetic equation 
would certainly require a larger number of discrete velocities than the LBE which is only adequate to solve the macroscopic 
hydrodynamic equations [272,273]. However, enlarging the discrete velocity set can be problematic if the exact streaming 
step is to be maintained, which requires the velocity set to conform with integer lattice (cf. Sec. 3.2), and this approach 
may be problematic because it is difficult to remove degeneracy among the moments [136] and to construct boundary 
conditions, among other issues.

One solution to the above problems is to abandon the exact streaming paradigm and instead employ interpolation meth-
ods to compute the advection and time stepping with finite-difference techniques. The finite-difference lattice Boltzmann 
(FDLB) method uses the so-called off-lattice velocity sets, which do not conform with the lattice structure in the LBE and 
which are often chosen to be some quadrature points. Also, instead of using the Hermite polynomials on the entire space 
(cf. (2.44) – (2.46) and related discussion), one can use the Hermite polynomials on the half space (half-range Hermite poly-
nomials) [274–276]. These new approaches have shown some promising results for benchmark cases such as the Couette 
and Poiseuille flows in kinetic regime [277–281].

4. LBE: macroscopic equations, stability, and convergence

In what follows, we will show that the solution of the LBE for suitably constructed initial data has an asymptotic expan-
sion in the lattice spacing δx , and the first two moments of the LBE solution converge to a solution of the incompressible 
Navier-Stokes equations for the corresponding initial data.

We first pose an expansion of the solution of the lattice Boltzmann equation as a formal power series in the lattice 
spacing δx := ε, and use it to motivate expressions for the expansion coefficients { f (k)(x, t)} in terms of their moments 
{ρ(k)} and {u(k)} that satisfy a hierarchy of quasi-linear and linear PDEs. By considering the linear stability of perturbations 
to the global equilibrium with ρ = 1 and u = 0, we show that the series so defined is in fact an asymptotic expansion of the 
solution of the LBE for initial conditions obtained from the f (k)(x, t) at t = 0. We also show that the ρ(2) and u(1) obtained 
from moments of this expansion converge to a solution of the incompressible Navier-Stokes equations. This approach is 
based on the Hilbert expansion in the sense that both the distribution function and conserved quantities are expanded (cf. 
§2.4.1).

The results given below have been presented as theorems for the LBE with the periodic boundary conditions [270,282–
286] as well as the bounce-back boundary conditions [287], which will be discussed in §6. In what follows, all analyses 
are applied to the distribution functions f i , as opposed to f̄ i (cf. the discussions in Sec. 3.3 and 3.6), i.e., pertaining to the 
discretization with the first-order forward Euler method, as shown by (3.36) in the case of the BGK collision model, so the 
relaxation times and the relaxation rates are those without the correction of δt/2.

4.1. Formal expansion to the solution of the LBE and macroscopic equations

To derive the incompressible Navier-Stokes equations from the LBE, we adopt the following dimensionless diffusive scal-
ing:

δx = ε, δt = ε2. (4.1)

The forcing term in the LBE corresponding to an external force density F in the Navier-Stokes equations can be approxi-
mated by:

Gi = 3wiε
3ξ i · F , (4.2)

which is the first-order approximation in terms of the Hermite polynomials (or equivalently in terms of u , cf. Eq. (3.14)). 
The solution f of the LBE (3.17) depends on ε as a parameter, i.e., f := f(x j, tn; ε), so we seek the following formal expansion 
(i.e., an ansatz or Strang expansion [288]):

f(x j, tn; ε) ∼ ∑
εkf(k)(x j, tn). (4.3)
k≥0
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Correspondingly, both ρ and u are given by:

ρε ∼ ∑
k≥0 εkρ(k), ρ(k) := ∑

i f
(k)
i , (4.4a)

uε ∼ ∑
k≥0 εku(k), u(k) := ∑

i ξ i f
(k)
i . (4.4b)

For now the right-hand sides of (4.3) and (4.4) are formal sums which we show later in §4.3 are in fact asymptotic expan-
sions. The ansatz (4.3) is similar to the Hilbert expansion (cf. (2.24) in §2).

In the following analysis, define

f(0) := f(0)(ρ = 1,u = 0) = w := (w0, w1, . . . , wq−1)
†.

It follows from the definition of {wi}, Eq. (4.4), and the symmetry of {ξ i} that

ρ(0) = 1, u(0) = 0. (4.5)

Define R := f(x j + ξε, tn + ε2) − f(x j, tn) −Q(x j, tn), and substitute the ansatz (4.3) into R:

R :=∑
k≥0 εkf(k)(x j + ξε, tn + ε2) −∑

k≥0 εkf(k)(x j, tn)

+ S̃
[∑

k εkf(k) − f(0)(
∑

k εkρ(k),
∑

k εku(k))
]
(x j, tn) − ε3G, (4.6)

where G := 3(0, w1ξ1 · F , w2ξ2 · F , . . . , wbξb · F )†, and S̃ := M−1SM. Using the Taylor expansion for f(x j + ξδt , tn + δt), we 
have

R =
∑

n>0,k≥0

εk

n! D
nf(k) + S̃

∑
k≥0

εk
[
f(k) − f(0)L (f(k))

]
− S̃

∑
k≥0,q+p=k

εkf(0)Q (u(p), u(q)) − ε3G

=
∑

l,k>0,m

εk+m+l D[l+m]f(k) + S̃
∑
k≥0

εk
[
f(k) − f(0)L (f(k))

]
− S̃

∑
k≥0,q+p=k

εk f(0)Q (u(p), u(q)) − ε3G (4.7)

where f(0)L and f(0)Q are the parts of the local equilibrium that are linear and quadratic in u , respectively,

D :=diag
(
ε2∂t, ε2∂t + εξ1 · ∇, . . . , ε2∂t + εξb · ∇

)
=ε diag

(
ε∂t, ε∂t + ξ1 · ∇, . . . , ε∂t + ξb · ∇)

, (4.8)

D[k] is the diagonal matrix operator with the diagonal elements

D[k]
i :=

∑
2m+n=k

∂m
t (ξ i · ∇)n

m!n! .

Define ı̄ such that ξ ı̄ := −ξ i , so (ξ ı̄ · ∇)n = (−1)n(ξ i · ∇)n , and it can be shown that

D[k]
ı̄ = (−1)kD[k]

i . (4.9)

Equating the coefficients of εn for n ≥ 0 in the right-hand side of (4.7) to zero gives the following hierarchy of equations 
similar to (2.25):

f(0)L (f(1)) − f(1) = 0, (4.10a)

f(0)L (f(2)) − f(2) = S̃
−1

D[1]f(1) − f(0)Q (u(1), u(1)), (4.10b)

f(0)L (f(3)) − f(3) = S̃
−1

(
D[1]f(2) + D[2]f(1) − G

)
− 2f(0)Q (u(1), u(2)), (4.10c)

f(0)L (f(k)) − f(k) =
k−1∑
n=1

(
S̃D[n]f(k−n) − f(0)Q (u(n), u(k−n))

)
, k ≥ 4, (4.10d)

where f(0)L and f(0)Q are defined under (4.7).
The ρ(n) and u(n) , for n = 1, 2, . . . , k, are uniquely determined as solutions of the hierarchy of PDEs implied by (4.10)

[282,283]. In particular, ρ(1) ≡ 0; and (ρ(2), u(1)) satisfies the incompressible Navier-Stokes equations:

∇ · u(1) = 0, ∂tu
(1) + ∇ · (u(1)u(1)) = −∇p + ν∇2u(1) + F , (4.11)
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where p := ρ(2)/3, and ν := (1/s3 − 1/2)/3 [171], provided that s3 = s4 (cf. (3.25) for the definition of relaxation rates {si}). 
The ρ(n) for n ≥ 3 and u(n) for n ≥ 2 are solutions of linear PDEs of Oseen type. We will show that (4.11) are indeed the 
macroscopic equations solved by the LBE in the diffusive scaling.

Define the truncated expansion ̂f for f as the following:

f̂ := ∑2m+1
k=0 εkf(k), m ≥ 2, (4.12)

and correspondingly

ρ̂ = 1+∑m
k=1 ε2kρ(2k), û = εu(1) +∑m

k=1 ε2k+1u(2k+1), (4.13)

so ̂f satisfies the equation

f̂(x j + εξ , tn + ε2) = f̂(x j tn) +Q(̂f) + ε3G+ O (ε2(m+1)). (4.14)

In spite of this, we cannot claim a priori that the LB solution is close to ̂f.
The difference δf := f − f̂ between ̂f and f satisfies

δf(x j + εξ , tn + ε2) = δf(x j, tn) +Q(f) −Q(̂f) + O (ε2(m+1)). (4.15)

Our convergence proof will be based on this equation.

4.2. Linear stability of the absolute equilibrium

Consider the linearized lattice Boltzmann equation:

f(x j + ξδt, tn + δt) = f(x j, tn) + Jf(x j, tn) = (I+ J)f(x j, tn), (4.16)

where J is the Jacobian matrix at the absolute equilibrium corresponding to the quiescent state of ρ = 1 and u = 0:

J := ∂Q

∂f

∣∣∣ρ=1
u=0

= −S̃ (I−WE) , W := diag
(
w0, w1, . . . , wq−1

)
, (4.17a)

E := ∂W−1f(0)

∂f
, Ei j := 1

wi

∂ f (0)
i

∂ f j
=

(
1+ ξ i · ξ j

c2s

)
. (4.17b)

The Jacobian J can be diagonalized as

PJP−1 = −ΛΛΛ, ΛΛΛ := diag
(
0, 0, 0, s3, . . . , sq−1

)
, si ≥ 0, (4.18)

where P ∈ Rq×q in general for a model with q velocities, P†P = W−1, and ΛΛΛ is in fact the diagonal matrix S of relaxation 
rates given in (3.25), except that the relaxation rates for the conserved modes are set to be zero in ΛΛΛ, as opposed to 1 
in S. The matrix P can be easily constructed explicitly [85,270]. Just as M maps the { f i} to the moments {mi}, P† maps 
the { f i} to some other set of moments [85,270]. The structure of J can also be related to an Onsager-like relation for the 
LBE [286]. The reason why the Jacobian J can be diagonalized is the following. The matrices E, W, and S are all real and 
symmetric. And M can be made orthogonal by normalizing its row vectors (cf. §3.5). Thus, J can be made symmetric, hence 
is diagonalizable.

