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Abstract

Metric differential privacy (DP) provides heterogeneous privacy guarantees based on a dis-
tance between the pair of inputs. It is a widely popular notion of privacy since it captures
the natural privacy semantics for many applications (such as, for location data) and results in
better utility than standard DP. However, prior work in metric DP has primarily focused on
the item-level setting where every user only reports a single data item. A more realistic setting
is that of user-level DP where each user contributes multiple items and privacy is then desired
at the granularity of the user’s entire contribution. In this paper, we initiate the study of one
natural definition of metric DP at the user-level. Specifically, we use the earth-mover’s distance
(dEM) as our metric to obtain a notion of privacy as it captures both the magnitude and spatial
aspects of changes in a user’s data.

We make three main technical contributions. First, we design two novel mechanisms under
dEM-DP to answer linear queries and item-wise queries. Specifically, our analysis for the latter
involves a generalization of the privacy amplification by shuffling result which may be of in-
dependent interest. Second, we provide a black-box reduction from the general unbounded to
bounded dEM-DP (size of the dataset is fixed and public) with a novel sampling based mech-
anism. Third, we show that our proposed mechanisms can provably provide improved utility
over user-level DP, for certain types of linear queries and frequency estimation.

1 Introduction

Differential privacy (DP) is the state-of-the art technique that enables useful data analysis while
still providing a strong privacy guarantee at the granularity of individuals (Dwork, 2006). Over
nearly two decades, DP has enjoyed significant academic attention and has proven its efficacy
in practical applications as well. It has been successfully deployed in diverse settings, includ-
ing the US census (Abowd, 2018), Apple’s iOS platform (Cormode et al., 2018), and Google
Chrome (Erlingsson et al., 2014).

Intuitively, DP guarantee makes a pair of input data to be indistinguishable from each other.
The standard DP guarantee requires all pairs of inputs to be indistinguishable thereby providing a
uniform privacy guarantee to all pairs. This implies that every pair of input is considered equally
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sensitive. However, many practical applications call for a more tailored privacy semantics based
on the heterogeneity of the data. In particular, input pairs that are closer or more similar to
each other are considered to be more sensitive. For instance, for location data, revealing the
exact city of residence is far more sensitive than revealing just the country. Metric DP (dX -
DP; Chatzikokolakis et al. (2013)) is a notion of DP that formally captures this heterogeneity in
privacy semantics. Specifically, similarity is measured via a distance metric dX and the privacy
guarantee degrades linearly with the dX distance between the pair of inputs. In addition to offering
a more nuanced privacy definition, metric DP also improves utility compared to standard DP. This
improvement stems from metric DP requiring only similar pairs of input to be indistinguishable,
which results in a significantly lower noise than standard DP.

Prior work in metric DP has primarily focused on the item-level setting where every user only
reports a single data item (for e.g., a single record in a dataset). However, in many practical
applications, a user contributes multiple items to a dataset. Privacy is then desired at the granu-
larity of the user’s entire contribution. This has spurred a large body of work known as user-level
DP (Amin et al., 2019; Bassily and Sun, 2023; Cummings et al., 2022; Acharya et al., 2023). How-
ever, all of this work considers only standard DP and is thus susceptible to the same limitations
in utility as noted earlier. To this end, we initiate the study of one natural definition of metric
DP at the user-level. In particular, we look into a specific distance metric called earth-mover’s
distance (dEM; Givens and Shortt (1984)). dEM measures the similarity of two distributions and
is quantified by the cost of transforming one distribution to another where the cost function can
be defined by any metric over the underlying data. Thus, dEM provides a general and naturally
interpretable way of measuring similarity, suitable for capturing the privacy semantics of various
real-world scenarios. While there have been some prior attempts at this, these works are limited
to specific settings, such as text data Fernandes et al. (2019). To the best of our knowledge, this is
the first work to propose a definition of metric DP at the user-level for a general setting via dEM.

The immediate question when applying metric DP at the user level is how to define a metric
on the entire collection of a user’s data. We argue that dEM is particularly well-suited for this
task. Recall that metric DP caters to the privacy semantics that similar data is more sensitive.
But the challenge here is that the similarity between two collections (sets) of data points has to be
measured along two dimensions – (1) the distance between the individual data items, and (2) the
fraction of the data items in the set that are different. In particular, note that in addition to small
changes in the item-wise distances, changes in a smaller amount of the data also indicate more
similarity and hence, correspond to more sensitive information (see below for concrete examples).
This necessitates a measure that can express both of these quantities as a single metric, for which
dEM is a natural choice. Informally, the dEM between two distributions is the minimum cost of
transporting one distribution to another, where the cost is determined by the quantity of data items
moved multiplied by the distance (measured via dX ) over which they are moved. Our resulting
privacy definition, denoted as dEM-DP, yields the following privacy semantics. Under dEM-DP, the
strength of the privacy guarantee (indistinguishability) between two pairs of inputs K,K ′ (sets of
data items) grows inversely with τq if K ′ can be obtained by changing τ fraction of K by an average
distance of q (Def. 3.1). dEM therefore takes into account both the structure of the distributions as
well as the raw difference in their values. Consequently, the parameters τ and q provide flexibility
in interpretation and offer a nuanced privacy definition suitable for many practical applications.
We illustrate this as follows:

Location Data. We will use our location dataset as a canonical example throughout the paper.
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Suppose that the location dataset consists of daily locations of users collected over a period of time.
Here, the parameter τ can be interpreted in terms of the length of the time window the change in
K ′ pertains to, and q corresponds to the extent of change in the location. Then, dEM-DP makes
it harder to distinguish between locations that are (1) close to each other, and (2) collected over a
smaller time window. This is natural, since locations gathered over an extended period, such as a
month, may reveal routine patterns that are less sensitive than locations recorded on a single day
(for instance, a single-day location might reveal a non-routine visit to a friend or hospital).

Textual Data. Consider a natural language dataset of user conversations where each user’s
data is represented as a set of words. Typically, word embeddings φ map each word into a high-
dimensional space, and word similarity is measured using a distance, such as the Euclidean distance,
between φ(x1) and φ(x2). Now, the parameter τ corresponds to what fraction of the user’s conver-
sation has changed in K ′ from K, while q corresponds to the extent of the changes in the textual
content. Thus, two conversations are harder to distinguish if (1) there is only a fine-grained differ-
ence in their textual semantics1, and (2) if it pertains to just a small fraction of the conversation
(indicating a user rarely discussed the topic, which typically implies more sensitive information).

Graph Data. Consider a graph G = (V,E) in which connections in E are private. Suppose
there is additional public information in the form of a covariate φ : V → R

d, which captures some
auxiliary information about a user—for instance, the interests of a user. Here similarity between
users is measured via covariate distance. The parameter τ corresponds to the fraction of a user’s
connections which has changed in K ′ from K, and the parameter q corresponds to the extent of
the change in their interests. Thus, two graphs are harder to distinguish between if (1) it is a
fine-grained change to the interest2, and (2) if it pertains to only a few of the user’s connections
(say a small, private group of friends). This again captures natural privacy semantics as users are
more likely to share common interests with their close friends than with a larger group, such as all
workplace colleagues.

In a nutshell, dEM-DP offers a more fine-grained privacy definition compared to standard DP,
that captures real-world privacy semantics more effectively while providing better utility. For
example, consider the following two instances of K ′ in the aforementioned example of location data
– one where the data for an entire month is different and another where only a single day’s data
differs. Standard DP treats both cases as equally sensitive (i.e., offers the same privacy guarantee
for both cases), necessitating a larger noise addition even in the latter case, which results in reduced
utility. In contrast, dEM-DP offers a stronger privacy guarantee for the latter, thereby resulting in a
better privacy-utility trade-off. dEM-DP is in fact a natural relaxation of standard DP. We provide
more details on the interpretation of dEM-DP relative to standard DP in Sec. 8. A full version of
this paper appears in Imola et al. (2024).

1.1 Details of Our Contributions

We consider n users who hold datasets {Ki}ni=1, each containing elements from a data domain X
of size k = |X |. Let dX denote a distance metric defined over X . WLOG, we consider dX to be a
normalized distance metric, i.e., all measures of distance are normalized to be at most 1. Let K̃i

denote the normalized version of the dataset Ki. dEM between any pair of datasets {Ki,K
′
i} can

be defined by first normalizing them to {K̃i, K̃
′
i}, and then using dX to measure the minimum cost

1Such as transitioning from text about algebra to trigonometry versus changing it from “math” to “classical
music”.

2for instance, shifting from movies featuring Dwayne Johnson to Vin Diesel instead of from “action” to “rom-com”
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of transporting K̃i to K̃ ′
i. The global dataset is given by KG = K1 ∪ · · · ∪ Kn, and there is an

aggregator who wants to privately compute a query V (K). In the central model, the aggregator
already holds Ki from each user, and applies a private mechanism M(KG) to obtain a private
estimate for V . In the local model, the users do not trust the aggregator, and communicate
private messages {mi = Mi(Ki)} to the aggregator. The aggregator then post-processes these
messages V(m1, . . . ,mn) to output a private estimate of V . For simplicity, in this work we assume
the mechanisms Mi to be non-interactive.

We also make a distinction between bounded and unbounded data. Note that boundedness
here refers to the size of each user’s dataset and not the number of the users – throughout the
paper, we assume that the number of users, n, is fixed and publicly known. In our specific context,
bounded data corresponds to the case where the size of each user’s dataset is publicly known, and
the mechanism M only needs to preserve privacy between datasets of the same size. Furthermore,
in the central model, each user’s dataset has the same public size. The benefit of this simplification
is that algorithm analysis is easier. Such a bounded data setting has been considered in many
previous works (see Li et al. (2016)). We also consider the general unbounded data setting where
each user can have datasets of varying sizes, with the size being private as well.

For each model and type of boundedness, we summarize how one would apply dEM-DP, along
with the resulting semantics, in Table 1. We also include a corresponding notion of the standard
user-level DP Liu et al. (2023) (provides a uniform privacy guarantee to all pairs of datasets) which
serves as our baseline. In what follows, we elaborate on our main contributions.

1.1.1 Mechanism Design

We provide novel mechanisms for answering two types of queries for dEM-DP. In this section, we
let K denote a general dataset of interest, which in the local model would be set to Ki and in the
global model would be set to KG.

Linear Query

First, we study how to release linear queries FK̃, where F ∈ R
d×|X | is a real-valued matrix with

bounded entries. While computing the global sensitivity of such a query is easy under user-level
DP, proving a sensitivity bound under dEM-DP is considerably more complex. It involves making a
stronger Lipschitz assumption about the points in F , and then leveraging this property to transport
K̃ onto K̃ ′ to compute an upper bound on how much FK̃ can change by. To this end, we first
prove the following bound:

Theorem 1.1. (Informal version of Theorem 4.1): The sensitivity of FK̃ is upper bounded by

max
K,K ′

‖FK̃ − FK̃ ′‖
dEM(K̃, K̃ ′)

≤ max
x,x′∈X

‖F [x]− F [x′]‖
dX (x, x′)

,

where the notation F [x] indicates the column of F indexed by x.

Using the above result, we show that the sensitivity of F , which is a maximum over the space
of all datasets, can be reduced to the Lipschitzness of F , which is simpler to bound. Sensitivity
analysis for standard DP typically only requires F to be bounded. However, in the case of dEM-DP,
we need a stronger assumption – F must also be Lipschitz. In Section 4.1, we demonstrate that
several commonly used queries, such as average, region, and similarity queries, are indeed Lipschitz.
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Model Granularity Data Boundedness Privacy Guarantee Semantics Notes

Local
(applies to
each Mi)

User Unbounded (ε, δ)-user-level DP
(Def. 2.1)

Two input datasets K,K ′ ∈
X ∗ are indistinguishable with
parameters (ε, δ)

Recently proposed
in Acharya et al. (2023).
Acts our baseline for the local
model.

User Bounded (α, δ)-bounded dEM-DP
(Def. 3.1)

Two input datasets K,K ′ ∈
Xm are indistinguishable with
parameters (αdEM(K̃, K̃ ′), δ).

The size of each dataset, m, is
public. Proofs of privacy eas-
ier due to Lemma 2.1.

User Unbounded (α, δ)-unbounded dEM-DP
(Def. 3.1)

Two input datasets K,K ′ ∈
X ∗ is indistinguishable with
parameters (αdEM(K,K ′), δ).

Implies user-level DP when
α ≤ ε since dEM(·, ·) ≤ 1.

User Unbounded (ε, δ, r)-discrete dEM-DP
(Def. 5.1)

Two input datasets K,K ′ ∈
X ∗ such that dEM(K̃, K̃ ′) ≤ r)
are indistinguishable with pa-
rameters (ε, δ)

Using group privacy, can
show (ε⌈dr ⌉, δ exp(ε⌈dr ⌉) for

two K,K ′ s.t. dEM(K̃, K̃ ′) ≤
d.

Item N/A (α, δ)-dX -DP
(Def. 2.3)

Two input items x, x′ ∈ X
is protected with parameters
(αdX (x, x′), δ)

Proposed in
Chatzikokolakis et al. (2015).

Central
(applies to
M)

User Unbounded (ε, δ)-user-level DP
(Def. 2.2)

Let KG = K1 ∪ · · ·Kn where
Ki ∈ X ∗. Two input global
datasets KG,K

′
G s.t. they dif-

fer only on the dataset of a
single user {Ki,K

′
i}, i ∈ [n]

are indistinguishable with pa-
rameters (ε, δ)

Studied widely
Bassily and Sun (2023);
Liu et al. (2020, 2023). Acts
our baseline for the central
model.

User Bounded (α, δ)-bounded dEM-DP
(Def. 3.2)

Two input global datasets
KG,K

′
G s.t. they differ only

on {Ki,K
′
i} ∈ Xm × Xm are

indistinguishable with param-
eters (αdEM(K̃i, K̃

′
i), δ)

Each Ki has size m which is
public.

User Unbounded (ε, δ, r)-discrete dEM-DP
(Def. 5.2)

Two input global datasets
KG,K

′
G s.t. they dif-

fer only on {Ki,K
′
i} and

dEM(K̃i, K̃
′
i) ≤ r are indis-

tinguishable with parameters
(ε, δ).

Using group privacy,
can show parameters
(ε⌈dr ⌉, δ exp(ε⌈dr ⌉)) for any

Ki,K
′
i s.t. dEM(K̃i, K̃

′
i) ≤ d.

Implies user-level DP when
r ≥ 1.

Table 1: Summary of privacy definitions for this paper. The number of users, n, is fixed and
publicly known for all the definitions.
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Unordered Release of Item-wise Queries

We design a mechanism for performing itemwise queries on the entire dataset K. For now we
consider bounded DP, so |K| is known in advance. Our approach is simple – apply a private
mechanism A to each item xj ∈ K and then release the set of noisy outputs {A(xj)} after shuffling
them. Here A can be an arbitrary mechanism satisfying (α, 0)-dX DP which makes our mechanism
completely general-purpose (see Section 4.2 for some concrete examples of A). The main technical
novelty lies in the privacy analysis of the above mechanism. While one can use composition to
show this release satisfies O(αm)-dEM DP Fernandes et al. (2019), this is far from being tight. As
discussed in Section 4.2, composition is not the right tool for tight privacy analysis since it does
not account for the fact that the output of our mechanism is an unordered list, i.e., the A(xj)s are
released in a random order. Instead, we leverage privacy amplification by shuffling (Feldman et al.,
2022) to prove a general shuffling result and adapt it for dEM-DP.

