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Abstract

We derive and analyze a generic, recursive algorithm for estimating all splits in a finite
cluster tree as well as the corresponding clusters. We further investigate statistical prop-
erties of this generic clustering algorithm when it receives level set estimates from a kernel
density estimator. In particular, we derive finite sample guarantees, consistency, rates of
convergence, and an adaptive data-driven strategy for choosing the kernel bandwidth. For
these results we do not need continuity assumptions on the density such as Hölder continu-
ity, but only require intuitive geometric assumptions of non-parametric nature. In addition,
we compare our results to other guarantees found in the literature and also present some
experiments comparing our algorithm to k-means and hierarchical clustering.

Keywords: cluster analysis, kernel density estimation, consistency, rates, adaptivity

1. Introduction

A widely acknowledged problem in cluster analysis is the definition of a learning goal that
describes a conceptually and mathematically convincing definition of clusters. One such
definition, which goes back to Hartigan (1975) and is known as density-based clustering, as-
sumes i.i.d. data D = (x1, . . . , xn) generated by some unknown distribution P on X ⊂ R

d.
Given some level ρ ≥ 0, the clusters of P are then defined to be the connected components
of the level set {h ≥ ρ}:= {x ∈ X : h(x) ≥ ρ}, where h is the density of P with respect to
the Lebesgue measure. This single level approach has been studied, for example by Harti-
gan (1975); Cuevas and Fraiman (1997); Rigollet (2007); Maier et al. (2009); Rinaldo and
Wasserman (2010). However, one of the conceptual drawbacks of the single level approach
is that different values of ρ may lead to different (numbers of) clusters, see Figure 1, and in
addition, there is no general rule for choosing ρ. To address this conceptual shortcoming,
one often considers the so-called cluster tree approach instead, which tries to consider all
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Figure 1: The single level approach applied to a probability density h on [0, 1]. Left. The
level set {h ≥ ρ1} displayed by the orange horizontal line consists of one connected
component, which results in one cluster for ρ1. For illustrational purposes, the
part of the graph of h that belongs to this level set is also colored in orange.
Right. For a slightly larger ρ2, the level set {h ≥ ρ2} consists of two connected
components, which are indicated by the green and purple horizontal lines. As a
result, we obtain two clusters for this level ρ2.

levels and the corresponding connected components simultaneously, see the left picture in
Figure 2 for an illustration.

There exists a variety of articles investigating properties of the cluster tree approach,
see e.g. (Hartigan, 1975; Stuetzle, 2003; Chaudhuri and Dasgupta, 2010; Stuetzle and Nu-
gent, 2010; Kpotufe and von Luxburg, 2011; Chaudhuri et al., 2014; Wang et al., 2019)
for details. For example, Chaudhuri and Dasgupta (2010) show, under some assumptions
on h, that a modified single linkage algorithm recovers this tree in the sense of Hartigan
(1981), and Kpotufe and von Luxburg (2011); Chaudhuri et al. (2014) obtain similar results
for an underlying k-NN density estimator. In addition, Kpotufe and von Luxburg (2011);
Chaudhuri et al. (2014) propose a simple pruning strategy, that removes connected com-
ponents that artificially occur because of finite sample variability. However, the notion of
recovery taken from Hartigan (1981) only focuses on the correct estimation of the cluster
tree structure and not on the estimation of the clusters itself, cf. the discussion by Steinwart
(2011). Finally, the most recent paper (Wang et al., 2019) establishes guarantees including
rates of convergence for each fixed level set, provided that a kernel-density estimator is used
to produce level set estimates and the density has a certain smoothness such as α-Hölder
continuity.

A third approach taken by Steinwart (2011); Sriperumbudur and Steinwart (2012); Stein-
wart (2015a) tries to estimate both the first split ρ∗ in the cluster tree, and the corresponding
clusters, see the right picture in Figure 2 for an illustration. As in the previously discussed
papers, finite sample bounds are derived, which in (Steinwart, 2015a) are extended to learn-
ing rates. For example, these learning rates for estimating ρ∗ are of the probabilistic form

Pn

({
D ∈ Xn : 0 ≤ ρ∗D − ρ∗ ≤ Kan

})
≥ 1− 1

n
,

where ρ∗D is the sample based estimate constructed by the considered algorithm and K is a
constant depending on some assumptions on P . In other words, with high probability, the
algorithm estimates ρ∗ up to precision Kan. The learning rates for estimating the resulting
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Figure 2: A density h on [0, 1] and different density-based clustering approaches. Left.

The cluster tree approach considers various, or ideally even all, levels (in grey)
simultaneously, making it superfluous to choose one level in advance. However,
for a given algorithm the difficulty of detecting connected components may change
with the considered level, since, for example, the distances of related connected
components, i.e. clusters having the same color, change with the level as it can be
seen for the second and third level from below. Right. The split tree approach
tries to estimate both the levels at which a split in the infinite, ideal cluster tree
of h occurs and the resulting clusters at these levels. For the depicted h this leads
to the problem of estimating the split levels ρ∗1, ρ

∗
2 (drawn in yellow) as well as

the resulting clusters for ρ∗1 (drawn in green and purple) and for ρ∗2 (drawn in
blue and dark pink). Our previous work, see (Steinwart, 2011; Sriperumbudur
and Steinwart, 2012; Steinwart, 2015a) only considered the first split ρ∗1 and its
clusters.

clusters are of similar probabilistic nature. Moreover, Steinwart (2015a) shows that these
learning rates can also be obtained by an adaptive, fully data-driven hyper-parameter selec-
tion strategy. Unfortunately, however, Steinwart (2011, 2015a) only considers the simplest
possible density estimator, namely a histogram approach, and Sriperumbudur and Stein-
wart (2012) restrict their considerations to compactly supported moving window density
estimates for α-Hölder-continuous densities. In addition, the method by Sriperumbudur
and Steinwart (2012) requires the user to know α, and hence it is not data-driven. Finally,
all three papers completely ignore the behavior of the considered algorithm for single cluster
distributions, i.e. for distributions that do not have a split in the cluster tree, and for multi
cluster distributions, i.e. for distributions that have more than one split in the cluster tree.
As a consequence, it remained unclear whether and how a suitably modified version of this
algorithm can be used to estimate the split-tree, i.e. the combination of all levels at which a
split in the cluster tree occurs together with the resulting clusters at these splits. We refer
to Figure 2 for an illustration of such a split tree.

The goal of this paper is to address the discussed issues of Steinwart (2011); Sriperum-
budur and Steinwart (2012); Steinwart (2015a). To be more precise, compared to these
articles, we establish the following new results:

i) For single cluster distributions, we propose a new set of regularity assumptions for
levels ρ at which the level set {h ≥ ρ} is small. For example, for bounded densities,
these assumptions roughly speaking guarantee, that the level sets do not frazzle for

3



Steinwart, Sriperumbudur, and Thomann

Figure 3: Guarantees provided in previous papers such as Steinwart (2015a) and in this
paper. Left. Steinwart (2015a) etc. only provide guarantees for estimating the
first split level ρ∗1 and the corresponding clusters. In other words only the light
blue area below the algorithm’s split level estimate ρ1,out is covered. Right. In
this paper we provide guarantees for estimating the entire split tree. To be more
specific, Part ii) of Theorem 9 ensures that the generic cluster algorithm works

correctly in the green area between ρ1,out and a distribution dependent value ρ††1 .
On the left hand in the yellow area, Theorem 7 then guarantees, that the cluster
algorithm correctly recognizes that there is no further split in the splitting tree. In
contrast, on the right hand side, Part iii) of Theorem 9 makes it possible to reuse
the guarantees of Steinwart (2015a) after some minor technical modifications. As
a consequence, it can be ensured in the gray-blue area on the right hand side that
the algorithm outputs an estimate ρ2,out of the second split level ρ∗2 together with
estimates for the corresponding clusters. Then in the green area on top of this,
Part ii) of Theorem 9 again guarantees that the cluster algorithm works correctly

up to some distribution dependent ρ††2 . Finally, Theorem 7 ensures in the two
yellow areas at the very top that the cluster algorithm correctly recognizes that
there is no further split in the cluster tree.

levels ρ close to the maximum ‖h‖∞ of the density h. Such assumptions were missing
in (Steinwart, 2011; Sriperumbudur and Steinwart, 2012; Steinwart, 2015a).

ii) We present a simple modification of the output behavior of the generic cluster al-
gorithm of Steinwart (2015a) to deal with distributions that do not have a split in
the cluster tree. Based on our new regularity assumptions in i) and the ones from
Steinwart (2015a), we then show that this new cluster algorithm is able to:

a) provide an estimate ρout of the first split level ρ∗ if there is one;

b) correctly detect distributions for which there is no such split level;

c) construct estimates Bi of the clusters A∗
i occurring at the first split level.