The property of J immediately leads to the stability of the linearized LBE (4.16) on a periodic domain with a weighted 
L2 norm [270]:

|Pf(·, tn)|2 = |P (I+ J)P−1Pf(·, tn−1)|2 = | (I−ΛΛΛ
)
Pf(·, tn−1)|2 ≤ |Pf(·, tn−1)|2 ≤ |Pf(·,0)|2, (4.19)

if si ∈ [0, 2] for non-conserved moments, and the equality holds when si = 2, where | · |2 is defined as

|f(·)|22 := ∑
j|f(x j)|2,

which is a finite sum on a periodic or bounded domain.

4.3. Convergence

Based on the error equation (4.15) and the property (4.18) of J with si ∈ (0, 2) for the non-conserved moments, we use 
an energy argument to obtain

|Pδf(·, tn+1)|2 ≤ (1+ cε)|Pδf(·, tn)|2 + c|Pδf(·, tn)|4 + O (ε4m+2). (4.20)
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It must be emphasized that the above inequality needed for the convergence requires si ∈ (0, 2) for non-conserved mo-
ments, as opposed si ∈ [0, 2] needed for linear stability (cf. (4.20) in the previous section). To control the |Pδf(·, tn)|4 term 
relative to the |Pδf(·, tn)|2 term in the above inequality with a sufficiently small h and the following initial conditions:

f(x j, 0) = ∑2m−1
k=0 εkf(k)(x j, 0), (4.21)

an inductive argument establishes that

|Pδf(·, tn)|2 = o(ε). (4.22)

Consequently, (4.20) reduces to

|Pδf(·, tn+1)|2 ≤ (1+ Cε)|Pδf(·, tn)|2 + O (ε4m+2), (4.23)

where C is a constant independent of both n and h, and for a given fixed T :

|Pδf(tn)|22 ≤
(
1+ Cε2

)n |Pδf(0)|22 + CTε4m, (4.24)

for 0 ≤ tn = nε2 ≤ T . Therefore, the solution of the LBE (3.17) with the initial conditions (4.21) can be given by the following 
asymptotic expansion:

f(x j, tn) = f̂(x j, tn) + O (ε2m) = ∑2m−1
k=0 εkf(k)(x j, tn) + O (ε2m), (4.25)

in the interval of time 0 ≤ tn = nε2 ≤ T .
Now assume the initial conditions are such that ρ(2k+1) |t=0= 0 and u(2k) |t=0= 0 for k ≥ 0, and s3 = s4, then, with the 

periodic boundary conditions, the expansion coefficients possess the following property due to the symmetry of the velocity 
set {ξ i}:

f (k)
i = (−1)k f (k)

ı̄ , ξ ı̄ := −ξ i .

Consequently, the density and velocity moments of the LB solution f i = f i(x, t; ε) can be expanded as

ρε := ∑
i f i ∼

∑
k≥0 εkρ(k) = 1+ ε2ρ(2) + ε4ρ(4) + ε6ρ(6) + · · · ,

uε := ∑
i ξ i f i ∼

∑
k≥0 εku(k) = εu(1) + ε3u(3) + ε5u(5) + · · · ,

so from (4.25) with m ≥ 2, we have

ρε − 1

ε2
− ρ(2) = ε2

(
ρ(4) + ε2ρ(6) + · · · + ε2(m−3)ρ(2m−2)

)
+ O (ε2(m−1)) = O (ε2), (4.26a)

uε

ε
− u(1) = ε2

(
u(3) + ε2u(5) + · · · + ε2(m−2)u(2m−1)

)
+ O (ε2m−1) = O (ε2). (4.26b)

Therefore the rescaled moments (ρε − 1)/ε2 and uε/ε obtained by the LBE (3.17) are indeed the approximations of the 
pressure p := ρ(2)/3 and the velocity u(1) , respectively, with second-order accuracy in space and first-order accuracy in 
time.

One can also use (4.26) to compute the solutions of a higher-order accuracy based on the Richardson extrapolation [289]. 
By computing, for example, a solution ρε/2 with grid spacing ε/2, then combine

ρε/2 − 1

ε2/4
− ρ(2) = ε2

(
1

4
ρ(4) + ε2

16
ρ(6) + . . .

)
= O (ε2), (4.27)

with ρε in (4.26) and m ≥ 3, we have

16ρε/2 − ρε − 15

3ε2
− ρ(2) = −ε4

4
ρ(6) + . . . = O (ε4), (4.28)

and similarly for the velocity field, we have

8uε/2 − uε

3ε2
− u(1) = −ε4

4
u(5) + . . . = O (ε4). (4.29)

Therefore, both ρ and u can achieve fourth-order convergence via above extrapolations.
25



P. Lallemand, L.-S. Luo, M. Krafczyk et al. Journal of Computational Physics 431 (2021) 109713
4.4. Further results and discussions

In preceding sections, we proved that the LBE (3.17) with the collision model (3.25) indeed approximates the incompress-
ible Navier-Stokes equations in the diffusive limit with first-order accuracy in time and second-order accuracy in space, thus 
the rigorous analysis of the LBE is established. The accuracy of the LBE with a forcing term can also be shown through Strang 
splitting [141].

The proofs can be extended to generalized Newtonian fluids with a non-constant viscosity depending on local fields 
[290], e.g., such as the shear-stress dependent viscosity ν = ν(‖ΣΣΣ‖) used in the Smagorinsky model for large-eddy simulation 
of turbulent flows [291–298] or the power-law fluids [148,296,299–308].

While the linear stability of the LBE can be proven, it must be stressed that the LBE does not have an H theorem 
[309,310]. Also, these theoretical analysis do not address one important issue related to the computational efficiency of the 
LBE, i.e., the maximum and optimal time-step size possible under certain flow conditions.

With the diffusive scaling, the limit of δ2x ∼ δt → 0 is equivalent to the limit of Ma → 0 (cf., §2.2 and e.g., [106,108]). One 
may work with departures from uniform equilibrium at density ρ0. Thus, the difference between the equilibrium (3.27) and 
the absolute equilibrium f (0)

i (ρ = 1, u = 0) can be approximated by [311]:

f (0)
i = wi

{
δρ + 3ξ i · u + 1

2

[
9(ξ i · u)2 − 3u · u

]}
, (4.30)

where δρ := ρ − ρ(0) with ρ(0) = 1. And in the equilibrium moments of (3.26), ρ is replaced by δρ in m(0)
0 and by 1 in 

all other equilibrium moments {m(0)
i |i ≥ 1}. This practice can improve the computational efficiency slightly [312], however, 

it introduces some unwanted terms in the viscous stress [214] and an error of O (Ma2) in the acoustic waves (cf. related 
discussion in §5.2).

It should be mentioned that the compressible Navier-Stokes equations can be derived from the LBE with acoustic scaling 
δx ∼ δt through either the Chapman-Enskog analysis [80,81] or Maxwell iteration [313]. However, this does not mean that 
the LBE based on truncated expansion of the Maxwell equilibrium can simulate fully compressible flows with Ma > 1, 
because it is still inherently limited by the low-Mach-number approximation of f (0) discussed in §3.1.

With the acoustic scaling δx = O (δt), the stress can be obtained through the Chapman-Enskog analysis of the second-
order moments m4 and m5, or equivalently the nonequilibrium momentum flux [314], or the Maxwell iteration [313]:

ΣΣΣ= −∑
iξ iξ i

( f i − f (0)
i ) + ( f ∗

i − f (0)
i )

2

=ρν

[
(∇u) + (∇u)† − 2

d
(∇ ·u) I

]
+ ρζ (∇ ·u) I+ O (δ2t ) + δt O (Ma3), (4.31)

where f i and f ∗
i the pre- and post-collision state, respectively, and the kinematic shear viscosity ν and bulk viscosity ζ

[171] of the D2Q9 model are:

ν = 1

3

(
1

sν
− 1

2

)
, ζ = 1

3

(
1

se
− 1

2

)
. (4.32)

If the discretization error of O (δ2t ) is of the same order of the truncation error of δt O (Ma3) due to low-Mach-number 
expansion, then we have Ma = O (δ

1/3
t ), which suggests how the Mach number should decrease as δt decreases under the 

acoustic scaling. The above results show that the LBE yields the stress ΣΣΣ with a second-order accuracy [287,313]. Note 
that with the diffusive scaling, the term with the bulk viscosity, ρ ζ (∇ · u) I, disappears as it is an error term of the order 
δt O (Ma3), which is one-order smaller than truncation error of O (δ2t ), and thus cannot be picked up in the analysis with the 
diffusive scaling of δt ∼ δ2x ∼ ε2.

5. Fourier-von Neumann analysis and equivalent equations

There are two types of errors in the LBE: (a) modeling error due to approximations such as linearization of collision 
term and the truncation of the low-Mach-number expansion, and (b) discretization error due to finite δx and δt . The LBE 
is inherently limited on available number of degrees of freedom (or the number of adjustable parameters). In the LBE, 
the intrinsic “scales” in the units of δx and δt include relaxation times τi := 1/si for the non-conserved moments and the 
speed of sound cs = O (c), c := δx/δt . In a simulation with the macroscopic characteristic length L, time T , and speed U , the 
macroscopic equations (4.11) are valid only in the limit of L � δx , T � δt , and U 
 cs for a continuum flow.

In addition to a very limited number of modes, the LBE does not have a vast separation between spatial-temporal scales 
of the macroscopic and “microscopic” modes, i.e., the conserved and non-conserved modes, because the time scales of the 
modes are set by their relaxation times τi := 1/si , and the ratios between si cannot be too large or numerical instability 
may be instigated. Given that the defects in the LBE are so conspicuous, it is imperative to quantify their numerical effects. 
In what follows we will discuss the local Fourier-von Neumann local analysis and the equivalent-equation analysis based on 
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the linearized LBE (4.16). It should be stressed again that the analysis in §4 only concerns the asymptotic behavior of the 
LBE in the diffusive limit of δt ∼ δ2x when δx → 0, whereas the local analysis presented in this section intends to analyze 
and hopefully minimize errors, whether due to discretization or modeling approximation, with a given set of parameters, 
including grid resolution and relaxation rates {si |0 ≤ i ≤ b}.

