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Abstract

Sum-of-norms clustering is a popular convexification of K-means clustering. We show
that, if the dataset is made of a large number of independent random variables distributed
according to the uniform measure on the union of two disjoint balls of unit radius, and if
the balls are su�ciently close to one another, then sum-of-norms clustering will typically
fail to recover the decomposition of the dataset into two clusters. As the dimension tends
to infinity, this happens even when the distance between the centers of the two balls is
taken to be as large as 2

p
2. In order to show this, we introduce and analyze a continuous

version of sum-of-norms clustering, where the dataset is replaced by a general measure. In
particular, we state and prove a local-global characterization of the clustering that seems to
be new even in the case of discrete datapoints.

Keywords: Sum-of-norms clustering, Clusterpath, convex clustering, stochastic ball
model, unsupervised learning

1. Introduction

1.1 Sum-of-norms clustering

Clustering is the task of partitioning a dataset with the aim to optimize a measure of similarity
between objects in each element of the partition. Given datapoints x1, . . . , xN 2 Rd, one
may seek to find K “centers” so as to minimize the sum of the distances between each
datapoint and its nearest center. This is the K-means problem, which can be formulated as
follows: find y1, . . . , yN 2 Rd that minimize

NX

n=1

|yn � xn|
2,
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subject to the constraint that the set {y1, . . . , yN} has cardinality K (or at most K). Here
and throughout, | · | denotes the Euclidean norm. However, the K-means problem is NP-hard
in general, even when we restrict to K = 2 (Aloise et al., 2009) or to d = 2 (Mahajan et al.,
2009). In this article, we focus on a particular convex relaxation of K-means, introduced by
Pelckmans et al. (2005); Hocking et al. (2011); Lindsten et al. (2011) and called “convex
clustering shrinkage,” “clusterpath,” or “sum-of-norms (SON) clustering,” which consists in
finding the points y1, . . . , yN 2 Rd that minimize

1

N

NX

n=1

|yn � xn|
2 +

�

N2

NX

k,n=1

|yk � yn|, (1.1)

where � � 0 is a tunable parameter. Two datapoints xk and xn are then declared to belong
to the same cluster if yk = yn. In principle, varying the parameter � allows one to tune
the number of clusters, as illustrated in Figure 1.1. One of the attractive features of SON
clustering is that it produces an ordered path of partitions as we vary �. In other words, its
natural output is a hierarchy of nested partitions of the dataset (see Hocking et al., 2011;
Chiquet et al., 2017, or Theorem 1.4 below).

In the last decade, rigorous guarantees on the behavior of SON clustering have been
studied by several authors, including Zhu et al. (2014); Tan and Witten (2015); Chiquet
et al. (2017); Panahi et al. (2017); Radchenko and Mukherjee (2017); Jiang et al. (2020);
Chi and Steinerberger (2019); Jiang and Vavasis (Preprint, 2020); Sun et al. (2021); Nguyen
and Mamitsuka (Preprint, 2021). Most of these works aim at the identification of su�cient
conditions for SON clustering to succeed in separating clusters. Our main goal here, stated
precisely in Theorem 1.1, is rather to present a seemingly simple clustering problem in which
the SON clustering algorithm will typically fail. This requires us to establish necessary and

su�cient conditions for the success of SON clustering, which we present in Subsection 1.3.
We anticipate that these conditions will be useful in future studies of sum-of-norms clustering,
and thus are interesting results in their own right.

Most of our attention will be towards the analysis of the following generalization of SON
clustering: given a nonzero finite Borel measure µ on Rd of compact support and � � 0, we
seek to minimize the functional Jµ,� : L2(µ;Rd) ! R given by

Jµ,�(u) :=

ˆ
|u(x)� x|2 dµ(x) + �

¨
|u(x)� u(y)| dµ(x) dµ(y). (1.2)

As will be explained at the beginning of Section 4, the functional Jµ,� has a unique
minimizer, which we denote by uµ,� 2 L2(µ;Rd). The level sets of uµ,� yield a partition
of Rd, up to modifications by µ-null sets. One of the main general results of our paper,
which seems to be new even in the discrete setting, is a local-global characterization of this
minimizer, see Theorem 1.7 below. The correspondence between (1.1) and (1.2) is obtained
by setting µ = 1

N

PN
n=1 �xn and yn = u(xn).

1.2 The stochastic ball model

The main motivation for introducing the continuous version of SON clustering is that it
allows us to uncover the asymptotic behavior of the discrete problem in (1.1) when the
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(a) � = 1.1. Each point is in its own cluster.
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(b) � = 2.4. The points in the upper circle have
merged into a single cluster, but each point in
the lower two circles remains in its own cluster.
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(c) � = 3.4. Each of the circles now forms a single
cluster.
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(d) � = 3.6. There is now a single cluster com-
prising all of the points.

Figure 1.1: The output of the clustering algorithm on N = 100 datapoints divided between
the boundaries of three balls, for four values of �. The filled circles represent the datapoints
xn, and the crosses represent the cluster representatives yn. Each color represents a cluster.
All figures in this paper were generated using an implementation (by the present authors)
of the algorithm described in Jiang and Vavasis (Preprint, 2020). The code is available at
https://github.com/ajdunlap/son-clustering-experiments.
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number of datapoints N becomes very large. In particular, we will study the “stochastic
ball model,” which has become a common testbed in the analysis of clustering algorithms,
see for instance Nellore and Ward (2015); Awasthi et al. (2015); Iguchi et al. (2017); Li
et al. (2020); De Rosa and Khajavirad (2022). That is, we suppose that we are given a large
number of points sampled independently at random, each being distributed according to the
uniform measure on the union of two disjoint balls of unit radius, and ask whether SON
clustering allows us to identify the presence of the two balls. Surprisingly, we find that if
d � 2 and the balls are too close to each other, then the algorithm will typically fail to do so.

In order to state this result more precisely, we need to introduce some notation. We
write

�d :=
2d+ 1

2d+ 4
·

( (d+1)(2d)!⇡
23d((d/2)!)2d!

if d is even,
(d+1)(((d�1)/2)!)2(2d)!

2d(d!)3
if d is odd,

(1.3)

so that

�1 = 1, �2 =
45⇡

128
' 1.104 . . . , �3 =

7

6
, (1.4)

and
�d+2

�d
= 1 +

7d+ 13

(d+ 1)(2d+ 4)(2d+ 8)
> 1.

In particular, for every d � 2, we have �d > 1, and using Stirling’s approximation, one can
check that �d tends to

p
2 as d tends to infinity. We also write Br(x) for the open Euclidean

ball or radius r > 0 centered at x 2 Rd, and (e1, . . . , ed) for the canonical basis of Rd. We
use the phrase “with high probability” as shorthand for “with probability tending to 1 as N
tends to infinity”.

Theorem 1.1. There exists a �c 2 (0,1) such that the following holds. Let r 2 [1, �d), µ
be the uniform probability measure on B1(�re1) [B1(re1) ✓ Rd

, (Xn)n2N be independent

random variables with law µ, and for every integer N � 1, define the empirical measure

µN :=
1

N

NX

n=1

�Xn . (1.5)

1. If � > �c, then with high probability, the range of uµN ,� is a singleton.

2. If � < �c, then there exist ⇠, ⌘ > 0 (not depending on N) such that, with high

probability, one can find A(1)
N , A(2)

N , A(3)
N ✓ {1, . . . , N}, each of cardinality at least ⇠N

and satisfying, for every i 6= j 2 {1, 2, 3},

8k 2 A(i)
N , 8` 2 A(j)

N , |uµN ,�(Xk)� uµN ,�(X`)| � ⌘.

In particular, with high probability, the range of uµN ,� contains at least three points.

In fact, we can take �c = �1(µ), with the latter quantity defined in (1.9) below.

Theorem 1.1 does not describe the behavior of uµN ,� when � = �c, or when � = �c+ o(1)
as N ! 1. But at the very least, Theorem 1.1 shows that the detection of two nearby
balls by means of SON clustering will be particularly brittle. In contrast, we show in
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Figure 1.2: Sum-of-norms clustering of the stochastic ball model with N = 200 datapoints
drawn from B(�1.05e1, 1) [ B(1.05e1, 1). The balls from which the points are drawn are
outlined in dotted grey lines. When � = 2.0, there are many clusters, but when � is slightly
larger (� = 2.15), there is just one large cluster. Theorem 1.1 tells us that (since 1.05 < �2),
in the limit as N ! 1, there will be no open interval of values of � for which there are
exactly two clusters.

Proposition 6.5 that, using the notation of Theorem 1.1, if r > 21�
1
d and � 2 (22�

1
d , 2r),

then with high probability, the level sets of uµN ,� are the sets {Xn, n  N} \B1(�re1) and
{Xn, n  N} \B1(re1).

In a nutshell, SON clustering fails to separate balls if r < �d, while it succeeds if
r > 21�

1
d ; see Figure 1.2 for an illustration of this failure when r < �d. We expect neither

of these two bounds to be sharp. In view of Corollary 2.4 and of the fact that points in
a high-dimensional ball tend to concentrate near the boundary, we conjecture that in the
limit of high dimensions, the threshold separating these two regimes converges to

p
2. Since

limd!1 �d =
p
2, this would indicate that the lower bound on this threshold provided by

Theorem 1.1 is asymptotically sharp.

Theorem 1.1 demonstrates in particular that the cardinality of the partition produced
by the SON clustering algorithm can be very sensitive to small changes in the parameter
�. While Theorem 1.1 only asserts that the cardinality of the partition quickly moves from
1 to at least 3 as we only slightly vary �, we expect that the partition quickly shatters
into many more than just three pieces. This is also what we observe in simulations, see
Figure 1.2. We view this phenomenon as a possible theoretical confirmation of the empirical
observations of Chiquet et al. (2017) and Nguyen and Mamitsuka (Preprint, 2021). We refer
in particular to Figure 1(b) of Chiquet et al. (2017) and the general observation that the
tree structures produced by the (unweighted) SON clustering algorithm are often di�cult to
interpret (“unbalanced”), since the root of the tree very quickly splits into way too many
components. (Chiquet et al., 2017, also underline that among these many components, some
will be much larger than others.) See also Figure 4 of Nguyen and Mamitsuka (Preprint,
2021).

1.3 The structure of clusters

Theorem 1.1 will be proved as a consequence of more general structural results on the
clusters obtained by the sum-of-norms clustering algorithm. We foresee these results being
useful in more general circumstances as well, and proceed to describe them now.
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There are two special cases of clustering that will be particularly important in our
discussion. We record them in the following definition.

Definition 1.2. Let µ be a finite Borel measure of compact support and � � 0.

1. We say that µ is �-cohesive if there is a constant c such that uµ,� ⌘ c, µ-a.e.

2. We say that µ is �-shattered if there is a measurable injection u : Rd
! Rd

such that

uµ,� = u, µ-a.e.

Note that if suppµ consists of a single point (or if µ is the zero measure), then µ is both
�-shattered and �-cohesive for all � � 0.

Recall that the level sets of uµ,� define a partition of Rd up to a µ-null modification. We
think of this partition as a clustering of the support of µ. To discuss these clusters, we will
often use the notation

Vu,x := u�1(u(x))

for the cluster containing x. The set Vu,x is a Borel subset of Rd defined up to a µ-null
modification. Thus, saying that µ is �-cohesive is equivalent to saying that Vuµ,�,x = Rd (up

to a µ-null modification) for µ-a.e. x 2 Rd. If µ is �-shattered, then µ(Vuµ,�,x \ {x}) = 0 for

µ-a.e. x 2 Rd, and in fact, by Proposition 1.6 below, the converse holds as well.
The following theorem, proved in Section 5, extends to the continuous setting results

proved in the discrete case by Chiquet et al. (2017); see also Theorem 1 of Jiang et al. (2020).

