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Abstract

Sodic volcano-plutonic terranes in the Archean can be well preserved, but why oxidized S-
rich sodic magmas and porphyry-type Cu-Au deposits are so rare remains poorly
understood. Here we addressed this issue by measuring the S concentration and S¢/zS
ratio of primary apatite grains in >2.7 Ga felsic volcanic rocks from the well-characterized
Neoarchean Abitibi Greenstone Belt of the Superior Province, Canada. Whereas apatite
grains in most samples contain low-S concentrations (<0.01 wt%, n = 24), a few apatite
samples are S-rich (0.14 = 0.03 wt%, 10) and have low-S®*/3S ratios (0.56 £ 0.17; 10, n = 4).
Samples with S-poor apatite have variable whole-rock La/Yb ratios (generally <30) and
zircon 10 000*(Eu/Eu*)/Yb ratios of 11 + 8 (10), which may be products of plume-driven or
over-thickened crustal melting. In contrast, the samples with S-rich apatite have elevated
La/Yb ratios of 49 = 15 (10), zircon 10 000*(Eu/Eun*)/Yb ratios of 26 = 7 (10), and zircon 50
values of 5.8 + 0.1 %o (10), consistent with a deep, hydrous and homogeneous mantle-like
source for the melts dominated by amphibole + garnet fractionation that is reminiscent of
subduction-like process. These are the first reported results documenting the
predominant accommodation of relatively reduced S in S-rich apatite grains crystallized
from terrestrial silicate melts, possibly reflecting slight oxidation associated with the
hydration of Neoarchean mantle and crystal fractionation over the magma evolution. The
more common S-poor apatite data suggest that suppressed oxidation of the parental sodic
magmas led to weak S emission from Earth’s interior to its evolving surface, explaining the
rarity of porphyry-type Cu deposits in >2.7 Ga Archean sodic volcano-plutonic terranes.

Neoarchean, apatite, oxidation state, melt S, porphyry Cu deposit

Introduction

Subduction zones are the primary loci for chemical exchange among the atmosphere,
ocean, lithosphere, and mantle, whereby subduction of hydrated oceanic crust and its
sedimentary veneer leads to flux melting of the overlying mantle wedge and generation of
arc plutonism and volcanism (Richards 2011). One important consequence of this
complex sequence of mass transfer events is the formation of magmatic-hydrothermal ore
deposits of the porphyry-type enriched in Cu = Au = Mo (Sillitoe 2010; Richards

2011; Audétat and Simon 2012). Petrological and geochemical proxies suggest that
subduction-like processes may have operated since 3.0 Ga or earlier (Dhuime et al. 2012),
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but their extent and duration were likely limited due to the low rheological strength of
subducting slabs in a hotter, melt-rich Archean mantle (Sizova et al. 2010; Moyen and van
Hunen 2012; Laurent et al. 2014). Oxidized S-rich magmas have recently been identified to
correlate with subduction events during the later stages of Archean cratonization in the
southeastern Superior Province (<2.7 Ga; Meng et al. 2022). Prior to the later stages of
Archean cratonization (>2.7 Ga of the southeastern Superior Province), short-term
episodic proto-subduction (~5 Myr) is suggested to have operated based on evidence from
whole-rock geochemistry and numerical modeling (Wyman and Kerrich 2009; Moyen and
van Hunen 2012). However, it remains unclear as to whether oxidized S-rich sodic magmas
and porphyry Cu deposits could have formed before ~2.7 Ga in the Archean.

