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Abstract

We consider an active learning setting where a learner is presented with a pool S of n unlabeled
examples belonging to a domain X and asks queries to find the underlying labeling that agrees with
a target concept h* € H.

In contrast to traditional active learning that queries a single example for its label, we study
more general region queries that allow the learner to pick a subset of the domain 7" C X and a
target label y and ask a labeler whether h*(x) = y for every example in the set 7N .S. Such more
powerful queries allow us to bypass the limitations of traditional active learning and use significantly
fewer rounds of interactions to learn but can potentially lead to a significantly more complex query
language. Our main contribution is quantifying the trade-off between the number of queries and the
complexity of the query language used by the learner.

We measure the complexity of the region queries via the VC dimension of the family of regions.
We show that given any hypothesis class H with VC dimension d, one can design a region query
family @ with VC dimension O(d) such that for every set of n examples S C X" and every h* € H,
a learner can submit O(dlogn) queries from @ to a labeler and perfectly label S. We show a
matching lower bound by designing a hypothesis class H with VC dimension d and a dataset S C X
of size n such that any learning algorithm using any query class with VC dimension less than O(d)
must make poly(n) queries to label S perfectly.

Finally, we focus on well-studied hypothesis classes including unions of intervals, high-
dimensional boxes, and d-dimensional halfspaces, and obtain stronger results. In particular, we
design learning algorithms that (i) are computationally efficient and (ii) work even when the queries
are not answered based on the learner’s pool of examples .S but on some unknown superset L of .S.
Keywords: Active Learning, Region Queries, Efficient Algorithms

1. Introduction

Acquiring labeled examples is often challenging in applications as querying either human annotators
or powerful pre-trained models is time consuming and/or expensive. Active learning aims to minimize
the number of labeled examples required for a task by allowing the learner to adaptively select for
which examples they want to obtain labels. More precisely, in pool-based active learning, the learner
has to infer all labels of a pool S of n unlabeled examples, and can adaptively select an example
x € S and ask for its label.

Even though it is known that active learning can exponentially reduce the number of required
labels, this is unfortunately only true in very idealized settings such as datasets labeled by one-
dimensional thresholds or structured high-dimensional instances (e.g., Gaussian marginals) (Dasgupta
et al., 2005; Balcan et al., 2007; Balcan and Long, 2013; Balcan and Zhang, 2017; Awasthi et al.,
2017). It is well-known that without such distributional assumptions, even in 2 dimensions, linear
classification active learning yields no improvement over passive learning (Dasgupta, 2004, 2005).
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Active Learning with Queries To bypass the hardness results and establish learning without
restrictive distributional assumptions (Balcan and Hanneke, 2012; Kane et al., 2017; Hopkins et al.,
2020b, 2021; Yona et al., 2022; Bressan et al., 2022) introduce enriched queries, where the learner
is allowed to make more complicated queries. In this work we follow this paradigm and aim to
characterize the trade-off between the number of required queries and their complexity. For example,
comparison queries that select two examples and ask which one is closer to the decision boundary
Kane et al. (2017) are simple in the sense that they are very easy to implement but also do not
improve over passive learning beyond 2-dimensional data. On the other extreme, mistake-based
queries such as conditional-class queries (Balcan and Hanneke, 2012) and seed queries (Bressan
et al., 2022), where the learner selects a set of examples from the dataset and requests an example
with a proposed label, allow the learner to label the whole dataset with very few queries but are very
complicated in the sense that each one requires transfering a lot of information from the learner
to the labeler (essentially the learner has to transfer their whole dataset) making them impractical.
Motivated by those gaps in the literature, we ask the following natural question.

Can we design simple query classes that simultaneously lead to active learning algorithms with
low query complexity?

Example: 2-d Halfspaces Consider the 2-dimensional halfspace learning problem shown in
Figure 1. A learner is given a complicated unlabeled dataset S C R? labeled by some unknown
halfspace h* and wants to learn the labels of examples in S. Consider the shadowed region 7" in
Figure 1. There is a significant fraction of examples contained in 7" and all of them have the same
label. If one can verify this fact, then a huge progress is made for the learning task. However, if the
learner can only use label queries, then to verify this fact, every example in this region has to be
queried once. This is why vanilla active learning has a high query complexity. On the other hand, the
region 7" is independent on the dataset S. The structure of 7" is so simple that to describe 1" for the
labeler, the learner only needs to send information about the two halfspaces that define 7. Once the
labeler describes the region 7" for the labeler, the labeler can easily respond to the learner and the
verification problem can be solved in a single round of simple interaction. This implies that a simple
query language may help a lot in learning and motivates the following learning model.

Definition 1 (Active Learning with Region Queries) Let H be a class of binary hypotheses over
a domain X and let h* € H be a true hypothesis that labels the examples in X as positive or
negative. Given a set of n examples S C X, a learner A wants to learn the labels of examples in S
by adaptively submitting region queries to a labeler from a query family Q). In particular, a region
query q = (T, z) € Q consists of a subset T' of X and a label z € {£1}. The labeler has a (possibly
unknown) labeling domain L such that S C L C X and after receiving a query (T, z), answers
whether all examples in L N\'T have label z under the true hypothesis h*.!

We remark that an important feature of region queries is that the query family () is defined indepen-
dently on the dataset S. Such an additional requirement not only captures the feature that checking
whether an example with a given label exists in a region could be much easier than labeling every
example in the region but also captures the features of many other applications such as human
learning (Shanks and John, 1994), theorem proving (Davis et al., 1962) and learning via language
models (Polu and Sutskever, 2020).

1. If LNT = 0, then the labeler can output an arbitrary answer.
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Figure 1: Learning 2-dimensional Halfspaces with Region Queries

2-d Halfspaces (cont.) We now revisit the previous example where a set of n points S C R? are
labeled by some hidden halfspace h* to illustrate how region queries can be used to efficiently obtain
the labels of all examples. It is well-known that (Megiddo, 1985), for any set of n points in R?, one
can compute in O(n) time, two lines that partition these points into 4 regions, each of which contains
at least |n/4] points, see Figure 1. We notice that h* can have at most 2 intersections with the two
lines, which implies at least one of the four regions lies on the one side of h*. Now, if we make region
queries over these four regions, then with at most 8 region queries, we can identify a region 7" as in
Figure 1, which contains only points with the same label and thus label a quarter of S. If we repeat
this process over the remaining examples O(log n) rounds, we successfully infer the label of every
example with O(log n) region queries. In particular, the algorithm used here does not rely on the label
of a single example in the dataset to make an update, and every query used by the algorithm is binary.
Furthermore. the query family Q = {(7, z) | z € {£1}, T is an intersection of two halfspaces} is
predetermined before the learner sees the dataset .S. Thus, no matter how complicated the dataset S
is, in a single round of interaction, the learner only needs to describe the two halfspaces to the labeler
and let the labeler check the answer to the query. This requires sending just 4 numbers plus a binary
label. Motivated by our success in this example we ask:

Given a hypothesis class H, can we design a region query family ), where the region used in a
query comes from a simple set family, such that O(logn) queries suffice to perfectly label every set
of n examples? If this is true, how complicated should the set family be?

1.1. Our results

Characterizing the Complexity of Learning with Region Queries We measure the complexity of
the region query class using the VC dimension of the family of regions. VC dimension characterizes
the capacity of a set family and is one of the most well-studied complexity measures in learning
theory. Queries from a query family with bounded VC dimension can be communicated using few
bits: for a finite domain X, and a set family C' of VC dimension d, communicating a set ¢ € C' only
requires O(d log(|X'])) bits.
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Our first main result shows that if the hypothesis class H has a VC dimension d, we can always
design a simple query family @) with VC dimension at most O(d) and use it to perfectly label any set
of n examples with O(d log n) regions queries. Formally, we have the following theorem.

Theorem 2 Let X be a space of example and ‘H be a hypothesis class over X with VC dimension d.
There is a region query family Q) over X with VC dimension at most 6d and a learning algorithm
A such that for any set of n examples S C X labeled by any true hypothesis h* € H, A makes
O(dlogn) region queries from Q) and correctly label every example in S, if the labeling domain
L=25.

In particular, the O(dlogn) query complexity in Theorem 2 matches the lower bound for the
query complexity of active learning with arbitrary binary-valued queries in Kulkarni et al. (1993)
and thus is essentially information-theoretically optimal. Given Theorem 2, an immediate question
is in general, whether it is possible to quickly learn H with an even simpler query class (with VC
dimension o(d)). Our next main result gives a negative answer firmly. We give a matching lower
bound showing that unless the hypothesis class H has a good structure, a region query family with
VC dimension (d) is necessary to achieve query complexity O(logn). Formally, we have the
following theorem.

Theorem 3 For everyd € N and n > d large enough, there exists a space of examples X and a
hypothesis class H over X with VC dimension d such that there exists a set of n example S such that
for every region query family @QQ over X with VC dim(Q) < (d — 2)/3 and every active learning
algorithm A, there exists a true hypothesis h* € H, such that if A makes less than poly(n) region
queries from @, then with probability at least 1/3, some example x € S is labeled incorrectly by A.
In particular, this even holds when A knows the labeling domain L = S.

Theorem 2 and Theorem 3 together give a perfect trade-off between the complexity of the query
family and the query complexity and thus show that the VC dimension is a good measure for the
performance of region queries. We want to remark that Theorem 3 not only holds in our learning
model where queries are binary but also holds in the stronger model studied in (Balcan and Hanneke,
2012; Bressan et al., 2022), where a counter-example is also returned in each round of interaction.
We also remark that Theorem 3 gives an optimal lower bound that matches Theorem 2 only in a
minimax perspective. In general, it could be the case where for a very special hypothesis class
‘H, we can design a query family with a much smaller VC dimension than the one of 7{ but still
achieve the information-theoretically optimal query complexity. These examples will be shown later.
Furthermore, given a pair of hypothesis classes and query class (#, @), we actually come up with a
combinatorial characterization of the query complexity of learning H using (). However, since the
result is far from the central theme of this paper, we leave it for Appendix D.

Efficient Learning Algorithms for Natural Hypothesis Classes Although Theorem 2 gives an
algorithm that can perfectly label every subset of n examples with an optimal query complexity,
the algorithm itself is not efficient, as it needs to solve optimization problems over the hypothesis
class, which is usually exponentially large with respect to the input. In this work, we also focus on
designing query families and learning algorithms for some natural hypothesis classes and obtain
stronger results. Specifically, our learning algorithms are computationally efficient and work even
when queries are not answered based on the dataset .S but on any unknown superset L of .S. These
results are summarized as follows.
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Hypothesis Class \ VC-dim(Q) \ Query Complexity \ Efficient? | Labeling Domain

General O(d) O(dlogn) No L=S
Union of d Intervals 0(1) O(dlogn) Yes LD>S
Axis Parallel Boxes O(logd) O(dlogn) Yes LD>S

Halfspaces O(d?) O(d?logn) Yes LD>S

Table 1: Summary of the algorithmic results of Theorem 2 and Theorem 4 for a hypothesis class H
of VC dimension ©(d) and a dataset .S of size n.

Theorem 4 There is a computationally efficient algorithm A and a query class Q) such that for any
set S of n examples, A learns the labels of S perfectly by making region queries to a labeler with
labeling domain an unknown set L O S':

1. For unions of d intervals, Q) has VC dimension 2, and A makes O(dlogn) queries.
2. For axis parallel boxes in R%, Q has VC dimension O(log d), and A makes O(dlogn) queries.

