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1 Introduction

Considering length when comparing geometric shapes is of crucial importance in many fields
such as object recognition, pattern recognition, image stitching, biomedical imaging, robotics
and automation, 3D modeling and reconstruction and geographic information systems (GIS).

At the same time, length has proven to be a notoriously unstable quantity in many
applications, as it can depend on the resolution of the representation of a shape [8]. Combined
with the fact that in digital datasets shapes are often stored as point sequences, most existing
distance measures for shapes are either explicitly discrete in nature (such as, e.g., the
Hausdorff distance [4]), or if they can handle truly continuous data (such as the Fréchet
distance [6]), they explicitly disregard the length of features. While dozens of distance
measures have been introduced over the years, we are only aware of a single attempt to
explicitly consider length: the length-sensitive Fréchet similarity by Buchin et al. [5]. However,
it also enforces restrictive order-preserving constraints which might not be necessary in some
comparisons. In this work, we propose a continuous, one-to-one matching approach that
preserves length but allows for partial order flexibility.

Problem Definition: Let P, Q : S1 → R2 be two closed polygonal curves of equal length
(assumed wlog to be one). We wish to find a partition of P and Q into k subcurves P1, .., Pk

and Q1, .., Qk, respectively, so that matched subcurves have the same length, and we can
simultaneously traverse them at unit speed while staying within distance δ. We model this as
a problem in the free space diagram: Let δ > 0 be a given matching threshold. We consider
the subdivision of the two dimensional parameter space S2 into free and forbidden space. A
point (α, β) ∈ S2 is in the free space iff ∥P (α) − Q(β)∥1 ≤ δ. We wish to find an ordered set
S1, .., Sk in S2 of k line segments such that:

1. The horizontal projections of the segments form intervals X1, .., Xk with disjoint interiors
that together cover all of P ;

2. The vertical projections of the segments form intervals Y1, .., Yk with disjoint interiors,
that together covers all of Q; and

3. Every segment has slope 1 or −1.

The problem is thus to find a 1-covering solution for P and Q, meaning our objective
is to find a set of k segments (with slopes 1 and -1) that maximizes the length ℓ of the
covered intervals and checks whether this length is one. In particular, this abstract focuses
on matching closed curves, demonstrating a possible NP-hardness proof for the general case
of k, with a polynomial-time solution for k = 2 under L1.

From Torus to the Plane. With closed curves as inputs, the resulting free space diagram
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S2

S

effectively wraps around a torus. To illustrate this
structure, consider D ⊆ S2 be the planar unfolding of
nine copies of S2 in a 3 × 3 grid. Any segment s in
a solution Ψ is represented by a set of line segments
(dashed) in D.

▶ Observation 1. Every segment S in the free space
of S2 is represented by at least one line segment in
the free space of D.

2 NP-Hardness for General k

▶ Theorem 2. The problem of finding if there exist k slope-one and slope-negative-one
segments in the free-space such that their vertical and horizontal projections fully cover both
axes without any overlaps is NP-hard even if the segments have a fixed length.

Proof Sketch. We prove the NP-hardness of the non-constant k-segment free-space covering
problem by reducing it from Max-2SAT [7]. Max-2SAT involves finding an assignment to a
CNF formula (with clauses of up to two literals) that maximizes satisfied clauses.

Given a CNF formula with m variables and t clauses, we map it to a free-space diagram
with 4m + 4t candidate slope-one segments, represented as square boxes. As shown in
Figure 1, each variable is modeled as a cycle of four squares, where half of the boxes are
filled based on the truth value assigned to the variable. We add two squares to the cycle
for each appearance of a variable. For each clause, two squares from different cycles share a
corner, with additional squares added to ensure full axis coverage without overlap.

The construction ensures that satisfying s clauses in the Max-2SAT problem corresponds
to having k ≥ 2(m + t) − s segments in the free-space diagram. Conversely, covering the
free-space with k segments guarantees s ≥ 2(m + t) − k satisfied clauses in the original
Max-2SAT formula. The reduction is completed in polynomial time. ◀

truefalse

(a) T rue and false states of a variable.

vi ¬vi
(b) Two satisfied single-variable clauses. On the left,
vi is true while on the right vi is false.

Figure 1 Some examples of the blocks used in the structure.

Theorem 2 offers key insights into the computational complexity of computing an optimal
length-preserving matching between two closed curves for general k. While it doesn’t
prove NP-hardness, it strongly suggests it, as similar problems have shown this to be
indicative [2,3]. However, constructing curves that match a given free-space diagram remains
a difficult problem, only recently starting to be understood [1].