It should be pointed out that the equivalent-equation analysis [315,316] and dispersion-equation analyses are fully equiv-
alent to each other, except that the former is carried out in the real space x and uses spatial derivatives ordered in powers 
of δt , whereas the latter is in Fourier space k with terms ordered in powers of k. The equivalent-equation emphasizes the 
PDEs derived from the linearized LBE (4.16), whereas the dispersion equation stresses the small-scale effects in the LBE. The 
aim of these analyses is to expose, understand, and, hopefully, overcome, the artifacts and defects in the LBE algorithm.

5.1. Local Fourier-von Neumann analysis

For linear or linearized equations, the numerical and modeling defects can be analyzed via the Fourier-von Neumann 
analysis for the linearized LBE with u �= 0, which leads to the dispersion equation relating the wavevector k and the fre-
quency ω. The local Fourier analysis seeks solutions in a uniform system in terms of plane waves, exp[−ık · x + ıωt]. This 
can be illustrated via the Fourier analysis of the linearized compressible athermal Navier-Stokes equations derived from the 
MRT-LBE with a bulk viscosity ζ in d-dimensions (cf. Eq. (4.31) for the stress tensor):

∂tρ + U ·∇ρ + ∇ ·u = 0, (5.1a)

∂tu + U ·∇u = −c2s∇ρ + ν∇2u +
(
d − 2

d
ν + ζ

)
∇∇ ·u, (5.1b)

where the unknowns ρ and u are assumed as small quantities, ρ is normalized by a constant density ρ0, U is a constant 
flow velocity, and the equation of state p = c2sρ has been used. To study the system (5.1), we will decompose the velocity u
into two parts: the longitudinal component u‖ along a given direction k̂ and the remaining transverse components u⊥ ⊥ k̂
on the plane perpendicular to k̂, that is, u = u‖ + u⊥ = u‖k̂ + u⊥ , such that u‖ ∈ R and u⊥ ∈ Rd−1. Here, by isothermal
we mean that the energy is indeed a conserved quantity but also a constant in this case, so the energy equation (2.22c)
disappears. This distinguishes from the athermal case, in which the energy is not conserved.

We will restrict ourselves in 2D space in the following analysis, i.e., d = 2, so u = u‖k̂ + u⊥k̂⊥ , with k̂⊥ ⊥ k̂. By applying 
the Fourier transform of (5.1) in both space and time, (5.1) becomes the following set of homogeneous linear equations in 
2D: ⎛⎝ ω′ k 0

c2sk ω′ − ı (ν + ζ )k2 0
0 0 ω′ − ı νk2

⎞⎠⎛⎝ ρ
ũ‖
ũ⊥

⎞⎠ =
⎛⎝0

0
0

⎞⎠ , (5.2)

where ω′ := ω + k · U . Nontrivial solutions exist if and only if the above 3 × 3 determinant (in general a (d + 1) × (d + 1)
determinant) of the coefficient matrix in (5.2) is equal to zero, yielding the following solutions of ω’s:

ω⊥ = −U·k + ık2ν, (5.3a)

ω± = −U·k ∓ k

2

√
4c2s − k2(ν + ζ ) + 1

2
ık2(ν + ζ ) ≈ − (U·k ± csk) + 1

2
ık2(ν + ζ ), (5.3b)

where the solution ω⊥ of (5.3a) comes from the bottom-right 1 × 1 block of the determinant in (5.2), which is decoupled 
from the other two modes in the system, and the solution ω± of (5.3b) comes from the upper left 2 × 2 block. In general, 
the solution of the linearized Navier-Stokes equations includes two longitudinal acoustic waves (u‖ with ω±) and (d − 1)
transverse shear waves (u⊥ with ω⊥). If the energy conservation is included, there is an additional mode for the heat 
diffusion, which is coupled to the acoustic modes. The dissipation affects the frequencies ω⊥ and ω‖ , as shown in (5.3). If all 
the terms of k2 or higher-order in terms of k in (5.3b) are neglected, the result reduces to the exact plane wave solutions 
corresponding to the linearized compressible Euler equations [269].

The solution of (5.3) shows that two acoustic modes propagate with the velocity U · k̂ ± cs along k̂ with the attenuation 
exp[−k2(ν + ζ )t/2], and (d − 1) shear modes propagate with the speed U · k̂ with the attenuation exp(−k2νt). Consistent 
with the order of accuracy of the LB method, the solutions (5.3) satisfy the Galilean invariance of the hydrodynamic equa-
tions, as evident in the term U · k, and the rotational invariance (or isotropy), as evident in the fact that the speed of sound 
cs and the attenuation are independent of the direction of k [149].

The above analysis can be applied to the discrete equation (4.16). The dispersion equation derived from the linearized 
LBE (4.16) differs from that of the linearized Navier-Stokes equations, and the differences can be analyzed to minimize the 
errors in the LBE. The Fourier transform of (4.16) is

f̃(k, tn + δt) = K · [I+ J] · f̃(k, tn), (5.4a)

K := diag
(
1, exp(ık · ξ1), exp(ık · ξ2), . . . , exp(ık · ξb)

)
, (5.4b)
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which can be recast as the following eigenvalue problem:

Hf̃(k, ω) = zf̃(k, ω), H := K [I+ J] , z := exp(−ıωδt), (5.5)

and the associated characteristic polynomial of degree q,

det[H − zI] := Z(z, k) = 0, (5.6)

determines the dispersion relation ω(k) = (ı ln z)/δt , which includes all possible parameters in the model. The LBE is linearly 
stable iff |zi | ≤ 1, ∀ i. In the case of the long wavelength limit of k → 0,

Z(z, k = 0) = (z − 1)dc
∏q

i=dc+1(z − 1+ si), (5.7)

where dc is the number of the conserved moments or the dimension of the null space of the collision operator Q, thus 
|Z(z, 0)| ≤ 1 naturally leads to si ∈ [0, 2] for the non-conserved moments, as discussed previously in §4. Another case 
worth noting is kx = ky = π in 2D, i.e., the shortest wavelength allowed, which corresponds to the so-called “checker-board” 
mode.

The dispersion-equation analysis must use the acoustic scaling, δx/δt = 1, which is consistent with the compressible 
Navier-Stokes equations (5.1) to be analyzed. A technical reason for using the acoustic scaling is that, in the dispersion-
equation analysis, the mass conservation equation has both derivatives of time and space, thus the time derivative ∂t can be 
substituted by the gradient ∇ in the subsequent equations, as in the Chapman-Enskog analysis. However, with the diffusive 
scaling, the mass conservation equation reduces to ∇·u = 0, thus it cannot be used to replace ∂t in the derivation.

The analytic solution of the dispersion equation (5.6) with perturbation expansion in k [149–151,317,318] is in prin-
ciple straightforward but usually is tedious and even intractable. It is therefore useful to simplify (5.5) by using various 
approximations such as expansions of Chapman-Enskog, Hilbert, and Taylor, leading to equivalent equations.

5.2. Equivalent equation analysis

This section illustrates the equivalent-equation approach, which can be used to remove some defects in the LBE model 
and thus to optimize it [174,315,316,319–322].

To be concrete, we will consider the D2Q9 model which conserves the mass density ρ and the flow momentum ρu :=
ρ(ux, uy). For the linearized D2Q9 model with a constant U , the first-order equivalent equation in terms of δt is:⎛⎝ ∂t ∂x ∂y

1
3∂x − UxU ·∇ D̄t + Ux∂x Ux∂y
1
3∂y − U yU ·∇ U y∂x D̄t + U y∂y

⎞⎠⎛⎝ ρ
ρux

ρuy

⎞⎠ =
⎛⎝0

0
0

⎞⎠+ O (δ2t ), (5.8)

where ν := (1/sν − 1/2)/3, ζ := (1/se − 1/2)/3, D̄t := ∂t + U ·∇, and sν is the relaxation rate for the second-order mo-
ments m3 and m4, and se is that for the second-order moment m5 (cf. (3.26)). The propagation speed of sound waves 
in the frame of reference moving with the velocity U is Cs = ±cs along the direction of U , where cs := (1/

√
3)c is the 

speed of sound in the frame of reference at rest, for which the phase velocity of sound modes is U ± cs. The above 
equations are the compressible Euler equations plus some (undesirable) extra terms of U ∼ O (Ma) and U 2 ∼ O (Ma2). 
The terms of O (U2) disappear with the “incompressible” LBE model (cf. the equilibria of (4.30)). The existence of these 
terms manifests the fact that the LBE model has a maximum speed, hence it cannot obey the Galilean invariance ex-
actly. However, for the “incompressible” LBE model, which neglected the coupling between ρ and u, the speed of sound is 
Cs = U ± cs

√
1+ (U/cs)2 = U ± cs

√
1+Ma2 [149]; that is, there is an error of O (Ma2) in the speed of sound.

The second-order equivalent equation leads to the viscous term:⎛⎝0 0 0
0 ν∂xx + ζ� ν∂xy
0 ν∂xy ν∂yy + ζ�

⎞⎠⎛⎝ ρ
ρux

ρuy

⎞⎠+ O (δ3t ), (5.9)

where � := ∇ ·∇ stands for the Laplacian. In the derivation, numerous terms of O (U ) have been neglected.
The equivalent equations up to O (δ2t ) are consistent with the compressible Navier-Stokes equations as U → 0. We also 

note that, in the equivalent equation of O (δt), the terms of O (U ) have no observable effect for finite values of U . A complete 
removal of these terms is impossible with the D2Q9 model.

The third-order equivalent equation affects the dispersion of sound waves. However, the result is too tedious to be 
included here.

The fourth order equation can be used to determine corrections to the shear viscosity as the shear mode relaxes at rate:

ω = νk2
{
1−

[
1

(1+ 36ν(ν − 2κ ′)) + (1− 54νκ ′)g(θ)

]
k2

}
, (5.10)
12
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where κ ′ := (1/sq − 1/2)/3, sq is the relaxation rate for the third-order moments m6 and m7 (cf. (3.26)), and g(θ) is a 
function of the angle θ between k and the x axis (or ξ1). Removal of the angular (θ ) dependence of the hyper-viscosity 
of the order O (k4) requires νκ ′ = 1/54, which leads to a relationship sq = sq(sν). As will be seen later in §6, the Dirichlet 
boundary condition for the velocity u requires a different sν -dependence of sq . One can also set ν = 2κ = 1/(3

√
3) so that 

the hyper-viscosity of O (k4) can be removed and the damping of the shear modes becomes fourth-order accurate [241].
The analysis based on the dispersion-equation reveals that the transport coefficients at small scales, i.e., large wave-

number k, are severely anisotropic and dispersive. This affects simulations at small scales. Therefore, one must be cautious 
about the validity and limitations of the LBE simulation at small scales comparable to the grid spacing.

