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Abstract. Ultrasonic guided waves enable us to monitor large regions of a struc-
ture at one time. Characterizing damage through reflection-based and tomogra-
phy-based analysis or by extracting information from wavefields measured across 
the structure is a complex dynamic-data driven applications system (DDDAS). 
As part of the measurement system, guided waves are often measured with in situ 
piezoelectric sensors or wavefield imaging systems, such as a scanning laser dop-
pler vibrometer. Adding sensors onto a structure is costly in terms of components, 
wiring, and processing and adds to the complexity of the DDDAS while sampling 
points with a laser doppler vibrometer requires substantial time since each spatial 
location is often averaged to minimize perturbations introduced by dynamic data. 
To reduce this burden, several approaches have been proposed to reconstruct full 
wavefields from a small amount of data. Many of these techniques are based on 
compressive sensing theory, which assumes the data is sparse in some domain. 
Among the existing methods, sparse wavenumber analysis achieves excellent re-
construction accuracy with a small amount of data (often 50 to 100 measure-
ments) but assumes a simple geometry (e.g., a large plate) and assumes 
knowledge of the transmitter location. This is insufficient in many practical sce-
narios since most structures have many sources of reflection. Many other com-
pressive sensing methods reconstruct wavefields from Fourier bases. These meth-
ods are geometry agnostic but require much more data (often more than 1000 
measurements). This paper demonstrates a new DDDAS approach based on un-
supervised wave physics-informed representation learning. Our method enables 
learning full wavefield representations of guided wave datasets. Unlike most 
compressive sensing methodologies that utilize sparsity in some domain, the ap-
proach we developed in our lab is based on injecting wave physics into a low 
rank minimization algorithm. Unlike many other learning algorithms, including 
deep learning methods, our approach has global convergence guarantees and the 
low rank minimizer enables us to predict wavefield behavior in unmeasured re-
gions of the structure. The algorithm can also enforce the wave equation across 
space, time, or both dimensions simultaneously. Injecting physics also provides 
the algorithm tolerance to data perturbations. We demonstrate the performance 
of our algorithm with experimental wavefield data from a 1m by 1m region of an 
aluminum plate with a half-thickness notch in its center. 
 
Keywords: DDDAS, wave-informed machine learning, signal processing, 
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1 Introduction 

1.1 Overview 

Structural health monitoring is a Dynamic Data Driven Applications System (DDDAS) 
in which the characteristics of a structure or material dynamically vary over time due 
to gradual growth of damage as well as other environmental and operational variations. 
All these changes affect our sensor systems. Ultrasonic guided waves are a common 
sensing modality in structural health monitoring that allow us to characterize and iden-
tify damage in large regions of structures [1], [2]. Guided waves can be measured with 
in situ piezoelectric sensors or wavefield imaging systems, such as scanning laser Dop-
pler vibrometers [3]. Even with a full wavefield imaging system, characterizing and 
understanding guided wave propagation can be challenging. This is due to their fre-
quency-dependent propagation and complex interactions with structural components 
[4]. As a result, significant efforts have been dedicated to advanced algorithms and 
techniques for analyzing and characterizing guided wave data. Specifically, this paper 
aims to obtain compact representations of guided wave data that characterize the prop-
agation environment with minimal assumptions. We only assume the wave equation is 
satisfied and based on the theory presented in [5]. Minimal assumptions are necessary 
in many scenarios since we often have minimal knowledge about the environment and 
no knowledge about the damage and its effects on the guided waves propagation. 

Guided wave data has been analyzed through reflection-based [6]–[8], tomography-
based [9], and wavefield-based analysis methods [3], [10]. Several wavefield analysis 
methods learn or extract special representations of the wavefields. These representa-
tions may have a physical basis, such as the modal dispersion curves [11] of guided 
waves, which characterize based on the material properties (e.g., velocities, densities, 
and thickness) and on known physics. Among these methods, sparse wavenumber anal-
ysis can extract dispersion curves with limited data [12], [13]. Most of these methods 
utilize a large pool of representations (often represented by a matrix) based on an ana-
lytical solution to the problem at hand (as in [14]). Yet, these fail for two reasons. First, 
the space of possible solutions is often infinite. In the case of the wave equation, for 
example, we may have one or more real-valued wavenumbers and/or frequencies that 
must be identified. Estimating these values is often not trivial. More importantly, there 
are many known representations that solve a differential equation [13], [15] but may 
not be compact for the specific problem, thereby becoming an ineffective representa-
tion. For example, the Fourier representation is always a solution to the wave equation 
[16], [17]. Yet, in the presence of discontinuities in time or space, it is not a compact 
representation as an infinite number of Fourier components are required. Hence, struc-
tural health monitoring systems cannot effectively represent cracks or delaminations 
with a Fourier basis.  