Theorem 1.3. For µ-a.e. x 2 Rd
, the measure µ|Vuµ,�,x is �-cohesive, and if A 3 x is such

that µ|A is �-cohesive, then µ(A \ Vuµ,�,x) = 0.

It is not di�cult to see, directly from (1.2), that if µ is �-cohesive, then it is also
�0-cohesive for any �0

� �. As explained in more details in Section 5, Theorem 1.3 therefore
implies the following theorem, referred to in the literature as the agglomeration conjecture

of Hocking et al. (2011), and also proved in the discrete case by Chiquet et al. (2017).

Theorem 1.4. If �  �0
then for µ-a.e. x we have µ(Vuµ,�,x \ Vuµ,�0 ,x) = 0. In words, for

µ-almost every x, the �0
-cluster of x is a subset of the �-cluster of x.

The discrete case of Theorem 1.3 (in combination with a condition for �-cohesivity
described in Theorem 1.9 below) is described by Jiang et al. (2020) as an “almost exact
characterization” of the clusters. Our first main theoretical contribution is an “exact”
characterization of the minimizer uµ,�. This characterization (Theorem 1.7 below) seems to
be new even in the discrete case. We need a few definitions and notations. We call a Borel
set V ✓ Rd µ-regular if either V is a singleton or µ(V ) > 0. For a µ-regular set V ✓ Rd, let

Cµ(V ) :=

(�
V x dµ(x) if µ(V ) > 0;

x if V = {x}
(1.6)

be the µ-centroid of V . (Here and henceforth we write
�
V f dµ := 1

µ(V )

´
V f dµ.) Note that

when V is a singleton with µ(V ) > 0 the two cases of (1.6) agree.
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Definition 1.5. We say that a measurable function u 2 L2(µ;Rd) is µ-regular if there is a

measurable representative of u and a Borel set A ✓ Rd
such that µ(Rd

\A) = 0, Vu,x \A
is µ-regular for µ-a.e. x, and Cµ(Vu,x \A) 6= Cµ(Vu,z \A) for µ-a.e. x, z with u(x) 6= u(z).
If u is µ-regular, we define Eµ,u(x) := Cµ(Vu,x \A), and we note that Eµ,u is a well-defined

element of L1(µ;Rd), independent of the choice of A or the choice of representative of u.
(See Lemma 7.1 below.) In this case, we let

Mu(µ) := (Eµ,u)⇤(µ) =

ˆ
�Eµ,u(x) dµ(x)

be the image of the measure µ under Eµ,u. By this we mean that for any Borel set B, we

have

Mu(µ)(B) = µ(E�1
µ,u(B)).

In words, the measure M(u) is derived from µ by concentrating all of the µ-mass in each

level set of u at the µ-centroid of the level set.

When the support of µ is finite, a function u : suppµ ! Rd is µ-regular if and only if
Cµ(Vu,x) 6= Cµ(Vu,z) for every x, z 2 suppµ with u(x) 6= u(z). In words, we ask that di↵erent
level sets of u have di↵erent centroids, and in this case, we have Mu(µ) =

´
�Cµ(Vu,x) dµ(x).

The phrasing of Definition 1.5 is more complicated due to some measure-theoretic technical
di�culties that arise when the support of µ is uncountable. We will prove the following
preliminary proposition in Section 4 below.

Proposition 1.6. The function uµ,� is µ-regular.

Now we can state our exact characterization of the minimizer uµ,�.

Theorem 1.7. Let u be a µ-regular function and � � 0. The following are equivalent.

1. For µ-a.e. x, we have Vu,x = Vuµ,�,x up to a µ-null set.

2. The measure Mu(µ) is �-shattered and, for µ-a.e. x, the restriction µ|Vu,x is �-cohesive.

Shortly after we posted the first version of this article, Nguyen and Mamitsuka (Preprint,
2021) derived several results on the properties of the optimal clusters. Our framework
allows us to recover one of their main results in the measure-valued setting. The following
proposition, which is analogous to Theorem 3 of Nguyen and Mamitsuka (Preprint, 2021),
states that each cluster is contained in a ball centered at the centroid of the cluster and of
radius � times the total mass of the cluster; and that the centroids of the di↵erent clusters
are su�ciently far apart from one another that these balls do not intersect. We denote by
Br(x) the closed Euclidean ball of radius r � 0 centered at x 2 Rd.

Proposition 1.8. For µ-a.e. x, z 2 Rd
, we have

Vuµ,�,x ✓ B�µ(Vuµ,�,x)

�
Eµ,uµ,�(x)

�
, (1.7)

and whenever uµ,�(x) 6= uµ,�(z),

|Eµ,uµ,�(x)� Eµ,uµ,�(z)| > �[µ(Vuµ,�,x) + µ(Vuµ,�,z)]. (1.8)
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We will prove Theorem 1.7 and Proposition 1.8 in Section 5 below.
Theorem 1.7 motivates taking particular interest in the properties of �-cohesive and

�-shattered sets. We are mostly interested in situations in which a dataset can be partitioned
into a bounded number of clusters in the presence of a large number of datapoints. In
light of Theorem 1.7, this means that there should be a � such that the centroids of the
clusters, weighted by the fraction of datapoints in the cluster, form a �-shattered set, while
the datapoints in each cluster form a �-cohesive set. In the regime where there is a bounded
number of clusters but the number of datapoints tends to infinity, the question of the
�-shattering of the set of centroids is a bounded-size optimization problem. In this paper
we only address it in the simplest case. On the other hand, the question of �-cohesion of
each cluster lends itself to asymptotic analysis, so this will interest us in the sequel. We will
consider the “continuum limit” of situations with continuous measures, and also provide
“law of large numbers” results for atomic measures drawn from the corresponding continuous
distributions.

We noted above that if µ is �-cohesive, then it is also �0-cohesive for any �0
� �. By

Theorem 1.3, this means that if µ is �-shattered (which Theorem 1.3 and Proposition 1.6
tell us happens if and only if there are no �-cohesive sets of positive µ-measure), then it is
also �0-shattered for any �0

 �. Thus we define

�1(µ) := inf{� � 0 | µ is �-cohesive} (1.9)

and

�⇤(µ) := sup{� � 0 | µ is �-shattered}. (1.10)

We then say that the level sets of a µ-regular function u are detectable for µ if

�⇤(Mu(µ)) > ess sup
x⇠µ

�1(µ|Vu,x). (1.11)

By Theorem 1.7, this is equivalent to there existing some � such that the level sets of u are
the same (up to µ-null modifications) as those of uµ,�. We define the detection parameter

set to be the (possibly empty) interval

⇤(µ, u) :=

✓
ess sup
x⇠µ

�1(µ|Vu,x),�⇤(Mu(µ))

◆
. (1.12)

The parameter �1(µ) can be characterized up to a factor of 2 by simple geometric
properties of µ. Define the “radius” of the measure µ by

R(µ) := ess sup
x⇠µ

���x� Cµ(R
d)
��� , (1.13)

and for V ✓ Rd, let diamV denote the Euclidean diameter of V . It turns out (see
Proposition 4.4 below) that, if µ(Rd) > 0,

R(µ)

µ(Rd)
 �1(µ) 

diam(suppµ)

µ(Rd)
. (1.14)
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Since R(µ)  diam(suppµ)  2R(µ), this characterizes �1(µ) up to a factor of 2 in terms
of only the radius and the diameter of suppµ. On the other hand, we will compute in
Proposition 2.1 below that, for a0, a1 > 0 and x0, x1 2 Rd, we have

�⇤(a0�x0 + a1�x1) =
|x1 � x0|

a0 + a1
.

Therefore, by Theorem 1.7, if equality holds in the first inequality in (1.14), then the partition
of µ+ ⌧xµ—the sum of µ and its translation by x—into suppµ and ⌧x suppµ is detectable
as long as |x| > 2R(µ). We could certainly hope for no better since if |x|  R(µ) then the
supports of µ and its translation may overlap (cf. Proposition 1.8). On the other hand, if

�1(µ) >
R(µ)
µ(Rd)

then for this partition to be detectable we actually need greater separation

than the obvious condition for the supports to not overlap would suggest. For this reason
we are motivated to resolve the value of �1(µ) more precisely than is done by (1.14). Of

particular interest are measures µ for which �1(µ) =
R(µ)
µ(Rd)

, which are such that combinations

with any translation by at least twice the radius are detectable.
We now state a characterization of �1(µ), which will follow from a more general theorem

(Theorem 4.1 below) giving the KKT characterization of the minimizer of Jµ,�. (Theorem 4.1
will also be crucial for the proof of Theorem 1.7.) In the discrete setting this result follows
from the work of Chiquet et al. (2017); see also Theorem 1 of Jiang et al. (2020).

Theorem 1.9. We have

�1(µ) = µ(Rd)�1 min
q2Q(µ)

kqk1, (1.15)

where Q(µ) is the set of all q 2 L1(µ⌦2;Rd) satisfying, for µ-a.e. x, y 2 Rd
,

q(x, y) = �q(y, x) (1.16)

and

x� Cµ(R
d) =

 
q(x, z) dµ(z). (1.17)

We will prove Theorem 1.9 as a consequence of the KKT conditions in Section 4.
In Section 2, we use our tools to estimate or compute �1(µ) for µ the uniform measures

on the d-sphere, the d-ball, and the vertices of the cross-polytope. In d � 2, these examples
do not yield equality in the first inequality of (1.14). Thus we also give an explicit example
of a nontrivial measure in d � 2 (a ball with density given by a power of the distance from
the origin) for which equality does indeed hold.

In Section 3, we show the results of some additional numerical experiments regarding
the examples considered in Section 2.

1.4 Stability of the clusters

We now turn our attention to the stability of the splittings. As the quantities in Theorem 1.9
are often more analytically tractable in the presence of symmetries, it can be easier to
reason about the detectability of partitions in the case when measures have a nice symmetry
property or a continuous density. On the other hand, in applications one is ultimately
interested in atomic measures, often with some amount of randomness. In Section 6 we prove
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several stability results showing that the clustering properties of these models approach
the clustering properties of their limits. As example applications of these results, we prove
Theorem 1.1 as well as the following theorem.

Theorem 1.10. Let µ be a probability measure on Rd
such that

suppµ =
I[

i=1

Ui (1.18)

for some bounded connected open sets U1, . . . , UI , each with a Lipschitz boundary. Assume

that the measure µ is absolutely continuous with respect to the Lebesgue measure, with

Radon–Nikodym derivative bounded above and away from zero on each Ui. Let u be an

arbitrary function that is constant on each Ui, and suppose that u is detectable for µ. Let

(Xn)n�1 be a sequence of independent random variables, each with law µ, and define

µN :=
1

N

NX

n=1

�Xn .

Then the endpoints of ⇤(µN , u) converge to those of ⇤(µ, u) in probability as N ! 1.

Theorem 1.10 is proved in Section 6 as a consequence of quantitative continuity estimates
for the clustering algorithm with respect to perturbations of µ. Both absolutely continuous
and Wasserstein perturbations of µ are considered; see Propositions 6.1, 6.2 and 6.4. These
propositions can be applied directly to attain stability results analogous to Theorem 1.10
for other random configurations, or to obtain quantitative results for finite numbers of
datapoints.