3. For halfspaces in R%, Q has VC dimension O(d*), and A makes O(d®logn) queries.

We note that for the first two cases, the VC dimension of the query class is significantly smaller
than the VC dimension of the hypothesis class which is ©(d). In the case of halfspaces, the VC
dimension of () and the query complexity is worse than that given in Theorem 2 but applies in a
significantly more general setting and is computationally efficient. The cubic dependence on d can
be improved to quadratic if the learner provides counter-examples instead of binary answers to our
region queries. We leave the detail discussion on this improvement to Appendix C.3.

1.2. Connection with Other Learning Models and Related Work

Active Learning with Enriched Queries The study of active learning with enriched queries can
be traced to the literature of exact learning (Angluin, 1988; Balcdzar et al., 2001, 2002; Chase and
Freitag, 2020). More recently, the focus has been shifted from general queries to more problem-
dependent queries such as mistake-based queries (Balcan and Hanneke, 2012; Bressan et al., 2022),
clustering-based queries (Ashtiani et al., 2016; Mazumdar and Saha, 2017; Bressan et al., 2021;
Del Pia et al., 2022; Xia and Huang, 2022), comparison-based queries (Kane et al., 2017, 2018;
Xu et al., 2017; Hopkins et al., 2020b,c,a), separation-based queries (Har-Peled et al., 2021) and
derivative-based queries (Ben-Eliezer et al., 2022). In this work, we study active learning with region
queries for both general hypothesis classes and concrete learning problems.

Mistake-Based Query and Self-Directed Learning The region queries we study in this paper
fall into the category of mistake-based queries (Angluin, 1988; Maass and Turdn, 1992; Balcan
and Hanneke, 2012; Bressan et al., 2022). The study of mistake-based queries can be traced to the
study of learning with equivalence or partial equivalence queries (Angluin, 1988; Maass and Turdn,
1992). Though named differently, a typical mistake-based query can be understood as follows. A
learner selects a subset of examples T C X, proposes a possible labeling for examples in 7', and
submits the information to a labeler. The labeler will return an example € T' labeled incorrectly
by the learner or return nothing when every example in 7 is labeled correctly. We will discuss in
Appendix C.3.1, if an arbitrary complicated subset 1" and any possible labeling are allowed to be used,
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a learner could use mistake-based queries to implement online learning algorithms or self-directed
learning algorithms (Goldman and Sloan, 1994) and easily obtain active learning algorithms with
low query complexity. Our query model has several differences from the previous work. (i) Unlike
all previous work on mistake-based queries, a region query is a binary query and does not require a
counter-example to be returned. (ii) Unlike (Angluin, 1988; Maass and Turdn, 1992), a region query
is not answered based on the example space X but based on some labeling domain S C L C X
(usually L = S). In general, we should not hope to obtain useful information from examples not in
the dataset. (iii) Unlike (Balcan and Hanneke, 2012; Bressan et al., 2022), we require the learner to
design a query family () with finite VC dimension before seeing the dataset .S and thus we cannot
simply design an active learning algorithm by reducing it to online/self-directed learning.

Learning Halfspace with the Power of Adaptivity The class of halfspaces is one of the most
well-studied hypothesis classes under active learning. Dasgupta (2004) shows that to perfectly learn
the labels of a set of n points in R? labeled by some halfspace, vanilla active learning needs to make
Q(n) label queries. Since then, a large body of works (Dasgupta et al., 2005; Balcan et al., 2007;
Balcan and Long, 2013; Balcan and Zhang, 2017; Awasthi et al., 2017) have been done to understand
under which distribution vanilla active learning can learn a halfspace with few queries. On the
other hand, the query complexity of learning halfspaces in the distribution-free setting is much less
understood. Kane et al. (2017) points out that with the help of comparison queries, one can efficiently
learn a 2-dimensional halfspace with a query complexity O(log n). However, in the same work, they
point out that such an improvement disappears in R3. Recently, two remarkable results have been
done to understand the query complexity of learning halfspaces in the distributional free setting. The
first one is Hopkins et al. (2020c), where they show that if one can query the label of any point in
RY, then O(d log n) queries are sufficient to perfectly label n examples. The second one is Bressan
et al. (2022), in which they show without restriction on the complexity of the mistake-based query,
they can efficiently learn a y-margin halfspace with O(dlog(1/7)) queries. Our halfspace learning
algorithm does not rely on acquiring additional information from X"\ S or using very complicated
query classes but is still able to achieve a query complexity of poly(d,logn).

Organization of the Paper In Section 2, we discuss our results for general hypothesis classes.
We give proof sketches for Theorem 2 and Theorem 3 in Section 2.1 and Section 2.2. In Section 3,
we discuss how to design query classes and efficient active learning algorithms for natural classes.
In Section 3.1 and Section 3.2, we study the class of the union of k-intervals and the class of high
dimensional boxes. In Section 3.3, we discuss our main results on efficient active learning algorithms
for halfspaces. Due to the limited space, we present the notations and detailed proofs in the Appendix.

2. Active Learning for General Hypothesis Class Using Simple Region Query

2.1. Construction of Simple Query Classes for General Hypothesis Classes

In this section, we give an overview of the proof of Theorem 2 and leave the full proof and detailed
discussion of Theorem 2 to Appendix B.1. Before diving into the proof, we first give an overview
of why the previous works on mistake-based queries result in using query families with unbounded
query complexity. Previous work such as (Maass and Turdn, 1992; Balcan and Hanneke, 2012)
design learning algorithms based on the fact that it is possible to use region queries to implement the
Halving algorithm. An algorithm of this style predicts a label for each example in S via majority
voting, submits examples with positive predictions, and examples with negative predictions, and gets
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one example on which majority voting makes a mistake (such a mistake can be found via binary
search if the query is binary). In this way, hypotheses that predict incorrectly on this example cannot
be the true hypothesis, and the size of the version space is shrunk by half. Since the majority voting
could behave arbitrarily complicated over an arbitrary set of examples, the query family used by the
algorithm could also be arbitrarily complicated. This suggests a new algorithmic framework should
be come up with to break the bottleneck.

The intuition behind our algorithm is as follows. Assume the examples in S have been ordered as
M, 2™ We consider H("), the restriction of 7{ over the dataset S. If we make a label query
for (1), then such a label query might not be very helpful because most of the hypotheses in H(©)
could label this example in the same way, for example, y(!) € {£1}. Let’s assume we are in this
case and define HM) := {h € HO) | h(zM) = y(V}. Similarly, a label query for (%) is also not
that useful, since many hypotheses in ") might label (2) by some Y2, Assuming we are in this
case, then we have a new class H(?) defined based on H(1). Although each single label query is not
useful, if we repeat this process, at some point ¢ € [n], the remaining hypothesis class H () should
have a proper size. i.e |H®|/|H©)| € (1/3,2/3). This implies that after ¢ label queries no matter
what answer we get, the size of the version space is shrunk by a constant factor. Notice that these ¢
label queries can be safely replaced by 2 region queries, ({z | z = (V.4 € [t], /(z) = 1}, 1) and
({z |z =29 i [t],h(x) = =1}, —1), where /' is an arbitrary hypothesis whose restriction over
S is in the class H®). By Sauer’s lemma, |[H(®)| < O(n?). So, if we repeat the above procedure
O(dlogn) times, we learn the labels of examples in .S. Up to now, the problem has been almost
solved, but the regions where we make queries still depend on the dataset S. However, the analysis
above works for any order of S, if there is a natural order o for X, then the constraint z = 2 for
some i € [t] can be simply replaced by o(z) € [o(zM)), o(z™®)], because L = S. Thanks to the
well-known well-ordering theorem, such a linear order exists for every non-empty space X'. Thus,
we can construct the query family Q using #, H(the set of negation hypothesises in 7{), and the
natural linear ordering defined in &X', which gives a simple query class.

2.2. Lower Bound on the VC Dimension of the Query Class

In this section, we give an overview of the proof of Theorem 3, showing a matching lower bound for
Theorem 2. The full proof and more detailed discussions are presented in Appendix B.2.

We will assume X to be a space of n examples and . = .S = X. i.e. The labeling domain, the
dataset to be labeled, and the example space are the same. Suppose there is some subset C* C S
of size k and we want to distinguish hypothesis hg, which labels every example in C* positive and
everything else negative, and the other k hypothesis h1, ..., hi, each of which only differs from hg
at a single example in C*. Let’s assume the learning algorithm is using a fixed region query class
@ to learn. For any query (7, z) € Q, if T has an intersection with both C* and S \ C*, then it
will provide no useful information(even if some example x € T'N S with label —z is also returned),
because we know that ¢(T, z) = 0 always holds. Furthermore, to distinguish the two cases, those
regions 1" C C* should cover all examples in C*, otherwise, an example x € C* is not involved in
any query. As we will show later, the optimal solution to this set cover instance roughly serves as a
lower bound of the query complexity in this special instance. In particular, if every 1" C C* as size
at most ¢, then the query complexity should be at least Q(k/t).

So far, we have established a hard instance for a fixed query class. The most difficult part of
our construction is to generalize the above instance so that it is hard for every query class ) with
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VC dimension O(d), where massive subsets of X’ would be possible to be involved. We use several
key techniques to overcome this difficulty. The first one is the following observation. If we have
N > |dom(Q)| subsets C1,...,Cn C X of size k such that the pairwise intersection of C;, Cj is
at most ¢, then there must be at least one C; such that if 77 C C; and T € dom(Q) then it must
be the case |T'| < ¢. Sauer’s lemma tells us that each set family over X with VC dimension O(d)
contains at most O(n?) different sets. Thus, if we set up the above N to be O(n?), then we can
embed the hard instance we mentioned above into each C; so that any learning algorithm uses any
query class with VC dimension O(d) has query complexity at least 2(k/t). In particular, we will see
later, that the hypothesis class we use here has VC dimension O(t). So the final step is to show we
can construct these subsets C; such that £ = poly(n) while ¢ = O(d). To show this, we make use of
the result in (Beideman and Blocki, 2014), which explicitly constructs set families with low pairwise
intersections. This is why intuitively a query family with Q(d) VC dimension is also necessary for
a query complexity of O(logn). We want to remark that the construction of the example space X
in theorem 3 is fully combinatorial. So, given any large enough space of examples, we can embed
the hard instance we construct in Theorem 3 into that space to get a corresponding hard instance.
Formally, we have the following corollary, which gives a stronger statement of Theorem 3. We refer
the readers to Section B.3 for the proof of Corollary 5

Corollary 5 There is a space of examples X such that for every d € N and n > d large enough,
there exists a hypothesis class H over X with VC dimension d such that there exists a set of n example
S such that for every region query family QQ over X with VC dim(Q) < (d — 3)/3 and every active
learning algorithm A, there exists a true hypothesis h* € H, such that if A makes less than poly(n)
region queries from (), then with probability at least 1/3, some example x € S is labeled incorrectly
by A. In particular, this even holds when A knows the labeling domain L = S.

3. Efficient Active Learning with Simple Questions for Natural Hypothesis Classes

In Section 2.1, we have shown that given a hypothesis class H with dimension d, we can construct a
query class () with dimension O(d), so that a learner can use @ to learn H with query complexity
O(dlogn). However, the learning algorithm we use Section 2.1 is not computationally efficient and
works when the labeling domain is the same as the dataset. i.e. L = S. Such an assumption might be
strong for some applications. For example, if a learner is interacting with a large language model,
then the language model cannot know the learner’s dataset S in advance and thus will answer the
learner’s query based on an unknown and potentially much larger superset L of S. In this section, we
focus on designing learning algorithms with low query complexity for natural hypothesis classes
including the union of % intervals, high dimensional boxes, and d-dimensional halfspaces, for which
the query complexities are 2(n) in the vanilla active learning setting. Our algorithms are not only
efficient but also work even when the queries are not answered based on the learner’s dataset .S but
on any unknown superset L of S. In particular, we will see that when the hypothesis class has a
good structure, the query family ) used by our algorithm can have O(log d) or even a constant VC
dimension. Due to space limitations, we leave the full proofs and detailed discussions to Appendix C.