Note that from a technical side both a) with finite sample bounds on |ρout−ρ∗| and c)
with finite sample bounds on λd(Bi △ A∗

i ) directly follow from Steinwart (2015a), since
our modification of the generic cluster algorithm scans through candidate levels ρ in
exactly the same way as the original algorithm of Steinwart (2015a) does. Therefore,
the surprising, and compared to (Steinwart, 2015a) new part of our finite sample
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guarantees is the fact that this scanning procedure does not need to be changed for
correctly detecting single cluster distributions in b). Note that a highly beneficial
side-effect of this fact is that our analysis in b) as well as in iii) and iv) below, can
rely on the extensive set of tools developed by Steinwart (2015a).

iii) We then show how the results of ii) can be used to estimate the entire split-tree by
recursively applying the new generic cluster algorithm. While from a higher perspec-
tive this result does not seem to be too surprising, it turns out that there are still a
couple of serious technical difficulties involved. In a nutshell, these difficulties relate
to the fact, that the generic algorithm may return an estimate ρout for ρ

∗ for which the
connected components of {h ≥ ρout} are not yet sufficiently apart from each other.
While such an estimate ρout for ρ∗ is desirable, it also prohibits a direct recursive
application of the results of ii). To address this issue, we analyze the behavior of the
generic cluster algorithm above the returned level ρout. In this analysis, which also
goes beyond (Steinwart, 2011; Sriperumbudur and Steinwart, 2012; Steinwart, 2015a),
it turns out, that the algorithm behaves correctly until it reaches a level ρ†† for which
the connected components of {h ≥ ρ} are sufficiently apart from each other. Above
this level ρ††, we further show that the results of ii) can then be recursively applied,
leading to guarantees for the entire split-tree. We refer to Figure 3 for a detailed de-
scription on how the different guarantees can be combined and how these guarantees
differ from our previous work (Steinwart, 2011; Sriperumbudur and Steinwart, 2012;
Steinwart, 2015a).

Besides these improvements for the generic cluster algorithm we additionally present
the following results:

iv) We show that the new generic cluster algorithm does not only work with an underlying
histogram density estimator (HDEs) as in (Steinwart, 2011, 2015a), but also for a
variety of kernel density estimators (KDEs). Here it turns out that the results of
Steinwart (2015a), including those for the adaptive, fully data-driven hyper-parameter
selection strategy, remain valid for the resulting new clustering algorithm, provided
that the kernel has a bounded support. Moreover, if the kernel has an exponential tail
behavior, then the results remain true modulo an extra logarithmic term, while in the
case of even heavier tails, we show that the rates become worse by a polynomial factor.
Note that compared to Steinwart (2015a), all the results for KDEs are new. Moreover,
the results for KDEs substantially extend the results of Sriperumbudur and Steinwart
(2012), since there a) only moving window kernels were treated, and b) only α-Hölder
continuous densities with known α were considered. In contrast, our new results do
not even require continuous densities, and for this reason, we also obtain significantly
more general results than the currently best results for KDE-based clustering achieved
by Wang et al. (2019). The latter improvement is partially made possible, because
we can rely on the tools of Steinwart (2015a). However, compared to the HDEs in
(Steinwart, 2015a) considering KDEs still requires significant technical efforts such as
finite sample bound for the ‖·‖∞-distance between a KDE and its population version.

v) We discuss in some detail the differences of our results and those of Chaudhuri et al.
(2014) and Wang et al. (2019), which in some sense are the articles closest to ours.
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Here it turns out that, depending on the set of assumptions, sometimes the learning
rates for estimating the split levels obtained by Wang et al. (2019) are better and
sometimes the ones obtained by us are better. However, adaptivity, for example, is
not achieved by Wang et al. (2019). The latter is also true for the paper by Chaudhuri
et al. (2014), but in addition their rates are worse than ours, and in addition, their
set of assumptions is more restrictive.

vi) We present some experiments comparing our algorithm run with either the moving
window kernel or the Epanechnikov kernel to both k-means and hierarchical clustering.
Here, it turns out that our algorithm outperforms the latter two as soon as the sample
size is sufficiently large. In addition, our algorithm is less sensitive to clusters having
different spatial scales.

This paper is organized as follows: In Section 2 we recall the key concepts of Steinwart
(2015a). In Section 3 we first introduce the new regularity assumptions mentioned in i). We
then introduce and analyze the new generic cluster algorithm as described in ii). Moreover,
the recursive approach described in iii) is analyzed in detail. Section 4 then presents
key uncertain guarantees for level sets generated by KDEs, and Section 5 contains the
material mentioned in iv), namely finite sample bounds as well as consistency results, rates
of convergence, and an adaptive data-driven strategy for choosing the kernel bandwidth. In
Section 6 we present the comparison to the articles by Chaudhuri et al. (2014) and Wang
et al. (2019), and Section 7 contains the experiments. All proofs can be found in Section 8.

2. Preliminaries

In this section we recall the setup for defining density-based clusters in a general context
from Steinwart (2015a). To this end, let ‖ · ‖ be a norm on R

d. Then we denote the closed
unit ball of this norm by B‖·‖ and write B‖·‖(x, δ) := x + δB‖·‖. If the norm is known

from the context, we usually write B(x, δ) instead. Moreover, the Euclidean norm on R
d is

denoted by ‖ · ‖2 and for the Lebesgue volume of its unit ball we write vold. Finally, ‖ · ‖∞
denotes the supremum norm for functions.

Let us now assume that we have some A ⊂ X ⊂ R
d as well as some norm ‖ · ‖ on R

d.
Then, for δ ≥ 0 we define the δ-tube and δ-trim of A in X by

A+δ := A+δ
X := {x ∈ X : d(x,A) ≤ δ} , and A−δ := A−δ

X := X \ (X \A)+δ ,

where d(x,A) := infx′∈A ‖x− x′‖. We refer to Figure 4 for an illustration of these concepts
as well as to some possible topological changes when going from A to either A+δ or A−δ.
We further write Å for the interior of A and A for the closure of A. Moreover, ∂A := A \ Å
denotes the boundary of A. Obviously, we have A+0 = A, and hence also A−0 = Å.
Furthermore, since x 7→ d(x,A) is continuous, A+δ is always closed in X and A−δ is always
open in X. Note that if A is bounded, we always find compact and convex X ⊂ R

d with
A+δ

X = A+δ
Rd and A−δ

X = A−δ
Rd . Based on this observation and the fact that we usually consider

δ ∈ (0, 1] in combination with some suitably chosen X, see Assumption P below for details,
we often ignore the surrounding set X. In addition to this notations, we denote the inradius
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Figure 4: Left. A set A in blue together with a δ-tube A+δ of it in green and a δ-trim
A−δ of it in orange, where in both cases we considered the supremum norm in
R
2. All three sets are connected. Middle. A set A in blue that consists of

two connected components. This time, however, its δ-tube A+δ is connected.
Right. A connected set A in blue, for which its δ-trim A−δ has two connected
components. In summary, we see that the connected component structure of A
does not necessarily relate to those of A+δ and A−δ.

and diameter of a bounded A ⊂ R
d by inradA and diamA, respectively, that is

inradA := sup
{
r > 0 : ∃x ∈ A with B(x, r) ⊂ A

}

diamA := sup
{
‖x− x′‖ : x, x′ ∈ A

}
.

Some interesting properties of these quantities can be found in (Steinwart et al., 2021,
Lemma 8.1 and Lemma 8.2).

Throughout this work, 1A denotes the indicator function of a set A, and A △ B the
symmetric difference of two sets A and B. Let us now assume that P is a probability
measure on a closed X ⊂ R

d that is absolutely continuous with respect to the Lebesgue
measure λd. Then P has a λd-density h and one could define the clusters of P to be the
connected components of the level set {h ≥ ρ}, where ρ ≥ 0 is some user-defined threshold.
Unfortunately, however, this notion leads to serious issues if there is no canonical choice of
h such as a continuous version, see the illustrations in (Steinwart, 2015a, Section 2.1). To
address this issue, Steinwart (2015a) considered, for ρ ≥ 0, the measures

µρ(A) := λd(A ∩ {h ≥ ρ}) , A ∈ B(Rd) .