The difference between the analysis based on the equivalent-equations and the dispersion-equation should be noted. 
The former is devised to derive macroscopic equations involving space derivatives beyond second-order so to identify the 
conditions to improve numerical accuracy. Whilst the latter, i.e., the numerical determination of eigenvalues of the dispersion 
equation, is used to determine the numerical stability of the scheme, especially for the instabilities occurring at small scales 
comparable to the grid spacing δx which cannot be fully determined by the former approach alone.

In 3D, Eq. (5.8) is replaced by the following:⎛⎜⎜⎝
∂t ∂x ∂y ∂z

cs∂x − Ux U ·∇ D̄t + Ux∂x Ux∂y Ux∂z
cs∂y − U y U ·∇ U y∂x D̄t + U y∂y U y∂z
cs∂z − Uz U ·∇ Uz∂x Uz∂y D̄t + Uz∂z

⎞⎟⎟⎠
⎛⎜⎜⎝

ρ
ρux

ρuy

ρuz

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠+ O (δ2t ) (5.11)

and the viscous term in 2D, (5.9), becomes⎛⎜⎜⎝
0 0 0 0
0 η∂xx + ν� η∂xy η∂xz
0 η∂xy η∂yy + ν� η∂yz

0 η∂xz η∂yz η∂zz + ν�

⎞⎟⎟⎠
⎛⎜⎜⎝

ρ
ρux

ρuy

ρuz

⎞⎟⎟⎠+ O (δ3t ), (5.12)

where η := ν/3 + ζ . Note that for the D3Q19 model (cf. Fig. 2 and related discussion in §3.2), there exists a dispersion 
relation similar to (5.10), which can lead to the conditions for fourth-order accurate shear wave decay [241].

6. The forcing, boundary and initial conditions

This section discussed two issues: the forcing term and boundary and initial conditions. Appropriate boundary conditions 
(BCs) are perhaps the most important component of the hydrodynamic equations, and, correct implementation of various 
BCs are essential for the success of the LBE algorithm. In the previous sections, the stability and convergence are proved 
with the periodic boundary conditions. However, the proofs can be easily extended to a system with bounce-back boundary 
conditions. Therefore, the bounce-back boundary conditions are the most often studied boundary conditions for the LBE, 
and naturally, the most important ones, for the reasons that bounce-back BCs are the simplest and easiest to implement, 
and yet they yield second-order accuracy which is consistent with that of the LBE.

6.1. Implementation of the forcing term

With a force density F = ρa present in the Navier-Stokes equation, the LBE must include a forcing term G:

f̄(x j + cδt, tn + δt) − f̄(x j, tn) = δt
[
Q(x j, tn) + G(x j, tn)

]
, (6.1)

G(x j, tn) := (G0(x j, tn), G1(x j, tn), . . . , Gb(x j, tn))
†, (6.2)

where Gi is given by (3.14) or otherwise provided. We will apply the acoustic scaling δx/δt = 1 to analyze the above 
equation. To implement the forcing correctly, the momentum j := ρu to be used in the equilibrium moments (3.26) must 
be modified to:

j(0) = ∑
i f ic i +

1

2
F δt := ( j(0)x , j(0)y ), (6.3)

and this modified linear momentum should be the output to compute the velocity field in simulations (cf. §3.3 and [141]). 
The collision step is applied after the momentum is modified according to (6.3). The momentum is further modified after 
collision as the following

j(1) = j(0) + 1

2
F := ( j(1)x , j(1)y ), (6.4)

before applying M−1 to obtain the new post-collision value of the distributions, f∗ . The advection is applied to f∗ . This 
treatment of the forcing term can be generalized for any source terms in the Boltzmann equation. For example, a heat 
source in the advection-diffusion equation can be treated similarly.
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Fig. 3. Illustration of the bounce-back boundary conditions. The discs (•, xF and xB) and circles (◦, xS) mark the grid nodes inside and outside the flow 
domain �, respectively. The solid lines are the grid lines. xW is the location of a boundary, and xE is the position of the “particle” with the initial velocity 
c1 after advection. δ := ‖xB − xW‖. (a) δ > δx/2, (b) δ < δx/2.

The procedure to implement the LBE with a forcing term can be summarized as follows: (a) add F /2 to j = ∑
i c i f i , i.e., 

set j(0) = j + F/2; (b) use j(0) to carry out the collision (relaxation); (c) add F/2 to j(0); (d) go back to the velocity space 
and perform the advection. This procedure is consistent with the analysis based on Strang splitting [141].

6.2. The bounce-back scheme for Dirichlet boundary conditions

The bounce-back boundary conditions are based on the picture that a moving particle reverses its momentum after 
colliding with a rigid wall at rest. For the sake of simplicity and without any loss of generality, we consider the situation 
in one dimension first, as illustrated in Fig. 3: xF and xB are two adjacent nodes in fluid domain �, whereas xS is a 
node outside fluid domain, the boundary is located at xW, which is between nodes xB and xS. Define δ := ‖xW − xB‖, and 
‖xW −xB‖ +‖xW −xE‖ = δx (cf. Fig. 3). Initially, the states ( f i ’s) are given at xF and xB. The fluid-wall interaction occurs during 
the advection process: in one time step δt , a particle with velocity c1 moves to the wall at xW, reverses its momentum to 
c3 = −c1, and arrives at xE, which is not a grid node if δ �= δx/2:

t+n f ∗
1 (xF) f ∗

3 (xB) f ∗
1 (xB)

⇓ ⇓ ⇓
t−n+1 f1(xB) f3(xF) f3(xE)

δ=δx/2=⇒
t+n f ∗

1 (xF) f ∗
3 (xB) f ∗

1 (xB)

⇓ ⇓ ⇓
t−n+1 f1(xB) f3(xF) f3(xB)

where t+n and t−n+1 denote the time after and before collision, respectively, and f i and f ∗
i the pre- and post-collision states, 

respectively.
We will first discuss the case of δ = δx/2, in which xE = xB (cf. Fig. 3), so the presence of a boundary does not affect the 

algorithmic simplicity of the LBE, which consists of collision and advection only. The following bounce-back scheme can be 
used to realize the Dirichlet boundary conditions uw = 0:

f ı̄ (xB, t
−
n+1) = f ∗

i (xB, t
+
n ), xB ∈ �, xB + c iδt /∈ �. (6.5)

In this case the link-wise bounce-back scheme conserves mass, and the mass flux is zero at xW and t = tn + δt/2. This can 
be seen by using symmetry argument (or method of image): to achieve uw = 0 when δ = 1/2, the symmetry requires that 
u(xS) = −u(xB). This can also be shown by Chapman-Enskog analysis [323–325].

When uw �= 0, the bounce-back scheme (6.5) becomes

f ı̄ (xB, t
−
n+1) = f ∗

i (xB, t
+
n ) + 2wiρ

c ı̄ · uw

c2s
, xB ∈ �, xB + c iδt /∈ �, (6.6)

that is, the particle bouncing back from a wall with the velocity uw should also gain a momentum ρuw from the wall.
Similar to the bounce-back scheme for the Dirichlet BCs of u, one can formulate a scheme to realize the Dirichlet BCs 

for the pressure p = c2sρ , which is a scalar. Suppose the pressure gradient normal to the wall is zero or negligible, then 
it is expected that ρ(xS, tn) = ρ(xB, tn) (cf. Fig. 3(a)). The boundary conditions for ρ must not affect the velocity at the 
boundary, u(xB). Hence, we have the so-called anti-bounce-back scheme [161,173,185,321,326]:

f ı̄ (xB, t
−
n1) = 2wiρ(xB, tn) − f i(xB, t

+
n ), (6.7)

which relies on the sum, ( f ı̄ + f i), or the even-order moments, as opposed to the difference, ( f ı̄ − f i), or the odd-order 
moments, in the bounce-back BCs, to achieve the desired BCs. Thus, the bounce-back scheme deals with the BCs for the 
odd-order moments (e.g., u), while the anti-bounce-back scheme deals with that for the even-order moments (e.g., ρ or 
∂xu). Since u and ρ are odd and even functions about the boundary, hence can be approximated by linear and parabolic 
polynomials, respectively.

The bounce-back and anti-bounce-back schemes are simply based on the following expression of f i :

f i = wiρ

[
1+ c i · u

c2s
+ 1

2

(
(c i · u)2

c4s
− u · u

c2s

)]
+ f (1)

i , (6.8)

where the first part is the equilibrium given by (3.27) and f (1)
i contains c i · ∇u (cf. (4.10)). The terms wiρ or wiρc i · u/c2s

remain unchanged in the combination ( f i + f ı̄ ) or ( f i − f ı̄ ), respectively, as the leading-order term.
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If there is only one conserved moment, say, ρ , then the model solves the convection-diffusion equation for ρ , and f i
becomes

f i = wiρ + wi
c i · ∇ρ

c2s
+ . . . . (6.9)

Thus, to realize the Neumann or the flux BCs for ρ , the bounce-back scheme must be used.
Of course, for convection-diffusion equation of a scalar in 2D, one only needs the D2Q5 model [160–169], which has 

velocities {c i |i = 0, 1, . . . , 4} in (3.8). The D2Q5 model can be used to simulate the temperature equation in 2D, and the 
anti-bounce-back and bounce-back schemes are used to realize the constant temperature and adiabatic BCs [172,188].