3.1. Learning Union of & Intervals

The first hypothesis class we study is the class of the union of % intervals, perhaps one of the
simplest classes studied in the active learning literature. In the following theorem, we design an
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efficient learning algorithm that uses O(k logn) “interval” queries to learn a target hypothesis over
an arbitrary set of n examples.

Theorem 6 Let X = R be the space of examples and H = {h | J[a;,b;],i € [k],s.t.h(x) =
1 <= x € UL |[a;,bi]} be the class of union of k intervals over R. Let I be the class of intervals
over R and query family Q = {(T,z) | T € I,z € {£1}}. There is a learner A such that for every
subset of n examples S, labeled by any h* € H and for every labeling domain S C L(possibly
unknown to A), A runs in O((T + n)klogn) time, makes O(klogn) queries from Q) and labels
every example in S correctly, where T is the running time to implement a single region query.

We give the proof overview of Theorem 6 here and leave the full proof for Appendix C.1. The main
idea that we use is that, any h* € H partitions R into 2k + 1 intervals I, ..., Is; 1. Examples in
the same interval have the same label, while examples in two adjacent intervals have different labels.
So, instead of learning % intervals at the same time, it is sufficient to design a learning algorithm that
learns examples in S in the left-most interval. This can be done easily using interval queries and
binary search. We order S by e << g, Suppose () € I; and has label y = —1. Then no
matter which L the labeler has, using O(log n) interval queries via binary search, we are able we find
i* such that ¢([z(), z07)], —1) = 1 and ¢([z(1), z"+D], —1) = 0. After this, we can safely label
example (), ... 2("") by negative. In particular, examples in I; N S are all labeled in this iteration
because I; NS C [:c(l), :r(i*)] N S. By repeating the procedure O(k) times, we perfectly label S.

3.2. Learning High-Dimensional Boxes

Our next result, Theorem 7, gives an efficient learning algorithm for learning a high dimensional box
with low query complexity. The full proof of Theorem 7 is presented in Appendix C.2.

Theorem 7 Let X = RY be the space of examples and H = {[]%, [ai, bi] | ai,b; € [—00, 0]}
be the class of axis-parallel boxes in R? that labels X. There is a query class Q over R% with VC
dimension O(log d) and an efficient algorithm A such that for every set of n examples S C R%, every
target hypothesis h* € ‘H and for every labeling domain S C L(possibly unknown to A), A runs in
O((T 4 n)dlogn) time, makes O(dlogn) queries from ) and labels every example in S correctly,
where T is the running time to implement a single region query.

The idea behind Theorem 7 is similar to that of Theorem 6. Instead of learning the target box
h* =TI, [af, b?] directly, we learn each boundary a?, b separately. Let b} be a boundary of h*.
Suppose we can learn some b < b; such that for every xz € S, if x; > b; then z is labeled by —1.
Then the box h = HZ \[a:, bi] perfectly label S. This is because if an example = € S is labeled
negative by h, then x must violate one of the constraints of / and have true label —1. On the other
hand, since i C h*, _every example labeled positive by h must also have true label +1. In fact,
we can learn such a b; via region queries of the form ({2 | z; > ¢}, —1). If we order S such that

(1) <o < :c(") then we can use binary search with O(logn) queries to find the i* such that

({x | > a2 )} —1) = 0but g({z | 2; > 2" TV}, —1) = 1. We will show in Appendix C.2
that b; = x( Visa good approximation of b; that we want no matter which L the labeler uses. This
gives the 1dea of the query complexity in Theorem 7. In particular, the query class we use is defined
by the set of axis-aligned halfspaces, which has a VC dimension O(log d).
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3.3. Learning Arbitrary High-Dimensional Halfspaces

Our central results for efficient learning are on half-spaced learning problems. Before this work,
even assuming the labeling domain L = S, there are no known efficient algorithms for the class of
halfspaces that can achieve a query complexity of poly(d, log n), even using arbitrarily complicated
query classes. Previous work by (Bressan et al., 2022), assumes each example in .S has a margin of
~ with respect to the target w* and some counter-example = € S N T with label —y is returned if
q(SNT,y) = 0. The query complexity of their algorithm is O(d log(d/~y)) and could be potentially
Q(n) if v is very small. However, we want to point out that if we are allowed to communicate
arbitrary subsets of the dataset .S, then by reducing the active learning problem to self-directed
learning(Goldman and Sloan, 1994), it is easy to design an efficient halfspace learning algorithm
with an expected query complexity O(d log? n) using the idea of Haussler et al. (1994) on binary
prediction over random points. We summarize the discussion as the following theorem and leave the
full proof and more detailed discussion for Appendix C.3.1.

Theorem 8 Let X = R? be the space of examples and H = {w | w € S '} be the class of
homogeneous halfspaces in R? that labels X. Let Q = {(T, z) | z € {#1},T C QRd} over R? be
the query class that contains any subset of R%. There is an efficient algorithm A such that for every
set of n examples S, labeled by any w* € H and for every labeling domain S C L (possibly unknown
to A), A runs in O((T + B)dlog?n) time, makes O(dlog® n) queries from Q in expectation and
labels every example in S correctly, where T is the running time to implement a single query and B
is the bit complexity of S.

Although efficiently learning a halfspace with an arbitrarily complicated query class is easy,
designing an efficient learning algorithm using a query class with low VC dimension is significantly
more challenging, especially when a query (7', z) is answered based on an unknown superset L of S.

There are several difficulties with this problem. First, as (7', z) is checked over L D S, there is
no way to find an example x € .S with label —z, when ¢(7', z) = 0. It could be the case that every
example in 7'M S has label z but some hidden x € T\ S with label —z makes ¢(7, z) = 0. Such
difficulty makes it very hard to learn from mistakes without sending the whole dataset to the labeler,
which results in a very complicated query family. The second difficulty is how to design the query
class so that we can get enough information from a single query. As L is unknown to the learner if a
region T’ is too large, it is very likely that T" contains both positive examples and negative examples in
L, and such queries (T, z) may always return O to the learner, sending no information. On the other
hand, if a region 7" is very small, then each query can only send us very little information because if
L = S, each query can only provide information about very few examples in S. We overcome the
above difficulties and obtain the following theorem.

Theorem 9 Let X = R be a space of examples and let H = {w | w € S%~1} be the class of
homogeneous halfspaces in R? that labels X. There is an algorithm and a query class Q with
VC dimension é(dB) such that for every subset of n examples S C X, every labeling domain L
with S C L and every target hypothesis w* € H and every o € (0,1), it in expectation makes
O(d3log? dlog(1/a)) queries from Q, runs in poly(d,n,T) time and labels (1 — «) fraction of
examples in S correctly, where T' is the running time of implement a single region query from Q. In
particular, the algorithm makes O(d>log? dlogn) queries from Q and labels every example in S
correctly in time poly(d,n,T).

10
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We want to remark that the query class ) we use has a VC dimension O(d3). Such a dependence
could be improved to O(d?), if an example 2 € TN L with label — 2z is also returned when ¢(7’, z) = 0.
For a more detailed discussion, we point the reader to Appendix C.3.2.

A particularly surprising part of our result is that if we only want to perfectly (1 — «) fraction of
the examples in .S, then the query complexity of our algorithm even does not depend on the size of .S.
We present the full proof of Theorem 9 in Appendix C.3.2 and give the intuition of why it is possible
to get such a result. We start by assuming our dataset S C S%~! has the following nice property. For
every w € S%1, B-fraction of the examples in S have margin  with respect to w. i.e. |w - x| > 7.
We create an y/2-cover, N = {uy, ..., ug} for S1 and associate a ball B(u;) with radius /2 for
each u;. Then each x € S must belong to some B(u;). Furthermore, if example x € B(u;) has
margin -y with respect to w*, then every point inside B(u;) has the same label as . Since 3 fraction
of the examples in S have v margin with respect to w*, if we make 2 queries for each B(u;), then
we can safely label at least Sn examples in S. So, if this margin assumption recursively holds after
we remove examples we have labeled, we can repeat such a procedure O(log n) times and finally
perfectly label every example in S. However, such an intuition does not directly lead to efficient
learning algorithms. There are two issues we need to overcome. First, the above margin assumption
in general can not be satisfied recursively and sometimes is even not satisfied by the original dataset
S. Second, even if v = 1/poly(d), (1/7)°?) queries have to be made each round, due to the large
size of A/, which is not computationally efficient. We now give a sketch of how to address these two
issues.

The first issue can be overcome with Forster’s Transform (Forster, 2002). Roughly speaking,
given any set of n examples S C R¢, Forster’s transform finds a subspace V of dimension k
containing at least k/d fraction of examples in S and a matrix A such that f4(SNV) = {fa(x) :=
Az/||Az|| | x € SNV} satisfies the above margin assumption with v = 1/(2v/k) and 3 = 1/(4k).
In particular, Diakonikolas et al. (2021, 2023b) shows that given any set of n examples .S, we can
compute in polynomial time a Forster’s transform for S. This gives us a way to recursively find a
large fraction of examples that satisfy the margin assumption and solve the first issue. So, for now,
we assume S satisfies the margin assumption with v = 1/(2v/d) and 8 = 1/(4d).

The technique we use to overcome the second issue is inspired by the modified perceptron
algorithm used by Blum et al. (1998). Instead of creating a cover for S and doing a brute-force
search, we will use queries to implement the modified perceptron algorithm to learn a halfspace
w that can correctly label every example that has a large margin with respect to w. The modified
perceptron algorithm works as follows, it maintains a hypothesis w; and makes an update w41 =
wy — x¢(xy - wy) if x; is a point that is misclassified by wy. Furthermore, if every z; we use for an
update has a margin Q(1/+/d) with respect to wy, then after O(d log d) updates, each example with
a margin Q(1/ \/&) with respect to w; is correctly classified by w;. As we mentioned previously,
finding such an example where we make a mistake is hard. However, we will show that using
an x; such that (z; - wy) (2 - w*) < 1/poly(d) to make an update is enough to achieve the same
guarantee. In particular, such an z; can be found using binary search together with O(d log d) region
queries that are defined by O(d) linear inequalities. To see why this is true, consider the region
T = {x | v, -z > 1/(2V/d)}, where v; is the unit vector parallel to w;. According to the margin
assumption, a large fraction of the examples are contained in 7. So if ¢(T', 1) = 1, we safely label
a lot of examples correctly. Otherwise, there is at least one point in 7'(not necessarily in .S) that is
misclassified by w; and if we find such a point we can use it to make a perceptron update. In this case,
we partition the region 7" into small strips T} := {z | v¢ - « € [a;, bj|}, where |b; — a;| < 1/poly(d).

11
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With binary search, we can use O(logd) queries to find one such 7 that contains one point that
is misclassified by w¢. Now, denote by uy, ..., uq—1 a standard basis of the subspace orthogonal
to wy. Using the same binary search approach over T; for each direction u;, we will finally find a
small box B C T; with diameter 1/poly(d) that contains at least one point that is misclassified by
wy. Since B has a diameter only 1/poly(d), this implies that each point z; in B is very close to the
decision boundary and satisfies (x; - w;)(x - w*) < 1/poly(d). So, we can choose any point in B to
make a perceptron update and after doing this O(d log d) rounds, we learn a w; that safely classifies
many examples correctly. We remark that there is still a small issue in the above analysis. Since L is
unknown to our algorithm, it could be the case during the binary search a region Z we query has an
empty intersection with L, and an undesirable answer is returned. This issue can be overcome with
the following trick. We first query the label of an example x € T'N S. If x is misclassified by w;, we
immediately make an update. Otherwise, every time we make a query (Z,y), we can instead query
(Z U {x},y), which prevents us from querying an empty region and does not make a query more
complicated.