Theorem 1.2. (Informal version of Theorem 4.3) Suppose that A : X → Y is an α-dX DP algo-
rithm with respect to dX . Let (x1, . . . , xm) ∈ Xm be a dataset. Then, releasing Shuffle(A(x1), . . . ,A(xm))
satisfies (O(α

√

meα ln(m/δ)), δeα)-dEM DP.

This analysis reduces the cost of releasing m points in the multiset from mα to
√
mα, allowing

for better utility. We keep the analysis general – we consider releasing the shuffled multiset of any
black-box mechanism A, that satisfies metric DP in the data domain X , applied to each data point.
Consequently, this result has broader applications to the shuffle model of privacy, and may be of
independent interest.

1.1.2 Extending dEM-DP to the Unbounded Setting

We start our mechanism designs by considering the bounded data setting in both the local and
central models of privacy (see Table 1) as this enables easier privacy analysis (Section 4). However,
the bounded setting might be restrictive in practice as it cannot support usecases where users have
different amounts of data, or the data sizes are also private. To this end, we extend dEM-DP to the
more general unbounded setting. We achieve this through a general reduction that converts any
bounded dEM-DP mechanism into an unbounded one while treating the mechanism as a black box.
If the data from each user is relatively homogeneous, such as being i.i.d., then the utility of the
mechanism will be preserved.

Our reduction uses a projection mechanism that projects any dataset onto one with a fixed
size, without significantly increasing the dEM distance. The projection we use is sampling with
replacement. Intuitively, this is a smooth projection because we can view sampling from two
datasets K,K ′ in terms of a coupling between them, and show that the sampled points can also be
coupled with expected cost given by dEM(K,K ′). Using Bernstein’s inequality, we show convergence
to dEM(K,K ′), up to a small additive factor.

One caveat is that the introduced additive factor necessitates a slight adjustment to the privacy
semantics of dEM-DP. Whereas dEM-DP protects a change of dEM-distance d with an effective privacy
parameter αd, for all d > 0, our modified definition includes r as a fixed parameter, and states
that all changes of dEM ≤ r are protected uniformly with parameter αr. We may view this as a
discretization of the dEM by rounding it up to the nearest multiple of r. We refer to this notion
as (αr, δ, r)-discrete user-level dEM-DP (Def. 5.1). This privacy guarantee is weaker than dEM-DP
only for changes of dEM < r—for bigger changes, the two definitions are equivalent up to factors of
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2 using group privacy. Typically, r is small and the practical difference between the definitions is
negligible. Our reduction satisfies the following:

Theorem 1.3. (Informal version of Theorem 5.3) Suppose that for n users, M is a mecha-
nism which satisfies (α, δ)-bounded dEM-DP. The algorithm which, given arbitrary user datasets
K1, . . . ,Kn, takes s i.i.d. samples from each Ki and then applies M on each of the sampled data
items, satisfies (αr, δ, r)-discrete dEM-DP (in the central model) for all r ≥ 2 ln(1/δ)

s .

The two notions of privacy are nearly equivalent for small r, showing that unbounded dEM-DP
can be reduced to bounded dEM-DP with an almost exact translation of the privacy guarantee.

1.1.3 Demonstrating Improvements Over User-level DP

Finally, we evaluate the benefit of using the more nuanced privacy semantics of dEM-DP over
standard user-level DP by comparing the privacy and utility of our proposed mechanisms with
baselines. Specifically, in Sec. 6.1, we study a special type of linear query called linear embedding
queries and in Sec. 6.2, we study private frequency estimation. For simplicity, we consider the
bounded data setting.

Let’s start by understanding the relationship between (α, δ)-dEM-DP and (ε, δ)-user-level DP.
The following observations hold in both the central and local models:

• α = ε: Since we assume dX is normalized, we always have dEM ≤ 1. Thus, in this case (ε, δ)-
dEM-DP implies (ε, δ)-user-level DP. However, any pair of inputK,K ′ such that dEM(K̃, K̃ ′) <
1 the privacy protection of dEM-DP is actually stronger. (Note that if α ≤ ε, then user-level
DP is strictly weaker than dEM-DP; the more appropriate baseline is to use α = ε.)

• α > ε: In this case, some pairs of inputs (with a large dEM distance between them) are pro-
tected less strongly than they are under user-level DP. However, as indicated in our aforemen-
tioned real-life examples, input pairs with high dEM (i.e., dissimilar input pairs) are typically
less sensitive.

Now, we interpret the theoretical error bounds for linear embedding queries. From Table 2a, the
error for releasing a d-dimensional linear embedding query under user-level DP is O( d

εn), while it

is O( d
αn) for dEM-DP. When α = ε, these utilities are identical, but dEM-DP offers stronger privacy.

When α > ε, then the utility of dEM-DP is higher than that of user-level DP, with the the two
guarantees offering differing privacy semantics. Thus, in both cases, there is a clear benefit of using
dEM-DP. These observations are the same in the local model.

Finally, for frequency estimation in the local model, Table 2b shows that the error of user-

level DP is O(
√

k2 ln(m/δ)
nε2

), while it is O(
√

k3

nα2 max{ln(mδ ), α} for dEM-DP. For constant ε and

α ≥ ε2 k
ln(m/δ) , the utility is improved. In the central model, the error of the user-level DP algorithm

is O( k
nε) while it is O(k

3/2

nα

√

max{ln(mδ ), α}) for dEM-DP. The algorithm under dEM-DP has the
added benefit that it can be implemented in the shuffle model of privacy, which requires less trust
and parallels prior work in the shuffle model Feldman et al. (2022). There is a utility improvement
for α ≥ ε2k. When ε ≤ α ≤ ε2k, we leave it as an interesting open problem whether dEM-DP can
offer utility improvements over user-level DP.
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Linear Embedding Queries

Algorithm Privacy Guarantee Privacy Model ℓ2 Error Notes

K-norm Mechanism (ε, 0)-user level DP♭ Central, Bounded O( d
εn) (Lemma 6.3) dEM-DP gives same utility but stronger

privacy for α = ε; dEM-DP gives better
utility but different privacy for α > ε.PrivEMDLinear (α, δ)-dEM-DP Central, Bounded O( d

αn

√

ln 1
δ ) (Lemma 6.2)

♭For random linear queries, this algorithm also has best-known error among all (ε, δ)-user-level DP algorithms.

(a) Comparison of dEM-DP to user-level DP in the central model for releasing a d-dimensional
linear embedding query. The errors in the local model are a factor

√
n higher.

Frequency Estimation

Algorithm Privacy Guarantee Privacy Model dEM Error Notes

Hadamard Response (ε, 0)-user-level DP♭ Local, Bounded O

(

√

k2 ln(m/δ)
nε2

)

(Lemma 6.4) Assuming k, ε, α ≤ √
m;

dEM-DP gives better utility
for α ≥ ε2 k

ln(m/δ) .PrivEMDItemWise (α, δ)-dEM-DP Local, Bounded O

(

√

k3

nα2 max
{

ln(mδ ), α
}

)

(Thm. 6.6)

Laplace Mechanism (ε, 0)-user-level DP♭ Central, Bounded O
(

k
nε

)

(Lemma 6.7) Assuming n < m
α ; dEM-DP

gives better utility when
α > ε2k .PrivEMDItemWise (α, δ)-dEM-DP Central, Bounded O

(

k3/2

nα

√

max
{

ln(mδ ), α
}

)

(Corollary 6.8)

♯This algorithm works in the shuffle model, which requires less trust than the central model.

♭This algorithm also has best-known error among all (ε, δ)-user-level DP algorithms.

(b) Comparison of dEM-DP to user-level DP for frequency estimation in the setting defined in
Section 6.2. k is the domain size |X |.

Table 2: Summary of theoretical utility guarantees, assuming there are n users who hold datasets
of size m.

2 Background

2.1 Differential Privacy

Intuitively, DP is a property of a mechanism which ensures that its output distribution remains
insensitive to changes in the data of a single individual. The standard DP guarantee, which is
also know as item-level DP, considers each user Ui to contribute only a single item xi ∈ X to a
global dataset, i.e., Ki = xi. Instead we consider user-level DP, where each Ki is itself a multiset of
elements from X . We denote the set of all multisets of elements from X as X ∗. In the local model,
our privacy definition is then:

Definition 2.1 (Unbounded User-level Local DP Acharya et al. (2023)). We say a mechanism M
acting on a dataset K satisfies (ε, δ)-unbounded user-level local DP if, for all K,K ′ ∈ X ∗ and all
outputs O

Pr[M(K) = O] ≤ eε Pr[M(K ′) = O] + δ. (1)

Note that here we consider the more general unbounded data setting where the two datasets
{K,K ′} can have arbitrary sizes.

Next, we present the definition for the central model.

Definition 2.2 (Unbounded User-level Central DP Liu et al. (2023)). Let KG = K1 ∪ · · · ∪ Kn

denote a global dataset from n users where ∀i ∈ [n],Ki ∈ X ∗. We say KG ∼ K ′
G, if K

′
G can be

obtained from KG by changing the dataset of a single user Ui from Ki to K ′
i. We say a mechanism

M acting on a dataset K satisfies (ε, δ)-unbounded user-level central DP if, for all KG,K
′
G such

8



that KG ∼ K ′
G, and all outputs O

Pr[M(KG) = O] ≤ eε Pr[M(K ′
G) = O] + δ. (2)

Note that there is no restriction on the sizes of the datasets {Ki}, i ∈ [n] in the above definition.
Next, we define metric DP that enables the privacy guarantee to depend on a metric dX between

the pair of inputs. We start by introducing it at the item-level (i.e., we consider changing only one
item x ∈ X to another item x′ ∈ X ). For simplicity, we consider the local model, so the mechanism
acts on just a single item:

Definition 2.3 (Local dX -DP Alvim et al. (2018)). We say M satisfies (α, δ)-local dX -DP if for
all data elements x, x′ ∈ X , and all outputs O

Pr[M(x) = O] ≤ eαdX (x,x′) Pr[M(x′) = O] + δ.

We replace the traditional privacy parameter ε with α in the above definition, because ε in
Definitions. 2.1 and 2.2 is a unitless parameter while α has the inverse unit of dX .

2.2 Earth-Mover’s Distance

Notations. We view datasets as multisets of elements from X . We will also view a dataset K ∈ X ∗

as a probability distribution defined by its normalized histogram K̃. To do so, let ∆X ⊆ R
X de-

note the probability simplex indexed by X—i.e. the set of all vectors 〈vx〉x∈X such that vx ≥ 0
and

∑

x∈X vx = 1. For a dataset K, K̃ ∈ ∆X then denotes the probability distribution de-

fined by K, meaning K̃[x] = Num. occurrences of x in K
|K| . The earth-mover’s (or 1-Wasserstein) dis-

tance Givens and Shortt (1984) is defined as follows. For a joint distribution C(x1, x2) ∈ ∆X×X ,
let Cx1

(x2) denote the distribution conditioned on observing x1, and let C1(x1) denote the marginal
distribution of x1. We define Cx2

(x1) and C2(x2) similarly.

Definition 2.4. For distributions P,Q ∈ ∆X , a joint distribution C on X×X is a coupling between
P and Q if C1 = P and C2 = Q. We let C(P,Q) denote the set of couplings between P and Q.

A coupling C can be viewed as a “transportation plan” between P and Q, in the sense that if
C places m probability mass at a point (x1, x2), then m probability mass from P at x1 is trans-
ported to Q at x2 (or vice-versa). We define the cost of a coupling as the expected transportation
distance given by E(x,x′)∼CdX (x, x

′). The earth-mover’s distance (dEM) between P,Q is equal to
the minimum possible cost of a coupling between P and Q:

dEM(P,Q) = inf
C∈C(P,Q)

E(x,x′)∼C dX (x, x
′).

Since we assume that dX is bounded by 1, we have dEM(·, ·) ≤ 1.
Next, we present the Birkhoff-Von Neumann theorem which is useful in our privacy analysis in

Section 4.2. The theorem states that if both P and Q are empirical distributions with the same
number of points, then the dEM between them is the cost of the coupling that moves the entire
mass in each point to the same destination:

Lemma 2.1. [Birkhoff-Von Neumann Theorem Konig (2001), Lemma A.1 in Fernandes et al.
(2019)): For two datasets K = {x1, . . . , xm} and K ′ = {y1, . . . , ym}, there is a permutation π :
[m] → [m] such that

dEM(K̃, K̃ ′) =
1

m

m
∑

i=1

dX (xi, yπ(i)). (3)

9



3 Definition of dEM-DP

In this section, we introduce our generalization of metric DP to the user-level. We start with the
local model. We use the dEM metric to measure the distance between two datasets K,K ′ since it
captures the intuition that the changes which move smaller amounts of data by smaller distances
are more sensitive (as discussed in Section 1).

Definition 3.1 ((Un)Bounded Local dEM-DP). Let M be a mechanism which acts on a dataset
K. We say M satisfies (α, δ)-bounded local dEM-DP if for any two datasets K,K ′ such that
|K| = |K ′|, and for any output O, we have

Pr[M(K) = O] ≤ eαdEM(K̃,K̃ ′) Pr[M(K ′) = O] + δ. (4)

If the above equation holds for all datasets K,K ′, regardless of whether |K| = |K ′|, we say that M
satisfies (α, δ)-unbounded local dEM-DP.

For bounded dEM-DP, the size of the dataset is not protected, which is acceptable for applica-
tions where the amount of data is not sensitive. We explicitly differentiate between bounded and
unbounded data since privacy analysis is easier under bounded dEM-DP by leveraging Lemma 2.1
(see Section 4).
In the central model, our goal is to protect changes in a single user’s dataset, transitioning from
Ki to K ′

i, with a privacy guarantee that depends on dEM(K̃i, K̃
′
i). We consider the bounded data

setting where each dataset Ki has a publicly known fixed size m.

Definition 3.2 (Bounded Central dEM-DP). Let KG = K1 ∪ · · · ∪Kn denote a global dataset from
n users where ∀i ∈ [n],Ki ∈ Xm. We say KG ∼ K ′

G if K ′
G can be obtained from KG by changing

the dataset at a single index i from Ki to K ′
i. We say a mechanism M satisfies (α, δ)-bounded

central dEM-DP if, for all KG,K
′
G such that KG ∼ K ′

G, and all outputs O, we have

Pr[M(KG) = O] ≤ eαdEM(K̃i,K̃ ′

i) Pr[M(K ′
G) = O] + δ.

In the above definition, the two global datasets KG,K
′
G are indistinguishable with a privacy

parameter αdEM(Ki,K
′
i). Since we consider the bounded data setting, neither the number of total

users, n, nor the size of the individual datasets, m, are protected.
It is important to note that the above definition cannot be directly translated to the unbounded

data setting. This limitation arises from the fact that if each Ki is allowed to have an arbitrary
size, then changing a single Ki could potentially change the entirety of KG in the worst-case (where
user Ui contributes the entire global dataset). This essentially reduces the central model (Def. 3.2)
to the local model (Def. 3.1). We circumvent this challenge and provide a privacy definition for the
unbounded data setting in Section 5, by controlling the amount of data from each user.

Setting the Privacy Parameters. There are some semantic differences between the param-
eter α in Defns. 3.1 and 3.2, and ε in Defns. 2.1 and 2.2. The privacy parameter ε is unitless. On
the other hand, α is not unitless – it has a unit inversely proportional to dEM. While ε ≫ 1 is
usually not considered acceptable for standard DP, it is not unreasonable to set α ≫ 1 in our case.
This is acceptable if a strong privacy guarantee is needed only for input pairs that are close to each
other since dEM(·, ·) < 1. For all q, τ ∈ [0, 1], let E(q, τ) refer to the minimum privacy parameter
that is acceptable over all data changes of the form

10



A τ -fraction of K is changed by average distance q.