When the intersection of a boundary and a grid line is not exactly δx/2 away from the last fluid nodes (cf. Fig. 3), the 
simple bounce-back scheme is no longer accurate enough to capture the boundary location. One can use interpolations 
[166,327] to address this issue. Depending on the boundary location with respect to the last fluid node (xB in Fig. 3) 
quantified by δ, the particle at xB moving towards the boundary can end up outside (inside) of the flow domain if δ > δx/2
(δ < δx/2). Thus, f ı̄ (xB) is obtained by interpolation after advection when δ > δx/2, and is obtained by computing f i(xE)
with interpolation before advection. This approach is similar to cut-cell method [328–330]. The bounce-back scheme with 
interpolations can accurately handle boundaries of complicated geometries, such as realistic porous media [154,325,326,331–
343], moving boundary problems [19,344–346], and flows with suspensions of rigid solid [266,347–358] and deformable 
particles [359–367].

6.3. The Poiseuille flow – an analytic solution

To elucidate the bounce-back boundary conditions, we use the Poiseuille flow as an example. Suppose the streamwise 
direction is along the x axis. Two parallel walls are placed at the bottom and top boundaries of the flow domain �. A 
constant body force along x direction, F = G x̂, is applied to each node within �. Periodic boundary conditions are assumed 
in the x direction. There are N nodes in the flow domain in the spanwise direction. The LBE (3.17) for the D2Q9 model with 
the bounce-back boundary conditions has the following analytic solution in this case (cf., e.g., [368]):

u( j) = 4

N2

(
j − 1

2

)(
N + 1

2
− j

)
Umax + Us, 1 ≤ j ≤ N, (6.10a)

Umax = GN2

8ν
, Us = 1

4

(
8

sq
− 8− sν

2− sν

)
Umax, (6.10b)

where sν = s4,5 and sq = s6,7. The above solution is obtained with a forcing splitting scheme [141], i.e., with a forcing term 
F in the Navier-Stokes equation, after an advection, F δt/2 is added to the momentum ρu = ρ(ux, uy) before the collision 
and F δt/2 is added after [141,151,172,188], and the output velocity u is obtained when only F/2 is added after advection 
(cf. §6.1). Clearly, for the LBE solution of u( j) to be consistent with the solution of the Navier-Stokes equation, we must 
have

u( j = 1/2) = u( j = N + 1/2) = 0, Us = 0 ⇐⇒ sq = 8
(2− sν)

(8− sν)
. (6.11)

The analytic solution (6.10) reveals the following facts. First, the LBE with the bounce-back BCs is second-order accurate
for the Poiseuille flow. Second, the Dirichlet BCs for the velocity u are satisfied at one-half grid spacing away from the 
fluid nodes next to the boundary, i.e., δ = δx/2 (cf. Fig. 3). And third, it requires at least two relaxation rates, i.e., sν (for the 
second-order moments m3 and m4) and sq (for the third-order moments m6 and m7), to achieve this accuracy [323,325,326]. 
This immediately leads to the conclusion that the lattice BGK (LBGK) model with one relaxation parameter τ cannot achieve 
this accuracy unless τ is fixed at the special value of τ = (2 + √

3)/4 ≈ 0.9330 — for the LBGK model [369,370] with an 
arbitrary value of τ > 1/2, the artificial slip velocity Us = (6ν − 1/8ν), ν = (τ − 1/2)/3. The viscosity-dependence of the 
location where the no-slip BCs are satisfied is a severe defect uniquely inherent to the LBGK model with bounce-back type 
[323,326,342,371–373] or other BCs based on direct manipulations of the distributions { f i} [368], but can be removed by 
using moment-based boundary conditions [374]. Also, the particular relationship (6.11) between sq and sν depends on the 
choice of orthogonal moments (cf. §3.5) and the form of driving force [321].

There are limitations of the bounce-back scheme based on the analytic solution of the Poiseuille flow driven by a constant 
body force, in which both the nonlinear term and the pressure gradient are absent. It is only suitable for shear dominant 
flow near a no-slip boundary, nevertheless, its effectiveness has been tested for various flows [325,326,342,373].

6.4. Pressure boundary conditions at inlet and outlet

Often, the pressure boundary conditions are given in terms of a mean value, instead of a precise function p(x), for 
x ∈ ∂�. For example, in a channel flow with streamwise direction along x axis or grid index i, the mean pressures are 
specified in both inlet ( j = 0) and outlet ( j = Nx + 1), and constant pressure BCs can be realized by the anti-bounce-back 
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scheme discussed in §6.2. However, a constant pressure is not a solution of the Navier-Stokes equations with no-slip BCs in 
this case. The following self-adaptive scheme can be used to improve the pressure boundary condition.

Suppose we have a 2D straight channel with two no-slip boundaries along x direction. Constant pressures pin and pout

are specified at the inlet ( j = 0) and outlet ( j = Nx + 1), respectively. At the inlet nodes at j = 1 (or outlet ones at j = Nx), 
the pressure p is no longer a constant along the y (or k) direction, the averaged pressure at j = 1 (or j = Nx) is

p̄1 = 1

Nin

∑
k

p( j = 1, k) or p̄Nx = 1

Nout

∑
k

p( j = Nx, k)

where Nin and Nout are the numbers of fluid nodes at the inlet j = 1 and at the outlet j = Nx , respectively. Then the 
following boundary conditions are used [368,375]:

f i( j = 0, k) = pin

p̄1
f i( j = 1, k), f i( j = Nx + 1, k) = pout

p̄Nx

f i( j = Nx, k). (6.12)

This procedure ensures the specified total mass flux, or the averaged pressure pin (or pout), at the boundary located at j = 0
(or j = Nx + 1).

It can be proven that the above iterative scheme yields the pressure p and velocity u which satisfy the following equation 
[376]:

∂t p = κ
(
∇2p + ∇∇ : j j

)
− c2s∇ · j, (6.13)

where j := ρu, and u is the given velocity; κ is the diffusivity determined by the relaxation parameter for the momentum 
j (cf. (3.43) and related discussion). Thus, for a given divergence free velocity field, i.e., ∇ ·u = 0, the steady pressure field 
so obtained satisfies the Poisson equation if the mean density ρ̄ = 1 [376]:

∇2p = −∇ · (u · ∇u). (6.14)

6.5. LBE and immersed boundary method

To handle flow-structure interaction with moving boundary, immersed-boundary method (IBM) is an effective and effi-
cient approach [377–379]. The IBM can be easily implemented with the LBE [18,30,380]. In this approach, the LBE solves 
the flow equation on an Eulerian Cartesian mesh, while moving boundaries are tracked with Lagrangian markers. The local
force due to the boundary conditions between flow and a moving object experienced at a marker point is distributed to 
surrounding Eulerian mesh points. This amounts to approximating the delta function by a smooth distribution on a compact 
support. This approach has been successfully applied to simulate particulate flows [18,381,382], moving boundary problems 
[344,346], and interfacial flows [380,383].

6.6. Initial conditions

As discussed in §3, an LBE model of q velocities has an equal number of independent moments, and all these moments 
require proper initial condition. Since the moments can be categorized as hydrodynamic versus non-hydrodynamic ones, 
their initial conditions will be discussed separately. Because the LBE is usually applied to simulate nearly incompressible 
flows, for which the only necessary initial condition is that of the velocity field u and the initial pressure is not given. 
Although the pressure can be obtained via the Poisson equation, this is usually not done. Thus the pressure p (or the density 
ρ) is the only hydrodynamic moment which may require proper initialization in the LBE. Secondly, the non-hydrodynamic 
moments also require proper initialization. For any athermal LBE model of q velocities in d dimensions, there are q − (d +1)
non-hydrodynamic moments which require initialization.

Improper initialization of the LBE, in terms of either the distribution functions { f i} or equivalently the moments {mi}, 
induces unphysical relaxations of those improperly initialized moments, and this is the so-called “initial layer”, which may 
linger for long times and affect the flow fields, severely degrading the quality of the simulation in some cases [158,312,376]. 
In particular, severe unphysical effects can be generated by the spurious relaxation of the initial pressure field inconsistent 
with a given initial velocity field, i.e., the spurious acoustic waves. Among the non-hydrodynamic moments, the second-
order ones, i.e., the stresses and the divergence of the velocity field, and the third-order ones are directly coupled to the 
velocity, thus their relaxations due to the inconsistent initialization can affect the flow fields [158,376].

There are two approaches to initialize the LBE. First, one can freeze the velocity field with given initial conditions, and 
solve the remaining variables (or moments) numerically by iterating the LBE until it reaches a steady state [289,376]. A 
second approach is to use either Chapman-Enskog [312] or asymptotic expansions [289] to compute the moments without 
initial conditions based on those with given initial conditions, up to the required order of accuracy. The proper initialization 
is essential to the LBE simulations for flows which require accurate initialization, such as decaying turbulence [158].
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Fig. 4. (color online) Schematics of grid refinement in 2D (left) and 3D (right). In the left figure, large (small) discs, diamonds, and triangles are the nodes of 
coarse (fine) grid. The nodes of coarse and fine grid do not overlap. The information on the small (large) red discs of fine (coarse) grid are interpolated to the 
large (small) diamonds. The area in green is beyond flow domain. The information on the nodes marked by triangles has to be obtained by extrapolations 
from nearby nodes, as indicated by the arrows.

7. Grid refinement

Grid refinement is often necessary for computational efficiency. The LBE uses a Cartesian grid, for which the quad-tree 
(2D) or oct-tree (3D) mesh refinement is naturally suitable. The key technical issues are scalings and the interpolation 
coupling two meshes with different resolutions [384–387]. First of all, the convective (acoustic) scaling δt = O (δx) is used, 
thus to maintain a constant viscosity ν across two meshes with different grid spacings δcoarsex and δfinex , then the viscosity 
and the corresponding relaxation rate sν should be rescaled as δx varies according to

νfine = δcoarsex

δfinex
νcoarse,

(
1

sfineν

− 1

2

)
= δcoarsex

δfinex

(
1

scoarseν
− 1

2

)
, (7.1)

and the relaxation rate for the third-order moments, sq , obeys the relation (6.11) so the no-slip boundary conditions can be 
accurately realized. In most cases, other relaxation rates for higher-order moments may be set to 1 throughout the system. 
The dependence of ν on δx (7.1) means the coarser the mesh, the smaller the viscosity, the closer si is to its stability limit 
2 from below. This can cause numerical instability with grid refinement. The cumulant LBE seems to be particularly robust 
and effective to deal with this situation [258].

