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A B S T R A C T

Spatial navigation involves the use of various cues. This study examined how cue conflict in
fluences navigation by contrasting landmarks and optic flow. Participants estimated spatial dis
tances under different levels of cue conflict: minimal conflict, large conflict, and large conflict 
with explicit awareness of landmark instability. Whereas increased cue conflict alone had little 
behavioral impact, adding explicit awareness reduced reliance on landmarks and impaired the 
precision of spatial localization based on them. To understand the underlying mechanisms, we 
tested two cognitive models: a Bayesian causal inference (BCI) model and a non-Bayesian sensory 
disparity model. The BCI model provided a better fit to the data, revealing two independent 
mechanisms for reduced landmark reliance: increased sensory noise for unstable landmarks and 
lower weighting of unstable landmarks when landmarks and optic flow were judged to originate 
from different causes. Surprisingly, increased cue conflict did not decrease the prior belief in a 
common cause, even when explicit awareness of landmark instability was imposed. Additionally, 
cue weighting in the same-cause judgment was determined by bottom-up sensory reliability, 
while in the different-cause judgment, it correlated with participants’ subjective evaluation of cue 
quality, suggesting a top-down metacognitive influence. The BCI model further identified key 
factors contributing to suboptimal cue combination in minimal cue conflicts, including the prior 
belief in a common cause and prior knowledge of the target location. Together, these findings 
provide critical insights into how navigators resolve conflicting spatial cues and highlight the 
utility of the BCI model in dissecting cue interaction mechanisms in navigation.

1. Introduction

Spatial navigation, a fundamental ability crucial for both human and animal survival, depends on the ability to combine spatial 
cues (e.g., landmarks in the environment, proprioceptive cues from self-motion) to estimate location. Navigators must estimate their 
own locations in the environment, as well as the locations of goals. According to traditional models of spatial learning (e.g., Gallistel, 
1990; O’Keefe & Nadel, 1978; Siegel & White, 1975), navigators can develop a mental representation of an environment through 
repeated explorations. This representation, commonly referred to as “cognitive map”, includes straight-line distances and directions 
between locations (Tolman, 1948). It has been argued that cognitive maps enable efficient and flexible navigation in familiar envi
ronments (for alternative views, see the cognitive graph theory in Ericson & Warren, 2020 and the cognitive collages hypothesis in 
Tversky, 1993).

A key challenge in spatial navigation is resolving conflicts between different spatial cues. This problem has been extensively studied 
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across disciplines. Much work has examined conflicts between landmarks and self-motion cues. Navigation with self-motion cues, such 
as proprioceptive inputs, vestibular signals, and optic flow, requires continuous integration of self-movement to determine one’s 
location, a process known as path integration (Etienne & Jeffery, 2004; Mittelstaedt & Mittelstaedt, 1980). In contrast, landmarks are 
prominent environmental features that provide direct spatial information. These two navigation modes recruit distinct and inde
pendent cognitive-neural mechanisms (Chen et al., 2017, 2019, 2024; Shettleworth & Sutton, 2005), raising an interesting question of 
how these two cue types interact during navigation. Behavioral studies in humans have reported mixed findings: some suggest a 
predominance of landmarks over self-motion cues when conflicts are large (Zhao & Warren, 2015a), others suggest the opposite 
(Sjolund et al., 2018), and some show no change in cue weighting until the conflicts become extreme (Zhao & Warren, 2015b). 
Neuroscience studies in non-human animals typically reveal that spatially-modulated neurons respond to both cue types (Campbell 
et al., 2018; Chen et al., 2013; Gothard et al., 1996), but preferences vary by brain region: the retrosplenial cortex favors landmarks, 
whereas the entorhinal cortex favors self-motion cues (Campbell et al., 2021).

Beyond landmark vs. self-motion conflicts, research has also examined how geometric and featural cues interact across multiple 
disciplines (see review papers, Cheng, 2008; Cheng et al., 2013; Cheng & Newcombe, 2005; Lew, 2011; Newcombe, 2023). Geometric 
cues refer to environmental features related to shape, layout, and spatial structure, such as the shape of a room. Featural cues refer to 
distinct, identifiable aspects of an environment, such as an isolated landmark at one of the room corners. Using the reorientation 
paradigm, Cheng demonstrated that rats predominantly relied on geometric cues rather than featural cues for reorientation, sup
porting a geometric module hypothesis (Cheng, 1986). However, later studies have shown that navigators make use of both geometric 
and featural cues, with cue reliance varying based on factors such as cue salience, navigation history, and language use (see a recent 
review, Newcombe, 2023). These findings have led to the adaptive cue combination hypothesis, which posits that spatial cue utili
zation is flexible and depends on contextual demands (Xu et al., 2017).

Additional studies have examined conflicts between other spatial cue types, such as an individual landmark vs. multiple landmarks 
in an array (Jetzschke et al., 2017; Roy et al., 2023) and distal vs. proximal landmarks (Knierim, 2002; Qi & Mou, 2024; Shapiro et al., 
1997; Tanila et al., 1997; Yoganarasimha et al., 2006).

Across these studies, cue conflict mainly serves as an experimental tool to assess navigators’ relative reliance on different spatial 
cues. Researchers evaluate cue reliance by analyzing response distributions. When responses are continuous, cue weighting is inferred 
from the relative proximities of the response centroid to the target locations defined by conflicting cues. The closer the response 
centroid to the location defined by a particular cue, the greater the reliance on that cue (see Chen et al., 2017, for a review). When 
responses are discrete, such as in the reorientation paradigm, cue weighting is assessed based on the proportion of trials in which 
participants choose the location defined by a given cue (Ratliff & Newcombe, 2008). While this approach has provided valuable in
sights, it does not fully reveal the cognitive processes that navigators use. Specifically, it remains unclear (a) how navigators decide 
whether conflicting sensory-perceptual information is informative about the world (i.e., there are different sources or causes) or should 
be ignored (i.e., the conflicts are caused by sensory-perceptual error), and (b) how they select a goal location when they have 
determined that discrepant spatial cues should not be integrated.

1.1. Cognitive models accounting for navigation behavior in cue-conflicting situations

Several models have been proposed to explain navigation behavior in cue-conflicting situations. While these models offer valuable 
insights, they have limitations, such as lacking mechanistic explanations of cue detection and resolution, being constrained to specific 
spatial cue types, and failing to generalize across tasks.

Jetzschke and colleagues proposed a probabilistic model to explain continuous spatial localization in a 2D environment, with a 
landmark conflicting with other landmarks in an array (Jetzschke et al., 2017). In the standard maximum-likelihood-estimation (MLE) 
model of cue integration, the likelihood distributions of individual cues are assumed to be Gaussian. Cue integration involves 
multiplying individual likelihood distributions, which results in a more precise joint likelihood distribution (Bromiley, 2013; 
McNamara & Chen, 2022, Appendix A). Unlike the MLE model, Jetzschke’s model assumes that each individual likelihood distribution 
is a mixture of two Gaussians, one of which has very heavy tails. Multiplying these mixture distributions does not result in a more 
precise joint likelihood distribution, eliminating the typical gain from cue integration. However, this model remains primarily 
descriptive and does not explain how cue conflict is detected and resolved.

Harootonian and colleagues tested models for head direction estimation, considering body-based self-motion cues and visual 
feedback (Harootonian et al., 2022). Their findings support a hybrid model: cues are integrated when cue consistency is assumed, but 
only body-based cues are used when cue inconsistency is assumed. However, this model does not incorporate a mechanism for 
detecting cue conflict; instead, this treats the proportion of trials for cue integration as an independent, freely varying parameter.

The adaptive cue combination model aims to explain conflicts between geometric cues and featural cues in the reorientation 
paradigm (Xu et al., 2017, Case study 3). This model follows the principles of the standard MLE model of cue integration (Rohde et al. 
2016). The MLE model, however, was originally developed to explain cue combination behavior in scenarios with minimal or no cue 
conflicts, making it theoretically unsuitable for situations with substantial cue conflicts (French & DeAngelis, 2020; Newman et al., 
2023). Consequently, this model fails to distinguish between conditions conducive or inconducive to cue integration, where different 
navigation strategies should be adopted (Sjolund et al., 2018; Zhao & Warren, 2015b).

Similarly, Wang and colleagues propose a model for a reorientation task (Wang et al., 2018), which contrasted two intersecting 
streets (geometric cue) and trees placed at the intersection (landmark cue). This model is also based on the standard MLE model of cue 
integration, but logit-transformed behavioral accuracy was used as a proxy of cue reliability, due to the discrete nature of target 
location and response. Consequently, this model has the same limitations of the adaptive cue combination model (Xu et al., 2017). 
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Furthermore, the experimental design differs from typical reorientation tasks, as participants were restricted to choosing from two of 
the four street ends. Consequently, this model’s generalizability to standard reorientation tasks remains uncertain.

Beyond these models, the view-matching model (Cheung et al., 2008) and the associative learning model (Miller & Shettleworth, 
2007) offer mechanistic explanations for detecting and resolving conflicts between geometric and featural cues in the reorientation 
paradigm. However, the view-matching model is inapplicable to tasks involving self-motion cues, as spatial locations defined by such 
cues do not correspond to specific views. The associative learning model relies on feedback to adjust the association strength of the cues 
with the reward, but this type of feedback is absent in many navigation tasks.

In summary, several cognitive models have been proposed to explain navigation behaviors under conditions with cue conflicts, but 
they face significant limitations, including a lack of mechanistic explanations and restricted applicability across tasks. To address these 
issues, a more comprehensive model is needed – one that incorporates a mechanism for detecting and resolving cue conflicts, accounts 
for situations that either support or hinder cue integration, and applies broadly to navigation tasks. The Bayesian causal inference (BCI) 
model represents such a model.

1.2. Bayesian causal inference model

The Bayesian causal inference (BCI) model provides a framework for understanding how the brain combines and processes in
formation from multiple sensory sources to create a coherent and accurate perception of the external world (Körding et al., 2007). In 
the context of spatial navigation, the BCI model posits that the perceived location is inherently corrupted by intrinsic sensory noise, 
meaning that the perceived location often does not correspond to the true location as defined by the spatial cues. For example, the 
observer would perceive different self-locations at different times even when the same location is occupied. Therefore, the navigator 
cannot determine the true location at which they are actually positioned. Instead, the navigator infers the true self-location based on 
the perceived one, with a certain degree of uncertainty that is proportional to the amount of sensory noise inherent in the spatial input. 
This uncertainty inherent in perceiving self-location makes the causal structure inference a non-trivial problem, that is, determining 
whether different spatial inputs stem from the same location or different locations. For example, the perceived locations from different 
cues can be in large disparity even when the cues are congruent with each other in the physical space; conversely, the perceived 
locations from different cues can be close in space even when the cues are in substantial conflict in the physical space. Hence, the causal 
structure inference is not definitive and subject to uncertainty.

Fig. 1 illustrates the conceptual structure of the BCI model. The BCI model addresses two key questions. First, how do navigators 
judge whether spatial cues are congruent (i.e., sensory inputs originate from the same cause) or incongruent with each other (i.e., 
sensory inputs originate from different causes)? Second, what strategies do they employ to handle spatial cues based on this cue- 
congruence judgment?

Regarding the first question of cue-congruency judgment, the BCI model posits that an ideal observer combines the following three 
information sources: prior belief in a common source, prior knowledge about possible target locations, and sensory inputs stemming 
from different cues. The combination of sensory inputs and prior knowledge about target location generates the likelihood of a 
common cause, which is then combined with the prior belief in a common cause to generate the posterior belief in a common cause. All 

Fig. 1. Conceptual framework of BCI model In the BCI model, first the observer performs causal structure inference, judging whether the two 
stimulus inputs (cue A and cue B) come from the same cause or different causes. If the two cues are judged to come from the same cause, the cues are 
integrated. If the two cues are judged to come from different causes, the cues are segregated. The outcomes from the same-cause judgment and 
different-cause judgments are combined through a certain decision rule to generate the response.

X. Chen et al.                                                                                                                                                                                                           Cognitive Psychology 158 (2025) 101734 

3 



else equal, the probability of making a same-cause judgment increases with higher prior belief in common source, more widespread 
prior location distribution, and more similar sensory inputs.

Regarding the second question of cue-handling strategies, first, the BCI model conceives different sub-models corresponding to 
different cue-congruency judgments: cue integration for the common-cause judgment and cue segregation for the different-cause 
judgment (Körding et al., 2007; Wozny et al., 2010). In the integration sub-model, different spatial inputs are judged to be in con
gruency and thus are integrated, following the MLE principles. This cue integration yields the joint likelihood distribution, which is 
then integrated with the prior knowledge about the target location distribution to generate the posterior distribution, embodying the 
Bayesian theorem of combining likelihood and prior information. In the cue segregation sub-model, spatial inputs from the two cues 
are judged to be in conflict and thus not integrated. Typically, the task-relevant cue type is selected, whose likelihood distribution is 
then integrated with the prior knowledge about target location distribution to generate the posterior distribution. Next, the two 
posterior distributions derived from the cue integration sub-model and the cue segregation sub-model are combined using different 
decision rules, depending on the goal prioritized by the observer (Wozny et al., 2010).

To illustrate the benefits of applying the BCI model to understand navigation in cue-conflicting situations, consider the conflicts 
that are created when a landmark is relocated in space to be in conflict with other stable cues (commonly referred to as landmark 
instability). A frequent finding is that navigators rely less on unstable landmarks (Auger et al., 2015; Chen et al., 2017; Roy et al., 2023; 
Sjolund et al., 2018; but see Zhao & Warren 2015a). However, at the process level, it remains unclear why unstable landmarks reduce 
navigators’ reliance on them and what cognitive processes landmark instability affects. From the perspective of the BCI model, one 
possible explanation is that navigators gradually acquire knowledge about landmark instability statistics through experience, leading 
to a decreased prior belief in a common cause for unstable landmarks (Roy et al., 2023). A decreased prior belief in common-cause 
leads to a decreased posterior probability of a common cause, which entails more frequent different-cause judgments. If navigators 
assign a lower weight to landmarks in the different-cause judgment than in the same-cause judgment, the observed landmark reliance 
would be lessened.

However, other possibilities exist. For example, reduced landmark reliance observed in behavior could be caused by a lower weight 
assigned to landmarks in the different-cause judgment, while the prior belief in a common cause remains unchanged. Additionally, 
landmark instability may increase sensory noise of landmarks, which is typically reflected in poorer performance associated with 
landmarks (Auger et al., 2015; Biegler & Morris, 1993; Chen et al., 2017). The increased sensory noise lowers the weight assigned to 
landmarks in the common-cause judgment, as stipulated by the MLE rule of weighting cues by their relative reliabilities (Rohde et al., 
2016). Reduced weight for landmarks in the common-cause judgment translates to reduced reliance on landmarks observed in 
behavior. In both cases, reduced reliance on landmarks emerges without changes in the prior belief in common cause or the frequency 
of making this judgment.

In summary, in this concrete example, spatial cue conflict potentially influences multiple cognitive processes to cause a decrease in 
navigators’ dependence on unstable landmarks. The BCI model comprises parameters that reflect distinct cognitive processes, allowing 
us to pin down the specific processes that are affected. Furthermore, the BCI model conceptualizes information as probability dis
tributions that can be either continuous or discrete (see Section 4 “Cognitive Modeling” for details), it generalizes well across various 
navigation scenarios.