Since µρ is independent of the choice of h := dP/ dλd, the set

Mρ := suppµρ ,

where suppµρ denotes the support of the measure µρ, is independent of this choice, too.
For any λd-density h of P , the definition immediately gives

λd
(
{h ≥ ρ} \Mρ

)
= λd

(
{h ≥ ρ} ∩ (Rd \Mρ)

)
= µρ(R

d \Mρ) = 0 , (1)

i.e. modulo λd-zero sets, the level sets {h ≥ ρ} are not larger than Mρ. In fact, Mρ turns
out to be the smallest closed set satisfying (1) and it is shown in (Steinwart, 2015b, Lemma
A.1.2), that

˚{h ≥ ρ} ⊂Mρ ⊂ {h ≥ ρ} and Mρ △ {h ≥ ρ} ⊂ ∂{h ≥ ρ} .
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Figure 5: Examples of injective, surjective, and bijective of CRMs, which also illustrate
partitions generated by connected components. Left. For A := A′∪A′′, P(A) :=
{A′, A′′}, and P(B) := {B}, the CRM ζ : P(A) → P(B) is surjective but not
injective. Middle. For B := B′ ∪ B′′ and the obvious definitions of P(A)
and P(B), the CRM ζ : P(A) → P(B) is injective but not surjective. Right.

Analogously, for A := A′ ∪ A′′ and B := B′ ∪ B′′, the CRM ζ : P(A)→ P(B) is
bijective and hence P(A) is persistent in P(B). In this case the structure of the
cells in A and B have a clear one-to-one relation to each other. Note that in all
cases we further have P(A) = C(A) and P(B) = C(B).

In order to ensure inclusions that are “inverse” to (1), Steinwart (2015a) said that P is
normal at level ρ if there exist two λd-densities h1 and h2 of P such that

λd(Mρ \ {h1 ≥ ρ}) = λd({h2 > ρ} \ M̊ρ) = 0 .

In particular, if P is normal at level ρ, thenMρ and {h1 ≥ ρ} only differ by a Lebesgue zero
set. Moreover, it is shown in (Steinwart, 2015b, Lemma A.1.3)1 that P is normal at every
level, if it has both an upper semi-continuous λd-density h1 and a lower semi-continuous
λd-density h2. Furthermore, if P has a λd-density h such that λd(∂{h ≥ ρ}) = 0, then
the same lemma shows that P is normal at level ρ. This implies that essentially all P one
usually thinks of are normal. Finally, if the conditions of normality at level ρ are satisfied
for some λd-densities h1 and h2 of P , then they are actually satisfied for all λd-densities h
of P and, as mentioned above, we have λd(Mρ △ {h ≥ ρ}) = 0.

The next assumption collects the concepts introduced so far.

Assumption P. We have a λd-absolutely continuous, probability measure P that is normal
at every level. In addition, suppP is compact, and X ⊂ R

d is a compact and connected set
with (suppP )+2

Rd ⊂ X.

Note that the assumption (suppP )+2
Rd ⊂ X ensures both A+δ

X = A+δ
Rd and A−δ

X = A−δ
Rd for

all δ ∈ (0, 1] and A ⊂ suppP . In this case, we therefore usually ignore the surrounding X.
Let us now recall the definition of clusters from Steinwart (2015a). We begin with the

following definition.

Definition 1 Let P(A) and P(B) be partitions of A ⊂ B with A 6= ∅. Then P(A) is
comparable to P(B), write P(A) ⊏ P(B), if, for all A′ ∈ P(A), there is a B′ ∈ P(B) with
A′ ⊂ B′.

Informally speaking, P(A) is comparable to P(B), if no cell A′ ∈ P(A) is broken into
pieces in P(B). In particular, if P1 and P2 are two partitions of A, then P1 ⊏ P2 if and

1. In this lemma, the term “upper normal at level ρ” means that λd(Mρ \ {h1 ≥ ρ}) = 0 for some
density h1 := dP/ dλd while “lower normal at level ρ” means λd({h2 > ρ} \ M̊ρ) = 0 for some density
h2 := dP/ dλd.
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only if P1 is finer than P2. Now assume that P(A) and P(B) are two partitions with
P(A) ⊏ P(B). Then (Steinwart, 2015b, Lemma A.2.1) shows that there exists a unique
map ζ : P(A)→ P(B) with

A′ ⊂ ζ(A′) , A′ ∈ P(A) .

Following Steinwart (2011, 2015a), we call ζ the cell relating map (CRM) between A and B.
Moreover, if ζ is bijective, we say that P(A) is persistent in P(B) and write P(A) ⊑ P(B).
We refer to Figure 5 for illustrations of persistent and non-persistent partitions.

The first example of comparable partitions come from connected components. To be
more precise, let A ⊂ R

d be a closed subset and C(A) be the collection of its connected
components. By definition, C(A) forms a partition of A, and if B ⊂ R

d is another closed
subset with A ⊂ B and |C(B)| < ∞ then we have C(A) ⊏ C(B), see (Steinwart, 2015b,
Lemma A.2.3) as well as Figure 5.

Following Steinwart (2015a), another class of partitions arise from a discrete notion of
path-connectivity. To recall the latter, we fix a τ > 0, an A ⊂ R

d, and a norm ‖ · ‖ on
R
d. Then x, x′ ∈ A are τ -connected in A, if there exist x1, . . . , xn ∈ A such that x1 = x,

xn = x′ and ‖xi − xi+1‖ < τ for all i = 1, . . . , n − 1. Clearly, being τ -connected gives an
equivalence relation on A. We write Cτ (A) for the resulting partition and call its cells the
τ -connected components of A. It has been shown in (Steinwart, 2015b, Lemma A.2.7), that
Cτ (A) ⊏ Cτ (B) for all A ⊂ B and τ > 0. Moreover, if |C(A)| < ∞ then C(A) = Cτ (A) for
all sufficiently small τ > 0, see (Steinwart, 2015a, Section 2.2) for details.

Following Steinwart (2015a), we can now describe probability measures that can be
clustered.

Definition 2 Let Assumption P be satisfied. Then P can be clustered between ρ∗ ≥ 0 and
ρ∗∗ > ρ∗, if for all ρ ∈ [0, ρ∗∗], we have |C(Mρ)| ∈ {1, 2} and the following two conditions
are met:

i) If we have |C(Mρ)| = 1, then ρ ≤ ρ∗.

ii) If we have |C(Mρ)| = 2, then ρ ≥ ρ∗ and C(Mρ∗∗) ⊑ C(Mρ).

Using the CRMs ζρ : C(Mρ∗∗)→ C(Mρ), we then define the clusters of P by

A∗
i :=

⋃

ρ∈(ρ∗,ρ∗∗]

ζρ(Ai) , i ∈ {1, 2} ,

where A1 and A2 are the topologically connected components of Mρ∗∗. Finally, we define

τ∗(ε) :=
1

3
· d
(
ζρ∗+ε(A1), ζρ∗+ε(A2)

)
, ε ∈ (0, ρ∗∗ − ρ∗]. (2)

Definition 2 ensures that the level sets below ρ∗ are connected, while for a certain range
above ρ∗ the level sets have exactly two components, which, in addition, are assumed to
be persistent, see the right picture in Figure 6 for an illustration. Thus, the topological
structure of Mr between the split level ρ∗ and an anchor level ρ∗∗ for ρ∗ equals that of
Mρ∗∗ . Consequently we can use the connected components ofMρ∗∗ to number the connected

9



Steinwart, Sriperumbudur, and Thomann

Figure 6: Left. A density h on [0, 1] that can be clustered between ρ∗1 and ρ∗∗1 . Below
the split level ρ∗1, all level sets Mρ only have one connected component. Between
the split level ρ∗1 and an anchor level ρ∗∗1 of it, that is for all ρ ∈ (ρ∗1, ρ

∗∗
1 ], all

level sets Mρ have two connected components (in green and purple). Moreover,
we have persistence C(Mρ∗∗1

) ⊑ C(Mρ) as indicated by the same color of the
related cells. Taking their unions results in the two clusters A∗

1 and A∗
2 at the

split level ρ∗1, which are again indicated in green and purple. Finally, note that
τ∗(ε) equals the distance of the green and purple component at level ρ∗ + ε
modulo the factor 3. Middle. A connected set B with M−δ

ρ = A′ ∪ A′′. The
resulting CRM ζ : C(A) → C(B) is only surjective and since the bridge in the
middle narrows faster than linearly, the thickness function has an exponent γ < 1.
Right. Again, a connected set B with M−δ

ρ = A′ ∪ A′′, for which the resulting
CRM ζ : C(A) → C(B) is only surjective. This time, however, the thickness
function has an exponent γ = 1.

components of Mρ for ρ ∈ (ρ∗, ρ∗∗). This is done in the definition of the clusters A∗
i as well

as in the definition of the function τ∗, which essentially measures the distance between
the two connected components at level ρ∗ + ε. We again refer to Figure 6 for some visual
impressions.