Several variants of the clustering method discussed in this paper can also be considered.
For instance, in the fusion term

˜
|u(x) � u(y)|dµ(x) dµ(y) appearing in (1.2), one can

consider replacing the Euclidean norm | · | by another norm, such as the `1 norm. While this
modification may be interesting from a computational perspective, it will also destroy the
rotational invariance of the functional Jµ,�, and in general, we expect that these modified
methods will also fail to correctly resolve the stochastic ball model with nearby balls. Another
possibility is to introduce weights in the fusion term, such as

¨
x6=y

|x� y|�↵
|u(x)� u(y)| dµ(x) dµ(y),

for some exponent ↵ 2 (0, d) to be decided. The choice of a power-law weight can be
motivated by the desire to ensure that the set of partitions discovered by the algorithm as
we vary � is only rescaled under a rescaling of the measure; if one has in mind possibly
complex datasets involving multiple scales, this seems like a natural requirement. Alternative
possibilities that do not satisfy this property include replacing |x� y|�↵ by exp(�c|x� y|),
or other decreasing functions of the distance |x� y|. In the discrete setting, one can enforce
stronger locality by restricting the sum to connected pairs in the k-nearest-neighbor graph.
The latter possibility o↵ers significant computational benefits, see Chi and Lange (2015).
After posting the first ArXiv version of this paper, we showed in Dunlap and Mourrat (2022)
that the introduction of suitably adjusted exponential weights allows us to recover very

10
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general cluster shapes. In particular, the SON clustering algorithm with suitably adjusted
weights succeeds in identifying disjoint balls in stochastic ball models, no matter how close
they are; and it can also recover clusters whose convex hulls interesect. This contrasts with
the results stated in Theorem 1.1 and Proposition 1.8 for the unweighted SON clustering
algorithm. On the other hand, the addition of weights breaks the symmetries that allow us
to prove the theoretical results in the present work.

2. Examples

In this section we compute �1(µ) for several choices of µ.

Proposition 2.1 (Two points). Let x0, x1 2 Rd
, a0, a1 > 0, and let µ = a0�x0 + a1�x1.

Then

�1(µ) = �⇤(µ) =
|x1 � x0|

a0 + a1
. (2.1)

Proof. Since the support of µ has only two points, it is clear that �1(µ) = �⇤(µ). (For a
given �, either µ is �-cohesive or it is �-shattered.) We observe that

Cµ(R
d) =

a0x0 + a1x1
a0 + a1

.

For a function q to satisfy (1.16)–(1.17), we must have that

x0 �
a0x0 + a1x1

a0 + a1
=

a1
a0 + a1

[x0 � x1] =

 
q(x0, y) dµ(y) =

a1
a0 + a1

q(x0, x1)

and

x1 �
a0x0 + a1x1

a0 + a1
=

a0
a0 + a1

[x1 � x0] =

 
q(x1, y) dµ(y) =

a0
a0 + a1

q(x1, x0).

The only function q that satisfies the conditions (1.16)–(1.17) is therefore the function
q(x, y) := x� y. Then (2.1) follows from Theorem 1.9.

Proposition 2.2 (Interval). Let d = 1 and let µ be the Lebesgue measure on [�1/2, 1/2]
(with total mass 1). Then �1(µ) = 1/2.

Proof. Note that Cµ(Rd) = 0. Letting q(x, y) := 1
2 sgn(x� y), we have

ˆ 1
2

� 1
2

1

2
sgn(x� y) dy =

1

2
[(x� (�1/2))� (1/2� x)] = x,

so (1.17) holds, and kqk1 = 1/2, which means that �1  1/2 by Theorem 1.9. On the other
hand, (1.14) shows that �1(µ) � 1/2, so in fact �1(µ) = 1/2.

The next proposition is a characterization of �1(µ) for measures µ with support in the
unit sphere that satisfy certain symmetry properties. We will next apply this result to
several concrete examples.

11
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Proposition 2.3 (Symmetric measures). Suppose that µ is supported on Sd�1 = @B1(0) ✓
Rd

, the support of µ comprises at least two points, and there is a subgroup G ✓ O(d) (the
group of Euclidean isometries of Rd

preserving the origin) preserving µ, acting transitively

on suppµ, and such that for each x 2 suppµ and each y 2 Sd�1
\ {x,�x}, there is a g 2 G

such that g · x = x but g · y 6= y. Then for every y 2 suppµ we have

�1(µ) =
2´

|x� y| dµ(x)
(2.2)

and

�1(µ)µ(R
d) �

p

2. (2.3)

Proof. The strict convexity of Jµ,� noted in the introduction implies that the minimizer
uµ,� is unique. Since the measure µ is invariant under the action of G, the minimizer uµ,�
must also be invariant under the action of G, in the sense that, for every g 2 G and µ-a.e.
x 2 Rd, we have

uµ,�(g · x) = g · uµ,�(x). (2.4)

For each x 2 suppµ, if uµ,�(x) 62 Rx, then by assumption there is a g 2 G such that g ·x = x
and g·uµ,�(x) 6= uµ,�(x); but this would imply that uµ,�(x) = uµ,�(g·x) = g·uµ,�(x) 6= uµ,�(x),
a contradiction. Therefore, uµ,�(x) 2 Rx for µ-a.e. x 2 Rd. In other words, for µ-a.e. x 2 Rd,
we can find some a�,x 2 R such that uµ,�(x) = a�,xx. Using again (2.4), we deduce that for
every g 2 G, we must have uµ,�(g · x) = g · uµ,�(x) = a�,xg · x. By the transitivity of the
action of G on suppµ, we must thus therefore have a fixed a� 2 R, depending only on �
and not on x, such that uµ,�(x) = a�x for µ-a.e. x 2 Rd. Since µ is invariant under the
action of G, which acts transitively on suppµ, we have that the integral

´
|x� y| dµ(x) does

not depend on the choice of y 2 suppµ. Recalling also that suppµ ✓ Sd�1, we see that, for
every a 2 R and an arbitrary y 2 suppµ,

Jµ,�(x 7! ax) =

ˆ
|ax� x|2 dµ(x) + �

¨
|ax� az| dµ(x) dµ(z) (2.5)

= µ(Rd)


a2 + �|a|

ˆ
|x� y| dµ(x)� 2a+ 1

�
. (2.6)

The function uµ,� is constant if and only if the quantity in (2.6) is minimized for a = 0. This
occurs exactly when

� �
2´

|x� y| dµ(x)
,

and we have therefore shown (2.2).
We now argue that Cµ(Rd) = 0. Integrating the identity (2.4) in x, we see that Cµ(Rd)

must be a fixed point of the action of the group G. If suppµ is of the form {x,�x} for some
x 2 Rd, then by transitivity the measure µ places the same mass on x and �x, so Cµ(Rd) = 0.
Otherwise, we observe that the group G has no other fixed point than the origin. Indeed, if
G had another fixed point, then by scaling we could obtain a fixed point y 2 Sd�1. Since
suppµ is not of the form {y,�y}, we can find some x 2 suppµ \ {y,�y}. The assumption
on G then guarantees the existence of some g 2 G with g · y 6= y, a contradiction.

12
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Now that Cµ(Rd) = 0 is established, we apply Jensen’s inequality to get that

1

µ(Rd)

ˆ
|x� y| dµ(x) 

✓
1

µ(Rd)

ˆ
|x� y|2 dµ(x)

◆1/2

=

✓
1

µ(Rd)

ˆ
2(1� x · y) dµ(x)

◆1/2

=
⇣
2� Cµ(R

d) · y
⌘1/2

=
p

2.

Combining this with (2.2) yields that

�1(µ)µ(R
d) �

2µ(Rd)´
|x� y| dµ(x)

�

p

2.

Corollary 2.4 (d-sphere). Suppose that d � 2 and let µ be the uniform measure on the unit

sphere Sd�1 = @B1(0). Then

�1(µ)µ(R
d) =

�(d� 1/2)�((d� 1)/2)

�(d� 1)�(d/2)
, (2.7)

where �(z) =
´1
0 tz�1e�t dt denotes the standard gamma function. In particular,

lim
d!1

�1(µ)µ(R
d) =

p

2. (2.8)

Proof. Assume without loss of generality that µ(Rd) is the area of Sd�1, that is,

µ(Rd) =
2⇡d/2

�(d/2)
.

We also have
ˆ

|e1 � x| dµ(x) =
2⇡(d�1)/2

�((d� 1)/2)

ˆ ⇡

0
(1� cos2 ✓)

d�2
2

q
(cos ✓ � 1)2 + sin2 ✓ d✓

=
2d⇡(d�1)/2

�((d� 1)/2)

ˆ ⇡

0
sind�1(✓/2) cosd�2(✓/2) d✓

=
2d⇡(d�1)/2

�((d� 1)/2)

ˆ 1

0
td/2�1(1� t)(d�3)/2 dt

=
2d⇡(d�1)/2�(d/2)

�(d� 1/2)

=
4⇡d/2�(d� 1)

�((d� 1)/2)�(d� 1/2)
.

The second identity is by the half-angle formulas for sine and cosine, the third is by making
the substitution t = sin2(✓/2), the fourth is by the standard formula for the beta integral,
and the last is by the Legendre duplication formula. Hence (2.7) follows from Proposition 2.3,
noting that the group G can be taken to be all of O(d), which clearly satisfies the hypotheses.
The limit (2.8) is then a simple computation using Stirling’s approximation.
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Corollary 2.5 (Vertices of the n-gon). Let d = 2, n � 2, and let µ be a uniform measure

on the vertices of the regular n-gon inscribed in the unit circle, namely

µ =
1

n

nX

j=1

�e2⇡ij/n ,

where we identify R2
with C. Then we have

�1(µ)µ(R
d) = n tan

⇣ ⇡

2n

⌘
.

Proof. We have

1

µ(Rd))

ˆ
|x� y| dµ(x) =

1

n

nX

j=1

|1� e2⇡ij/n| =
2

n

nX

j=1

sin(⇡j/n) =
2

n
cot
⇣ ⇡

2n

⌘
,

and the result follows from Proposition 2.3.

Corollary 2.6 (Vertices of the cross-polytope). Consider the measure on Rd
given by

µ =
dX

i=1

[�ei + ��ei ].

Then

�1(µ)µ(R
d) =

2d

(d� 1)
p
2 + 1

and in particular

lim
d!1

�1(µ)µ(R
d) =

p

2.

Proof. We have ˆ
|e1 � x| dµ(x) = 2(d� 1)

p

2 + 2

and the result follows from Proposition 2.3.

Proposition 2.7 (d-ball). Let �d be as defined in (1.3), and µ be a uniform measure on

the unit ball B1(0) ✓ Rd
. Then

�d  �1(µ)µ(R
d)  21�

1
d . (2.9)

Proof. Similarly to the proof of Proposition 2.3, we start by computing, for every a � 0,

Jµ,�(x 7! ax) = (1� a)2
ˆ

|x|2 dµ(x) + �a

¨
|x� y| dµ(x) dµ(y).