Then, α may be set as α = infq,τ∈[0,1]
E(q,τ)
qτ , and we can verify that Defn. 3.1 will protect an input

pair with the corresponding budget E(q, τ). The parameter δ has the same interpretation as in
standard DP, and should be set δ ≪ 1

poly(n) .

Concrete Example. Throughout this paper, we consider a dataset of n = 105 users, each of
whom contributes m = 103 location data points over the period of a month. We use the length of
the shortest path on earth’s surface as our metric dX . Suppose we want to protect a user’s location
over any particular day within a radius of 1000 miles, and the user’s location over the entire time
period within a distance of 100 miles. In the normalized metric space, these distances are q1 = 0.08
and q2 = 0.008, respectively3. They correspond to a fraction τ1 =

1
30 and τ2 = 1 of the metric space

changing, respectively. Suppose we want to protect both of these inputs with privacy parameter

ε = 0.2. Hence, we set α = min
{

ε
τ1q1

, ε
τ2q2

}

= 25. This value is much higher than typical privacy

parameters used in DP, and yet it is able to adequately protect the desired inputs. Finally, we will
set δ = 10−12 in our examples.

4 Mechanisms for dEM-DP

Now, we describe our mechanisms for releasing queries under dEM-DP. Throughout this section, we
focus on the bounded data setting, and consider both the local and central models by considering
a general dataset K which will be set to be Ki in the local model and KG in the central one. In
Section 4.1, we show how to bound the sensitivity of linear queries, which can then be released
with the addition of calibrated noise. Then, in Section 4.2, we show that we can release a noisy
representation of K̃ under dEM-DP by applying any dX -DP mechanism to each item in K, and
shuffling the outputs. Full proofs for this section appear in Appendix B.

4.1 Linear Queries

A non-adaptive linear query on a dataset K computes the value of FK̃, where F ∈ R
d×|X | is

a matrix with d rows. The linearity comes from the linear transformation F ; our linear queries
are normalized since they operate on K̃ rather than K. Such normalized queries can be used for
answering the fraction of users satisfying a predicate Blum et al. (2013). Nevertheless, one can
estimate the non-normalized query by multiplying by an estimate of |K|.

Let us represent F by a function f : X → R
d where f(x) = F [x], the xth column of F . The

linear query can then be re-written as

qf (K) = Ex∼K̃[f(x)]. (5)

Thus, we may interpret a linear query on K̃ as expected value of f over a random item from K. Lin-
ear queries are simple but capable of expressing many indispensible tools in data analysis, and they
are well-studied in differential privacy (Blum et al., 2013; Hardt and Talwar, 2010; Dwork et al.,
2014). We will design a simple mechanism satisfying dEM-DP for releasing a linear query, based
on bounding the sensitivity of qf under the dEM. The sensitivity measures the maximum change

3The maximum surface distance between two points on Earth is ≈ 12930 miles.
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output qf , measured according to some norm ‖ · ‖ on R
d, relative to a change in the inputs by a

certain dEM. This is given by:

∆EM(qf ) = max
K,K ′∈X ∗

‖qf (K)− qf (K
′)‖

dEM(K̃, K̃ ′)
.

Naively, it is intractible to compute this sensitivity since there are exponentially many datasets of
a given size. Additionally, this sensitivity might not always be bounded. For instance, consider
two points x, x′ that are close in X , but f(x) is very far from f(x′). In this case, we cannot
bound ∆EM, since the K and K ′ which put all their mass on x and x′, respectively, will have
‖qf (K)−qf (K

′)‖
dEM(K̃,K̃ ′)

= ‖f(x) − f(x′)‖. We may exclude this case by assuming that f is ℓ-Lipschitz,

meaning

max
x,x′∈X

‖f(x)− f(x′)‖
dX (x, x′)

≤ ℓ.

It turns out that Lipschitzness is precisely the property needed in order to bound ‖qf (K̃)−qf (K̃
′)‖

while effectively accommodating the underlying coupling between K̃, K̃ ′. This is a novel aspect of
our analysis that has not been explored by previous sensitivity analysis.

Theorem 4.1. Let qf (K) be a linear query of the form in (5), where f : X → R
d is ℓ-Lipschitz.

Then, we have ∆EM(qf ) ≤ ℓ.

Remarks. The above result stands in contrast with traditional sensitivity arguments, which
typically assume the weaker condition that f is merely bounded by ℓ. Although our Lipschitz
assumption is stronger, it is satisfied by many queries of interest, such as

• Average. If X ⊆ R
d, then taking f to be the identity function will cause qf to simply be the

average of the elements in K.

• Kernel Smoothed Region Queries. If R ⊆ X is a region of interest, then f(x) = 1[x ∈ R] will
yield a qf computing the fraction of elements that lie in R. Using a smooth interpolation of
1[x ∈ R], such as kernel smoothers Hastie et al. (2009), will give a smooth approximation to
this value.

• Similarity Queries. If X ⊆ R
d and c ∈ R

d is a query vector, then letting f(x) = 〈x, c〉 will
return the average similarity of each vector in K with c, with similarity measured by the dot
product. This is an instance of a linear embedding query which we will study in detail in
Section 6.1.

Additionally, the aforementioned example illustrates that this sensitivity analysis is tight. This
means that dX , in addition to defining the privacy semantics, also influences the types of queries
that can be answered with good utility.
Proof Sketch. At a high level, consider moving K onto K ′ one point at a time. The Lipschitz
assumption allows us to bound the change in qf (K) in terms of how far the point is moving, which
translates to the dEM distance. More formally, let C be a minimum cost coupling between K̃, K̃ ′.
We may write

‖qf (K̃)− qf (K̃
′)‖ =

∥

∥

∥
Ex∼K̃ [f(x)]− Ey∼K̃ ′ [f(y)]

∥

∥

∥
.
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We can view x and y as jointly generated by C, and the above expression becomes ‖Ex,y∼C [f(x)−
f(y)]‖. By the triangle inequality, we know this is at most

‖qf (K̃)− qf (K̃
′)‖ ≤ Ex,y∼C [‖f(x)− f(y)‖],

and by the Lipschitz assumption, we may upper bound this by

ℓ · Ex,y∼C [dX (x, y)] = ℓ× dEM(K̃, K̃ ′),

which completes the proof.
Using the upper bound on ∆EM(qf ), we follow a well-known approach for privately releasing

a point with known sensitivity under a norm: sample a point U uniformly from the ball {x ∈
R
d : ‖x‖ = 1}, and release qf + ℓgU , where g ∼ Γ(d, ωα ) is the Gamma distribution with shape

d and scale ω
α (Hardt and Talwar, 2010). Here, ω is a scale parameter that may be different in

the central or local model, since the sensitivity of f is less in the bounded central model. This
mechanism, PrivEMDLinear, is outlined in Algorithm 1. Combining Theorem 4.1 with a standard
privacy analysis, we can show that PrivEMDLinear satisfies (α, 0)-dEM DP.

Lemma 4.2. PrivEMDLinear (Algorithm 1) with scale ω = 1
α satisfies (α, 0)-unbounded local dEM-

DP and with scale ω = 1
αn satisfies (α, 0)-bounded central dEM-DP.

Remarks. When using the 1-norm, PrivEMDLinear becomes the multidimensional Laplace mech-
anism. We may instantiate PrivEMDLinear with any noise mechanism that preserves (α, δ)-local
‖ · ‖p-DP in the space R

d. In Section 6.1, we will instantiate PrivEMDLinear using Gaussian noise

of width
ω
√

1.25 ln(1/δ)

α Dwork et al. (2014), which will give the proper error dependence on d under
the 2-norm.

Concrete Example. In our location example, consider releasing the average distance of each
point in K from a particular city in the local model. This can be expressed with f(x) = dX (x, c),
where c is the city; by the triangle inequality this is 1-Lipschitz. PrivEMDLinear could then be
applied to release qf (Ki) plus noise of expected magnitude ℓ

α = 0.04 per user; the total noise will
be 0.04√

n
= 1.26 × 10−4, corresponding to an error of just 1.6 miles.

Algorithm 1: PrivEMDLinear, an algorithm for releasing linear queries under bounded
dEM-DP.

Data: qf – A d-dimensional linear query; ℓ – Upper bound of the Lipschitz constant of f ;
K – Input dataset; ω – scale parameter

Result: An estimate of qf (K)
Sample U uniformly from {x ∈ R

d : ‖x‖ = 1};
Sample g ∈ R from Γ(d, ω);

return q̂ = qf (K̃) + ℓgU ;

4.2 Unordered Release of Item-wise Queries

We now consider the problem of directly releasing a private query applied to each item in K. This
can provide a more fine-grained result than the aforementioned linear queries, which outputs the
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average over all the items. We release the query results as an unordered list to take advantage of
the fact that subsequent computation (such as, aggregation) often does not depend on the ordering
of the data Feldman et al. (2022). Specifically, our second mechanism PrivEMDItemWise applies a
mechanism A, which satisfies (α0, 0)-dX -DP, to each item individually. We use A as a black-box
making PrivEMDItemWise completely general-purpose. For example, one could let A be a private
item-release mechanism (see Section 7 for some examples) and use PrivEMDItemWise to form a
histogram of the dataset. A could also be a classifer, and PrivEMDItemWise can then release a
simplified representation of the dataset. Once PrivEMDItemWise applies A to each element in the
dataset, it shuffles the results (to remove any ordering of the data) and outputs the shuffled list.
This appears in Algorithm 2, and a precursor appeared in Fernandes et al. (2019).

As PrivEMDItemWise does not hide the size of K, we show it satisfies bounded dEM-DP. We use
the following argument: for a neighboring dataset K ′ = {x′1, . . . , x′m}, by Lemma 2.1 there exists
a permutation π : [m] → [m] satisfying Eq. (3). Observe that we release the query responses in an
unordered fashion by explicitly shuffling them. This allows us to pair up the element xi with xπ(i)
and analyze the privacy guarantee of releasing A(x1), . . . ,A(xm) versus A(x′π(i)), · · · ,A(x′π(m)).

Prior work does this with composition Fernandes et al. (2019). However, composition is not the

Algorithm 2: PrivEMDItemWise, a general mechanism for releasing a item-wise queries
from K as an unordered list under bounded dEM-DP

Data: Dataset K ∈ Xm, Mechanism A : X → Y satisfying (α0, 0)-dX DP
Result: L ∈ Ym, unordered list (multiset) of item-wise queries from K
L = ∅ ;
for i = 1, . . . ,m do

Add A(xi) to L;
end

Shuffle(L);
return L

right tool for obtaining a tight privacy analysis. The reason is that composition assumes that each
A(xi) is output sequentially, and in particular it is possible to identify which point came from A(xi)
and which came from A(xπ(i)). In our case, we output an unordered list, and it is not possible
to link which point came from an index i. Based on this observation, our key idea is to leverage
privacy amplification by shuffling (Feldman et al., 2022) instead, which can yield a much smaller
privacy parameter when the output is order invariant.

In particular, our core technical contribution is to analyze a general formulation of the privacy
amplification by shuffling problem, where the vector x1, . . . , xm is changed to an arbitrary vector
x′1, . . . , x

′
m. The key quantities we have control over are ‖v‖1 and ‖v‖0, where v = (dX (xi, x′i))

m
i=1

(the dEM distance allows us to bound ‖v‖1 and the maximum contribution from a user allows us
to bound ‖v‖0); thus, our privacy bound depends on them. We believe our general result is of
independent interest in the field of metric DP. Formally,

Theorem 4.3. Suppose that (X , dX ) is a metric space such that dX (·, ·) ≤ 1, and that A is
an (α0, 0) dX -DP algorithm. Let (x1, . . . , xm) and (x′1, . . . , x

′
m) be two vectors, and we define

v = (dX (xi, x′i))
m
i=1. Let 0 < δ < 1 be a constant, and suppose it holds that α0 < ln( m

16 ln(4m/δ) ).
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Then, for all outputs O, we have that

Pr[Shuffle(A(x1), . . . ,A(xm)) = O] ≤ eα Pr[Shuffle(A(x′1), . . . ,A(x′m)) = O] + δeα,

where

α ≤ ‖v‖0 ln
(

1 +
exp(α0‖v‖1/‖v‖0)− 1

exp (α0‖v‖1/‖v‖0) + 1

(

8
√

eα0 ln(4‖v‖0/δ)√
m

+
8eα0

m

))

.

Remarks. In particular, if α0 ≤ ‖v‖0
‖v‖1 , the above bound is ≈ α0‖v‖1√

m
, which grows with just

√
m

(as ‖v‖1 ≤ m). The standard shuffling result only assumes that A satisfies α-local DP, and that
just x1 is changed to x′1 (since each user owns a single item). Theorem 4.3 can be specialized to
recover the state-of-the-art result for this special case Feldman et al. (2022), but it is significantly
more general in its current form.
Proof Sketch. Using group privacy, we can analyze the privacy guarantee between (x1, . . . , xm)
and (x′1, . . . , x

′
m), where up to ‖v‖0 points change, instead of just changing one point as a time. We

then analyze a change of one point by generalizing and simplifying the state-of-the-art technique
in Feldman et al. (2022). We show that the resulting privacy parameter for changing the point xi
to x′i is g(wi) where

g(wi) = ln

(

1 +
eα0wi − 1

eα0wi + 1

(

8
√

eα0 ln(4/δ)√
m

+
8eα0

m

))

.

By group privacy ‖v‖0 times, the overall privacy parameter is
∑‖v‖0

i=1 g(wi). The final step is proving

that g is concave so the worst-case amplification is simply ‖v‖0g(‖v‖1‖v‖0 ).
Comparison with Composition. Analyzing Theorem 4.3 using the state-of-the-art composition
results (Kairouz et al., 2015) and α0 ≤ 1 gives us

α ≤ O

(

α0‖v‖2
√

ln 1
δ

)

.

However, we cannot form a satisfying bound on the 2-norm of v—it is only possible to say ‖v‖2 ≤
‖v‖1 which is tight when e.g. ‖v‖0 = 1. The bound is thus missing the factor of 1√

m
—composition

here does not leverage the fact that all m items are released in a random order.
Combining (3) and Theorem 4.3, we obtain an improved privacy guarantee for PrivEMDItem-

Wise. The guarantee can be stated in both the bounded local and central models. In the local
model, recall that each user is applying PrivEMDItemWise to their data. In the central model,
the aggregator applies PrivEMDItemWise to the entire dataset, and releases the frequencies of mn
itemwise queries.

Theorem 4.4. For any δ ∈ (0, 1), PrivEMDItemWise shown in Algorithm 2 satisfies bounded local
(α, δ′)-dEM DP, where

α = supw∈[0,1]
h(m;m,mw)

w and δ′ = δeh(m;m,m),

and

h(m;x0, x1) = x0 ln

(

1 +
exp(α0x1/x0)− 1

exp (α0x1/x0) + 1

(

8
√

eα0 ln(4x0/δ)√
m

+
8eα0

m

))

.
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Similarly, PrivEMDItemWise satisfies bounded central (α, δ′)-dEM DP, where

α = supw∈[0,1]
h(mn;m,mw)

w and δ′ = δeh(mn;m,m).