There are past also efforts to integrate physics into other data-driven models. In addi-
tion, data assimilation methods used in time-series forecasting often inject physics into 
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their frameworks [18] and act in conjunction with powerful, but often constrained, mod-
els to predict the future state of a system. This is related to, but separate, from the ap-
proach in this paper, where we aim to learn the underlying characteristics / representa-
tions of the data or environment. These representations could be used to highlight var-
iations in such a time series, enabling us to integrate our approach with data assimilation 
strategies. Full waveform inversion (FWI) [19]similarly computes the characteristics 
of the environment based on a chosen physical model. However, the physical models 
used in FWI are highly constrained (i.e., often requiring many built-in assumptions) 
and usually coupled with expensive finite difference methods.  

In contrast with each of these methods that rely on highly constrained models, our only 
constraint is that the data must satisfy the wave equation. While there is similar prior 
work on enforcing wave-physics into a dictionary learning framework with sparsity 
constraints in [20], this approach lacks the global optimality guarantees, convergence 
guarantees, and algorithmic interpretability that are present in this paper [5], [21]. 
Hence, we present a method to characterize material properties as well as decompose 
data that has strong algorithmic guarantees and assumes only fundamental physical 
knowledge. In addition, our physics-based decomposition can isolate and show how 
different wave modes propagate and change in the wavefield. We refer to our approach 
as wave-informed regression. We demonstrate this DDDAS approach with simulated 
wavefield data from a 1m by 1m region of an aluminum plate. The guided waves are 
generated by a 50 kHz frequency pulse. 

2 WAVE-INFORMED REGRESSION 
METHODOLOGY 

Wave-informed regression is based on learning a linear collection of modes that best 
represent wavefield data. These modes are learned by solving an optimization problem 
with three components: a mean squared error loss, a wave-informed loss, and mode 
number loss. We describe each of these components in the following subsections. 

2.1 Mean Squared Error Loss 

We represent a linear collection of modes to be learned as the columns of a matrix 𝐃𝐃. 
The sum of these modes reconstructs the wavefield. Hence, our first loss term mini-
mizes the mean squared error between our reconstruction and wavefield data such that  

cMSE = ‖𝐱𝐱 − 𝐃𝐃𝐃𝐃‖𝐅𝐅2    

where the expression ‖⋅‖F2 represents the squared Frobenius norm, defined by the 
squared sum of all the matrix or vector elements. The full wavefield data 𝐱𝐱 is a vector-
ized form of a wavefield image 𝐗𝐗 at a single frequency 𝜔𝜔 

𝐱𝐱 = vec(𝐗𝐗),  𝐗𝐗𝑖𝑖𝑖𝑖 = 𝑋𝑋�𝜔𝜔, 𝑥𝑥i,𝑦𝑦j�. 
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For simplicity of notation, we assume the optimization is always performed at a sin-
gle frequency 𝜔𝜔. Each column of 𝐃𝐃 represents a different vectorized spatial wave mode. 
The vector 𝟏𝟏 represents a vector of all ones. Hence 𝐃𝐃𝐃𝐃 is the sum of columns in 𝐃𝐃. 
Note that without additional information, optimizing this loss is highly underdeter-
mined – there exists an infinite number of possible solutions.  Figure 1(a) illustrates an 
example of 𝐗𝐗 around a center frequency of 50 kHz. We also illustrate this data in the 
wavenumber domain in Figure 1(b), with the axes representing the magnitudes of the 
horizontal and vertical wavenumbers. We can observe two modes of propagation at two 
distinct wavenumbers in these figures. However, it is difficult to observe that there is a 
spatial region with wavenumbers that are 10% higher than others. Hence, there are a 
total of four spatially dependent modes in this data. 