In this study, we investigated the redox state of sodic magmas formed between ~2750-
2695 Ma in the Neoarchean Abitibi Greenstone Belt of the southeastern Superior Province
(Fig. 1a) (Mole et al. 2021; Meng et al. 2021a, 2022). This belt comprises arc-like, calc-
alkaline-dominated volcanic sequences intercalated with dominantly tholeiitic + komatiitic
assemblages that formed as a part of the assembly of volcano-plutonic terranes from
~2750-2695 Ma prior to interpreted subduction-collision since ~2695 Ma (Figs. 1a and 1b)
(Thurston et al. 2008; Beakhouse 2011; Meng et al. 2021a; Mole et al. 2021). We measured
the sulfur (S) concentration and relative abundances of S®, S*, and S?" in apatite
[Cas(PO4)s(F,OH,Cl)], of which the S is incorporated during apatite crystallization from
silicate melts (Kim et al. 2022) that are faithfully preserved due to being armored in zircon.
Previous studies reported low-S®*/ZS ratios in magmatic apatite grains from the lunar
basalts and ~2.35 Ga Na-rich tonalite-trondhjemite-granite (TTG), but the S concentrations
in these apatite grains are generally low (Brounce et al. 2019; Moreira et al. 2023). In
contrast, apatites with high-S concentrations but negligible S®* and dominant S** and

S2" have only been reported where hydrothermal replacement processes are evident
(Sadove et al. 2019). The results presented here reveal, instead, the rare presence of
pristine S-rich apatite with relatively low S®*/ZS ratios. Our results suggest, therefore, that
the rarity of porphyry-type Cu deposits in well-preserved Archean volcano-plutonic
terranes might be attributed to the limited extent and duration of the proto-subduction
process with low productivity of oxidized S-rich arc magmas.

Figure 1.
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(a) Tectonomagmatic setting in Abitibi Greenstone Belt
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The tectonomagmatic setting and geological map of the Abitibi Greenstone Belt in the
southeastern Superior Province, along with the spatial distribution of samples with
measured zircon 3'®0 values. (a) Tectonomagmatic setting (Meng et al. 2021a and
references therein); (b) lithology (Montsion et al. 2018); (c¢) zircon 30 isotopic value
[reprocessed with the previously published data sets from Mole et al. (2021)]. (Color
online.)

Samples and Methods

The Neoarchean Abitibi Greenstone Belt comprises ~2.75-2.67 Ga east-trending volcano-
plutonic assemblages that preserve the following magmatic record: (1) pre-tectonic sodic
volcanic rocks and the tonalite-trondhjemite-diorite thought to have formed from “plume-
arc” interaction or episodic short-term subduction; (2) early syn-tectonic tonalite-
granodiorite and minor volcanic rocks derived from melting of subducted slabs; (3) syn- to
late-tectonic sanukitoid suites (sensu lato); and (4) late-tectonic alkalic rocks (i.e., syenite
suites) derived from a metasomatized mantle (Percival 2007; Thurston et al.

2008; Beakhouse 2011; Dubé and Mercier-Langevin 2020; Meng et al. 2021a; Mole et al.
2021). The syn- to late-tectonic sodic and potassic rocks that are interpreted to formin
subduction-collision settings contain S-rich apatite grains with high-S®*/2S ratios,
reflecting their oxidized S-rich feature of the magmas (Fig. 1a) (Meng et al. 2022). In
comparison, the pre-tectonic (i.e., pre-deformation, foliated) sodic volcano-plutonic rocks
are of significant interest because they are much more abundant, with some interpreted to
have formed in a short-term episodic subduction setting (Wyman and Kerrich 2009; Moyen
and van Hunen 2012).

Twenty-eight zircon separate samples of pre-tectonic (i.e., >2695 Ma) volcanic rocks of
dacitic to rhyolitic composition were previously collected from the Abitibi Greenstone Belt
(Online Materials® Table S1). These samples yielded narrow ranges of zircon gHf(t) and 50
values, based on our previous studies (i.e.,+3.1 to +4.9 and 4.2 to 6.2%o respectively;

Fig. 1c; Online Materials’ Table S1) (Mole et al. 2021). We defined “arc-like” features as the
enrichment of fluid-mobile elements (e.g., large-ion lithophile, U, and light rare earth
elements [LREE]) and relative depletion of high field strength elements (e.g., Nb, Y, heavy
rare earth elements [HREE]) (Richards 2011), which importantly can be recorded in zircon
geochemistry (Grimes et al. 2015), as discussed below. These inferred arc-like rocks are
distinguished by their high-Ui/Nb ratios of 240 from the mantle-derived magmas with Ui/Nb
ratios of <40 using the previously proposed discrimination criteria (Grimes et al.