So far, we have given an overview of why O(d® log(1/«)) queries suffice to correctly label 1 — &
fraction of examples in S. Finally, it remains to bound the VC dimension of the query class we
use. Recall that the modified perceptron algorithm we used is implemented over the space under the
transform f4(-). As we will discuss in Appendix C.3.2 since the target hypothesis is a halfspace, the
labels of points are preserved by Forster’s transform. So, every time we make a query (Z,y) in the
modified perceptron algorithm, the actual query we should make is ({z € V' | fa(z) € Z},y). As
we discussed above, Z is a set of O(d) linear inequalities. So, the query class we use is defined by
O(d) degree-2 polynomial inequalities, which has VC dimension O(d?).

4. Conclusion and Future Directions

The fast development of machine learning has not only resulted in many real applications but has also
changed the learning paradigm itself. The success of foundation models makes it easier and faster
for the learner to get feedback for more complicated questions, turning the learning paradigm from
passively learning from labeled data to actively learning from interactions. In this work, we initiate
the study of active learning with region queries, a specific type of such interaction. We summarize
our contribution and list several interesting future directions as open questions.

An important novelty of this work is using the VC dimension as a measure of the complexity
of queries. As we show in the paper, when the learner and the expert share the dataset S, the VC
dimension gives a good tradeoff between the complexity of the query class and the query complexity
of the learning algorithms. Can VC dimension be used to measure the complexity of other learning
problems that involve interaction and communication such as distributed learning (Balcan et al.,
2012; Kane et al., 2019)? We think this would be an interesting direction to investigate.

To actively learn a hypothesis class 7 with O(log n) queries, a query class with VC dimension
O(d) is enough. On the other hand, we have also seen that for some hypothesis classes with good
structure, we can learn it with a query class with VC dimension O(log d) or even O(1). It is natural to
ask which hypothesis class can be learned with a query class with o(d) VC dimension? Studying the
query complexity of active learning algorithms using a fixed query class would be also an interesting
direction.

For several natural hypotheses classes, we design simple query classes and efficient learning
algorithms. Surprisingly, these learning algorithms even work when the dataset is not shared between

12
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the learner and the labeler. Does such a phenomenon hold for general hypothesis classes? It is
important to understand such a question since the assumption that the learner and the labeler share
the knowledge of .S does not always hold for some real applications.

Another important direction is learning with noisy queries. In this paper, we only study the
realizable cases, assuming each query is answered correctly. Can we design learning algorithms
robust to wrong answers in their queries?
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Appendix A. Notation and Preliminaries

Let X’ be an example space. A hypothesis class H is a set of binary functions i : X — {£1}. A
hidden true hypothesis h* € H assigns a positive or negative label y(x) = h*(x) to each z € X.

A region query is a pair (7, z), where T' C X is aregion in X and z € {£1} is a proposed label.
A region query family @ is a set of region queries. We will define dom(Q) := {T' | (T, z) € Q,z €
{£1}} the set of regions used in a query in (). The complexity of a query family is defined by the
VC dimension of the set family that () uses.

Definition 10 (VC Dimension of A Query Class) Let X be a space of example and C C 2% be a
set family over X. The VC dimension V C dim(C') of C'is defined as the largest number d such that
there exists a set S of d examples such that |{cN S | ¢ € C}| = 2% Let Q be a family of region
query family Q) over S. The VC dimension of () is defined as

VCdim(Q) :=VCdim({T | (T,z) € Q,z € {£1}}) = VC dim(dom(Q)).

A learning process is a sequence of interactions between a learning algorithm .4 and a labeler.
The learning algorithm 4 is given the hypothesis class H, a dataset S C X of n examples, and
a region query family Q. The labeler is given a labeling domain L such that S C L. In a single
round of interaction, the learning algorithm .4 submits a query (7', z) to the labeler based on any
information A received so far. The labeler returns an answer ¢(7', z) € {0, 1} of the query to A.
Here, ¢(T,z) = 1if Vo € TN L, y(x) = z. In particular, if 7N L = (), an arbitrary answer can be
returned by the labeler. At the end of the learning process, the learning algorithm outputs a set of
labeled examples O = {(z,9y(x)) | z € 8" C S}. For a € [0, 1), we say A labels 1 — « fraction of
Sif |O| > (1 — a)n and for each (z,y(x)) € O, §(z) = y(x). In particular, if & = 0, we say A
perfectly labels S.

Some Facts on VC Dimension We list some properties of VC dimension that will be frequently
used during the proof.

(i) Let C1, Co be two set families over a space of examples X’ such that VC dim(C}) = d; and
VC dim(C3) = do. Then VC dim(Cy U Cq) < dy +dg + 1.

(ii) Let C be a set family over a space of examples X’ such that VC dim(C') = d. The k-fold
unions of C' and k-fold intersections of C' is defined as

CM = {UF ¢ | e CY,CM = {nF ¢ | ¢ € CY.

Then VC dim(C*) < O(dklog k) and VC dim(C*") < O(dk log k).

Appendix B. Missing Details in Section 2

B.1. Proof of Theorem 2

In this section, we prove Theorem 2, which shows every hypothesis class with VC dimension d can
be learned with a query class with VC dimension O(d) with an information-theoretic optimal query
complexity. To remind the reader, we restate Theorem 2 here.

Theorem 11 (Restatement of Theorem 2) Let X be a space of example and H be a hypothesis class
over X with VC dimension d. There is a region query family Q) over X with VC dimension O(d) and
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a learning algorithm A such that for any set of n examples S C X labeled by any true hypothesis
h* € H, A makes O(dlogn) region queries from Q) and correctly label every example in S, if the
labeling domain L = S.

To start with, we will remind the reader of some basic background in set theory.

Definition 12 (Strcit Total Order) Let X be a non-empty set. A binary relation “ <” over X is a
strict total order if for every a, b, c € X, the following conditions are satisfied.

* Not a < a. (irreflexive)
* Ifa < b, then not b < a.(asymmetric)
e Ifa <b b<c thena < c. (transitive)

* Ifa # b, then a < borb < a. (connected)

Consider a set X’ with a strict total order “ < ”, we have the following lemma.

Lemma 13 Let X be a set and “ < 7 be a strict total order over X. Let I = {[a,b] | a,b € X},
where x € [a,b] ifa <z <b VC(I) <2.

Proof (Proof of Lemma 13) Let a, b, ¢ be any 3 distinct points in X such that a < b < ¢. Since
“ <7 is a strict total order, we know that 3 distinct points can be ordered in the above way. Let
h = [l,r] € H be any set such that € h and ¢ € h. By transitive property, we know that
I <a < b< c<r,which implies that b € h. Thus, no hypothesis in I can label a, ¢ positive but b
negative, which implies VC(I) < 2. [

Lemma 13 implies that if a space of examples X admits a strict total order, then we are able to
define the class of intervals over X', which has a very small VC dimension. If X is finite, such a strict
total order can be easily defined by any permutation of X'. If X is infinite or continuous, we next
explain that such a strict total order(linear order) can also be defined. This fact follows the following
well-known well-ordering theorem (equivalent to Zorn’s lemma and axiom of choice).

Theorem 14 (well-ordering theorem) A set X is well-ordered by some strict total order if every
non-empty subset of X has a least element under the order. Furthermore, every set X can be well
ordered.

According to (Pincus, 1997), well-ordering theorem implies that every example space admits a
strict total order.
With the background of the basic set theory, we are able to prove the following structural result.

Lemma 15 Let X be a space of examples and “ < 7 be a strict total ordering over X. Let H be any
hypothesis class over X. Let S C X be any subset of n examples. Define Hg = {hg : S — {%1} |
Jh € H,hs(x) = h(x),Yx € S} be the hypothesis class of H restricted at set S. If |Hg| > 1,
then there exists an interval [a, b] and a hypothesis h such that |{hs € Hg | hs(z) = h(x),Vx €
[a7 b] N S}| € HHS’/?’? 2’HS‘/3}
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”

Proof (Proof of Lemma 15) We order examples in S according to the strict total order “ < ” and
denote by z(1) < @ < ... < (™ these ordered examples. Given this ordered dataset S, we
recursively define ith majority prediction class M () in the following way, M° = Hg,

MO = {hge MO | IMD N {n € Hg | b (")) = hg(zOH)Y| > |MD]/2}.

That is to say, M (1 is the class of hypothesis in M *) that predicts the label of z(i1) according to
the majority of M (). Let i* € [n] be the smallest number such that |A/("")| < 2|Hg|/3. We notice
that [M7)| > |Hg|/3 because

(M| > | MY /2 > | Hgl/3,

by the definition of the majority prediction class and ¢*. Next, we show that such an ¢* exists.
Notice that /(") contains a single hypothesis in Hg, thus, we have 1 = |[M ™| < |Hg|/|Hg| <
|Hs|/2 < 2|Hs|/3. Furthermore, since |M(?)| = | Hg|, we know that i* € [n] exists. Now we set
a=xM,b=2z) and h € H be any hypothesis such that 3hg € M") agrees with h for every
example in S. Then we have

[{hs € Hs | hs(z) = h(x),Vz € [a,b] N S}| = M| € [ Hs|/3,2|Hs|/3],

since M) = {hg € Hg | hs(z) = h(x),Vz € [a,b] N S}.
|

Given the above structural result, we present Algorithm 1, the algorithm we use in the proof of
Theorem 2.

Algorithm 1 GENERALQUERY (S, H, @) (Label S with query set ) given hypothesis class H )
Let Hg = {hs | 3h € H,hs(z) = h(z),Vx € S}.
while |Hg| > 1 do
Find interval [a, b] € 2 and h € H that satisfies the property in the statement of Lemma 15.
Let ST = {z € [a,b] | h(z) =1} and S~ = {z € [a,b] | h(z) = —1}
Make query (S*,1) and (S—, —1).
if g(ST,1) = q(S~,—1) = 1 then
H <+ {heH|h(x)=h(x),Ye e SNla,b}
else
H+— H\{h e M| h(x)=h(z),Yz € SN[a,b]}.
Hg = {hs ’ dh € H,hs(x) = h(x),VJU S S}
Label S according to the single partial hypothesis in Hg.

Proof (Proof of Theorem 2) We show that Algorithm 1 uses a query class () with VC dimension
O(d) that labels S correctly with O(dlogn) queries.

We first show the correctness of the algorithm. Let h be the target hypothesis restricted at S.
Every time we make queries (ST, 1), (S~, —1) during the execution of Algorithm 1, k¥ agrees with
h at every example in S N [a, b] if and only if ¢(ST,1) = ¢(S~, —1) = 1, which implies that h is
always contained in Hg. So, at the end of Algorithm 1, every example in S is labeled according to
h'g and thus is labeled correctly.
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Next, we bound the number of queries used by the algorithm. According to Lemma 15, we know
that every time we find an interval [a, b] and h, we have

[{hs € Hs | hs(z) = h(z),Vz € [a,b] N S}| € [|Hs|/3,2|Hs|/3].
This implies
\Hs\ {hs € Hs | hs(z) = h(z), ¥z € [a,] N S}| < 2| Hs|/3.

So, whether h’ agrees with h over S N [a, b] or not, after each update the size of Hg will always
shrink by a factor of 2/3. Since H has a VC dimension of d, we know from Sauer’s lemma that
|Hg| < O(n?) at the beginning of the execution of Algorithm 1. Thus, after O(dlogn) updates
|Hg| = 1 and Algorithm 1 will terminate. The total number of queries is O(d log n) since we make
2 queries for a single update.

