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Abstract

Maximum mean discrepancy (MMD) has enjoyed a lot of success in many machine learn-
ing and statistical applications, including non-parametric hypothesis testing, because of its
ability to handle non-Euclidean data. Recently, it has been demonstrated in Balasubra-
manian et al. (2021) that the goodness-of-fit test based on MMD is not minimax optimal
while a Tikhonov regularized version of it is, for an appropriate choice of the regulariza-
tion parameter. However, the results in Balasubramanian et al. (2021) are obtained under
the restrictive assumptions of the mean element being zero, and the uniform boundedness
condition on the eigenfunctions of the integral operator. Moreover, the test proposed in
Balasubramanian et al. (2021) is not practical as it is not computable for many kernels.
In this paper, we address these shortcomings and extend the results to general spectral
regularizers that include Tikhonov regularization.
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1 Introduction

Given X,, := (X;), i P, where P is defined on a measurable space X', a goodness-of-

fit test involves testing Hy : P = Py against Hy : P # Py, where P, is a fixed known
distribution. This is a classical and well-studied problem in statistics for which many
tests have been proposed, including the popular ones such as the y?-test and Kolmogorov-
Smirnoff test (Lehmann and Romano, 2006). However, many of these tests either rely on
strong distributional assumptions or cannot handle non-Euclidean data that naturally arise
in many modern applications.

A non-parametric testing framework that has gained a lot of popularity over the last
decade is based on the notion of reproducing kernel Hilbert space (RKHS) (Aronszajn,
1950) embedding of probability distributions (Smola et al. 2007, Sriperumbudur et al. 2009,
Muandet et al. 2017). The power of this framework lies in its ability to handle data that
is not necessarily Euclidean. This framework involves embedding a probability measure P
into an RKHS, 5 through the corresponding mean element, i.e.,

up = /X K(2)dP() € 7,
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where K : X x X — R is the unique reproducing kernel (r.k.) associated with ¢, with
P satisfying [ /K (x,x)dP(xz) < co. Using this embedding, a pseudo-metric can be
defined on the space of probability measures, called the mazimum mean discrepancy (MMD)
(Gretton et al. 2012, Gretton et al. 2006), as

Dyivin (P, Q) = |lpp — 1gll 4 »

which has the following variational representation (Gretton et al. 2012, Sriperumbudur et al.
2010),
Dup(P.Q)i= s [ f@)dP- Q)
FeANfll o<1V X

We refer the interested reader to (Sriperumbudur et al. 2010, Sriperumbudur 2016, Simon-
Gabriel and Scholkopf 2018) for more details about Dypvp. Thus given some fixed Py, a
consistent goodness-of-fit test can be conducted by using the following estimator of Dl%/[MD
as a test statistic, i.e.,

. 1

Dinn (P, Po) = m D (K (5 Xi) = po K, X5) — po)
i#]j
=Ty 2 KX X)) —quo )+ llroll %
Z#J

and using the 1 — a quantile of the asymptotic null distribution of D%AMD(P Py) as the
critical level (Balasubramanian et al., 2021, Theorem 1), while assuming po := pp, and
| 10]/%, are computable in closed form The asymptotic null distribution of D3y, (P, Po)
does not have a simple closed form—the distribution is that of an infinite sum of weighted
chi-squared random variables with the weights being the eigenvalues of an integral operator
associated with the kernel K w.r.t. the distribution Py (Serfling, 2009). Assuming po = 0,
recently, (Balasubramanian et al., 2021) showed this test based on ﬁMMD to be not optimal
in the minimax sense and modified it to achieve a minimax optimal test. Li and Yuan
(2019) constructed an optimal test by using the Gaussian kernel on X = RY (the test and
analysis can be extended to translation invariant kernels on R? using the ideas in Schrab
et al., 2021) by allowing the bandwidth of the kernel to shrink to zero as n — co—this is
in contrast to the Dyup test where the bandwidth or the kernel parameter is fixed and
does not depend on n. By relaxing the requirement of X = R? Balasubramanian et al.
(2021) studied the question of optimality for general domains by proposing a regularized
test statistic,

D(P, Ry) = ZHA Epg;)?, (1)

assuming Ep,¢; = 0 for all j, where (\;);>1 and (¢;);>1 are the eigenvalues and eigenfunc-
tions of an integral operator associated with the kernel K w.r.t. the distribution F,, and
A > 0 is the regularization parameter. Under some regularity conditions, they showed the
asymptotic null distribution of an appropriately normalized version of (1) to be the standard
normal distribution, using which a minimax optimal goodness-of-fit test was constructed
(Balasubramanian et al. 2021, Theorems 2—4). However, this test is impractical and limited
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for two reasons: (i) The test requires knowledge of the eigenvalues and eigenfunctions which
are only known for a few (K, Fy) pairs, and (ii) Ep,¢; = 0 for all j implies that ;9 = 0,
a condition that is not satisfied by any characteristic translation invariant kernels on R?,
including the Gaussian kernel (Sriperumbudur et al., 2010, 2011). To address these issues,
in this paper, we follow an operator theoretic approach and construct a generalized version
of (1) based on the idea of spectral regularization that includes (1) as a special case while
relaxing the requirement of Ep,¢; = 0 for all j—hence resolving (ii)—, and establish its
minimax optimality. Moreover, under an additional assumption of Py being samplable, i.e.,
extra samples are available from Py, we propose a practical test (i.e., computable) that is
also minimax optimal, thereby resolving the issue mentioned in (i).

Before introducing our contributions, we will first introduce the minimax framework
pioneered by Burnashev (1979) and Ingster (1987, 1993) to study the optimality of tests,
which is essential to understand our contributions and their connection to the results of
(Balasubramanian et al., 2021; Li and Yuan, 2019). Let ¢(X,,) be any test that rejects Hy
when ¢ = 1 and fails to reject Hy when ¢ = 0. Denote the class of all such asymptotic
(resp. exact) a-level tests to be @, (resp. Py o). The Type-II error of a test ¢ € O, (resp.
€ ¢, o) w.r.t. Pa is defined as

Ra(¢) = PSEUE Epn[1 — ¢,

where

Pa:={PeC:p*(P,P)>A},

is the class of A-separated alternatives in the probability metric (or divergence) p, with
A being referred to as the separation boundary or contiguity radius. Of course, the in-
terest is in letting A — 0 as n — oo (i.e., shrinking alternatives) and analyzing Ra
for a given test, ¢, i.e., whether Ra(¢) — 0. In the asymptotic setting, the minimax
separation or critical radius A* is the fastest possible order at which A — 0 such that
liminf,, o infyeca, Ra<(¢) — 0, ie., for any A such that A/A* — oo, there is no test
¢ € &, that is consistent over Pa. A test is asymptotically minimax optimal if it is
consistent over Pa with A < A*. On the other hand, in the non-asymptotic setting,
the minimax separation A* is defined as the minimum possible separation, A such that
infyep, , Ba(¢) < 6, for 0 < 6 < 1—a. A test ¢ € @y, is called minimaz optimal if
RA(¢) < for some A =< A*. In other words, there is no other a-level test that can achieve
the same power with a better separation boundary.
Balasubramanian et al. (2021) consider Pa as

dP dP
Pa = {P —— —1¢e F(v;M), X3(P,P,) = ‘ — -1

2
. > A 2
dPy dP, - } ’ ( )

L2(Py)
where v > 0, and
F(v; M) == {f € L*(P): for any R >0, 3fr € S such that || fr|l» < R,
and |f = fallpar,) < MR}

Pa in (2) denotes the class of alternatives that are A-separated from P, in the x2-divergence—
alternately, the squared L?(Py) norm of the likelihood ratio, dP/dPy — 1 is lower bounded
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by A—, while satisfying a smoothness condition. The smoothness condition is imposed on
the likelihood ratio and is defined through the rate of approximation of a function in L?(Py)
by an element in an RKHS ball of radius R. The faster the approximation rate—controlled
by v—, the smoother the function being approximated. F(v; M) is a subspace of a real
interpolation space obtained by interpolating . and L?(P). Particularly, v = 0 corre-
sponds to an RKHS ball of radius R. Note that (2) requires P < Py (i.e., P is absolutely
continuous w.r.t. Py) so that the Radon-Nikodym derivative dP/dP, is well defined. Define

2
> Ay, (3)
L2(Py)

where L : L*(Py) — L*(Py), f = [ K(-,z)f(x)dPy(z) is an integral operator defined
by K, and Ran(A) denotes the range space of A. It follows from (Cucker and Zhou, 2007,
Theorem 4.1) that

> T ap 2u1+2
PA._{P i 1 € Ran(LE*?), x*(P, Py) = ‘dpo 1

T1+2 2042 —2,}1+2 Zv42
Ran(LK ) C.F V,2 v HLK (dP/dP()_l) HLQV(P()) )

and if Py is non-degenerate, then

1
F(v; M) C Ran(LZ™ °),Ve >0, ie., F(v; M) C Ran(LL), V0 < n < T
In this work, we employ an operator theoretic perspective to the goodness-of-fit test
problem involving 7 (see Section 4 for details), which is a centered version of the integral
operator Lg. The centered version is needed to do away with the assumption of pg = 0,
which is assumed in Balasubramanian et al., 2021. Therefore, we choose Pa similar to the
form in (3) but with Lx replaced by 7. We write it as

dP 2

= ={P:— -1 P, Ry) — =1
P =Py { P, € Ran(Te) ( 0) ‘ P,

ZA}, (4)

L2(Py)

for & > 0. Note that # and v are in inverse proportion to each other and 6 = % yields
Ran(7?%) = #, with 0 < 0 < % yielding interpolation spaces and 8 = 0 corresponds to
L?(Py), where 2 is the RKHS induced by the centered kernel,

K(x,y) = (K(-,x) — po, K(-,y) — po) -

The explicit representation of Ran(7?) typically relies on the kernel K and the distribution
Py. If the kernel K has a Mercer decomposition with respect to eigenfunctions that consti-
tute an orthonormal basis for L?(Py), then Ran(7?) comprises functions within the span of
these orthonormal basis functions. For instance, in the following examples, we present an
explicit representation of Ran(7?) when Py is a uniform distribution on (i) [0, 1], (ii) S, a
unit sphere, and (iii) when Py is a standard Gaussian distribution on R. In this context,
Ran(77?) can be expressed in terms of Fourier basis in Example 1, spherical harmonic basis
in Example 2 and Hermite polynomials basis in Example 3.
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Example 1 (Uniform distribution on [0,1]) Let Py be the uniform distribution defined
on [0, 1] with

K(z,y) =aop + Z k| ~PeV—T2mhee—V=T2mhy 0 >0 B> 1. (5)

k40

Then
Ran(Te Zaker%kx : Z a%k%ﬁ < 00
k40 k40

Note that the s-order Sobolev space defined on [0,1] is given by

w2 = {f(a:) = Zakeﬁ%lm, z €[0,1] : Z(l + k)%l < oo} .

keZ kEZ
Since Y g g k29Pa} < 3, (L + k2)%8a2, it follows that W*? C Ran(T?). This means, if
u = j—};o — 1€ W*2, then u € Ran(T?) with 0 = % An example of a kernel that follows

the form in (5) is the periodic spline kernel, represented as K (z,y) = %Bgr([x —v]),
where B, denotes the Bemoulli polynomial, which is generated by the generating func-

tion ;f = > yB(z ) 1, and [t] denotes the fractional part of t. Then using the for-
mula Ba(z) = %Zki k| =2reV =127k it can be demonstrated that K(z,y) =

Zk¢0(2wlk\)*2re*ﬁ2”kx ~V=L2mky (see Wahba, 1990, page 21 for details).

Example 2 (Uniform distribution on S?) Let Py be a uniform distribution on X = S?,
where S? denotes the unit sphere. Let

o) k
=> Z N Y (0, 02) Vi (0, by). (6)
k=1 j=

where x = (sin 6, cos ¢, sin 8, sin ¢, cos b;), y = (sin b, cos ¢y, sin O, sin ¢,;, cos 6,) with 0 <
0,0y <7, 0< ¢y, dy <27, and

withpl;( )= (=1 (1—22 )J djgg’zj( 2) and p(x) = k,gkdk(fligl)k Here (ij(e, ®));k denote the

spherical harmonics which form an orthonormal basis in L*(S?). If Y70, (2k + 1)A\x < oo,

then
Ran 7'9 Z Z ag; Yy (0, ¢r) : Z Z akj)\_% < o0

k=1j=—k k=1j=—k

Many common kernels take the form in (6). For example, Minh et al. (2006, Theorem
2 and 3) provide explicit expressions for the eigenvalues corresponding to Gaussian and
polynomial kernels on the sphere.
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Example 3 (Gaussian distribution with Mehler kernel on R) Let Py be a standard
Gaussian distribution on R and K be the Mehler kernel, i.e.,

P2 +y?) — 2pay
2(1-p?) ’

1
K(z,y) = ———=exp | —
(z,y) — p(

for 0 < p < 1. Then

Ran(77) = {i axyg(z) : iaie_%mogp < oo} )
k=1

k=1

where y,(x) = H%), and Hy(x) = (—1)’“6”62/2%6_‘”2/2
wart and Scovel (2012, Theorem 4.6) provides an interpretation of Ran(TG) as a real in-
terpolation of L?(Py) and A Therefore, with the kernel being fixed, the influence of Py
on Ran(T?) can be understood as follows. Suppose Py,, := N(0,02), i = 1,2. It is easy
to verify that L?(Py»,) C L*(Py4,) if 02 < o1, which implies that Ran(T!) C Ran(7Y),
where T; is the integral operator defined w.r.t. Py s, © = 1,2. Based on this intuition, in the
context of this example, choosing Py as a Gaussian distribution with variance larger (resp.

smaller) than 1 yields a smaller (resp. larger) range space than that mentioned above.

is the Hermite polynomial. Stein-

With this background, we now present our contributions.