2015; Drabon et al. 2021), in which U; represents the initial U concentrations in the zircon
grains at the time of crystallization (Online Materials® Table S1).

Apatite inclusions in the mounted zircon grains used in Mole et al. (2021) were identified
using a scanning electron microscope equipped with an energy-dispersive spectrometer
(SEM-EDS) at Laurentian University (Sudbury, Canada). The S concentration and peak
integrated areas of S¢, S**, and S* in primary apatite inclusions were measured using an
electron microprobe analyzer (EMPA) in the GeolLabs of the Ontario Geological Survey
(Sudbury, Canada) and synchrotron-based micro-X-ray absorption near-edge structure
spectroscopy (U-XANES) at S K-edge at Advanced Photon Sources (lllinois, U.S.A.). The
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archived samples for representative volcanic rocks were reused for lithogeochemical
analyses at Australian Laboratory Services (ALS, Vancouver, Canada). Details of the
methods for EMPA, u-XANES, and whole-rock geochemistry are provided in Online
Materials’.

Results

The monophase, equant to sub-equant apatite inclusions hosted in zircon grains with
oscillatory or sector zoning were divided into two groups based on their S concentration
(Table 1; Fig. 2). Group-l apatite grains yielded S concentrations of 0.14 £ 0.03 wt% and
S8*/3S ratios of 0.56 £ 0.17 (10; Tables 1 and 2; Fig. 2), while Group-l whole rock samples
have La/Yb ratios of 49 + 15 (10), zircon 1000-(Eu/Eu*)/Yb ratios of 26 + 7, and mantle-like
zircon 5'80 isotopic values of 5.8 + 0.1%o (10; Table 1; Fig. 2). In contrast, Group-Il apatite
grains yielded S contents of <0.01 wt%, which incidentally, were too low for XANES to
measure the abundances of S¢, S*, and S?. For these Group-ll samples, the whole-rock
samples hosting Group-Il apatite yielded variable zircon 50 values of 4.0-6.5 %o, as well
as La/Yb ratios and zircon 1000-(Eu/Eu*)/Yb ratios that skew to low values of <30 (except
for one sample with a ratio of 49) and 11 = 8, respectively (1c; Table 1; Online

Materials’ Tables S1 and S2; Fig. 2).

Table 1.

Information for representative pre-tectonic volcanic samples from the Abitibi Greenstone
Belt, Canada

Sam Rock Zirc Apatite Zircon® w
ple type on hol
no. U- e-
Pb ro
age® ck
S 1 5’ 1 10 1 A 1 La/
( c 80 o 00 c F c Yb
w ( 0 M rat
t %o (Eu Q io
% ) /E
) u*)
Y
b

93H Volca 273 0. 0 5. 0 27 9 0 0 N/
NB- nic 01 1 . 9 . 9 . . . A
208 tuff .0 7 0 3 4 8 6

1 3 0


javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

Sam
ple
no.

96JA

041

96JA

011

06-
BRB-
246

Aver
age

Rock
type

Felsic
volca
nic

Felsic
volca
nic

Quart

phyric
volca
nic

Zirc
on

Pb
age?®

Apatite
S 1
( (o]
w
t
%
)
6
8
0. 0
1 .
2 0
3 5
3
0. 0
1 .
4 0
5 8
4
0. 0
1 .
0 0
9 0
0
0.
1
4

Zircon®

o' 1
;o) o
(

%o

)

5. 0
8

5. 0
9

5. 0
7

5.

8

30.

29.

26.

o °

N

w -

hol

ro
ck

La/
Yb
rat

38

59

N/

49



Sam
ple
no.

1o

92H
NB-
0083

94H
NBO
059

96JA

086

Rock
type

Zirc
on

Pb
age?®

Apatite

~ ﬁEAm

°oo

=

Zircon®

&' 1
80 (o}
(

%0

)

0.