The major goal of Steinwart (2011, 2015a) was to design an algorithm that is able to
asymptotically estimate both the correct value of ρ∗ and the clusters A∗

1 and A∗
2. However,

this algorithm required that the level sets do not have bridges or cusps that are too thin. To
make this precise, let us recall that for a closed A ⊂ R

d, Steinwart (2011, 2015a) considered
the function ψ∗

A : (0,∞)→ [0,∞] defined by

ψ∗
A(δ) := sup

x∈A
d(x,A−δ) , δ > 0.

Roughly speaking, ψ∗
A(δ) describes the smallest radius ε needed to “recover” A from A−δ

in the sense of A ⊂ (A−δ)+ε, see (Steinwart, 2015b, Section A.5) for this and various other
results on ψ∗

A. In particular, we have ψ∗
A(δ) ≥ δ for all δ > 0 and ψ∗

A(δ) = ∞ if A−δ = ∅.
Moreover, ψ∗

A behaves linearly, if bridges and cusps of A are not too thin, and even thinner
cusps and bridges can be included by considering sets with ψ∗

A(δ) ≤ cδγ for some fixed c ≥ 1,
γ ∈ (0, 1] and all sufficiently small δ > 0. However, the discussion in (Steinwart, 2015b,
Section A.5) also showed that γ = 1 can be viewed as the most normal case. Finally, we
refer to Figure 6 for some examples of linear and nonlinear behavior of ψ∗ that is relevant
for the following definition taken from Steinwart (2015a).

10
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Definition 3 Let Assumption P be satisfied. Then we say that P has thick level sets of
order γ ∈ (0, 1] up to the level ρ∗∗ > 0, if there exist constants cthick ≥ 1 and δthick ∈ (0, 1]
such that, for all δ ∈ (0, δthick] and ρ ∈ [0, ρ∗∗], we have

ψ∗
Mρ

(δ) ≤ cthick δγ .

In this case, we call ψ(δ) := 3cthickδ
γ the thickness function of P .

Now, the following assumption describes the probability measures we wish to cluster.

Assumption M. The probability measure P can be clustered between ρ∗ and ρ∗∗, see
Definition 2. In addition, P has thick level sets of order γ ∈ (0, 1] up to the level ρ∗∗. We
denote the corresponding thickness function by ψ and write τ∗ for the function defined in
(2).

The theory developed by Steinwart (2011); Sriperumbudur and Steinwart (2012); Stein-
wart (2015a) focused on the question, whether it is possible to estimate ρ∗ and the resulting
clusters for distributions that can be clustered. To this end, it was assumed that we had an
estimation algorithm that constructs, for a given data sets D, level set estimates LD,ρ for
all ρ > 0. Moreover, it was assumed that these level set estimates satisfy the guarantees

M−δ
ρ+ε ⊂ LD,ρ ⊂M+δ

ρ−ε (3)

for all ρ ∈ [0, ρ∗∗] and some ε, δ > 0. Based on these assumptions, a generic cluster algorithm
was developed, where “generic” refers to the fact, that the cluster algorithm does not not
need to know specifics about the construction of LD,ρ. Instead, only the guarantees (3) with
known values for ε and δ are needed. The key result (Steinwart, 2015a, Theorem 2.9) then
specified in terms of ε and δ how well this algorithm estimates both ρ∗ and the clusters A∗

1

and A∗
2. Here the main difficulty of establishing this result arose from the fact no pair of

Mρ+ε, and Mρ−ε, M
−δ
ρ+ε, and M

+δ
ρ−ε need to have the same topological structure in terms of

their connected components. Indeed, parts of these incompatibilities can already be seen in
Figures 1 and 4.

What is missing in this analysis, however, is an investigation of the behavior of the
generic cluster algorithm in situations in which P cannot be clustered because all level sets
are connected. Now observe that the reason for this gap was the notion of thickness: Indeed,
if P is a single-cluster probability measure, i.e. |C(Mρ)| ≤ 1 for all ρ ≥ 0, and P has thick
level sets of the order γ up to the level ρ∗∗ := sup{ρ : ρ ≥ 0 and |C(Mρ)| = 1}, then the
proof of (Steinwart, 2015a, Theorem 2.9) can be easily extended to show that at each visited
level ρ the algorithm correctly detects exactly one connected component. Unfortunately,
however, the assumption of having thick levels up to the height ρ∗∗ of the peak of h is too
unrealistic, as it requires M−δ

ρ 6= ∅ for all ρ ∈ [0, ρ∗∗] and δ ∈ (0, δthick], that is, the peak
needs to be a plateau that contains a ball of radius δthick, as the following lemma shows.

Lemma 4 Let A ⊂ R
d be bounded and δ > 0. Then A−δ

Rd 6= ∅ if and only if δ < inradA.

11



Steinwart, Sriperumbudur, and Thomann

3. A Generic Algorithm for Estimating the Split-Tree

In this section we present a generic algorithm for estimating the entire split-tree. To this
end, we first introduce a new set of assumptions for single-cluster distributions that rule out
irregular behavior of the level sets in the vicinity of the peak of the density. Unlike the näıve
approach we have discussed at the end of Section 2, this new set of assumptions includes a
variety of realistic behaviors. In the second step we then present a generic cluster algorithm,
whose only difference to the one in (Steinwart, 2015a) is its output behavior in situations
in which no split has been detected. We then show that this new cluster algorithm, like its
predecessor in (Steinwart, 2015a), correctly identifies a split in the cluster tree. Moreover,
we demonstrate that, unlike the one in (Steinwart, 2015a), the new cluster algorithm also
correctly identifies single-cluster distributions. Finally, we combine these insights to develop
a new generic algorithm for estimating the entire cluster tree.

Let us begin by introducing a new assumption for dealing with single-cluster distribu-
tions.

Assumption S. Assumption P is satisfied and there are ρ∗ ≥ 0, γ ∈ (0, 1], cthick ≥ 1 and
δthick ∈ (0, 1] such that for all ρ ≥ ρ∗ and δ ∈ (0, δthick], we have |C(Mρ)| ≤ 1 as well as:

i) If M−δ
ρ 6= ∅ then ψ∗

Mρ
(δ) ≤ cthickδγ .

ii) If M−δ
ρ = ∅, then, for all ∅ 6= A ⊂M+δ

ρ and τ > 2cthickδ
γ , we have |Cτ (A)| = 1.

Note that |C(Mρ)| ≤ 1 simply means that the level sets of P above ρ∗ are either empty
or connected. If they are empty, there is nothing more to assume and in the other case, we
can either have M−δ

ρ 6= ∅ or M−δ
ρ = ∅. If M−δ

ρ 6= ∅ , then condition i) ensures that the level

set Mρ is still thick in the sense of Definition 3, while in the other case M−δ
ρ = ∅, condition

ii) guarantees that the larger sets M+δ
ρ cannot have multiple τ -connected components as

long as we choose τ in a way that is required in the case of multiple clusters, too. In this
respect note that (Steinwart et al., 2021, Lemma 8.3) shows that for all δ ∈ (0, δthick], there
exists a ρ ≥ ρ∗ with M−δ

ρ = ∅, and therefore dealing with the case ii) cannot be avoided.
In the case γ = 1, Condition ii) can also be interpreted in terms on inradius and diameter

as the following lemma shows:

Lemma 5 For compact M ⊂ R
d and c ≥ 1 the following statements are equivalent:

i) For all δ > 0 with M−δ = ∅ and all ∅ 6= A ⊂M+δ and τ > 2cδ, we have |Cτ (A)| = 1.

ii) We have 2(c− 1) inradM ≥ diamM .