1.3. BCI model as a framework for understanding cue combination suboptimality

The BCI model not only accounts for navigation behavior in cue-conflict situations but also provides insights into cue combination 
suboptimality observed even with minimal cue conflicts present. Cue combination suboptimality refers to the situation when the 
observed response precision is lower than the prediction of the MLE model (Rohde et al., 2016). While some navigation studies suggest 
that people can integrate visual spatial cues (featural landmark cues or geometric cues) and body-based self-motion cues in an optimal 
or near-optimal manner (Chen et al., 2017; Nardini et al., 2008; Sjolund et al., 2018), others report suboptimal cue combination effects. 
For example, cue combination suboptimality occurs between different types of self-motion cues (visual optic flow vs. proprioceptive 
cues) (Chrastil et al., 2019) and between different visual landmarks (Newman & McNamara, 2022). Suboptimal cue combination 
behavior is also commonly observed in other perceptual domains (refer to Section 2.7.2 in Rahnev & Denison, 2018 for a summary).

One potential factor contributing to cue combination suboptimality is prior knowledge of stimulus distribution. Because this prior 
knowledge is shared across cue conditions, it causes correlated errors, reducing cue integration benefits (Oruç et al., 2003). The more 
precise the prior distribution of the target location, the stronger its influence, and the lower the gain in response precision from cue 
integration. When the stimulus distribution spans a relatively wide range and continuous responses are required, utilizing prior 
knowledge of stimulus distribution leads to a well-documented phenomenon known as the central tendency effect, wherein observers’ 
responses are biased towards the mean of the stimulus distribution (Hollingworth, 1910; Petzschner et al., 2015; Petzschner & Gla
sauer, 2011). Aston et al. quantified prior knowledge’s influence based on this effect and then excluded it from responses, uncovering 
the sensory cue integration process. However, this approach is constrained by the detectability of central tendency, which diminishes 
when the target range is narrow. Furthermore, with discrete distributions, such as those obtained in the reorientation paradigm 
(Cheng, 1986), the central tendency effect is challenging to quantify. In this case, the distribution mode should represent the central 
tendency, which can be complicated by multimodal distributions. Prior knowledge also shapes behavior in categorical tasks (Ratliff & 
Newcombe, 2008). In contrast, the BCI modeling approach offers broader applicability by accommodating prior knowledge beyond 
conditions that elicit the central tendency effect.

Besides prior knowledge of target distribution, some studies sought to explain suboptimal cue combination by attributing what 
cannot be explained by the MLE model to other forms of prior knowledge or prior preference (Byrne & Crawford, 2010; Kersten & 
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Yuille, 2003; Qi & Mou, 2024). However, these studies often lack independent data to verify the use of the claimed prior knowledge or 
preference. The BCI model overcomes these problems by providing a unified framework that incorporates the dynamic interplay 
among multiple factors, including those contributing to suboptimal cue combination, with prior knowledge and prior belief as critical 
contributing factors. In doing so, the BCI model enhances our understanding of the broader question of spatial cues interaction, a 
central focus of navigation research.

1.4. A non-Bayesian alternative model

Although the BCI model offers a valuable framework for understanding spatial navigation in both cue-conflicting and cue- 
congruent situations, its validity and robustness require evaluation through comparisons with alternative models. Previous studies 
have compared the BCI model to subsets of this model (e.g., full segregation or full integration) (de Winkel et al., 2017, 2018; Körding 
et al., 2007), to other Bayesian models (Körding et al., 2007), or to alternative variants of the BCI model (Badde et al., 2020; Wozny 
et al., 2010). However, none of these studies has compared the BCI model to a non-Bayesian model. A crucial element of Bayesian 
models is the use of prior information, which corresponds to the prior belief about causal structure and prior knowledge of the target 
distribution in the BCI model. In contrast, a non-Bayesian model should exclude prior information.

To address this gap, we propose the sensory disparity model, which employs a non-Bayesian causal inference mechanism (for 
details, see the Methods section). The primary distinction between this model and the BCI model lies in how causal structure judgments 
are made. The BCI model incorporates both sensory inputs and prior information (i.e., prior belief about causal structure and prior 
knowledge of the target distribution) in making causal structure judgments. In contrast, the sensory disparity model only relies on 
sensory inputs for making such judgments: the greater the absolute distance between sensory measurements from the two cue types, 
the lower the likelihood of a common-cause judgment. Furthermore, the sensory disparity model retains one key feature of the BCI 
model – the incorporation of sensory noise. Therefore, comparing the BCI model with the sensory disparity model provides a targeted 
test of the primary tenet of the BCI model, namely the use of prior information.

1.5. Present study

The overarching objective of the current study is to investigate spatial cue conflicts in navigation. We were especially interested in 
how navigators decide whether discrepancies between spatial inputs arise from sensory-perceptual error or indicate distinct envi
ronmental causes, and how they select goals accordingly. To accomplish this objective, we applied the BCI model to a spatial navi
gation task and compared it with a non-Bayesian sensory disparity model.

To test these models, we developed a novel cue combination paradigm along a linear track, building on paradigms established in 
our previous work (Chen et al., 2019, 2024; Kuehn et al., 2018). The task required participants to localize target locations by using 
either a visual landmark or visual self-motion cues (i.e., optic flow). When using the visual landmark, they need to estimate their 
distance to the landmark; when relying on visual self-motion information, they need to estimate their distance from the starting 
position of self-movement.

This task is limited compared to real-life spatial navigation, as it only probes one aspect of spatial navigation – distance estimation. 
Terrestrial spatial navigation is typically carried out in a two-dimensional space, involving angular estimation, distance estimation, 
and vector computations. Even so, distance estimation is an essential element for spatial navigation. For example, straight-line dis
tances between locations are an essential component of survey knowledge, or a cognitive map. The importance of distance estimation 
extends beyond navigation. For example, time estimation is closely intertwined with spatial distance estimation (Riemer et al., 2022; 
Umbach et al., 2020), as it is essentially distance estimation in the temporal domain. Hence, investigating one-dimensional spatial 
distance estimation can help understand basic processes of spatial navigation and other related topics such as time perception.

Additionally, distance estimation is ubiquitous in real-life navigation, where cue conflicts often occur. Imagine navigating an 
unfamiliar city to find a café. You first follow a specific route, judging the distance you’ve traveled in a fixed direction to determine 
when to make a turn. Along the way, you also use a landmark, such as a vender’s booth in outdoor market, to confirm you are nearing 
your destination by estimating your distance to the landmark. Confusion arises when the vender moves to a different location. At this 
point, you must decide whether to rely on the distance you believe you’ve traveled along the route or adjust your judgment based on 
the perceived distance to the landmark. This scenario illustrates the challenges of reconciling conflicting spatial cues in distance 
estimation during navigation.

Moreover, our recent fMRI studies have demonstrated that linear navigation tasks engage key brain areas for spatial navigation, 
including the retrosplenial cortex, hippocampus, and entorhinal cortex (Chen, Vieweg, & Wolbers, 2019; Chen, Wei, & Wolbers, 2024, 
2025; Chen et al., 2022). Linear navigation tasks are also widely used in electrophysiological studies on spatial navigation (Fischer 
et al., 2020; Mao et al., 2017; Saleem et al., 2018, to name a few). Hence, investigating spatial distance estimation in humans can 
facilitate inter-species comparisons and enhance our understanding of the cognitive-neural mechanisms underlying spatial navigation.

Finally, the use of the linear track navigation task allowed us to collect a substantial amount of data, which is essential for dis
tinguishing complex cognitive models of a task (Lerche et al., 2017). This strength of the paradigm aligns with one of our objectives: to 
rigorously evaluate competing models for spatial cue conflicts.

In summary, this study examined how individuals resolve spatial cue conflicts during navigation in a linear track navigation task 
using the cognitive modeling approach. Our aim was to provide insights into the mechanisms underlying spatial cue interactions.
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2. Methods

2.1. Participants

A total of 142 participants were recruited, all with normal or corrected-to-normal vision and no history of neurological diseases. 
Participants gave written informed consent prior to the experiment, and received course credits or monetary compensation after the 
experiment. The study was approved by the local ethics committee of Zhejiang University, Hangzhou, China.

Participants were randomly assigned to three groups. The large-conflict-absent group (LC-absent) included 60 participants (30 
female, mean age (SD) = 21.05 (2.012) year). The large-conflict-present group (LC-present) included 42 participants (27 female, mean 
age (SD) = 22.238 (1.750) year). One participant was excluded for not following the experimental instructions, leaving 41 participants 
for analyses. The large-conflict-informed group (LC-informed) included 40 participants (22 female, mean age (SD) = 21.400 (1.780) 
year). The rationale behind the group naming can be found in the following Procedure section.

The LC-absent group included more participants as it also served as a baseline group for other experiments in our lab. All par
ticipants in this group were included in the analyses for the purpose of maximizing statistical power. Furthermore, results remained 
consistent when analyses were restricted to the first 40 participants in this group.

We started the study with a plan to run a relatively large sample size of participants (i.e., around 40 per group), based on common 
practice in behavioral cognitive experiments. Our primary interest was whether cue conflict reduces weight assigned to landmarks. 
Therefore, we performed a statistical power analysis for this effect based on raw data from a previous study, which employed a similar 
task paradigm in the 2D space using immersive VR and showed that participants experiencing unstable landmarks assigned lower 
behavioral weight to landmarks compared to those experiencing stable landmarks (Chen et al., 2017, Experiment 2). We expected two 
possible scenarios. In the first scenario, the LC-informed group assigned lower behavioral weight to landmarks compared to the other 
two groups. In the second scenario, both the LC-present and LC-informed groups assigned lower behavioral weight to landmarks 
compared to the LC-absent group. In both scenarios, the probability of detecting significant differences was greater than 90 %, 
indicating an adequate level of statistical power. To further ensure the reliability of our results, we also reported Bayes factors, which, 
among many strengths (Rouder, 2014; Rouder et al., 2009), can assess strength of evidence for both alternative and null hypotheses.

2.2. Apparatus and materials

Participants completed a spatial localization task in a desktop virtual reality environment rendered in Worldviz 5.0 (https://www. 
worldviz.com) on a 24-inch monitor screen (Fig. 2a). In the task, the participant traveled along a linear track, meaning only translation 
was permitted and rotation was disabled. A set of three arrows and the landmark (a tree) were positioned at the two ends of the linear 
track. The set of arrows was fixed at the position of 0 virtual meter (vm) on the linear track and served as the anchoring point for path 
integration. The set of arrows consisted of three identical red arrows positioned at the same horizontal position but at different heights 
from the ground, for the purpose of optimizing the visibility of the path integration anchor from varying distances. The landmark, 
whose original position was at 51 vm, served as the anchoring point for landmark-based navigation. The landmark was relocated to 
different positions, creating conflict between landmarks and self-motion cues in the conflict conditions (see the following “Task and 
Design” section). The floor was covered with a collection of life-limited white dots (life duration = 1 s), whose positions were randomly 
determined. This collection of dots could provide optic flow information as a form of path integration cue during movement. The target 
location was randomly sampled from a very narrow uniform distribution [-0.8 vm, 0.8 vm] centered at the position of 14 vm on a trial- 
by-trial basis.

2.3. Task and design

The main task participants completed was a location reproduction task based on one-dimensional distance estimation (Fig. 2b). 
Participants were restricted to linear movements along the linear track on the horizontal plane, allowing for only forward and 
backward translation without any lateral (side-to-side) movement. Rotational movements, such as turning left or right, were also 
disabled, meaning that participants’ orientation remained fixed throughout the navigation task.

Each trial consisted of an encoding phase and a retrieval phase. During the encoding phase, participants traveled to the location of 
the target, which was a blue ball positioned at the top of a pole. The target disappeared once participants had reached its position. 
During the retrieval phase, the target remained invisible, and participants needed to travel to the remembered target location. Par
ticipants were instructed to be as accurate as possible, but not to spend unnecessary extra time in making the response. Afterward, 
participants rated self-confidence on a scale from 1 (least confident) to 10 (most confident), in increments of 1. Participants were 
encouraged to distribute confidence ratings across the entire scale.

There were five cue conditions: landmark, self-motion, combination, small conflict, and large conflict. The first two were single-cue 
conditions, wherein only one of the spatial cues was available in a given trial. The latter three were double-cue conditions, wherein 
both landmark and self-motion cues were present in each trial.

In the landmark condition, the landmark was visible, so that participants could localize themselves by estimating their distance to 
the landmark. The arrows were invisible. In both the encoding and retrieval phases, the starting position of participants’ movement 
was randomly sampled on a trial-by-trial basis from a uniform distribution, ranging from −6 vm to + 6 vm around the arrows’ position. 
In this way, participants could not perform path integration to estimate the traveled distance to infer self-position. In addition, once 
participants had started to move, the flashing dots on the floor moved quickly along or against participants’ movement direction, 
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substantially degrading the optic flow information that could be used for path integration (refer to Chen et al., 2019, the low-reliability 
self-motion condition). The movement speeds of the dots were randomly sampled from a normal distribution with a mean of 0 vm/s 
and a standard deviation of 6 vm/s. Before the movement started and once the movement had stopped, the dots remained in place on 
the floor.

In the self-motion condition, the arrows were visible, serving as the anchoring point for path integration. In each trial, participants 
traveled from the arrows’ position, so they could infer self-position by performing path integration (i.e., estimating the traveled 
distance from the starting position). The flashing dots remained in place throughout the trial to provide stable optic flow for path 
integration. The landmark remained invisible throughout the trial, eliminating landmark-based navigation. To prevent participants 
from adopting a pure timing-based strategy, the movement speed was randomly selected from a uniform distribution ranging from 2 to 
5 vm per second on a trial-by-trial basis. Speed randomization was also employed in other cue conditions.

In the combination condition, the landmark stayed at its original position and the two cue types were congruent with each other 
during both the encoding and retrieval phases, meaning both cue types could be utilized for localization. In the small conflict and large 
conflict conditions, the landmark was moved from its original position to be farther away from the arrows by a certain distance during 
the retrieval phase, so that the target position defined by self-motion cues was different from that defined by the landmark. The 
landmark was moved by 5 vm in the small conflict condition and 20 vm in the large conflict condition (Fig. 2c).

Participants were randomly assigned to three groups: large-conflict-absent group (LC-absent), large-conflict-present group (LC- 
present), and large-conflict-informed group (LC-informed). For all the three groups, the procedure included the landmark, self-motion, 
combination, and small conflict conditions. In the LC-absent group, the large conflict condition was absent. In the LC-present group, 
the large conflict condition was included. In these two groups, to ensure that the two cue types were at equal footing, participants were 
informed at the beginning of the experiment that both the arrows (i.e., the anchoring point of path integration) and the landmark (i.e., 
the anchoring point of landmark-based navigation) would remain stable throughout the procedure. Therefore, when a conflict was 
detected between them, it could be interpreted as arising from the instability of either the landmark or self-motion cues.

In the LC-informed group, the large conflict condition was included, and participants were made explicitly aware of the possibility 
of cue conflict. Specifically, participants were told at the beginning of the experiment that the landmark might move during retrieval, 
and when this occurred, it should not be trusted when displaced. Participants were also required to judge whether the landmark had 
been shifted at the end of each double-cue trial (Fig. 2). This design encouraged participants to attribute cue conflict to landmark 
instability. The inclusion of the LC-informed group was motivated by previous findings that conflicts between landmarks and self- 
motion cues alone may not induce changes in cue weighting (Zhao & Warren, 2015a, 2015b).

2.4. Procedure

The experiment took place in a single session. Trials were organized into six runs, each containing six blocks of four trials. Blocks 
were randomized in each run. For the LC-absent group, each run consisted of one block of the landmark condition, one block of the self- 
motion condition, two blocks of the combination condition, and two blocks of the small conflict condition. The four trials in a block 
always belonged to the same cue condition. The procedure included a total of 144 trials, with 24 trials for each single-cue condition and 
48 trials for each double-cue condition.