If the ball is �-cohesive, then the quantity above must be minimal when a = 0. In such a
case, we must have

� �
2
´
|x|2 dµ(x)˜

|x� y| dµ(x) dµ(y)
.
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In other words, we have

�1(µ) �
2
´
|x|2 dµ(x)˜

|x� y| dµ(x) dµ(y)
. (2.10)

The numerator in (2.10) is

µ(Rd)

´ 1
0 r2+d�1 dr´ 1
0 rd�1 dr

= µ(Rd)
d

d+ 2
. (2.11)

Denoting

�d :=

  
|x� y| dµ(x) dµ(y),

we have that

�d =
2d

2d+ 1
·

8
<

:

23d+1((d/2)!)2d!
(d+1)(2d)!⇡ if d is even,

2d+1(d!)3

(d+1)(((d�1)/2)!)2(2d)! if d is odd.

For d = 2, the proof of this identity can be found in Dunbar (1997), Grimmett and Stirzaker
(2020, Exercise 4.13.4), or Santaló (1976, Section 4.2). In higher dimension, the computation
is only sketched in Dunbar (1997), but does not pose additional di�culties (the high-
dimensional integral splits into a product of Wallis integrals). One can verify that, for every
d � 1,

�d+2

�d
=

(2d+ 2)(2d+ 4)3

2d(2d+ 3)(2d+ 5)(2d+ 6)
= 1 +

9d2 + 35d+ 32

d(2d+ 3)(2d+ 5)(d+ 3)
.

Combining this with (2.10) and (2.11), we obtain the first inequality in (2.9).

For the second inequality in (2.9), if d = 1 then the inequality follows from Proposition 2.2,
so assume that d � 2. Fix ↵ 2 R to be chosen later and set

q1(x, y) =

8
><

>:

↵ sgn(x) if |x| > |y|;

�↵ sgn(y) if |x| < |y|;

0 if |x| = |y|.

Then we have

 
q1(x, y) dµ(y) = ↵

µ{y : |y| < |x|}

µ(B1(0))
sgn(x) = ↵|x|d sgn(x) = ↵|x|d�1x.
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Let x, y 2 B1(0) with |x| > |y|. We have
����q1(x, y) + x� y �

 
q1(x, z) dµ(z) +

 
q1(y, z) dµ(z)

����

=
���↵ sgn(x) + x� y � ↵|x|d�1x+ ↵|y|d�1y

���

=
���sgn(x)[↵+ |x|� ↵|x|d]� sgn(y)[|y|� ↵|y|d]

���

 ↵+
���|x|� ↵|x|d

���+
���|y|� ↵|y|d

���

 ↵+ 2

 
1

(↵d)
1

d�1

�
↵

(↵d)
d

d�1

!

= ↵+
2

(↵d)
1

d�1

✓
1�

1

d

◆
.

Now taking ↵ = 2
d�1
d /d, we get

����q1(x, y) + x� y �

 
q1(x, z) dµ(z) +

 
q1(y, z) dµ(z)

���� 
2

d�1
d

d
+ 21�1/d

✓
1�

1

d

◆
= 21�1/d.

Thus by Proposition 4.5 we have

�1(B1(0))  µ(B1(0))
�121�1/d.

Proposition 2.8 (Power-law weighted ball). Let R 2 (0,1) and µ be the measure given by

dµ(x) = |x|�(d�1)1{|x|  R}dx.

Then

�1(µ) =
R(µ)

µ(Rd)
=

2

↵d�1
,

where ↵d�1 =
2⇡d/2

�(d/2) is the area of the unit (d� 1)-sphere.

Proof. We first note that, for any s 2 [0, R], we have using spherical coordinates that

µ(Bs(0)) =

ˆ s

0

ˆ
Sd�1

dHd�1(✓) dr =
1

2
↵d�1s,

Define

q(x, y) =

8
><

>:

R sgn(x) if |x| > |y|;

�R sgn(y) if |x| < |y|;

0 |x| = 1.

Then q is evidently antisymmetric and kqk1 = R, and we have, using spherical coordinates
and symmetry, that

 
R2

q(x, y) dµ(y) =
1

µ(BR(0))

ˆ R

0

ˆ
Sd�1

q(x, r✓) dHd�1(✓) dr = R sgn(x)
µ(B|x|(0))

µ(BR(0))
= x.
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By Theorem 1.9 this implies that

�1 
R

1
2↵d�1R

=
2

↵d�1
.

On the other hand, we have by Proposition 4.4 that

�1 �
R

µ(Rd)
=

2

↵d�1
.

3. Numerical experiments

In this section we supplement our theoretical results with some numerical experiments; see
also Figures 1.1 and 1.2. The code is available at

https://github.com/ajdunlap/son-clustering-experiments.

Our experiments were performed using the algorithm of Jiang and Vavasis (Preprint, 2020).
This algorithm provides a certificate that the ouput clustering is correct. When � is very
close to a value at which the number of clusters changes, limitations on computer time and
numerical accuracy make it di�cult to perform the calculations to su�cient accuracy to
obtain the certificate. In particular, for situations such as that described by Theorem 1.1,
the SON clustering algorithm becomes numerically very challenging to resolve for � close
to �c, while the clustering structures that are produced for other values of � are not the
expected partition into two parts. This further clarifies how the SON algorithm fails to
resolve this clustering problem successfully in practice. Further work would be required to
numerically probe the behavior of the algorithm very close to these critical values of �.

3.1 Polygons

We begin with a case in which we can theoretically compute everything exactly. Fix some
integer n and let µ be a probability measure given by a Dirac mass at each vertex of two
regular n-gons (each inscribed in a circle of radius 1) whose centers are separated by a
distance 2r. Our clustering characterization Theorem 1.7, combined with Proposition 2.1
and Corollary 2.5, tell us that sum-of-norms clustering makes exactly one cluster from each
n-gon exactly when 2n tan

�
⇡
2n

�
< � < 2r. We test this numerically with n = 8 and r = 1.7.

In this case, 2n tan
�

⇡
2n

�
' 3.18. We perform simulations with � = 3.1, 3.3, 3.5 (noting that

3.1 < 2n tan
�

⇡
2n

�
< 3.3 < 2r < 3.5) and show the results in Figure 3.1. We see that our

theoretical results are matched by the experiments.

3.2 �1 for a ball

Proposition 2.7 does not precisely determine �1(µ) where µ is the indicator function of the
unit ball. Here we perform a numerical experiment to estimate �1(µ) in dimension d = 2.
We approximate the interior of the ball by the set of all points on a rectangular lattice with
spacing � lying inside the ball, i.e. {x 2 �Z2

| |x|  1}, and compute the number of clusters
for varying choices of �. The results are shown in Figure 3.2. In view of Corollary 2.4,
(1.4), and Proposition 6.2 below, we know that the limit as � & 0 of �1 is between 1.104 . . .
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�2 �1 0 1 2
�1.0

�0.5
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1.0

(a) � = 3.1. Each point is in its own cluster.

�2 �1 0 1 2
�1.0

�0.5

0.0

0.5

1.0

(b) � = 3.3. Two clusters.

�2 �1 0 1 2
�1.0

�0.5

0.0

0.5

1.0

(c) � = 3.5. One cluster.

Figure 3.1: Clustering results for the vertices of two octagons. Vertices assigned to the same
cluster are drawn in the same color.

and 1.414 . . .. The results of Figure 3.2 are roughly consistent with this, and suggest that
the true limit is closer to the lower end of the theoretically proved range. The numerical
results also suggest that �1 and �⇤ may be equal for the ball, which has not been studied
theoretically, and thus is an interesting conjecture.

In Figure 3.2, the scheme of Jiang and Vavasis (Preprint, 2020) is again used to compute
the clusterings. When � is close to a value at which the number of clusters changes, the
certification procedure of Jiang and Vavasis (Preprint, 2020) may fail even when the duality
gap in the clustering algorithm is close to machine precision. This is the reason for the
missing values in the figure. Using a more sophisticated algorithm to more precisely estimate
the values of �1 and �⇤ for the ball is an interesting topic for future work.

4. KKT characterization of the minimizer

Recall that, for convenience, we assume throughout the paper that the measure µ is finite
(meaning that µ(Rd) < 1) and has compact support. We start by justifying the existence
and uniqueness of a minimizer for Jµ,�. It is clear (or see Lemma 7.2 below) that the
functional Jµ,� is continuous on L2(µ;Rd). Moreover, Jµ,� is uniformly convex: for every
u, v 2 L2(µ;Rd), we have

1

2
(Jµ,�(u+ v) + Jµ,�(u� v))� Jµ,�(u) �

ˆ
v2 dµ. (4.1)

Finally, it is clear that the functional Jµ,� is coercive, i.e. that there exist c1 > 0 and c2 � 0
such that Jµ,�(u) � c1kuk2L2(µ;Rd) � c2 for all u 2 L2(µ;Rd). Thus there exists a unique

minimizer uµ,� 2 L2(µ;Rd) for Jµ,� (Evans, 2010, Section 8.2).
The key to most of our analysis is the following theorem, which evaluates the subdi↵er-

ential of Jµ,� and derives the resulting KKT characterization of the minimizer. For each

18



SON clustering does not separate nearby balls

1.09 1.10 1.11 1.12

�

1

236
no

.
of

cl
us
te
rs

(a) � = 0.1150

1.09 1.10 1.11 1.12

�

1

267

no
.
of

cl
us
te
rs

(b) � = 0.1075

1.09 1.10 1.11 1.12

�

1

317

no
.
of

cl
us
te
rs

(c) � = 0.1000

1.09 1.10 1.11 1.12

�

1

363

no
.
of

cl
us
te
rs

(d) � = 0.0925

1.09 1.10 1.11 1.12

�

1

433

no
.
of

cl
us
te
rs

(e) � = 0.0850

1.09 1.10 1.11 1.12

�

1

517

no
.
of

cl
us
te
rs

(f) � = 0.0775

1.09 1.10 1.11 1.12

�

1

638

no
.
of

cl
us
te
rs

(g) � = 0.0700

1.09 1.10 1.11 1.12

�

1

797

no
.
of

cl
us
te
rs

(h) � = 0.0625

Figure 3.2: The number of clusters produced by sum-of-norms clustering run on the measure
µ given by the uniform distribution on {x 2 �Z2

| |x|  1}, for varying choices of � and �.
Missing values correspond to failures to certify the clustering using the procedure of Jiang
and Vavasis (Preprint, 2020).
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z 2 Rd
\ {0}, we write

sgn(z) :=
z

|z|
. (4.2)

Theorem 4.1. Let u 2 L2(µ;Rd). We have u = uµ,� (µ-a.e.) if and only if there exists

w 2 L1(µ⌦2;Rd) such that, for µ-a.e. x, y 2 Rd
, we have

w(x, y) = �w(y, x), (4.3)

u(x) 6= u(y) =) w(x, y) = sgn(u(x)� u(y)), (4.4)

|w(x, y)|  1, (4.5)

and

x� u(x) = �

ˆ
w(x, z) dµ(z). (4.6)

Proof. For every measure ⌫ and functional F : L2(⌫;Rd) ! R, we define the subdi↵erential
(Ekeland and Temam, 1976, Section I.5) of F at u 2 L2(⌫;Rd) by

@F (u) :=

⇢
p 2 L2(⌫;Rd) : 8v 2 L2(⌫;Rd), F (u+ v) � F (u) +

ˆ
p · v d⌫

�
. (4.7)

Step 1. In this step, for every probability measure ⌫ on Rd with compact support, we
identify the subdi↵erential of the functional

F (u) :=

ˆ
|u| d⌫ (4.8)

at u 2 L2(⌫;Rd) as

@F (u) =
n
w 2 L1(⌫;Rd) : kwkL1  1 and for ⌫-a.e. x 2 Rd, u(x) 6= 0 =) w(x) = sgn(u(x))

o
.