Since by Lemma 4 there only exists some δ ∈ (0, δthick] withM
−δ
ρ = ∅ if inradMρ ≤ δthick,

we thus see that for γ = 1, Condition ii) is equivalent to

2(cthick − 1) inradMρ ≥ diamMρ (4)

for all ρ ≥ ρ∗ with inradMρ ≤ δthick. Inequality (4) essentially states that the diameter-
inradius ratio must be bounded for increasing ρ. Consequently, (4) is satisfied for cthick := 2
if all Mρ above ρ∗ are balls with respect to the considered norm since in this case we have

12
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Figure 7: Contour lines of two continuous densities. The levels ρ are chosen such that we
have inradMρ ∈ {0, 1, 2, 3, 4, 5} with respect to the ‖ · ‖∞. Left. Assumption S
is satisfied for γ = 1, since, for increasing ρ, diamMρ decays faster than inradMρ

does, and hence (4) holds. Right. Assumption S is not satisfied for γ = 1, since
the highest level set satisfies inradMρ = 0 and diamMρ > 0, which violates (4).

Algorithm 1 Clustering with the help of a generic level set estimator

Require: Some ε, τ > 0 and a start level ρ0 ≥ 0. A decreasing family (Lρ)ρ≥0 of subsets
of X.

Ensure: An estimate of ρ∗ or ρ∗ and the corresponding clusters.
1: ρ← ρ0
2: repeat

3: Identify the τ -connected components B1, . . . , BM of Lρ satisfying Bi ∩ Lρ+2ε 6= ∅.
4: ρ← ρ+ ε
5: until M 6= 1
6: ρ← ρ+ 2ε
7: Identify the τ -connected components B1, . . . , BM of Lρ satisfying Bi ∩ Lρ+2ε 6= ∅.
8: if M > 1 then

9: return ρout = ρ and the sets Bi for i = 1, . . . ,M .
10: else

11: return ρout = ρ0 and the set Lρ0 .
12: end if

2 inradMρ = diamMρ. Moreover, by increasing cthick we see that (4) remains true if we
distort these balls by bi-Lipschitz continuous maps with constants that can be bounded
independently of ρ. Analogously, (4) is satisfied, if Mρ are balls with respect to a fixed
norm that is different to the one used for the δ-tubes and δ-trims in condition ii). In
addition, if we have a flat plateau at the highest level ρmax := sup{ρ > 0 : Mρ 6= ∅} <
∞, that is inradMρmax

> 0, then (4) is always satisfied for some cthick > 1 because of
diamMρ ≤ diamX <∞. In contrast, (4) is violated, if, for example, inradMρmax

= 0 and
diamMρmax

> 0. Finally, for d = 1, we always have 2 inradMρ = diamMρ for all non-empty
level sets Mρ, since for these |C(Mρ)| = 1 ensures that Mρ is an interval. Consequently, for
d = 1 Assumption S is satisfied with γ = 1, cthick = 2, and δthick = 1 whenever Assumption
P is satisfied. For two-dimensional examples we refer to Figure 7 for an illustration.

The next task is to formulate a generic algorithm that is able to estimate ρ∗ and the
resulting clusters if P can be clustered in the sense of Assumption M and that is also able to
detect distributions that only have one cluster in the sense of Assumption S. We will see in

13
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the following that Algorithm 1 is such an algorithm. Before we present the corresponding
results we first note that the only difference of Algorithm 1 to the algorithm considered
by Steinwart (2015a) is the more flexible start level ρ0, compared to ρ0 = 0 in (Steinwart,
2015a), and the modified output in Lines 8-12. Indeed, the algorithm in (Steinwart, 2015a)
always produces the return values of Line 9. In contrast, Algorithm 1 distinguishes between
the cases M > 1 and M = 0. While for M > 1 the output of both algorithms exactly
coincide, the new Algorithm 1 now returns ρ0 and Lρ0 in the case of M = 0. We will see
in Theorem 7 that the latter case typically occurs for P satisfying Assumption S. In this
respect recall that Lρ0 can be viewed as an estimate of Mρ0 and therefore returning Lρ0

makes sense for such distributions.
The next theorem adapts (Steinwart, 2015a, Theorem 2.9) to Algorithm 1. Since the

proof of (Steinwart, 2015a, Theorem 2.9) can be easily adapted to arbitrary start levels
ρ0 ≥ 0 and this proof also shows that the caseM ≤ 1 is not occurring under the assumptions
of this theorem, we omit the proof of Theorem 6.

Theorem 6 Let Assumption M be satisfied. Furthermore, let ε∗ ≤ (ρ∗∗ − ρ∗)/9 , δ ∈
(0, δthick], τ ∈ (ψ(δ), τ∗(ε∗)], and ε ∈ (0, ε∗], and ρ0 ≤ ρ∗. In addition, let (Lρ)ρ≥0 be a
decreasing family satisfying (3) for all ρ ≥ ρ0. Then we have:

i) The level ρout returned by Algorithm 1 satisfies ρout ∈ [ρ∗ + 2ε, ρ∗ + ε∗ + 5ε] and

τ − ψ(δ) < 3τ∗
(
ρout − ρ∗ + ε

)
.

ii) Algorithm 1 returns two sets B1 and B2 and these can be ordered such that we have

2∑

i=1

λd
(
Bi △ A∗

i

)
≤ 2

2∑

i=1

λd
(
A∗

i \ (Ai
ρout+ε)

−δ
)
+ λd

(
M+δ

ρout−ε \ {h > ρ∗}
)
.

Here, Ai
ρout+ε ∈ C(Mρout+ε) are ordered in the sense of Ai

ρout+ε ⊂ A∗
i .

Theorem 6 shows that Algorithm 1 is still able to estimate ρ∗ and the corresponding
clusters if the P can be clustered in the sense of Assumption M. The main motivation for
this section was, however, to have an algorithm that also behaves correctly for P that only
have one cluster in the sense of Assumption S. The next theorem ensures such a behavior.

Theorem 7 Let Assumption S be satisfied and (Lρ)ρ≥0 be a decreasing family of sets Lρ ⊂
X such that (3) holds for some fixed ε, δ > 0 and all ρ ≥ ρ0. If ρ0 ≥ ρ∗, δ ∈ (0, δthick], and
τ > 2cthickδ

γ, then Algorithm 1 returns ρ0 and L0.

Note that Theorem 6 requires τ > ψ(d) = 3cthickδ
γ , while Theorem 7 even holds under

the milder assumption τ > 2cthickδ
γ . Consequently, if we choose a τ with τ > 3cthickδ

γ ,
then the corresponding assumptions of both theorems are satisfied. Moreover, the additional
assumption τ < τ∗(ε∗) in Theorem 6 is actually more an assumption on ε∗ than on τ as we
will see later.

Now assume that the assumptions of Theorem 6 are satisfied and that Algorithm 1
returned ρout and the cluster estimates B1, B2. Our goal is to apply Algorithm 1 on the
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Algorithm 2 Estimating the split-tree with the help of a generic level set estimator

Require: Some τ > 0, ε > 0 and a start level ρ0 ≥ 0.
decreasing family (Lρ)ρ≥0 of subsets of X.

Ensure: Estimates of all splits of the cluster tree and the corresponding clusters.
1: Call Algorithm 1 with ρ0 and (Lρ)ρ≥0

2: if ρout > ρ0 then

3: Store the return values of Algorithm 1 in the split-tree
4: Call Algorithm 2 with ρout + ε and (L1,ρ)ρ≥0

5: Call Algorithm 2 with ρout + ε and (L2,ρ)ρ≥0

6: else if ρout = 0 then

7: Store the return values of Algorithm 1 in the split-tree
8: end if

9: return split-tree

two detected clusters B1 and B2 separately, see Algorithm 2. To this end, we define the
new level set estimates

Li,ρ := Lρ ∩Bi , i = 1, 2, ρ ≥ ρout,

and let the Algorithm 1 run on both families of level set estimates separately. Of course,
we want to use our insights into Algorithm 1, and for this reason, we need to replace (3)
by a suitable new horizontal and vertical control. To find such a new control, let us assume
that Assumption M is satisfied and that we have fixed a ρ† ∈ (ρ∗, ρ∗∗]. Moreover, let A1,ρ† ,
and A2,ρ† be the two connected components of Mρ† . We then define two new “children”
distributions P1 and P2 by

Pi(B) :=
P (B ∩Ai,ρ†)

P (Ai,ρ†)
, i = 1, 2, (5)

for all measurable B ⊂ X. Moreover, for ρ ≥ 0 we denote the level sets of P1 and P2 by
M1,ρ and M2,ρ, respectively. We can now introduce distributions having a finite split tree.