For the LC-present and LC-informed groups, there were five cue conditions: landmark, self-motion, combination, small conflict, and 
large conflict. Each run contained one block for each of the five cue conditions, plus a mixture block with trials from all three double- 
cue conditions The total number of trials was matched among the three double-cue conditions across the six runs. Like the LC-absent 

Fig. 2. Environmental layout and experimental task (a) The left panel shows a schematic of the environmental layout. The arrow symbol 
represents a set of three red arrows, which occupied the same horizontal position but differed in height. The set of arrows served as the fixed starting 
position for the movement in the self-motion condition and the double-cue conditions. The target was a blue ball positioned on the top of a blue post, 
whose position was randomly sampled from a narrow uniform distribution [-0.8 vm, 0.8 vm] with a center 14 m away from the arrows. The bamboo 
tree served as a landmark, positioned 37 vm away from the ends of the arrows. For better illustration, the landmark is depicted closer to the target 
than its actual position in the experiment. The arrows and the target were located on an imaginary straight line in the middle of the track. The 
landmark was located near this imaginary straight line but with a small offset of 0.5 vm to the right. Participants’ movement was restricted to the 
imaginary straight line. The right panel shows a snapshot of the environment taken from the participant’s first-person perspective when located at 
the position of the arrows. (b) Time course of the location reproduction task. The task consisted of five phases. In phase (i) “Encoding”, the 
participant saw the target – a blue ball on the top of a post. The participant needed to move to the location of the target, which disappeared once the 
participant arrived. In the landmark condition, the starting position of movement was randomized from trial to trial around the arrows within a 
range [-6 vm, +6 vm], and the arrows remained invisible. In other cue conditions, the starting position of movement was fixed at the arrows, which 
remained visible. The landmark was invisible in the self-motion condition but visible in other cue conditions. In phase (ii) “Retrieval”, the 
participant was required to travel to the remembered target location from the “Encoding” phase. The target remained invisible. The manipulation of 
the starting position of movement was the same as in the encoding phase. In phase (iii) “Confidence Rating”, the participant rated their confidence in 
the accuracy of their response on a scale from 1 (least confident) to 10 (most confident) in increments of 1. A small red vertical bar on the screen 
could be adjusted to indicate the confidence level. In phase (iv) “Congruency Judgment”, the participant had to decide whether the landmark had 
moved to a different position during the retrieval phase. This phase was presented only to the LC-informed group, but not to the LC-absent and LC- 
present groups. (c) Snapshots of the landmark taken from the participant’s first-person perspective when the participant stood at the center of the 
target location range (14 vm) during the retrieval phase in the three double-cue conditions: the combination condition (left panel; conflict = 0 vm), 
the small conflict condition (middle panel, conflict = 5 vm), and the large conflict condition (right panel, conflict = 20 vm). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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group, these groups also completed 144 trials, with 24 trials for each single-cue condition and 32 trials for each double-cue condition.
Participants took a 2-min rest between the runs. At the end of each run, they received feedback on their mean unsigned distance 

error averaged across all the trials in the run, excluding conflict trials where no correct target location could be defined. This vague 
feedback served only to maintain participants’ attention on the task and should not alter their navigation strategies.

Prior to the experimental task, participants completed a preparation phase, during which they were familiarized with the virtual 
environment and keyboard controls. They navigated a visually rich 2-dimensional open-field environment. Participants were required 
to remember the colors of five balls scattered around the environment. Afterwards, they needed to travel to the location of each ball, 
recalling its color. This environment gradually transitioned to the sparse environment employed in the location reproduction task 
based on one-dimensional distance estimation (Fig. 2). Finally, participants practiced six experimental trials (two each from the 
landmark, self-motion, and combination conditions). The preparation phase lasted about 10 min.

3. Behavioral analysis and results

3.1. Behavioral analysis

The behavioral data analysis followed the same procedure adopted in our previous study (Chen et al., 2017), testing the MLE 
principles of optimal cue integration (Rohde et al., 2016). One critical difference is that in the current study, responses were recorded 
in a one-dimensional space rather than a two-dimensional space. The main rationale is to evaluate whether participants combined 
landmarks and self-motion cues in a statistically optimal manner in the double-cue conditions in two aspects: whether the response 
precision was improved in double-cue conditions compared to single-cue conditions in a statistically optimal manner and whether the 
weights assigned to different cues complied with the MLE rules (i.e., weighting cues by their relative cue reliability). The names and 
meanings of all the variables involved in the behavioral analysis are listed in Table 1.

Because the target location was randomly sampled around 14 vm from a uniform distribution with a very narrow range [-0.8 vm, 
+0.8 vm], in each trial, the response was transformed into a spatial coordinate with the current target location as the origin by 
subtracting the current target location from the response location. Next, the transformed responses were pooled across trials for each 
cue condition. In each cue condition, outlier responses were defined as responses whose distance from the centroid of all responses 
exceeded the 3rd quartile by 3 * interquartile range (IQR). Response variability was calculated as the standard deviation of the 
response distribution: 

Sobs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
d2/(n − 1)

√

where d is the Euclidean distance of each response to the centroid of the response distribution, and n is the number of responses in the 
distribution.

If landmarks and self-motion cues were optimally integrated according to the MLE model of cue integration, the predicted response 
variability in the double-cue condition is: 

Sopt,d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2
obs,lS

2
obs,m/(S2

obs,l + S2
obs,m)

√

Cue reliability is equal to the inverse of the squared response variability (i.e., response variance). Expressed in terms of response 
variabilities, cue relative reliability (for landmark cues) is: 

rr = S2
obs,m/(S2

obs,l + S2
obs,m)

Cue relative reliability rr also represents the behavioral optimal weight (wopt,beh), which is the optimal weight that should be 
assigned to landmarks in optimal cue integration. Typically, this term is named “optimal weight” in the literature. Here, the adjective 
“behavioral” is added to the term to convey the idea that this term is calculated from participants’ behavioral responses (Aston et al., 

Table 1 
Glossary table of all variables in the behavioral analysis testing the MLE model of cue integration.

Variable Description

Sobs Observed response variability (the standard deviation of the response distribution)
Sobs,l Observed response variability in the landmark condition
Sobs,m Observed response variability in the self-motion condition
Sopt,d Predicted response variability in the double-cue condition based on the MLE model of cue integration (i.e., the optimal response variability).
Salt,d Predicted response variability in the double-cue condition based on the cue alternation model
rr Cue relative reliability for landmarks (=wopt,beh)
wopt,beh Behavioral optimal weight (=rr)
wobs Observed weight assigned to landmarks in a double-cue condition
Xl Centroid of the response distribution in the landmark condition
Xm Centroid of the response distribution in the self-motion condition
dl−d Euclidean distance between the response centroids in the landmark condition and the double-cue condition
dm−d Euclidean distance between the response centroids in the self-motion condition and the double-cue condition
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2022). This term should be distinguished from “sensory optimal weight” (wopt,sen), which is calculated from the estimated values of the 
sensory noise levels of the cues in the cognitive modeling (see the following Cognitive Modeling section). 

wopt,beh = rr 

The observed weights assigned to spatial cues are calculated using the relative distances between the response centroid in the 
double-cue condition and the response centroids in the two single-cue conditions. The observed weight for landmarks (wobs) is 
calculated as: 

wobs = dm−d/(dl−d + dm−d)

where dm−d represents the Euclidean distance between the response centroid in the self-motion condition and the response centroid in 

Fig. 3. Behavioral results of response variability (a) Response variability across the four cue conditions (landmark, self-motion, combination, 
small conflict) in the three groups (LC-absent, LC-present, LC-informed). (b) Response variability across the five cue conditions (landmark, self- 
motion, combination, small conflict, and large conflict) in the LC-present and LC-informed groups. (c) Response variability in the combination 
condition (light green bars), along with predictions from the MLE cue integration model (optimal cue integration, brown bars) and the cue 
alternation model (purple bars) in the three groups. (d) Response variability in the small conflict condition (light green bars), along with predictions 
of the MLE cue integration model (optimal cue integration, brown bars) and the cue alternation model (purple bars) in the three groups. (e) 
Response variability in the large conflict condition (light green bars), along with predictions of the MLE cue integration model (optimal cue 
integration, brown bars) and the cue alternation model (purple bars) in the LC-present and LC-informed groups. (f) Response variability in the 
landmark condition across the three groups. “n.s.” indicates p > 0.05; “**” indicates p < 0.01; “***” indicates p < 0.001. Error bars represent 
standard error of the mean (S.E.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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the double-cue condition, and dl−d represents the Euclidean distance between the response centroid in the landmark condition and the 
response centroid in the double-cue condition.

Besides the MLE model of cue integration, we also compared participants’ responses to the cue alternation model, which posits that 
participants alternated between landmarks and self-motion cues on a trial-by-trial basis, with the ratio determined by the optimal 
weight (rr) (Nardini et al., 2008). Its prediction on double-cue response variability is: 

Salt,d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − rr)
(
X2

m + S2
m

)
+ rr

(
X2

l + S2
l
)
−

((1 − rr)Xm + rrXl)
2

√
√
√
√

where Xl represents the response centroid in the landmark condition, and Xm represents the response centroid in the self-motion 
condition.

3.2. Behavioral results

Behavioral analyses were conducted using Matlab_R2021a and JASP (Version 0.17.1; JASP Team, 2023). Statistical outliers were 
identified within each group for each variable, i.e., > 3rd quartile + 3*IQR or < 1st quartile – 3*IQR. Outliers were winsorized to the 
nearest inlier within each group (Reifman & Keyton, 2010).

3.2.1. Response variability
Because the LC-absent group did not experience the large conflict condition, first, we analyzed response variability in the other four 

cue conditions across groups (Fig. 3a). Observed response variability was submitted to a two-way mixed ANOVA, with cue condition 
(landmark vs. self-motion vs. combination vs. small conflict) as a within-participant independent variable and group (LC-absent vs. LC- 
present vs. LC-informed) as a between-participant independent variable. The only significant effect was the main effect of cue con
dition (F(3,414) = 25.470, p < 0.001, η2

p= 0.156, BFinclusion = 5.816*1011). Planned comparisons revealed that both the combination 
condition and the small conflict condition showed the cue integration effect: response variability in the combination was smaller than 
both the landmark condition (t(414) = 5.532, p < 0.001) and the self-motion condition (t(414) = 7.874, p < 0.001); response vari
ability in the small conflict condition was smaller than both the landmark condition (t(414) = 3.774, p < 0.001) and the self-motion 
condition (t(414) = 6.116, p < 0.001). There was no significant difference between the combination condition and the small conflict 
condition (t(414) = 1.797, p = 0.073). The main effect of group was not significant (F(3,138) = 1.395, p = 0.251, η2

p = 0.020). Neither 
was the interaction between cue condition and experiment (F(6,414) = 1.382, p = 0.237, η2

p= 0.020).
As shown in Fig. 3c&d, in each group, although both the combination condition and the small conflict condition showed the cue 

integration effect (i.e., lower response variability than the two single-cue conditions), their response variabilities were larger than the 
prediction of the MLE cue integration model (i.e., optimal cue integration), indicating non-optimal cue integration in these two double- 
cue conditions (ts > 2.9, ps < 0.006, BFs10 > 7.5). As expected, in each group, the response variability was lower than the prediction of 
the cue alternation model in both the combination condition and the small conflict condition (ts > 3.5, ps < 0.001, BFs10 > 80).

Next, we analyzed the LC-present group and the LC-informed group together by including the large conflict condition in the 
analysis (Fig. 3b). The main effect of cue condition was significant (F(4, 316) = 23.188, p < 0.001, η2

p = 0.227, BFinclusion = 1.820 * 
1014). In the large conflict condition, participants did not show the cue integration effect, as its response variability was significantly 
larger than both single-cue conditions (vs. landmark, t(316) = 3.574, p < 0.001; vs. self-motion, t(316) = 2.357, p = 0.019). As 
expected, the response variability in the large conflict condition was greater than the prediction of the MLE cue integration model (i.e., 
optimal cue integration; ts > 7, ps < 0.001, BFs10 > 1*106, Fig. 3e). Nevertheless, the response variability in the large conflict condition 
in each group was substantially smaller than the prediction of the cue alternation model (ts > 14, ps < 0.001, BFs10 > 7*1014, Fig. 3e). 
Actually, in each group, the observed response variability in the large conflict condition was considerably closer to the prediction of the 
MLE cue integration model than that of the cue alternation model.

Although the preceding omnibus statistical tests did not reveal any significant influences of group on response variability, given 
that we had a prior hypothesis that the response variability in the landmark condition would be affected by landmark instability (Chen 
et al., 2017), we conducted a separate analysis to compare the three groups on response variability in the landmark condition (Fig. 3f). 
The main effect of group was significant (F(2,138) = 4.233, p = 0.016, η2

p = 0.058, BFinclusion = 2.465). Follow-up post-hoc com
parisons showed that the response variability was significantly larger in the LC-informed group than the LC-absent group (t(138) =
2.910, p = 0.004); other differences were not significant (|ts| < 1.6, ps > 0.11). These results indicate that heightened cue conflict, 
combined with explicit awareness of landmark instability, increased response variability associated with landmarks.

3.2.2. Cue weight
First, we analyzed cue weight in the small conflict condition by considering all three groups together, as the LC-absent group did not 

include the large conflict condition. Observed landmark weights were submitted to ANOVA, with group as a between-participant 
independent variable. As shown in Fig. 4a, The main effect of group was significant (F(2,138) = 5.215, p = 0.007, η2

P = 0.070, 
BFinclusion = 5.248). Follow-up comparisons showed that the observed landmark weight was significantly lower in the LC-informed 
group than the LC-absent group (t(138) = 2.878, p = 0.005) and the LC-present group (t(138) = 2.809, p = 0.006), whereas there 
was no significant difference between the LC-absent group and the LC-present group (t(138) = -0.182, p = 0.856). These results 
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indicate that while heightened cue conflict alone did not reduce the weight navigators assigned to the landmark in the small conflict 
condition, the addition of explicit awareness of landmark instability achieved this effect. This finding is particularly intriguing, because 
the experimental setup in the small conflict condition was exactly the same between the three groups; the key difference lies in whether 
participants also experienced large conflict trials at the same time and had explicit awareness of landmark instability.

We wondered whether the significant differences in observed landmark weight between groups could be simply explained by the 
aforementioned significant differences in the response variability in the landmark condition between the groups (Fig. 3f), because 
reduced landmark precision predicts lower behavioral optimal weight assigned to landmarks according to the MLE principles. As 
shown in Fig. 4b, observed landmark weight was significantly lower than the behavioral optimal weight in the LC-informed group (t 
(39) = -2.519, p = 0.016, BF10 = 2.742), whereas the two variables did not differ from each other in either the LC-absent group (t(59) 
= -0.167, p = 0.868, BF10 = 0.143) or the LC-present group (t(40) = -0.053, p = 0.958, BF10 = 0.169). These results indicate that the 
differences in the observed landmark weights could not be simply explained by the differences in the landmark response variability 
between the groups.

Next, we analyzed the weight data in the small conflict condition and the large conflict condition by considering the LC-present 
group and the LC-informed group together (Fig. 4a). The interaction between group and cue condition was significant (F(1,79) =
20.374, p < 0.001, η2

P = 0.205, BFinclusion = 3751). Follow-up t tests showed that the observed landmark weight was significantly lower 
in the large conflict condition than in the small conflict condition in the LC-informed group (t(79) = 6.115, p < 0.001), but did not 
differ between the two conflict conditions in the LC-present group (t(79) = -0.232, p = 0.817). Furthermore, in the LC-present group, 
the observed weight in the large conflict condition did not differ from the behavioral optimal weight (t(40) = 0.157, p = 0.876, BF10 =

0.171), whereas in the LC-informed group, the observed weight in the large conflict condition was significantly lower than the 
behavioral optimal weight (t(39) = -10.518, p < 0.001, BF10 = 1.347*1010) (Fig. 4c).