1.1 Contributions

The main contributions of the paper are as follows:
(i) First, in Theorem 1, we show that the test based on D3y (we refer to it as the MMD

test) cannot achieve a separation boundary better than R+ w.r.t. P defined in (4). This
is an extension and generalization of (Balasubramanian et al., 2021, Theorem 1), which
only shows such a claim for § = % in an asymptotic setting, assuming po = 0 and the
uniform boundedness condition, sup; ||¢il|cc < 00, where (¢;); are the eigenfunctions of 7.
In contrast, Theorem 1 presents the result both by assuming and not assuming the uniform
boundedness condition. Note that the uniform boundedness condition sup; ||¢;,, < oo is
not satisfied in many scenarios (of course, it is satisfied in Example 1). For example, as illus-
trated in Minh et al. (2006, Theorem 5), for X = S%~!, representing the d-dimensional unit
sphere, sup; ||¢;|,, = oo for all d > 3 when using any kernel of the form K (z,y) = f((z,y)2),
where z,y € X and f is continuous (see Example 2). The Gaussian kernel on S%~! serves
as an instance of such a kernel. Moreover, the condition pg = 0 is not satisfied by any
characteristic kernel on general domain X and therefore excludes popular kernels such as
Gaussian, Matérn, and inverse multiquadric on R?. Relaxing these two assumptions allows
a large class of (K, Py) pairs to be handled by Theorem 1.

(ii) Note that the separation boundary of the MMD test depends only on the smoothness
of dP/dPy — 1, which is determined by 6 but is completely oblivious to the intrinsic di-
mensionality of the RKHS, A, which is controlled by the decay rate of the eigenvalues
of 7. To this end, by taking into account the intrinsic dimensionality of 7, we show in

__46p
Theorem 2 that the minimax separation w.r.t. P is n 498+1 for 6 > % if \j <i7 8, 5 >1,
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i.e., the eigenvalues of 7 decay at a polynomial rate 3, and is /logn/n if \; < 7', i.e.,
exponential decay. These results clearly establish the non-optimality of the MMD-based
test. Theorem 2, which is non-asymptotic, generalizes the asymptotic version of (Balasub-
ramanian et al., 2021, Theorem 4) without requiring the uniform boundedness condition
and also recovers it under the uniform boundedness condition, while not requiring po = 0
for both these results. Moreover, even under the uniform boundedness condition, while
(Balasubramanian et al., 2021, Theorem 4) provides a bound on the minimax separation
for % >0 > %, we improve this range in Theorem 2 by showing the minimax separation

for 8 > ﬁ.
(i4i) In Section 4, we employ an operator theoretic perspective to the regularization idea

presented in Balasubramanian et al. (2021) that allows us to generalize the idea to handle
general spectral regularizers, without requiring g = 0. More precisely, we propose a statis-

tic of the form (P, Py) := Hgim@o)(ﬂp — Kpy)

Tikhonov regularization, and pg = 0 reduces to the regularized statistic in (1). Here 3
corresponds to the centered covariance operator w.r.t. Py. Assuming ug and Xg are com-
putable, we propose a spectral regularized test based on 7, and provide sufficient conditions
on g for the test to be minimax optimal w.r.t. P (see Theorems 3, 4 and Corollaries 5, 6).
Compared to the results in (Balasubramanian et al., 2021), we provide general sufficient
conditions on the separation boundary for any bounded kernel and show the minimax op-
timality in the non-asymptotic setting for a wider range of €, both with and without the
uniform boundedness condition (see Theorem 4). However, the drawback of the test is that
one needs first to compute the eigenvalues and eigenfunctions of g which is not possible
for many (K, Py) pairs. Thus we refer to this test as the Oracle test.

2
" which when gy(x) = (z + \)7}, ie.,

(iv) To address the shortcomings with the Oracle test, in Section 4.2, we assume that P
is samplable, i.e., Py can be sampled to generate new samples. Based on these samples, we
propose a test statistic defined in (11) that involves using the estimators of pp and ¥g in 7,.
We show that such a test statistic can be computed only through matrix operations and by
solving a finite-dimensional eigensystem (see Theorem 7). We present two approaches to
compute the critical level of the test. In Section 4.3, we compute the critical level based on
a concentration inequality and refer to the corresponding test as spectral regularized concen-
tration test (SRCT), and in Section 4.4, we employ permutation testing (e.g., Lehmann and
Romano 2006, Pesarin and Salmaso 2010, Kim et al. 2022), which we refer to as the spectral
reqularized permutation test (SRPT), leading to a critical level that is easy to compute (see
Theorems 8 and 10). We show that both these tests are minimax optimal w.r.t. P (see
Theorems 9 and 11). Note that under these additional samples from Py, a goodness-of-fit
test can be seen as a two-sample test, and therefore SRCT and SRPT can be interpreted
as two-sample tests. Recently, Hagrass et al. (2024) developed a spectral regularized kernel
two-sample test (SR2T) and showed it to be minimax optimal for a suitable class of alter-
natives. In this work, we show that SRCT and SRPT have better separation rates than
those of SR2T for the range of 8, where all these tests are not minimax.

(v) The minimax optimal separation rate in the proposed tests (SRCT and SRPT) is tightly
controlled by the choice of the regularization parameter, A, which in turn depends on the
unknown parameters, § and 8 (in the case of the polynomial decay of the eigenvalues of
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T). Therefore, to make these tests completely data-driven, in Section 4.5, we present an
adaptive version of both tests by aggregating tests over different A (see Theorems 14 and
16) and show the resulting tests to be minimax optimal up to a y/logn factor in case of
the SRCT (see Theorem 15) and loglogn factor in case of SRPT (see Theorem 17). In
contrast, (Balasubramanian et al., 2021, Theorem 5) considers an adaptive and asymptotic
version of the Oracle test under g = 0 and the uniform boundedness condition, where it
only adapts over 6 assuming [ is known, with 8 being the polynomial decay rate of the
eigenvalues of T .

(vi) Through numerical simulations on benchmark data, in Section 5, we demonstrate the
superior performance of the proposed spectral regularized tests in comparison to the MMD
test based on ﬁMMD(P, Py), Energy test (Szekely and Rizzo, 2004) based on the energy dis-
tance, Kolmogorov-Smirnov (KS) test (Puritz et al., 2022; Fasano and Franceschini, 1987),
and SR2T.

1.2 Comparison to Hagrass et al. (2024)

As mentioned in (7v) of Section 1.1, the proposed goodness-of-fit tests (SRCT and SRPT)
can be seen as two-sample tests because of access to additional samples from Py. Similar
to the two-sample test SR2T proposed in Hagrass et al. (2024), these tests also employ
the spectral regularization approach of Hagrass et al. (2024) and their analysis uses many
technical results developed in Hagrass et al. (2024). Therefore, to emphasize the conceptual
and technical novelty of our work, in this section, we compare and contrast our setup and
results to that of Hagrass et al. (2024).

(i) Alternative space: In this paper, the alternative space, Pa shown in (4) involves

a smoothness condition that is defined with respect to the function u := % — 1. In

contrast, the smoothness condition in Hagrass et al. (2024) was defined through % -1,
where R = %. The separation boundary in this paper is measured in y>-distance, i.e.,
x2(P, Py) compared to the Hellinger distance between P and P, (which is topologically
equivalent to x?(P,R)) as in Hagrass et al. (2024). Since the y?-divergence dominates
the Hellinger distance, the notion of separation considered in this paper is stronger than
the one considered in Hagrass et al. (2024). These changes were made to leverage the
knowledge of Py in the goodness-of-fit problem (which is not available in the two-sample
problem), resulting in a better separation boundary than that achieved by the test proposed
in Hagrass et al. (2024).

(7i) Estimation of the covariance operator, >(: In Hagrass et al. (2024), the covariance
operator Y is defined with respect to the average probability measure R := %, which
means two sets of samples are required to estimate it and therefore, the estimation error
is controlled by the minimum of sizes of two sets of samples. However, in this paper,
since we are considering a goodness-of-fit problem where the null distribution Py is known,
we can utilize this knowledge by defining the covariance operator ¥y with respect to Py,
which means the estimation error is controlled only by the samples from FPy. Since we do
not have any budget constraints on sampling from Fp, the estimation error of ¥y can be
controlled at a desired level for a large enough sample size. Therefore, we investigate the
required number of i.i.d. samples s to be drawn from P, to estimate Y to achieve a similar
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separation boundary as the oracle test, which assumes ¥ is exactly known in closed form.
Both in this work and Hagrass et al. (2024), while the separation rates are determined by
the minimum size of the two sets of samples, since the sample size associated with Py in this
work can be chosen to be large enough, the separation rate will be controlled only by the one
sample size. Therefore this work yields better separation rates than those in Hagrass et al.
(2024)—also see (iv) in Section 1.1—as it should be since a goodness-fit-testing problem is
simpler than a two-sample testing problem.

(i7i) Spectral regularized concentration test (SRCT): While SRPT proposed in this
paper shares in principle the similar ideas of permutation testing as in Hagrass et al. (2024),
the proposed SRCT involves a concentration inequality based test threshold that was not
considered in Hagrass et al. (2024). While the analysis of SRPT uses multiple technical
results developed in Hagrass et al. (2024)—of course, with some deviations because of a
different alternate space and estimator for the covariance operator—the analysis of SRCT
requires establishing new technical results for the estimation error bounds between ¥y and
> (see Lemmas A.4 and A.5), and the estimation error between N5(\) and N()), where

No(A) = (125322050 ¥l e2 () and S == o + AT (sce Lemmas A.6 and A.7).

2 Definitions & Notation

For a topological space X, L"(X,u) denotes the Banach space of r-power (r > 1) pu-
integrable function, where p is a finite non-negative Borel measure on X'. For f € L"(X, u) =:
LM (), 1l ey = o LFI dp)'/" denotes the L™-norm of f. pu™ := ux M xu is the n-fold
product measure. JZ denotes a reproducing kernel Hilbert space with a reproducing kernel
K : X xX — R. [f]~ denotes the equivalence class associated with f € L"(X, p), that
is the collection of functions g € L"(X, u) such that [|f —g||;-(,) = 0. For two measures
P and @, P < @ denotes that P is dominated by ) which means, if Q(A) = 0 for some
measurable set A, then P(A) = 0. Let H; and Hs be abstract Hilbert spaces. L(Hp, H2)
denotes the space of bounded linear operators from H; to Hy. For S € L(Hy, H2), S* de-
notes the adjoint of S. S € L(H) := L(H, H) is called self-adjoint if S* = S. For S € L(H),
Tr(S), 1Sl g2y, and [|S]|goo () denote the trace, Hilbert-Schmidt and operator norms of
S, respectively. For z,y € H, x ®p y is an element of the tensor product space of H @ H
which can also be seen as an operator from H — H as (x @y y)z = x(y, 2) ; for any z € H.

For constants a and b, a < b (resp. a 2 b) denotes that there exists a positive constant ¢
(resp. ') such that a < ¢b (resp. a > 'b). a < b denotes that there exists positive constants
¢ and ¢ such that ¢b < a < ¢’b. We denote [¢] for {1,...,¢}.

3 Non-optimality of D%, test

Assuming pop = 0, (Balasubramanian et al., 2021) established the non-optimality of the
MMD-based goodness-of-fit test. In this section, we extend this result in two directions by
not assuming o = 0 and by considering the setting of non-asymptotic minimax compared
to the asymptotic minimax setting of Balasubramanian et al. (2021). The key to achieving
these extensions is an operator representation of Dﬁ/[MD, which we obtain below. To this
end, we make the following assumption throughout the paper.
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(Ao) (X,B) is a second countable (i.e., completely separable) space endowed with Borel
o-algebra B. (', K) is an RKHS of real-valued functions on & with a continuous repro-
ducing kernel K satisfying sup, K (z,z) < k.

The continuity of K ensures that K(-,z) : X — 5 is Bochner-measurable for all x € X,
which along with the boundedness of K ensures that pup and pp, are well-defined (Din-
culeanu, 2000). Also, the separability of X along with the continuity of K ensures that %
is separable (Steinwart and Christmann 2008, Lemma 4.33). Therefore,

DR (P. Po) = llup — ury 3 = </ K(.)d(P = Fy)(a), | KCoa)d(P - Pi)(o) )
H
< [ Kot arte / K(a)ulx) dPo(a >> , )
P4
where u = % — 1. As done in (Hagrass et al., 2024), by defining J : # — L2*(R),

= [f—Ep,fl~, where Ep, f = [, f(x) dPy(z), it follows from (Sriperumbudur and Sterge,
2022, Proposition C.2) that J* : L2(P0) — A, [ — [K(,z)f(x)dPy(z) — upEp,f-
Also, it follows from (Sriperumbudur and Sterge, 2022, Proposition C.2) that 7 = T —
(1 ®L2(P0) 1)T - T(l ®L2(p0) 1) + (1 ®L2(p0) 1)T(1 Q2 Po) 1), where T : LZ(P0> — LQ(P()),
f— [K(,2)f(z)dPy(z) and T := 33* : L*(Py) — L*(P). Note that T is a trace class
operator, and thus compact since K is bounded. Also, T is self-adjoint and positive, and
therefore spectral theorem (Reed and Simon, 1980, Theorems VI.16, VI.17) yields that

T = Z Xidi @r2(py) Bis

icl

where ()\;); C RT are the eigenvalues and (¢;); are the orthonormal system of eigenfunctions
(strictly speaking classes of eigenfunctions) of 7 that span Ran(7) with the index set I being
either countable in which case A\; — 0 or finite. In this paper, we assume that the set [
is countable, i.e., infinitely many eigenvalues. Since ¢ZZ represents an equivalence class in
L2(Py), by defining ¢; = % 751, it is clear that J¢; = [¢; — Ep, ¢~ = ¢; and ¢; € .
Throughout the paper, ¢; refers to this definition.