1

=

oOXTpb

=

Samples with low-S apatite and arc-like zircon Ui//Nb ratios of 240

Felsic
Lapilli
tuff

Rhyoli
te
Llapilli
tuff

Felsic
Lapilli
tuff

270
12
3

coo

N
w

©® o oo

-

o o

5. 0
7
4. 0
9
5. 0
5

12.

4.7

4

-

o -

o e

o -

hol

ro
ck

La/
Yb
rat

15

N/

N/

10



Sam
ple
no.

98JA

0019

82-8

93H
NB-
087A

C88-
17

Rock
type

Felsic
tuff
brecc
ia

Dacit
e tuff

Felsic
Llapilli
tuff

Rhyoli
te

Zirc
on

Pb
age?®

273
1+2

Apatite

S 1

( (o]

w

t

%

)

0. N

0 /

0 A

0

BD

L

0. 0

0 .

1 0

4 0
2

0. 0

0 .

3 0

9 3
3

0. 0

0 .

0 0

4 0

-

Zircon®

o' 1
;o) o
(

%o

)

5. 0
5

5. 0
2

5. 0
6

5. 0
5

23.

5.3

=

OXTPb

o -

=

w -

hol

ro
ck

La/
Yb
rat

20

49

N/

10



Sam
ple
no.

93H

94H
NB-
0281

82-7

Rock
type

Felsic
tuff

Felsic
tuff

Rhyoli
te

Daciti
c flow

Zirc
on

Pb

age?®

272

272
10

Apatite

S 1

( (o]

w

t

%

)

0. 0

0 .

1 0

2 0
9

0. N

0 /

0 A

0

BD

L

0. N

0 /

0 A

0

BD

L

0. 0

0 .

0 0

8 0

-

Zircon®

o' 1
;o) o
(

%o

)

5. 0
7

5. 0
7

5. 0
1

5. 0
8

6.2

=

oOXTpb

W -

=

hol

ro
ck

La/
Yb
rat

N/

18

N/

N/



Sam
ple
no.

94H
NB-
0115

96TB
082

LAPL

146-
2000

03A
SPO
179.
1.1

Rock
type

Felds
par-

quart
z tuff

Dacit

brecc

Rhyo
dacit

Rhyoli
te

Zirc
on

Pb
age?®

270

270

269

Apatite
S 1
( (o]
w
t
%
)
0. 0
0 .
0 0
6 0
BD 6
L
0. 0
0 .
1 0
2 0
2
0. 0
0 .
0 0
4 0
BD 1
L
0. 0
0 .
0 0
4 0

-

Zircon®

o' 1
;o) o
(

%o

)

5. 0
5

5. 0
7

4. 0
8

4. 0
7

9.8

3.2

4.1

OXTPb

=

o

hol

ro
ck

La/
Yb
rat

N/

N/

17



Sam
ple
no.

95H
NB-
0273

SGN

Bou
sque
t2

SGN
099-
10

94H
NB-
267

Rock
type

Felsic
volca
nic

Rhyoli
te

Rhyoli
te

Quart

phyric
volca
nic

Zirc
on

Pb
age?®

Apatite
S 1
( (o]
w
t
%
)
0. 0
0 .
1 0
4 0
0
0. 0
0 .
0 0
0 0
BD O
L
0. 0
0 .
0 0
6 0
BD O
L
0. 0
0 .
0 0
7 1

L)
O

Zircon®

o' 1
;o) o
(

%o

)

6. 0
2

4. 0
6

5. 0
2

5. 0
7

3.7

1.3

N/

=

~

~

=

~

~

~

hol

ro
ck

La/
Yb
rat

N/

26

N/



Sam Rock Zirc Apatite Zircon®

ple type on
no. U-
Pb
age®
S 1 &' 1 10 1 A 1
( c 80 o 00 (o} F (o}
w ( 0- M
t %o (Eu Q
% ) /E
) u*)
Y
b
C83- Daciti 272 0. 0 6 0 N/ N N N
16 c tuff 9+3 0 1 A / / /
.0 0 0 2 A A A
7 0
BD O
L
Aver 0. 5. 11. 0
age 0 4 4 .
0 0
8
1o 0. 0. 7.6 0
0 4
0 5
9

Samples with low-S apatite and low-zircon Ui//Nb ratios of <40

R-16 Rhyoli 270 0. 0 5. 0 2.4 0 1 0
te tuff 6+2 0 . 7 . 70 .