Fig. 4 illustrates the interpolations for two meshes in 2D and 3D, in which the grid refinement factor is always 2. In 
the interface region between two meshes, the nodes on the meshes of different resolutions never overlap. The ratio of the 
time steps in two meshes is equal to that of the corresponding mesh sizes, so the speed of sound remains the same in two 
meshes of different grid spacings. In the interface region (or buffer zone), each unit cell of the fine mesh is inside a unit 
cell of the coarse mesh, and each node of the coarse mesh is inside a unit cell of the fine mesh (cf. Fig. 4).

Second, all interpolations are carried out using the moments {mi}, not the distribution functions { f i}. The pressure (or 
density) is computed with linear interpolation, and the velocity u and all second-order moments are computed by the 
compact quadratic interpolation using only the information on the eight vertices of a cell (cf. Fig. 4), the coefficients in the 
quadratic interpolation include the information of the first and second order derivatives of u , which are computed from u
by using finite-differencing and the nonequilibrium part of the second-order moments. The rest of moments of order higher 
than two are set to their equilibria during the interpolation, effectively setting the relaxation rates of these moments to 1.

Third, the interpolations are carried out on every time step on the coarse mesh. The overlapping region between two 
meshes should be wide enough in each dimension so the interpolation in time is not necessary.

Finally, in the case of two connected meshes with different mesh spacings intersecting with the boundary simultaneously, 
extrapolations must be used to compute the moments on nodes which do not have all neighboring nodes for interpolations 
(cf. Fig. 4). The grid refinement scheme has been validated in various flow simulations [52,159,388].

8. Numerical results

This section presents some numerical results to demonstrate the efficacy of the LBE method. The numerical results 
include (a) the Poiseuille flow and a double-shear layer flow in 2D; (b) direct numerical simulation (DNS) of decaying 
homogeneous isotropic turbulence in 3D, and (c) high-Reynolds-number flow past a sphere and a car.

8.1. 2D test cases

Two test cases in 2D are used to validate the LBE algorithm. The first is the Poiseuille flow with an inclined angle with 
respect to x axis, as illustrated in Fig. 5. No-slip boundary conditions are realized in three ways: the zig-zag bounce-back 
scheme, and the bounce-back scheme with linear and quadratic interpolations. The results are shown in Fig. 6.
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Fig. 5. The flow configuration of the Poiseuille flow with an inclined angle θ ≈ 16.62◦ (tan θ = 20/67) with respect to x axis. The solid lines are the grid 
lines, and the dashed lines are the no-slip walls. The solid discs indicate the boundary nodes in the zig-zag bounce-back scheme.

Fig. 6. The Poiseuille flow with an inclined angle θ ≈ 16.62◦ (tan θ = 20/67) with respect to x axis. Left: the velocity profile u( j) with the zig-zag bounce-
back, linear and quadratic interpolations at the walls. Right: the L2 error of the velocity u(y). The dashed and solid lines have the slope of −1 and −2, 
respectively.

First, the left panel in Fig. 6 shows the velocity profiles u( j), | j| ≤ 1.65δx , for a very narrow channel with the channel 
width H = 3.3δx . The profile of u( j) obtained with the zig-zag bounce-back scheme is the poorest and that obtained with 
the quadratic-interpolation bounce-back scheme is the best. The right panel of Fig. 6 for the L2 error of the velocity u( j)
shows that the zig-zag bounce-back scheme leads to a first-order convergence, whereas the schemes with either linear or 
quadratic interpolations yield second-order convergence.

From Fig. 6 (left), it can be seen that the effect of inaccurate treatment at the boundary is a reduction of maximum 
velocity, or an increase of the effective viscosity ν . With H = 3.3δt , the ratio between the measured velocity at the channel 
center, Uc and its theoretical value Umax given in (6.10) is 0.70254, 0.89965, and 0.99121 for the bounce-back scheme 
with the zig-zag, linear, and quadratic interpolations, respectively, and the corresponding relative L2 error of u( j) compared 
with the exact solution of (6.10) is 0.22224, 0.074077, and 0.010709. However, when compared with a parabola with its 
maximum equal to Uc, then the relative L2 error becomes 0.067636, 0.012321, and 0.00865546. As the data show, the 
bounce-back scheme with the quadratic interpolations works extremely well in this case, even for a very narrow channel 
width.

The next simple test case is a double shear flow on a 2D periodic square with the following initial conditions [214,314,
389]:

u =
{
U0 tanh[β(y − 1/4)], 0 ≤ y < 1/2,
U0 tanh[β(3/4 − y)], 1/2 ≤ y < 1,

(8.1a)

v = δU0 sin[2π(x+ 1/4)], 0 ≤ x < 1. (8.1b)

To eliminate the artificial initial layer due to inconsistent initial conditions, we iterate the LBE with the velocity fixed at the 
given initial conditions, until all other moments are consistent with the initial velocity field [376].

The number of grid points is N × N . The D2Q13 model [145,151,214,390] is used. The simulation is carried out with a 
fixed Reynolds number at Re = U0N/ν = 1000, and β = 80. We use both acoustic and diffusive scalings. For the acoustic 
scaling, U0 = 0.01c is a constant, and δ = 0.05, while the viscosity ν (in lattice units δx = δt = 1) increases linearly with N
so to maintain a constant Re. For the diffusive scaling, ν = 0.0025cδx is a constant, and δ = 0.01, while U0 decreases linearly 
with N to keep Re constant.
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Fig. 7. The double shear layer flow on a 2D periodic square. The L2 error of the velocity field at t = 1.0, 1.25, and 1.5. The solid and outlined symbols 
indicate the results obtained with the diffusive (δt = δ2x ) and acoustic (δt = δx) scaling, respectively. The solid line has the slope of −2.

Fig. 7 shows the relative L2 error of the velocity u(x, y) compared with the solution of incompressible Navier-Stokes 
equations obtained with a pseudo-spectral method with second-order accuracy in time. The spectral resolution used is 
N2 = 2002. Clearly, the simulations with both acoustic and diffusive scalings achieve a second-order spatial convergence 
with the mesh sizes shown in Fig. 7, before the error due to the Mach number becomes dominant [214]. That is, we do 
expect that the convergence of the simulations in the acoustic scaling should eventually deviate from the N−2 scaling once 
the spatial truncation error becomes comparable to the compressibility error. Of course, the simulation with the acoustic 
scaling is far more efficient than that with the diffusive scaling, because the number of time steps is Nt ∝ N for the acoustic 
scaling, and it is Nt ∝ N2 for the diffusive scaling.

8.2. Direct numerical simulation of homogeneous isotropic turbulence

The lattice Boltzmann method has been successfully used as a method of direct numerical simulation (DNS) [54,55,291,
298,337,391–409] and a means for the large-eddy simulation (LES) based on the Smagorinsky model [291,293–298,303,410]
to simulate turbulent flows. The numerical validity of the LBE for the LES based on the Smagorinsky model is discussed in 
Sec. 4.4. More details on the validity of the LBE-LES method can be found in a recent review by Löhner [411].

A detailed and direct comparison between the LBE and a pseudo-spectral method with a second-order accuracy in time 
has been made for the DNS of the decaying homogeneous isotropic turbulence in a 3D periodic cube [158]. The LBE model is 
D3Q19 [139]. The mesh size is N3 = 1283 for both the LBE and the pseudo-spectral method. The Taylor microscale Reynolds 
number Reλ is in the range 24.35 ≤ Reλ ≤ 72.37 [158]. In addition to the statistical quantities such as the total energy and 
the energy spectrum, the dissipation rate, the root-mean-square pressure fluctuation and the pressure spectrum, and the 
skewness and flatness of the velocity derivative, the instantaneous flows fields of u(x, t) and ω(x, t) obtained with the LBE 
and the pseudo-spectral method for incompressible Navier-Stokes equations agree well with each other. Fig. 8 compares 
the vorticity field ω := ∇ × u obtained by the LBE and pseudo-spectral method in three times. It shows that the LBE can 
accurately capture small vortexes of sizes of a few lattice spacings [158].

Some other results of DNS using the LBE method are worth mentioning here. It has been observed that the LBE can ac-
curately capture detailed vortex motion and vortex-boundary interactions [412–420]. The LBE also yields accurate results for 
acoustics [237,239,241,242,421–424]. The accuracy of these LBE simulations supports the credibility of the DNS of turbulent 
flows carried out by using the LBE.

8.3. High Reynolds number flows in 3D

The D3Q27 cumulant LBE model [159] is used for the following two flows in 3D. The first case is the unsteady flow past 
a sphere with high Reynolds number. The flow domain size is L × W × H = 11D × 11D × 11D , where D is the diameter 
of the sphere. The sphere center is located at the streamwise centerline of the flow domain, 2D away from the upstream 
boundary. Constant velocity boundary conditions are used for the upstream and four side boundaries with the constant 
velocity U = 0.0125c, and non-reflective extrapolation boundary conditions are used for the downstream boundary. No-slip 
boundary conditions are imposed on the sphere surface. The mesh has six levels of binary refinement, i.e., the ratio of the 
coarsest and the finest size of the grid spacing is 25 = 32. The sphere diameter D is 512δx , where δx is the finest size of 
grid spacing. The total number of grid nodes is 73855051. The block ratio is 1/11. The simulation was carried out on four 
NVIDIA Tesla® C1060 GPUs with 4 GB memory each. The validation of the code can be found in [159].

Fig. 9 shows the Reynolds-number dependence of the drag coefficient CD, compared with recent results obtained with 
finite-difference (FD) based large-eddy simulation [425], various fitting formulas for CD(Re) [426,427], and experimental data 
[428]. The LBE results clearly show the “drag crisis”.
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Fig. 8. DNS of homogeneous isotropic turbulence with Reλ = 24.37. Instantaneous vorticity iso-surface |ω|: LBE results (top row) vs. pseudo-spectral results. 
From left to right: t′ = 0.1348, 0.2359, and 0.573.

Fig. 9. Flow past a sphere. The drag coefficient CD depends on Re. The LBE results (◦) are compared with the data obtained by FD-LES [425], fitting formulas 
[426,427], and experimental data [428].

Fig. 10 shows the magnitude of the velocity field |u(x)| on the vertical symmetric plane of the flow domain (xy plane) 
in color with Re = 105 and 4.0 × 105, before and after the drag crisis, respectively. On the surface of the sphere, the value 
of the pressure fluctuation δp(x) is shown in color.