Using these definitions, it follows from (7) that

2 ~k ~k g 2
DMMD(‘P? PO) = <J ’U/,J 'U/>_%a = <T’LL, U>L2(PO) = ZAZ<U7¢Z>L2(P0)
i>1
The above expression was already obtained by (Balasubramanian et al., 2021, p. 6) but
through Mercer’s representation of K. Here we obtain it alternately through the operator
representation, which will turn out to be crucial for the rest of the paper. This representation
also highlights the limitation of Dypvp that Dyivp might not capture the differer}ce between
between P and Py if they differ in the higher Fourier coefficients of u, i.e., (u, ¢;) 12(Ry) for
large i, since ()\;); is a decreasing sequence. On the other hand, x?(P||Fy) = HUH%Q (P =
o (u, di)? 12(py) Hu € span{@; : i € I'}, does not suffer from such an issue. The following

result shows that the test based on DMMD cannot achieve a separation boundary of order
—20
better than n20+1.

10
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Theorem 1 (Separation boundary of MMD test) Let n > 2 and

sup H'T_Gu‘ < 0.

PeP

L?(Po)
Then for any o > 0, § > 0, PHO{DI%/[MD >~} < a,

inf Py {D?nin >t >1-6
Igfelp A Dyvp = 7} > )

_ 4k
where v = T Y
A, = A =c(a,0)n20+1

and c(a,§) < max{a~/2, =1}, Furthermore if A, < danﬁi?f1 for some do, > 0 and one of
the following holds: (i) 0 > %, (ii) sup; ||¢s]|, < 00, 6 > 0, then for any decay rate of (A;);,
there exists ks such that for all n > ks,

inf Py, {D%nm > 5.
};1617) A Dyvp = 7} <

Remark 1 Note that the above theorem also holds asymptotically if the testing threshold v
is chosen as the (1 — «)-quantile of the asymptotic distribution of DI%AMD under Hy, thereby
extending (Balasubramanian et al., 2021, Theorem 1), which only considers 6§ = % but
assuming po = 0. In fact, the result holds for any threshold that converges in probability to
such an asymptotic quantile.

By providing the minimax separation rate w.r.t. P, the following result demonstrates
the non-optimality of the MMD test presented in Theorem 1.

Theorem 2 (Minimax separation boundary) If \; < i~P, B > 1, then there emists
c(a, d) such that if
—408

A, <cla,0)n®+1 0 <§<1-—q,
then Ry = infyes, , Ray, () > 0, provided one the following holds: (i) 6 > 1. (ii)
sup; [l < 00, 8> 1, where Ra, (6) i= suppep Epn[l — 4.

Suppose \i < e~ ™, 7 >0, § > 0. Then there exists c(a,d,0) and k such that if
Vviogn

An S C(Oé, 5, H)T,

and n >k, then for any 0 < 4§ <1 — q, R*An > ).

Remark 2 (i) Sinceinfgs 49469?& = 45111 > 29211 and1 > % for any 6 > 0, it follows that
the separation boundary of MMD is larger than the minimax separation boundary w.r.t. P
irrespective of the decay rate of the eigenvalues of T .

(i) In the setting of polynomial decay, Theorem 2 generalizes (Balasubramanian et al., 2021,
Theorem 4) in two ways: (a) When the uniform boundedness condition holds, the range of 6
for which the minimax separation rate holds is extended from % <0< % to 0 > ﬁ, and (b)
minimax separation is also obtained without assuming the uniform boundedness condition.

11
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(tit) The uniform boundedness condition, sup; ||¢i||,, < oo does not hold in general. For
example, the Gaussian kernel on S™1, d > 3, does not satisfy the uniform boundedness
condition (Minh et al., 2006, Theorem 5), while the Gaussian kernel on R for any d
satisfies the uniform boundedness condition (Steinwart et al., 2006). In this paper, we
provide results both with and without the uniform boundedness condition to understand its
impact on the behavior of the test. Such a condition has also been used in the analysis of
the impact of reqularization in kernel learning (see Mendelson and Neeman 2010, p. 531).

4 Spectral regularized MMD test

In this section, we propose a spectral regularized version of the MMD test and show it to be
minimax optimal w.r.t. P. The proposed test statistic is based on the spectral reqularized
discrepancy, which is defined as

nA(Pa PO) = <T9A(T)ua U>L2(PO)> (8)

where u = g—g)—l, gx : (0,00) = (0,00) is a spectral reqularizer that satisfies limy_,q xgy(x) <
1 (more concrete assumptions on g, will be introduced later), and

aA(B) =Y gr(r) (i @ i) + 9(0) [ T = v @m i |

i>1 i>1

with B being any compact, self-adjoint operator defined on a separable Hilbert space, H.
Here (7;,1);); are the eigenvalues and eigenfunctions of B which enjoys the spectral represen-
tation, B =), 7¢; ®g ;. The well known Tikhonov regularizer, (B+ A1 )~1, which is used
in Balasubramanian et al. (2021), is obtained as a special case by choosing gx(z) = (z+A) .

The key idea in proposing 7, is based on the intuition that 7 ¢)(7) ~ I for sufficiently
small X so that 7y (P, Py) ~ ||ull7. (Po)? and therefore does not suffer from the limitation of

Di (P, Py) as aforementioned in Section 3 (see Lemma A.2). Using 7, in the following,
we present details about the construction of the test statistic and the test. First, we provide
an alternate representation for 7, which is useful to construct the test statistic. Define the
covariance operator,

Yo :=%p = /X(K('>$) — upy) @ (K(2) — pp,) dPo()

1

5 | ) = K 8o (K () = K (o) dPola) APy (o),
XxX

which is a positive, self-adjoint, trace-class operator. It can be shown (Sriperumbudur and
Sterge, 2022, Proposition C.2) that Xy = 3*7 : 2 — 5. Using this representation in (8)
yields

~r~k ~r~k T ~ ~k O\ ek
(P, Po) = (Tgx(T)u,w) 2(pyy = (IT°gA(3T")u, u) r2(py) 9 (IgA(T*3) T u, u) 12(py)
= (97 (20)T"u, Tu) e = (9r(X0) (kP — Ry ), 1P — fipy) 2

1/2 2
= o3 * o) r = )|,

12
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where (1) follows from (Hagrass et al. (2024), Lemma A.8(i) by replacing ¥pg by ¥o) that
Tgx(T) = Tgr(X0)T*. Throughout the paper, we assume that g, satisfies the following:

(A1) Sulg|$gx($)| <, (A2) Sullz\)\gx(fﬂﬂ < Oy,
x€ FAS
(As) sup |Bs — :Bg)\(:t)’pr < C3N%%, (Ay) in% ar(z)(xz+ ) > Cy,
TE

{zelxgy(z)<Bs}

where I' := [0, k], ¢ € (0,¢] and the constant £ is called the qualification of gy. Cy, Ca,
C3, B3 and Cjy are finite positive constants (all independent of A > 0). Note that these
assumptions are quite standard in the inverse problem literature (see e.g., Engl et al., 1996)
and spectral regularized kernel ridge regression (Bauer et al., 2007), except for (As), which
is replaced by a stronger version—the stronger version of (As) takes supremum over whole
I'. Recently, however, in a two-sample testing scenario, (Hagrass et al., 2024, Section 4.2)
use (As). The less restrictive assumption (As) implies that higher qualifications are possible
for the same function gy in the testing problem compared to the known qualifications in the
literature of inverse problems and spectral regularized kernel ridge regression. For instance,
consider the function gy(z) = x%\ corresponding to Tikhonov regularization. In this case,
the stronger condition used in literature sup,cr |1 — zga(z)|2?9 < C5A%% is satisfied only
for ¢ € (0, %] However, (A3) holds for any ¢ > 0, indicating infinite qualification with no
saturation at ¢ = % with Bg = % and C3 = 1.
Define 207)\ = X0 + A,

ML) = Tr(E ) P20, %), and N5V = || 25172055 7|

o)’

which capture the intrinsic dimensionality (or degrees of freedom) of 7, with N7 () being
quite heavily used in the analysis of kernel ridge regression (e.g., Caponnetto and Vito
2007). Based on these preliminaries, in the following, we present an Oracle goodness-of-fit
test.

4.1 Oracle Test

Using the samples (X;)?_;, a U-statistic estimator of 1) defined in (9) can be written as

1

= n(n—1) ; <91/2(Zo)(K(',X¢) - Mo)agip(ZO)(K("Xj) - “0>>Jf’

which when pp = 0 and gy (z) = (z+)) ! reduces to the moderated MMD statistic proposed
in Balasubramanian et al. (2021). The following result provides an a-level test based on 7).

Theorem 3 (Critical region—Oracle) Let n > 2. Suppose (Ag)—(A2) hold. Then for
any a >0 and any A > 0,

PHO{ﬁA > 7} < a,
where v = 72(011?;5\/2(’\).

Unfortunately, the test is not practical as the critical value, v, and the test statistic depend
on the eigenvalues and eigenfunctions of 3¢, which are not easy to compute for many (K, Pp)

13
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pairs. Therefore, we call the above test the Oracle test. The following result analyzes the
power of the Oracle test and presents sufficient conditions on the separation boundary to
achieve the desired power.

Theorem 4 (Separation boundary—Oracle) Suppose (Ag)—(As). Let

sup HT_Q’U,‘
PeP

< 00,
L2(Py)

1
HEoHLoo(yf) > X = dpAj?, dg > 0, where dg is a constant that depends on 6. For any
0<d <1, if A, satisfies

2041
AT dyteT? A, (@4
é ~ n2 9 L ~ n .
No <d9A%9> N <d9A%‘9>
then
i > >1-—
nf Py {27} 21—, (10)
where v = %\%MZ(A), and 0 = min(0, ). Furthermore, suppose C' := sup; | #ill o, < 0.

Then (10) holds when the above conditions on A, are replaced by

A, 6 Ap (@t
i. ~ 2 L. ~ N
N <d9AEf’> " Ny (dgAEf) "

The following corollaries to Theorem 4 investigate the separation boundary of the test under
the polynomial and exponential decay condition on the eigenvalues of .

Corollary 5 (Polynomial decay—Oracle) Suppose \; < i™?, 3 > 1. Then for any § >
0,

inf P Ny > >1-6

}%'1617) Hq {77)\ = ’7} = )

when )
i40B

c(a, 0)ntos+1 >
___ 868 -

cla,d)n 0s+28+1 . 0 <

Ay, =

N—= N[

_ L
48
o
48
with c(a,8) 2 (=2 +672). Purthermore, if sup; ||¢illo, < oo, then

—468
A, = c(a, 0)n9s+1,

Corollary 6 (Exponential decay—Oracle) Suppose \; < e ™, 7 > 0. Then for any
0 > 0, there exists kq s such that for all n > kqs,

i > >1—
IgIelil;PHl {77)\ = 7} sl 1 57

14
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when
(Oé 5 0) \/logn

>
Ay = 40 .
(a 5, 9) (\/1ogn>20+1 : 0 <

where ¢(a, 0,0) 2 max {, /%, 1} (a2 4-672). Furthermore, if sup; || ¢, < oo, then

™

NI—= N

where ¢(a, 0,0) 2, max{, /%, %, 1} (=12 4572).

Remark 3 (i) Observe that larger qualification & (defined in Assumption (Asz) in Section
4) corresponds to a smaller separation boundary. Therefore, it is important to work with
reqularizers with infinite qualification, such as Tikhonov and Showalter. It has to be noted
that the Tikhonov regularizer has infinite qualification as per (As) but has a qualification of
3 w.r.t. the stronger version of (As).

(ii) Suppose gx has infinite qualification, £ = oo, then 6=0. Comparing Corollary 5 (resp.
Corollary 6) and Theorem 2 shows that the spectral reqularized test based on 1)y is minimaz
optimal w.r.t. P in the ranges of 0 as given in Theorem 2 if the eigenvalues of T decay
polynomially (resp. exponentially). Outside these ranges of 0, the optimality of the test
remains an open question since we do not have a minimaz separation covering these ranges
of 0.

(i1i) Corollary 5 recovers the minimaz separation rate in Balasubramanian et al. (2021)
under the uniform boundedness condition but without assuming po = 0. Furthermore, it
also presents the separation rate for the reqularized MMD test without assuming both the
uniform boundedness condition and pg = 0, and shows a phase transition in the separation
rate depending on the value of 6.