3.2.3. Summary of behavioral results
Overall, increasing cue conflict alone did not cause any discernable changes in participants’ behavior, as the LC-absent group and 

the LC-present group did not differ from each other in any behavioral aspects under examination. The LC-informed group differed from 
the LC-absent group and the LC-present group in several aspects, indicating that explicit awareness of landmark instability was 
necessary to cause changes in participants’ navigation behavior. Specifically, the LC-informed group showed larger response vari
ability in the landmark condition than the LC-absent group, implying that the participants informed about landmark instability 
performed worse when exclusively relying on landmarks for navigation. In addition, the LC-informed group assigned lower weights to 
landmarks than the other two groups. Importantly, the observed landmark weight was lower than the behavioral optimal weight in the 
LC-informed group but did not differ from the behavioral optimal weight in the other two groups, indicating that lower weight 
assigned to landmarks in the LC-informed group could not be simply explained by the increased response variability in the landmark 
condition in this group.

Despite these differences, all three groups exhibited cue integration effects in both the combination and small conflict conditions, as 
response variability was lower in these two double-cue conditions than in the two single-cue conditions. However, response variability 
was larger than what the MLE cue integration model predicted, indicating suboptimal cue integration. The large conflict condition did 
not show cue integration effects, as its response variability was larger than the two single-cue conditions. However, the response 
variability in the large conflict condition was considerably lower than predicted by the cue alternation model, suggesting a mixture of 
cue integration and cue alternation strategies. This finding is consistent with previous findings on spatial cue combination (Chen et al., 
2017; Qi & Mou, 2024; Sjolund et al., 2018).

Fig. 4. Behavioral results of cue weight (a) Observed weight assigned to landmarks in the two conflict conditions (small conflict and large 
conflict) across the three groups (LC-absent, LC-present, and LC-informed). Note that the LC-absent group did not include the large conflict con
dition. (b) Observed weight assigned to landmarks in the small conflict condition (light green bars), compared to the behavioral optimal weight 
(brown bars) across the three groups. (c) Observed weight assigned to landmarks in the large conflict condition (light green bars), compared to the 
behavioral optimal weight (brown bars) in the LC-present and LC-informed groups. “n.s.” indicates p > 0.05; “*” indicates p < 0.05; “**” indicates p 
< 0.01; “***” indicates p < 0.001. Error bars represent standard error of the mean (S.E.). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
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4. Cognitive modeling

4.1. Modeling methods

We tested two cognitive models of the task: A Bayesian causal inference (BCI) model used in multisensory perception tasks (Körding 
et al., 2007; Wozny et al., 2010) and a sensory disparity model, which did not incorporate any prior information. We adopted the 
maximum likelihood estimation approach for model fitting, as detailed in Supplemental information (Section A).

4.1.1. BCI model
Here, we provide a conceptual overview of the BCI model, with detailed descriptions available in Supplemental information 

(Section A).
The BCI model involves four different information sources: the prior belief in sensory cues originating from a common source 

(pcc,pr), the prior knowledge about possible locations of the target (N
(

μpr, σpr

)
, target location prior), the sensory information from 

landmark cues (N(μl, σl), sensory measurement distribution of landmarks), and the sensory information from self-motion cues 
(N(μm, σm), sensory measurement distribution of self-motion cues).

First, this model utilizes these information sources to make the causal structure judgment (i.e., whether the sensory inputs stem 
from a common cause, or equivalently, whether the cues are in congruency). In the context of our navigation task, the causal structure 
judgment corresponds to whether the optic flow information was consistent with the landmark in indicating the target location 
(Fig. 2b). Same-cause judgment means participants determined that the two cues were consistent with each other, and any disparities 
between their sensory inputs were due to sensory noise. Conversely, different-cause judgment means participants determined that the 
two cues were inconsistent with each other, and any disparities between their sensory inputs were due to the fact that they did not 
indicate the same target location, that is, not sharing a common spatial source.

Next, the model combines or segregate spatial cues based on the causal judgment. When a different cause judgment is made (C = 2), 
the cue segregation sub-model is implemented. Because the experimental task only required one response rather than two, we 
implemented a cue alternation strategy (de Winkel et al., 2017, 2018), which has either been demonstrated (Nardini et al., 2008) or 
implicated (Chen et al., 2017) in human spatial navigation. First, the likelihood distribution indicated by the landmarks is selected 
with probability wdc and the likelihood distribution indicated by self-motion is selected with probability (1 − wdc). Next, the selected 
likelihood distribution is optimally integrated with the spatial location prior distribution to generate the posterior probability dis
tribution according to the MLE principles, with weights determined by their relative reliabilities (Bromiley, 2013; McNamara & Chen, 
2022, Appendix A).

When the cues are judged to originate from a common cause, the cue integration sub-model is implemented. The three location- 
relevant pieces of information − the likelihood distribution of landmarks N(xl, σl), the likelihood distribution of self-motion cues N(xm,

σm), and the prior distribution of target location N(μpr, σpr) − are integrated in a statistically optimal manner, each weighted by its 
relative reliability. To be parallel to the two-step cue-weighting scheme in the cue segregation sub-model, here, this optimal cue 
integration process can be conceived to consist of two steps too. In the first step, the two likelihood distributions of the two cue types 
are optimally integrated to generate the joint likelihood distribution according to the MLE principles. The weight assigned to the 
landmark in this step is equal to the inverse ratio of sensory noise levels between the two cues, wcc = σ2

m/(σ2
l + σ2

m). wcc is considered as 
the sensory weight assigned to landmarks and conceptually parallel to wdc in the cue segregation sub-model, because it is unrelated to 
the prior distribution on target location. Hence, wcc is also identified as the sensory optimal weight (wopt,sen). Note that the sensory 
optimal weight is different from the behavioral optimal weight mentioned in the behavioral analysis (wopt,beh). The behavioral optimal 
weight is calculated from the observed responses in the single-cue conditions, which reflect mixed influences of sensory noise, target 
location prior, and motor noise. By contrast, the sensory optimal weight is recovered via the modeling analysis, and is determined by 
the sensory noise levels of the two cues (Aston et al., 2022). In the second step, the joint likelihood distribution is optimally integrated 
with the prior distribution of target location to generate the posterior distribution.

Finally, three decisions strategies are constructed to combine estimates from the cue segregation sub-model and cue integration 
sub-model, based on the posterior probabilities of common-cause and different-cause judgments (Koerding et al., 2007; Wozny et al., 
2010). In the model averaging strategy, to obtain the final positional estimate, the positional estimates from the cue integration sub- 
model and the cue segregation sub-model are linearly combined, with weights equal to the posterior probabilities of the common-cause 
and different-cause judgments, respectively. This strategy minimizes the uncertainty of the positional estimate. The model selection 
strategy adopts a winner-take-all approach. When the posterior probability of a common cause exceeds a criterion, the positional 
estimate from the cue integration sub-model is selected; otherwise, the positional estimate from the cue segregation sub-model is 
chosen. The criterion is set to 0.5, which entails that the sub-model with the larger posterior probability is selected. In the probability 
matching strategy, the observer alternates between the positional estimates of the cue integration sub-model and the cue alternation 
sub-model, with the alternation ratio determined by the posterior probabilities of the common-cause and different-cause judgments.

Motor noise was also modeled. In each trial, a number was randomly sampled form an unbiased normal distribution N(0, σmt), 
which was then added to the final positional estimate of the target location.

To facilitate the model optimization process, we minimized the total number of free parameters by estimating the sensory mea
surement distributions (N(μl, σl) N(μm,σm)) from participants’ responses recorded in the single-cue conditions, instead of allowing all 
four parameters freely to vary. We assumed that the prior distribution of target location N(μpr, σpr), which is used for the causal 
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structure judgment and integrated into the positional estimate in the double-cue conditions, also functions in the two single-cue 
conditions. μl and μm can be unambiguously expressed as functions of other model parameters and response variables. However, 
this is not true for σl and σm. Therefore, σl and σm were still included as model parameters.

For each of the three decision strategies, there are seven free parameters: the prior belief in the probability that the sensory inputs 
originate from the same source (pcc,pr), the standard deviation (σpr) and the mean (μpr) of the prior distribution of target location, the 
weight assigned to landmarks for the different-cause judgment (wdc), the standard deviations of the sensory measurement distributions 
for landmarks (σl) and self-motion cues (σm), and motor noise (σmt).

4.1.2. Sensory disparity model
Similar to the BCI model, the sensory disparity model incorporates sensory noise by sampling sensory measurements from spatial 

cues on a trial-by-trial basis. However, unlike the BCI model, this model does not include any form of prior knowledge. Therefore, 
comparing the BCI model to the sensory disparity model allows us to evaluate whether prior knowledge – the prior distribution of 
target locations and the prior belief about causal structure – influences navigation behavior.

In the sensory disparity model, causal judgments are based on the absolute distance between the two sensory measurements from 
the two spatial cues. In each trial, two sensory measurements are sampled, each associated with one of the two cue types: xl for 
landmarks, and xm for self-motion cues. First, we normalize the absolute distance between the two sensory measurements by the 
pooled sensory noise level from the two cue types (i.e., the pooled standard deviation calculated from σl and σm). 

d =
|xl − xm|

̅̅̅̅̅̅̅̅̅̅
σ2

l +σ2
m

2

√

Next, the normalized distance is transformed to inverse distance: 

dinv =
2

1 + et×d 

where t is a scaling parameter that controls the rate of change. The larger the magnitude of t, the less likely the common-cause 
judgment. The variable dinv stands for inverse distance and ranges from 0 to 1. dinv is used as a counterpart of posterior probability 
of common cause in the BCI model. dinv > 0.5 leads to the same-cause judgment and dinv ≤ 0.5 leads to the different-cause judgment. 
According to the model, when the sensory measurements from two cues are perfectly aligned with each other (i.e., d is equal to 0), dinv 
is equal to 1, the highest probability of common-cause. Conversely, when the two sensory measurements are extremely far away from 
each other (i.e., d is extremely large), dinv is equal 0, the lowest probability of common-cause. Hence, this process of causal structure 
inference reflects sensory uncertainties, because the standard deviations of the sensory measurement distributions (σl and σm) are 
incorporated into the calculation of dinv: the larger the sensory uncertainties, the less likely the different-cause judgment. However, this 
process does not incorporate any form of prior information.1

The following steps are exactly the same as the BCI model, except that in each cue condition the likelihood distribution(s) is(are) no 
longer integrated with the target location prior distribution. There are five free parameters in total: scaling parameter (t), weight 
assigned to landmark for the different-cause judgment (wdc), standard deviations of the sensory measurement distributions for 
landmarks (σl) and self-motion cues (σm), and motor noise (σmt). Hence, the sensory disparity model has two fewer free parameters 
than the BCI model.

4.2. Modeling results

4.2.1. Model comparison
We compared the model fit between the BCI model and the sensory disparity model. Since we could not reliably recover the de

cision strategy used to generate the synthetic data among all three strategies (Supplemental information, Section B), we considered all 
three decision strategies together. AIC was highly correlated among the three decision strategies within each model (rs > 0.85), so we 
compared the mean AIC averaged across decision strategies. Given that the mean AIC differences sometimes deviated from the normal 
distribution and had outliers (see scatterplots in Fig. 5), we conducted the nonparametric Wilcoxon signed-rank tests to compare model 
fit between the two models.

The results are depicted in Fig. 5. When analyzing all three groups together, mean AIC was significantly lower for the BCI model 
than the sensory disparity model (z = − 6.346, p < 0.001, BF10 = 279495). The pattern of results was consistent across groups. In the 
LC-absent group, mean AIC was numerically lower for the BCI model than the sensory disparity model, although the difference did not 
reach statistical significance (z = -1.016, p = 0.311, BF10 = 0.473) (Fig. 5a, left panel). In the other two groups, mean AIC was 
significantly lower for the BCI model than the sensory disparity model (LC-present, z = -4.995, p < 0.001, BF10 = 57442, Fig. 5b, left 

1 An alternative approach for making the causal structure judgment is to set a criterion on the absolute distance between the two sensory 
measurements directly (Badde et al., 2020). For example, when |xl- xm| is larger than the criterion, the different-cause judgment is made. However, 
this approach is only suitable for the model selection strategy, but not suitable for the model averaging strategy or the probability matching strategy, 
because the latter two strategies require a probability-like statistic to linearly combine or sample from the two spatial estimates from the cue 
integration sub-model and the cue segregation sub-model.
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panel; LC-informed, z = -4.180, p < 0.001, BF10 = 7950, Fig. 5c, left panel). These results suggest that the advantage of the BCI model 
was more pronounced when the large conflict condition was included.

Further analyses showed that model fit difference negatively correlated with the standard deviation of prior knowledge about 
target location (aggregated across groups: Spearman ρ = -0.398, p < 0.001; LC-absent group: ρ = -0.318, p = 0.014; LC-present group: 
ρ = -0.371, p = 0.017; LC-informed group: ρ = -0.358, p = 0.024), meaning that the less precise the prior knowledge about target 
location, the smaller the relative advantage of the BCI model over the sensory disparity model (Fig. 5, right panels).

Similar results were obtained if we used BIC as the model fit index (across groups, z = -2.316, p = 0.021, BF10 = 15.030).
To validate these findings, we performed a four-fold cross-validation analysis (Hastie, 2009), which reduces risks of over-fitting or 

under-fitting compared to conventional methods like AIC (Browne, 2000). For each participant, we split the data into four equal parts, 

Fig. 5. Comparisons of goodness-of-fit between BCI model and sensory disparity model Results are displayed separately for the LC-absent 
group (a), the LC-present group (b), and the LC-informed group (c). For each group, the left panel shows AIC for the BCI model and the sensory 
disparity model across the three decision strategies. AIC was first averaged across the three decision strategies, which was then compared between 
the two models. For each group, the right panel shows the across-participant correlation between the mean AIC difference between the two models 
(sensory disparity − BCI) and the estimated standard deviation of the prior knowledge about target location (σpr). Spearman rank correlation 
coefficients (ρ) are displayed. “*” indicates p < 0.05. Error bars represent standard deviation of the mean (S.E.).
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which contained the (4n + 1)th trials, the (4n + 2)th trials, the (4n + 3)th trials, and the (4n + 4)th trials (n is an integer), respectively. In 
each round, three quarters served as the training data and the remaining quarter served as the test data. First, we fitted the model to 
training data, obtaining the best-fitting parameters. Next, we used these parameter estimates to generate simulated data, with 5000 
responses for each cue condition. We applied the Kernel smoothing function (“ksdensity” command in Matlab) to these simulated 
responses, resulting in a response density distribution for each cue condition. After that, we calculated log-likelihood of the test data 
based on the response density distributions, which were summed across all cue conditions. This procedure was repeated four times, 
with each quarter serving as the test data once. The log-likelihood of the test data was summed cross the four rounds and then averaged 
across decision strategies, serving as an index of model fit.