Finally, we upper bound the VC dimension of the query class () that Algorithm 1 uses. Notice
that Q = {[a,b]N{z | g(z) =1} |a,b € X,g € HU H}, where H = {—h(x) | h € H} is the set
of complement of hypothesis in H. By the property of VC dimension, we have

VO(Q)<VCIHVCHUH)<VCI)(2VC(H)+1) <2(2VC(H) + 1) < 6d.

B.2. Proof of Theorem 3

In this section, we present the proof of Theorem 3, showing a matching lower bound for Theorem 2.
Here, we restate Theorem 3 as a reminder.

Theorem 16 (Restatement of Theorem 3) For every d € NT and n > d large enough, there exists a
space of examples X and a hypothesis class H over X with VC dimension d such that there exists a
set of n example S such that for every region query family Q over X with VC dim(Q) < (d —2)/3
and every active learning algorithm A, there exists a true hypothesis h* € H, such that if A makes
less than poly(n) region queries from Q, then with probability at least 1/3, some example x € S is
labeled incorrectly by A. In particular, this even holds when A knows the labeling domain L = S.

We start with Lemma 17, showing how to construct a hard instance for a fixed query family.

Lemma 17 Let X be a space of examples and let ) be a region query class over X. Let C* C X
be a set of k examples. Let Ho« = {hg | S C C*,|S| < 1} be a hypothesis class over X, where
hs(x) = 1lifand only if v € C*\ S. Assuming for every T € dom(Q), if T C C*, then |T| < t.
Then for every learner A that makes k /2t queries from Q, there is some hypothesis h* € Hc+ such
that with probability at least 1/3, there exists some x € C* that is mislabeled by A assuming the
labeling domain is the same as the example space i.e L = X.

Proof (Proof of Lemma 17) Let x € C* be an example. We say x is covered by some query
T € dom(Q) if either z € T C C* or TN C* = {x}. Assume that the target hypothesis h* is
drawn uniformly from Hg+. Denote by Qg C (@ the random subset of queries that A makes and iLS
the output hypothesis by .A conditioned on the target hypothesis is h* = hg. Notice that if  is not
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covered by dom(Q)y), then we must have ﬁ{x} = ﬁ@. This is because no matter whether the target

hypothesis is hy or il{x}, each query .4 made so far will have exactly the same answer. Specifically,
let (T, z) € @y be any query used by A so far. We know that x ¢ T. If T' C C*, then T only
contains positive examples. If 7' C X'\ C*, then T contains only negative examples. Otherwise, 7'
contains at least one positive example and one negative example.

Now, assuming Pr(hg # hg) < 1/3, we will show there must be some = € C* such that
Pr(ﬁ{x} # h{z)) > 1/3. This will follow the standard way of bounding the probability of making
an error used in the active learning literature such as (Hanneke and Yang, 2015).

N 1 R 1 R 1
max Pr(hiey # hiay) = 7 3 Prliey # hiy) > 7 Y Prlay(@) =ho@) = 2B > 15 0 )
xzeC* zeC* zeC*
1 1
= EE Z 1{90 not covered by Q(D}l{fz{z}(x):h@(:c)} = k E Z 1{:1: not covered by Q@}l{ilg)(ll?):h@(lv)}
xcC* xeC*
1 1
> %E Z 1{gg not covered by Q(D}l{ﬁ@(:c):h@(x)} > %El{fz@:h@} Z 1{x not covered by Qg }
zeC* zeC*

> %Pr(h@ — hg)(k — k/2) > 1/3.

So, we conclude that ant learner .A that makes k /2t queries from ) will with probability at least 1/3
label at least one example in C* incorrectly. |

Next, we present Lemma 18, which gives a way to extend the hard instance we constructed in
Lemma 17 for a single query class to multiple query classes.

Lemma 18 Let X be any space of n examples and Q) be a query class over X. Let {C,...,Cn} C
2% be a collection of N > |dom(Q)| subsets over X such that for every i,j € [N], i # j,
|C; N Cj| < t. There is some C* € {Ch,...,Cn} such that for every T € dom(Q) if T' C C*,
|T| <t

Proof (Proof of Lemma 18) We say a query 7; € dom(Q)) witnesses a set C; € {C1,...,Cn} if
T; C C;and |T;| > t. Let T € dom(Q) be any region such that |T"| > ¢, we claim that 7" can witness
at most one set C' from {C', ..., Cn}. This is because if there exists C;, C; € {C1,...,Cn}, i # 4,
that are witnessed by T, then " C C; N C}, which implies that |T'| < |C; N C;| < t and gives a

contradiction. Since N > |dom(Q)|, we know that there must be at least one C* € {C1,...,Cn}
that is not witnessed by any 7" € dom(Q). Thus for every T € dom(Q), if " C C* then we must
have |T'| < t. [

Besides the above two technical lemmas, we will make use of the following results that construct
set families with small pairwise intersections.

Theorem 19 (Theorem 3 in (Beideman and Blocki, 2014)) For every positive integer k > -,
there exist N > (2kIn2k)"*! subsets Si,...,Sn C [4k%In4k] such that for every i # j € [N],
|Si| = 15| =k and |S; N S| < .

With the above technical lemmas, we are ready to present the proof of Theorem 3.
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Proof (Proof of Theorem 3) Let X be a space of n = 4k? In 4k examples. By Sauer’s lemma, we
know that any query family ) with VC dimension d must have

d
|[dom(Q)| < Z <n> < end < ndtl = (4k:2 In 4k)d+1,
i
1=0

when n is larger than some suitably large constant c. By Theorem 19, there exists some integer N >
(2k1In2k)7*! > (4k%In4k)4*! > |dom(Q)|, such that we are able to find subsets C1, ..., Cy C X,
where each subset has size k£ and any pair of these IV sets has at most v common examples.
Notice that when k is larger than some suitably large constant, v = 3d is sufficient to make
(2kIn2k)7 ! > (4k2 In 4k)4+1,

Our next step is to use the set family {C1, ..., Cy} to construct our hypothesis class . For
i € [N], define H¢e, = {hs | S C C;,|S| < 1}, where hg(x) = 1 if and only if x € C* \ S. The
hypothesis class we use is H = ;) He-

We start by showing H has VC dimension at most v + 2 < 3d + 2. Let I = {xy,...,2,43}
be v + 3 different examples in X. Assuming that / can shatter I, then we obtain that there exists
some h € H that labels every example in I positive. By construction, there must be some i € [N]
such that h € H¢,, which implies that I C C;. However, we next show that there is no A’ € H can
label x4, ..., 2,41 positive but x4 2, r,43 negative. Assuming such an h' exists, then there must
be some j € [N] such that {z1,..., 2,41} C C;. However, if j # 4, then |C; N C}| < ~. Thus, we
must have ¢ = j, which means i’ € H¢,. However, by construction each hypothesis in H;, can only
label at most one example contained in C; negative, which gives us a contradiction. So, we conclude
the hypothesis class H we use has VC dimension at most v + 2 = 3d + 2.

Next, we show that assuming the labeling domain, the dataset and the space of examples are the
same. i.e. L = § = X, for every query class () with VC dimension at most d there exists a subset of
k examples C™* such that every learner A that makes less than k/(2v) queries will with probability at
least 1/3 mislabel some example x € C*. Since N > |dom(Q)|, by Lemma 18, we know that there
exists some C* € {C1,...,Cn} such that for every query (7, z) € Q, if T C C*, then |T'| < v. By
Lemma 17, we know that if A only makes less than k/(27) queries from ) then with probability at
least 1/3 some example x € C* will be mislabeled by .A.

Thus, for every d and every k that is larger than some constant, we constructed a hypothesis
class H with VC dimension at most 3d + 2 over an example space X’ with size O(k2), which is also
the dataset S to be labeled, such that for every learner A and query class ) with VC dimension at
most d, if A makes less than k/2d queries than there is a true hypothesis h* € H such that with
probability at least 1/3, A will misclassify at least one of the examples, even assuming the labeling
domain L = S. |

We remark that the construction of the hard instance in Theorem 3 is fully combinatorial. So,
given any large enough space of examples X', we can embed the hard instance we constructed into X’
to get a hard instance in that example space.

B.3. Proof of Corollary 5

Corollary 20 (Restatement of Corollary 5) There is a space of examples X such that for every
d € Nt andn > d large enough, there exists a hypothesis class H over X with VC dimension d
such that there exists a set of n example S such that for every region query family Q) over X with
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VCdim(Q) < (d — 3)/3 and every active learning algorithm A, there exists a true hypothesis
h* € H, such that if A makes less than poly(n) region queries from Q), then with probability at least
1/3, some example x € S is labeled incorrectly by A. In particular, this even holds when A knows
the labeling domain L = S.

Proof (Proof of Corollary 5) For each m, let X,,, = {xim) ™, be the space of examples constructed
in Theorem 3 with parameter m. Let X = U,,, X, be a space of examples. Since the constructions of
X, are fully combinatorial, we can assume for each mi,mg € NT, X, N Xy, = 0.

Letd € N7 and let H,, be the hypothesis class over X,,, with VC dimension d constructed in
Theorem 3. For each m and for each f € H,,, we extend f to X in the following way. For every
x € X\ Xy, f(x) = —1. Hp, still has VC dimension d over X under the extension. Furthermore,
since each A, is disjoint, H = U,, H,, has VC dimension at most d + 1. For each n > d larger
enough, let 5, = X, C X be a subset of n examples. By Theorem 3, we know that for every
learning algorithm A and for every query class ) with VC dimension at most (d — 2)/3 there exists
a hypothesis h* € H,, C H such that A must make poly(n) queries from @ to perfectly label S,
with probability more than 2/3, even if A knows that a query will be checked based on .S,,. |

Appendix C. Missing Details in Section 3

In this section, we design efficient learning algorithms for several concrete hypothesis classes
including the class of union of k intervals, the class of high dimensional boxes, and the class of high
dimensional halfspaces, giving missing details in Section 3.

C.1. Proof of Theorem 6

In this section, we prove Theorem 6 by designing an efficient learning algorithm for the class of the
union of k intervals. We restate Theorem 6 as follows.

Theorem 21 (Restatement of Theorem 6) Let X = R be the space of examples and H = {h |
Jla;, bi],i € [k],s.t.h(z) =1 <= x € U¥_ [a;,b;]} be the class of union of k intervals over
R. Let I be the class of intervals over R and query family Q = {(T,z) | T € I,z € {+1}}.
There is a learner A such that for every subset of n examples S, labeled by any h* € H and for
every labeling domain S C L(possibly unknown to A), A runs in O((T + n)klogn) time, makes
O(klogn) queries from Q) and labels every example in S correctly, where T is the running time to
implement a single region query.

We start with Algorithm 2, a sub-routine used to label examples in the left-most interval of the
target hypothesis. The guarantee of Algorithm 2 is presented in Lemma 22.

Lemma 22 Let S = (x(l), e ,a:(m)) C R be a subset of n examples labeled by a union of k
intervals h* = Uff:l[ai, bi;]. Let L C R be any arbitrary labeling domain such that S C Y.
FINDLEFT(S) makes O(log m) interval queries and returns the smallest index i* such that there is
some y € {£1} such that ¢([zV), )], y) = 1 and for every y € {£1}, q([z™V), "D y) = 0.