Remarks. Theorem 4.4 gives the tightest possible privacy parameters, but we may also give an
asymptotic formula as follows. For desired privacy parameters (α, δ), one should set

α0 =











α

32
√

m ln(4meα/δ)
if α ≤ 32

√

m ln(4meα/δ)

2 ln

(

α

16
√

m ln(4meα/δ)

)

32
√

m ln(4meα/δ) < α < m
(6)

and

α0 =











α
√
n

32
√

m ln(4meα/δ)
if α

√
n ≤ 32

√

m ln(4meα/δ)

2 ln

(

α
√
n

16
√

m ln(4meα/δ)

)

32
√

m ln(4meα/δ) < α
√
n < m

√
n

(7)

in order to achieve dEM-DP in the bounded local and central model, respectively. Assuming α ≤
O(ln(m)), this means that the privacy parameter will be roughly α√

m
(resp. ln(α

√
n√
m
)) for releasing

them samples; this is asymptotically better than the analysis with composition which would require
setting α0 = α

m (resp. α
m)). Even with higher α = mc for c < 1, the budget is still α√

m1+c
(resp.

ln( α
√
n√

m1+c
)), which are both significant asymptotic improvements.

Concrete Example. Our improved analysis makes the most significant improvements in the
central model. Here, we would have to apply PrivEMDItemWise with α0 = α

m = 0.025 for each of
the m = 103 location data points per user. Using the guarantee of Theorem 4.4, it is possible to
set α0 ≈ 3.0 – a several orders of magnitude improvement.
Open Questions. The primary open question in the design of our mechanism is whether one can
obtain a tighter privacy analysis of Theorem 4.4 that does not rely on group privacy, but rather
analyzes the amplification potential of all points at once.

New Proof Techniques. First, in the case of linear queries, we bound the sensitivity under
dEM-DP using a Lipschitz assumption. This stands in contrast to sensitivity arguments in
standard DP, which typically assume the weaker condition that the query is merely bounded.
This is a novel aspect of our analysis that has not been explored in prior sensitivity analysis.
Second, in the context of unordered release of item-wise queries, we prove a new result
for privacy amplification by shuffling. This is a more generalized version of the standard
shuffling result Feldman et al. (2022) in two ways – (1) the standard result assumes that the
private mechanism satisfies local-DP whereas we work with mechanisms that satisfy dX -DP;
(2) the standard result only considers changes to a single point, whereas we allow changes
to all m input points. Using this result, we provide a tighter privacy analysis than what
composition theorems would allow. Our new privacy amplification by shuffling result can be
of independent interest in the field of metric DP.

5 Generalization to Unbounded DP

The mechanisms presented so far face two challenges when applied to the unbounded data setting.
First, a direct privacy analysis of the unbounded data setting is difficult since we cannot leverage
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Lemma 2.1, which significantly simplifies the analysis (for the bounded data setting). Second, and
more importantly, the unbounded central model offers no utility improvement over the local model.
In the worst-case scenario, a single user may contribute nearly all the data in the dataset, effectively
reducing any algorithm to satisfying only local dEM-DP. This issue has been noted in previous work
in user-level DP Liu et al. (2023).

In this section, we tackle these challenges by showing a blackbox reduction from unbounded
dEM-DP to bounded dEM-DP. Our reduction works in both the local and central models. The key
idea of the reduction is to smoothly project a dataset K of any size to a dataset L of a given fixed
size, such that the dEM distance between any two input datasets and the dEM distance between their
projections are roughly the same. Then, it is easy to show that applying any bounded dEM-DP
algorithm to the smooth projections is sufficient to guarantee unbounded dEM-DP for the entire
scheme. Full proofs for this section appear in Appendix C.

Our proposed projection mechanism is smooth in a near-multiplicative sense, albeit with a small
additive penalty when the dEM between the two datasets is small. We account for this subtlety
by slightly modifying the privacy semantics of dEM-DP in the unbounded setting to not grow
arbitrarily strong as dEM(K̃, K̃ ′) → 0. Instead, we introduce a distance threshold r such that all
dEM(K̃, K̃ ′) ≤ r enjoys a uniform privacy guarantee of ε. This refined privacy definition, termed
discrete dEM-DP, is formalized (in the local model) as:

Definition 5.1. [Discrete Local dEM-DP] Let M be a mechanism which acts on a dataset K.
We say M satisfies (ε, δ, r)-discrete local dEM-DP if, for any two datasets K,K ′ ∈ X ∗ such that
dEM(K̃, K̃ ′) ≤ r,

Pr[M(K) = O] ≤ eε Pr[M(K ′) = O] + δ.

Like in standard DP, the above definition uses the parameter ε because it is a unitless privacy
parameter—the unit of the metric is expressed in the parameter r.

Fact 5.1. For any K,K ′ such that d = dEM(K̃, K̃ ′), M satisfies

Pr[M(K) = O] ≤ eε⌈
d
r
⌉ Pr[M(K ′) = O] + δ exp(⌈dr ⌉).

Fact 5.1 is implied from Definition 5.1 followed by a direct application of group privacy Dwork
(2006). This guarantee can be interpreted as providing dEM-DP at the granularity of units of dEM
distance r. Note that for all d ≥ r, we have ε⌈dr ⌉ ≤ 2ε

r d. Thus, (ε, δ, r)-discrete local dEM DP

is roughly equivalent to (2εr , δ)-unbounded local dEM-DP, except if dEM(K̃, K̃ ′) ≤ r. In this case,
the privacy parameter will not go below ε. This adjustment does not significantly alter the overall
privacy semantics of dEM-DP; one may simply set α as described in Section 4.

In the central model, we make a similar definition:

Definition 5.2. [Discrete Central dEM-DP] Let KG = K1 ∪ · · · ∪Kn denote a global dataset from
n users (of any size). We say KG ∼r K

′
G if K ′

G can be obtained from KG by changing Ki to K ′
i for

just one user i, such that dEM(K̃i, K̃
′
i) ≤ r. We say a mechanism M(KG) satisfies (ε, δ, r)-discrete

central dEM-DP if, for all KG,K
′
G such that KG ∼r K

′
G, we have

Pr[M(KG) = O] ≤ eε Pr[M(K ′
G) = O] + δ.

17



As before, (ε, δ, r)-discrete central dEM-DP is roughly equivalent to (2εr , δ)-bounded central dEM-
DP when all user datasets have size m. We will see that Definition 5.2 is the appropriate general-
ization to unbounded user datasets under our projection mechanism which is described below.

Because our projection mechanism must preserve the dEM between K̃, K̃ ′, it is not acceptable
to select an arbitrary set of points from K̃, K̃ ′, as this could dramatically inflate the dEM distance.
However, couplings are intimately tied with sampling – observe that two random samples from
K̃, K̃ ′ can actually be coupled so that their expected distance is dEM(K̃, K̃ ′). If this process is
repeated multiple times, then the cost of coupling the samples will converge to dEM(K̃, K̃ ′). Thus,
sampling with replacement will result in a projection that does not increase the dEM distance by
too much.

Algorithm 3: BoundedEMDReduction, a reduction from unbounded dEM-DP to bounded
dEM-DP.

Data: KG - Global datasets of n users; A - A mechanism satisfying bounded dEM-DP; s -
Number of samples.

L = ∅;
for i = 1 to n do

Add s uniform samples with replacement from Ki to L
end

O = A(L);
return O

Lemma 5.2. Let K̃, K̃ ′ ∈ ∆X be probability distributions, and let C∗ be the minimum cost coupling
between K̃, K̃ ′. Let {(xi, yi)}si=1 be s i.i.d. samples from C∗, L = (x1, . . . , xs) and L′ = (y1, . . . , ys).
Then,

Pr[dEM(L̃, L̃′) ≥ (1 +
√
2)dEM(K̃, K̃ ′) + 3

s ln(
1
δ )] ≤ δ.

Remarks. The multiplicative factor of 1 +
√
2 shows that the projection is smooth when

dEM(K̃, K̃ ′) dominates the additive factor of 3
s ln(

1
δ ). This is achieved when the number of samples

s is much larger than the inverse of dEM(K̃, K̃ ′). If s is not sufficiently large, then not enough
samples are being taken to ensure convergence.
Proof Sketch. Let C be a minimum-cost coupling between K̃, K̃ ′. To show that L̃, L̃′ are not
far from each other, we can view L̃′ as being generated from L̃, where for each point x ∈ L, a
point y ∼ Cx(·) is added to L′. This view of L̃, L̃′ shows there is a transportation plan from
L = {x1, . . . , xs} and L′ = {y1, . . . , ys} of expected cost Ex∼C1,y∼CxdX (x, y) = dEM(K̃i, K̃

′
i). Using

Bernstein’s inequality, we can show with probability at least 1− δ, dEM(L̃, L̃′) is upper bounded by
2dEM(K̃i, K̃

′
i) +

6
s log(

1
δ ).

Our full reduction to bounded dEM-DP first projects K onto a dataset of size m by taking
samples with replacement. Next, it applies a blackbox bounded dEM-DP mechanism, A, to the
projected dataset L. By blackbox application we mean that A can be any arbitrary mechanism
as long as it satisfies bounded dEM-DP. We call this mechanism BoundedEMDReduction, and it
is illustrated in the central model in Algorithm 3 (in the local model, each user samples from
their own Ki, so we would simply have n = 1). Using the projection guarantee of Lemma 5.2,
BoundedEMDReduction enjoys the following privacy guarantee:
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Theorem 5.3. Let ε > 0 and δ, r ∈ [0, 1] be arbitrary constants. Suppose A is a mechanism which
satisfies (α, δ)-bounded local dEM-DP (Definition 3.1), where

α = ε

(1+
√
2)r+

3
s ln(

1
δ )
.

Then, BoundedEMDReduction satisfies (ε, 2δ, r)-discrete local dEM-DP. Similarly, if A is (α, δ)-
bounded central dEM-DP (Definition 3.1), then BoundedEMDReduction is (ε, 2δ, r)-discrete central
dEM-DP.

Remarks. If the number of samples s is at least ln(1/δ)
r , then Theorem 5.3 shows there is only

a small multiplicative cost to considering just bounded dEM-DP (in the respective local or central
model). In this case, A will need to roughly satisfy ( εr , δ)-bounded dEM-DP, and this is roughly
the same as the resulting (ε, δ, r)-discrete dEM DP algorithm. There is no privacy disadvantage
to taking a large number of samples, and the utility may also increase due to more information
about the dataset being captured (recall that the projection does not providing privacy; it is being
provided by A). Thus, the number of samples may be set to be large with computational costs
being the only constraint.
Proof Sketch. The proof of privacy is almost immediate from Lemma 5.2. The variables L̃, L̃′

in two executions of BoundedEMDReduction are random variables, but with probability δ, the dEM
distance between them is c = (1 +

√
2)r + 3

s ln(
1
δ ). By the convexity of differential privacy, we can

analyze the privacy parameter of every fixed choice of L̃, L̃′. With probability 1 − δ, the privacy
parameter will be α

c , by the privacy guarantee of A.
BoundedEMDReduction can be used to bound the contribution of each user in the central setting, al-
lowing us to apply the simpler Definition 3.2. In addition, it can be used to adapt PrivEMDItemWise

to the unbounded data setting. One caveat is that utility may not be preserved if the number of
user samples is too small or, in the central setting, if the users data distributions are heterogeneous.
In particular, if users have varying numbers of samples, each from different distributions, applying
BoundedEMDReduction equalizes the frequency of all user data. Nonetheless, it is often reasonable
to assume the users have homogeneous data distributions Liu et al. (2020); Acharya et al. (2023).
Open Questions. Many sampling procedures are likely to be compatible with dEM. This leads
to the question of whether different procedures, such as sampling without replacement, are also
smooth projections.

New Proof Techniques. Our blackbox reduction from unbounded to bounded dEM-DP
involves projecting a dataset onto one with a fixed size. The projection needs to be smooth,
i.e., the dEM distance between any two input datasets and the dEM distance between their
projections are roughly the same. We prove that sampling with replacement is indeed a
smooth projection. The novelty of the analysis comes from viewing sampling from two
datasets in terms of a coupling between them.

6 Applications of Proposed Mechanisms

In this section, we compare the utilities of PrivEMDLinear and PrivEMDItemWise to existing mech-
anisms satisfying user-level DP. For simplicity, we assume the bounded data setting. Full proofs
for this section appear in Appendix D.
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Notations. We define the following quantities of a real matrix M ∈ R
d×k. First, the (p, q)

operator norm of M , denoted by ‖M‖p→q, is given by ‖M‖p→q = supx∈Rk,‖x‖p≤1 ‖Mx‖q. We can
show that ‖M‖1→2 is equal to the maximum ℓ2 norm of a column of M . Furthermore, ‖M‖2→2,
more commonly written as ‖M‖2, is the spectral norm and is equal to the maximum singular
value of M . Matrix norms satisfy the important submultiplicative property, which states that
‖MN‖p→r ≤ ‖M‖q→r‖N‖p→q for any matrices M,N and p, q, r ≥ 1. Next, let Id denote the d× d
identity matrix, and again suppose that M ∈ Rd×k with d ≤ k. If M has full row rank, then there
exists a matrix N ∈ R

k×d such that MN = Id. We call such a matrix N a right inverse of M .
Finally, for M ∈ R

s1×t1 and N ∈ R
s2×t2 , let M ⊗N ∈ R

s1s2×t1t2 denote the Kronecker product of
two real matrices, whose entry in ((i1, i2), (j1, j2)) is Mi1j1Ni2j2 .

6.1 Linear Embedding Queries

Many applications of metric DP assume there is an embedding function φ : X → R
t, which maps

an item to its semantic representation in R
t (each of the examples in Section 1 have an embedding

representation). The metric dX is then the distance between φ(x) and φ(x′); in this section, we
consider the l2 distance.

Since φ(x) also communicates information about the item x, we define linear embedding queries
as linear queries applied to an item’s embedding φ(x). Formally,

qf◦φ(K) = Ex∼K̃ [f ◦ φ(x)],
where f(y) = Fy for a matrix F ∈ R

d×t (meaning that f is a linear function). Assume each row Fi

of F is normalized so that ‖Fi‖2 ≤ 1. Each coordinate of f ◦ φ is equal to Ex∼K̃ [〈Fi, φ(x)〉]. Thus,
we may view each coordinate of a linear embedding query as a similarity query in the embedding
space with query point Fi. Our analysis will assume that d < |X | and d ≪ n, which is usually
the case in practice. Note that we may write qf◦φ as FΦK̃, where Φ ∈ R

t×X is the collection of
embedding vectors in X .

6.1.1 Local Model

Existing user-level DP mechanisms ask user at index i to privately release the query q̂i = qf◦φ(K̃i).
The aggregator computes the average q̂ = 1

n

∑n
i=1 q̂i. The current best solutions have the following

error guarantee (Duchi et al., 2013; Bassily, 2019)4:

Lemma 6.1. (From Proposition 3 in Duchi et al. (2013)) There exists an (ε, 0)-bounded user-level
DP in the local model algorithm which produces an estimate q̂ such that, for all K̃,

E[‖q̂ − qf◦φ(K̃)‖2] ≤ O
(

‖FΦ‖1→2

√
d

ε
√
n

)

.

To interpret the term ‖FΦ‖1,2, we can use the inequality ‖FΦ‖1→2 ≤ ‖F‖2‖Φ‖1→2, which is
tight for certain choices of F and Φ. By assumption, we know ‖F‖2 ≤

√
d and ‖Φ‖1,2 ≤ 1, both of

which can also be tight. The bound is thus O( d
ε
√
n
).