The cross-validation results showed that the BCI model provided a superior fit compared to the sensory disparity model (median 
log-likelihood = -618.063 vs. −619.279; Wilcoxon signed-rank test, z = 4.793, p < 0.001, BF10 = 106685; all groups included). 
Additionally, the difference in log-likelihood was negatively correlated with the standard deviation of prior knowledge about target 
location (σpr) (ρ = -0.360, p < 0.001). Furthermore, the BCI model showed better fit than the sensory disparity model when the de
cision strategies were considered separately (model averaging, z = 5.239, p < 0.001, BF10 = 1483; model selection, z = 7.462, p <
0.001, BF10 = 454342; probability matching, z = 5.899, p < 0.001, BF10 = 1544; all groups considered). Finally, the best-fitting 
decision strategy from the BCI model (i.e., model averaging) outperformed all decision strategies from the sensory disparity model 
(vs. model averaging, z = 5.239, p < 0.001, BF10 = 1483; vs. model selection, z = 7.799, p < 0.001, BF10 = 591527; vs. probability 
matching, z = 6.089, p < 0.001, BF10 = 3612). In sum, the cross-validation analysis yielded results consistent with the conventional 
AIC method, supporting the robustness of our model comparison findings.

Taken together, our results showed that the BCI model outperformed the sensory disparity model in fitting the data. The BCI 
model’s advantage was greater when the precision of prior knowledge about target location was higher. These findings indicate that 
participants utilized prior information when navigating in a multi-cue environment.

Fig. 6. Absolute fit for BCI model and sensory disparity model (a) Two indices of absolute fit – the generalized coefficient of determination (left 
panel) and the normalized energy distance (right panel) – are displayed for the BCI model across the three experimental groups. These two indices 
measure the similarity between the actual responses and the simulated responses. (b) Comparison of the BCI model and the sensory disparity model 
in terms of normalized energy distance. Simulated data were generated by sampling synthetic responses from the three decision strategies (model 
averaging, model selection, and probability matching), with proportions determined by their relative marginal likelihoods. Both measurements 
range from 0 to 1. Low values of normalized energy distance and high values of generalized coefficient of determination indicate good model fit. 
These two measurements are displayed for each cue condition, along with mean values across all cue conditions. Error bars represent standard error 
of the mean (S.E.).
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4.2.2. Absolute fit of BCI model
The preceding section evaluated the comparative fit of the BCI model relative to the sensory disparity model. To evaluate the 

absolute fit of the BCI model, we calculated the generalized coefficient of determination, which measures the proportion of variance in 
responses explained by the model compared to a null model (Nagelkerke, 1991). The null model was set as a uniform distribution, 
bounded by the minimal and maximum response values across all participants in the group. As shown in Fig. 7a (left panel), the BCI 
model explains a high proportion of response variance: mean (SD) = 92 % (5.02 %), 81 % (9.88 %), and 83 % (8.78 %) for the LC- 
absent, LC-present, and LC-informed groups, respectively.

Additionally, we calculated “normalized energy distance”, which quantifies a model’s absolute fit by measuring the similarity 
between actual and simulated response distributions (Rizzo and Székely, 2016). This index ranges from 0 (identical distributions) to 1 
(completely different distributions). To obtain the simulated response distributions, we simulated 5000 responses per cue condition for 
each decision strategy. Next, we sampled from the simulated responses of the three decision strategies, with proportions equal to their 
relative marginal likelihoods (see Section 4.2.3 for calculation). This approach is consistent with the Bayesian model averaging 
approach used for model parameter estimation and model predictions (see Section 4.2.3 and Section 4.2.4).

As shown in Fig. 6a (right panel), the normalized energy distance was quite low across groups (mean (SD) = 0.015 (0.01), 0.020 
(0.012), 0.019 (0.007) for the LC-absent, LC-present, and LC-informed groups, respectively), indicating strong alignment between 
model predictions and observed data.

We also leveraged the absolute fit measurement – normalized energy distance − to examine why the BCI model fit the data better 
than the sensory disparity model. As expected, the BCI model showed smaller normalized energy distance than the sensory disparity 
model across groups (Fig. 6b): LC-absent, z = -4.689, p < 0.001, BF10 = 496; LC-present, z = -4.011, p < 0.001, BF10 = 1720; LC- 
informed, z = -4.637, p < 0.001, BF10 = 3052. Importantly, the superior fit of the BCI model mainly manifests in the double-cue 
conditions.

Finally, we visualized the model fit by plotting raw responses of individual participants alongside the BCI model predictions. Fig. 7
depicts two example participants from each group, demonstrating strong qualitative alignment between observed and predicted re
sponses. Notably, the BCI model captures the bimodal distributions that emerge in the large conflict condition in some participants 
(Fig. 7, panels b.1, b.2, and c.1). Additional examples are provided in Supplemental information (Section F).

Collectively, both quantitative metrics and qualitative visualizations indicate the BCI model’s strong fit to the data in the current 
experiment.

4.2.3. Model fit evaluation for BCI model
The preceding two sections have demonstrated that the BCI model fit the data well. Here, to further evaluate the goodness-of-fit of 

the BCI model, we examine whether the BCI model could predict key variables of the actual data and replicate key aspects of the 
behavioral findings.

For each decision strategy, we obtained the predictions for key response variables: response centroid and variability in each double- 
cue condition, cue weights in each conflict condition. Next, we calculated the Bayesian average of the predictions on these variables by 
linearly combining the predictions of the three decisions strategies, with weights determined by their respective posterior probabilities 
(p(M)). This Bayesian model averaging approach was also adopted for model parameter estimation (see a later section “Influences of 
Cue Conflict on Model Parameters”).

We employed the Bayesian model averaging approach for both model prediction and parameter estimation, as it typically out
performs approaches based on a single model (Raftery, 1995). By integrating over a range of possible parameter values, rather than 
relying on a single estimate, this method enhances out-of-sample predictions. This process accounts for model uncertainty derived 
from the Bayesian information criterion (BIC). BIC gives a good approximation of model evidence (Raftery, 1995), resulting in more 
robust and generalizable predictions (Raftery et al., 1996). Furthermore, the model recovery analysis revealed that the three decision 
strategies could not be reliably distinguished with our data (Supplemental information, Section B), underscoring the need to combine 
these strategies for parameter estimation and model prediction.

With no priors assumed on model evidence, the posterior probability of a decision strategy p(M) equals to its marginal likelihood, 
which can be calculated from BIC as follows: 

p(M) = exp(−0.5 × n − 0.5 × BIC) exp(−BIC)

BIC = − 2LLsum + plog(n)

in which n represents the total number of trials (≈ 144), and p represents the total number of free parameters (= 7). The marginal 
likelihood of a decision strategy is proportional to the exponential of its negative BIC. In both model prediction and parameter esti
mation, the weights of the three decision strategies correspond to their relative marginal likelihoods.

Model fit is depicted in Figs. 8-10 for the three groups separately. Outliers were identified within each group for each variable, i.e., 
> 3rd quartile + 3*IQR or < 1st quartile – 3*IQR. Outliers were winsorized to the nearest inlier within each group (Reifman & Keyton, 
2010).

First, we examined how well the BCI model predicted the aforementioned key variables of the behavioral data for each group, by 
comparing the simulated values to the observed values of these variables (Figs. 8-10, panels a, b, and c). The results showed that our 
models fit the data considerably well by capturing major trends of the data in terms of group means (left panels). In addition, the 
simulated values showed strong correlations with the observed values for the key variables (rs > 0.6, ps < 0.01) (middle and right 
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Fig. 7. Illustrating goodness-of-fit of BCI model for example participants For individual participants, the raw behavioral data are plotted as 
histograms, alongside the fitted curves to the raw data and the simulated data based on the BCI model. Simulated data were generated by sampling 
synthetic responses from the three decision strategies (model averaging, model selection, and probability matching), with proportions determined 
by their relative marginal likelihoods. The estimated values of the model parameters (Bayes average) are also displayed for each participant. (a) Two 
example participants from the LC-absent group. (b) Two example participants from the LC-present group. (c) Two example participants from the LC- 
informed group.
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Fig. 7. (continued).
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Fig. 7. (continued).

X. Chen et al.                                                                                                                                                                                                           Cognitive Psychology 158 (2025) 101734 

20 



panels).
Next, we found that the simulated data reproduced the key patterns of behavioral results obtained in the observed data in terms of 

cue weight and response variability in the double-cue conditions. First, the simulated landmark weight was not different from the 
simulated behavioral optimal weight in the LC-absent group (small conflict, t(59) = -0.504, p = 0.616, BF10 = 0.160) and the LC- 
present group (small conflict, t(40) = 0.564, p = 0.576, BF10 = 0.196; large conflict, t(40) = 1.387, p = 0.173, BF10 = 0.409), but 
was significantly smaller than the simulated behavioral optimal weight in the LC-informed group (small conflict, t(39) = -3.136, p =
0.003, BF10 = 10.771; large conflict, t(39) = -11.453, p < 0.001, BF10 = 1.528*1011) (Figs. 8-10, c, left panel).

Second, in all double-cue conditions, the simulated response variability fell between the simulated prediction of the MLE cue 
integration model and the simulated prediction of the cue alternation model (|ts| > 6, ps < 0.001, BFs10 > 8*104; Figs. 8-10, panel d). 

Fig. 8. Goodness-of-fit of BCI model in LC-absent group From (a) to (c), actual data and model predictions are displayed for the following key 
variables: response centroids in the two double-cue conditions (a); response variability in the two double-cue conditions (b); and the behavioral 
weight assigned to landmarks in the small conflict condition, compared with the behavioral optimal weight (c). Model predictions were generated 
via simulations and represent the Bayes average across the three decision strategies. In each subplot, the left panel shows group means of the actual 
data and model predictions; the middle and right panels show across-participant correlations between actual data and model predictions. Pearson r 
correlation coefficients are shown along with the scatterplots. (d) shows simulated data comparing response variability in the double-cue conditions 
with predictions from the MLE model of cue integration (i.e., optimal cue integration) and the cue alternation model. All data shown in this subplot 
are simulated rather than observed. “***” indicates p < 0.001. Error bars represent standard error of the mean (S.E.).
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Even in the large conflict condition, the simulated response variability was numerically far lower than the simulated prediction of the 
cue alternation model (Figs. 9 and 10, panel d). This simulation replicates our behavioral findings (Fig. 3, panels c-e) and aligns with 
previous studies (Chen et al., 2017; Qi & Mou, 2024; Sjolund et al., 2018). These results suggest a mixture of cue integration and cue 
alternation strategies in double-cue conditions, a key prediction of the BCI model.

4.2.4. Influences of cue conflict on model parameters
The preceding results have established that the BCI model provided a considerably good fit to the data. Here, we proceeded to 

assess how cue conflict affected the cognitive processes underlying spatial navigation, by comparing the three groups on the free 
parameters of the BCI model. To reiterate, The Bayesian model averaging approach was adopted for estimating the model parameters 
across the three decision strategies.

We adopted the ANOVA test, with Welch correction if the assumption of variance homogeneity was violated. Outliers were 
identified within each group for each variable, i.e., > 3rd quartile + 3*IQR or < 1st quartile – 3*IQR. Outliers were winsorized to the 
nearest inlier within each group (Reifman & Keyton, 2010).

As shown in Fig. 11, the three groups differed significantly on two model parameters: the weight assigned to landmarks in the 
different-cause judgment (wdc, F(2,138) = 21.816, p < 0.001, η2

p = 0.240, BFinclusion = 1.79 * 106; Fig. 11d), and the sensory noise level 
of landmarks (σl, F(2,138) = 14.121, p < 0.001, η2

p= 0.170, BFinclusion = 6493; Fig. 11e). Regarding wdc, post-hoc comparisons showed 
that the LC-informed group was lower than both the LC-absent group (t(138) = 5.702, p < 0.001) and the LC-present group (t(138) =
5.992, p < 0.001), whereas the LC-absent group and the LC-present group did not differ from each other (t(138) = -0.754, p = 0.452). 

Fig. 9. Goodness-of-fit of BCI model in LC-present group From (a) to (c), actual data and model predictions are displayed for the following key 
variables: response centroids in the three double-cue conditions (a); response variability in the two double-cue conditions (b); and the behavioral 
weight assigned to landmarks in the two conflict conditions, compared with the behavioral optimal weight (c). Model predictions were generated 
via model simulations and represent Bayes average across the three decision strategies. In each subplot, the left panel shows group means of the 
actual data and model predictions; the middle and right panels show across-participant correlations between actual data and model predictions. 
Pearson r correlation coefficients are shown along with the scatterplots. (d) shows simulated data comparing response variability in the double-cue 
conditions with predictions from the MLE model of cue integration (i.e., optimal cue integration) and the cue alternation model. All data shown in 
this subplot are simulated rather than observed. “***” indicates p < 0.001. Error bars represent S.E. of the mean.

X. Chen et al.                                                                                                                                                                                                           Cognitive Psychology 158 (2025) 101734 

22 



Regarding σl, post-hoc comparisons showed that the LC-informed group was larger than both the LC-absent group (t(138) = -5.234, p 
< 0.001) and the LC-present group (t(138) = -3.651, p < 0.001), whereas the LC-absent group and the LC-present group did not differ 
from each other (t(138) = -1.268, p = 0.207). Additionally, the three groups did not differ significantly on the sensory noise level of 
self-motion cues (σm; Fig. 11f). Accordingly, the sensory optimal weight for landmarks, which is determined by the ratio of sensory 
noise levels of the cues (wopt,sen = σ2

m/(σ2
l + σ2

m)), was significantly lower in the LC-informed group than the other two groups (F(2,138) 
= 8.409, p < 0.001, η2

p= 0.109, BFinclusion = 70.147; LC-informed vs. LC-absent, t(138) = 3.759, p < 0.001; LC-informed vs. LC-present, 
t(138) = 3.439, p < 0.001; LC-absent vs. LC-present, t(138) = 0.015, p = 0.988; Fig. 11h). This result means that the LC-informed 
group assigned lower weight to landmarks in the same-cause judgment, compared to the other two groups.