Definition 8 Let P be a distribution satisfying Assumption P and |C(Mρ)| < ∞ for all
ρ ≥ 0. Moreover, assume that there is a ρmax > 0 such that Mρ = ∅ for all ρ ≥ ρmax. Then
P has a finite split-tree with minimal step size ǫ > 0, if one of the following two conditions
are satisfied:

i) P satisfies Assumption S.

ii) P satisfies Assumption M with ρ∗∗ − ρ∗ ≥ ǫ, and for ρ† := (ρ∗∗ + ρ∗)/2 the two
probability measures P1 and P2 defined by (5) have a finite split-tree with minimal
step size ǫ > 0.

For example, the distribution shown repeatedly in the introduction, see e.g. Figure 2 for
the split tree of this distribution, can be clustered. Our next goal is to show that Algorithm
2 can be used to estimate the split-tree for distributions having a finite split-tree with some
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unknown minimal step size ǫ > 0. To this end, we need the rather technical Theorem 9
below, which in its formulation requires the sets of τ -connected components of Lρ that are
identified in Lines 4 and 7 of Algorithm 1, that is, the sets

Ĉτ (Lρ) :=
{
B ∈ Cτ (Lρ) : B ∩ Lρ+2ε 6= ∅

}
, ρ ≥ 0.

Theorem 9 Let Assumption M be satisfied. Furthermore, let ε∗ ≤ (ρ∗∗ − ρ∗)/16, δ ∈
(0, δthick], τ ∈ (ψ(δ), τ∗(ε∗)], and ε ∈ (0, ε∗], and ρ0 ≤ ρ∗. In addition, let (Lρ)ρ≥0 be a
decreasing family satisfying (3) for all ρ ≥ ρ0. Finally, let ρout be the estimate of ρ∗ and
B1, B2 be the cluster estimates returned by Algorithm 1. Then the following statements are
true:

i) We have |Cτ (M−δ
ρ∗∗)| = 2 and the sets V1 := A−δ

1,ρ∗∗ and V2 := A−δ
2,ρ∗∗ are the two

τ -connected components of M−δ
ρ∗∗.

ii) For all ρ ∈ [ρout, ρ
∗∗ − 3ε] we have |Ĉτ (Lρ)| = 2. Moreover, we can order the two

elements Bρ
1 and Bρ

2 of Ĉτ (Lρ) such that

Vi ⊂ Bρ
i ⊂ Bi , i = 1, 2 . (6)

iii) If ρ† ∈ [ρ∗ + ε∗ + 6ε, ρ∗∗ − 5ε], then for all ρ ≥ ρ† + 4ε we have Li,ρ ⊂ Bρ†+2ε
i and

M−δ
i,ρ+ε ⊂ Li,ρ ⊂M+δ

i,ρ−ε. (7)

To illustrate Theorem 9, we now define ρ† := (ρ∗∗+ρ∗)/2 and assume ε∗ ≤ (ρ∗∗−ρ∗)/16.
For ε ∈ (0, ε∗] we then find ρ† ∈ [ρ∗ + ε∗ + 6ε, ρ∗∗ − 5ε] and

ρ† + 4ε ≤ ρ∗∗ + ρ∗

2
+
ρ∗∗ − ρ∗

4
=

3ρ∗∗

4
+
ρ∗

4
=: ρ†† .

Then we have, ρ∗∗ − 3ε > ρ∗∗ − 4ε∗ ≥ ρ∗∗ − (ρ∗∗ − ρ∗)/4 = ρ††, and part ii) of Theorem
9 thus shows (6) for all ρ ∈ [ρout, ρ

††]. Consequently, Algorithm 1, when working with
the level sets (Li,ρ)ρ∈[ρout,ρ††], does identify exactly one connected component in its Line 3.
In other words, the loop between its Lines 2 and 5 is not left for such ρ. Moreover, for
ρ ≥ ρ†† ≥ ρ† + 4ε part iii) of Theorem 9 ensures (7). Consequently, Theorems 6 and 7 can
be applied to Algorithm 1 when working with the level sets (Li,ρ)ρ≥ρ†† for the distribution
Pi. We refer to Figure 8 for a detailed description of how these guarantees work together.
In summary, these considerations show that Algorithm 2 can be recursively analyzed with
the help of Theorems 6 and 7 to show that Algorithm 2 indeed estimates the split-tree for
all distributions P having a finite split-tree with some unknown minimal step size ǫ > 0.
In particular, for all quantitative guarantees it actually suffices to describe the behavior of
Algorithm 1 for distributions satisfying Assumption S and Assumption M. This insight will
be adopted later in the statistical analysis of Section 5.
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Figure 8: A density of a P that has a finite split-tree with minimal step size ǫ > 0 and the
resulting guarantees. Left. Situation at the lowest split level ρ∗1. The distribution
P can be clustered between ρ∗1 and ρ∗∗1 and the (unnormalized) densities of the

“children” distributions P1,1 (green) and P1,2 (purple) above ρ†1 := (ρ∗∗1 + ρ∗1)/2
are shown. Assumption S is satisfied by P1,1, while P1,2 satisfies Assumption M.
Algorithm 2 initialized with ρ0 := 0 calls Algorithm 1 in its Line 1, which in
turn returns ρ1,out ≈ ρ∗1 with ρ1,out > ρ∗1 and two corresponding clusters denoted
by B1,1 and B1,2 as guaranteed by Theorem 6. Algorithm 2 stores these in its
Line 3 and continues by calling a second instance of Algorithm 2 with start level
ρ1,out+ε and the family (L1,ρ)ρ≥0 in Line 4. This instance of Algorithm 2 in turn

calls Algorithm 1 with ρ1,out + ε and the family (L1,ρ)ρ≥0. For ρ ∈ [ρ1,out, ρ
††
1 ]

with ρ††1 := 0.75ρ∗1 + 0.25ρ∗∗1 , that is, for levels between the two cyan lines, Part
ii) of Theorem 9 ensures that Algorithm 1 only detects one cluster Bρ

1 in its
loop, see also the calculations following Theorem 9. Consequently, this loop
is not left below ρ††1 . Moreover, for ρ ≥ ρ††1 , Part iii) of Theorem 9 ensures
M−δ

1,ρ+ε ⊂ L1,ρ ⊂M+δ
1,ρ−ε, and hence Theorem 7 shows that Algorithm 1 returns its

start level ρ1,out+ε and Lρ1,out+ε. As a consequence, both if-clauses of the second
instance of Algorithm 2 are not satisfied and the overall program continues at
Line 5 of the first instance of Algorithm 2. There, a third instance of Algorithm 2
is called with ρ1,out + ε and (L2,ρ)ρ≥0, which in turn begins by calling Algorithm

1 with the same values. Again, Theorem 9 ensures, that for ρ ∈ [ρ1,out, ρ
††
1 ]

Algorithm 1 only detects one cluster and that for ρ ≥ ρ††1 , the crucial inclusions
M−δ

2,ρ+ε ⊂ L2,ρ ⊂ M+δ
2,ρ−ε are satisfied. Theorem 6 hence ensures that Algorithm

1 returns a ρ2,out ≈ ρ∗2 with ρ2,out > ρ∗2 > ρ1,out + ε and corresponding clusters
denoted by B2,1 and B2,2 to the third instance of Algorithm 2. These values are
then stored in the split tree and a fourth and fifth instance of Algorithm 2 are
called with ρ2,out+ε and the newly defined (L(2,1),ρ)ρ≥0, respectively (L(2,2),ρ)ρ≥0,
given by L(2,i),ρ := L2,ρ∩B2,i. Right. Assumption S is satisfied for both children
measures occurring at the split ρ∗2. As for B1 on the left image, the combination
of Theorem 9 and Theorem 7 ensures that Algorithm 1 called by the fourth and
fifth instance of Algorithm 2 with ρ2,out+ε and (L(2,i),ρ)ρ≥0 returns these values to
these instances of Algorithm 2. Thus, the fourth and fifth instance of Algorithm
2 return to the third instance of Algorithm 2 without any further action, and
in turn the third instance returns to the first instance of Algorithm 2. This
instance then reaches its Line 9, and therefore the overall program terminates
with (ρ1,out, B1, B2) and (ρ2,out, B2,1, B2,2) being stored in its split tree.
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4. Uncertainty Control for Kernel Density Estimators

The results of Section 3 provide guarantees as soon as the input level sets satisfy (3).
Steinwart (2015a) has shown that guarantees of the form (3) can be established for the level
sets of histogram-based density estimators. The goal of this section is to show that (3) can
also be established for a variety of kernel density estimators. Our first definition introduces
the considered kernels.