.0 1 0 2 7 1 5

0 1 5 9 6

hol

ro
ck

La/
Yb
rat

N/

18

14



Sam Rock Zirc Apatite Zircon® w

ple type on hol
no. U- e-
Pb ro
age? ck
S 1 &' 1 10 1 A 1 La/
( c 80 o 00 (o} F (o} Yb
w ( 0 M rat
t %o (Eu Q io
% ) /E
) u*)
Y
b
SGN Dacit 270 0. 0 5 0 6.4 5 - 0
O- e tuff 6+3 0 3 . 64 0
2005 3 0 0 3 1 4
-02 3 0 3 4 1
BD 3 8 4
L
SGN Rhyoli 269 0. N 4. 0 2.1 0 0 0
@] te 7%0 0 / 2 68 .
2001 .8 0 A 1 5 9 4
-07 0 4 1 2

w
o
()]

-

SGN Rhyoli 269 0. 0 4 0 2.4 0 1 0 10
@) te 61 0 3 09 .
2000 1 0 0 1 8 2 3
-08 3 0 0 0 4
BD 0 9

-

Notes: The filtered trace element data were used for calculating 10 000 - (Eu/Eu*)/Yb and
AFMQ values (Loucks et al. 2020; Loucks and Fiorentini 2023). Abbreviations: BDL = below
the detection limit (0.012 wt% for EMPA apatite S concentration).

2The zircon U-Pb ages of the studied volcanic rocks were analyzed using ID-TIMS and LA-
MC-ICP-MS methods [see the compilation in Mole et al. (2021)]. Error type is 2 standard
errors.
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b Zircon O isotopes and trace element data were filtered from the original data set in Mole
et al. (2021) using the following criteria: (1) La content <1 ppm; (2) LREE Index (LREE-

1) = (Dy/Nd) + (Dy/Sm) >10; (3) Ti content > detection limit and <50 ppm; (4) age
discordance <10% (Lu 2016; Bell et al. 2016; Meng et al. 2021a).
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The normalized pu-XANES spectra at S K-edge for the S-rich apatite grains as well as the
analyzed apatite S concentration vs. (b) whole-rock La/Yb ratios, (¢) zircon 10

000 - (Eu/Eu*)/Yb ratios (a proxy of magma hydration state, see Loucks and Fiorentini
2023), and (d) zircon 880 values from the >2695 Ma volcanic rocks in the Abitibi
Greenstone Belt (from Mole et al. 2021). Group-1 and Group-Il apatite grains and the host
rocks are shown in red and blue, respectively. The mantle value for zircon O isotopes is
5.3+ 0.3wt% (10; Valley et al. 1998). The apatite data for intrusive rocks were reported by
Meng et al. (2022). The S concentrations in primary apatite grains from syn-mineralization
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intrusive rocks for porphyry Cu deposits are compiled in Online Materials® Table S5. Note
that the zircon 8'®0 values and 10 000-(Eu/Eu*)/Yb ratios are recalculated based on data
sets reported by Mole et al. (2021). Error bars represent standard deviation. (Color online.)
Table 2.

Estimates of AFMQ values and melt S concentrations for the samples with S-rich apatite
grains from Abitibi Greenstone Belt, Canada
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S R S 1 AFMQ (S-in-apatite Model melt S content
a o 6 o oxybarometer) (Meng et al. 2021b)
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Notes: The AFMQ values are estimated using the S-in-apatite oxybarometer (Konecke et al.
2019), whereas the melt S concentrations are estimated using the model for the
partitioning of S between apatite and melt using existing apatite/melt partition coefficient
values as function of magmatic fO2 and temperature (Parat and Holtz 2004; Konecke et al.
2019; Meng et al. 2021b). The zircon-hosted apatite crystals from the volcanic rocks are
assumed to crystallize at pressure over a range from that for the pre-tectonic TTG batholith
(8300-700 MPa and locally 100 MPa; Beakhouse et al. 2005, 2011) to near-atmospheric
pressure. The modeled range of temperature (892 + 49 °C; 10, n =1372) is estimated using



javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

the apatite saturation thermometer (Piccoli and Candela 2002). The standard deviations
for the corrected magmatic fO2 in AFMQ involve the intra-sample standard deviation and
those derived for the pressure and temperature estimation. For simplicity, the standard
deviation of intra-sample apatite S®*/2S ratios is not considered in estimating the melt S
concentration. See details of the relevant methods in Online Materials’.