The three groups did not differ in other model parameters (Fs < 3.1, ps > 0.05, ηs2
p < 0.05, BFsincl < 0.9). In particular, the three 

groups were very close in the prior belief that the cues originate from the same spatial source (meanpcc,pr = 0.595 vs. 0.588 vs. 0.598), 
and the ANOVA test showed no significant differences between the groups (F(2, 138) = 0.015, p = 0.985, η2

p = 2.159*10-4, BFinclusion =

0.072; 11a).
The preceding results have shown that the LC-informed group had lower weight assigned to landmarks in the sensory cue alter

nation process in the different-cause judgment (wdc) and higher sensory noise level of landmarks (σl) than the other two groups. 
Because increased sensory noise of landmarks σl predicts lower weight assigned to landmarks for the same-cause judgment (wopt,sen), we 
wondered whether the decreased wdc in the LC-informed group could be explained by the decreased wopt,sen in this group; that is, 
whether decreased sensory weight given to landmarks in the different-cause judgment was a consequence of decreased sensory weight 
given to landmarks in the same-cause judgment. In addition, it is of theoretical significance to understand whether distinct sensory- 

Fig. 10. Goodness-of-fit of BCI model in LC-informed group From (a) to (c), actual data and model predictions are displayed for the following 
key variables: response centroids in the three double-cue conditions (a); response variability in the two double-cue conditions (b); and the 
behavioral weight assigned to landmarks in the conflict conditions, compared with the behavioral optimal weight (c). Model predictions were 
generated via model simulations and represent Bayes average across the three decision strategies. In each subplot, the left panel shows group means 
of the actual data and model predictions; the middle and right panels show across-participant correlations between actual data and model pre
dictions. Pearson r correlation coefficients are shown along with the scatterplots. (d) shows the simulated data comparing response variability in the 
double-cue conditions with predictions form the MLE model of cue integration (i.e., optimal cue integration) and the cue alternation model. All data 
shown in this subplot are simulated rather than observed. “***” indicates p < 0.001. Error bars represent S.E. of the mean.
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cue-weighting strategies are adopted by different cause judgments, by comparing wdc and wopt,sen.
To address this question, we conducted a mixed ANOVA test, with weight type (wdc vs. wopt,sen) and group (the LC-absent vs. the LC- 

present vs. the LC-informed) as independent variables (Fig. 11i). This analysis revealed a significant interaction between weight type 
and group (F(2,138) = 4.060, p = 0.019, η2

P = 0.056, BFinclusion = 13.207). Post-hoc comparisons showed that: wdc was larger than 
wopt,sen in both the LC-absent group (t(138) = 4.050, p < 0.001) and the LC-present group (t(138) = 4.151, p < 0.001), whereas in the 
LC-informed group, wdc did not differ from wopt,sen (t(138) = 0.342, p = 0.734). These results indicate that for different-cause judg
ments, participants in the LC-absent and LC-present groups assigned to landmarks a sensory weight greater than the sensory optimal 
weight, whereas participants in the LC-informed group assigned to landmarks a sensory weight equal to the sensory optimal weight. In 
other words, at the group-level, in the LC-informed group, wdc decreased beyond what was predicted by the increased σl and decreased 

Fig. 11. Comparisons of BCI model parameters among experimental groups From (a) to (g), the three groups were compared on each of the 
seven model parameters. (h) The sensory optimal weight (wopt,sen) was compared among the three groups. (i) The two sensory cue weight pa
rameters, wOpt,sen and wdc, were compared among the three groups. These two parameters are conceptually parallel to each other, as they both 
represent the sensory weight assigned to landmarks in the sub-models for the same-cause judgment and the different-cause judgment respectively, 
before the prior distribution of target location is considered. pcc,pr − prior belief in a common sense; μpr − mean of the prior distribution of target 
location; σpr − standard deviation of the prior distribution of target location; wdc − sensory weight assigned to landmarks in the different-cause 
judgment; σl − sensory noise level of landmarks; σm − sensory noise level of self-motion cues; σmt − motor noise; wopt,sen − optimal sensory 
weight to landmarks in the same-cause judgment. “***” indicates p < 0.001. Error bars represent standard error of the mean (S.E.).
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wopt,sen.
The parameter recovery analysis confirmed the validity of our estimation of the model parameters (see details in Supplemental 

information, Section B), as we found moderate or strong correlations across participants between the recovered values and the best- 
fitting values for the three parameters of interest (pcc,pr, wdc, and σl, rs > 0.44, ps < 0.001).

4.2.5. Self-rated confidence predicts cue weight in different-cause judgment
The BCI model incorporates two cue-weighting schemes: in the cue integration sub-model for common-cause judgments, the 

sensory weights assigned to the two cue types are determined by the sensory optimal weight (wopt,sen); in the cue alternation sub-model 
for different-cause judgments, the parameter wdc represents the sensory weight assigned to landmarks in the cue alternation process. 
While wopt,sen is determined by other sensory noise parameters (σ2

l and σ2
mt), wdc is free to vary. A critical question is what influences 

wdc?
Our previous study identified cue relative confidence (rc) as a key factor in cue weighting (Chen et al., 2017). Cue relative con

fidence (rc), was calculated as the relative mean confidence level between the landmark condition and the self-motion condition: 

rc =
cf l

cf l + cfm 

in which cf l and cfm represent the mean confidence score averaged across all trials in the landmark condition and the self-motion 
condition, respectively. We found that cue relative confidence positively predicted the weight assigned to landmarks, even after 
controlling for relative objective performance.

Here, we investigated whether rc predicted the weight assigned to landmarks for the different-cause judgment (wdc). As shown in 
Fig. 12, across the three groups, there existed a significant positive correlation between wdc and rc (r = 0.204, p = 0.015, BF10 = 1.950), 
meaning that in the different-cause judgment, participants assigned greater weight to the spatial cue with which they felt more 
confident. There was no significant correlation between wdc and wopt,sen (r = 0.031, p = 0.714, BF10 = 0.113). There was significant 

Fig. 12. Simple bivariate correlations among model parameters of cue weights and self-rated confidence Scatterplots depicts relationships among rc 
(cue relative confidence), wopt,sen (sensory weight assigned to landmarks in the same-cause judgment), and wdc (sensory weight assigned to land
marks in the different-cause judgment). Z-scores were calculated within each group. Outliers were identified within each group, i.e., > 3rd quartile 
+ 3*IQR or < 1st quartile – 3*IQR. Outliers were winsorized to the nearest inlier within each group (Reifman & Keyton, 2010). “***” indicates p <
0.001; “n.s.” indicates p > 0.05.

Table 2 
Predicting sensory cue weight in the different-cause judgment A multiple linear regression was conducted to predict the sensory weight assigned 
to landmarks in the cue segregation sub-model for the different-cause judgment (wdc). Results for the significant predictor rc are highlighted in bold. rc 
represents the relative confidence participants placed in landmarks compared to self-motion cues, reflecting their subjective evaluation of cue quality. 
wOpt,sen is the inverse ratio of sensory noise levels between landmarks and self-motion cues, reflecting the relative objective cue quality of the cues. 
wOpt,sen also corresponds to the sensory weight assigned to landmarks in the same-cause judgment (wcc). Note that we did not include any group 
dummy variables (isLC-absent, isLC-present, and isLC-informed) in the multiple linear regression model, because prior to this analysis, the dependent 
variable wdc had already been standardized within each group and therefore had the same mean (= 0) in all the groups. Similarly, all independent 
variables were standardized within each group prior to the analysis.

Predictor ß t p BFinclusion

rc 0.210 2.356 0.020 1.400
wopt,sen −0.047 −0.526 0.600 0.279
isLC-informed*rc −0.007 −0.082 0.934 0.260
isLC-informed*wopt,s ¡0.221 ¡2.446 0.016 0.911
isLC-present*rc 0.007 0.082 0.935 0.259
isLC-present*wopt,s −0.142 −1.565 0.120 0.457
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correlation between rc and wopt,sen (r = 0.366, p < 0.001, BF10 = 2030), meaning that participants felt more confident using the spatial 
cue with lower sensory noise level.

To control for potential influences of wopt,sen, we conducted a multiple linear regression analysis with wdc as the dependent variable, 
and rc and wopt,sen as the independent variables, along with terms involving the group dummy variables (isLC-present and isLC- 
informed).

As shown in Table 2, rc was a significant predictor (standardized ß = 0.197, t = 2.209, p = 0.029). The Bayesian analysis of 
posterior summaries of coefficients showed that BFinclusion for rc was 1.400, meaning that the data have increased our prior odds for 
including rc as a predictor by a factor of 1.400 – positive, albeit small, evidence for including rc in the model.

Note that the interaction term “isLC-informed* wopt,sen” was significant (standardized ß = −0.221, t = -2.446, p = 0.016, BFinclusion =

0.911). To interpret this effect, in the LC-absent group, the correlation between wopt,sen and wdc was positive and significant (r = 0.279, 
p = 0.031); in the LC-present group, this correlation was negative numerically (r = -0.087, p = 0.588); in the LC-informed group, this 
correlation was negative numerically (r = -0.223, p = 0.167). This pattern of results suggests that cue integration and alternation 
strategies are harder to distinguish in scenarios with minimal cue conflicts.

In summary, we found that rc uniquely predicted wdc, whereas the role of wopt,sen depends on cue conflict contexts. These findings 
suggest that sensory cue weighting operates differently for common-cause vs. different-cause judgments.

Fig. 13. Relationships between prior information and cue combination suboptimality (a) Correlation between prior belief in a common cause 
(pcc,pr) and cue combination suboptimality in the simulated (left panel) and observed data (right panel). (b) Correlation between the standard 
deviation of the prior distribution of target location (σpr) and cue combination suboptimality in the simulated (left panel) and observed data (right 
panel). Dots of different colors represent individual participants from different groups in the main experiment.
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5. Additional analyses and experiments

5.1. Modeling cue congruency judgments

Among previous studies applying the BCI model to multi-sensory perceptual tasks involving spatial localization of audio-visual 
stimuli, some fit the model only to localization responses (Körding et al., 2007; Odegaard et al., 2017; Wozny et al., 2010), 
whereas others fit the model to both localization responses and cue congruency judgments (Badde et al., 2020; Hong et al., 2022). 
Recall that participants in the LC-informed group also judged cue congruency by explicitly determining whether the landmark had 
been relocated (Fig. 2b). To our knowledge, no studies have implemented both approaches on the same dataset for comparison. 
Therefore, to examine the robustness of our modeling findings, we modeled both cue congruency judgments and spatial localization 
responses.

This subsidiary analysis not only ensures the robustness of our primary findings but also extends the scope of our investigation. In 
particular, this approach offers a more complete picture of how individuals resolve spatial uncertainty during navigation, particularly 
when cues conflict.

Due to a technical oversight, cue congruency judgments were not recorded for the first 10 participants in the LC-informed group, 
potentially resulting in insufficient statistical power. To address this, we included a separate group of 40 participants (LC-informed- 
additional group), whose experimental procedure closely matched that of the LC-informed group (see Supplemental information, 
Section C). Given that this additional group exhibited similar behavioral results, we conducted a pooled analysis of the two groups.

As detailed in Supplemental information (Section D), key modeling results remained consistent with those obtained from modeling 
localization responses alone: compared to the LC-absent group, the LC-informed and LC-informed additional groups assigned lower 
weight to landmarks in different-cause judgments (wdc), exhibited higher sensory noise associated with landmarks (σl), and had lower 
optimal sensory weight for landmarks in same-cause judgments (wopt,sen). The consistency underscores the robustness of our findings 
across different modeling methodologies. However, unlike when modeling localization responses alone, the LC-informed and LC- 
informed-additional groups showed greater motor noise (σmt) than the LC-absent group. Although the precise explanation for this 
result remains unclear to us, it does not affect our interpretation of the primary findings.

5.2. Conceptual Replication of Roy et al. (2023)

Our main experiment revealed that increasing cue conflict alone was not sufficient to change participants’ reliance on different 
cues. This result appears to contradict Roy et al (2023), who found that increasing a landmark’s instability decreased the weight 
assigned to it. We hypothesized that this discrepancy stemmed from the feedback participants received in this study, which was defined 
by other stable landmarks and therefore devalued the unstable landmark. This feedback mechanism resembles the instructions given to 
the LC-informed and LC-informed-additional groups in our study, where participants were explicitly told that the landmark could be 
relocated and would no longer provide valuable information about the target location.2

To test this hypothesis, we examined another group of 39 participants (LC-feedback group), using the same experimental setup as in 
the LC-present group but with a key difference: in double-cue trials, after participants made the localization response and rated 
confidence, the target appeared at a position defined by the self-motion cues. Participants were told that this feedback represented the 
correct target location. They needed to travel to this feedback position to complete the trial.

As detailed in Supplemental information (Section E), the LC-feedback group exhibited the same pattern of behavioral results as the 
LC-informed group. This group assigned overall lower weight to landmarks and showed larger response variability in the landmark 
condition (i.e., poorer performance), compared to the LC-absent group.

Modeling results also replicated key findings from the LC-informed group: the LC-feedback group showed lower weight assigned to 
landmarks in different-cause judgments (wdc), higher sensory noise associated with landmarks (σl), and lower weight assigned to 
landmarks in same-cause judgments (wopt,sen), compared to the LC-absent group. Surprisingly, however, unlike the LC-informed group, 
the LC-feedback group exhibited a stronger prior belief in common cause (pcc,pr) than the LC-absent group, meaning that experiencing 
large cue conflict trials paradoxically reinforced a belief in a unified causal structure.

In summary, these findings support our hypothesis that the finding of reduced reliance on unstable landmarks in Roy et al.’s study 
was not solely driven by cue conflict but rather reflects the combined effect of cue conflict and feedback that deliberately devalued the 
landmark.

6. Explaining cue combination suboptimality within BCI model

Besides explaining navigation behavior in situations with substantial cue conflicts, the BCI model can also be leveraged to uncover 
underlying factors contributing to suboptimal cue combination behavior in situations with small or no cue conflicts. To this end, we 
examined which BCI model parameters correlated with cue combination suboptimality in the combination and small conflict con
ditions. We calculated a suboptimality index, which measures deviation of response variability in these two conditions from the 

2 Although in Roy et al. (2023) the feedback was only provided during training trials but not during test trials, the navigation strategy developed 
during training trials likely persisted into the test trials because these two types of trials were intermixed throughout the experiment.
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prediction of the MLE model.
suboptimality = (σobs − σopt)/σopt where σobs represents observed response variability and σopt represents the optimal response 

variability. σopt was calculated from responses in the single-cue conditions, following the MLE rules of cue integration (see Section 3.1
“Behavioral Analysis”).

We analyzed all participants from the main experiment. Due to the high correlation between response variability in the combi
nation and small conflict conditions, we averaged across these conditions. Both observed and simulated data were examined. Simu
lated data were obtained using the Bayesian averaging approach. Simulated data reflect the inner mechanisms of the BCI model and 
serve to assess its ability to capture cue combination suboptimality. Consistency between the observed and simulated data would 
indicate that the BCI model fit the data sufficiently well to capture nuanced aspects of participants’ cue combination behavior.

We focused on two parameters that encapsulate the essence of the BCI model: prior belief in common cause (pcc,pr) and uncertainty 
in the prior knowledge about target location (σpr). As shown in Fig. 13, both parameters were negatively correlated with cue com
bination suboptimality, in both the simulated and observed data. A stronger prior belief in common cause and lower uncertainty in the 
prior knowledge about target location corresponded to less severe cue combination suboptimality.

We investigated other model parameters for completeness. Motor noise (σmt) was positively correlated with cue combination 
suboptimality in the simulated data (ρ = 0.204, p = 0.016), and sensory noise level associated with self-motion cues (σm) was 
negatively correlated with cue combination suboptimality in both the simulated (ρ = -0.180, p = 0.033) and observed data (ρ = -0.348, 
p < 0.001).

In summary, prior belief in common cause and uncertainty in prior knowledge about target location contributed to cue combination 
suboptimality. The application of the BCI model offers insights into the underlying mechanisms of suboptimal cue integration in 
scenarios with minimal cue conflicts.

7. Discussion

The current study aimed to investigate cognitive processing of spatial cue conflict in spatial distance estimation during navigation. 
To accomplish this aim, we developed a novel cue combination paradigm conducted on a linear space and tested two cognitive models 
of the task: the Bayesian causal inference model (BCI) and a non-Bayesian sensory disparity model. Our contribution is multifaceted. 
First, the behavioral findings illustrate the crucial, yet nuanced, influences of spatial cue conflict on cue-weighting behavior. Second, 
the BCI model outperformed the non-Bayesian alternative model and effectively accounted for participants’ navigation behaviors, 
demonstrating its applicability in the field of spatial navigation. Third, the model parameter analysis provided valuable insights into 
how cue conflict influences navigation, pinning down the cognitive processes specifically affected by cue conflict and elucidating the 
intricate interplay among these processes. Finally, our modeling results shed light on the root causes of suboptimal cue combination in 
situations with minimal cue conflicts.

7.1. Cognitive processes affected by cue conflict during navigation

In behavior, the LC-absent group and the LC-present group showed no differences, indicating that increasing cue conflict alone 
exerted no discernable influences on navigation behavior. However, compared to the LC-absent group, the LC-informed group showed 
increased response variability in the landmark condition and decreased weight assigned to landmarks in the double-cue conditions, 
indicating that explicit awareness of cue conflict is necessary to behavioral changes. The LC- feedback group, which received self- 
motion-defined feedback to reinforce awareness of the landmark’s instability and invalidity, showed results consistent with the LC- 
informed group. This consistency suggests that a cue must be explicitly devalued to reduce reliance on it.