Proof (Proof of Lemma 22) We first notice that if ¢([z(1), ()], y) = 0, Vy € {1}, then Vj > i,
we also have ¢([z(V),z0)],y) = 0, Vy € {#1}. This is because for any labeling domain L,
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Algorithm 2 FINDLEFT(S) (Find the smallest i* such that ¢([z(!), ()], ) = 1) for some y € {1}

Order S as (1) < --. < 2™ where m = |9|.
if ¢([z(M, 2(™)],y) = 1 for some y € {#1} then

return m
Let C = {z(U, ... 2™} > Candidates of the boundary points
while |C| > 1 do > Find the boundary via binary search
Let 2 be the median of C. > If |C| is even, select z” as the larger one

if ([, 2], y) = 0, Vy € {#1} then
Remove 2’ and all points greater than z’ from C
else

Remove all points less than z’ from C
return the index of the single element in C

[z, 20N L C [z, 20)] 0 L. Thus, if [z, 2®] N L contains examples with both positive
examples and negative examples then so does [#(1), ()] N L. This implies that if some z’ such that
q([zM,2'],y) = 1, for some y € {1}, is removed from C, then we must have found some z” > z’
such that ¢([z(1), 2/],y) = 1, for some y € {#1}. In particular, this implies that 2"), where i* is
the index that satisfies the statement, will never be removed from C. This proves the correctness
of Algorithm 2. It remains to prove the query complexity of Algorithm 2. In each iteration of
Algorithm 2, we only make at most 2 region queries and remove half of the remaining points in C.
This implies that Algorithm 2 will run at most O(log(|C|)) iterations and the query complexity is
O(logm). [ |

Given Algorithm 2 and Lemma 22, we are now ready to present Algorithm 3, the learning
algorithm and the proof of Theorem 6.

Algorithm 3 LABEL k-INTERVAL(S, H) (Label S with interval queries given hypothesis class H )

while |S| > 0 do
Order S as () < - < (™) where m = |S]|.
i* <— FINDLEFT(S)
if ([, 2], 1) = 1 then
Label z(V, ..., z() by 1
else
Label z(D, ..., z() by -1
S S\ {zM, ... 20}

Proof (Proof of Theorem 6) We first show the correctness of Algorithm 3. By Lemma 22, we know
that every time Algorithm 3 calls Algorithm 2, we will find some ¢* such that for some y € {£1},
q([zM, 2], 4) = 1, which implies that the true labels of (1), ... 2(") are 3. Thus, Algorithm 3
labels every example correctly.

Next, we bound the query complexity of Algorithm 3. By Lemma 22, we know that each time we
call Algorithm 2, the example 20" satisfies the following property. There is some y € {1} such
that ¢([z™1), z0)], y) = 1 but g([z™), 2("+D] ) = 0. Since the target hypothesis h* is a union
of k intervals, over any dataset S, there are at most 2k such pair of 2 and 2"+, Each call
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of Algorithm 2 finds one of such pair. Thus Algorithm 3 calls Algorithm 2 at most 2k times. By
Lemma 22, each call of Algorithm 2 will make O(logn) queries. Thus, the query complexity of
Algorithm 3 is O(klogn).

Furthermore, we notice that the running time of Algorithm 2 is O((7" + n) logn), since each
time we do a binary search, make 2 region queries and remove examples from the candidate set C,
which takes O(T" + n) time. Thus the running time of Algorithm 3 is O((T" + n)klogn). [

C.2. Proof of Theorem 7

We present the proof of Theorem 7, restated as follows.

Theorem 23 (Restatement of Theorem 7) Let X = R% be the space of examples and H =
{TT @i, b] | @i, bi € [—00, 0]} be the class of axis-parallel boxes in R® that labels X. There is
a query class Q over R with VC dimension O(logd) and an efficient algorithm A such that for
every set of n examples S C R, every target hypothesis h* € H, and for every labeling domain
S C L(possibly unknown to A), A runs in O((T + n)dlogn) time, makes O(dlogn) queries from
Q and labels every example in S correctly, where T is the running time to implement a single region
query.

Similar to what we did in Appendix C.1, we start with Algorithm 4, a subroutine we use to
approximately learn a boundary of the target hypothesis. The guarantee of Algorithm 4 is presented
in Lemma 24.

Algorithm 4 FINDBOUNDARY (.S, w) (Find the boundary point in S along direction w)

Order S as z), ..., z("™) where m = |S|, such that w - 2D << glm),
if (({z |w-z>w-2M},0) =1 then
return —oo
Let C = {w-zW, ... w-zM} > Candidates of boundary points
while IC>1 do > Find the boundary point via binary search
Let b be the median of C'. > If |C] is even, select b as the larger one

ifg{z |w-2z>b},—1) =1 then
Remove b and all elements greater than b from C
else
Remove all elements less than b from C
return the single element in C

To prove Theorem 7, we first prove the following technical lemma.

Lemma24 Let S C R be a subset of n examples labeled by an axis-parallel box h* =
H?Zl[ai, bi]. Let L C RY be any arbitrary labeling domain such that S C L. For every i € [d],
FINDBOUNDARY (S, ¢;) returns b; < b; by making O(logn) queris such that for every x € S with
T; > l;z x is labeled by —1. Symmetrically, FINDBOUNDARY (S, —e;) returns a; > a; by making
O(logn) queris such that for every x € S with x; < a;, x is labeled by —1.
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Proof (Proof of Lemma 24) We prove the case for FINDBOUNDARY(S, ¢;) and the case for
FINDBOUNDARY (S, —¢;) can be proved symmetrically. We first prove the correctness of the
algorithm. If Algorithm 4 terminates in the first round (q({z | ¢; - > ¢; - £V}, —1) = 1), then
clearly —oco = 132 < b;. Furthermore, since S C {z | e; - > ¢; - x(l)} N L, we know that every
example in S is labeled by —1. In this case, the statement of Lemma 24 is true. In the rest of the
proof, we assume Algorithm 4 does not terminate in the first round. We observe that for every
1<i<j<m,wehave{z |e;-2>¢ -2} C {x|e -z > ¢ @} Thisimplies that
there exists a largest index j* € [m] such that g({z | €; -« > ¢; - 20"}, —1) = 0. In particular,
xgj R < b;, because otherwise, any example x € R? with x; > asgj R will be labeled by —1, which
gives a contradiction to the answer to g({z | ;- © > ¢; - £U7)}, —1). So, it is sufficient to show that

the output b; of Algorithm 4 is :UE]

Assuming we receive a feedback q({z | ;- = > ¢; - ¥}, —1) = 1 for some z*) € S, then no
()
i
is removed from C'. This implies that the final element remained in C' must be some xl(-J ) with
(k)

qg{z | ei -z > e; -2}, —1) = 0. On the other hand, suppose we are removing some
with ¢({z | e; - = > e; - ®)}, —1) = 0. This implies we received a feedback of the form

x;”” with j < k is removed from C. In particular, no xz(j) with g({z | e; -2 > e; - 2D}, —1) = 0

q{z | e; -z > e; - z*)}, —1) = 0 for some k' > k. Thus, any 372(]) with j < k is either removed
(k)

together with ;" or has already been removed from C. This implies that the single element

remaining in C'is xgj *), which is the output.
Finally, it remains to show the query complexity of Algorithm 4 is O(logn). Since b is selected
as as the median of C, after every query, we remove half elements from C'. So after making at most

O(logn) queries, there is a single element remained in C' and is output by Algorithm 4. [ |

Given Algorithm 4 and Lemma 24, we are ready to present the learning algorithm, Algorithm 5
and the proof Theorem 7.

Algorithm 5 LABELBOX (S, H) (Label S with halfspace query given hypothesis class H )

for i € [d] do
x¢ < FINDBOUNDARY(S, ¢;)
z! +— FINDBOUNDARY (S, —¢;)

Label all examples in S N []%_, [z}, 7] to be 1 and the others to be —1.

Proof (Proof of Theorem 7) We first prove the correctness of Algorithm 5. Let B = H?=1 [a;, b;]
be the target box that labels S. By the first part of Lemma 24, we know that the estimator B =
H?Zl[;c%, x%] of Algorithm 5 is a subset of B. Thus, every negative example in S is also labeled
negative by Algorithm 5. Furthermore, by the second part of Lemma 24, we know that any example
x €S\ B has a true label —1. Thus, no positive example in S is labeled incorrectly.

Next, we upper bound the query complexity of Algorithm 5. By Lemma 24, we know that every
time we call Algorithm 4, we make O(logn) queries. So the query complexity of Algorithm 5 is
O(dlogn). Furthermore, since every time we call Algorithm 4 in Algorithm 5, we just do a binary
search. The running time of Algorithm 5 is O((T" + n)dlogn).

Finally, we show the query class ) has a small VC dimension. Notice that each query in @
corresponds to some linear classifier {z | w - x > b}, where w is parallel to some e; for i € [d].
According to (Gey, 2018), we know that ) has VC dimension O(log d). [ |
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C.3. Learning Arbitrary High-Dimensional Halfspaces

In this section, we move to our main algorithmic result for learning halfspace. Since in this work, we
want to label an arbitrary dataset S C R¢, we can without loss of generality to assume that the target
halfspace is homogeneous w*.

C.3.1. EFFICIENT HALFSPACE LEARNING WITH ARBITRARILY COMPLICATED QUERY FAMILY

As we discussed in Section 3.3, we will first give an efficient halfspace learning algorithm using an
arbitrarily complicated query class using the connection between active learning with region queries
and self-directed learning. To start with, we remind the readers of the model of self-directed learning.

Definition 25 (Self-Directed Learning(Goldman and Sloan, 1994)) Let X be a space of exam-
ples and let H be a class of hypothesis over X. Let h* € H be an unknown target hypothesis let
S = {:U(l), . ,:U(”)} C X be a subset of n € N examples. The learner has access to the full set of
(unlabeled) points X.

Until the labels of all examples of S have been predicted:

* The learner A picks a point x € S and makes a prediction § € {0, 1} about its label.
* The true label h*(x) of x is revealed and the learner makes a mistake if § # h*(z)

The mistake bound M (A, S, h*) is the total number of mistakes that A makes during the learning
process.

Theorem 26 Let X be a space of example and H be a class of hypotheses over X. Let S C X be a
subset of n examples and let h* € H be the target hypothesis. Let Q = {(T,z) | z € {#1},T C 2*}
over X be the query class that contains any subset of X. If there is a self-directed learner A with
mistake bound M = M (A, S, h*) that labels S, then there is an active learner A’ that makes
O(M log n) queries from Q and labels S correctly in time M (nT 4 + Tglogn), where T4 is the
running time of A to predict a single example and Ty is the running time to implement a single

query.

Proof (Proof of Theorem 26) We construct A’ as follows. In a single round, if there is still an example
x € S, for which we don’t know the true label, we run the self-directed learner A over .S from the
beginning to predict every example in S. If A makes a prediction for some x, whose label is already
known, we provide the true label for A as feedback, otherwise, we provide the prediction of A as
feedback assuming the prediction of A is correct. Denote by {(z,9(z))}zes the feedback that A
receives in this execution. Denote by ST :={z € S| g(z) =1} and S~ :={z € S | y(z) = —1}.
We make two queries (ST, 1) and (S—,—1). If ¢(ST,1) = ¢(S™,—1) = 1, we label every = € S
according to (x). Otherwise, we do a binary search over ST and S~ to find the first example z’
where A makes a mistake in this execution. Then we know the true label of every example up to 2,
and we enter the next round. Clearly, when A’ terminates, we label every example in .S correctly.
Next, we upper bound the query complexity of .A’. We notice that in every round of execution of
A’, before the self-directed learner A predicts some example = whose label we don’t know and A
actually makes a mistake at x, the performance of 4 in this setting is the same as the performance of
A who receives the true feedback. When A actually makes a mistake at =, we use O(logn) region
queries to do a binary search and find the first misclassified examples x whose label we don’t actually
know. This implies in the next round A will be fed with the true feedback at example = and A will
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keep performing well until it makes the next mistake at some example we don’t know the true label.
Since the mistake bound of A is M, we know that .4’ will have at most M rounds and thus the total
query complexity is O(M logn).