The S®/ZS ratio in apatite varies systematically with the oxygen fugacity (fO2) of the
magmatic system as demonstrated experimentally by Konecke et al. (2019), whereas the S
concentration in apatite is a function of magmatic fO2, crystallization temperature, and S
concentration of the melt (Parat and Holtz 2004; Konecke et al. 2019; Meng et al. 2021Db).
Magmatic fO2, expressed here as AFMQ values, were estimated using the calculated
S8*/2S ratios and the P-T-corrected S-in-apatite oxybarometer (Online Materials?). The
results yielded a relatively low average AFMQ value of 0.80 +0.16t0 1.26 £ 0.16 (10) for
Group-l apatite (Table 2). A model for the partitioning of S between apatite and melt

(DSap/m) using existing apatite/melt partition coefficient values as a function of
magmatic fO2 and temperature (Meng et al. 2021b) was used to calculate a model S
concentration of 0.11-0.34 wt% in the silicate melt at the time of crystallization of Group-|
apatite (Table 2).

Discussion

Formation of unusual sulfide-rich apatite

Historic studies used a mass-balance approach with EPMA-determined concentrations of
S and other cations in apatite, as required for coupled substitutions, to hypothesize that
S8 is the dominant S species in the apatite structure (Konecke et al. 2019 and references
therein). However, recent studies using S-p-XANES demonstrate that the multiple
oxidation states of S, including S®, S*, S° S', and S?7, are instead incorporated into apatite
crystallized from hydrothermal fluids (Sadove et al. 2019), hosted in lunar basalts (Brounce
et al. 2019), as well as those formed in both experimental and terrestrial silicate melts
(Konecke et al. 2019; Kim et al. 2022; Meng et al. 2021a, 2021b, 2022). Previous
experimental and empirical studies for magmatic systems generally reported high-S®*/2S
ratios in apatite with a strong positive correlation between their S®*/ZS ratio and S contents,
in agreement with experimental data for silicate melts that document higher
concentrations of S than S* coupled with high fO2 (Konecke et al. 2019; Tassara et al.
2020; Meng et al. 2021a, 2021b, 2022; Moreira et al. 2023). In contrast to the previous
studies suggesting covariance of S#*/2S ratio and S concentrations in magmatic apatite,
the S-p-XANES data reported here are the first to our knowledge to reveal that S-rich
igneous apatite with low-S®/ZS ratios of ~0.5 crystallized under fO2 conditions of ~AFMQ
+1 where the S%/ZS ratio of the silicate melt is ~0.1 (Kleinsasser et al. 2022, 2024).
Compared to silicate melt, apatite preferentially incorporates sulfate (S®*) rather than the
reduced-intermediate redox state of S (e.g., S*, S*, S™) (Konecke et al. 2019). The range of
the model S concentration in the melts overlaps the maximum values of S content at
sulfide saturation (SCSS) for basaltic to dacitic silicate melts (0.1-0.2 wt%) (Kleinsasser

et al. 2022). Hence, the S*/2S ratio of ~0.5 and high-S concentration of apatite in Group-I
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samples can only be explained by the crystallization of apatite from sulfide-saturated
silicate melts where the SCSS is at its maximum value. This inferred sulfide saturation at
the time of apatite crystallization is preserved in the form of pyrrhotite (Feo.s3S; based on
EDS data) inclusion exposed in zircon-hosted apatite grains in the Group-l sample (sample
93HNB-208; Online Materials® Fig. S1g).