The modeling work offered deeper insights into the cognitive processes at play behind these behavioral findings. Cue conflict, when 
coupled with explicit awareness of landmark instability, elevated sensory noise level of landmarks and reduced the weight assigned to 
landmarks when conflict was perceived. Surprisingly, navigators’ prior belief about causal structure did not get updated in line with 
the cue conflict statistics: in most cases, the prior belief remained unchanged, even when participants were made explicitly aware of 
the cue conflict (i.e., LC-present, LC-informed, and LC-informed-additional groups); in one case (LC-feedback group), the prior belief in 
common cause even increased in the presence of greater cue conflict, contrary to the cue conflict statistics.

In the following sections, we will delve into detailed discussions on these three model parameters: sensory noise level of landmarks, 
cue weighting, and prior belief about causal structure.

7.1.1. Sensory noise level of landmarks
We observed increased response variability associated with landmarks when participants were explicitly aware of landmark 

instability. This finding is consistent with our earlier finding using the cue combination task in a 2-dimensional virtual reality space, 
which also showed increased response variability due to landmark instability (Chen et al., 2017, Experiment 2). Cognitive modeling 
further revealed that the increased response variability associated with landmarks was driven by elevated sensory noise in landmarks 
(σl).

Why would explicit awareness of landmark instability elevate the sensory noise of the landmark cue? We speculate that once 
participants recognized that landmarks could be invalid in defining the target location, they allocated less attention to them, leading to 
reduced cue efficiency and impaired behavioral performance. Intriguingly, previous studies on audio-visual spatial localization have 
documented the multisensory enhancement phenomenon, in which exposure to congruent audiovisual stimulus pairs improves 
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subsequent unisensory localization performance with auditory stimuli (Bruns et al., 2020). This phenomenon parallels our finding that 
unstable landmarks, when explicitly recognized as invalid, led to diminished behavioral performance. However, whether both effects 
stem from similar underlying mechanisms, such as altered attentional levels, remains to be investigated.

Importantly, our findings suggest that sensory noise level was influenced not only by a cue’s physical properties but is also by 
cognitive factors. Indeed, prior research has shown that the sensory noise level of a cue can be modulated by attentional state (Badde 
et al., 2020), exposure to congruent/incongruent stimulus pairs (Hong et al., 2022), and perceptual training (Rohe & Noppeney, 2015). 
Therefore, it is essential to consider variations in sensory noise levels before jumping to conclusions about cue-weighting or prior 
beliefs.

Notably, the form of landmark instability differed between the current study and our previous study (Chen et al., 2017). In our 
previous study, a three-landmark layout constituted the landmark cue. Landmark instability was induced by changing the landmark 
configuration from trial to trial, while the landmark configuration remained unchanged between the encoding and retrieval stages 
within each trial. Thus, despite its instability, the landmark cue, still provided valid information for localizing the target. In contrast, in 
the current study, landmark instability was induced by repositioning the landmark during the retrieval stage within a trial, rendering it 
unreliable for defining the target location. While both forms of landmark instability increased sensory noise level, they had distinct 
effects on cue weighting. In our previous study, the observed weight assigned to unstable landmarks remained consistent with the 
behavioral optimal weight calculated from the MLE rules, whereas in the current study it was lower than the behavioral optimal 
weight. This difference suggests that the weight assigned to the landmark cue is determined by its perceived value rather than its 
instability. In the next section, we discuss how cue conflicts affect cue weighting.

7.1.2. Weight assigned to landmarks
Our behavioral results showed that landmark instability, when made explicit, reduced participants’ reliance on landmarks. 

Response variability in the landmark condition also increased, which theoretically resulted in a lower behavioral optimal weight for 
landmarks according to the MLE principles (i.e., relative response variabilities between the cues). Nevertheless, the observed 
behavioral weight assigned to landmarks was significantly lower than the behavioral optimal weight, suggesting additional influ
encing factors beyond reduced response precision.

Consistently, modeling results revealed two mechanisms behind this reduced reliance on unstable landmarks. First, explicit 
awareness of landmark instability increased sensory noise in landmarks (σl), inherently lowering their sensory weight in the same- 
cause judgment (i.e., wopt,sen). Second, this awareness also reduced the sensory weight assigned to landmarks in the different-cause 
judgment (wdc) when cue conflicts were perceived.

These two mechanisms operate independently, as indicated by two findings. First, in the LC-informed group, the sensory weight 
assigned to landmarks in the different cause-judgment (wdc) was reduced beyond what is predicted by the increased sensory noise in 
landmarks (wopt,sen) (Fig. 12i). This pattern of results was replicated in the LC-informed-additional and LC-feedback groups. Second, 
whereas cue-weighting in the same-cause judgment (wopt,sen) was determined by relative objective cue quality (i.e., relative sensory 
noise levels of cues), cue-weighting in the different-cause judgment (wdc) was positively correlated with subjective relative cue quality 
(i.e., relative cue confidence). Collectively, these findings indicate distinct cue-weighting processes between common-cause and 
different-cause judgments.

Additionally, the modeling work revealed a dissociation between behavioral and sensory cue weights (Aston et al., 2022). 
Behavioral cue weights (i.e., wobs,wopt,beh) are calculated from participants’ behavioral responses in the behavioral analysis. Behavioral 
responses are jointly influenced by a multitude of factors, some of which are shared between different cue conditions, such as prior 
distribution of target location and motor noise. In contrast, sensory cue weights (wopt,sen, wdc) represent intrinsic weights, with com
ponents shared across cue conditions removed.

This dissociation was evident in our study. In the LC-absent and LC-present groups, when perceiving the landmark to be in conflict 
with optic flow, participants weighted landmarks heavily, with the sensory weight assigned to landmarks (wdc) exceeding what is 
dictated by the relative sensory noise levels of cues – the sensory optimal weight (wopt,sen). Yet, the observed behavioral weight assigned 
to landmarks (wobs) was not different from the behavioral optimal weight (wopt,beh). In the LC-informed group, when perceiving the 
landmark to be in conflict with path integration, participants weighted the landmark not differently from what is dictated by the 
relative sensory noise levels of cues (i.e., wdc = wopt,sen). However, the observed behavioral weight assigned to landmarks was lower 
than the behavioral optimal weight (i.e., wobs < wopt,beh). Consistent results were obtained in the LC-informed-additional and LC- 
feedback groups.

Given that sensory weights directly reflect participants’ intrinsic reliance on cues, these findings suggest that when conflict between 
visual path integration and landmark-based navigation was not made explicit to participants, participants relied heavily on the 
landmarks in the different-cause judgment when they sensed conflicts between the cues. When participants were made explicitly aware 
of the landmark instability, their reliance on landmarks diminished yet remained consistent with the MLE rule of optimal cue 
weighting.

These findings reinforce the privileged status landmark-based navigation holds in spatial navigation, compared to path integration 
at least when it is based on visual optic flow. Despite appearing counterintuitive, this strong reliance on landmarks aligns with previous 
studies. For example, Zhao & Warren found that a majority of participants used landmarks exclusively to determine the walking di
rection back to the target location when the landmarks had been rotated by up to 90◦ (Zhao & Warren, 2015b). Similarly, in another 
study, when a landmark was unexpectedly shifted by as much as 115◦, participants continued to rely on the landmark to localize the 
target (Zhao & Warren, 2015a).
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This predominant reliance on landmarks likely stems from humans’ habitual use of landmark-based navigation in daily life, 
because humans are endowed with high visual acuity to discern fine-grained spatial differences in landmarks (e.g., distances and 
angles to landmarks; Caves et al., 2018). In contrast, humans are generally poor at path integration (Loomis et al., 1993). Furthermore, 
path integration is error-prone and only works well in small-scale environments (Anastasiou et al., 2023), but human daily navigation 
primarily occurs in large-scale environments. This feature of human navigation system is in stark contrast to rodents, who are better at 
path integration than landmark-based navigation due to their very poor visual acuity – human eyesight is estimated to be 40 to 60 
times sharper than that of a rat (Caves et al., 2018).

7.1.3. Prior belief about causal structure
Unlike sensory noise and cue weighting, we cannot infer anything about the prior belief about causal structure from behavioral 

results, as it is a cognitive construct. Our modeling results indicate that, in most cases, the prior belief was not affected by cue conflict, 
even when participants were explicitly aware of landmark instability. Interestingly, in one case when self-motion-defined feedback 
was provided in double-cue conditions, prior belief in a common cause even increased with heightened cue conflict. These findings 
challenge the common intuition that prior belief should update in alignment with new stimulus statistics (Roy et al., 2023).

Previous research has examined perceptual interaction between visual and auditory stimuli in the presence of cue conflict. Two 
classic phenomena have been investigated: the ventriloquism effect, wherein the observer’s localization of an auditory stimulus is 
biased towards the location of a concurrent visual stimulus (Bertelson & Radeau, 1981); and the McGurk illusion, which occurs when 
auditory information clashes with visual information, leading to a fusion of the two senses and altering our perception of speech sounds 
(McGurk & MacDonald, 1976).

Prior behavioral studies have yielded consistent results: compared to incongruent pairs of auditory-visual stimuli, exposure to 
congruent pairs of auditory and visual stimuli increased the ventriloquism effect (Tong et al., 2020; Van Wanrooij et al., 2010) and the 
McGurk effect (Gau & Noppeney, 2016; Nahorna et al., 2012, 2015), signaling stronger tendency to bind the auditory stimulus and the 
visual stimulus (i.e., prior belief in a common cause). However, behavioral studies infer, rather than directly estimate, changes in prior 
belief, leaving room for alternative explanations, such as the prior knowledge on stimulus distribution and sensory noise levels of 
individual cues. Note that Tong et al. (2020) actually considered sensory noise levels of individual cues, as they compared behavioral 
performance with individual cues before and after cue conflict exposure. However, they did not consider the prior knowledge about 
stimulus distribution, which also influences causal structure judgments.

Modeling studies have yielded mixed results. Odegaard and colleagues found that exposure to spatiotemporally congruent au
diovisual stimulus pairs did not alter prior belief in a common cause (Odegaard et al., 2017), whereas exposure to spatially incongruent 
but temporally congruent stimulus pairs unexpectedly increased it. Using a similar but improved paradigm, Hong and colleagues found 
that although prior belief in a common cause did not change at the group-level, individual differences existed: prior belief got updated 
in the same direction of the stimulus statistics for some participants, but in the opposite direction for others (Hong et al., 2022). Their 
simulations suggest that sensory noise levels of individual cues may change following bimodal stimulus exposure, influencing the 
likelihood of common-cause judgment. However, as they did not measure pre- and post-exposure performance in single-cue condi
tions, this interpretation remains unverified.

Our findings are broadly consistent with these modeling studies (Hong et al., 2022; Odegaard et al., 2017): with heightened cue 
conflict attributed to landmark instability, prior belief in a common cause either remained unchanged or increased. The Bayesian belief 
updating hypothesis suggests that prior belief in a common cause should be updated in the direction of new stimulus statistics. For 
example, it should decrease every time a new piece of evidence for cue conflict is sensed (Glasauer, 2019). Accordingly, our findings 
might be explained in two possible ways.

The first possible explanation is that the total amount of new evidence pointing to different causes actually did not increase in the 
presence of the large conflict condition. The increased sensory noise level of landmarks, as found in the LC-informed, LC-informed- 
additional, and LC-feedback groups, could increase the common-cause likelihood in the conflict conditions, as spatially distant dis
tributions would have larger overlap with each other when they are more widespread (Hong et al., 2022). We tested this hypothesis by 
simulating the likelihood of different causes aggregated across trials and across decision strategies, which represents the total amount 
of new evidence for different causes experienced by the participant throughout the experiment. The three groups in the main 
experiment significantly differed on this variable (F(2,138) = 17.818, p < 0.001, η2

P = 0.206). Specifically, new evidence for different 
causes was less in the LC-absent group than the LC-present (mean = 0.420 vs. 0.524, t = 5.182, p < 0.001) and LC-informed groups 
(mean = 0.420 vs. 0.517, t = 4.816, p < 0.001), but did not differ between the LC-present and LC-informed groups (mean = 0.524 vs. 
0.517, t = 0.638, p = 0.763). These results indicate that different-cause evidence did increase with heightened cue conflict regardless 
of awareness of landmark instability, ruling out the first explanation.

The second possible explanation resides in the computational process of belief-updating itself. The cognitive system’s reluctance to 
update prior beliefs may be driven either by an inherent inclination to maintain a stable internal model of the external world or the 
computational cost incurred by the belief updating process. The belief updating process may only occur when people are explicitly 
prompted to do so, such as through specific feedback providing detailed information on the frequency of landmark relocation (Cavalan 
et al., 2023). This detailed information was lacking in our study. On the contrary, adjusting lower-level parameters like cue weighting 
and sensory noise may be more beneficial, as they allow for localized effects without disrupting the broader internal model. The 
primary principle of this hypothesis is to maintain the stability of the broader internal model by not incorporating new sensory evi
dence into causal structure beliefs. This hypothesis explains our finding of unchanged prior beliefs in causal structure despite new 
evidence indicative of heightened cue conflict in the majority of instances.
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However, it remains puzzling why, under one circumstance (LC-feedback group), prior belief in common cause increased despite 
increased evidence suggestive of separate causes. This perplexing phenomenon can be explained by the predictive coding hypothesis 
(Odegaard et al., 2017; Talsma, 2015). This hypothesis proposes that discrepancies between the internal model and new sensory 
evidence are reconciled to cause modifications to the internal model itself, aiming to maintain a stable ultimate perception of the 
external world. For example, suppose a navigator initially assumes a 40 % cue congruency rate (i.e., prior belief in common cause). If a 
new trial indicates a 30 % likelihood of cue congruency (i.e., likelihood of common cause), to maintain the original hypothesis of 40 % 
cue congruency (i.e., posterior belief in common cause), the navigator has to adjust prior belief in common cause by increasing it to 
60.87 %.3 This hypothesis can explain our finding of increased prior belief in common cause despite heightened cue conflict in the LC- 
feedback group. Which goal the observer prioritizes may depend on the specific experimental context. Future investigation is needed to 
elucidate the prior belief updating process.

Notably, our findings revealed a weak relationship between prior belief about causal structure and cue-weighting behavior. In most 
instances (LC-informed and LC-informed-additional groups), reliance on landmarks was reduced but prior beliefs remained un
changed. In one instance (LC-feedback group), reduced reliance on landmarks accompanied increased prior belief in common cause, 
but this had minimal influence on landmark reliance, as sensory weights did not differ between common-cause and different-cause 
judgments (wopt,sen = wdc). Variations in prior belief, which directly impact the relative frequencies of different cause judgments, 
should not affect landmark reliance observed in behavior. While reduced reliance on unstable landmarks is a common behavioral 
finding in spatial navigation studies (Burgess et al., 2004; Chen et al., 2017; Knierim et al., 1995; Lenck-Santini et al., 2002; Zhao & 
Warren, 2015a), attributing this phenomenon to navigators learning landmark instability statistics and updating the internal model 
accordingly may be an oversimplification (Roy et al., 2023).

7.2. Contributions of self-rated confidence to cue weighting

In the BCI model, same-cause judgments employ a bottom-up cue-weighting strategy, where cue weights are determined by the 
relative sensory noise levels (wopt,sen). In contrast, for different-cause judgments, we incorporated the parameter wdc to model the 
alternation rate between different cues (de Winkel et al., 2017, 2018). A key question is whether this cue-weighting strategy differs 
fundamentally from the bottom-up strategy assumed in same-cause judgments.