The flow past the DrivAer car is the second test case of high-Reynolds-number flow in 3D [52]. The flow domain is 
L × W × H = 70m × 20m × 13m, and the car size is Lc × Wc × Hc = 4.61m × 2.03m × 1.42m, thus the blockage ratio is 
about 0.8%. No-slip boundary conditions are imposed on the car surface and the floor which is moving with a constant 
velocity, a constant velocity is imposed on the inlet, two side and the top walls, and a constant pressure is imposed at 
the outlet by using extrapolations. The wheels rotate with a given constant angular velocity. The mesh has six levels of 
refinements. The Reynolds number is set to 4.87 × 106, and no explicit turbulence modeling is used in the simulation. 
The size of the finest grid spacing is 3.125 mm. The number of grid points of the largest mesh is about 125.6 × 106. The 
geometry of the car is described with great details [52]. The simulations were carried out on two NVIDIA Tesla® K40C GPUs 
with 12 GB memory each.

The measured quantities include the drag coefficient CD and the pressure coefficients Cp on the top and bottom of the 
car. With the largest mesh, CD obtained with the LBE is 0.274, compared to the experimental value of 0.275. The results of 
Cp are shown in Fig. 11. Details of the simulation, including a convergence study, can be found in [52].

The LBE algorithm implemented on general-purpose graphic processing units (GPGPUs) has achieved a great parallel 
efficiency [386,429,430]. The powerful combination of the LBE and GPGPUs has significantly extended our capability to 
simulate realistic flows, as shown above. It is also worth to note that the high-Reynolds-number simulations were carried 
out with single-precision (32 bit) accuracy as the performance of GPGPUs is essentially doubled for this data type. The 
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Fig. 10. Flow past a sphere with Re = 105 before the drag crisis (left) and 4 × 105 after the drag crisis (right). The velocity magnitude |u(x)| on the 
symmetric xy plane. The pressure fluctuation δp is shown on the sphere surface.

Fig. 11. CP at the top (left) and bottom (right) of the DrivAer car model.

numerical stability and robustness of single-precision computations critically depend on the implementation of the collision 
operator and boundary conditions. Because the order of magnitude of different moments (or cumulants) and their non-
equilibrium parts differ significantly, especially for higher-order moments, therefore considerable care must be taken to 
minimize round-off errors when these quantities are only stored in single-precision during the computation, such as using 
only the fluctuating part of the density in the LB simulations (cf. Sec. 4.4 and [312]).

9. Discussion and conclusions

This article reviews the fundamental theory and analysis about the lattice Boltzmann equation as an explicit solver 
for nearly incompressible Navier-Stokes equations — from its kinetic origin to its numerical analysis. We have chosen to 
narrowly focus on the LBE models for simple fluids, and leave the LBE models for complex fluids for a future review. The 
reason for this choice is that the rigorous theory and analysis on the LBE models for complex fluids are not as mature as 
that for simple fluids, although this is one of the fastest growing and most promising areas of research. We would like to 
conclude this review with a discussion on some outstanding issues of the LBE and an outlook.

In spite of its kinetic origin, perhaps the most fundamentally challenging issue the LBE faces is whether a simple kinetic 
scheme such as the LBE can be used to approximate kinetic equations effectively and efficiently, and to what extent. While 
there have been numerous claims that the LBE can be used to solve rarefied gas problems in a wide range of the Knudsen 
number effectively from continuum to free-molecule regime [218,272,273,431–441], there is no rigorous analysis to sub-
stantiate these claims, and these claims have been refuted to a certain extent (cf., e.g., [368,442,443]). It should be noted 
(cf., e.g., [444]) that while the discrete velocity sets of the LBE are similar to that of the discrete velocity models (DVMs) 
[445–452], which are indeed kinetic solvers [453–456]. The characteristics of the two methods are, however, fundamentally 
different — the DVMs, which by design are kinetic solvers, do not have the coherent discretization which ties discretized 
phase space and discretized time together as in the LBE (cf. §3). It should also be noted that the solutions of a single DVM 
do not converge to anything; the DVM solutions would converge to a solution of the Boltzmann equation only under suitable 
refinement of the number of discrete velocities. In addition, a typical DVM solution will not converge to a Navier-Stokes 
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solution even for small Knudsen number because the necessary moment relations will not hold (cf., e.g., [444] and refs. 
therein). Although there exists some discrete evidence that the LBE can be applied to simulate the slip flows [368,374] and 
flows with moderate Knudsen numbers [279,372,457,458], rigorous analysis of the convergence of the LBE to the Boltzmann 
equation remains to be seen.

A second category of issues in the LBE is more of a pragmatic nature and it is most related to the numerical analysis and 
improvement of the numerical efficiency of the LBE. As shown in this review, many advanced and well developed techniques 
for numerical solutions of various PDEs have yet to be fully adopted by the populace in the LBE community. For example, 
the multigrid technique for solving the steady state problems [459,460] has yet to fully realize its potential efficiency with 
the LBE, although there have been some promising preliminary efforts [461–463]. Similarly, efficient and accurate implicit 
LBE schemes for time-stepping to break the CFL barrier have yet to be well formulated [464–468]; and a systematic method 
to develop high-order LBE schemes is still lacking (cf., [174,241,316,321]). For Stokes flows, there has been progress to 
enhance efficiency by reducing the LBE simulation in a d dimensional volume to a boundary-value problem on a (d − 1)
dimensional surface [469–472]. We can expect significant advances to be made in these areas in the near future.

One of the most active area of research involving the LBE is multi-phase and multi-component flows with liquid-gas 
or liquid-liquid interfaces [43,92,93,95–98,380,430,473,474]. The LBE models for multi-phase and multi-component flows 
are mostly diffusive interface capturing schemes which employ the techniques based on the immersed-boundary method 
[381,475,476], phase-field method [16,43,96,98,477–479], level-set method [20,480,481], or some similar techniques. While 
the LBE is widely used for interfacial dynamics, very little rigorous analysis has been done [482]. This is another area of 
active research which deserves attention.

Finally, we would like to give a summary of the LBE method. The LBE with uniform Cartesian meshes is indeed a very 
simple algorithm to simulate nearly incompressible Navier-Stokes equations with a second-order accuracy. The LBE method 
has a broad range of applications, including generalized Newtonian fluids. The versatility of the LBE is partly due to its 
kinetic origin — it is relatively easy to construct a collision operator in terms of linear relaxation process in kinetic theory 
to mimic certain physical phenomena. A relatively simple linear relaxation process at the kinetic level can lead to some 
complicated PDEs at the macroscopic level, and viscoelastic fluids serve as a good example. While the LBE is a drastically 
simplified kinetic model designed to simulate hydrodynamic equations, it in fact retains most essential features of the 
Boltzmann equation, including the conservation laws and dissipative property. A key feature which benefits the LBE is the 
linearity of the advection term with constant coefficients in the kinetic equation, while the nonlinearity resides in the local
collision term. As we have shown, the LBE can be seen as a method to simulate first-order PDEs derived from the linearized 
Boltzmann equation (cf. (2.21) in §2); first-order PDEs with linear advection terms enjoy certain computational advantages 
[483], including

• Requirement of the smallest possible stencil for accurate discretization, reducing the need for inter-nodal data commu-
nication;

• The stiffness due to the local nonlinear collision term can be overcome by local techniques;
• Discretized first-order systems may be easier to converge than equivalent higher-order systems;
• First-order PDEs yield the highest potential for discretization accuracy on non-smooth, adaptively refined grids;
• Systems of 1st-order PDEs are better suited for functional decomposition, thus easier to parallelize.

In addition, the over-relaxation property of the LBE allows it to use small viscosity thus making it an efficient method (cf. 
§3.6). These are perhaps the very reasons that the LBE is an effective and efficient explicit scheme for the simulation of 
nearly incompressible flows. However, to systematically improve the accuracy and efficiency of the LBE while retaining its 
simplicity remains a challenge. It should be noted that once the mathematics of the kinetic methods is understood, the 
above advantages can be immediately adopted into traditional methods. In fact, there is an explicit connection between 
the LBE and some finite-difference schemes [86,87,89,91,484] which can be directly applied to discretize the Navier-Stokes 
equations. Also, the Navier-Stokes equations can be recast to a system of first-order relaxation equations [485,486]; and 
some kinetic schemes can be directly derived without explicit reference to kinetic theory [487,488].

Undoubtedly, the LBE is a new variety in the colorful garden of CFD. It opens up a new avenue for new thoughts and 
methods. The LBE and other kinetic methods are intellectually interesting for several reasons. Simple LBE models can serve 
as minimalist models in kinetic theory, which may exhibit the kinetic origin and features of fluid systems. They may also 
serve as the connection between macroscopic flow theory and its underlying microscopic physics, i.e., the route to multiscale 
physics. At the least, kinetic methods add spices to our lives. If this review could arouse some interests in kinetic methods, 
that would be most rewarding to the authors’ effort.
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List of symbols

Different fonts are used for different quantities:

italic font for scalars, e.g., u, V , ε
bold-italic for a d dimensional vector with d = 2 or 3, e.g., r, u, x, F
bold-upright for an n dimensional vector with arbitrary n ≥ 2, e.g., f, m, G, Q
bold sans serif for tensors in general, e.g., p, B, M, S, ΣΣΣ, ΣΣΣ, σσσ, . . .
calligraphic for operators, e.g., I, L, Q
math blackboard font for spaces or sets, e.g., Γ, Rn , Xq , Zd .
Superscript † transpose operator

In what follows, the equation number or the section number indicates when the symbol is first appeared or defined.