Finally, we analyze the running time of A’. As we analyzed in the last paragraph, we know A’
in total have at most M rounds, in each round, we make n predictions and make O(logn) queries.
Thus, the running time of A’ is O(M (nT.4 + T logn)). [ |

Given Theorem 26, to prove Theorem 8, it is sufficient to design an efficient self-directed
halfspace learning algorithm that makes O(d log n) mistakes for every .S any every target halfspace
w*. Such an algorithm is easy to design using the idea from Haussler et al. (1994).

Theorem 27 Let X = R? be the space of the examples and let H = {w | w € S} be the class
of homogeneous halfspaces in R® that labels X. There is an efficient self-directed learning algorithm
A such that for every subset S C X of n examples and for every target hypothesis w* € H, A
predicts each example in time poly(B), where B is the bit complexity of S and makes O(dlogn)
mistakes in expectation

Proof (Proof of Theorem 27) We first describe the self-directed learning algorithm. The algo-
rithm randomly order S and obtain a sequence of example =), ..., (™. To predict the la-
bel of example 20Dt computes w®, a solution of the support vector machine (SVM) of
(D, M), (2@, y®) and predicts 701 = sign(w® . z(+1).

Now denote by w(it1) the solution of SVM of (M, y(M) ... (z(*+D 4(+1)  Notice that
w1 is uniquely determined by the d support vectors. Since we make a random permutation of S,
the probability that 20+ is one of the support vector is at most d/(7 + 1), which implies that with
probability at most d/(i + 1), w® # w(+1) Thus, the probability that we make a mistake at 2(*+1)
is at most d/(i 4+ 1). Denote by M, the total number of mistakes made by .A. We have

n n n
L . L . d
EM = Z E 1(z; is misclassified) = Z Pr 1(xz; is misclassified) < Z h < O(dlogn).
=1 =1 =1
This shows in expectation the mistake bound of A is O(d logn). Furthermore, every time .A makes a
prediction, it solves a convex program based on .S, and thus the running time is poly(B). |

With Theorem 26 and Theorem 27, we give the following active learning algorithm and the proof
of Theorem 8.

Theorem 28 (Restatement of Theorem 8) Let X = RY be the space of examples and H = {w |
w € S} be the class of homogeneous halfspaces in R that labels X. Let Q = {(T,z) | z €
{£1},T C QRd} over R? be the query class that contains any subset of R%. There is an efficient
algorithm A such that for every set of n examples S, labeled by any w* € H and for every labeling
domain S C L (possibly unknown to A), A runs in O((T + B)dlog?n) time, makes O(dlog®n)
queries from @ in expectation and labels every example in S correctly, where T is the running time
to implement a single query and B is the bit complexity of \S.

Proof (Proof of Theorem 8) The proof of Theorem 8 follows directly by Theorem 26 and Theorem 27.
The algorithm we use is Algorithm 6, which converts the self-directed learning algorithm used in the
proof of Theorem 27 to an active learner using the proof of Theorem 26. |
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Algorithm 6 RANDOMIZEDSVM(S) (Label S with arbitrary region query )

Randomly order dataset S and obtain sequence of examples (1), ... z(")
i* <0
while ¢* < n do
Let 1 be a solution of the SVM over labeled data (z(1), y(1), ... (207 4()
for i € [n] do
7%« sign(w - ™)
if i > ¢* then
Update @ to be a solution of the SVM over labeled data (z(1), (1)), ... (z(), 5()
Let ST: {z® | ) =1}and S~ : {2 | () = -1}
Make queries (ST, 1) and (S—, —1).
if ¢(S*,1) =¢q(S™,—1) = 1 then
Label every () by ) and return
else
Binary search over St and S~ to find the smallest j such that §(9) # y() via region
queries.
i g, 90— 1 — gl
Label every z(@ by e
Label all examples in S N []%_, [z}, ] to be 1 and the others to be —1.

C.3.2. EFFICIENT HALFSPACE LEARNING WITH SIMPLE QUERY FAMILY

In this section, we design an efficient halfspace learning algorithm with low query complexity using
a query class with poly(d)-VC dimension and prove Theorem 9.

Theorem 29 (Restatement of Theorem 9) Let X = R? be a space of examples and let H = {w |
w € Sd_l} be the class of homogeneous halfspaces in R? that labels X. There is an algorithm
and a query class Q) with VC dimension O(d3) such that for every subset of n examples S C X,
every labeling domain L with S C L and every target hypothesis w* € H and every o € (0,1), it
in expectation makes O(d®log® dlog(1/a)) queries from Q, runs in poly(d,n,T) time and labels
(1 — «) fraction of examples in S correctly, where T' is the running time of implement a single region
query from Q. In particular, the algorithm makes O(d> log® dlog n) queries from Q and labels every
example in S correctly in time poly(d,n,T).

As mentioned in Section 3.3, we will make use of Forster’s transform to make our dataset
well-behaved. So, we will start with some background on Forster’s transform before diving into the
proof. We first introduce the notion of Approximate Radially Isotropic Position.

Definition 30 (Approximate Radially Isotropic Position) Let S be a multiset of non-zero points
in RY, we say S is in e-approximate radially isotropic position, if for every x € S, ||z| = 1 and for
everyu € STL Y o(u-2)?/|S| > 1/d -

A simple calculation gives the following useful result, which has appeared in (Diakonikolas et al.,
2023b,a), for a dataset that is in an approximate radially isotropic position.
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Lemma 31 Let S be a multiset of non-zero points in R that is in 1/2d-approximate radially
isotropic position. Then for every u € S, we have Pr,.g <|u sz > 1/2\/&) > 1/4d.

In particular, several works have been done to show an approximate Forster’s transform can be
computed efficiently.

Theorem 32 (Approximate Forster’s Transform (Diakonikolas et al., 2023b)) There is an algo-
rithm such that given any set of n points S C R\ {0} and € > 0, it runs in time poly(d, n,log 1/¢)
and returns a subspace V of R? containing at least dim (V') /d fraction of points in S and an invert-
ible matrix A € R*>? such that f A(S NV) is in e-approximate radially isotropic position up to
isomorphic to R¥™(Y) where fA(SNV) = {fa(z) := Az/||Az| |z € SNV}

Combine Theorem 32 and Lemma 31, we know that given any set of n examples S C R?, we can
find a subset of at least kn/d examples Sy := SNV C S that lies in some k-dimensional subspace
V' and some invertible matrix A such that f4(Sy ) is in 1/2k-approximate radially isotropic position
(up to isomorphic to R¥). Now, for convenience, we assume our transformed data f4(Sy/) is exactly
our original dataset and we focus on the transformed data. Notice that for each z € Sy, we have

sign(w* - z) = sign(A~"w* - Az) = sign(A~"w* - fa(z)) = sign(proj (A~ w*) - fa(x)),

which implies that each transformed example f4 () is labeled by halfspace w7, and has the same
label as z, where v* is the unit vector parallel to proj 4y, (A=Tw*). (We can without loss of
generality assume that proj A(V)(A_Tw*) # 0, otherwise we only need to use a single query to
check if examples in V" are all labeled positive.) Given the above discussion, we design Algorithm 7,
a learning algorithm that correctly labels a large fraction of the dataset .S, if S is in approximate
radially isotropic position. Formally, we prove Theorem 33.

Theorem 33 Let X = RY be a space of examples and let H = {w | w € S} be the class of
homogeneous halfspaces in R? that labels X. Let S C R? be a set of n examples that are classified
by some unknown halfspace w* € S4=1. Let w € S~ be a unit vector such that w-w* > Q(1/+/d).
Let L be any labeling domain such that S C L. Denote by L the output of Algorithm 7 with input
(w,8). If S C S is in 1/2d-approximate radially isotropic position, then Algorithm 7 makes
O(d?log? d) queries from a query family Q with VC dimension O(d?), runs in poly(d,n,T) time
and returns L such that each (z,y) € L, y = w*(x) and |L| > n/4d. Here, T is the running time to
implement a single query from Q).

Proof (Proof of Theorem 33) We first show the correctness of the algorithm. i.e. Each element in the
labeled set L has the correct label. No matter what the labeling domain is if some query ¢(Z,y) = 1,
then every example x € Z N .S must has a label y. Thus, each labeled example in the output is
correctly labeled.

In the second step, we show that when w and w* have a good correlation, Algorithm 7 will
terminate after 2(d log d) iterations. In particular, we show the following robust proposition of the
modified perceptron algorithm. We have the following claim.

Claim 34 Let w*,wy € R? be two unit vectors such that w* - wy > Q(1/V/d). Assume the
following update, wyy1 = wy — x¢(x¢ - wy) and for some ty € Z, such that for every t < t,
|zt - we| > |Jwe]| /2V/d and (¢ - wy) (x4 - w*) < 1/poly(d). Then we have to < O(dlog d).
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We prove the claim here. By the update, we have

w1 - W' = (wp — z (- wy)) - w* = wy - w" — (2 - wy) (xg - W) > wy - w* —% Zwo-w*—%.
On the other hand, we have

lwet|® < [lwel|® = (we - 20)* < (1= 1/2d) [|w||.
If ty > Q(dlogd), then before reach ty, at some point we will have lﬁtTﬁr > 1, which gives a

contradiction.

Now, we will show Algorithm 7 terminates before ¢ > Q(dlogd), by showing that in each
iteration, the example x; we use to update w; satisfies the condition in the statement of Claim 34.
There are two cases to consider.

In the first case, we update w; via some 2y = 2/ € SN{zx € B | yvo - x > 21%} because
(wy - ) (w* - x) < 0. Clearly, x; is an example that satisfies the update requirement.

In the second case, we know that the example 2’ is correctly labeled by our current hypothesis
wy. In this case, according to Algorithm 7, we partition the region {z € B | yvy - x > 2—\1@} into

boxes with diameter 1/poly(d). Since ¢({z € B | yvg - x > 2—\1@}, y) = 0, we know that there must

be a “point” 2" € {z € B | yvg - x > 27\1/8} such that z” is labeled incorrectly by wy. Although

such a point 2" may or may not be in our dataset S, it must be in one of these small boxes. Thus,
Algorithm 7 will finally find such a small box such that

g({z € Blyvp-zcla® b 0<k <d-13U{a'},y) =0

Since 2’ has a label y, we know that no matter what the labeling domain is, there must be some z”
labeled incorrectly by wy that is in this small box. Let Z be any point in the box. If Z is actually
labeled incorrectly by w;, then we make a good enough update because (Z - wy)(Z - w*) < 0.
Otherwise, we show such an update is not that bad. Since !a(k) - b(’“)} < 1/poly(d), we know that
|z — 2"|| < d/poly(d) = 1/poly(d). On the other hand, each update will increase the length of w;
by at most 1, which implies that ||w;|| < ¢+ 1 < O(dlogd). This implies that

O(dlogd) 1

(- we)(@ - w) = (@ w0+ (@ =) w) < @) (- a") ) S O =

So in general, we have (Z - wy)(Z - w*) < 1/poly(d). In the meantime, since

1
ie{zeB|yn-zela® W), 0<k<d-1}u{z'} C{zeB|yvw z>—=}

2Vd

we have |7 - wy| > |lwy|| /2/d. So in each round the example z;(z’ or &) we use to update w; always
satisfies the update requirement thus after at most ¢ = O(d log d) update, w; correctly label every
example z in the unit ball B with | - wy| > ||w;|| /2v/d. When we reach this stage, no matter what
the labeling domain is, as long as some example x € {x € B | yvg - © > ﬁ} N S, we always have

q{z e B|yvy-x >

1
T\/&Ly) =1,
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which will make Algorithm 7 terminate. Furthermore, if S is 1/2d-approximate radially isotropic
position, by Lemma 31, we know that

1
x € B||vg-z| > —=}NS|>n/dd,
{ | v !_2\/3} | >n/

which implies that Algorithm 7 correctly label 1/4d-fraction of the examples.