4.2 Two-sample statistic

The Oracle test statistic requires the knowledge of pp and > for it to be computable.
Though Py is known, X and o are not known in closed form in general for many (K, Pp)
pairs. To address this issue, in this section, we assume that Py is samplable, i.e., a set
of i.i.d. samples from F, are available or can be generated To this end, let us say m + s

ii.d. samples are available from Py of which (Ylo)l 1 o Py are used to estimate ¥y and

(X9)m "~ ¢ P, are used to estimate po, with (Y0)3_, bt (X))™,. Note that we do not use

7
all m + s samples to estimate both pg and 3. Instead, we do sample splitting so that the
estimators of ¥¢ and ug are decoupled, which will turn out to be critical for the analysis.

Based on this, 1) can be estimated as a two-sample U-statistic (Hoeffding, 1992) as

~ 1
773:5 = Z Z h(Xz,XjaXzo’vX]O’)v (11)

-1
n(n ) 1<1;£]<n 1<i’#j'<N

where

h(Xi, X5, X5, X0) = (932 (Co) (K (- X0) = K (. X0), 912 (S0) (K (, X)) = K(, X))

15
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and
S

Z(K(vifzo) - K(v}/;o)) K (K(>Y;O) - K('aY}O))v
i#j

is a one-sample U-statistic estimator of ¥y based on (Y;?)s_;. Note that 77:{5 is not exactly

- 1
o= —m—
0 25(s — 1)

a U-statistic since it involves g, but conditioned on (Y2)5_,, one can see that it is exactly

a two-sample U-statistic. By expanding the inner product in h and writing (11) as

i = n(nl—l) > (02 S0K (X0, 9 (Co)K (-, X;) )
i#]

+m<ml—1> > {02 S0K (-, X0), 03/ (Co)K (-, X))
17

— > (G0 (X)) *EK (. XD)

H
H

S

the following result shows that ﬁfs can be computed only through matrix operations and
by solving a finite-dimensional eigensystem.

Theorem 7 Let (\;, &;); be the eigensystem of%I:Ii/2

Hs:Is—ll lT, and H, = >y H;. Define

G = Z <9A(5\z)5\—1 QA(O)> @i@;-

1= (O-@) + =g (®- @) - =6

Ksﬂi/Q where Ky := [K(Y Y )i i jels]

Then

where

1 ~1/2
;LI— <g/\(O)Kn + gKnsHs/

I
=

aﬁz;/2K;> 1

1/2

1 - -
Ty <g>\(0)Kn + S Ko H, GHi/zK,IS> ,
S

1/2

=Tr <g/\(0)Km + —Kmsﬁs ! 2KrTw> , and
S

1 .
17 (g,\(O)Kmn + meSHi/ 2

@
©
®=1, <9A(0)K 1KmsH1/2GIEIi/2K;s) 1o,
®
®

Gﬁ;/QK;S) 1

with Kn = [K(Xi, Xj))ijep), Km = KX XDijem) Kns = KXo, Y icml,jels)»
Kpps = [K(X?,Yj Niem] jels]» and K := [K(X?, X i)icim)jeln]-

Note that in the case of Tikhonov regularization, G = _Tl(%f{;/z[(sf{iﬂ + M )71, The
complexity of computing 77{5 is given by O(s +m? + n? + ns? + ms?). We would like to
mention that since 77:{5 is based on two sets of samples, a result very similar to Theorem 7
is presented in (Hagrass et al., 2024, Theorem 3) in the context of two-sample testing.
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4.3 Spectral regularized concentration test (SRCT)

By applying Chebyshev inequality to ﬁTS under Hy, the following result provides an a-level
test, which we refer to as SRCT. Define ./\/2 ‘ 1/2202_1/2

£2()

Theorem 8 (Critical region—-SRCT) Let n > 2 and m > 2. Suppose (Ap)—(Az2) hold.
Then for any o > 0, ¢; > 65 and 2% max{log 2955 log 12} < X\ < 120/l goo ()

P, {77,\5 >} <a,

where vy = W%\/%MZ(A) (+L1) b= \/§ — 3\}% - 901 Furthermore, if C := sup; ||¢i||

00, the above bound holds for 4c;C*Ni()\) log 48Nl(}‘) <s.
Note that unlike in the Oracle test, the threshold v and the test statistic fyfs in the above
result is completely data-driven and computable, with N2(\) being computed based on

(5\1)Z from Theorem 7. The following result provides sufficient conditions on the separation
boundary to achieve the desired power.

Theorem 9 (Separation boundary-SRCT) Suppose (Ag)—(As) and m > n. Let

sup HT_QU‘
PeP

< 00,
L2(Po)

1
HEO\M&(%) > A = dgA2?, dg > 0, where dy is a constant that depends on 6. For any
0<d <1, ifs>32c;kA " log(max{17920x2A71,6}671) and A, satisfies

JANSEL - d€—16—2 A, S (a—1/2+5—1)
1 ~ 2 ) ~ 5
N <d9A39> ' Ni <d9A%l§ ) '
then
nf Pr, {715 >4} > 149, (12)
where vy = %jg\ém (F+1), b= \/g = 3\}7?% - 901 ¢1 > 65 and § = min(6, €). Fur-

thermore, suppose C' := sup; ||¢i|l,, < 0o. Then (12) holds if s > 32c1C*N1(\) log 32N1()‘)
and when the above conditions on A, are replaced by

-2 —1/2 | 51
A0 A, NG

N 2 P
M (d9A7%6> ! M <d9A72115> !

Remark 4 (i) Comparing the conditions on the separation boundary in Theorem 9 to those
of Theorem 4, it is easy to verify that the claims in Corollaries 5 and 6 also hold for SRCT.
Therefore, SRCT achieves minimax optimality in the same ranges of 6 as the Oracle test.
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(ii) In the case of polynomial decay, when 0 > % — ﬁ, the condition on s—the number of

28
samples needed to estimate the covariance operator ¥ —reduces to s 2 n98+1 logn, which is
of sub-linear order and is implied if s 2 nlogn. When 0 < 3 i 45, the condition becomes s 2,

nﬁ log n which is implied for any 0 and B if s > n?logn. Furthermore, under uniform
boundedness, the condition on s becomes s 2 nW% logn which is of sublinear order for
0 > ﬁ. In case of exponential decay, for 6 > %, the condition is s 2 n%(log n)l_ﬁ, which
is implied for any 0 > 1, if s 2 ny/logn. For § < , the condition is s 2, nﬁ(log n)ﬁi1
which is implied if s = n®. Furthermore, if sup; ||¢|,, < oo holds, then the condition is
s 2 (logn)(loglogn).

4.4 Spectral regularized permutation test (SRPT)

Instead of using a concentration inequality-based test threshold as in SRCT, in this section,
we study the permutation approach to compute the test threshold (Lehmann and Romano,
2006; Pesarin and Salmaso, 2010; Kim et al., 2022). We refer to the resulting test as
SRPT. We show that SRPT achieves a minimax optimal separation boundary with a better
constant compared to that of SRCT.

Recall that our test statistic defined in Section 4.2 involves three sets of independent

samples, (X iy P (X0)m TR Ry, (V)i "R Ry, Define (Up)f, == (X;)Py, and

7

(Un+)ity (XO)] 1- Let II, 4, be the set of all possible permutations of {1,...,n + m}
with 7 € II,,,, being a randomly selected permutation from the D possible permutations,
where D := I+, | = (n+m)!. Define (X)), := (Uﬂ(i))?zl and (XJQW);”:1 = (U,,(nﬂ-));”:l
Let 7§ == 719 (X™, X7 V) be the statistic based on the permuted samples, and (7%)2 ; be
B randomly selected permutations from Il ,,. For simplicity, define ﬁf\ = ﬁj\ri to represent

the statistic based on permuted samples w.r.t. the random permutation 7’. Given the
samples (X;)7;, (XO) *, and (Y,%)3_,, define

1

1 .
Re) =5 > 16 <)
ﬂ'enn-&-m
to be the permutation distribution function, and define

g, :=inf{geR: Fy(¢) >1—al.

Furthermore, we define the empirical permutation distribution function based on B random
permutations as

where 779\ = ﬁfs and define
B\ : ~
G =inf{g e R: FZ(q) > 1—a}.

Based on these notations, the following result presents an a-level test with a completely
data-driven critical level.
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Theorem 10 (Critical region—-SRPT) For any 0 < a <1, PHO{ﬁfs > cjf_’z} < a.

It is well known that the permutation approach exactly controls the type-I error. This
follows from the exchangeability of samples under Hy and the definition of q{‘_a. Next,
similar to Theorem 9, the following result provides general conditions under which the
power can be controlled.

Theorem 11 (Separation boundary—SRPT) Suppose (Ap)—(A4) hold. Let m > n,

< 090,
L2(Py)

sup HT#U‘

Pep
1

1Xo0llgoo iy = A = doAR’, for some dg > 0, where dy is a constcmt that depends on 6.

For any0 <6 <1, ifn> d3(5 21og L for some ds > 0, B > 3 2 (log267 ! + a(1 — ),
5 > 280K\~ 110g(179201<;2)\ 151 and An satisfies

20+1

AR S dy (6 log(1/a))? A, o 6 'log(1/a)
L ~ 2 b L ~J b
Noy <d9A,%"> n) Noy <d9A;ﬂ> "

then
1anH1{ S>qf2}z1f55, (13)

where § = min(0,€). Furthermore, suppose C' := sup; | #ill oo < co. Then (13) holds if
5 > 136C2N1(\) log 32/\/1()‘) and when the above conditions on A,, are replaced by

A (5 log(1/a))? An 37 log(1/d)
1 ~ Tl2 ) 1 ~ n .
M (dgAﬁ") Ny <d9Aﬁ9)

Corollary 12 Suppose \; <i~ P, 3> 1. Then for any § > 0,

1anH1{ S>(j{3>(‘1}21—55,

PeP
when )
—~4€[3 ~ 1 1
A — c(oz,é)n‘“"ﬁﬂ3 0>5—15
" ~ s o1 1
c(a, 0)n w0s+26+1, < 5 — 45

with (e, 8) 2 6 %(log 2)2. Furthermore, if sup; ||¢i ., < oo, then

—468
A, = c(a, 0)ntos+1,

Corollary 13 Suppose \; < e ™", 7 > 0. Then for any 6 > 0, there exists kus such that
foralln > kq s,

(Pep T "=} =12
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when

NI—= N

A, = c(a,0,0) ,

where ¢(a, 0,0) 2 max {\/%, %’ 1} 5=2(log 1)2.

The above results demonstrate the minimax optimality w.r.t. P of the permutation-based
test constructed in Theorem 10. Since the conditions on s in Theorem 11 match those of
Theorem 9, the discussion in Remark 4(ii) also applies for SRPT.

Remark 5 Recently, Hagrass et al. (2024) proposed a spectral reqularized two-sample test
( SR2T) where the test statistic has a close resemblance to ﬁ}:s. Since we are solving a
goodness-of-fit test question as a two-sample test, one could simply address it using SR2T,
and therefore one may wonder about the need for the proposal of SRCT and SRPT, given
their similarity to SR2T. While this is a valid question, comparing Corollaries 12 and 13 to
that of (Hagrass et al., 2024, Corollaries 6, 7), we observe that while all these tests enjoy
minimax separation rates over the same range of 9, for the range 0f9~ where the minimazity
of separation rate is not established, the proposed tests have faster convergence rate than
that of SR2T, thereby demonstrating the advantage of the proposed tests over SR2T (see
Section 1.2 for details).

4.5 Adaptation

In the previous sections, we have discussed two ways of constructing a test based on the
statistic 'ﬁgjs . In both these tests, the optimal A to achieve the minimax separation boundary
depends on unknown # and B. In this section, we construct a test based on the union
(aggregation) of multiple tests constructed for different values of A taking values in a finite
set, A. It turns out that the resultant test is guaranteed to be minimax optimal (up to log
factors) for a wide range of # (and S in the case of polynomially decaying eigenvalues). The
aggregation method is quite classical and we employ the technique as used in Hagrass et al.
(2024).

Define A := {\r,2)z,..., \y}, where Ay = 2°Ap, for b € N so that [A] = b+ 1 =
1+ log, %]’ where |A| is the cardinality of A. Let A* be the optimal A that yields minimax
optimality. The key idea is to choose A\;, and Ay such that there is an element in A that
is close to A* for any 6 (and § in the case of polynomially decaying eigenvalues). Define
v*:=sup{x € A : z < A\*}. Then it is easy to verify that v* =< \*, i.e., v* is also an optimal
choice for A that belongs to A, since for A\;, < \* < Ay, we have )‘7 < v* < A*. Motivated by
this, in Theorems 14 and 16, we construct a-level tests that are adaptive versions of SRCT
and SRPT, based on the union of corresponding tests over A € A that rejects Hy if one of
the tests rejects Hy. The separation boundary of these tests are analyzed in Theorems 15
and 17 under the polynomial and exponential decay rates of the eigenvalues of 7. These
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results show that the adaptive versions achieve the same performance (up to log factors)
as that of the Oracle test, i.e., minimax optimal w.r.t. P over the range of § mentioned in
Theorem 2, without requiring the knowledge of \*. In contrast, (Balasubramanian et al.,
2021, Theorem 5) considers an adaptive and asymptotic version of the Oracle test under
o = 0 and the uniform boundedness condition, where it only adapts over 6 assuming [ is
known.

The following results relate to the adaptive version of SRCT.