(4.9)
We denote by K1(u) the set on the right side of (4.9). Note that for every a, b, w 2 Rd, if
|w|  1 satisfies

a 6= 0 =) w = sgn(a),

then
|a+ b| � |a|+ w · b.

From this observation, we can verify that K1(u) ✓ @F (u) directly from (4.7) and (4.9).
In order to show the opposite inclusion, we argue by contradiction and suppose that there
exists p 2 @F (u) \K1(u). Since K1(u) is convex and closed in the Hilbert space L2(⌫;Rd),
the hyperplane separation theorem (Ekeland and Temam, 1976, Section I.1) guarantees the
existence of a function v 2 L2(⌫;Rd) such that

ˆ
p · v d⌫ > sup

w2K1(u)

ˆ
w · v d⌫. (4.10)
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Defining w 2 L1(⌫;Rd) by

w(x) =

(
sgn(u(x)) if u(x) 6= 0;

sgn(v(x)) otherwise,

we have for every " > 0 that

"�1(F (u+ "v)� F (u)) =

ˆ
w · v d⌫ +

ˆ
r" d⌫,

where
r" = "�1(|u+ "v|� |u|� "w · v).

At a point where u = 0, we have r" = |v| � sgn(v) · v = 0 by the definitions, while at a
point where u 6= 0, we have r" = 0 for " su�ciently small by the local linearity of | · |, so
the function r" tends to 0 ⌫-a.e. as " # 0. Moreover, by the Cauchy–Schwarz and triangle
inequalities we see that |r"|  "�1(|u| + "|v| � |u| + "|w||v|) = 2|v|. It thus follows from
dominated convergence that

lim
"#0

"�1(F (u+ "v)� F (v)) =

ˆ
w · v d⌫.

On the other hand, recalling that p 2 @F (u), we must also have for every " > 0 that

"�1(F (u+ "v)� F (u)) �

ˆ
p · v d⌫.

But the two previous displays contradict (4.10).
Step 2. In this step, we show that the subdi↵erential of the functional

G(u) :=

ˆ
|u(x)� u(y)| dµ(x) dµ(y)

at u 2 L2(µ;Rd) is given by

@G(u) =

⇢
x 7! 2

ˆ
w(x, y) dµ(y) : w satisfies (4.3)–(4.5)

�
. (4.11)

We denote by K2(u) the set on the right side of (4.11). Similarly to the previous step, one
can check that K2(u) ✓ @G(u). To show the opposite inclusion, we first introduce some
notation. For every v 2 L2(µ;Rd), define ev 2 L2(µ⌦2;Rd) by ev(x, y) = v(x) � v(y), and
by F we denote the functional (4.8) with the measure ⌫ = µ⌦2. By definition, we have for
every v 2 L2(µ;Rd) that G(v) = F (ev). We fix p 2 @G(u), so that for every v 2 L2(µ;Rd),
we have

F (eu+ ev) � F (eu) +
ˆ

p · v dµ.

Since G does not change if we add a constant to its argument, it must be that
´
p dµ = 0.

As a consequence, we can rewrite the last inequality as

F (eu+ ev) � F (eu) + 1

2

ˆ
ep · ev dµ⌦2.
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This implies that the sets
⇢✓
ev, F (eu) + 1

2

ˆ
ep · ev dµ⌦2

◆
: v 2 L2(µ;Rd)

�
(4.12)

and n�
v0,�

�
: v0 2 L2(µ⌦2;Rd) and � > F (eu+ v0)

o
(4.13)

are disjoint and convex. Moreover, the set in (4.13) is open in L2(µ⌦2;Rd)⇥R. Therefore,
there is a hyperplane that separates the two sets. This means that there exists a w 2

L2(µ⌦2;Rd) such that for every v 2 L2(µ;Rd) and v0 2 L2(µ⌦2;Rd), we have

F (eu+ v0)�

ˆ
w · v0 dµ⌦2

� F (eu) + 1

2

ˆ
ep · ev dµ⌦2

�

ˆ
w · ev dµ⌦2.

Taking ev = 0, we see that w 2 @F (eu), and taking v0 = 0, we see that
ˆ

(p(x)� p(y)� 2w(x, y)) · (v(x)� v(y)) dµ(x) dµ(y) = 0

for all v 2 L2(µ;Rd). Recalling that
´
p dµ = 0, we obtain that, for µ-a.e. x 2 Rd,

p(x) =

ˆ
(w(x, y)� w(y, x)) dµ(y).

Since w 2 @F (eµ), the result of Step 1 gives us that kwkL1  1 and, for µ-a.e. x, y 2 Rd,

u(x) 6= u(y) =) w(x, y) = sgn(u(x)� u(y)).

We have thus completed the verification of the fact that p 2 K2(u).
Step 3. It follows from the result of Step 2 that, for every u 2 L2(µ;Rd), we have

@Jµ,�(u) =

⇢
x 7! 2(u(x)� x) + 2�

ˆ
w(x, y) dµ(y) : w satisfies (4.3)–(4.5)

�
.

In particular, since Jµ,� is convex, a function u 2 L2(µ;Rd) is a minimizer of Jµ,� if and
only if 0 2 @Jµ,�(u). Equivalently,

Jµ,�(u) = inf
v2L2(µ;Rd)

Jµ,�(v) () 9w 2 L1(µ;Rd) satisfying (4.3)–(4.6).

This completes the proof of the theorem.

From Theorem 4.1, we can prove Theorem 1.9 as a simple corollary.

Proof of Theorem 1.9. By integrating (4.6) in x with respect to the measure µ, we see that
µ is �-cohesive if and only if the minimizer of Jµ,� is given by u(x) = Cµ(Rd), which happens
if and only if there is a w satisfying (4.3) and (4.5) such that

x� Cµ(R
d) = �

ˆ
w(x, y) dµ(y). (4.14)

Taking q := µ(Rd)�w completes the proof.
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We now state a couple of lemmas which we will use to prove Proposition 1.6. For every
V ✓ Rd, we write V c := Rd

\ V to denote the complement of V .

Lemma 4.2. There is a Borel set A ✓ Rd
such that µ(Rd

\ A) = 0 and, for µ-a.e. x, we
have that Vuµ,�,x \A is µ-regular and

Cµ(Vuµ,�,x \A)� uµ,�(x) = �

ˆ
V c
uµ,�,x

sgn(uµ,�(x)� uµ,�(y)) dµ(y). (4.15)

In particular, Eµ,uµ,�(x) := Cµ(Vuµ,�,x\A) (as in Definition 1.5) is well-defined as an element

of L1(µ;Rd), independently of the choice of A (up to a µ-null modification).

Proof. For typographical convenience, we write u = uµ,�. Define

E(x) := u(x) +

ˆ
V c
u,x

sgn(u(x)� u(y)) dµ(y).

Let A := {x 2 Rd
| µ(Vu,x) > 0 or E(x) = x}, and w be as in the statement of Theorem 4.1.

Using (4.4), we can rewrite (4.6) as, for µ-a.e. x,

x� u(x) = �

ˆ
Vu,x

w(x, y) dµ(y) + �

ˆ
V c
u,x

sgn(u(x)� u(y)) dµ(y). (4.16)

Since E is constant on each Vu,x by definition, if x 2 A and µ(Vu,x) = 0, then Vu,x\A = {x}
and thus (4.15) holds. Moreover, (4.16) implies that µ(Rd

\ A) = 0. On the other hand, if
µ(Vu,x) > 0, then averaging (4.16) over x ⇠ µ|Vu,x , we have

Cµ(Vu,x)� u(x) =
�

µ(Vu,x)

¨
V 2
u,x

w(z, y) dµ(y) dµ(z)

+
�

µ(Vu,x)

ˆ
Vu,x

ˆ
V c
u,x

sgn(u(z)� u(y)) dµ(y) dµ(z)

= �

ˆ
V c
u,x

sgn(u(x)� u(y)) dµ(y), (4.17)

with the second identity by (4.3) (to eliminate the first term) and the fact that u(z) = x
for all z 2 Vu,x (to simplify the second term).

Roughly speaking, the next lemma states that the vector formed by the centroids of two
clusters and the vector formed by the values taken by the mapping u on these clusters must
be positively correlated. One could also say that the mapping sending each cluster centroid
to the image under u of any point in this cluster is a monotone operator.

Lemma 4.3. For µ-a.e. x, z we have

(uµ,�(x)� uµ,�(z)) ·
�
Eµ,uµ,�(x)� Eµ,uµ,�(z)

�

� �[µ(Vuµ,�,x) + µ(Vuµ,�,z)]|uµ,�(x)� uµ,�(z)|+ |uµ,�(x)� uµ,�(z)|
2.

(4.18)
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Proof. For typographical convenience, let u = uµ,� and E = Eµ,uµ,� . By Lemma 4.2, for
µ-a.e. x we have

E(x)� u(x) = �

ˆ
V c
u,x

sgn(u(x)� u(y)) dµ(y).

Therefore, we have for µ-a.e. x, z that

E(x)� E(z) = u(x)� u(z) + �

ˆ
V c
u,x

sgn(u(x)� u(y)) dµ(y)

� �

ˆ
V c
u,z

sgn(u(z)� u(y)) dµ(y)

= u(x)� u(z) + �[µ(Vu,x) + µ(Vu,z)] sgn(u(x)� u(z))

+ �

ˆ
(Vu,z[Vu,z)c

[sgn(u(x)� u(y))� sgn(u(z)� u(y))] dµ(y).

Taking the dot product of each side with u(x)� u(z), we obtain

(u(x)� u(z)) · (E(x)� E(z))

= |u(x)� u(z)|2 + �[µ(Vu,x) + µ(Vu,z)]|u(x)� u(z)|

+ �

ˆ
(Vu,z[Vu,z)c

(u(x)� u(z)) · [sgn(u(x)� u(z))� sgn(u(z)� u(y))] dµ(y).

(4.19)
We note that for any vectors a, b, c 2 Rd, we have

(a� b) · (sgn(a� c)� sgn(b� c)) = ((a� c)� (b� c)) ·

✓
a� c

|a� c|
�

b� c

|b� c|

◆

= |a� c|+ |b� c|�

✓
1

|a� c|
+

1

|b� c|

◆
(a� c) · (b� c)

� |a� c|+ |b� c|�

✓
1

|a� c|
+

1

|b� c|

◆
|a� c||b� c| = 0,

by the Cauchy–Schwarz inequality. (If a � c = 0 or b � c = 0 then the inequality is still
clear.) This means that the integral on the right side of (4.19) is nonnegative, which implies
(4.18).

Proof of Proposition 1.6. Theorem 4.1 gives us a w and a set A ✓ Rd with µ(Rd
\ A) = 0

so that for all x 2 A such that µ(Vuµ,�,x) = 0 we have

x� uµ,�(x) = �

ˆ
Vuµ,�,x

w(x, z) dµ(z) + �

ˆ
V c
uµ,�,x

sgn(uµ,�(x)� uµ,�(z)) dµ(z)

= �

ˆ
sgn(uµ,�(x)� uµ,�(z)) dµ(z).

This implies that for all y 2 Vuµ,�,x \A we must have

y = uµ,�(y) + �

ˆ
sgn(uµ,�(y)� uµ,�(z)) dµ(z)

= uµ,�(x) + �

ˆ
sgn(uµ,�(x)� uµ,�(z)) dµ(z) = x.
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This proves the first condition in the definition of µ-regularity. The second condition follows
immediately from Lemma 4.3.