• A := A(ϑ, c̄)c̄ [(2.38)]
• a := dξ/dt: particle acceleration due to an external force F [(2.1a)]
• B := B(ϑ, c̄)Ĉ [(2.38)]
• B(�, ξ , ξ∗): collision kernel [(2.1b), (2.4)]
• b := q − 1: the number of non-zero discrete velocities [(3.17)]
• Ĉ := c̄c̄ − 1

d c̄
2I: the traceless part of the tensor c̄ c̄ [(2.38)]

• Clmn(x, t): the cumulant computed from the generating function
F (x, K , t), i.e., Clmn := c−(l+m+n)∂ l∂m∂n ln F/∂Kl

x∂K
m
y ∂Kn

z at K = 0 [(3.57)
• c := ξ − u: the peculiar velocity [(2.10a)]
• c̄ := c/cs: the dimensionless peculiar velocity, normalized by the speed of sound cs [(2.38)]
• cs := √

γ ϑ : the speed of sound [(3.29)]
• cs0 := √

γ ϑ0: the reference or initial speed of sound based on a reference/initial thermal energy
per unit mass and per degree of freedom ϑ0 [§2.2]

• D̄t := ∂t + U ·∇ [(5.8)]
• D := diag

(
ε2∂t , ε2∂t + εξ1 · ∇, . . . , ε2∂t + εξb · ∇)

[(4.8)]
• d: the spatial dimension, i.e., r ∈ Rd [(2.10)]
• dc: the number of conserved moments [§3.1]
• E: the total energy per unit mass, ρE = ρ(dϑ + u2)/2 [(3.48), (3.49)]
• E := ∂W−1f(0)/∂f [(4.17)]
• Ei j := (1/wi)∂ f (0)

i /∂ f j [(4.17)]
• e: the total internal energy per unit mass e := dϑ/2 [(2.22c)]
• F : external force [(2.1)]
• Fr := V0/

√
LG: the Froude number [(2.17)]

• f := f (x, ξ , t): the single particle velocity distribution function with pre-collision velocity ξ [(2.1a)]
• f∗ := f (x, ξ∗, t): the single particle velocity distribution function with pre-collision velocity ξ ∗ [(2.1a)]
• f (0) := f (0)(ρ, u, ϑ): the Maxwellian equilibrium distribution function [(2.11)]
• f (n): the n-th order coefficient in the Chapman-Enskog expansion of f [(2.23)]
• f(0)L , f(0)Q : the parts of the local equilibrium that are linear and quadratic in u , respectively. [(4.7)]

• f := ( f0, f1, . . . , fq−1)
†: the distribution functions correspond to the discrete velocities {ξ 0, ξ1, . . . , ξq−1} [(3.17)]

• G: a constant acceleration [(2.17)]
• Gi : the forcing density along the direction of the velocity ξ i [(3.1), (3.14)]
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• H := K[I+ J]: the evolution operator for the linearized LBE in Fourier space k [(5.4)]
• H(n): the n-th order tensorial Hermite polynomial [(2.44), (2.45), (2.46)]
• H(r, t): the local H function H(r, t) := ∫

f ln f dξ [(2.12)]
• H̄(t): the global H function H̄(t) := ∫

H(r, t)dr [(2.12)]
• I: the identify tensor (matrix) [(2.29), (2.38), (2.39), (2.47)]
• I[φ(ξ)]: an integral operator of φ(ξ ) w.r.t. Q[ f , f∗], I[φ(ξ)] := 〈φ(ξ)Q[ f , f∗]〉 [(2.6)]
• J: Jacobian derived from the LBE [(4.17)]
• K: q × q diagonal matrix with diagonal elements exp(ık · ξ i) [(5.4)]
• j(n)

i : The n-th order flux vector corresponding to collisional invariance ϕi and f (n) in the Hilbert expansion [(2.29)]
• Kn := �/L: the Knudsen number [(2.17), (2.18)]
• kB: the Boltzmann constant [(2.10b)]
• K : the wave-vector in Fourier space corresponding to the velocity coordinates ξ [(3.57)]
• k: the wave-vector in Fourier space corresponding to the spatial coordinates r [§5.1]
• LBE: lattice Boltzmann equation
• L: macroscopic characteristic length [(2.16)]
• L: the linearized collision operator [(2.27)]
• LN : the mutilated linearized collision operator with N eigenvalues [(2.51)]
• �: the molecular mean-free path [§2.2]
• M: the transform matrix mapping the distribution functions f to the moments m [(3.24), (3.25), (3.23)]
• M(n): the n-th order velocity moment tensor [(2.19)]
• Ma: the local Mach number |u|/cs or the characteristic Mach number V0/cs [(2.17)]
• M(t): the central moment generating function of the distribution f (x) [(3.55)]
• m(t): the moment generating function of the distribution f (x) [(3.53)]
• m: particle mass, m = 1 unless otherwise stated [(2.1b)]
• mi : the i-th moment [§3.5]
• m(0)

i : the equilibrium of the moment mi [§3.5]
• δm := (m −m(0)): the nonequilibrium parts of the moments [(3.30)]
• NSF: Navier-Stokes-Fourier
• N: the total number of particles [§2.2]
• n := n(r, t) = ρ/m: particle number density [(2.2)]
• P: projection operator [(4.18)]
• p := ΠΠΠ− pI [(2.47)]
• p := ρϑ : the pressure [(2.29)]
• Q[ f , f∗]: the collision operator [(2.1b)]
• q: the number of discrete velocities [§3]
• q: the heat (energy) flux vector [(2.22c)]
• q(n): the n-th order heat flux vector corresponding to f (n) [(2.33b)]
• R the gas constant [§2.6]
• R := f(x j + ξε, tn + ε2) − f(x j, tn) −Q(x j, tn): the residual for the LBE [(4.6), (4.7)]
• r: the spatial position in d dimensions, i.e., r ∈Rd [(2.1a)]
• r21 := |r2 − r1|: the spatial distance between two points r2 and r1 [(2.3)]
• S: diagonal matrix of relaxation rates {si |0 ≤ i ≤ q − 1} [(3.25)]
• S̃ := M−1SM [§3.5]
• St := L/τ0c̄s: the kinetic Strouhal number [(2.17)]
• si : the i-th relaxation rate [(3.25)]
• U (r1, r2): two-body potential [(2.2)]
• u := u(x, t): the flow velocity [(2.10b)]
• u(n): the coefficient in the expansion of u corresponding to f (n) [(4.4)]
• uε: the flow velocity corresponding to f(x j, tn; ε) [(4.4)]

• u‖: the component of u along a given direction k̂ [(5.2)]
• u⊥: the component of u perpendicular to a given direction k̂ [(5.2)]
• V := ξ∗ − ξ : the difference between the incidental velocities [(2.1)]
• V0: characteristic macroscopic flow speed [2.2]
• W: the q × q diagonal matrix W := diag(w0, w1, . . . , wb) [(4.17)]
• wi : the weight corresponding to the discrete velocity ξ i [§3, §3.2]
• Xq: the set of q discrete velocities {ξ i |0 ≤ i ≤ q − 1} [§3, (3.2)]
• Z(z, k): the characteristic polynomial associate with H [(5.5)]

Greek symbols:

• α: accommodation coefficient [(2.52)]
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• γ : the adiabatic exponent or the ratio of specific heats [(3.49)]
• ε: the polar angle on the plane perpendicular to V := ξ∗ − ξ [(2.1)]
• ε: a small parameter, in the Hilbert and Chapman-Enskog expansions in §2, ε ∼ Kn; in the Taylor expansions in §4, 

ε ∼ δx , δx is the grid spacing.
• �: the angle between the apse line and V := ξ∗ − ξ in the plane of particle trajectory, as depicted

in Fig. 1 [(2.1b), (2.4)]
• θ := π − 2�: deflection angle in binary elastic collision [(2.5)]
• ϑ := kBT /m: internal energy per unit mass and per degree of freedom [(2.10b), §2.2]
• ϑ0 := kBT0/m: reference or initial internal energy per unit mass and per degree of freedom [§2.2]
• κ : heat diffusivity or diffusivity [(2.39b), (3.42), (3.43)]
• κ(t) := lnm(t): the cumulant generating function [(3.56)]
• κn: the n-th order cumulant [(3.56)]
• ΛΛΛ: diagonal matrix with the elements of relaxation rates {si} [(4.18)]
• μ: the dynamic viscosity [(2.39a), (2.40a)]
• μn: the n-th order moment of a distribution function f (x) [(3.52)]
• ν := μ/ρ: the kinematic (or shear) viscosity [(2.42), (4.11)]
• ξ : molecular velocity [(2.1)]
• ξ i : the i-th discrete velocity [(3.2), (3.7), (3.8)]
• ξ ı̄ := −ξ i [(4.9)]
• ΠΠΠ: the pressure tensor [(2.22b)]
• ΠΠΠ(n): the n-th order pressure tensor corresponding to f (n) [(2.33a)]
• ρ = ρ(x, t): flow mass density [(2.10b)]
• ρ(n): the coefficient in the expansion of ρ corresponding to f (n) [(4.4)]
• ρε: the density corresponding to f(x j, tn; ε) [(4.4)]
• 
 = 
(x, t): conserved moments [(2.10)]
• ΣΣΣ: strain-rate tensor [(2.39a)]
• Σ̂ΣΣ: the traceless part of ΣΣΣ, Σ̂ΣΣ := ΣΣΣ− 1

d (∇ ·u)I [(2.39)]
• σσσ: the shear stress tensor [(2.39), (4.31)]
• σ̂σσ: the traceless part of the shear stress tensor [(2.39)]
• σ(χ, V ): the differential collision cross section [(2.5)]
• ς : the effective particle radius or interaction range [§2.2]
• ζ : the bulk viscosity [(4.31), (4.32)]
• τ : the mean-free time [§2.2]
• τν : the relaxation time for the continuous BGK model [(3.35)]
• τ0: the macroscopic characteristic temporal scale [§2.2, (2.16)]
• φ(n): φ(n) := f (n)/ f (0) , f (n) is the coefficient of the n-th order term in the Hilbert expansion [(2.23)]
• φ(ξ): a collisional invariant [(2.8)]
• ϕi : {ϕi|0 ≤ i ≤ d + 1} collisional invariants [(2.10a)]
• ϕ(n): the coefficient in the n-th order Hilbert expansion (2.24)
• ΨΨΨ: the q × q diagonal matrix whose diagonal elements are |�i |2, 0 ≤ i ≤ q − 1 [(3.30), (3.31)]
• �i ∈Rq: eigenvector of the LBE collision operator whose elements are ψi(ξk), 0 ≤ k ≤ (q − 1) [(3.18)]
• ψi(ξ): the orthogonal polynomials on the discrete velocity set {ξ i} [(3.18)]
• χn: the n-th order moment about the mean, i.e., the n-th central moment [(3.54)]
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