On the other hand, for dEM-DP, by Theorem 4.1, we know that ∆EM(qf◦φ) is at most the
Lipschitz constant of f ◦ φ given by:

max
x,x′∈X

‖F (φ(x))−F (φ(x′))‖
‖φ(x)−φ(x′)‖ ≤ max

x,x′∈X
‖F (φ(x))−φ(x′))‖

‖φ(x)−φ(x′)‖ ≤ ‖F‖2.

4No algorithms are known which satisfy (ε, δ)-DP and have better error than the (ε, 0)-DP algorithm shown.
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Hence, each user can apply PrivEMDLinear with the Gaussian mechanism with ℓ = ‖F‖2, which
gives the following utility guarantee:

Lemma 6.2. There exists an (α, δ)-bounded dEM-DP algorithm in the local model which produces
an estimate q̂ such that, for all K̃,

E[‖q̂ − qf◦φ(K̃)‖2] ≤ ‖F‖2
√

1.25d ln(1/δ))

α
√
n

.

Remarks. We use the Gaussian mechanism because it performs better under the ℓ2 error than the
pure (α, 0)-bounded local dEM DP illustrated in Algorithm 1. However, this forces us to use δ > 0.
Compared to Lemma 6.1, the above bound differs by a factor of ε

α (and small ln 1
δ terms)—when

α = ε, we know that dEM-DP provides better privacy. When ε ≪ α, that PrivEMDItemWise offers
lower error than Lemma 6.1.

6.1.2 Central Model

In the central model, linear query release has been extensively studied, and optimal algorithms
under item-level DP are known (Hardt and Talwar, 2010; Bhaskara et al., 2012; Nikolov et al.,
2013). These algorithms can be easily adapted to user-level DP, which will provide the following
guarantee5:

Lemma 6.3. (From Theorem 1.3 in Hardt and Talwar (2010)) There exists an (ε, 0)-bounded user-
level DP algorithm in the central model which produces an estimate q̂ such that, for all K̃,

E[‖q̂ − qf◦φ(K̃)‖2] ≤ O
(

‖FΦ‖1→2

√
d

εn ln
(

k
d

)

)

.

To provide (α, δ)-bounded dEM-DP in the central model, we can use PrivEMDLinear with the
Gaussian mechanism with scale ω = 1

nα . Following the same approach as in Lemma 6.2, this

results in O(‖F‖2
√

d ln 1

δ

αn ) error. Again, this is worse than Lemma 6.3 by a factor of ε
α , and similar

observations apply.

6.2 Frequency Estimation

Here, we evaluate the error of PrivEMDItemWise for private frequency estimation, where the goal
is to obtain a private estimate H̃ of the (normalized) histogram K̃. This problem has been exten-
sively studied in privacy Hay et al. (2009); Xu et al. (2013); Suresh (2019); Kairouz et al. (2016);
Acharya et al. (2018); Chen et al. (2020); Acharya et al. (2023); the high-level goal is to minimize
the ℓp distance between H̃ and K̃. However when the data domain is a general metric space X ,
not all ℓp perturbations to K̃ are the same. Therefore, we measure the similarity between K̃, H̃ via
dEM(K̃, H̃), as we do in our privacy definition.

To simplify the analysis while still demonstrating the effectiveness of our mechanisms, we fix X
to be the following “clustered” metric space. Let X = B×C, where B = {b1, . . . , bs}, C = {c1, . . . , ct}

5For simplicity, we do not state or compare to the exact instance-optimal upper bounds known for linear queries.
Instead, the upper bound in Lemma 6.3 is the optimal one for random linear queries Hardt and Talwar (2010). Like
in the local case, there is no separation between (ε, δ)-DP and (ε, 0)-DP for this problem.
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and s · t = k. For some r < 1
2 , the distance is given by the following:

dB×C((b, c), (b
′, c′)) =











0 if b = b′ and c = c′

r if b = b′

1 otherwise.

We can think of this metric space as a collection of s clusters consisting of the t items {(b, c1), . . . , (b, ct)}
for each b ∈ B. Points in a cluster are more related, being at distance r apart, than items in two
different clusters, which are distance 1 apart. We will assume that privacy is only needed between
two items in the same cluster, so we will set α = ε

r .

6.2.1 Algorithms in the Local Model

At a high level, in the local model each user applies a private mechanism A : X → Y (with Y
discrete and |Y| ≥ |X |) to each sample and releases it. The central server forms an aggregate
vector v ∈ R

Y . Let A ∈ R
X×Y denote the transition probability matrix of A; we have by linearity

of expectation that E[v] = K̃A. Assuming that A has a right inverse B, the central server returns
the estimate H̃ = vB, which is unbiased. All previous work in distribution estimation under local
DP can be expressed in this way (Kairouz et al., 2016; Acharya et al., 2018; Chen et al., 2020;
Acharya et al., 2023). We summarize this in Algorithm 4.

Algorithm 4: FreqEstLocal, a general framework for histogram estimation under local DP

Data: K, a family of datasets from n users each with size m; A, a mechanism from X to
Y; B ∈ R

Y×X , a right inverse of A.
for each user i from 1 to n do

Li = ∅;
for lj ∈ Ki do

rj = A(lj);
Add rj to Li;

end

Release L̃i;

end

v = 1
n

∑n
i=1 L̃i;

H̃ = vB;

return H̃

The state-of-the-art approach for frequency estimation is the Hadamard response Acharya et al.
(2018); Chen et al. (2020), which is based off of the Hadamard matrices (which form a robust
encoding of X ). Specifically, the matrix A is given by q11+ q2H, where H is a Hadamard matrix
and q1, q2 are constants chosen so that A is normalized and that each element is proportional to
either eε or 1. This mechanism has the following utility:

Lemma 6.4. (From Theorem 3.1 in Chen et al. (2020)) There exists a mechanism A such that
FreqEstLocal satisfies (ε, δ)-bounded user-level DP and returns an estimator H̃ such that

max
K

E[dEM(K̃, H̃)] ≤ O

(

√

k
mn +

√

k2 ln(m/δ))
nε2

)

.
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Remarks. In order to adapt the Hadamard response to the user-level setting, we suppose each
user applies A to each sample with privacy budget ε√

m ln(m/δ)
, and (ε, δ)-user level DP follows from

composition Kairouz et al. (2015). The term
√

k
mn is the sampling error which does not depend on

ε, and the second
√

k2 ln(m/δ)
nε2

term is the cost of privacy. The cost of privacy usually dominates,
and furthermore its dependence on m is not significant. This is because m reduces both the effect
of each sample on the final estimate, and the privacy budget per sample, countervailing itself.

With dEM-DP under our chosen metric, we can use a transition probability matrix A that is
less noisy. This comes from the fact that only items in the same cluster need a strong privacy
guarantee, whereas traditional user-level DP would require all points to have this level of privacy
guarantee. To provide formal guarantees, we first derive an error bound on FreqEstLocal in terms
of A (specifically its right inverse), which we will then optimize later.

Theorem 6.5. For the metric space X = B × C and any mechanism A satisfying (α0, 0) dX -DP
where α0 = O( α√

m ln(meα/δ)
) (α0 is specifically defined in Theorem 4.4), FreqEstLocal is (α, δ)-

bounded dEM-DP in the local model and returns an estimator H̃ such that

max
K

E[dEM(H̃, K̃)] ≤ r

√

st(‖BT ‖21→2 − 1)

mn
+

√

s(‖P TBT ‖21→2 − 1)

mn
, (8)

where B is a right inverse of A, P = IB ⊗ 1+C , and 1+C is a column vector of 1s indexed by C.

Remarks. The first term in the RHS of Eq. (8) is the cost of equalizing the mass between clusters,
and the second term is the cost of equalizing the mass across clusters (since the matrix P essentially
projects A to act between clusters). For small r, the first term approaches 0, and the latter term
may also approach 0 because A will not often map a point outside its cluster under dX -DP (and
thus, ‖P TBT‖21→2 − 1 → 0).
Proof Sketch. Observe that we may upper bound dEM(H̃, K̃) with any transportation plan be-
tween H̃, K̃. We will use the following one: first map the probability masses in each cluster so that
they match, putting extra mass in an arbitrary point. This incurs at most r‖H̃ − K̃‖1 cost, since
the intra-cluster distance is at most r. Next, equalizing the mass between clusters, which incurs at
most ‖P (H̃ − K̃)‖1 cost, where P is the given matrix which can be viewed as the linear operator
that adds the mass within each cluster together. Both of the error terms can then be bounded by
viewing H̃ − K̃ as the sum of mn independent variables drawn from a Dirichlet distribution with
mean 0, and applying a variance analysis.

Now, the task is to pick a mechanism A satisfying dEM-DP, which minimizes the error in (8).
The constraint of dEM-DP is quite different from standard DP, and permits novel mechanism de-
sign. We use a natural generalization of k-randomized response Kairouz et al. (2016), adapted to
dX -DP. Specifically, GKRRα0

has probabilities given by, for each (b, c) ∈ X ,

Pr[GKRR(b, c) = (b, c))] ∝ eα0 ,

Pr[GKRR(b, c)) = (b, c′)] ∝ e(1−r)α0 ∀c′ 6= c,

Pr[GKRR(b, c)) = (b′, c′)] ∝ 1 ∀b′ 6= b, c′.

Using this mechanism, the higher-order terms of Eq. (8) will approach 0 with r, as follows:
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Theorem 6.6. For the metric space X = B × C, FreqEstLocal with the mechanism A = GKRRα0

satisfies (α, δ)-dEM DP in the local model and returns an estimator H̃ such that

max
K

E[dEM(H̃, K̃)] ≤ r

√

st3

mn

(

eα0 + s

eα0 − e(1−r)α0

)

+

√

s2t2

mn

(

√

s+ 2(eα0 − 1)

eα0 + (t− 1)e(1−r)α0 − t

)

, (9)

where α0 is defined in Eq. (6).

Remarks. Specifically, for our choice of α = ε
r , we have

max
K

E[dEM(K̃, H̃)] ≤ 4

√

k3

mn + 64
√
k3

α
√
n

√

ln(4m exp(α)/δ).

Similar to Lemma 6.4, the
√

k3

mn term is the cost of sampling. The r
√
k3

ε
√
n

term is the cost

of privacy, and it dominates when α ≤ √
m. We will compare Theorem 6.6 with Lemma 6.4

when k, ε, α <
√
m—then the cost of privacy dominates. Specifically, the cost of Lemma 6.4 is

O(

√

k2 ln(m/δ)
nε2 ), and the cost of Theorem 6.6 is O(

√

k3

α2n max{ln(mδ ), α}). Given ε, the error will be

smaller if

α >

{

ε
√
k ε < 1√

k
ln(mδ )

ε2 k
ln(m/δ) otherwise

i.e. if there is a gap between α, ε of size at least
√
k. This is possible if k ≪ 1

r , and for these
instances dEM DP offers better utility than user-level DP. In Theorem 6.6, the super-linear factor
of k3/2 comes from the fact that the k-RR is suboptimal in terms of k (Acharya et al., 2018).

6.2.2 Algorithms in the Central Model

The Laplace mechanism has been shown to be optimal for many instances of frequency estima-
tion (Dwork et al., 2014). To attain user-level privacy, the baseline Laplace mechanism releases,
for each x ∈ X , the values Fx = K̃G(x) + Y , where Y ∼ Lap( 1

nε). The distribution function H̃ is
then the normalization of 〈Fx : x ∈ X〉. This gives us the following guarantee.

Lemma 6.7. For the metric space X = B × C, the Laplace mechanism described above satisfies
(ε, 0)-user level DP, and produces an estimate H̃ such that

max
K

E[dEM(K̃, H̃)] ≤ O
(

k
nε

)

.

Again, this utility does not depend on m, since each user contributes 1
n fraction of the whole

dataset which is independent of m. Consistent with central DP, the error decreases with 1
n , which

is much faster than the 1√
n
in the local model.

It is possible to adapt FreqEstLocal to bounded central dEM-DP by simply pretending to be one
user who holds the global dataset KG. The privacy analysis of Theorem 4.4, and the utility analysis
of Theorem 6.6 may be combined for the following corollary:

Corollary 6.8. For the metric space X = B × C, FreqEstLocal with A = GKRRα0
with α0 given in

Eq. (7) satisfies (α, δ)-dEM DP in the central model and returns an estimator H̃ with error given
in Eq. (9).
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Remarks. In particular

max
K

E[dEM(H̃, K̃)] ≤ 4
√
k3√
mn

+ 64
√
k3

αn

√

ln(4m exp(α)/δ).

The same sampling error is present, but the cost of privacy is reduced from a 1√
n
dependence in

Theorem 6.6 to just 1
n . To compare just the cost of privacy in Corollary 6.6 to Lemma 6.7, we will

assume we are in the regime n ≤ m
α . Then, the cost in Corollary 6.8 is O(

√
k3

αn )
√

max{ln(mδ ), α}.
The error of Corollary 6.8 is less when

α ≥
{

ε
√

k ln(mδ ) ε ≤
√

ln(m/δ)
k

ε2k otherwise

Thus, the utility is improved when α is bigger than ε by a factor of at least
√
k, which is achieved

when k ≪ 1
r . One final advantage of Corollary 6.8 is that it may be implemented in the shuffle

model of DP, which requires less trust than the central model. This parallels prior results of the
shuffle model of DP (Feldman et al., 2022).
Open Questions. For linear queries, one open question is whether it is possible to obtain error
competitive with user-level DP under (α, 0)-dEM-DP. For frequency estimation, an immediate open
question is whether it is possible to reduce the super-linear dependence k to one that matches that
of Lemma 6.4, and whether an improvement in error can be made when α ≤ ε2k.

New Proof Techniques. Frequency estimation is a classic problem that has been thor-
oughly studied in the standard DP literature. Despite the well-studied nature of the problem,
the use of dEM-DP enables a novel mechanism design. In particular, we can work with a tran-
sition matrix (corresponding to the private mechanism A) that is less noisy. Consequently,
we use a natural generalization of k-Randomized Response, which allows for better utility
analysis than standard DP.

7 Related Work

Item-level DP. DP was originally considered at the item-level (Dwork, 2006). Relevant to our
setting are results in distribution estimation (Hay et al., 2009; Xu et al., 2013; Suresh, 2019); these
results study more complex estimation problems than frequency. We also consider linear query
release (Hardt and Talwar, 2010; Bhaskara et al., 2012; Nikolov et al., 2013; Blum et al., 2013;
Li et al., 2015). The mechanism in Hardt and Talwar (2010) is often optimal and easy to adapt to
our setting; we compare our algorithms with it.
User-level DP. User-level privacy is gaining increasing interest (Amin et al., 2019; Narayanan et al.,
2022; Bassily and Sun, 2023; Levy et al., 2021; Liu et al., 2020; Cummings et al., 2022). The most
relevant work to ours involves user-level private mean estimation (Cummings et al., 2022) and his-
togram estimation (Liu et al., 2023; Acharya et al., 2023), though these problems are more complex
than those we study. Another related area is deciding the amount of data to collect from each user
when users have varying amounts of data (Amin et al., 2019; Liu et al., 2023; Cummings et al.,
2022), which relates to our unbounded DP setup. These techniques apply to more specialized set-
tings than our general blackbox reduction and are not immediately comparable.
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Local DP. The results most relevant to our work in local DP are locally-private linear query release
Duchi et al. (2013); Bassily (2019) and distribution estimation (Duchi et al., 2013; Kairouz et al.,
2016; Acharya et al., 2018; Chen et al., 2020; Acharya et al., 2023). We directly compare our work
to the optimal algorithms in Bassily (2019) and Chen et al. (2020) for our problems, which can
be adapted to user-level DP easily. The other related line of work is privacy amplification via
shuffling (Erlingsson et al., 2019; Girgis et al., 2021; Feldman et al., 2022). We extend the state-
of-the-art analysis in Feldman et al. (2022) to general metric DP.
Metric DP. Metric DP was first proposed in Chatzikokolakis et al. (2013) in the central model. In
the local model, this has led to work on releasing numeric data (Roy Chowdhury et al., 2022), loca-
tion data (Andrés et al., 2013; Bordenabe et al., 2014; Chatzikokolakis et al., 2015; Weggenmann and Kerschbaum,
2021) and text (Feyisetan et al., 2019, 2020; Feyisetan and Kasiviswanathan, 2021; Imola et al.,
2022). Unlike these works, we consider privacy in a general metric space. The most related work is
that of Fernandes et al. (2019), which proposes metric DP based on dEM for releasing text embed-
dings. As explained in the introduction, we consider a more general setting than Fernandes et al.
(2019).