As a simple consequence of Theorem 1.9, we can prove the bound (1.14) mentioned in
the introduction.

Proposition 4.4. For any µ we have

R(µ)

µ(Rd)
 �1(µ) 

diam|·|(suppµ)

µ(Rd)
. (4.20)

Proof. First we show the lower bound. From Theorem 1.9, we have a q : Rd
⇥ Rd

! Rd

such that (1.16)–(1.17) hold and kqk1 = �1(µ)µ(Rd). Therefore, we have for µ-a.e. x that

���x� Cµ(R
d)
��� 

 
|q(x, y)| dµ(y)  kqk1 = �1(µ)µ(R

d),

which implies the lower bound in (4.20). To prove the upper bound, let

q(x, y) := x� y. (4.21)

It is obvious that q satisfies (1.16)–(1.17), and that kqk1 = diam|·|(suppµ). Therefore,
Theorem 1.9 implies the upper bound in (4.20).

We conclude this section with the following simple proposition that allows us to replace
the exact equality in (1.17) with an approximation.

Proposition 4.5. For any antisymmetric function q1 : Rd
⇥Rd

! Rd
, we have

�1(µ)  µ(Rd)�1 ess sup
x,y⇠µ

����q1(x, y) + x� y �

 
q1(x, z) dµ(z) +

 
q1(y, z) dµ(z)

���� . (4.22)

Proof. Let

q(x, y) := q1(x, y) + x� y �

 
q1(x, z) dµ(z) +

 
q1(y, z) dµ(z).

We have

q(y, x) = q1(y, x) + y � x�

 
q1(y, z) dµ(z) +

 
q1(x, z) dµ(z)

= �q1(x, y) + y � x+

 
q1(x, z) dµ(z)�

 
q1(z, y) dµ(z) = �q(x, y),

so q satisfies (1.16), and moreover 
q(x, y) dµ(y) =

 
q(x, y) dµ(y) +

 
x dµ(y)�

 
y dµ(y)�

 
q1(x, z) dµ(z)

+

  
q1(y, z) dµ(z) dµ(y)

= x,

so q satisfies (1.17). Thus Theorem 1.9 implies the result.

25



Dunlap and Mourrat

5. Exact characterization of the clusters

In this section, we prove Theorems 1.7 and 1.3 and Proposition 1.8.

Proof of Theorem 1.7. We first suppose that for µ-a.e. x, Vu,x = Vuµ,�,x up to a µ-null set
and try to prove the second statement of the theorem. Since the second statement of the
theorem concerns only the level sets of u, we can and do assume that u = uµ,�. First we
show that µ|Vu,x is cohesive for µ-a.e. x.

Subtracting (4.15) from (4.16), we have

x� Eµ,u(x) = �

ˆ
Vu,x

w(x, y) dµ(y)

for µ-a.e. x. By Theorem 4.1, this implies that the constant Eµ,u(x) is a minimizer of
Jµ|Vu,x ,�, so µ|Vu,x is �-cohesive.

To prove that Mu(µ) is �-shattered, define

eu(Eµ,u(x)) := u(x).

This is well-defined by Lemma 4.3. Then eu is defined Mu(µ)-a.e., and it is clear that eu can
be extended to an injection on Rd. By (4.15) we have

eu(X) = X � �

ˆ
sgn(eu(X)� eu(Y )) dMu(µ)(Y )

for Mu(µ)-a.e. X. Taking ew(X,Y ) = sgn(X � Y ) as the w in Theorem 4.1, we see that eu
is in fact a minimizer of JMu(µ),�. Thus Mu(µ) is �-shattered.

Now we prove the other direction, so suppose we have a µ-regular function u such that
Mu(µ) is �-shattered and, for µ-a.e. x, the restriction µ|Vu,x is �-cohesive. Let eu be the
(injective) minimizer of JMu(µ),� and define

v(x) = eu(Eµ,u(x)), (5.1)

noting that the assumption that u is µ-regular means that Eµ,u is defined. Since eu is
injective, we see that v has the same level sets as u. We want to prove that v is a minimizer
of Jµ,�. For µ-a.e. x, by Theorem 4.1 and the fact that µ|Vu,x is �-cohesive, we have an
antisymmetric wVu,x , bounded in norm by 1, such that

x� Eµ,u(x) = �

ˆ
Vu,x

wVu,x(x, y) dµ(y). (5.2)

Moreover, using (5.1) and (4.6) we have

Eµ,u(x)� v(x) = �

ˆ
sgn(eu(Eµ,u(x))� eu(Eµ,u(y))) dMu(µ)(y)

= �

ˆ
V c
u,x

sgn(v(x)� v(y)) dµ(y). (5.3)
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So define

w(x, y) =

(
wVu,x(x, y) if u(x) = u(y);

sgn(v(x)� v(y)) if u(x) 6= u(y).

Then we have, using (5.2) and (5.3), that

x� v(x) = x� Eµ,u(x) + Eµ,u(x)� v(x)

= �

ˆ
Vu,x

wVu,x(x, y) dµ(y) + �

ˆ
V c
u,x

sgn(v(x)� v(y)) dµ(y)

= �

ˆ
w(x, y) dµ(y),

verifying (4.6). Conditions (4.3)–(4.5) are clearly satisfied for w, so this proves that v is a
minimizer of Jµ,�.

Now we give a proof of Theorem 1.3 in our setting. The key ingredient is the following
proposition proved in the discrete case by Chiquet et al. (2017).

Proposition 5.1. Fix a Borel set A ✓ Rd
with µ(A) > 0 and assume that µ|A is �-cohesive.

Define

u(x) :=

(
Cµ(A) if x 2 A;

x if x 62 A.

Thus Mu(µ) is the measure obtained from µ by consolidating all of the mass in A at Cµ(A).
Then, for µ-a.e. x, we have

uµ,�(x) = uMu(µ),�(u(x)). (5.4)

Proof. We follow the argument given by Jiang et al. (2020, proof of Theorem 1(b)). We ap-
ply Theorem 4.1 twice. First, by Theorem 4.1 applied to Mu(µ), there is an antisymmetric,
1-bounded wout 2 L1(Mu(µ)⌦2;Rd) satisfying

uMu(µ),�(x) 6= uMu(µ),�(y) =) wout(x, y) = sgn(uMu(µ),�(x)� uMu(µ),�(y)) (5.5)

and

x� uMu(µ),�(x) = �

ˆ
wout(x, z) dMu(µ)(z)

for µ-a.e. x, y. Second, by Theorem 4.1 applied to µ|A, there is an antisymmetric, 1-bounded
win 2 L1((µ|A)⌦2;Rd) satisfying

x� Cµ(A) = �

ˆ
A
win(x, z) dµ(z)

for µ-a.e. x 2 A.
Now define

w(x, y) =

(
win(x, y) if x, y 2 A;

wout(u(x), u(y)) otherwise.
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It is clear that w is antisymmetric and 1-bounded since win and wout are. It is also clear
from (5.5) that if uMu(µ),�(u(x)) 6= uMu(µ),�(u(y)) then w(x, y) = sgn(uMu(µ),�(u(x)) �
uMu(µ),�(u(y))). For µ-a.e. x 2 A, we have

�

ˆ
w(x, z) dµ(z) = �

ˆ
A
w(x, z) dµ(z) + �

ˆ
Ac

w(x, z) dµ(z)

= �

ˆ
A
win(x, z) dµ(z) + �

ˆ
Ac

wout(Cµ(A), z) dMu(µ)(z)

= x� Cµ(A) + Cµ(A)� uMu(µ),�(Cµ(A))

= x� uMu(µ),�(u(x)),

while for µ-a.e. x 62 A we have

�

ˆ
w(x, z) dµ(z) = �

ˆ
wout(x, u(z)) dµ(z)

= �

ˆ
A
wout(x, Cµ(A)) dµ(z) + �

ˆ
Ac

wout(x, z) dµ(z)

= �

ˆ
wout(x, z) dMu(µ)(z)

= x� uMu(µ),�(u(x)).

Then (5.4) follows from Theorem 4.1.

Proof of Theorem 1.3. Theorem 1.7 implies that any level set of uµ,� is �-cohesive, and
Proposition 5.1 implies that µ(A) > 0 and µ|A is �-cohesive then A is contained in a single
level set of uµ,�. These two facts together imply the statement of the theorem.

Proof of Theorem 1.4. We fix �  �0. We first confirm that if a measure µ is �-cohesive,
then it is �0-cohesive. Indeed, if µ is �-cohesive, then there exists a constant c 2 Rd such
that for every u 2 L2(µ;Rd),

Jµ,�(c)  Jµ,�(u).

Since �0
� �, we deduce that

Jµ,�0(c) = Jµ,�(c)  Jµ,�(u)  Jµ,�0(u).

This shows that the constant c minimizes Jµ,�0 , and by uniqueness of the minimizer, that
µ is �0-cohesive.

The proof of Theorem 1.4 is now an application of Theorem 1.3. Outside a set of µ-
measure zero, every x 2 Rd satisfies the statement of this theorem both for � and for �0.
For each such x 2 Rd, the measure µ|Vuµ,�,x is �-cohesive, so by the previous observation, it

is �0-cohesive. Applying the second part of Theorem 1.3 with �0, we deduce that µ(Vuµ,�,x \

Vuµ,�0 ,x) = 0, as desired.

Finally, we prove Proposition 1.8.
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Proof of Proposition 1.8. By Theorem 1.7, the measure µ|Vuµ,�,x is �-cohesive. By Propo-
sition 4.4, we must therefore have that

� � �1

⇣
µ|Vuµ,�,x

⌘
�

R(µ|Vuµ,�,x)

µ|Vuµ,�,x(R
d)
.

Rearranging, we obtain (1.7).
We now turn to (1.8). By Theorem 1.7, the measure Muµ,�(µ) = (Eµ,uµ,�)⇤(µ) is �-

shattered. Then Lemma 4.3 implies that, for Muµ,�(µ)-a.e. x, z with x 6= z, we have

|x� z| > �[µ(Vuµ,�,x) + µ(Vuµ,�,z)].

This yields (1.8) for µ-a.e. x, z with uµ,�(x) 6= uµ,�(z).

6. Stability properties

In this section, we prove some stability results for �1(µ) and �⇤(µ). For this purpose, we
introduce some definitions related to optimal transport. Let µ, eµ be finite measures of
compact support such that µ(Rd) = eµ(Rd). We denote by �(µ, eµ) the set of Borel measures
on Rd

⇥ Rd whose first marginal is µ(Rd)µ(·) and second marginal is µ(Rd) eµ(·). For
p 2 [1,1), the p-Wasserstein distance between µ and eµ is

Wp(µ, eµ) :=
✓

inf
⇡2�(µ,eµ)

ˆ
|x� ex|p d⇡(x, ex)

◆ 1
p

,

while
W1(µ, eµ) := inf

⇡2�(µ,eµ)
ess sup
(x,ex)⇠⇡

|x� ex|.