2.2 Wave-Informed Loss 

To obtain a meaningful modal representation, we add a loss function that represents the 
wave, or Helmholtz equation. The wave equation loss function is defined by 

cwave = �𝐋𝐋𝒙𝒙,𝒚𝒚𝐃𝐃 − 𝐊𝐊𝐊𝐊�
F

𝟐𝟐
 

where 𝐊𝐊 is a diagonal matrix of squared wavenumbers 𝑘𝑘𝑚𝑚2 . The matrix 𝐋𝐋𝒙𝒙,𝒚𝒚 represents 
an operator for the approximate second derivative in the x-direction added to the ap-
proximate second derivative in the y-direction. Note that each column of 𝐃𝐃 is a vector-
ized image. The second derivative has multiple numerical approximations. In this pa-
per, we use the second-order central difference approximation [22]. Note that this ap-
proximation is good for low frequencies (or wavenumbers) and poor for high frequen-
cies (or wavenumbers). From a numerical perspective, a better second derivative oper-
ator can be obtained by stacking the discretized continuous eigen-functions correspond-
ing to the continuous second derivative and computing a new Laplacian 𝐋𝐋𝒙𝒙,𝒚𝒚 using con-
tinuous eigen-values and eigen-functions.  

2.3 Mode Number Loss 

Adding the two previously discussed loss functions there are still many possible opti-
mal 𝐃𝐃 matrices, including Fourier-like matrices. Therefore, we consider the true solu-
tion to be the one that minimizes the number of modes by including a third cost:  

𝑐𝑐size = ‖𝐃𝐃‖𝐅𝐅𝟐𝟐  . 

Intuitively, when there are many modes, the Frobenius norm will be large. When there 
is a small number of modes, the Frobenius norm will be small. Therefore, minimizing 
this cost will simultaneously minimize the number of modes learned. We further refer 
to [23], which shows that penalizing the Frobenius norm is equivalent to penalizing the 
nuclear norm of the matrix (enforcing a sparsity in the number of bases). Hence, we 
choose 𝑐𝑐size as the squared Frobenius norm, as in [5] since it helps in obtaining an 
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algorithm that solves the optimization problem to global optimality. Without this term, 
there would be many possible solutions to the optimization. 

 

 

(a) Spatial data 

 

(b) Wavenumber data 

Fig. 1. Illustration of (𝑎𝑎) single frequency spatial wavefield data and (b) the equivalent two-
dimensional wavenumber domain. In (b), we observe two strong rings, representing the ze-
roth-order symmetric and zeroth-order asymmetric modes across the simulated plate.  

2.4 Wave-informed Regression 

When we add our costs together and incorporate regularization constants, we obtain  

min
𝐃𝐃,𝐊𝐊,𝑀𝑀

‖𝐱𝐱 − 𝐃𝐃𝐃𝐃‖F2 + 𝜆𝜆 �‖𝐃𝐃‖F2 +
1
𝛾𝛾2
‖𝐋𝐋𝐋𝐋 − 𝐃𝐃𝐃𝐃‖F2� 

where 𝑀𝑀 is the number of modes in the data. This formulation includes two regulariza-
tion terms. The 𝜆𝜆 term represents a tradeoff between our mean squared error and our 
two regularizers while the 𝛾𝛾2 term represents the tradeoff between minimizing the num-
ber of modes and satisfying the wave equation. 

2.5 Wave-Informed Algorithm 

While we have established an optimization that defines wave-informed regression, cre-
ating an algorithm for solving this optimization is not trivial. This is because the opti-
mization is not convex (i.e., there is more than one local minimum) and the variable to 
be optimized 𝐃𝐃 is very high dimensional. As a result, there are no standard optimization 
algorithms that can be applied to this problem. An algorithm must be custom designed 
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to solve wave-informed regression. We briefly outline a simplified version of the algo-
rithm that solves this optimization, detailed here [5], [20], [21]. In our version of the 
algorithm, we assume a fixed number of modes from the very start. The algorithm iden-
tifies each value of k𝑖𝑖2 in an iterative manner. After obtaining each k𝑖𝑖2, it then updates 
𝐃𝐃. Learning k𝑖𝑖2 is equivalent to learning an optimal filter in the wavenumber domain 
(see [5], [20], [21] for the exact connections to signal processing) and is closely related 
to standard estimation problems (specifically, spectral estimation [24]), only in our case 
we estimate both the modes and the wavenumbers. Learning 𝐃𝐃 then combines and 
shapes these filters together to optimally reconstruct the data. Figure 2 outlines the al-
gorithm in the form of a flowchart. 