Origin of the >2.7 Ga arc-like magmas

The high-zircon Ui/Nb ratio of 240 is interpreted to reflect fluid-mobile element enrichment
in the source region and/or relative depletion of immobile elements during the crystal
fractionation (e.g., garnet, amphibole) (Grimes et al. 2015; Drabon et al. 2021). These
samples can be grouped with respect to the apatite S concentrations. The high whole-rock
La/Yb and zircon (Eu/Eu*)/Yb ratios for Group-l samples reflect a deep source and hydrous
state for the sodic magmas (Moyen 2009; Loucks and Fiorentini 2023), which may be
formed from either partial melting of subducting slab or metasomatized mantle (Moyen
and van Hunen 2012), remelting of thickened hydrated mafic crust (Bédard 2018; Mole

et al. 2021), or plagioclase + amphibole fractionation of parental tonalitic liquids from
basalt melting (Laurent et al. 2020). The slightly elevated AFMQ value of +0.7-1.4
estimated using the S-in-apatite oxybarometer for Group-I samples is more consistent with
the former two models because: (1) slab-derived fluids are capable of oxidizing the mantle
in the Archean (Meng et al. 2022); (2) magmas can be further oxidized during fluid-
undersaturated magma differentiation at Moho-vicinity depths (Loucks and Fiorentini
2023); or (3) crystallization of significant amounts of garnet slightly increases reduced
magmas in the fO2 value by 0.8 log unit (Tang et al. 2018, Holycross and Cottrell 2023).
The high 1000 - (Eu/Eu*)/Yb ratios of the zircon grains indicate suppression of Eu depletion
in plagioclase-undersaturated silicate melt or Yb depletion due to hornblende
crystallization during zircon precipitation (Loucks and Fiorentini 2023). The crystallization
of hydrous amphibole, as well as suppression of anhydrous plagioclase crystallization,
indicate elevated H,O concentrations in the magmas. The high 1000-(Eu/Eu*)/Yb ratios
with mantle-like O isotopic values, therefore, indicate relatively hydrous magmas formed
by hydration of the mantle-like source regions in a subduction-like setting (Fig. 3a),
consistent with the previously proposed episodic subduction-like process (Moyen and van
Hunen 2012). Fluids released from the subducted slab, without interaction with
sediments, plausibly oxidize the mantle source by hydrogen incorporation in the
surrounding mantle (e.g., orthopyroxene) coupled with H,O dissociation (Tollan and
Hermann 2019). The estimated S concentration of 0.11-0.34 wt% in the evolved silicate
melt represents the lower limit of the S concentration in the parental magmas due to
sulfide saturation during magma differentiation. The high-S concentration in the parental
magmas with limited oxidation state could be attributed in part to the active upwelling of
sulfide-saturated Archean mantle during the frequent slab breakoff or contamination by a
lower crustalreservoir enriched in reduced S (e.g., mafic cumulate).

Figure 3.
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Schematic diagrams (a and b) illustrating the tectonomagmatic models for the Abitibi
Greenstone Belt of the southeastern Superior Province with (¢) whole-rock MgO contents
vs. La/Yb ratio and Cu concentration (n = 2091 and 1873, respectively) for the sodic
magmas. The symbols in ¢ represent the average value with 2 standard errors. Note that
the whole-rock geochemistry data were compiled by Mole et al. (2021) and are
reprocessed following the method in Online Materials’. The data plotted in panel c were
filtered using criteria as follows: (1) SiO, <75 wt%; (2) loss on ignition (LOI) £2 wt%; (3)
K2O/Na,0 <0.6 (Online Materials' Table S4). (Color Online.)

The observed increase in magmatic fO2 values with further magma cooling, as estimated
from the zircon oxybarometer (Online Materials® Fig. S2), may be attributed to: (1) either
the increase in the Fe®'/Fe?" ratio of the melt during fluid-unsaturated fractionation of
ferromagnesian silicates (Ulmer et al. 2018); or (2) decompression-driven exsolution of
hydrothermal fluids (Bell and Simon 2011; Loucks and Fiorentini 2023). Exsolution of

SO, from the sulfide-rich magmas would reduce vs. increase the magmatic fO2 (Métrich
et al. 2009), so we suggest that the increase in magmatic fO2 with cooling is more
consistent with the fractionation of ferromagnesian silicates.