It is classical to show that for each p 2 [1,1], this problem admits an optimizer in �(µ, eµ).
We call any optimizer a p-optimal transport plan from µ to eµ. At least when p < 1 and
if the measure µ is absolutely continuous with respect to the Lebesgue measure, there in
fact exists a measurable mapping T : Rd

! Rd such that the image of the measure µ by
the mapping (Id, T ) is an optimal transport plan from µ to eµ. In such a case, we call the
mapping T an optimal transport map from µ to eµ. In this paper, we will only make use
of optimal transport maps for p = 1. In this case, a proof of existence can be found in
Ambrosio (2003, Theorem 6.2).

6.1 Stability of �1

In this section we prove two stability results for �1(µ). The first is that �1(µ) is continuous
under absolutely continuous perturbations of µ. As is standard in measure theory, for
measures µ and eµ, we write eµ ⌧ µ to mean that eµ is absolutely continuous with respect to
µ.

Proposition 6.1 (Absolutely continuous perturbations). Suppose that " < 1 and eµ and µ
are finite measures such that eµ ⌧ µ,

����
deµ
dµ

(z)� 1

���� < ",
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and

eµ(Rd) � (1� ")µ(Rd).

Then

�1(eµ) 
1 + 2"

1� "
�1(µ). (6.1)

The second stability result says that �1(µ) is continuous under W1 perturbations of µ:

Proposition 6.2 (W1 perturbations). Let eµ and µ be finite measures of compact support

such that µ(Rd) = eµ(Rd). Then we have

|�1(eµ)� �1(µ)| 
3W1(µ, eµ)

µ(Rd)
. (6.2)

Now we prove the two preceding propositions.

Proof of Proposition 6.1. Let q satisfying (1.16)–(1.17) (for µ) be such that

kqk1 = �1(µ)µ(R
d).

Then by Proposition 4.5 we have

�1(eµ)  eµ(Rd)�1 ess sup
x,y⇠µ

����q(x, y) + x� y �

 
q(x, z) deµ(z) +

 
q(y, z) deµ(z)

����

= eµ(Rd)�1 ess sup
x,y⇠µ

����q(x, y) + x� y �

 
(q(x, z)� q(y, z))

deµ
dµ

(z) dµ(z)

����

= eµ(Rd)�1 ess sup
x,y⇠µ

����q(x, y)�
 
(q(x, z)� q(y, z))

✓
deµ
dµ

(z)� 1

◆
dµ(z)

����

 (1 + 2")eµ(Rd)�1
kqk1


1 + 2"

1� "
�1(µ),

as announced.

Proof of Proposition 6.2. Let q satisfying (1.16)–(1.17) (for µ) be such that

kqk1 = �1(µ)µ(R
d).

Let ⇡ be an 1-optimal transport plan from eµ to µ. We write the disintegration (Panchenko,
Section I.4)

d⇡(x, x0) = d⌫(x0 | x)deµ(x).

Define

q1(x, y) :=

¨
q(w, z) d⌫(z | y) d⌫(w | x),

which is antisymmetric by Fubini’s theorem. We note that

kq1k1  kqk1 = �1(µ)µ(R
d).
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We also have  
q1(x, y) deµ(y) =

1

eµ(Rd)

˚
q(w, z) d⌫(z | y) d⌫(w | x) deµ(y)

=
1

eµ(Rd)

˚
q(w, z) d⌫(w | x) d⇡(y, z)

=
1

µ(Rd)

¨
q(w, z) dµ(z) d⌫(w | x)

=

ˆ
w d⌫(w | x)� Cµ(R

d),

with the last identity by (1.17). Thus we have

����
 

q1(x, y) deµ(y)� [x� Cµ(R
d)]

����  W1(µ, eµ).

Therefore, we have by Proposition 4.5 that

�1(eµ)  eµ(Rd)�1 ess sup
x,y⇠µ

����q1(x, y) + x� y �

 
q1(x, z) deµ(z) +

 
q1(y, z) deµ(z)

����

 eµ(Rd)�1


ess sup
x,y⇠µ

✓
|q1(x, y)|+ 2

����
 

q1(x, z) deµ(z)� [x� Cµ(R
d)]

����

◆

+
���Cµ(Rd)� Ceµ(R

d)
���
�

 eµ(Rd)�1
⇣
�1(µ)µ(R

d) + 3W1(µ, eµ)
⌘
.

By the symmetry between µ and eµ, this yields (6.2).

6.2 Stability of �⇤

We now show that, for atomic measures, �⇤ is stable under W1 perturbation of the measures.
The key ingredient will be the following continuity property.

Proposition 6.3. Let � > 0, M 2 (0,1), and let µ, eµ be two Borel probability measures

on Rd
such that suppµ, supp eµ ✓ BM (0).

1. For every 1-optimal transport plan ⇡ from µ to eµ, denoting its disintegration by

d⇡(x, ex) = d⌫(ex | x) dµ(x),

we have ˆ ����uµ,�(x)�
ˆ

ueµ,�(ex) d⌫(ex | x)

����
2

dµ(x)  16MW1(µ, eµ). (6.3)

2. There exists a 1-optimal transport plan ⇡ from µ to eµ such that

ˆ
|uµ,�(x)� ueµ,�(ex)|2 d⇡(x, ex)  16MW1(µ, eµ).
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Proof. We start with part (1). For µ-a.e. x 2 Rd, we put

u(x) :=

ˆ
ueµ,�(ex) d⌫(ex | x).

We then observe that

inf Jeµ,� =

ˆ
|ueµ,�(ex)� ex|2 deµ(ex) + �

¨
|ueµ,�(ey)� ueµ,�(ex)| deµ(ex) deµ(ey)

�

ˆ
|ueµ,�(ex)� x|2 d⇡(x, ex) + �

¨
|ueµ,�(ey)� ueµ,�(ex)| deµ(ex) deµ(ey)� 4MW1(µ, eµ)

�

ˆ
|u(x)� x|2 dµ(x) + �

¨
|u(y)� u(x)| dµ(x) dµ(y)� 4MW1(µ, eµ),

where we used the disintegration of ⇡ and Jensen’s inequality in the last step. We can
rewrite this as

inf Jµ,�  Jµ,�(u)  inf Jeµ,� + 4MW1(µ, eµ). (6.4)

By symmetry, we conclude that

��inf Jµ,� � inf Jeµ,�
��  4MW1(µ, eµ). (6.5)

Using (4.1) and then (6.4), we thus deduce that

1

4

ˆ
|uµ,� � u|2 dµ 

1

2
(Jµ,�(uµ,�) + Jµ,�(u))� Jµ,�

✓
uµ,� + u

2

◆


1

2

�
inf Jeµ,� � inf Jµ,�

�
+ 2MW1(µ, eµ).

Combining this with (6.5), we obtain (6.3).
We now turn to the proof of part (2) of the proposition. We argue by approximation.

For every " > 0, we let µ" be a measure on BM (0) that is absolutely continuous with respect
to the Lebesgue measure and such that

W1(µ, µ")  ". (6.6)

We denote by T" and eT" 1-optimal transport maps from µ" to µ and from µ" to eµ, respec-
tively. We have, for every � > 0, that

ˆ
|uµ,�(T"(x))� ueµ,�( eT"(x))|

2 dµ"(x)

 (1 + ��1)

ˆ
|uµ,�(T"(x))� uµ",�(x)|

2 dµ"(x)

+ (1 + �)

ˆ
|uµ",�(x)� ueµ,�( eT"(x))|

2 dµ"(x).

Using part (1) of the proposition and (6.6), we deduce that
ˆ

|uµ,�(T"(x))� ueµ,�( eT"(x))|
2 dµ"(x)  16M2(1 + ��1)"+ 16M(1 + �)W1(µ", eµ).
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The image of the measure µ" under the mapping (T", eT") is a coupling between the measures
µ and eµ. Up to the extraction of a subsequence, we can assume that this image measure
converges to a coupling ⇡ as " # 0. Using (6.6) once more, we thus have that

ˆ
|uµ,�(x)� ueµ,�(ex)|2 d⇡(x, ex)  16M(1 + �)W1(µ, eµ).

Since � > 0 was arbitrary, the factor 1 + � on the right side can be removed. In order to
conclude, we must show that ⇡ is an optimal transport plan. This follows from a similar
line of reasoning: we have

ˆ
|T"(x)� eT"(ex)| dµ"(x) 

ˆ
|T"(x)� x| dµ"(x) +

ˆ
|x� eT"(x)| dµ"(x)

 "+W1(µ", eµ),

so that, upon passing to the limit " # 0, we get

ˆ
|x� ex| d⇡(x, ex)  W1(µ, eµ),

as desired.

Proposition 6.4. Let M 2 (0,1) and suppose that µ and eµ are finite, purely atomic

probability measures with support in BM (0). Suppose also that µ is �-shattered, which means

that uµ,� is injective on suppµ. Define

�1 = ess inf
(x,y)⇠µ⌦2

x 6=y

|uµ,�(x)� uµ,�(y)| and �2 = ess inf
x⇠µ

eµ({x}).

If

W1(µ, eµ) <
�21�2
32M

, (6.7)

then eµ is also �-shattered.

Proof. By Proposition 6.3, there is a 1-optimal transport plan ⇡ from µ to eµ such that

ˆ
|uµ,�(x)� ueµ,�(ex)|2 d⇡(x, ex)  16MW1(µ, eµ). (6.8)

Suppose there are distinct points ex1, ex2 2 supp eµ (a finite set) such that ueµ,�(ex1) = ueµ,�(ex2).
Then we have by the triangle inequality that

|uµ,�(x1)� ueµ,�(ex1)|2 + |uµ,�(x2)� ueµ,�(ex2)|2 �
1

2
|uµ,�(x1)� uµ,�(x2)|

2
� �21/2.

Denote the disintegration of ⇡ over the first coordinate by

d⇡(x, ex) = de⌫(x | ex)deµ(ex).
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Then we have

�21�2 
1

2
�21 (eµ({x1}) + eµ({x2}))



ˆ
ex2{ex1,ex2}

¨
[|uµ,�(x1)� ueµ,�(ex)|2 + |uµ,�(x2)� ueµ,�(ex)|2] de⌫(x1 | ex) de⌫(x2 | ex) deµ(ex)

= 2

ˆ
(x,ex)2Rd⇥{ex1,ex2}

|uµ,�(x)� ueµ,�(ex)|2 d⇡(x, ex)

 32MW1(µ, eµ),

with the last inequality by (6.8). But this contradicts (6.7). Therefore, ueµ,� must be
injective on supp eµ. This means that eµ is �-shattered.

6.3 Proofs of Theorems 1.10 and 1.1

Now we can prove our main stability results, Theorems 1.10 and 1.1.

Proof of Theorem 1.10. For i 2 {1, . . . , I}, define

qi,N = #{n 2 {1, . . . , N} | Xn 2 Ui}.

By the law of large numbers, we have with probability 1 that

lim
N!1

N�1qi,N = µ(Ui). (6.9)

Define

eµN,i =
1

qi,N
µN |Ui

.

By (6.9) and Theorem 1.1 of Garćıa Trillos and Slepčev (2015) for d � 2, or a similar result
using the Glivenko–Cantelli theorem (Durrett, 2010, Theorem 2.4.7) for d = 1, we have
that

eµN,i !
1

µ(Ui)
µ|Ui

in probability as N ! 1 with respect to the W
1 topology. Therefore, we have that

lim
N!1

�1(eµN,i) = �1(µ|Ui
)

in probability by Proposition 6.2. On the other hand, we have that

lim
N!1

|�1(eµN,i)� �1(µN |U i
)| = 0

in probability by Proposition 6.1. Combining the last two displays, we see that

�1(µN |U i
) ! �1(µ|Ui

) (6.10)

as N ! 1. On the other hand, it is clear from the law of large numbers that

lim
N!1

Mu(µN ) = Mu(µ)
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in probability with respect to the W
1 topology. Therefore, we have from Proposition 6.4

that

lim
N!1

�⇤(Mu(µN )) = �⇤(Mu(µ)) (6.11)

in probability. Together, (6.10) and (6.11) complete the proof of the theorem.