8 Interpretation of dEM-DP

In this section, we elaborate on how to interpret the dEM-DP guarantee (and metric DP in general)
relative to standard DP. We start by discussing the advantages offered by dEM-DP. As discussed in
Section 1, the primary benefit of dEM-DP is that it offers a more fine-grained and nuanced privacy
definition compared to standard DP. This results in a more flexible privacy-utility trade-off that
is better suited than standard DP for many real-world applications. In addition, dEM-DP unlocks
new proof techniques that may also be applicable to standard DP. Specifically, the dEM metric
introduces couplings that need to be explicitly addressed in privacy analysis. For instance, in
Section 5 we showed that sampling with replacement is a smooth projection by explicitly viewing
sampling from two datasets in terms of a coupling between them. While standard DP privacy
analysis often implicitly uses couplings, we believe that some of our proof techniques for explicitly
handling general couplings could also be beneficial in the context of standard DP.

Next, let us understand the technical relation between metric DP and standard DP. Metric DP is
essentially a relaxation of standard DP. Any mechanism that satisfies metric DP (user-level or item-
level) also satisfies standard DP, albeit with a potentially higher privacy parameter. In particular,
any mechanism satisfying (α, δ)-dX -DP also satisfies (α · dmax, δ)-DP, where dmax is the maximum
dX distance between any two pairs of inputs. Conversely, any mechanism that satisfies (ε, δ)-DP
also satisfies ( ε

dmin
, δ)-dX -D,P where dmin is the minimum dX distance between any two pairs of

inputs. Hence, although in theory one can translate between these two privacy guarantees, the
translation is very loose. Tightly analyzing the privacy parameter under metric DP (whether dEM
or otherwise) for an arbitrary mechanism that satisfies standard DP is non-trivial and there is no
one-size-fits-all method to do so. For instance, Algorithm 1 can be instantiated via the Laplace and
Gaussian mechanism – both classic standard DP mechanisms – under some conditions. However,
as discussed in Section 4.1, a more complex analysis is required to evaluate privacy under dEM-DP.
Additionally, in terms of mechanism design, a mechanism optimized for dEM-DP might not be ideal
for standard DP and vice-versa. For instance, our proposed Algorithm 4 for performing frequency
estimation may not work well under standard DP (i.e., have high privacy parameters).

26



In what follows, we outline three concrete scenarios, where a practitioner should prefer dEM-DP
over standard DP. First, if the practitioner has a prior on the sensitive data indicating that the
distance between any two user’s data is overwhelmingly likely to be < 1 (assuming all distances
are normalized), then dEM-DP is clearly the better choice. This is because such a prior makes the
worst-case scenario of antipodal data pairs—where two users’ data are completely dissimilar (the
case that standard DP safeguards against)—highly unlikely in practice. For instance, this scenario
may arise in the context of location data when the data corresponds to location information of
employees of the same firm. In this case, weekday locations will be the same across all users,
leading to small pairwise dEM distances. Second, a practitioner should opt for dEM-DP when it
captures a more realistic privacy semantics of the underlying data. Although ideally, we would like
to prevent any data leakage about an individual, this is unfortunately not feasible in practice due
to the vast amount of auxiliary information already publicly available about every individual. For
instance, most people’s occupations are publicly available on social media profiles. Returning to
our location data example, data collected over a month would reveal routine patterns, such as a
person’s workplace, which is already public and hence doesn’t require protection. Rather, the more
sensitive information is short-term location data gathered over say the course of a day (which might
reveal non-routine visit to a friend or hospital). In such a scenario, dEM-DP would offer a better
privacy-utility trade-off with more realistic privacy guarantees than standard DP. Third, dEM-DP
may be preferable if the practitioner is restricted to work within a low privacy parameter regime
(for instance, due to some government guideline). This is because for the same privacy parameter
(i.e., α = ε), dEM-DP can offer a stronger privacy guarantee than standard DP while maintaining
the same utility for certain queries, such as linear queries (Section 4.1).

Finally, we conclude with some caveats regarding the use of metric DP. Metric DP assigns
varying levels of sensitivity to different neighboring pairs. Specifically, smaller changes between
neighboring pairs are considered more sensitive and are therefore protected with a higher privacy
guarantee. However, this approach may not be suitable for all contexts. For instance, in the case
of medical records, where the data between individuals can be vastly different, standard DP may
offer better privacy protection. When adopting metric DP, it is crucial for practitioners to clearly
define what is considered sensitive and what is not, and to engage in discussions about whether
these definitions align with acceptable privacy semantics. This transparency enables users to make
informed decisions about whether the privacy guarantees provided meet their needs.

9 Conclusion

We have proposed metric DP at the user level using the earth-mover’s distance, dEM. This captures
both the magnitude and structural aspects of changes in the data, resulting in a tailored privacy
semantic. We have designed two novel privacy mechanisms under dEM-DP which improves the
utility over standard DP. Additionally, we have shown that general (unbounded) dEM-DP can be
reduced to the simpler case (bounded) where all users have the same amount of data. Finally, we
have demonstrated that dEM-DP, when tailored to the application, can offer improved utility over
standard DP.
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A Omitted Technical Details

An alternative characterization of differential privacy is through the hockey-stick divergence (Barthe and Olmedo,
2013). For probability distributions P,Q defined on a space Y, this is given by the following:

Definition A.1. Let ε, δ > 0, and let P,Q be distributions on a space Y. The Hockey Stick
Divergence is given by

Deε(P‖Q) =

∫

Y
max

{

P (y)

Q(y)
− eε, 0

}

Q(y)dy.

It is easy to show that Deε(M(K)‖M(K ′)) ≤ δ implies (1), so Definition A.1 provides an
alternative way to prove privacy.
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Definition A.1 satisfies a number of useful properties. First, because it is an f -divergence (Csiszár,
1975), it satisfies the data-processing inequality : for any function f , we have

Deε(f(P )‖f(Q)) ≤ Deε(f(P )‖f(Q)).

This property is used to show that DP is invariant to post-processing by any function f . The
second property, again holding for all f -divergences, is convexity. This states that for two pairs of
distributions P1, P2, Q1, Q2 ∈ ∆Y and a real number λ ∈ [0, 1] we have

Deε(λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

≤ λDeε(P1‖Q1) + (1− λ)Deε(P2‖Q2).

Stated in terms of couplings, we may generalize convexity as follows:

Lemma A.1. Suppose X,Y ∈ X are random variables with probability distributions PX , PY ∈ ∆X .
Suppose M : X → Y is a randomized function. Then, for any coupling C ∈ C(PX , PY ), we have

Deε(M(X)‖M(Y )) ≤ E(x,y)∼C [Deε(M(x)‖M(y))].

Proof. We may write

M(X) =
∑

x∈X
PX(x)M(x) =

∑

x,y∈X
C(x, y)M(x)

M(Y ) =
∑

x,y∈X
C(x, y)M(y).

Applying convexity, we have

Deε(M(X)‖M(Y )) ≤
∑

x,y∈X
C(x, y)Deε(M(x)‖M(y)),

and the claim follows.

Third, Deε satisfies a “weak” triangle inequality (also known as group privacy):

Lemma A.2. For distributions P,Q,R on Y, we have Deα+β(P‖R) ≤ Deα(P‖Q) + eαDeβ (Q‖R).

Proof. For any P,Q, ε, we may view Deε(P‖Q) through its dual form as

Deε(P‖Q) = sup
Y⊆Y

(P (Y )− eεQ(Y )).

Thus, let Y ∗ denote the maximal set such that

Deα+β(P‖R) = (P (Y ∗)− eα+βR(Y ∗)).

We may rewrite this as

Deα+β (P‖R) = (P (Y ∗)− eαQ(Y ∗)) + eα(Q(Y ∗)− eβR(Y ∗))

≤ Deα(P‖Q) + eαDeβ (Q‖R),

showing the claim.
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B Omitted Proofs from Section 4

B.1 Proof of Theorem 4.1

Theorem 4.1. Let qf (K) be a linear query of the form in (5), where f : X → R
d is ℓ-Lipschitz.

Then, we have ∆EM(qf ) ≤ ℓ.

For any two distributions K̃, K̃ ′, we have

qf (K)− qf (K
′) = Ex∼K̃ [f(x)]− Ex∼K̃ ′[f(x)]

=
∑

x∈X
f(x)K̃(x)−

∑

x∈X
f(y)K̃ ′(y).

Let C(x, y) = {Cx(y)}x∈X be the minimum-transport coupling between K̃ and K̃ ′. By Defini-
tion 2.4, we have K̃ ′(y) =

∑

x∈X C(x, y), and dEM(K̃, K̃ ′) =
∑

x,y∈X dX (x, y)C(x, y). Now, we
write

∑

x∈X
f(x)K̃(x)−

∑

y∈X
f(y)K̃ ′(y)

=
∑

x∈X
f(x)K̃(x)−

∑

y∈X
f(y)

∑

x∈X
C(x, y)

=
∑

x∈X



f(x)−
∑

y∈X
f(y)Cx(y)



 K̃(x)

=
∑

x∈X





∑

y∈X
f(x)Cx(y)−

∑

y∈X
f(y)Cx(y)



 K̃(x)

=
∑

x∈X

∑

y∈X
(f(x)− f(y))Cx(y)K̃(x)

=
∑

x,y∈X
(f(x)− f(y))C(x, y).

By the triangle inequality and the fact that f is ℓ-Lipschitz, we may write

‖qf (K)− qf (K
′)‖ ≤

∑

x,y∈X
‖f(x)− f(y)‖C(x, y)

≤
∑

x,y∈X
ℓdX (x, y)C(x, y)

= ℓdEM(K̃, K̃ ′).

The last equation tells us that ∆dEM(qf ) ≤ ℓ.

B.2 Proof of Lemma 4.2

Lemma 4.2. PrivEMDLinear (Algorithm 1) with scale ω = 1
α satisfies (α, 0)-unbounded local dEM-

DP and with scale ω = 1
αn satisfies (α, 0)-bounded central dEM-DP.
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In the local model, by Theorem 4.1, we have ‖qf (K) − qf (K
′)‖ ≤ ℓ. By adding noise drawn

from Γ(d, 1
α ), it is known this satisfies (α, 0)-DP Hardt and Talwar (2010). In the bounded central

setting, we have ‖qf (K)− qf (K
′)‖ ≤ ℓ

n , and thus we may add noise drawn from Γ(d, 1
nα).

B.3 Proof of Theorem 4.3

Theorem 4.3. Suppose that (X , dX ) is a metric space such that dX (·, ·) ≤ 1, and that A is
an (α0, 0) dX -DP algorithm. Let (x1, . . . , xm) and (x′1, . . . , x

′
m) be two vectors, and we define

v = (dX (xi, x′i))
m
i=1. Let 0 < δ < 1 be a constant, and suppose it holds that α0 < ln( m

16 ln(4m/δ) ).
Then, for all outputs O, we have that

Pr[Shuffle(A(x1), . . . ,A(xm)) = O] ≤ eα Pr[Shuffle(A(x′1), . . . ,A(x′m)) = O] + δeα,

where

α ≤ ‖v‖0 ln
(

1 +
exp(α0‖v‖1/‖v‖0)− 1

exp (α0‖v‖1/‖v‖0) + 1

(

8
√

eα0 ln(4‖v‖0/δ)√
m

+
8eα0

m

))

.

We will first assume the following lemma:

Lemma B.1. Suppose that A is an α0dX -metric DP algorithm, where dX ≤ 1. Let x01, x
1
1, x2, . . . , xm ∈

X be a set of inputs such that dX (x01, x
1
1) ≤ d, and let δ > 0 be a constant such that α0 ≤

ln( m
16 ln(2/δ) ). Then, we have that

Deα(Shuffle(A(x01), . . . ,A(xm)),

Shuffle(A(x11),A(x2), . . . ,A(xm))) ≤ δ,

where

α ≤ ln

(

1 +
eα0d − 1

eα0d + 1

(

8
√

eα0 ln(4/δ)√
m

+
8eα0

m

))

.

To prove Theorem 4.3, let

S(xi,x
′
m−i) = Shuffle(A(x1), . . . ,A(xi),A(x′i+1), . . . ,A(x′m)).

Let m′ = ‖v‖0, and WLOG suppose that xi = x′i for i > m′. Our goal is to show that

Deα(S(xm′ ,x′
0)‖S(x0,x

′
m′)) ≤ δ.

By Lemma B.1, we have for each 1 ≤ i ≤ m′ that

Dexp(α(i))(S(xi−1,x
′
m′−i+1)‖S(xi,x

′
m′−i)) ≤

δ

m′ ,

where

α(i) = ln

(

1 +
eα0dX (xi,x′

i) − 1

eα0dX (xi,x′

i) + 1

(

8
√

eα0 ln(4m′/δ)√
m

+
8eα0

m

))

.
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Applying Lemma A.2 m′ times, we see

Dexp(α(1)+···+α(m′))(S(xm′ ,x′
0)‖S(x0,x

′
m′))

≤ Dexp(α(m′))(S(xm′ ,x′
0)‖S(xm′−1,x

′
1))

+ eα(m
′)Dexp(α(m′−1))(S(xm′−1,x

′
1)‖S(xm′−2,x

′
2))

+ · · ·
+ eα(2)+···+α(m′)Dexp(α(1))(S(x1,x

′
m′−1)‖S(x0,x

′
m′))

≤ eα(1)+···+α(m′)
m′

∑

i=1

Dexp(α(i))(S(xi−1,x
′
m′−i+1)‖S(xi,x

′
m′−i))

≤ eα(1)+···+α(m′)δ.

We now show that α(i) is a concave function of dX (xi, x′i); to do this we write α(i) = f(d) =

ln(1 + g(d)K), where g(d) = ed−1
ed+1

and K > 0 is a suitable constant. We will show that f ′′(d) ≤ 0.

Taking derivatives, it is easy to show that f ′′(d) has the same sign as (1 +Kg(d))g′′(d)−Kg′(d)2.
Thus, we will show that (1 +Kg(d))g′′(d) ≤ Kg′(d)2. We may write

g(d) = 1− 2

ed + 1

g′(d) =
2ed

(ed + 1)2

g′′(d) = 2
(ed + 1)2ed − 2ed(ed + 1)ed

(ed + 1)4
= 2

ed − e2d

(ed + 1)3
.