Definition 10 A bounded, measurable function K : Rd → [0,∞) is called symmetric ker-
nel, if K(x) > 0 in some neighborhood of 0, K(x) = K(−x) for all x ∈ R

d, and
∫

Rd

K(x) dλd(x) = 1 . (8)

For δ > 0 we write Kδ := δ−dK(δ−1 · ), and for r > 0 and a norm ‖ · ‖ on R
d we define

κ1(r) :=

∫

Rd\B(0,r)
K(x) dλd(x) , κ∞(r) := sup

x∈Rd\B(0,r)

K(x) .

We call κ1(·) and κ∞(·) tail functions. Finally, we say that K has a bounded support if
suppK ⊂ B‖·‖, and that K has an exponential tail behavior, if there exists a constant c > 0
such that

K(x) ≤ c exp
(
−‖x‖2

)
, x ∈ R

d. (9)

Recall that the integrability condition (8) is standard for kernel density estimators.
Moreover, kernels of the form K(x) = k(‖x‖) are always symmetric and if the representing
k : [0,∞) → [0,∞) is bounded and measurable, so is K. Moreover, if k(r) > 0 for all
r ∈ [0, ǫ), where ǫ > 0 is some constant, then K(x) > 0 in some neighborhood of 0. In
particular, for k = c1[0,1] we obtain the “rectangular window kernel”, which is a symmetric
kernel with bounded support, and if k is of the form k(r) = c exp(−r2) or k(r) = c exp(−r),
then we obtain a symmetric kernel with exponential tail behavior. Examples of the latter
are Gaussian kernels, while the triangular, the Epanechnikov, the quartic, the triweight,
and the tricube kernels are further examples of symmetric kernels with bounded support.
Finally note that each symmetric kernel with bounded support also has exponential tail
behavior, since we always assume that K is bounded.

Given a kernel function K, it is standard in kernel density estimation to consider the
modified versionsKδ ofK with δ → 0 for increasing sample sizes n, see for example (Devroye
and Lugosi, 2001). Roughly speaking, this is because one can show that the infinite-sample
kernel density estimator hP,δ defined below in (13) converges to the density h for δ → 0.
Also note that for the kernels discussed above and δ ∈ (0, 1), these versions Kδ are more
narrow than the original function K.

Before we proceed with our main goal of establishing (3) let us briefly discuss a couple
of simple properties of symmetric kernels K in the sense of Definition 10. To this end, we
first note that the properties of the Lebesgue measure λd ensure that

∫

Rd

Kδ(x− y) dλd(y) =
∫

Rd

K(x− y) dλd(y) =
∫

Rd

K(y − x) dλd(y) = 1 (10)
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for all x ∈ R
d, δ > 0, and then by an analogous calculation we obtain

∫

Rd\B(x,σ)
Kδ(x− y) dλd(y) =

∫

Rd\B(0,σ/δ)
K(y) dλd(y) = κ1(

σ
δ ) . (11)

In addition, we always have κ1(r)→ 0 for r →∞ and if K has bounded support, then the
tail functions with respect to this norm satisfy

κ1(r) = κ∞(r) = 0 , r ≥ 1 . (12)

Moreover, for kernels with exponential tail, (Steinwart et al., 2021, Lemma 4.2) shows
that the behavior of the tail functions can be bounded by κ1(r) ≤ cd2 vold e

−rrd−1 and
κ∞(r) ≤ ce−r.

Now, let K be a symmetric kernel on R
d and P be a distribution on R

d. For δ > 0 we
then define the infinite-sample kernel density estimator hP,δ : R

d → [0,∞) by

hP,δ(x) := δ−d

∫

Rd

K
(x− y

δ

)
dP (y) x ∈ R

d. (13)

It is easy to see that hP,δ ≥ 0 is a bounded measurable function with ‖hP,δ‖∞ ≤ δ−d‖K‖∞.
Moreover, a quick application of Tonelli’s theorem together with (10) yields ‖hP,δ‖L1(λd) = 1,
and hence hP,δ is a Lebesgue probability density. Moreover, if P has a Lebesgue density
h, then it is well-known, see e.g. (Devroye and Lugosi, 2001, Theorem 9.1), that ‖hP,δ −
h‖L1(λd) → 0 for δ → 0. In addition, if this density is bounded, then (10) yields

‖hP,δ‖∞ = sup
x∈Rd

δ−d

∫

Rd

K
(x− y

δ

)
h(y) dλd(y) ≤ ‖h‖∞ sup

x∈Rd

∫

Rd

Kδ(x− y) dλd(y)

= ‖h‖∞ .

Clearly, if D = (x1, . . . , xn) ∈ Xn is a data set, we can consider the corresponding empirical
measure 1

n

∑n
i=1 δxi , where δx denotes the Dirac measure at x. In a slight abuse of notation

we also denote this empirical measure by D. The resulting function hD,δ : Rd → R, called
kernel density estimator (KDE), can then be computed by

hD,δ(x) :=
1

nδd

n∑

i=1

K

(
x− xi
δ

)
, x ∈ R.

One way to define level set estimates with the help of hD,δ is a simple plug-in approach,
that is

LD,ρ := {hD,δ ≥ ρ} . (14)

While from a statistical perspective, this level set estimator is perfectly fine, it is also
computationally intractable. For example, if hD,δ is a moving window estimator, that is
K(x) = c1[0,1](‖x‖) for x ∈ R

d, then the up to 2n different level sets (14) are generated by
intersection of balls around the samples, and the structure of these intersections may be
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too complicated to compute τ -connected components in Algorithm 1. For this reason, we
consider level set estimates of the form

LD,ρ := {x ∈ D : hD,δ(x) ≥ ρ}+σ , (15)

where σ > 0. Note that computing connected components of (15) is indeed feasible, since
it amounts to computing the connected components of the neighborhood graph, in which
two vertices xi and xj with i 6= j have an edge if ‖xi−xj‖ ≤ σ+ τ . In particular, DBSCAN
can be viewed as such a strategy for the moving window kernel.

With these preparations we can now present our first result that establishes a sort of
uncertainty control (3) for level set estimates of the form (15).

Theorem 11 Let ‖ · ‖ be some norm on R
d, K : Rd → [0,∞) be a symmetric kernel, and

κ1(·) and κ∞(·) be its associated tail functions. Moreover, let P be a distribution for which
Assumption P is satisfied, and D be a data set such that the corresponding KDE satisfies
‖hD,δ − hP,δ‖∞ < ε for some ε > 0 and δ > 0. For ρ ≥ 0 and σ > 0 we define

LD,ρ := {x ∈ D : hD,δ(x) ≥ ρ}+σ

and ǫ := max{ρκ1(σδ ), δ−dκ∞(σδ )}. Then, for all ρ ≥ δ−dκ∞(σδ ), we have

M−2σ
ρ+ε+ǫ ⊂ LD,ρ ⊂M+2σ

ρ−ε−ǫ . (16)

Moreover, if P has a bounded density h, then (16) also holds for ǫ = ‖h‖∞κ1(σδ ).

If K has bounded support for the norm considered in Theorem 11, Equation (12) shows
that (16) actually holds for ǫ = 0 and all ρ ≥ 0 and all σ ≥ δ. Therefore, we have indeed (3)
with δ replaced by 2σ. In general, however, we have an additional horizontal uncertainty ǫ
that affects the guarantees of Theorem 6. To control this influence, our strategy will be to
ensure that ǫ ≤ ε, which in view of ǫ = ‖h‖∞κ1(σδ ) means that we need to have an upper
bound on κ1(·) and σ.