In the third step, we upper bound the query complexity and the running time of Algorithm 7. In
each perceptron update for w;, we make d binary searches over poly(d) cells to find an example
to update w;. Each binary search makes O(log d) queries and in total we make O(d log d) queries
to make one update. Since we make at most O(d log d) updates, we know the query complexity of
Algorithm 7 is O(d?log? d).

Finally, we upper bound the VC dimension of the query family (). Since each query Algorithm 7
is a set of O(d) d-dimensional linear inequalities, we know that the VC dimension of Q is O(d?). B

Algorithm 7 ACTIVEPERCEPTRON(w, S) (Label a large fraction of example in .S)
d <+ dim(S) t + 0w + w
while ¢t < O(dlogd) do
Let vg = wy/ ||w|| and B be the unit sphere
Make query ¢({z € B | yvg - = > T%},y),if{meB | yvo - > 2—\1@}057&0.
if Every query made above returns 1 then
1
l return {(z,y) |z € S,y € {—1,1},yvp- = > 2—\/3}
else

Lety € {—1,1} such that ¢({z € B | yvp - & > 2\f} y) =0

Query g({z'},y), where 2’ € SN{x € B | yvp -z > 7}
if ¢({z'},y) = 0 then
xp =2, wp — wp — (g -y, t—t+ 1
else
Let 1/2\/& =60y <6 <---<0;=1suchthat§; — 0,1 = 1/poly(d).
Find some [a(9), 5] := [0;_1, 6;] for some i € [¢] such that ¢({z € B | yvy - = €
[, 607} U {2}, y) = 0.
> This can be done with O(log d) queries via binary search by making query of the form
q({z € B |yvo -z > 0;} U{a'},y).
Let vy,...,v4—1 be a standard basis of the subspace orthogonal to w;.
Let —1 =6y <6; <---<6;=1suchthat; — 0;,_; = 1/poly(d).
for j € [d — 1] do
Find some [a7), ()] := [0;_1, 6;] for some i € [¢] such that g({z € B | yvi - = €
[a®) b)), 0 < k < j}U{z'},y) = 0 via binary search.
Let & be any pointin {z € B | yv; -z € [a®,b®],0 <k <d—1}
Ty = T, Wy ¢ W — (wt-;vt)xt,t<—t+1
return () > If w is not a good initialization, no example will be labeled.

Finally, we present Algorithm 8, the halfspace learning algorithm and the proof of Theorem 9.
Proof (Proof of Theorem 9) In the first step, we show the correctness of Algorithm 8. In each round
of Algorithm 8, we find a subspace V' that contains k/d fraction of the unlabeled data in S and a
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Algorithm 8 LEARNINGLTF(S, o) (Label 1 — « fraction of .S with simple query )

L+ 0,n<+ S|
while |L| < (1 — a)n do
Apply Theorem 32 to S with e = 1/2d to obtain a matrix A and a k-dimensional subspace V'
if ¢(V,1) = 1 then
Ly «+ {(fa(x),1) |z e SNV}
else
Ly + 0
while |[Ly| < |SNV|/4k do
Draw wq uniformly from the unit sphere in A(V)
Ly < ACTIVEPERCEPTRON(wy, f4(SNV))
> If wy is not a good initialization, Ly = ().
> To run ACTIVEPERCEPTRON (wy, f4(S NV')), we implement each query (Z, y) by query
({z € V| fala) € Z}y).
Label every x € SNV by yif (fa(z),y) € Ly
L+~ LU{zeSNV | falz)e Ly}, S« S\L

matrix A that can make f4(S N V') in approximate radially isotropic position. Denote by B the unit
sphere in A(V'), we notice that for every = € V, we have

sign(w* - z) = sign(A~"w* - Az) = sign(A~Tw* - fa(z)) = sign(proj 4y (A~ w*) - fa(x)),

which implies that we can view f4(V') to be labeled by a halfspace v* = proj A(V)(A_Tw*)
furthermore, = and f4(z) have the same label. According to Theorem 33, we know that each
labeled example in the output of Algorithm 7 has the correct label with respect to v* and thus the
corresponding original examples in S N V' are also labeled correctly.

However, up to now, we have not shown the correctness of the algorithm. This is because
when we call Algorithm 7 as a subroutine in Algorithm 8, we are not able to make queries in the
transformed subspace A(V'), since it could be the case that A(V) NY = (). Instead, we have to
simulate a query ¢(Z,y) used by Algorithm 7 with a query ¢({z € V | fa(z) € Z},y) in the
original space.

To show such a simulation is successful, it suffices to show the simulation has the following two
properties. First, every subset Z C B contains some transformed example fa(z) € fa(SNV)if
and only if {x € V' | fa(x) € Z} contains some example = € S. This property ensures that the
transformed labeling domain f4(Y N V') also contains the transformed dataset f4(S N V). Second,
for every fa(z) € Z C B ifitis labeled y by v* then x is labeled y by w*. This implies that the
q(Z,v*y) =q({x € V| fa(z) € Z},w*,y) is always true. Thus, we can safely run Algorithm 7
with the simulated query. Since Algorithm 8 terminates when (1 — «) fraction of the examples have
been labeled and every labeled example has the correct label, we finish showing the correctness of
the algorithm.

In the second step, we bound the query complexity and the running time of the algorithm. We
first upper bound the number of calls for Algorithm 7. Since the transformed subspace A(V') has
dimension &, by (Vershynin, 2018), we know that with probability at least some constant ¢, a random
selected wy satisfies |wg - v*| > 1/2+/k. When this happens, according to Theorem 33, we know that
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Algorithm 7 will correctly label 1/4Fk fraction of the transformed dataset f4(S N V') and Algorithm 8
will enter next round. Thus, in expectation Algorithm 7 will be called constant times and each
call will make O(k?log? k) < O(d?log® d) queries. According to Theorem 32, we know that in
each round |S N V|/|S| > k/d and 1/4k fraction of S NV is labeled correctly. This implies that
after O(dlog(1/a)) rounds only an examples are not labeled and Algorithm 8 will terminate. This
implies the total query complexity is O(d® log? dlog(1/a)). In particular, by setting o = o(1/n),
we know that by making O(d® log? dlog n) queries, Algorithm 8 perfectly label S. To upper bound
the running time of the algorithm, we notice that in each round, we run Algorithm 7 and compute an
approximate Forser’s transform, each of time can be done in polynomial time. Since the total number
of rounds is at most O(d logn), we know Algorithm 8 is also a polynomial time algorithm.

Finally, we upper bound the VC dimension of the query family @). Notice that each query we make
can be summarized as follows {z € V' | fa(z) € Z}, where Z = {2’} U{z € A(V) | Cz < d},
where C' has at most O(d) constraints. Thus, each query is the interaction of O(d) degree two
polynomial inequalities and a subspace (unions with a single point), which has a VC dimension of
O(d®). u

We notice that when we run Algorithm 7, the region 7" in a query (7', 2) is a set of O(d) linear
inequalities. Since in our learning model, each query is binary, we have to use such region queries to
do a binary search in order to find some point x such that (x - w;)(x - w*) < 1/poly(d). Thus, when
we run Algorithm 8, each query uses a region that is the interaction of O(d) degree two polynomial
inequalities, and a subspace. This is why the VC dimension of () in Theorem 9 is O(d3). If we are
in a stronger learning model, where a counter-example x € 7' N L with label —z is also returned
when ¢(7, z) = 0, then the binary search approach in Algorithm 7 is not necessary. In this setting, in
Algorithm 7, each region is defined by a single halfspace, and thus the VC dimension of the query
class Q we use for Algorithm 8 will be improved to O(d?).

Appendix D. Learning A Specific Hypothesis Class via A Specific Query Class

Although Theorem 2 shows that given a hypothesis class H with VC dimension d, we can construct
a query class @ with VC dimension O(d) so that using (), we can design a learning algorithm with
query complexity, we have also seen from Section 3 that if a hypothesis class has a good structure, a
query class with VC dimension O(log d) or even constant is sufficient to achieve a query complexity
of O(logn). So an interesting question is given a hypothesis class # and a query class ), what
is the query complexity of learning H with ()? Such a question has been extensively studied in
many works in the literature of exact learning such as (Angluin, 1988; Balcazar et al., 2001, 2002;
Chase and Freitag, 2020). Many different combinatorial characterizations have been developed. As
a by-product of Theorem 2, we can also define a new combinatorial dimension to characterize the
query complexity of using a specific query class () to learn H.

Definition 35 (Partial Labeling and Extension) Let X be a space of examples and H be a hypoth-
esis class over X. Let S C X be a set of n examples. A partial labeling f over S is a labeling
function f : S" C S — {—1,1}, where S" C S. We say hypothesis h € H is an extension of | if for
everyx € S', f(x) = h(z). In particular, we denote by Hy = {h € H | h(z) = f(z),Vx € S’} the
set of extensions of f in H.
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Definition 36 (Generalized Teaching Tree) Let X be a space of examples, H be a hypothesis class
over X and Q) be a query family. Let S C X be a set of n examples. A generalized teaching tree T
for f is a binary tree that satisfies the following properties.

e Each node v of T is associated with a subset H, of hypothesis in H. The root of T} is
associated with H.

* Each internal node v of T} is also associated with a query g, € Q.

* Denote by v; and v, the left child of an internal node v. H,, := {h € H, | g¢,(h) = 0},
H, = {he H,|qh) =1}

e The subset of hypothesis H,, associated with a leaf v is either a subset of Hy or a subset of
H\ Hy.

Definition 37 (Query Dimension) Ler X be a space of examples. Let H be a class of hypotheses
over X and Q be a family of queries. For any n € Nt, we define s(n) to be the query dimension of
(H, Q) as follows.

s(n) = max max min{depth(T) | Tt : a generalized teaching tree for f}.
( ) SCX,|S|=n f:partial labeling over S { P ( f)| ! J . & f f}

Theorem 38 Let X be a space of examples. Let H be a class of hypotheses with VC dimension d
and Q) be a family of queries. Let s(n) be the query dimension of (H, Q).

* For any deterministic active learner A, there is a subset S C X of n such that if A makes less
than s(n) queries then there is some h* and some x € S such that A labels x incorrectly.

*» There is an active learner A such that, for every subset of n example and every h* € H, A
makes O(s(n)dlogn) queries from Q) and labels every example in S correctly.

Proof Clearly, given any set S of n examples, every active learning algorithm .4 constructs a gener-
alized teaching tree for every partial labeling function f, because each leaf of the tree corresponds to
the hypothesis in H that labels S in the same way. In particular, let S* be the set of n examples that
achieves the maximum in the definition of s(n), then the number of queries needed for A to label S
is at least the depth of the teaching tree it constructs which is larger than the number of queries to
teach any partial labeling f.

On the other hand, by Lemma 15, we know that for every hypothesis class H’ and every set
of n examples S, there is some partial labeling f such that [(H})s|/|Hg| € [1/3,2/3]. (Hg is H'
restricted at S and (H})s is H restricted at S.) Thus, with at most s(n) queries, we are able to
check if the target hypothesis is in H’; or not and shrink the hypothesis class by a factor of constant.
Thus after making O(s(n)dlogn) queries, we label S correctly. [
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