Now, we have

(1 +Kg(d))g′′(d) ≤ Kg′(d)2

⇐⇒ (1 +K − 2K

ed + 1
)2

ed − e2d

(ed + 1)3
≤ K

4e2d

(ed + 1)4

⇐⇒ ((ed + 1)(K + 1)− 2K)(1− ed) ≤ 2Ked

⇐⇒ (Ked −K + ed + 1)(1 − ed) ≤ 2Ked

⇐⇒ Ked −K + 1−Ke2d +Ked − e2d ≤ 2Ked

⇐⇒ −K + 1−Ke2d − e2d ≤ 0

We are done by observing that 1 − e2d ≤ 0, and −K − Ke2d ≤ 0. Having shown convexity, we
establish the maximum occurs when each α(i) is equal to ‖v‖1

‖v‖0 . This gives us a bound of

α(1) + · · ·+ α(m′)

≤ ‖v‖0 ln
(

1 +
eα0‖v‖1/‖v‖0 − 1

eα0‖v‖1/‖v‖0 + 1

(

8
√

eα0 ln(4‖v‖0/δ)√
m

+
8eα0

m

))

.
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B.4 Proof of Lemma B.1

This lemma can be viewed as a generalization of amplification by shuffling, which has the same
setup but sets d = 1 and merely requires that M satisfy ε-local DP. We generalize the approach
of Feldman et al. (2022), starting with the the following preliminary claims.

B.4.1 Preliminary Lemmas

Lemma B.2. (Generalization of Lemma 3.3 in Feldman et al. (2022)). Let X = {x01, x11, x2 . . . , xm}
be a set of indices, and for x ∈ X, let R(x), Q(x) be two families of distributions and α ∈ [0, 1], β ∈
[0, 12 ] be coefficients such that

R(x01) = (1− α)Q(x01) + αQ(x11)

R(x11) = αQ(x01) + (1− α)Q(x11)

R(xj) = βQ(x01) + βQ(x11) + (1− 2β)Q(xj) ∀j ≥ 2.

Then, there exists a post-processing mechanism S such that

Shuffle(R(x01), R(x2), . . . R(xm)) = S(A+ 1−∆, C −A+∆) and

Shuffle(R(x11), R(x2), . . . , R(xm)) = S(A+∆, C −A+ 1−∆),

where C ∼ Bin(s−1, 2β), A ∼ Bin(C, 12), and ∆ ∼ Bernoulli(α), and Shuffle is a uniformly random
shuffle.

Proof. Let Y 0
1 , Y

1
1 , Y2, . . . , Ym be distributions where Y b

1 is defined over {0, 1} and satisfies Y 0
1 (0) =

1−α and Y 1
1 (1) = α (with reversed probabilities if b = 1), and Yj for j ≥ 2 is defined over {0, 1, 2}

and satisfies Yj(0) = Yj(1) = β and Yj(2) = 1 − 2β. Let F be a function returning a distribution
satisfying

Fj(v) =











Q(x01) v = 0

Q(x11) v = 1

Q(xj) otherwise

Observe that by definition, the following probability distributions are equal for b ∈ {0, 1}:

R(xb1), R(x2), . . . , R(xm) = F1(Y
b
1 ), F2(Y2), . . . , Fm(Ym).

Let 0(Y1, . . . , Ym) denote the number of indices j such that Yj = 0, and define 1(Y1, . . . , Ym)
similarly. We will show that there exists a post-processing function S such that, for both b ∈ {0, 1},
we have

Shuffle(F1(Y
b
1 ), F2(Y2), . . . , Fm(Ym))

= S(0(Y b
1 , . . . , Ym),1(Y b

1 , . . . , Ym)). (10)

We will do this by conditioning on the event Eu,v that

(0(Y b
1 , Y2, . . . , Ym),1(Y b

1 , Y2, . . . , Ym)) = (u, v),

where u, v ∈ N satisfy 1 ≤ u+v ≤ m. Now, define the vector r = Shuffle(F (Y1), F2(Y2), . . . , Fm(Ym)).
Conditioned on Eu,v, r is distributed according to the following process: First, select a random
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partition U ⊔ V ⊔ W = [m] such that |U | = u and |V | = v, corresponding to the indices (after
shuffling) where Y b

1 , Y2, . . . , Ym are equal to 0, 1, or 2. Next, let π be a random injection from W
to [m] \ 1. Then, r is distributed according to:

r(u) = Q(x01) ∀u ∈ U (11)

r(v) = Q(x11) ∀v ∈ V (12)

r(w) = Q(xπ(w)) ∀w ∈ W. (13)

The above process is independent of α, β given Eu,v. In particular, it does not care whether we
replace α with 1−α, and thus it serves as our process S satisfying (10) for both values of b. Having
established this, it is easy to show that 0(Y 0

1 , . . . , Ym) = A + 1 −∆, 1(Y 0
1 , . . . , Ym) = C − A +∆

for b = 0, and 0(Y 1
1 , . . . , Ym) = A+∆, 1(Y 1

1 , . . . , Ym) = C −A+ 1−∆ for b = 1.

Having reduced the shuffling problem to a divergence between two fixed probability distribu-
tions, we follow the method of Feldman et al. (2022) to compute this divergence. We use the
following two results:

Lemma B.3. (Restatement of Lemma A.1 from Feldman et al. (2022)): Suppose p ≥ 16 ln(2/δ)
m ,

C ∼ Bin(m− 1, p) and A ∼ Bin(C, 12). Define P = (A+1, C −A) and Q = (A,C −A+1). Then,
Deε(P‖Q) ≤ δ, where

ε = ln

(

1 +
8
√

ln(4/δ))√
pm

+
8

pm

)

The next result, advanced joint convexity, originally appeared in the privacy amplification by
sampling literature and can be used to improve the parameter ε when computingDα(P‖Q) between
two distributions which are nearly the same.

Lemma B.4. (Restatement of Theorem 2 from Balle et al. (2018)) Let P,Q be probability distri-
butions satisfying P = νM + (1 − ν)N and Q = νM ′ + (1 − ν)N for distributions M,M ′, N and
ν ∈ [0, 1]. Given α ≥ 1, define α′ = 1 + ν(α− 1) and β = α′

α . Then,

Dα′(P‖Q) ≤ νDα(M‖(1 − β)N + βM ′).

Finally, we require a result from local DP:

Lemma B.5. (Restatement of Theorem 2.5 from Kairouz et al. (2015)) Let P,Q be two distribu-
tions and α ≥ 1 be a parameter such that Dα(P‖Q) = 0. Then, there exist distributions M,N such
that

P =
α

α+ 1
M +

1

α+ 1
N

Q =
1

α+ 1
M +

1

α+ 1
N.

With these results in order, we are ready to complete the proof.
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B.4.2 Completing the proof of Lemma B.1

Using the definition of dX -DP and the fact that dX ≤ 1, we have

Dexp(ε0d)(A(x01)‖A(x11)) = 0

Dexp(ε0)(A(x01)‖A(xj)) = 0 ∀j ≥ 2

Dexp(ε0)(A(x11)‖A(xj)) = 0 ∀j ≥ 2.

Applying Lemma B.5 to the first equation, we obtain

A(x01) = (1− β)Q(x01) + βQ(x11) (14)

A(x11) = βQ(x01) + (1− β)Q(x11) (15)

where β = 1
1+exp(ε0d)

. Applying the lemma to the second and third sets of equations, we obtain

A(x01) = (1− γ)R(x01, xj) + γR′(x01, xj) ∀j ≥ 2 (16)

A(xj) = γR(x01, xj) + (1− γ)R′(x01, xj) ∀j ≥ 2 (17)

A(x11) = (1− γ)R(x11, xj) + γR′(x11, xj) ∀j ≥ 2 (18)

A(xj) = γR(x11, xj) + (1− γ)R′(x11, xj) ∀j ≥ 2. (19)

where γ = 1
1+exp(ε0)

. Subtracting 16 and 17, we obtain that

A(xj) =
γ

1− γ
A(x01) +

1− 2γ

1− γ
R′(x01, xj) ∀j ≥ 2, (20)

and likewise 18 and 19 imply

A(xj) =
γ

1− γ
A(x11) +

1− 2γ

1− γ
R′(x11, xj) ∀j ≥ 2. (21)

Taking the average of 20 and 21, we obtain

A(xj) =
γ

2(1 − γ)
A(x01) +

γ

2(1− γ)
A(x11) +

1− 2γ

1− γ
Q(xj) ∀j ≥ 2, (22)

where Q(xj) =
1
2R

′(x01, xj) +
1
2R

′(x11, xj). Now, equations 14 and 15 imply that

A(x01) +A(x11) = Q(x01) +Q(x11).

This implies

A(xj) =
γ

2(1 − γ)
Q(x01) +

γ

2(1− γ)
Q(x11) +

1− 2γ

1− γ
Q(xj) ∀j ≥ 2. (23)

Applying Lemma B.2, there exists a function S such that

Shuffle(A(x01),A(x2), . . . ,A(xm)) = S(A+ 1−∆, C −A+∆)

Shuffle(A(x11),A(x2), . . . ,A(xm)) = S(A+∆, C −A+ 1−∆),
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where C ∼ Bin(m− 1, γ
1−γ ) = Bin(m − 1, e−ε0), A ∼ Bin(C, 12), and ∆ ∼ Bernoulli(β). By the

post-processing inequality, we have for any α ≥ 1 that

Dα(Shuffle(A(x01),A(x2), . . . ,A(xs))‖Shuffle(A(x11),A(x2),

. . . ,A(xs))) ≤ Dα((A+ 1−∆, C −A+∆)‖(A +∆, C −A+ 1−∆)).

Observe we can write

(A+ 1−∆, C −A+∆) = (1− β)(A+ 1, C −A) + β(A,C −A+ 1)

(A+∆, C −A+ 1−∆) = β(A+ 1, C −A) + (1− β)(A,C −A+ 1).

Define X = (A+ 1, C −A) and Y = (A,C −A+ 1). We can rewrite the above as

(A+ 1−∆, C −A+∆) = 2β
X + Y

2
+ (1− 2β)X

(A+∆, C −A+ 1−∆) = 2β
X + Y

2
+ (1− 2β)Y.

Applying Lemma B.4, we have

Dα′((A+ 1−∆, C −A+∆)‖(A+∆, C −A+ 1−∆))

≤ (1− 2β)Dα(X‖(1 − η)(X+Y
2 ) + ηY ),

where α′ = 1 + (1− 2β)(α − 1) and η = α′

α . By convexity, the RHS above is at most

Dα′((A+ 1−∆, C −A+∆)‖(A+∆, C −A+ 1−∆)) ≤ (1− 2β)Dα(X‖Y ).

Now, we finally set α = 1 +
8
√

exp(−ε0) ln(4/δ)√
m

+ 8 exp(−ε0)
m . Lemma B.3 (using the assumption that

ε0 ≤ ln( m
16 ln(2/δ) )) implies Dα(X‖Y ) ≤ δ. From this, we obtain our desired result that

Dα′(Shuffle(A(x01),A(x2), . . . ,A(xm))‖Shuffle(A(x11),A(x2),

. . . ,A(xm))) ≤ (1− 2β)Dα(X‖Y ) ≤ δ,

where

α′ = 1 +
eε0d − 1

eε0d + 1

(

8
√

eε0 ln(4/δ)√
m

+
8eε0

m

)

.

B.5 Proof of Theorem 4.4

Theorem 4.4. For any δ ∈ (0, 1), PrivEMDItemWise shown in Algorithm 2 satisfies bounded local
(α, δ′)-dEM DP, where

α = supw∈[0,1]
h(m;m,mw)

w and δ′ = δeh(m;m,m),

and

h(m;x0, x1) = x0 ln

(

1 +
exp(α0x1/x0)− 1

exp (α0x1/x0) + 1

(

8
√

eα0 ln(4x0/δ)√
m

+
8eα0

m

))

.

Similarly, PrivEMDItemWise satisfies bounded central (α, δ′)-dEM DP, where

α = supw∈[0,1]
h(mn;m,mw)

w and δ′ = δeh(mn;m,m).

39



First, consider the local model. Fix any two itemsets K = {x1, . . . , xm} and K ′ = {x1, . . . , x′m}
such that dEM(K̃, K̃ ′) ≤ w. By Lemma 2.1, there exists a permutation π : [m] → [m] such that

m
∑

i=1

dX (xi, x
′
π(i)) = mw.

Let

L̃ = Shuffle(A(x1), . . . ,A(xm)) (24)

L̃′ = Shuffle(A(x′π(i)), . . . ,A(x′π(m))). (25)

By Theorem 4.3, we know that Dexp(α(w))(L̃‖L̃′) ≤ δeα(w), where α(w) = h(m;m,mw). The final

privacy parameters for a fixed w will be α(w)
w and δeα(w); the worst-case privacy parameters are thus

supw∈[0,1]
α(w)
w and supw∈[0,1] δe

α(w). Since α(w) is an increasing function, the latter term reduces

to δeα(w).
In the bounded central model, the same logic applies, except that L̃, L̃′ have size mn, differ in

only m coordinates, and
mn
∑

i=1

dX (xi, x
′
π(i)) = mw.

We apply Theorem 4.3 to obtain Dexp(α(w))(L̃‖L̃′) ≤ δeα(w), where α(w) = h(mn;m,mw), and we
complete the proof similarly.

C Omitted Proofs from Section 5

C.1 Proof of Lemma 5.2

Lemma 5.2. Let K̃, K̃ ′ ∈ ∆X be probability distributions, and let C∗ be the minimum cost coupling
between K̃, K̃ ′. Let {(xi, yi)}si=1 be s i.i.d. samples from C∗, L = (x1, . . . , xs) and L′ = (y1, . . . , ys).
Then,

Pr[dEM(L̃, L̃′) ≥ (1 +
√
2)dEM(K̃, K̃ ′) + 3

s ln(
1
δ )] ≤ δ.

For i = 1, . . . , s, define Xi = dX (xi, yi), and observe that dEM(L̃, L̃′) ≤ 1
s (X1 + · · ·+Xs). Now,

let µ denote dEM(K̃, K̃ ′). Observe each Xi is i.i.d. and satisfies E[Xi] = µ and 0 ≤ Xi ≤ 1. Due to
the last two facts, we have E[X2

i ] ≤ µ. By Bernstein’s inequality, we have, for all t ≥ 0,

Pr [X1 + · · ·+Xs − sµ ≥ t] ≤ e−t2/2(v+bt/3) ,

where v =
∑s

i=1 E[X
2
i ] ≤ sµ and b = 1. By setting

t = max{
√

4sµ ln(1/δ), 43 ln(1/δ)},
we ensure that the probability is at most δ. We have

sµ+ t ≤ sµ+ 2
√

sµ ln(1/δ) + 4
3 ln(1/δ) ≤ (1 +

√
2)sµ+ (43 +

√
2) ln 1

δ .

Finally,

Pr[dEM(L̃, L̃′) ≥ (1 +
√
2)µ+ 3

s ln
1
δ ] ≤

Pr[X1 + · · · +Xs ≥ (1 +
√
2)sµ+ 3 ln 1

δ ] ≤ δ.
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C.2 Proof of Theorem 5.3

Theorem 5.3. Let ε > 0 and δ, r ∈ [0, 1] be arbitrary constants. Suppose A is a mechanism which
satisfies (α, δ)-bounded local dEM-DP (Definition 3.1), where

α = ε

(1+
√
2)r+

3
s ln(

1
δ )
.