We found that cue relative confidence (rc) was significantly and positively correlated with wdc, even after accounting for the sensory 
optimal weight (wopt,sen). This finding means that participants relied more heavily on the cue type they felt more confident with when 
perceiving sensory conflicts, reflecting a top-down influence from metacognition. This finding is broadly consistent with our previous 
finding (Chen et al., 2017), but further implies that the top-down influences on cue weighting from metacognition may manifest when 
navigators sensed cue conflict. In contrast, wdc was generally not positively correlated with wopt,sen in the majority of instances, except 
in the LC-absent group. We speculate that in this group, minimal cue conflicts may make it difficult to disentangle the cue integration 
and cue alternation strategies. In one instance, wopt,sen negatively predicted wdc after accounting for rc. Together, these findings suggest 
that cue weighting differs fundamentally between same-cause and different-cause judgments.

Nevertheless, in the current study, the overall effect of self-rated confidence on cue weighting appeared relatively modest compared 
to our previous study (Chen et al., 2017). This discrepancy may be due to individuals’ varying metacognitive abilities concerning 
different types of path integration cues. Unlike our previous study, which tested body-based self-motion cues for path integration, the 
current study employed visual optic flow. In everyday situations, people accumulate significantly more experience using body-based 
self-motion cues than optic flow for navigation. Additionally, the desktop VR environment used here is less immersive than the head- 
mounted-display in our previous study, potentially limiting participants’ metacognitive ability to assess their own performance. These 
factors may have attenuated the top-down influence of self-confidence on cue weighting.

7.3. Explaining cue combination suboptimality within BCI framework

Cue combination suboptimality is frequently observed in spatial navigation (Newman et al., 2023) and other domains (Rahnev & 
Denison, 2018). The application of the BCI model provide insights into the underlying causes of cue combination suboptimality.

First, we found that the less precise prior knowledge about target location (σpr) ameliorated cue combination suboptimality, 
consistent with previous studies (Aston et al., 2022). Based on the internal mechanisms of the BCI model, σpr contributes to cue 
combination suboptimality via two routes. In the first route, the target location prior constitutes a common information source shared 
by different cues, creating correlated error that diminishes the cue integration benefit in behavior (Oruç et al., 2003). A larger σpr 

lowers correlated error, reducing the influence of the prior knowledge about target location and facilitating the detection of the cue 
integration benefit in behavior. In the second route, the prior knowledge about target location affects the common-cause likelihood: a 
larger σpr increases the common-cause judgment (ρ = 0.257, p = 0.002, across all participants in the main experiment), resulting in 
higher common-cause posterior probability and more frequent adoption of the cue integration strategy, which in turn ameliorates cue 
combination suboptimality. While the first route is well-recognized in the literature (Aston et al., 2022; Oruç et al, 2003), the second 
route has not been mentioned.

Additionally, we found that a stronger prior belief in common cause (pcc,pr) corresponded to less severe cue combination sub

3 Based on the equation p(C = 1|xl, xm) =
p(xl ,xm |C=1)×p(C=1)

p(xl ,xm |C=1)×p(C=1)+p(xl ,xm |C=2)×p(C=2)
, we get 0.4 = 0.3×p(C=1)

0.3×p(C=1)+0.7×(1−p(C=1))
. Hence, p (C = 1) = 60.87%.
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optimality. Within the BCI model, pcc,pr influences cue combination suboptimality by affecting the common-cause posterior probability 
(pcc,post). Specifically, a stronger prior belief in common cause (pcc,pr) increased the common-cause posterior probability and the number 
of trials in which the cue integration strategy is adopted, which in turn lessens cue combination suboptimality.

These findings may explain one notable discrepancy between the current study and previous studies on spatial cue combination. 
Although the current study revealed cue integration effect in the combination and small conflict conditions, this effect was suboptimal. 
In contrast, previous studies demonstrated optimal or near-optimal integration effect (Chen et al., 2017; Nardini et al., 2008; Sjolund 
et al., 2018; Zhao & Warren, 2015b). The prior knowledge about target location might be more precise in the current study than 
previous studies due to the substantially narrower range of target locations in the current study, which would cause cue combination 
suboptimality. However, it is challenging to determine whether prior belief about causal structure was lower in the current study than 
previous studies, as factors influencing this variable are not well understood.

Beyond the parameters included in the current BCI model, shared sensory noise between the single-cue conditions must also be 
considered. Although not incorporated in the current model, shared sensory noise contributes to cue combination suboptimality by 
introducing correlated errors between cues (Oruç et al., 2003), similar to the influence of prior knowledge about target location (Aston 
et al., 2022). Shared sensory noise might have been more pronounced in the current study, which contrasted visual optic flow and 
visual landmarks that belong to the same visual modality. In contrast, previous studies contrasted body-based self-motion cues and 
landmarks, which belong to distinct sensory modalities with minimal overlap along the sensory processing pathway (Chen et al., 2017; 
Nardini et al., 2008; Sjolund et al., 2018; Zhao & Warren, 2015b). Note that while both optic flow and body-based self-motion cues can 
contribute to path integration, they operate through distinct sensory pathways, and there is no direct visual overlap between them. 
Future work should consider incorporating shared sensory noise into the BCI model. However, doing so might introduce redundancy 
with existing parameters, such as motor noise and prior knowledge about target location. All these factors contribute to correlated 
errors between cues, albeit at different processing stages.

8. Conclusions and future directions

This study investigated how cue conflict influences the cognitive processes underlying spatial navigation, focusing on the interplay 
between conflicting landmark cues and optic-flow-based path integration. Using the BCI model, which outperformed an alternative 
model lacking prior information, we gained novel insights into the psychological processes affected by cue conflict. Our findings 
advance understanding of the cognitive mechanisms governing navigation in conflicting-cue scenarios and underscore the BCI model’s 
potential as a framework for exploring spatial cue interactions.

Despite these insights, several questions remain for future research. First, one critical area is characterizing the prior knowledge of 
target location. For example, is this knowledge cue-independent or cue-specific in a multi-cue environment? While the current BCI 
model employs a global prior of target location, accumulating across trials, other types of spatial priors may also be at play. How would 
these priors affect navigation behavior?

Second, our findings suggest that cue conflict attributed to unstable landmarks reduces the weight assigned to them, yet the 
mechanisms behind this devaluation require further exploration. Given our finding that unstable landmarks needed to be devalued to 
have lowered weight assigned to them, integrating loss functions associating lower benefit with unstable landmarks into the BCI 
framework might address this gap (McNamara & Chen, 2022).

Third, while the present study focused on simple navigation with one-dimensional distance estimation, future work can extend the 
BCI model to more complex navigation tasks, such as two-dimensional navigation (McNamara & Chen, 2022, Appendix B) or para
digms involving discrete stimulus and response distributions (Cheng, 1986; Lenck-Santini et al., 2001). Such extension could deepen 
our understanding of the basic principles of spatial navigation.

Finally, consistent with many previous studies on spatial navigation (Wolbers & Hegarty, 2010), the current work also revealed 
substantial individual differences within the context of BCI model, including sensory noise levels, weighting strategy in the different 
cause judgment, precision of the prior knowledge of target location, and prior belief about causal structure. We leveraged these in
dividual differences to understand relationships between various cognitive constructs and behavioral phenomena. For instance, cue 
relative confidence was correlated with cue weighting in the different-cause judgment, suggesting that meta-cognitive processes 
influenced cue weighting once conflict is detected. As another example, people with more precise prior knowledge about target 
location exhibited greater cue combination suboptimality. Future work should explore the determinants of these differences, such as 
variations in memory capacity, preferred spatial learning strategies, daily navigation experiences, and etc.
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Rizzo, M. L., & Székely, G. J. (2016). Energy distance. Wiley Interdisciplinary Reviews: Computational Statistics, 8(1), 27–38.
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–748. https://doi.org/10.1038/264746a0
McNamara, T. P., & Chen, X. (2022). Bayesian decision theory and navigation. Psychonomic Bulletin & Review, 29(3), 721–752. https://doi.org/10.3758/s13423-021- 

01988-9
Miller, N. Y., & Shettleworth, S. J. (2007). Learning about environmental geometry: An associative model. Journal of Experimental Psychology. Animal Behavior 

Processes, 33(3), 191–212. https://doi.org/10.1037/0097-7403.33.3.191
Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691
Nahorna, O., Berthommier, F., & Schwartz, J.-L. (2012). Binding and unbinding the auditory and visual streams in the McGurk effect. The Journal of the Acoustical 

Society of America, 132(2), 1061–1077. https://doi.org/10.1121/1.4728187
Nahorna, O., Berthommier, F., & Schwartz, J.-L. (2015). Audio-visual speech scene analysis: Characterization of the dynamics of unbinding and rebinding the McGurk 

effect. The Journal of the Acoustical Society of America, 137(1), 362–377. https://doi.org/10.1121/1.4904536
Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology, 18(9), 689–693.
Newcombe, N. S. (2023). What have we learned from research on the “geometric module”? Learning & Behavior, 52(1), 14–18. https://doi.org/10.3758/s13420-023- 

00617-w
Newman, P. M., & McNamara, T. P. (2022). Integration of visual landmark cues in spatial memory. Psychological Research, 86(5), 1636–1654. https://doi.org/ 

10.1007/s00426-021-01581-8
Newman, P. M., Qi, Y., Mou, W., & McNamara, T. P. (2023). Statistically optimal cue integration during human spatial navigation. Psychonomic Bulletin & Review, 30 

(5), 1621–1642. https://doi.org/10.3758/s13423-023-02254-w
Odegaard, B., Wozny, D. R., & Shams, L. (2017). A simple and efficient method to enhance audiovisual binding tendencies. PeerJ, 5, e3143.
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press. 
Oruç, I., Maloney, L. T., & Landy, M. S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research, 43(23), 2451–2468.
Petzschner, F. H., & Glasauer, S. (2011). Iterative Bayesian estimation as an explanation for range and regression effects: A study on human path integration. The 

Journal of Neuroscience, 31(47), 17220. https://doi.org/10.1523/JNEUROSCI.2028-11.2011
Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285–293. https://doi.org/ 

10.1016/j.tics.2015.03.002
Qi, Y., & Mou, W. (2024). Relative cue precision and prior knowledge contribute to the preference of proximal and distal landmarks in human orientation. Cognition, 

247, Article 105772. https://doi.org/10.1016/j.cognition.2024.105772
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163. JSTOR. doi: 10.2307/271063.
Raftery, A. E., Madigan, D., & Volinsky, C. T. (1996). Accounting for model uncertainty in survival analysis improves predictive performance. In J. M. Bernardo, J. O. 

Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting (p. 0). Oxford University Press. doi: 
10.1093/oso/9780198523567.003.0017.

Rahnev, D., & Denison, R. N. (2018). Suboptimality in perceptual decision making. Behavioral and Brain Sciences, 41, e223.

X. Chen et al.                                                                                                                                                                                                           Cognitive Psychology 158 (2025) 101734 

34 

http://refhub.elsevier.com/S0010-0285(25)00022-2/h0135
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0135
https://doi.org/10.1371/journal.pone.0169676
https://doi.org/10.1371/journal.pone.0169676
https://doi.org/10.1038/s41598-018-23838-w
https://doi.org/10.1038/s41598-018-23838-w
https://doi.org/10.1016/j.cognition.2020.104276
https://doi.org/10.1016/j.cophys.2020.04.004
https://doi.org/10.1016/j.cophys.2020.04.004
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0165
https://doi.org/10.1016/j.neuroimage.2015.09.045
https://doi.org/10.1016/j.neuroimage.2015.09.045
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0180
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0180
https://doi.org/10.1371/journal.pcbi.1009222
https://doi.org/10.2307/2012819
https://doi.org/10.1038/s41598-022-19041-7
https://doi.org/10.3389/fnbeh.2017.00132
https://doi.org/10.1016/s0959-4388(03)00042-4
https://doi.org/10.1016/s0959-4388(03)00042-4
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0220
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0220
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0225
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0225
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0230
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0235
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0235
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0240
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0240
https://doi.org/10.1046/j.0953-816x.2001.01481.x
https://doi.org/10.3758/s13428-016-0740-2
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0255
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0260
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0260
https://doi.org/10.1038/s41467-017-00180-9
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0270
https://doi.org/10.1038/264746a0
https://doi.org/10.3758/s13423-021-01988-9
https://doi.org/10.3758/s13423-021-01988-9
https://doi.org/10.1037/0097-7403.33.3.191
https://doi.org/10.1093/biomet/78.3.691
https://doi.org/10.1121/1.4728187
https://doi.org/10.1121/1.4904536
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0305
https://doi.org/10.3758/s13420-023-00617-w
https://doi.org/10.3758/s13420-023-00617-w
https://doi.org/10.1007/s00426-021-01581-8
https://doi.org/10.1007/s00426-021-01581-8
https://doi.org/10.3758/s13423-023-02254-w
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0325
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0330
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0335
https://doi.org/10.1523/JNEUROSCI.2028-11.2011
https://doi.org/10.1016/j.tics.2015.03.002
https://doi.org/10.1016/j.tics.2015.03.002
https://doi.org/10.1016/j.cognition.2024.105772
http://refhub.elsevier.com/S0010-0285(25)00022-2/h0365


Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive-combination view. Psychological Science, 19(12), 1301–1307. 
https://doi.org/10.1111/j.1467-9280.2008.02239.x

Reifman, A., & Keyton, K. (2010). Winsorize. In N. J. Salkind (Ed.), Encyclopedia of Research Design (pp. 1636–1638). Thousand Oaks, CA: Sage. 
Riemer, M., Achtzehn, J., Kuehn, E., & Wolbers, T. (2022). Cross-dimensional interference between time and distance during spatial navigation is mediated by speed 

representations in intraparietal sulcus and area hMT+. NeuroImage, 257, 1–12. https://doi.org/10.1016/j.neuroimage.2022.119336
Rohde, M., van Dam, L. C. J., & Ernst, M. (2016). Statistically optimal multisensory cue integration: A practical tutorial. Multisensory Research, 29(4–5), 279–317. 

https://doi.org/10.1163/22134808-00002510
Rohe, T., & Noppeney, U. (2015). Sensory reliability shapes perceptual inference via two mechanisms. Journal of Vision, 15(5), 22. https://doi.org/10.1167/15.5.22
Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21(2), 301–308. https://doi.org/10.3758/s13423-014-0595-4
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & 

Review, 16(2), 225–237.
Roy, C., Wiebusch, D., Botsch, M., & Ernst, M. O. (2023). Did it move? Humans use spatio-temporal landmark permanency efficiently for navigation. Journal of 

Experimental Psychology: General, 152(2), 448–463.
Saleem, A. B., Diamanti, E. M., Fournier, J., Harris, K. D., & Carandini, M. (2018). Coherent encoding of subjective spatial position in visual cortex and hippocampus. 

Nature, 562(7725), 124–127. https://doi.org/10.1038/s41586-018-0516-1
Shapiro, M. L., Tanila, H., & Eichenbaum, H. (1997). Cues that hippocampal place cells encode: Dynamic and hierarchical representation of local and distal stimuli. 

Hippocampus, 7(6), 624–642.
Shettleworth, S. J., & Sutton, J. E. (2005). Multiple systems for spatial learning: Dead reckoning and beacon homing in rats. Journal of Experimental Psychology: Animal 

Behavior Processes, 31(2), 125–141.
Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9–55.
Sjolund, L. A., Kelly, J. W., & McNamara, T. P. (2018). Optimal combination of environmental cues and path integration during navigation. Memory & Cognition, 46 

(1), 89–99.
Talsma, D. (2015). Predictive coding and multisensory integration: An attentional account of the multisensory mind. Frontiers in Integrative Neuroscience, 9. https:// 

www.frontiersin.org/articles/10.3389/fnint.2015.00019.
Tanila, H., Shapiro, M. L., & Eichenbaum, H. (1997). Discordance of spatial representation in ensembles of hippocampal place cells. Hippocampus, 7(6), 613–623.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208.
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