The exceptionally rare occurrence of >2.7 Ga arc-type sodic magmas with high-apatite S
concentrations and low-S®/2S ratios (Fig. 2) may be interpreted to suggest the
aforementioned oxidation process was merely localized and insufficient. In contrast, most
of the other arc-like samples (Group-ll) yielded relatively low apatite S concentrations,
below the detection limit (0.012 wt%), as well as zircon (Eu/Eu*)/Yb ratios and whole-rock
La/Yb ratios skewing to lower values. The geochemical features for Group-Ill samples were
more consistent with their derivation from shallow intra-crustal melting of a mafic source
or plagioclase + amphibole differentiation of basalt-derived parental liquids (Fig. 3b),
which could explain the relatively dry (as manifested by the generally lower zircon
[Eu/Eu*]/Yb ratios) and reduced redox state of the sodic magmas (AFMQ value of 0.0 £ 0.5
on average estimated using zircon geochemistry; Table 1).

Ore-forming potential of the >2.7 Ga sodic magmas
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Plots of the whole-rock data for the sodic igheous rocks from the Abitibi subprovince

(Fig. 3c; Online Materials® Table S4) reveal that: (1) less evolved sodic magmas (MgO
content >4 wt%; a proxy for magma differentiation) yield Cu concentration of ~50 ppm,
which is comparable to Phanerozoic arc magmas (Richards 2015); and (2) with decreasing
whole-rock MgO content, the whole-rock La/Yb ratio increases and the concentration of
Cu decreases, consistent with loss of Cu to magmatic sulfides during amphibole+garnet-
dominated fractionation or by early volatile exsolution (Fig. 3c). Magmatic sulfides in
hydrous upper crustal magma reservoirs are thought to be capable of temporarily retaining
S and Cu that can subsequently be destabilized by the exsolved magmatic-hydrothermal
fluids (Audétat and Simon 2012; Chelle-Michou and Rottier 2021) in tandem with a
concomitantincrease in magmatic fO2 (Loucks and Fiorentini 2023). We suggest this
scenario might have operated locally by considering the rare occurrence of slightly
oxidized and S-rich magmas with sulfide-rich apatite grains. In comparison, for most of the
relatively dry, reduced pre-tectonic sodic magmas, the S-poor apatite grains may reflect
sulfide saturation at a greater depth (e.g., lower crust) and/or the ineffective capacity of
many relatively dry sodic magmas to exsolve oxidized S-rich hydrothermal fluids. Because
syn-mineralization magmas associated with medium- to large-size porphyry-type Cu
deposits typically yielded AFMQ values of +1 to +2 and S-bearing apatite grains (S content
>0.02 wt%; Fig. 2; Online Materials’ Table S5), we suggest that the pre-tectonic sodic
magmas, including those with arc affinity may have limited, although not totally excluded
(e.g., Coté gold; Katz et al. 2021), the formation of porphyry-type Cu deposits in the
Archean Greenstone Belt.

Implications

The results presented here demonstrate the presence of S-rich apatite grains with a low-
S¢*/2S ratio crystallized from >2.7 Ga slightly oxidized and S-rich terrestrial silicate melts,
which may have formed in association with the short-lived proto-subduction in the
Neoarchean Abitibi Greenstone Belt. In contrast, most of the >2.7 Ga pre-tectonic arc-like
igneous rocks, as classified using zircon Ui/Nb ratios of 240, yielded S-poor apatite grains
that may reflect relatively reduced or S-poor features of the magmas. The results indicate
either local or weak emission of oxidized S from sodic magma reservoirs to the near-
surface environment during early Earth’s history. These conclusions can explain the rarity
of porphyry-type Cu deposits associated with syn-volcanic TTG rocks that were prevalent
in >2.7 Ga in the Abitibi Greenstone Belt and possibly in other cratons.
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