Then, BoundedEMDReduction satisfies (ε, 2δ, r)-discrete local dEM-DP. Similarly, if A is (α, δ)-
bounded central dEM-DP (Definition 3.1), then BoundedEMDReduction is (ε, 2δ, r)-discrete central
dEM-DP.

First, we will consider the local model. LetK,K ′ denote two datasets such that dEM(K̃, K̃ ′) ≤ r.
Let L, L′ denote the set of s samples when K (resp. K ′) is used. Our goal is to show that
Dexp(ε)(M(L)‖M(L′)) ≤ δ. Observe we may define the objects L,L′ ∈ ∆X s

to be the probability
distributions of L,L′ (which lie in X s). By Lemma A.1, for any coupling C ∈ C(L,L′), we have

Dexp(ε)(M(L)‖M(L′)) ≤ E(L,L′)∼C [Dexp(ε)(M(L)‖M(L′))].

Let A denote the event that we have dEM(L̃, L̃′) ≤ (1 +
√
2)r + 3

s ln
1
δ . When A holds, then

Dexp(ε)(M(L)‖M(L′)) ≤ δ by assumption. When this does not hold, then triviallyDexp(ε)(M(L)‖M(L′)) ≤
1. Conditioning on the above expectation, we have

E(L,L′)∼C [Dexp(ε)(M(L)‖M(L′))] ≤ δ Pr[A] + Pr[A]

≤ δ + Pr[A].

Now, let C∗ ∈ ∆X×X denote the optimal coupling between K̃, K̃ ′. We will take C = (C∗)s ∈
∆X s×X s

, the s-fold Kronecker product of C∗. Observe this is indeed a coupling between L,L′, and
each coordinate of (L,L′) ∼ C is simply a sample from C∗. Thus, the event A above is equivalent
to

Pr[A] = Pr
(L,L′)∼(C∗)s

[dEM(L̃, L̃′) ≤ (1 +
√
2)r +

3

s
ln

1

δ
],

where the notation (L,L′) ∼ (C∗)s indicates that L = {x1, . . . , xs} and L = {y1, . . . , ys}, and each
(xi, yi) ∼ C∗. By Lemma 5.2, we know that Pr[A] ≥ 1 − δ, and thus the above expectation is at
most 2δ. This proof may be generalized easily to the central model.

D Omitted Proofs from Section 6

D.1 Proof of Lemma 6.2

Lemma 6.2. There exists an (α, δ)-bounded dEM-DP algorithm in the local model which produces
an estimate q̂ such that, for all K̃,

E[‖q̂ − qf◦φ(K̃)‖2] ≤ ‖F‖2
√

1.25d ln(1/δ))

α
√
n

.

As the sensitivity of the query is bounded by ‖F‖2, is easy to show (e.g. Dwork et al. (2014))

that adding d-dimensional Gaussian noise with width ‖F‖2
r
√

1.25 ln 1

δ

α in each coordinate will satisfy

(αr , δ) local dEM-DP. The standard deviation in each coordinate of q̂ is thus ‖F‖2
r
√

1.25 ln 1

δ

α
√
n

, and

this gives the desired expected error.
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D.2 Proof of Theorem 6.5

Theorem 6.5. For the metric space X = B × C and any mechanism A satisfying (α0, 0) dX -DP
where α0 = O( α√

m ln(meα/δ)
) (α0 is specifically defined in Theorem 4.4), FreqEstLocal is (α, δ)-

bounded dEM-DP in the local model and returns an estimator H̃ such that

max
K

E[dEM(H̃, K̃)] ≤ r

√

st(‖BT ‖21→2 − 1)

mn
+

√

s(‖P TBT ‖21→2 − 1)

mn
, (8)

where B is a right inverse of A, P = IB ⊗ 1+C , and 1+C is a column vector of 1s indexed by C.
First, we will introduce notation. For a cluster label b ∈ B, let X [b] ⊆ X denote the elements

of X in cluster b. Define F̃ [b] ∈ R
B×C to be the indices of F̃ in X [b] (so that indices outside X [b]

are zeroed out). Define K̃[b] similarly, and observe that F̃ [b], K̃ [b] are not normalized.
For any estimate F̃ , consider the following transportation plan from F̃ to K̃: For each b ∈ B,

transfer F̃ [b] to K̃[b] arbitrarily, and put any excess weight in the bin (b, c′) for an arbitrary c′ ∈ C.
The cost incurred by this is at most r‖F̃ [b]− K̃[b]‖1+ r|µ(F̃ [b])−µ(K̃[b])|, where µ(·) denotes total
mass of its argument. Finally, equalize the weights in the coordinates {(b, c′) : b ∈ B}. The cost
incurred for this step is at most (1− r)

∑

b∈B |µ(F̃ [b])− µ(K̃[b])|. Thus, the total cost is

∑

b∈B
r‖F̃ [b]− K̃[b]‖1 + |µ(F̃ [b])− µ(K̃[b])|

= r‖F̃ − K̃‖1 +
∑

b∈B
|µ(F̃ [b])− µ(K̃[b])|.

Observe that the term
∑

b∈B |µ(F̃ [b]) − µ(K̃[b])| is simply the ℓ1 distance between F̃ P and K̃P ,

where P ∈ R
(B×C)×B is the matrix that maps a vector to its sum along each coordinate in B. Thus,

we may form the the upper bound

E[dEM(F̃ , K̃)] ≤ rE[‖F̃ − K̃‖1] + E[‖(F̃ − K̃)P‖1]
≤ rE[

√
st‖F̃ − K̃‖2] + E[

√
s‖(F̃ − K̃)P‖2]

≤ r

√

stE[‖F̃ − K̃‖22] +
√

sE[‖(F̃ − K̃)P‖22]. (26)

Now, we will bound (26) given this estimator. In the following, let Ax denote the xth row of
the matrix A. Observe that

F̃ − K̃ =
1

mn

mn
∑

i=1

ziB − K̃AB

=
1

mn

mn
∑

i=1

ziB − 1

mn

mn
∑

i=1

ekiAB

=
1

mn

mn
∑

i=1

ziB − 1

mn

mn
∑

i=1

AkiB

=
1

mn

mn
∑

i=1

(zi −Aki)B
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Define wi = zi −Aki , and notice that E[wi] = E[zi]−Aki = 0. Thus,

E[‖F̃ − K̃‖22] = E[(F̃ − K̃)(F̃ − K̃)T ]

=

(

1

mn

)2

E

[(

mn
∑

i=1

wiB

)(

mn
∑

i=1

BTwT
i

)]

=

(

1

mn

)2 mn
∑

i,j=1

E[wiBBTwT
j ]

=

(

1

mn

)2 mn
∑

i=1

E[wiBBTwT
i ],

where the last step holds because the wi are independent. Now, we have

E[wiBBTwT
i ] = E[ziBBT zTi ]− E[AkiBBTAT

ki ]

= E[ziBBT zTi ]− ekie
T
ki

≤ ‖BT ‖21,2 − 1.

Putting it all together, we have

E[‖F̃ − K̃‖22] ≤
‖BT ‖21,2 − 1

mn

To control the term ‖(F̃ − K̃)P‖22 in (26), using similar steps, we may write

E[‖(F̃ − K̃)P‖22] ≤
(

1

mn

)2 mn
∑

i=1

E[wiBPP TBTwT
i ].

Similarly, for any i we have

E[wiBPP TBTwT
i ] = E[ziBPP TBT zTi ]− E[AkiBPP TBAT

ki ]

≤ ‖P TBT‖21,2 − 1,

and this implies

E[‖(F̃ − K̃)P‖22] ≤
‖P TBT‖21,2 − 1

mn
.

Substituting into (26), we obtain the desired bound.

D.3 Proof of Theorem 6.6

Theorem 6.6. For the metric space X = B × C, FreqEstLocal with the mechanism A = GKRRα0

satisfies (α, δ)-dEM DP in the local model and returns an estimator H̃ such that

max
K

E[dEM(H̃, K̃)] ≤ r

√

st3

mn

(

eα0 + s

eα0 − e(1−r)α0

)

+

√

s2t2

mn

(

√

s+ 2(eα0 − 1)

eα0 + (t− 1)e(1−r)α0 − t

)

, (9)

where α0 is defined in Eq. (6).
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For positive constants a, b, c, the matrix A is given by

A = aIX + (bIB + c1B)⊗ 1C ,

where

a =
eα0 − e(1−r)α0

eα0 + (t− 1)e(1−r)α0 + (s− 1)t

b =
e(1−r)α0 − 1

eα0 + (t− 1)e(1−r)α0 + (s− 1)t

c =
1

eα0 + (t− 1)e(1−r)α0 + (s− 1)t
.

The matrix A is actually invertible, and

A−1 = a′IX + (b′IB + c′1B)⊗ 1C ,

where

a′ =
eα0 + (t− 1)e(1−r)α0 + (s− 1)t

eα0 − e(1−r)α0

b′ = −(e(1−r)α0 − 1)(eα0 + (t− 1)e(1−r)α0 + (s− 1)t)

(eα0 − e(1−r)α0)(eα0 + (t− 1)e(1−r)α0 − t)

c′ = − 1

eα0 + (t− 1)e(1−r)α0 − t
.

It is easy to show the identity that a′ + tb′ + stc′ = 1. Each row of A−1 looks like one copy of
a′ + b′ + c′, t− 1 copies of b′ + c′, and (s− 1)t copies of c′. Thus,

‖(A−1)T ‖21→2 − 1

= (a′ + b′ + c′)2 + (t− 1)(b′ + c′)2 + (s− 1)t(c′)2 − 1

= (1− (t− 1)b′ − (st− 1)c′)2 + (t− 1)(b′)2

+ 2(t− 1)b′c′ + (t− 1)(c′)2 + (s− 1)t(c′)2 − 1

= −2(t− 1)b′ − 2(st− 1)c′ + 2(t− 1)(st− 1)c′b′

+ (t− 1)2(b′)2 + (st− 1)2(c′)2 + (t− 1)(b′)2

+ 2(t− 1)b′c′ + (t− 1)(c′)2 + (s− 1)t(c′)2

≤ (tb′)2 + 2st2b′c′ + (stc′)2 − 2tb′ − 2stc′

≤ (tb′ + stc′)2 − 2(tb′ + stc′)

= (a′)2 − 1.

Substituting, we obtain

(a′)2 − 1 ≤
(

te(1−r)α0 + (s− 1)t

eα0 − e(1−r)α0

)2

+ 2

(

te(1−r)α0 + (s − 1)t

eα0 − e(1−r)α0

)

≤ t2e2α0 + 2(s − 1)t2eα0 + (s− 1)2t2 + 2te2α0 + 2(s − 1)teα0

(eα0 − e(1−r)α0)2

≤
(

t
eα0 + s

eα0 − e(1−r)α0

)2
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Next, it’s easy to see that

A−1P =
(

a′IX + ((b′IB + c′1B)⊗ 1C)
)

(IB ⊗ 1C)

= a′IB ⊗ 1C + (b′IB + c′1B)⊗ t1C

Each row of the latter consists of one copy of a′ + tb′ + tc′ and s− 1 copies of tc′. This gives us

‖(A−1P )T ‖21→2 − 1 = (a′ + tb′ + tc′)2 + (s − 1)(tc′)2 − 1

= (1− (s− 1)tc′)2 + (s− 1)(tc′)2 − 1

= s(s− 1)(tc′)2 − 2(s − 1)(tc′)

≤ (stc′)2 − 2(stc′).

Substituting, we obtain

(stc′)2 − 2(stc′) =
st(st+ 2(eα0 + (t− 1)e(1−r)α0 − t))

(eα0 + (t− 1)e(1−r)α0 − t)2

≤ st2(s+ 2(eα0 − 1))

(eα0 + (t− 1)e(1−r)α0 − t)2

Applying Theorem 6.5, we obtain

E[dEM(F̃ , K̃)]

≤ r

√

st((a′)2 − 1)

mn
+

√

s2t(st(c′)2 − 2c′)
mn

≤ r

√

st3

mn

(

eα0 + s

eα0 − e(1−r)α0

)

+

√

s2t2

mn

(

√

s+ 2(eα0 − 1)

eα0 + (t− 1)e(1−r)α0 − t

)

,

finishing the claim. To obtain an asymptotic bound (with budget α = ε/r), we plug in (6), which
says that we may set

α0 =











α

32
√

m ln(4m exp(α)/δ)
if α ≤ 32

√

m ln(4m exp(α)/δ)

2 ln

(

ε

16r
√

m ln(4m exp(α)/δ)

)

32r
√

m ln(4m exp(α)/δ) ≤ ε ≤ rm
.

In the first case, we have

eα0 + s

eα0 − e(1−r)α0
≤ s

rα0
√

s+ 2(eα0 − 1)

eα0 + (t− 1)e(1−r)α0 − t
≤ 2

√
s

α0t
,

and this implies

E[dEM(K̃, F̃ )] ≤
√

s3t3

mn

1

α0
+

√

s3t2

mn

2

α0

≤ 64r(st)3/2
√

ln(4m exp( εr )/δ)

ε
√
n

.
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In the second, we have

eα0 + s

eα0 − e(1−r)α0
=

1 + s/eα0

1− e−rα0
≤ 2

1 + se−α0

min{1, rα0}
√

s+ 2(eα0 − 1)

eα0 + (t− 1)e(1−r)α0 − t
≤
√

2(s+ eα0)

eα0
.

This implies

E[dEM(K̃, F̃ )]

≤ 2
(

1 + 1
rα0

)

(1 + se−α0)r

√

st3

mn
+ 2

(

e−α0
√
s+ e−α0/2

)

√

s2t2

mn

≤ 2(1 + se−α0)

√

st3

mn
+ 2

(

e−α0
√
s+ e−α0/2

)

√

s2t2

mn

≤ 2(1 +
√
se−α0/2 + se−α0)

√

st3

mn

≤ 4(1 + se−α0)

√

st3

mn

≤ 4

√

st3

mn
+ 1024

r2
√
ms3t3

ε2
√
n

ln(4m exp(ε/r)/δ)

≤ 4

√

st3

mn
+ 32

r
√
s3t3

ε
√
n

√

ln(4m exp(ε/r)/δ).

In both cases, the desired bound has been shown.

D.4 Proof of Lemma 6.7

We use the bound that dEM(K̃, F̃ ) ≤ ‖K̃ − F̃‖1. In each coordinate, the expected error introduced
by the Laplace noise is at most O( 1

nε), and thus E[‖K̃ − F̃‖1] ≤ O( k
nε). Normalizing will only

reduce this error.

D.5 Proof of Corollary 6.8

Corollary 6.8. For the metric space X = B × C, FreqEstLocal with A = GKRRα0
with α0 given in

Eq. (7) satisfies (α, δ)-dEM DP in the central model and returns an estimator H̃ with error given
in Eq. (9).

Our mechanism will simply combine the itemsets into one large itemset K with mn elements
(and one global user), and then apply the algorithm of Theorem 6.6. By Theorem 4.4, the privacy
budget is (α, δ), where

α0 =











α
√
n

32
√

m ln(4meα/δ)
if α

√
n ≤ 32

√

m ln(4meα/δ)

2 ln

(

α
√
n

16
√

m ln(4meα/δ)

)

32
√

m ln(4meα/δ) < α
√
n < m

√
n

Following the proof in Section D.3, (and setting α = ε
r ), we can show that

E[dEM(K̃, F̃ )] ≤ 4

√

st3

mn
+ 64

r
√
s3t3

εn

√

ln(4m exp(ε/r)/δ).
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