 

Fig. 2. A simplified wave informed regression algorithm 

3 SIMULATION SETUP 

We test our algorithm with a guided Lamb wave simulation. In the simulation, ultra-
sonic guided waves travel in multiple directions, originating from outside the frame. 
There is one region where the guided waves travel with a different wavenumber, which 
possibly represents delamination [25], corrosion [26], or complex structural elements 
[27]. The spatial frame is 1 m by 1 m with a grid spacing of 5 mm. We simulate two 
modes, the zeroth-order symmetric mode and the zeroth-order asymmetric mode. Two 
more modes are produced by our small region (shown in Figure 3(a)), which increases 
the wavenumbers by 10%. The guided wave data is simulated with a sampling rate of 
1 MHz and a Gaussian transmission of 50 kHz center frequency and 25 kHz bandwidth. 
For wave-informed regression, we choose 𝜆𝜆 = 1 and 𝛾𝛾2 = 𝜋𝜋2/(𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦), where 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 is 
the total number of elements in 𝒙𝒙. This defines 𝛾𝛾 as the width of one sample in the 
wavenumber domain. We choose to obtain 𝑀𝑀 = 3 modes. Figure 3(b) illustrates an 
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snapshot of these waves at a single point in time. We know there are four modes in the 
data (A0 and S0 in the large and small regions). However, the S0 mode in the large 
region is difficult to distinguish from the S0 mode in the small region due to how similar 
the wavenumbers are. 

  

(a) Illustration of wavenumbers  
across the region of interest 

(b) Spatial wavefield data at one  
point in time 

Fig. 3. Illustration of (a) the two different wavenumber regions present in our simulation setup and 
(b) a single-time snapshot of the S0 mode in our guided waves. The waves originate from three sep-
arate sources. 

4 RESULTS 

Figure 4 illustrates the first three modes extracted by wave-informed regression, in 
space and wavenumber. The second column illustrates that each mode corresponds to 
a particular wavenumber radius. The first column shows that the second mode is miss-
ing the small region with different wavenumbers. This region is observable in the third 
mode. The error for the wavenumbers estimated for each mode is 1.7 m-1, 1 m-1, and 
2.3 m-1, respectively. Overall, we demonstrate the ability to learn representations that 
spatially separate different modes or wavenumbers. We illustrate the results for two 
different points in time. The two points in time show the two different modes. The low 
wavenumber S0 mode is shown on the top and the high wavenumber A0 mode is shown 
on the bottom. As before, we see that the second mode has a spatial “hole” where the 
wavenumber changes, and the third mode fills that gap. Hence, we successfully extract 
the time-domain behavior of individual spatially varying modes.  

5 CONCLUSIONS 

This paper has illustrated preliminary results for wave-informed regression, a represen-
tation learning framework for combining wave physics within a DDDAS framework. 
The algorithm extracts the wavenumber of each mode in data as well as its spatially 
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varying components. The algorithm is unsupervised and therefore requires no prior 
training data. However, in the future, this approach can be applied to both supervised 
and unsupervised learning strategies. The benefits of these physics-informed learning 
techniques enable machine learning in structural health monitoring to be both more 
reliable as well as more interpretable and the algorithms are also not data hungry. 

 
(a) Learned mode n=1 (in space) 

 
(b) Learned mode n=1 (in wavenumber) 

 
(c) Learned mode n=2 (in space) 

 
(d) Learned mode n=2 (in wavenumber) 

 
(e) Learned mode n=3 (in space) 

 
(f) Learned mode n=3 (in wavenumber) 

Fig. 4. Illustrations of the three modes (represented in the spatial and wavenumber domains) 
learned by wave-informed regression. 
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