Theorem 14 (Critical region—adaptation—-SRCT) Suppose (Ag)—(Az). Then for any

«

a>0, ?’QCTmmax{log s Jog L2} <A < Ay < 120l oo (), where & = Tapr €1 = 65,

il
Py, 4 sup = > < a,
" | aer No(N)

where vy = % (E+1) b = \/% — 28 32 pyrthermore if C = sup; || ¢ill, <

n ' m 3v3c1  9c1
00, the above bound holds for 4c;C?Ni(Ap) log% <s.

Theorem 15 (Separation boundary—adaptation-SRCT) Suppose (Ag)—(A4) hold, 6=
min(@,g), f = maX(§7%)7 SuPg>( SUP pep HT_QUHLQ(PO) < o0, ”ZOHLOO(J?’) > )\U; (9[ > O)
m>n, and 0 < a < 1. Then for any § > 0 and vy defined as in Theorem 1/,

ﬁTS
inf inf Py, < sup ‘A >y >1—44,
0>6, PEP xeh Nao(X)

provided one of the following cases holds:

—48y =2
(i) \i < i P 1 < B < By, \p =rin™%0, \y = ry (wgbﬁ)‘*“l for ri,mg >0, s >
32c1k ;! log(max{17920k2X\; 1, 6107 1), and

_ —468
_ —808 n 46B+1
A, = c(a, §) max  ni+26+405 ( )

Vviogn

Furthermore if C := sup; ||¢i||2, < oo, then the above conditions on Ar, Ay and

—28y —2
s can be replaced by A\f, = r3 (Vﬁ@) 49”3[’“, ANy = 74 (\/1;1@) et for rg,ry > 0,

s > 32c1C*N1(Ap) log %’ and

—468

n 408+1
Ap = c(a, ) <\/m> )

where c(a,d) > (=% +672).
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, ~1/2€
(i) \i < e ™, 7 >0, N\, = r5( logn) (%) for some 5,16 > 0,

5> 32c1KA] log(max{17920/£2)\L ,6}0~ ), and

__40

-1
n n 20+1
An> )550 ) ’
2etbmet (o) (i)

where ¢(a, d,0) 2 max {, / 2%, 1} (a=Y2 4 672). Furthermore if C := sup; ||¢4]|%, <

—1/26
then the above conditions on A, Ay and s can be replaced by A\p, = ry (w) ’ ,

—-1/2¢
for some r7,m8 > 0, s > 32c1C?N1(A\) log M and

)\U =T (logﬁ)gn)
logn

A, = ca,5,0)

where ¢(a, 0,0) = max {, /%, %, 1} (12 4 672).
The following results handle the adapted version of SRPT, which show that the adapted

test is minimax optimal w.r.t. P up to a loglogn factor.

Theorem 16 (Critical region—adaptation—-SRPT) For any 0 < a <1

TS ~B,\
PH(){UT])\ >Q1_A|}Sa
AEA

Theorem 17 (Separation boundary—adaptation-SRPT) Suppose (Ag)—(A4) hold, 6
min(0,§), £ = max(f,%), SUPg~o SUP pep HT_GUHLQ(PO) < 00, and m > n. Then for any
§>0,B> 2 (log2s ' +a(l—a),0<a<e!, a= iaps 01 > 0, we have

it 02
91>91 ﬁep H {/\U A } = ’

provided one of the following cases holds:
—2

n 1+28y _ n 4€+1
< ) , AU = T2 (loglogn) Jor ri,m2 >0,

(Z) A < ’L._B, 1< B < BU7 AL =7 log logn

s > 32c1kA} ! log(max{17920x2\, 1, 6}571),

—468

—868
A, = c(a, §) max n 1+2p5+408 ’ n 46B+1
loglogn loglogn

< o0, then the above conditions on Ap, Ay and s

10,8y +1 s
can be replaced by A\, = 3 (logﬁ)gn) YU Ny =1 (logﬁ)gn) for rs,rqy > 0,

Furthermore if C := sup; ||¢z||c2>o
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s > 32c1C?Ni(Ar) log %’ and

—4683
n 40B8+1

I

Ap =c(,0) | T
c(e, ) <log logn

where c(a,§) 2 6 %(log 1)2.

- —T1 n -2 n _1/25
(’l'l) )\’L = e , T > 0, AL =T5 (m) s )\U = T6 (m) fOT’ some
75,76 > 0, s > 32c1 kA, ! log(max{17920k2X\;*,6}671), and

40

20+1

-1
n n
(\/lognloglogn> ’ <\/lognloglogn) ’

A, 2 c(a, 0,0) max

where c(a, d,0) 2 max{,/%, 1} 6~ 2(log 1)2. FPurthermore if C' := sup; ||¢$z||iO < 00,
then the above conditions on A\p, Ay and s can be replaced by

—1/26, —1/2¢
AL =17 n Ay =Trg8 n
L vlognloglogn ’ v1ognloglogn

for some 7,78 > 0, s > 4c;C?N1(\) log M and

V1 logl
An = C(OZ,(;, 9) oen o8 Ogna
n

where c¢(a, 0,0) 2 max {\/%7 %7 1} 5~2(log é)z

The discussion so far has dealt with adapting to unknown 6 and S associated with a
given kernel. The natural question is how to choose the kernel, for example, suppose the
kernel is a Gaussian kernel, then what is the right choice of bandwidth? This is an important
question because it is not easy to characterize the class of kernels that satisfy the range
space and eigenvalue decay conditions for a given Py. This question can be addressed by
starting with a family of kernels, U and constructing an adaptive test by taking the union
of tests jointly over A € A and K € K, so that the resulting test is jointly adaptive over
A and the kernel class K. This idea has been explored recently in (Hagrass et al., 2024,
Section 4.5) to construct a minimax optimal (up to a log factor) test that is jointly adaptive
to both A and K (K is assumed to be finite). Since the same idea can be explored for SRCT
and SRPT to create kernel adaptive tests that yield results that are similar to those of
Theorems 14-17 along with their proofs, we skip the details here and encourage the reader
to refer to Hagrass et al. (2024).

5 Experiments

In this section, we investigate the empirical performance of the proposed regularized goodness-
of-fit tests, SRCT and SRPT with adaptation to A and the kernel. Note that SRCT and
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SRPT are approximations to the Oracle test, since the latter is not easy to compute in gen-
eral. In Section 5.1, using a periodic spline kernel, we compare the performance of SRPT to
the moderated MMD (M3D) test (i.e., Oracle test) of Balasubramanian et al. (2021), which
requires the knowledge of the eigenvalues and eigenfunctions of the kernel with respect to Fp.
Since SRCT and SRPT can be treated as two-sample tests, in Sections 5.2-5.4, we compare
their performance to other popular two-sample tests in the literature such as adaptive MMD
test (MMDAgg) (Schrab et al., 2021), Energy test (Szekely and Rizzo, 2004), Kolmogorov-
Smirnov (KS) test (Puritz et al., 2022; Fasano and Franceschini, 1987) and the spectral regu-
larized two sample test (SR2T) proposed in Hagrass et al. (2024) with Showalter regulariza-

2h
where h is the bandwidth. For our tests, we construct adaptive versions by taking the

union of tests jointly over A € A and h € W. Let 7))} be the test statistic based on A
and bandwidth h. We reject Hy if ny 5 > (jf_”\’ha for any (A\,h) € A x W. We per-

- TATTW]

formed such a test for A := {Ar,2Ap, ..., Ay}, and W := {wphm, 2wphpy, ... ,wyhp,}, where
B = median{|¢ — ¢||3 : ¢,¢ € X UXO}, X := (Xy,..., X,,) and X0 := (X?,..., X%). In
our experiments, we set A\;, = 1075, A\yy = 5, wy, = 0.01 and wyy = 100. All tests are repeated
200 times and the average power is reported. For all experiments, we set a = 0.05. For the
tests SRPT and SR2T, we set the number of permutations to B = 60 and the number of
samples used to estimate the covariance operator to s = 100.

2
tion. For these experiments we used Gaussian kernel, defined as K (z,y) = exp <—M>,

5.1 Periodic spline kernel & perturbed uniform distribution: Oracle test

In this section, we compare the power of SRPT to that of M3D Balasubramanian et al.
(2021). To be able to compute the M3D test, we use the periodic spline kernel, defined as
K(z,y) = %Bgr([x —1y]), where B, is the Bernoulli polynomial and [¢] is the fractional
part of . We set r = 1 and consider testing uniformity on the unit interval X = [0, 1].
Under this setting, the eigenvalues and eigenfunctions of K are known explicitly (see Bal-
asubramanian et al., 2021, Section 5 for details) so that the test statistic can be exactly
computed. We examine testing the null hypothesis of uniform distribution against per-
turbed uniform distribution (see Hagrass et al., 2024, Section 5.1.1 for details), where the
perturbed uniform distribution is indexed by a parameter P that characterizes the degree of
perturbation. The larger the P is, the associated distribution is closer to uniform, implying
that it becomes more difficult to distinguish between the null and the alternative. Figure 1
shows the power of SRPT in comparison to M3D for varying sample sizes n. SRPT(m = n)
and SRPT(m = 3n) refer to our proposed permutation test while setting m = n, and
m = 3n respectively (recall that m is the number of samples from Py used to estimate the
mean function pp,). We can observe that SRPT with enough samples from Py can yield
power almost as good as M3D (Oracle test), while not requiring the exact eigenvalues and
eigenfunctions of 7. We also observe that s (the number of samples used to estimate the
covariance operator, ¥y) does not have much significance on the power and the choice of
s = 100 seems to be good enough to accurately estimate X.

Other than this experiment, unfortunately, we are not able to replicate any other ex-
periment from (Balasubramanian et al., 2021) since no details about the parameter settings
of the null and the alternative distributions are provided (i.e., if Py is normal, its mean
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P-2 P=3
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M3D - SR2T < SRPT(m=3n) - SRPT(m=n)

Figure 1: Oracle test (M3D) and SRPT to test for uniformity using periodic spline kernel on
[0,1]. P denotes the degree of perturbation where large P makes the alternative
distribution (i.e., the perturbed uniform distribution) to be closer to the null
(uniform distribution).

and variance are not mentioned). Moreover, the exact details about the computation of the
eigenvalues and eigenfunctions of 7 are not provided.

Remark 6 Theorem 17 states that choosing any m > n should be enough to achieve the
same separation boundary up to constants as the Oracle test. Using m = 3n as compared
to m = n will theoretically yield the same separation boundary in terms of n but with a
better constant closer to that of the Oracle test. To demonstrate this point, for the rest of
the experiments, we used m = 3n.

5.2 Gaussian distribution

In this section, we examine the Gaussian location shift and covariance scale problems, where
the observed samples are generated from a Gaussian distribution with a shifted mean or
scaled covariance matrix (by scaling the diagonal elements of the identity matrix). The
goal is to test the null hypothesis of standard Gaussian distribution. Figure 2(a) shows the
power for different mean shifts and different dimensions from which we note that the Energy
test gives the best power closely followed by the SRPT test. Figure 2(b) shows the result
for different choices of s for both SRCT and SRPT tests with Showalter regularization. We
can see that SRPT is not very sensitive to the choice of s as opposed to SRCT, which seems
to give higher power for lower values of s, however with the cost of a worse Type-I error
(shown at mean shift = 0). We can see that the choice of s = 100 controls both power and
Type-I error for SRCT and for this choice of s = 100, the permutation test SRPT yields a
higher power while still controlling the Type-I error. Similarly, Figure 3 shows the power for
different scaling factors with different dimensions and different choices of s, demonstrating
similar results.

5.3 Perturbed uniform distribution

In this part, we examine testing the null hypothesis of uniform distribution against per-
turbed uniform distribution for different values of perturbation, P (see Hagrass et al., 2024,
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Figure 2: Power for Gaussian shift experiments with different d and s using n = 200.
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Figure 3: Power for Gaussian covariance scale experiments with different d and s using
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Section 5.1.1 for details). Figure 4(a) shows the result for d € {1, 2} for different perturba-
tions, wherein we can see that the highest power is achieved by SRPT. Figure 4(b) shows
the power for SRCT and SRPT for different choices of s, with P = 0 corresponding to no
perturbations and thus showing Type-I error. Similar to the observation from the previous
section, SRPT is not very sensitive to the choice of s, while SRCT is sensitive to s, with

0
05040.30.20.1 0 0.504030.20.1 0
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Figure 4: Power for perturbed uniform distributions for d =1 (n = 500) and d = 2 (n =
2000).

s = 50 and s = 200 being the reasonable choices, respectively for d = 1 and d = 2 that
controls both power and Type-I error.

5.4 Directional data

In this section, we investigate two experiments involving directional domains, where we focus
on testing for a multivariate von Mises-Fisher distribution, Whichd/SQerlves as the Gaussian
S?1 with k > 0 being the concentration parameter, ;1 being the mean parameter and
I being the modified Bessel function. Figure 5(a) shows the results for testing von Mises-
Fisher distribution against spherical uniform distribution (k = 0) for different concentration
parameters. We can see from Figure 5(a) that the best power is achieved by the Energy
test followed closely by SRPT. Figure 5(b) shows that SRPT is less sensitive to the choice
of s as opposed to SRCT which achieves its best power at s = 100 while still controlling
the Type-I error. In the second experiment, we explore a mixture of two multivariate
Watson distributions, representing axially symmetric distributions on a sphere, given by
flx,uk) = 2ﬂd/2]\1;((dl//22)7d/2.ﬁ) exp(k(uT2)?), € S¥1, where k > 0 is the concentration
parameter, p is the mean parameter and M is Kummer’s confluent hypergeometric function.
Using equal weights we drew 500 samples from a mixture of two Watson distributions
with similar concentration parameter k£ and mean parameter pi,ps respectively, where
p1 = (1,...,1) € R and pp = (—1,1...,1) € RL Figure 6(a) shows the power against
spherical uniform distribution for different concentration parameters. We can see that SRPT
outperforms all the other methods. Figure 6(b) shows how the power and Type-I error are
affected by the choice of s, which similar to the previous sections shows that SRPT is not

analog on the unit sphere defined by the density f(z,pu, k) = exp(kp’z), x €
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Figure 5: Power for von Mises-Fisher distribution with different concentration parameter k
and s using n = 500.

very sensitive to s, while SRCT achieves its best power while still controlling for Type-I
error at s = 100.