Erfan Hosseini Sereshgi and Maarten Löffler and Frank Staals and Carola Wenk 3

3 Covering The Free-space With k = 2 Segments

For each vertex v of the forbidden space in D, consider the maximal segment Mv of slope 1
through v. These segments induce a trapezoidal decomposition Λ1 of D (See Figure 2). Λ−1

can be constructed similarly by drawing slope −1 segments.

Figure 2 A maximal length slope 1 segment corresponds to maximal segment Mv of a vertex v

in the trapezoidal decomposition Λ1.

▶ Lemma 3. The decompositions Λ1 and Λ−1 can be constructed in O(n log n) time where n

is the complexity of the free space.

Proof Sketch. Simple sweepline algorithm: We can compute the decomposition for Λ1 by
employing a slope 1 sweep line originating from the top left corner of D and terminating at
the bottom right corner. The free space vertices serve as event points, sorted in the direction
of the sweep line. As the sweep line progresses, we maintain a balanced binary tree of free
space edges intersected by the sweep line, enabling the efficient computation of the closest
free-space edge to the event point. This portion of the sweep line forms the edge between
two adjacent trapezoids.

The algorithm consists of two primary operations: After sorting O(n) event points which
requires O(n log n) time. The sweepline starts at the first event point. For each event point,
we perform a closest-edge query, which takes O(log n) using the binary tree. Hence, the total
runtime complexity is O(n log n). Such approach can also be applied for Λ−1. ◀

We now discuss a solution for k = 2 segments. First, we observe that if both segments
have the same slope, they belong to the same trapezoid and they are in fact aligned into
a single segment, and we reduce to the case k = 1 (This case is not complex and can be
solved in O(n log n)). Therefore, we now assume that our solution Ψ = {B, R} consists of
two segments, with B = b1b2 having slope 1 and R = r1r2 having slope −1. As shown in
Figure 3, if there are two segments R, B that cover S2 then there are a total of five unique
cases:

(a) R goes through an obstacle vertex v and r2 lies on an obstacle edge, and b1 lies on an
obstacle edge.

(b) R goes through an obstacle vertex v, and both r1 and r2 lie on obstacle edges.
(c) R goes through an obstacle vertex v, r2 lies on an obstacle edge, and b1 lies on an obstacle

vertex v′.
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Figure 3 Cases for k = 2. B and R are shown in blue and red, respectively. Obstacle vertices
and edges are in black.

(d) R goes through an obstacle vertex v, and both b1 and b2 lie on obstacle edges.
(e) r1 and r2 lie on obstacle edges, and b1 lies on an obstacle edge.

Due to symmetry, the roles of R and B are interchangeable in these cases.

▶ Theorem 4. We can solve the k = 2 case in O(n2) time.

Proof Sketch. Based on Lemma 3, constructing the decomposition Λ1 and Λ−1 takes
O(n log n) time. We evaluate each case by selecting a pair of trapezoids (one from each
decomposition) and testing in constant time whether they can form a valid solution, with
the red segment nestled in one trapezoid and the blue segment in the other. Having O(n)
trapezoids in each decomposition, results in the total runtime of O(n2). ◀

It is worth noting that the algorithm described above can be optimized for the first three
cases. By bounding the red (or symmetrically, blue) segment with a vertex and an edge,
the corresponding blue (or red) trapezoid is fixed, eliminating the need to check all possible
trapezoids.

4 Conclusion and Discussion

We introduced length-preserving matching and presented algorithms to compute it for k = 1
and k = 2, while demonstrating NP-hardness for the general case. In addition to potential
runtime improvements for specific k = 2 cases, more research is required to explore the
problem for larger values of k and if the current general algorithm for k = 2 can be effectively
scaled up for this purpose.

A promising avenue for future research involves exploring the scenario where k approaches
infinity. As illustrated in the figure, increasing
k and thereby decreasing the size of each seg-
ment leads to greater coverage, even enabling the
matching of entire curves as k → ∞ which is not
possible with a fixed number for k. While several
properties suggest the potential for a polynomial algorithm in this case, further investigation
is needed, and our current definition requires modification to accommodate this setup. Fur-
thermore, since the length of each segment approaches zero, it adds further ambiguity to
the concept, necessitating a more nuanced understanding. Finally, an alternative research
direction would be to explore a similar measure that averages the distances of all matched
parts, rather than focusing solely on the maximum distance.
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