Proof of Theorem 1.1. We set �c := �1(µ). Using Theorem 1.10 with u = 0, we see that
�1(µN ) tends to �c in probability as N tends to infinity. Part (1) of Theorem 1.1 thus
follows.

We now turn to the proof of part (2), and fix � > �c. By the definition of �c and
Theorem 1.4, the range of uµ,� contains at least two points. We decompose the rest of the
proof into two steps.

Step 1. We show that the range of uµ,� contains at least three points. We argue by
contradiction, assuming that the range of uµ,� is made of exactly two points. Notice that the
measure µ is symmetric under rotations about the first coordinate axis, and under negations
of any of the canonical basis vectors. By the uniqueness of the minimizer, it must be that
uµ,� is invariant under these transformations. As we now argue, the range of uµ,� must
therefore be a subset of the first coordinate axis. Indeed, this is easiest to see if d � 3, since
otherwise the range of uµ,� would have to contain a circle, and in particular would contain
infinitely many points. Suppose now that d = 2 and that the range of uµ,� is made of
exactly two points. By the invariance under reflections, the only possibility for the support
to not be a subset of the first coordinate axis is that the two points forming the support
of uµ,� are on the second coordinate axis; but in this case, the two level sets of uµ,� would
each have to contain half of each of the balls, and this would contradict Proposition 1.8.

Using again the invariance under reflections, we deduce that there exists ⇢ > 0 such that
the range of uµ,� is the set {�⇢e1, ⇢e1}. Let E := u�1

µ,�(⇢e1). Again by symmetry, it must be

that, up to a set of null µ-measure, we have u�1
µ,�(�⇢e1) = �E, and µ(E) = µ(�E) = 1/2,

so that ¨
|uµ,�(x)� uµ,�(y)| dµ(x) dµ(y) = ⇢. (6.12)

Moreover,

ˆ
E
|⇢e1 � x|2 dµ(x) =

ˆ
E\B1(re1)

|⇢e1 � x|2 dµ(x) +

ˆ
E\B1(�re1)

|⇢e1 � x|2 dµ(x)

=

ˆ
E\B1(re1)

|⇢e1 � x|2 dµ(x) +

ˆ
(�E)\B1(re1)

|⇢e1 + x|2 dµ(x)

�

ˆ
E\B1(re1)

|⇢e1 � x|2 dµ(x) +

ˆ
(�E)\B1(re1)

|⇢e1 � x|2 dµ(x)

�

ˆ
B1(re1)

|⇢e1 � x|2 dµ(x),

since E \ (�E) is a µ-null set. This yields that

ˆ
|uµ,� � x|2 dµ(x) �

ˆ
B1(re1)

|⇢e1 � x|2 dµ(x) +

ˆ
B1(�re1)

|� ⇢e1 � x|2 dµ(x).
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Combining this with (6.12), we see that we must have, up to a µ-null set, that E = B1(re1).
In other words, the minimizer uµ,� maps B1(re1) to ⇢e1 and B1(�re1) to �⇢e1.

By Theorem 1.7, we must therefore have that

the measure 1
2��re1 +

1
2�re1 is �-shattered, (6.13)

and
the measure µ|B1(re1) is �-cohesive. (6.14)

By Proposition 2.1, the requirement in (6.13) imposes that �  2r. By Proposition 2.7, the
requirement in (6.14) imposes that � � 2�d. Since we assume that r < �d, we have reached
a contradiction.

Step 2. By the result of the previous step, there exist c1, c2, c3 2 Rd and ⌘ > 0 such
that for every i 6= j 2 {1, 2, 3}, we have |ci � cj | � 9⌘, and

⇠ := min
⇣
µ[u�1

µ,�(B⌘(c1))], µ[u
�1
µ,�(B⌘(c2))], µ[u

�1
µ,�(B⌘(c3))]

⌘
> 0. (6.15)

Since the measure µ is absolutely continuous with respect to the Lebesgue measure, there
exists a 1-optimal transport map from µ to µN , which we denote by TN . By Proposition 6.3,
we have ˆ

|uµ,�(x)� uµN ,�(TN (x))| dµ(x)  16MW1(µ, µN ).

In particular, for each i 2 {1, 2, 3}, we have

ˆ
u�1
µ,�(B⌘(ci))

|ci � uµN ,�(TN (x))| dµ(x)  16MW1(µ, µN ) + ⌘µ[u�1
µ,�(B⌘(ci))].

Recall that W1(µ, µN ) tends to zero in probability as N tends to infinity (see for instance
Dudley, 1968). For every " > 0, we can therefore let N be su�ciently large that with
probability at least 1� ", we have

ˆ
u�1
µ,�(B⌘(ci))

|ci � uµN ,�(TN (x))| dµ(x)  2⌘µ[u�1
µ,�(B⌘(ci))].

In particular, by Chebyshev’s inequality,
ˆ
u�1
µ,�(B⌘(ci))

1{|ci�uµN ,�(TN (x))|�4⌘} dµ(x) 
1

2
µ[u�1

µ,�(B⌘(ci))];

that is, ˆ
u�1
µ,�(B⌘(ci))

1{|ci�uµN ,�(TN (x))|<4⌘} dµ(x) �
1

2
µ[u�1

µ,�(B⌘(ci))].

Recalling that TN is an optimal transport map from µ to µN , we see that the left side is
bounded from above by

ˆ
1{|ci�uµN ,�(x)|<4⌘} dµN (x) =

1

N
|{n  N : |ci � uµN ,�(Xn)| < 4⌘}| .
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Recalling also the definition of ⇠, we have shown that, with probability at least 1 � ", the
following holds for every N su�ciently large and i 2 {1, 2, 3}:

1

N
|{n  N : |ci � uµN ,�(Xn)| < 4⌘}| �

⇠

2
.

Since |ci � cj | � 9⌘ for every i 6= j, this yields the desired result, up to a redefinition of
⇠.

To conclude, we give a counterpart to Theorem 1.1 in the case when the two balls are
su�ciently far apart.

Proposition 6.5. Let r > 21�
1
d , µ be the uniform measure on B1(�re1) [ B1(re1) ✓ Rd

,

(Xn)n2N be independent random variables with law µ, and for every integer N � 1, define
the empirical measure

µN :=
1

N

NX

n=1

�Xn .

If � 2 (22�
1
d , 2r), then with high probability, the level sets of uµN ,� are the sets

{Xn, n  N} \B1(�re1) and {Xn, n  N} \B1(re1).

Proof. By Theorem 1.7, the level sets of the function uµ,� are, up to µ-null modifications, the
two balls B1(�re1) and B1(re1), if and only if (6.13) and (6.14) hold. By Proposition 2.1,
the first condition holds whenever � < 2r, and by Proposition 2.7, the second condition
holds whenever � > 2 ·21�

1
d . The result then follows by an application of Theorem 1.10.

7. Technical lemmas

In this section we collect a few additional technical lemmas to avoid distracting from the
flow of the paper.

Lemma 7.1. Let µ be a finite Borel measure on Rd
. Let u1, u2 : Rd

! Rd
be such

that u1(x) = u2(x) for µ-a.e. x, and let A1, A2 ✓ Rd
be Borel sets such that, for each

i = 1, 2, we have µ(Rd
\ Ai) = 0 and Vui,x \ Ai is µ-regular for µ-a.e. x. If we define

E
(i)(x) := Cµ(Vui,x \Ai), then E

(1)(x) = E
(2)(x) for µ-a.e. x.

Proof. Let B be the set of all x 2 Rd such that u1(x) = u2(x). Note that µ(A1 \A2 \B) =
µ(Rd). Let x 2 A1 \A2 \B. We claim that E(1)(x) = E

(2)(x). We consider two cases.
First, suppose that there is some i such that µ(Vui,x) > 0, and assume wlog that i = 1.

Then we have Vu1,x\B = {y 2 B : u1(x) = u1(y)} = {y 2 B : u2(x) = u2(x)} = Vu2,x\B,
since u1(z) = u2(z) for all z 2 B. Since µ(Rd

\B) = 0, this implies that Cµ(Vui,x \Ai) does
not depend on i, since changing a positive-measure set by a set of measure zero does not
change its centroid.

On the other hand, if x is such that µ(Vu1,x) = µ(Vu2,x) = 0, then Vui,x \ Ai = {x} for
each i by µ-regularity, and hence Cµ(Vu,x \Ai) = x for each i.

Thus we have shown that the set of x such that E
(1)(x) 6= E

(2)(x) is contained in
Rd

\ (A1 \A2 \B), which has µ-measure 0.
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Lemma 7.2. For any finite Borel measure µ and any � � 0, the function Jµ,� : L2(µ;Rd) !
R defined in (1.2) is continuous.

Proof. Let u1, u2 2 L2(µ;Rd). We have by the triangle, reverse triangle, and Cauchy–
Schwarz inequalities that

����
¨

|u1(x)� u1(y)| dµ(x) dµ(y)�

¨
|u2(x)� u2(y)| dµ(x) dµ(y)

����



¨
(|u1(x)� u2(x)|+ |u1(y)� u2(y)|) dµ(x) dµ(y)  2µ(Rd)3/2ku1 � u2kL2(µ;Rd).

Similarly, we have

����
ˆ

|u1(x)� x|2 dµ(x)�

ˆ
|u2(x)� x|2 dµ(x)

����

 2

ˆ
|u1(x)� u2(x)|

2 dµ(x)  2ku1 � u2k
2
L2(µ;Rd).

Together, the last two displays imply that Jµ,� is continuous.
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Luis A. Santaló. Integral geometry and geometric probability. Addison-Wesley Publishing
Co., Reading, Mass.-London-Amsterdam, 1976.

Defeng Sun, Kim-Chuan Toh, and Yancheng Yuan. Convex clustering: model, theoretical
guarantee and e�cient algorithm. J. Mach. Learn. Res., 22:Paper No. 9, 32, 2021.

Kean Ming Tan and Daniela Witten. Statistical properties of convex clustering. Electron. J.
Stat., 9(2):2324–2347, 2015.

Changbo Zhu, Huan Xu, Chenlei Leng, and Shuicheng Yan. Convex optimization procedure
for clustering: Theoretical revisit. In Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information

Processing Systems 27: Annual Conference on Neural Information Processing Systems

2014, December 8-13 2014, Montreal, Quebec, Canada, page 1619–1627, 2014.

40

https://sites.google.com/site/panchenkomath/
https://sites.google.com/site/panchenkomath/
ftp://ftp.esat.kuleuven.ac.be/sista/kpelckma/ccs_pelckmans2005.pdf
ftp://ftp.esat.kuleuven.ac.be/sista/kpelckma/ccs_pelckmans2005.pdf

	Introduction
	Sum-of-norms clustering
	The stochastic ball model
	The structure of clusters
	Stability of the clusters

	Examples
	Numerical experiments
	Polygons
	 for a ball

	KKT characterization of the minimizer
	Exact characterization of the clusters
	Stability properties
	Stability of 
	Stability of *
	Proofs of Theorems 1.10 and 1.1

	Technical lemmas