6 Discussion

To summarize, in this work, we have extended and generalized the theoretical properties of
the Oracle test proposed by Balasubramanian et al. (2021) by employing a general spectral
regularization approach, wherein we obtained sufficient conditions for the separation bound-
ary under weaker assumptions and for a wider range of alternatives. Under the assumption
that we have access to samples from Py, we addressed the problem of the practicality of the
Oracle test by proposing two completely data-driven tests (SRCT and SRPT) that adapt to
the choice of the kernel, the eigenvalue decay rate and the smoothness of the likelihood ratio,
while still being minimax optimal (up to logarithmic factors) w.r.t. P. Through numerical
experiments, we established the superior performance of the proposed spectral regularized
tests over the MMD-based test and the closely related two-sample test proposed in Hagrass
et al. (2024). However, there are still some open questions for future consideration: (i) Im-
proving the computational complexity of the proposed tests using approximation schemes
like random Fourier features (Rahimi and Recht, 2008), Nystrém method (e.g., Williams
and Seeger 2001; Drineas and Mahoney 2005) or sketching (Yang et al., 2017), and studying
the computational vs. statistical trade-off for the approximate test. (ii) The proposed test
requires access to i.i.d. samples from Fy, which might not be easy to generate or easily
available. As an alternative, instead of regularizing w.r.t. by p, (i.e., the empirical covariance
operator estimated based on the samples from F), one can regularize with respect to Sp
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Figure 6: Power for mixture of Watson distributions with different concentration parameter
k and s using n = 500.

(i.e., the empirical covariance operator estimated from the available samples drawn from
P). However, even this approach is not practical unless the mean element 1 is computable,
which need not be the case. To completely get around this issue, we can consider applying
the idea of spectral regularization to Kernel Stein Discrepancy (KSD) (Chwialkowski et al.,
2016; Liu et al., 2016) which does not require computing any integrals with respect to Py,
and study its minimax optimality.

7 Proofs

In this section, we present the proofs of the main results of the paper.

7.1 Proof of Theorem 1

Define b(x) = K(-,x) — pp and a(z) = b(x) + (up — o) = K (-, ) — pg,- Thus we can write,

Dinm = n(nl—l) S (a(X5), a(X5)) o
i#]
- n(nl—l) Z (b(X2),0(X;)) o + %Z (b(X2), (kP — 10)) 5 + Divp
i#j i=1

— _[1 + .[2 + D%/IMD,

29



HAGRASS, SRIPERUMBUDUR AND LI

2 n

I = n(n—1) Z (0(Xi), 0(X;)) s and I = - Z (0(X5), (P — 10)) -

i#] i=1

so that E[(D3pm — Dinup)?] = Ep(I1 + I2)? < 2Ep(1?) + 2Ep(13). Next, following similar
ideas as in the proofs of (Hagrass et al., 2024, Lemmas A.4, A.5), we can bound I; and I
as

4 2 4 2
E() < 5 22, and  E(B) < - [Splemr lr — ol
respectively. Combining these bounds yields that
A2 2 2 1 Dinp
E[(Dynvip — Davnp) ] S oy e (14)

When P = Py, we have DI%/IMD = 0. Therefore under Hy,

4 ||EO||%2(%&) () 16k2

E[(D3nm)?] < < ; (15)

n? n?

where in (%) we used where in (%) we used HEOH%Q(%) < 4k2. Thus using (15) and Cheby-
shev’s inequality yields R

Pr{D{nup > 7} <
where v = %.

V DlzleD
ovn Then

Next, we use the bound in (14) to bound the power. Let 1 = ﬁ +

. (%) .
PHl{Dl%/IMD >} > PHl{Dl%/IMD > Dl%/IMD — 71}
A (k)
> P {|D3ovp — Davp| < m} > 136,

> %, which in turn is

~

where (x) holds when D3\p > v + 71, which is implied if D3 p

implied if |u|%2 (Py) 2 n%, where the last implication follows from (Hagrass et al., 2024,
Lemma A.19). (%) follows from (14) and an application of Chebyshev’s inequality. The
desired result, therefore, holds by taking infimum over P € P.

—20
Finally, we will show that we cannot achieve a rate better than ~nﬁ over P. Recall
that T = Zie[ >\z¢l ®L2(P0) qbl Let gEZ - qf)l - Epogf)i, where ¢z == j)\ii. Then jgf;l == jgf)l ==

T/\—‘fi = <Z§z Assuming \; = h(i), where h is an invertible, continuous function (for example

h =i7? and h = e~ correspond to polynomial and exponential decays respectively), let
—1 —1
k= |h~!'(n2+1)], hence A\, = n20+1. Define

f = boy,

where b < 44%. Then Hf”%g(po) =b? <1, and thus f € L?(P). Define
~ . _ g0 _ 1107 AN
u:="T f = b/\kd)k, and wu:= b)\kgﬁk
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Note that Epu = bAYEp, dx = 0. Since Ju = @, we have u € [i].. € Ran(T?), HUH%Q(PO) =
b?22% > A,,. Next we bound |u(z)]| in the following two cases.

Case I: § > L and sup; ||¢;| . is not finite.
Note that

() g—1 (D
[u(@)] = BAL (K @) = o, dk) el < XL [IK( @) = poll e Il e < 20v/mA, 2 < 1,

where in (x) we used [|¢x]%, = )\;2<3*&k,’3*<5k> =\, In (f) we used 0 > 1.

Case II: sup; || ;|| , < 0.

In this case,
u(z)] < Qbsgp 16l A2 < 1,

for n large enough. This implies that we can find P € P such that g—g) = u + 1. Then for

such P, we have D3\ = HTl/zuHig(Po) = bQAiBH = % < fgn = . Therefore there exists

some € > 0 such that Dﬁ/[MD < v — €. Hence, we have
P, {D¥np = 7} < P {Dfpvp > Dinvp + €} < P, {|Dinip — Dinp| > €}

< - <5
~ogn2 =7

—

where we used (14) along with Chebyshev’s inequality in (x), and the last inequality holds

1
forn>€\/5.

7.2 Proof of Theorem 2

As shown in (Kim et al., 2022, Lemma G.1), in order to show that a separation boundary
A, will imply R} > 4, it is sufficient to find a set of distributions {P.}L_, C P, such that

L
1 < dP?
Ery <L;dP5L

2
) <1441 —a—0)>~4 (16)

Then the proof follows the same ideas as used in the proof of (Hagrass et al., 2024, Theorem
2) as shown briefly below.

Recall T = Yic; \idi ©r2(m) bi- Let & = ¢ — Epdy, where ¢; = 5%, Then
I =i = L2 = 4.

3

Nﬂz

Polynomial decay (Case 1): \; < i78, 8> 1, sup; || ¢i|| ., < oo and 6 > ﬁ.

Let 1/285
Ap
Bn = J )

16(sup; [|pill o)
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Cn = |VBn] and a, = \/é:: For k € {1,..., L}, define

By
Upk i= QN E EkiDis

i=1
where €3 := {er1,€r2, ..., exB, } € {0,1}P" such that Zl 1 €ki = Chp, thus L = ( ) Then
it can be shown (see the proof of Hagrass et al. 2024, Theorem 2) that we can ﬁnd P, eP

such that dP’“ = Uy + 1, and that (16) holds for 6 > @ when A, < ¢(a, 5)n49ﬁ+1 for some
c(@, ).

Polynomial decay (Case I1): \; <i~9, 8>1,0 > % and sup; ||¢;]|, is not finite.
Since \; < i_ﬂ, B > 1, there exists constants A > 0 and A > 0 such that Ai P <\, < Ai P
1
—1\ 533
Let B, = L(Aﬁ{” )%ﬁj, C, = |VBy] and a, = é—:. Then similar to Case I, it can be

shown that (see the proof of Hagrass et al. 2024, Theorem 2) we can find P € P such that

dP; _ 1, and that (16) holds for > L when A, < c(a, §)n 51 f 5
df = Un,k + 1, and that (16) holds for 6 > 5 when A, < ¢(a,d)n or some c¢(a, ).

Exponential decay: \; < e~ ™, 7 > 0.
Since \; < e~ 7%, 7 > 0, there exists constants A > 0 and A > 0 such that Ae ™ < \; <

Ae™™. Let B, = [ (27 max{0,1})! 1og(%n, Cn = [VBy] and a, = |/ &=, where 6 > 0.
(log )"

Then similar to the previous cases it can shown that (16) holds when A,, < ¢(a, 9, 6)
for any b < % Thus the desired bound holds by taking supremum over b < %

7.3 Proof of Theorem 3
By defining B := g}\/2(20) / and a(z) = 8281\/2(K(-,x) — fo), we have
. 1
= ——— > _{(a(Xi),a(X;)) .
n(n —1) &
i#]
By replacing X pgp with g in the proof of (Hagrass et al., 2024, Lemma A.4), we have
Ep, (73) < 2 HBH,coo(ﬂ)Nz( )-
The result therefore follows by applymg Chebyshev’s inequality and noting from (Hagrass
et al., 2024, Lemma A.8(ii)) that ||B||U,o(% (C1 + Cy).
7.4 Proof of Theorem 4
Define B := g,/*(S0)Sy/x, b(x) = BSy 2 (K (-, 2) — up), and a(z) = b(z) + By *(np —
po) = BX i\/ (K(-,x) — po). Thus we can write,

= n(nl—l) Z (b(X;), b(X])>f + % Z <b(Xi)a BZ / (np — ,UO)> + 7
i i=1
=5+ I+,
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where

_ 1 N B(X 2N ox) B2
I = n(n_l); (b(X)b(X,)) e amd L= Z; (b(X), BZ;* (up = o)) .
Thus, Varp[iy] = Ep(I1 + I3)? < 2Ep(I1?) + 2Ep(I2). Next we bound Ep(I?) and Ep(12)
using (Hagrass et al., 2024, Lemmas A.4 and A.5) by replacing ¥pg with 3o, which yields

R —1/2¢, —1/2 2
Varplip] < — HBHLW R
2
o » 2—1/22 > 1/2H ’2—1/ _ ’
B [0 20l [E0N = o),
) 8 4 2 2
< 3 IBllgee ey (4O iy + 2N5 (V)

8
+ 1Bz 2V Chllull 2 py + 1) lullfa(ry)

where C) as defined in Lemma A.3 and in (*), we used Lemmas A.2 and A.3. Then we
can easily deduce by using Chebyshev’s inequality that P, {7y > v} > 1 — ¢ holds if
m> v+ /Var+[ﬁ>\]' Using Lemma A.2, we have 7, > 53 HuH%z(PO) under the assumptions
u € Ran(77?), and

2 4C'3 2 max(0—£,0) \20 || ——
Jullfacmy = g5 ITIRZES SO |70, . (17)
Note that u € Ran(77?) is guaranteed since P € P and
[ull72(py) > caX™ (18)

guarantees (17) since ||| soo (1) = [[Zo0ll o (1) < 25 and ¢1 := suppep HT‘GUHLQ(PO) < 00,

Ac2 (0 (2K)2 max(0—€,0)
where ¢4 = 21%( Fng . Thus,

33 Varp[1]

HUHL2 P) 2V TN 5 (19

~—

guarantees 7 > v+ 1/ Va%[m]. Hence it remains to verify (18) and (19). Using HUH%Q(PO) >
A, it is easy to see that (18) is implied when A = (chAn)l/zé. Using ||B||ioo(%ﬂ) <
(C1 + C5)?, which follows from (Hagrass et al., 2024, Lemma A.8 (7i)) by replacing X pg
with 3o, and substituting the expressions of y and Varp[7,] in (19), we can verify that (19)
is implied if A,, > ”N\%) A, > TQC% and A, > TSNQ( ) for some constants r1,79,73 > 0.
Hence the desired result follows by taking infimum over P € P.

7.5 Proof of Corollary 5

When \; =< 7, we have No(\ HE_I/QZOE_UQH 1/2 A) < A28 (see Sripe-

rumbudur and Sterge 2022, Lemma B.9). Using this bound in the conditions mentioned in
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Theorem 4, ensures that these conditions on the separation boundary hold if

468

> . w051 T 46 8525 1
A, Z max 12 g1 ,(0n) 408+26+1 5 (20)
which in turn is implied if
T j<1_ 1
c(a, 5)n493+1, 0 > 5 — E
Ap = 808 B )
cla, O)n B2+t 0 < 5 — ﬁ

> (h—1/2 -2 j< 1 _ 1 408 808
where ¢(a,d) 2 (« +07%) and we used that 0 > 5 — ;5 < W1 < Whrogi On the

other hand when C' := sup; ||¢;||,, < 00, we obtain the corresponding condition as
468

Y 468
Azt (o) T 21)

which is implied if _
—408
A, = c(a, 0)n9s+1,

7.6 Proof of Corollary 6

When )\; =< ™™, we have Na(\ “2_1/2202_1/2”@0( ),/\/'11/2()\) < Hlog% (see Sripe-

rumbudur and Sterge 2022, Lemma B.9). Thus, substituting this in the conditions from
Theorem 4 and using n > max{e?, a 12 4 §~1}, we can write the separation boundary as

= -1 40
\/ -1/2 4 s—1y-1 — 5T
Ay 2 max < 26(a t9) n) ) <5n> o ) (22)

Vdiogn Viogn

which is implied if

c(a, 8,0)~ lzg", 0

Bn = c(a,,6) (\/@)ﬁl, 7

INV
N|— N

where ¢(a, 6,0) 2, max{, /%, 1} (Y2 4+ 672) and we used that 6 > 1 lel<
On the other hand when C' := sup;, ||¢;]|,, < 00, we obtain

29+1'

—-1/2 -2
A, Z max i ( +97) 71~(5n)
26 Vd1ogn 20 \ VIogn
which in turn is implied if

A, = c(a,0,0) logn’
n
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7.7 Proof of Theorem 7

The proof is exactly similar to that of (Hagrass et al., 2024, Theorem 3) by replacing ¥ pg
with 3.

7.8 Proof of Theorem 8

Since E(71°|(Y,%);_;) = 0, an application of Chebyshev’s inequality via Lemma A.8 yields,

7

A V6(C1 + Co) M|z iy N2 (V) 1 1
PHO{|n§Srz - (52

Yf)f:l} <4

VB(C14+C) M2 00 4y Na(A)
L 1), and oy s YHORONMEm0n B0 (4

n m

+ %) . Then

Pro{ii® < v} > Puo{{ni® <7} n{w<m}}
(%)
> 1— Py {ii® >y} — Pu{ye > m} > 136,
where (%) follows using
Pro{in® > 72} < Puo{|03°| = 2} = Epp [P {04 °] = 22| (V)iz, }] <6,

and

Pit (2 1) = Pty My 2 2} € 26
where (1) follows from (Sriperumbudur and Sterge, 2022, Lemma B.2(ii)), under the con-
dition that %% ]og 1055 < ) < 20l goo (- When C' := sup; [|¢5]|o, < oo, using (Ha-
grass et al., 2024, Lemma A.17), we can obtain an improved condition on \ satisfying
1360%N; (V) log 4 < s and A < ||| goe ) - Thus setting & = 2, yields that

P, {ﬁfs > 124 +\/%2W2(A) (711 + é)} < g (23)

Finally, the desired result follows by writing

pa{ie < OO (1, 1))

>y { {5 < POTZIRO (L0 D) 0 (0 2 et
>1- Py, {ﬁzs > 12(Cy +\/CO%2)./\/’2()\) <; 4 ;)} _ PHO{/\A/’2(>\) < biNo(\)}
®

>21-a,

where (1) follows using (23) and Lemma A.7 under the condition that

derk 96ks 12
1 log—} <A< |20l ;0 .
max{log . log— P A< B0l goo )
The above condition can be replaced with 4c1C2N7(\) log % < sif C = sup; ||¢il| o <

Q.
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7.9 Proof of Theorem 9

- C Mo O\l Hlul
Let M =S 1/22(1/5 = % (\/Tullﬁfo)"‘ 2(M) " “ LQ(% U2 (py) _where C), is
~T'S s
defined in Lemma A.3. Then Lemma A.8 implies C ||/\/l||Loo )= % for
some constant C' > 0. By (Hagrass et al., 2024, Lemma A.1), 1f
P{y 2= CIMIEmpym} <6, (24)

for any P € P, then we obtain P{#1® > ~} > 1 — 2. The result follows by taking
the infimum over P € P. Therefore, it remains to verify (24), which we do below. Define

d)\ = NQ()\) (f + \/—> Nl()\), Y3 = M (l + %) and Cy = BgC4(Cl+CQ)_1

biva n

Consider

Poty {7 < ¢ = ClIMI oy 1}
(+) ) )
> Pity {{IMIZe )35 < 02 |MT 2 oy Tl = C MUy 71

{7 < 1My 18} }

||/Vl||zoo [ M 1Hmo C’Vl+73)
>1— Py, >1p — Py, {7 > HMHLOO 73}
&) HUHLz (Po)

(2) Pa, | HL 7f)H HL o +73) <1

-0

c2 ||uHL2(PO)

(1) 3
21 P IM e < 3} 0 (M1 <2} -0

3
2 1= LM ey 2 3 | P {IMIB ey 22} -5

®

> 124,
where (xx) follows by using ¢ > c¢o H./\/lleZi(%) HuH%z(PO), which is obtained by combining
(Hagrass et al. 2024, Lemma A.11 by replacing ¥pg and pg with 3¢ and pg, respectively)
with Lemma A.2 under the assumptions of u € Ran(7?), and (17). Note that u € Ran(77)
is guaranteed since P € P and (18) guarantees (17) as discussed in the proof of Theorem 4.
(%) follows by Lemma A.6 under the condition s > 32c;xA ™! log(max{17920x2\~1, 6}571)
and [[Xoflzee(py = A (When C' := sup; |¢ill, < oo, the condition can be replaced by

s > 32¢1C?N1(A) log 9). (1) follows when

3(Cyi + 73)
C2 '

lul g2y > (25)

(1) follows from (Sriperumbudur and Sterge, 2022, Lemma B.2(%i)) under the assumption
that

140k 64xs
log —— < A < [[Zoll g () (26)
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which is implied by s > 280kA ! 1og(17920k*A716~1). When C := sup; ||¢i, < oo, (})
follows from (Hagrass et al., 2024, Lemma A.17) by replacing (26) with

136C2N:1(\) log 32/\([51()\) <s, and A < |[Zo[ goo ) - (27)

Thus it remains only to verify (25). Using m > n and

—1/2 —1/2)|1/2 1/2
NZ()‘)S HZO’A E0207/\ H,Coo(jf)Nl (A))
i be checked that (25) is implied by A, > P70 A > 3Gy ang A, > M)
it can be checked that (25) is implied by n > —e An 2 Fod and Ay > S
for some constants r1, 79,73 > 0.
7.10 Proof of Theorem 10
The proof is exactly similar to that of (Hagrass et al., 2024, Theorem 8).
7.11 Proof of Theorem 11
f—1/21/2 VOl g2y ANe () O IS L Hlull 2 py)
Let M = ZO,)\/ Eo,/)\ and v = % R + L (}:}% 22 ]. Then

following the proof of Theorem 9 in (Hagrass et al., 2024), Lemma A.9 along with m > n
2

yields that the power will be controlled to the desired level when A, > % and

A, > W for some constants r1,79 > 0, and under the condition (26) which can

be replaced by (27) when C := sup; ||¢;||, < oo.

7.12 Proof of Corollary 12

The proof is similar to that of Corollary 5. Since \; < i~?, we have N3(\) < A~1/28. By
using this bound in the conditions of Theorem 11, we obtain that the conditions on A,
hold if

5 _ 468 5 ___ 868

n 406+1 n 46B+28+1

A, > - | — . 2
2ot () (i) (28)

By exactly using the same arguments as in the proof of Corollary 5, it is easy to verify that
the above condition on A,, is implied if

—468 -
5 1 1
A — c(oz, 5)”4‘95+12 0 > 2748
n — ___ 80 _ 1 1 )
C(Oé, 5)77/ 49ﬂ+2ﬁ+1, 9 S 5 — E

where ¢(a,§) 2 6 2(log 1)2. On the other hand when C := sup; ||¢;||,, < o0, we obtain the
corresponding condition as

_ _46p __46p
on 466+1 on 206+1

fn % max (logu/oo \ log(1/a) ’

(29)
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which is implied if
—4608
Ay = c(a, 0)ntos+L,

7.13 Proof of Corollary 13

The proof is similar to that of Corollary 6. When \; < e~ we have NVo()\) < \/lo?%.
Thus substituting this in the conditions from Theorem 11 and assuming that

n > max{eQ, 5_1(log 1/a)},

we can write the separation boundary as

] -1 40
—1 _—
Sz { (20 (st 1y ]
log(1/a)+/log n Tog 1

which is implied if

c(a,5,9)vlzgn, §>%
An = 40 ~ ;
C(a7579) (\/lzgn) 20+1 7 0 < %

where ¢(«, §,0) 2 max{ %, 1} 52(log 1)2.
On the other hand when C' := sup;, ||¢;]|,, < 00, we obtain

log(1/a)yIogn | 20 1/a)y/logn

which in turn is implied if
Vviogn

A, = c(a,0,0) a—

where ¢(«, §,0) 2 maux{1 /%, %7 1} 5-2(log 1)2.

7.14 Proof of Theorem 14

First note that the following two events,

A= ¥ =@ N},
AEA

and

n m

B :=sup =

s L 12(C1 + Gy) (1 1>
AEA NQ()\) a bl\/a

are equivalent, where v(a, A) = 12(0%\/2%%0\) (% + %) The proof therefore follows from

Theorem 8 and (Hagrass et al., 2024, Lemma A.16).
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7.15 Proof Theorem 15

The same steps as in the proof of Theorem 9 will follow, with the only difference being « is
replaced by ﬁ, where |A| = 1+ log, % < log(n).
For the case of \; < i™?, we can deduce from the proof of Corollary 5 (see (20)) that

when A\ = d;l/%A%%& for some d3 > 0, then

P, {375 >3} > 145,

1205 (V) /JA[(C1+Co)

where 74 = biva % + %) and the condition on the separation boundary be-
comes i
- 868
n 465+1 808
A, Z max <&_1/2 n 5_1> ,(0n) 48B+2p11
where & = ﬁ(—‘ In turn, this is implied if
468

n Tagpy1 808
A, = ¢(a,d) max < ) ,n 0p+2a 1

Viogn

where c(a, ) > (a~'/2 + §2). Note that the optimal choice of A is given by

28
~ ~ ——= 43
A =X =d; Y e(a,6,0)1/2 1 O T T |
3 c(a,d,0) max oo N

Thus it can be verified that for any # and 3, the optimal lambda can be bounded as

—2
—4By. n 4&+1
rintt2Pu < X < rg

Vlogn

for some constants rq,ro > 0.

¢ Define v* := sup{x € A : x < A*}. From the definition of A, it is easy to see that
AL <X < Ay and )‘2—* < v* < X*. Thus v* € A is an optimal choice of A\ that will yield the
same form of the separation boundary up to constants. Therefore, by (Hagrass et al., 2024,
Lemma A.16), for any 6 and any P in P, we have

i
Py, < sup —= >y >1-—46.
! AE/\J\@z(A)

Thus the desired result holds by taking the infimum over P € P and 6. ¢
When \; < i~? and C := sup; ||¢i]|,, < oo, then using (21), the conditions on the
separation boundary becomes

—4683
n 40B+1

Vviogn
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where c(a,8) > (a~/? + §2). This yields the optimal A to be

x —1/26 j n 468+1
A= d3 / c(a,5,0)1/2€ <\/10E> .

Then as in the previous case we deduce that for any 6 and 3,

—2By =2
n 46,8y +1 << p n 161
"3 Viogn == Viogn

for some constants r3,r4 > 0. The claim therefore follows by using the argument mentioned
between ¢ and ¢.

For the case \; < e~
becomes

T8 7 > 0, the condition on the separation boundary from (22)

-1 _1175
n n 20+1
An > Y 5’ 0 Y / ?
2 c(a, d,0) max <logn) < logn>

where ¢(«, §,0) = max {, /2%, 1} (a2 4+ 672). Thus

1/20 1/26 n —~1/26 n _29"2+1
N=d, 0,0
3 ' cle,0,0) /7 max (logn) ’ ( logn> ’

-2 —1/2¢
which can be bounded as rg ( n ) <A< rg (@) for some r5,rg > 0. Further-

Vlogn

more when C' := sup;, ||¢;||, < 0o, the condition on the separation boundary becomes

A, = c(a,0,0) log n,
n

where ¢(«, §,0) = max {, / 2%, 2%, 1} (=2 4 672). Thus

5 . n —1/26
)\* — d;1/2 C(O[,(;, 9)1/29 <IOgTL> ,

—1/26, —1/2¢
which can be bounded by r7( 2L ) < A< rg L) . The claim, therefore,

logn logn
follows by using the same argument as mentioned in the polynomial decay case.

7.16 Proof of Theorem 16

The proof follows from Theorem 10 and (Hagrass et al., 2024, Lemma A.16) by using ﬁ—‘ in
the place of a.

7.17 Proof of Theorem 17

The proof follows from Theorem 11 using 131 instead of a in the expressions (28), (29), (30)

and (31), and then bounding the expressions for the resulting optimal \* using the ideas
similar to that used in the proof of Theorem 15.
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A Technical results

In the following, we present technical results that are used to prove the main results of the
paper. Unless specified otherwise, the notation used in this section matches that of the
main paper.

Lemma A.1 Let (X;)], i Q, (v)m, " P and B: A — H be a bounded operator.
Define

where a(z) = BE, (K (@) — pg), bz) = BE, (K (@) — pnp), ug = [y K(,x)dQ(x)
and pp = [, K(-,y) dP(y). Then

)

(i) Ea(X0), 0050 < 1Bl oy |20 20507, |20 20505

£2()

(i1) B (12) < 24 1Bl o ||Z0 ) *20%0 ) ?]

- nm

qu/zzpZ 1/2‘

£2() c2()

Proof (i) Note that
E(a(Xi): ()% = Ela(Xy) ®x a(X:),b(Y;) @ b(Y))) g2

= B2\ *50%,) B BY, Prp; 0B
£2()

—-1/2 —1/2
< Bl | Zon*TeZ0)

Hz—l/zzpz—lm‘

L2() L2(#)

(ii) follows by noting that

E(1%) £ ZE (Y))%

m2

where (1) follows from (Hagrass et al., 2024, Lemma A.3 (7)), and the result follows from
(7). ]

2
Lemma A.2 Letu= % —1¢ L*(Py) andn = HgA (X0) (o — MP)H » where gy satisfies
(Al)—(A4). Then
n < Ch ||ullZ2py -
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Furthermore, if u € Ran(T?), > 0 and

S TR 32 |70

||u”L2(P0) = LQ(P())

where 0 = min(0,§), then,
> 22 ul?
=" L2(Po) -
Proof The proof uses the same approach as in the proof of (Hagrass et al., 2024, Lemma

A.7) by noting that n = (T gx(T)u, u) 12(p,) and involves replacing pq, R and Y pq with po,
Py and Xy, respectively. [ |

Lemma A.3 Define N1()\) = Tr(E_l/QEOE_l/Q) Na(A Hz_l/zzi)zo_,i/z’

U= W — 1€ L?(Py). Then the following hold:

, and
£2()

(i) HE 1/22132—1/2‘

40 ([l 72 (py) + 2NF(N);

L2(A)
(ZZ) HZ 1/22p2 1/2H <2\/C)\ HU||L2(pO)+1
where ) )
o Msmlol, s < oo
A 2N, ()‘) sup, || K (-, )”3%’7 otherwise

Proof The proof is similar to that of (Hagrass et al., 2024, Lemma A.9) and involves
replacing R with Py and ¥ pg with ¥g. |

Lemma A.4 For any 0 < 4§ < %,

—-1/2

Py S (Vi |03 - 20055

- 32k log 2 N \/16/<5N1()\) log 2 S 19

L£2(5¢) AS s

Furthermore, suppose C := sup; ||¢s||, < 0o. Then

s, Hz 12055 —20)2;§/2‘

S

_ RONWlogd \/ 16C202()) log 2
S

£2(8)
>1-20.

Proof Define s(z) := K(-,2), A(z,y) := J5(s(z) = s(y)), Ulz,y) = 2o *A(z,y), and

Z(J"vy) = U($7y) K U(:an) Then

12 _ 1
Z0,}\/2(20 - E0)20&/2 T s(s—1) > Z(YiY;) —E(Z(X,Y)).
7]
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Also,

_ 2 1/2 2 2K
sup | Z(2. )2y = 500 U2 9) 3 = 5 sup 263 o) = )], < 5
x,y x,y 7

Define ((z) := Ey[Z(x,Y)]. Then

E6(X) ~ Sollagr) < E I = B [Z53 By AKX, V) @ ALY

£2()
—ETv (2‘1/2Ey [AX,Y) ©. AX,Y)|S) By [A(X,Y) @0 A(X, Y)]E_l/Z)

< 5D 62 e ey Tr(Z, *B0%5,5%)

26N7 (A
< sup Uy M < 2
T,y

When C' := sup; ||¢i]|,, < 00, we can use the same approach as in the proof of (Hagrass
et al., 2024, Lemma A.17) to show that sup, , [|U(z, )| < 2C%Ni()\) which in turn yields
that

sup || Z(z, y) g2y < 2C°N1(N),

Y
and
E [[¢(X) = Sollz2() < 20°NT(N).
Then the result follows from (Sriperumbudur and Sterge, 2022, Theorem D.3(77)). [ |

Lemma A.5 Let [ = <z V220E0 )2 202 (5 - 20)251/2>L2(%). Then for any 6 > 0,

By { (V)i < 1] < >1-6.

4k log 2 12kNZ(A) log 2
+
As As

Furthermore, suppose C := sup; ||¢;|| ., < 0o0. Then

2 2 2 9 2
P (1/1);9:1 : |I| < 4C NléA) log 5 4 \/120 Nl()\)NQ ()\) log 5

1—0.

0 S > d

Proof Define s(z) = K(-,z), A(x,y) = %(8(1’) —s(y)), U(x,y) = E;}\/zA(x,y),
Z(x,y) = U(x,y) © Ulz,y), B:=EZ(X,Y) = £,y *20%; )/, and

Z(x,y) = (B, Z(2,9)) 2 ()

Then

L Y) —EZ(X,Y).
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Moreover,

sup ‘Z('Ta y)’ = sup |<B7 Z(.I‘, y)>L2(ﬂ)‘
I7y I,y

2K
= sup [Te(B(U (2, ) @ U, )| < [Bllgoe oy s0p [ U, 9)I% < S
x,y €,y

and

26NZ(N)

- (%) -
EZ2(X?Y) < sup]Z(m,y)HE(B,Z(X, Y)>L2(j2”) < A )
x’y

where (x) follows by using Z(z,) > 0, which can be shown by writing,

Z(x,y) = (B, Z(z,y)) = Te(B(U(z,y) @x U(z,y)))
Ty (2—1/2202 VU (2, y) @0 Ula, y)])

= Tr(Z5*80) (U 2,9) @0 Ule,9)) %5, *%0)

2
= =575 H > 0.
H (z,y) 2

When C := sup; ||¢i]|, < 0o, we can use the same approach as in (Hagrass et al., 2024,
Lemma A.17) to show that sup, , ||U(, y)Hif < 2C%N1()\) which in turn yields that

sup | Z(z,y)| < 202N (N,
T,y

and .
EZ%(X,Y) < 2C°N1(VDNZ(N).

Thus the result follows by using Hoeffding’s inequality as stated in (de la Pena and Giné,
2012, Theorem 4.1.8). [ |

Lemma A.6 For anyc; >0, 6 >0 and 2295 ]Jog3 < \ < 120l goo () we have

o {m)fo NN < M) (Ng(/\) + (“f + V;) /\/1(/\)>} >1-25

Furthermore if C 1= sup; ||¢;]| o, < 00, the above bound holds for 32¢1C?Ni(A)log 2 < s and
A< ZBoll goo ey -

Proof Let M = E 1/221/2 Then

No(N) < | M][Zeo () )\2_1/230251/2‘

£2()

< M1y (M) + 25325 = 50)g

w%)) '
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From Lemma A.4 and the assumption that 32%log% < )\, we have with probability at
least 1 — 26 that,

HE—1/2 5, - 20)25&/2‘

L2(%) 61

)

o M
where in (%) we used /Ni(A) = />, )\i)‘i)\ >4/ Ié?ﬁj:(;ﬁ)\ > %, and (t) follows from

A < |[Zoll goe (). Similarly when C' := sup; [|¢i[|o, < oo, the same bound holds by Lemma
A4 for 32¢;C?Ni(A)log 2 < s. [ ]

Lemma A.7 For any c; >0, § > 0, and max{!0% Jog 1655 de1s o0 23 < ) < 120l goo (9

we have
4 16

P (V)ino : NE ) 2 (5= 575= — 7 >1— 30.

s {00 002 (5- = - 2 ) M} 2

Furthermore if C := sup; ||¢il| o, < 00, the above bound holds for A < H20|’L°°(,;f) , and
C2N7 () max{de; log 2,136 log 4V} < 5.

Proof Let M i= 55, /*5/Y and I = (33207, /%, 5032 (50 - 202, 1/2>L2(%)' Then
2oy s HZ‘”QZ 2‘1/2‘ ’
T HMflnim o TN Hleson
—1/2 —1/2” H —1/2 _ —1/2’2
503 2 + |25 12 (5 — 50)3
M- 1||Loo <H ’ om0 072003 2oy
1

> —(J\/Q()\) —2|1)).
M )

Then from Lemma A.5 and the assumption 4"% log 2 < A (similarly when C := sup; |||, <
oo the same bound holds by Lemma A.5 for 32¢;C?N7()\) log% < s), we have with proba-
bility at least 1 — 6,

|1|<+\f/v2 ([ i)/\@(x)q( 631+621>N22(>\),

120 oo
- ”20”@00(32”)"’_)‘ - 2

si= {2 ({2 + 2wz}

_ 9
2= {00015 M ey < 5 -

where in the last two inequalities we used N3 (\)
Define

and
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/

>1—P(S)) = P(Sy) > 1 - 35,

where we used (Sriperumbudur and Sterge, 2022, Lemma B.2 (74)) in the last inequality,
with S" being the complement of set S. Similarly, when C := sup, ||| o < 00 the same
bound holds using (Hagrass et al., 2024, Lemma A.17 (iii)). |

2 N

Lemma A.8 Let ( = Hgi\/z(io)(,up - uo)’ , M= 2;1/22})’&2, and m >n . Then

H

E [ - 0210
~ Callulifaqny + NFO) | VO lullFaqmy + [1ul;
< C ||M||i°°(f) { L2(Py) 2 n L2(Py) L2(Py) |

n2 n

where Cy is defined in Lemma A.3 and C is a constant that depends only on Cy and Cs.
Furthermore, if P = Py, then

T2 . 11
B [(1)°10%ma] < 6(C1 + Col ML AZO) (3 + 53 )
Proof Define a(x) = BE(;}\/Q(K(,x) — pup), and b(z) = BE(;;\/Q(K(-,JU) — o), where
B = 91/2(20)2(1)//\2. Then replacing ¥ pg by Xg and pg by o in the proof of (Hagrass et al.,
2024, Lemma A.12), it can be shown that

1
TS
mn” —¢ poy—

S (a(X0), a(X))  + ———— ST (B(X0),b(X0))
(n ) i#j m(m 1) i#j

@ ©)

e 3 (DB ), = o S a0 D)

® @

and

1Bllgoe(ry < (Ci+ Cy)'/? M| oo ey -
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Next, we bound each of these terms using Lemmas A.1, A.3 and (Hagrass et al., 2024,
Lemma A .4, Lemma A.5). It follows from Lemma A.3(7) and (Hagrass et al., 2024, Lemma
A.4(ii)) that

) ) —1/2¢ —1/2]]
E (@ ’(Y;‘O)izl) < QHBHLO" () HZ / EPZO:A/ ‘LQ(%’)

/\

IN

O+ O MLy (403 [y + 20300
and
E(@1000)im1) € —3(Ch+ 0 [ Moy AZY
i Ji=1) = m2 1 2 Loo () /Y2 .
Using Lemma A.3(ii) and (Hagrass et al., 2024, Lemma A.5), we obtain

1/2 —-1/2
E(GPI0)i) < 150 22050 Y e 1Bl o 123 20 — o)

4
< —(O1+ o) Mz ey 155 (1 = o) I3
*) 4
< —(Cr+ Co)? [IMI g o) 72y
and
2 s 4 -
E(@10)i=) < ~ 1253 *Sr50) 2 lle o 1Bl oo o 15550 (10 = 1)1
4 -
< (142005 [l () (€1 + Co)* [ Ml oy 1203 (0 = ) 5
() 4
< (L4 2V O lufl 2 (py) )(C + Co)” | M zoe ey 11 72y »

where (x) follows from using ga(z) = (z+A)~! with C; =1 in Lemma A.2. For term (4),
using Lemmas A.1 and A.3, we have

2 _ _ _ _
E(4) (V)i ,) < *HBHLW =03 2 2pE0 V2 ez IS0 2 20%0 ¥ ez )
< %(Cﬂrcz) IM |2 ey (2V/C [l 2y + V2N2(A))N2(A)
4
< —(C1+ C2)? [ Mo ) 2V OAN2(N) [t 2y + VZNF(N)).

Combining these bounds with the fact that vab < % + 4 5, and that (SF Piap)? <k ZZ Laz
for any a,b,ar € R, k € N yields that

E [(75° = O?1(V0)id]
Ca lellizqayy + ABO) VO iz +Ilelizgn
S HMH4L°°(%’) ( (Po) + (Po) (Po)

n2 n
2
Jr/\f22(2>\) N ||U”L2(Po)>
m m

O lullZ2 ) +NE () N VO ullzz(py) + HUHQLQ(PO))
n )

n2

S Mz ) (
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where in the last inequality we used m > n.
When P = Py, and using the same lemmas as above, we have

B (DP0V)1) < g+ 0o Ml ) NZ V),

E(QF 1) < —g(C+ O MU o) AR,

E(@F100)11) € == (C1 + o [ M) AR,
and (3) = (5) = 0. Therefore,

B[] = E[(D+ @+ @) 1005 P B (OF + @ + @107

)
2 (1 P IM e N2<>( +6)

n2

b
( @) (@ : @) = 0 under th.e

where () follows by noting that E ((1)-(2))
assumption P = Py, and () follows using vab < % +

M\v

Lemma A.9 For0<a <e™ ', §>0 and m > n, there exists a constant Cs > 0 such that
Py, (3o < C57) > 13,

where

B 1M () log
Von

Clogé
Von

1
a 4
(\/CA [ull 2 py) + N2 (A A+ 6y Hi/Z’QPO +||U||L2(P0)> +

. 2
¢ = Hgi/Q(Zo)(uo — ,u,p)H ' and C) is defined in Lemma A.3.

Proof The proof is similar to that of (Hagrass et al., 2024, Lemma A.15) and involves
replacing Y pg with Yo, R with Py, and pug with pg. Then the desired result follows by
using m > n. |
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