Theorem 11 tells us that the uncertainty control (16) is satisfied as soon as we have a
data set D with ‖hD,δ −hP,δ‖∞ < ε. Recall that rates for ‖hD,δ −hP,δ‖∞ → 0 have already
been proven by Giné and Guillou (2002). However, these rates only hold for n ≥ n0, where
n0 may depend on D. In addition one needs to choose a sequence (δn) of bandwidths a-
priori, which excludes adaptivity as we will see below. Finally, the theory developed by
Steinwart (2015a) requires bounds of the form ‖hD,δ − hP,δ‖∞ < ε(δ, n, ς) that hold with
probability not smaller than 1− e−ς . Thus, the results of Giné and Guillou (2002) are not
suitable for our purposes. To establish suitable bounds, we need to recall some notions first.

Definition 12 Let E be a Banach space and A ⊂ E be a bounded subset. Then, for all
ε > 0, the covering numbers of A are defined by

N (A, ‖ · ‖E , ε) := inf

{
n ≥ 1 : ∃x1, . . . , xn ∈ E such that A ⊂

n⋃

i=1

(xi + εB‖·‖)

}
,

where inf ∅ :=∞. Furthermore, we use the notation N (A,E, ε) := N (A, ‖ · ‖E , ε).
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We now introduce the kind of covering number bound we will use in our analysis.

Definition 13 Let (Z,A) be a measurable space and G be a set of measurable functions
from Z to R for which there is a B > 0 with ‖g‖∞ ≤ B for all g ∈ G. Then G is called a
uniformly bounded VC-class, if there are A > 0 and ν > 0 such that, for every distribution
P on Z we have

N (G, L2(P ), ǫ) ≤
(
AB

ǫ

)ν

, 0 < ǫ ≤ B. (17)

Let us briefly look at two important, sufficient criteria for ensuring that the set of
functions

Kδ :=
{
Kδ(x− ·) : x ∈ X

}
(18)

is a uniformly bounded VC-class. The first such result considers moving window kernels.

Lemma 14 Consider the kernel K = c1B‖·‖
, where ‖ · ‖ is either the Euclidean- or the

supremum norm. Then for all δ > 0 the set Kδ defined by (18) is a uniformly bounded
VC-class with B := δ−d‖K‖∞ = δ−dc and A and ν being independent of δ.

The next lemma shows that Hölder continuous kernels also induce a uniformly bounded
VC-class Kδ, provided that the input space X in (18) is compact. For its formulation we
need to recall that for every norm ‖ ·‖ on R

d and every compact subset X ⊂ R
d there exists

a finite constant C‖·‖(X) > 0 such that for all 0 < ε ≤ diam‖·‖(X) we have

N (X, ‖ · ‖, ǫ) ≤ C‖·‖(X)ǫ−d . (19)

Lemma 15 Let K : Rd → [0,∞) be a symmetric, α-Hölder continuous kernel and ‖ · ‖
be a norm on R

d. We write |K|α for the corresponding α-Hölder constant. Moreover,
let X ⊂ R

d be a compact subset and Kδ defined by (18). Then for all δ > 0 with δ ≤( |K|α
‖K‖∞

)1/α
diam‖·‖(X), all 0 < ǫ ≤ B := δ−d‖K‖∞, and all distributions P on R

d we have

N
(
Kδ, L2(P ), ǫ

)
≤ C‖·‖(X)

( |K|α
δα+dǫ

)d/α

. (20)

In other words, Kδ is a uniformly bounded VC-class with ν := d/α and constant A :=
(C‖·‖(X))α/d|K|α‖K‖−1

∞ δ−α.

Now, the second main result of this section establishes a finite sample bound on the
norm ‖hD,δ − hP,δ‖∞. Later we will combine it with Theorem 11.

Theorem 16 Let X ⊂ R
d and P be distribution on X that has a Lebesgue density h ∈

L1(R
d) ∩ Lp(R

d) for some p ∈ (1,∞]. We write 1
p +

1
p′ = 1. Moreover, let K : Rd → [0,∞)

be a symmetric kernel for which there is a δ0 ∈ (0, 1] such that for all δ ∈ (0, δ0] the set Kδ
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defined in (18) is a uniformly bounded VC-class with constants of the form Bδ = δ−d‖K‖∞,
Aδ = A0δ

−a, and A0 > 0, a ≥ 0, ν ≥ 1 being independent of δ, that is,

N
(
Kδ, L2(Q), ǫ

)
≤
(
A0‖K‖∞δ−(d+a)

ǫ

)ν

(21)

holds for all δ ∈ (0, δ0], all ǫ ∈ (0, Bδ], and all distributions Q on R
d. Then, there exists a

C > 0 only depending on d, p, and K such that, for all n ≥ 1, δ > 0, and ς ≥ 1 satisfying

δ ≤ min

{
δ0,

4p
′‖K‖∞
‖h‖p′p

,
‖h‖

1

2a+d/p′

p

C

}
and

|log δ|
nδd/p′

≤ ‖h‖p
Cς

(22)

we have

Pn

({
D : ‖hD,δ − hP,δ‖ℓ∞(X) < C

√
‖h‖p |log δ| ς
nδd(1+1/p)

})
≥ 1− e−ς . (23)

For bounded densities, Theorem 16 recovers the same rates as Giné and Guillou (2002).
However, Giné and Guillou (2002) established the rates in an almost sure asymptotic form,
whereas Theorem 16 provides a finite sample bound. Moreover, unlike Giné and Guillou
(2002), Theorem 16 also yields rates for unbounded densities.

5. Statistical Analysis of KDE-based Clustering

In this section we combine the generic results of Section 3 with the uncertainty control for
level set estimates obtained from kernel density estimates we obtained in Section 4. As a
result we will present finite sample guarantees, consistency results, and rates for estimating
split levels ρ∗ and the corresponding clusters. In this respect recall the discussion following
Theorem 9, which showed that for deriving guarantees for estimating the split tree with
the help of Algorithm 2 it actually suffices to analyze the behavior of Algorithm 1 for
distributions satisfying Assumption S and Assumption M. Following this insight, we will
focus on such guarantees for Algorithm 1.

Our first result presents finite sample bounds for estimating both ρ∗ and the single or
multiple clusters with the help of Algorithm 1. To treat kernels with bounded and un-
bounded support simultaneously, we restrict ourselves to the case of bounded densities, but
at least for kernels with bounded support an adaption to p-integrable densities is straight-
forward as discussed by Steinwart et al. (2021).

Theorem 17 Let P be a distribution with bounded Lebesgue density and with Assumption
P being satisfied. Moreover, let K be symmetric kernel with exponential tail behavior, for
which the assumptions of Theorem 16 hold. For fixed δ ∈ (0, e−1] and τ > 0, we choose a
σ > 0 with

σ ≥
{
δ if suppK ⊂ B‖·‖ ,

δ | log δ|2 otherwise.
(24)
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and we further assume that this σ satisfies both σ ≤ δthick/2 and τ > ψ(2σ). Moreover, for
fixed ς ≥ 1, n ≥ 1 satisfying the assumptions (22), we pick an ε > 0 satisfying the bound

ε ≥ C

2

√
‖h‖∞ |log δ| ς

nδd
, (25)

and if K does not have bounded support, also

ε ≥ max
{
1, 2d2 vold} · c · δ| log δ|−d . (26)

Now assume that for each data set D ∈ Xn sampled from Pn, we feed Algorithm 1 with
the level set estimators (LD,ρ)ρ≥0 given by (15), the parameters τ and ε, and a start level
ρ0 ≥ ε. Then the following statements are true:

i) If P satisfies Assumption S and ρ0 ≥ ρ∗, then with probability Pn not less than 1−e−ς

Algorithm 1 returns ρ0 and L0 and with M̂ρ∗ :=
⋃

ρ>ρ∗
Mρ we have

λd
(
Lρ0 △ M̂ρ∗

)
≤ λd

(
M+2σ

ρ0−ε \ M̂ρ∗

)
+ λd

(
M̂ρ∗ \M−2σ

ρ0+ε

)
. (27)

ii) If P satisfies Assumption M and we have an

ε∗ ≥ ε+ inf
{
ε′ ∈ (0, ρ∗∗ − ρ∗] : τ∗(ε′) ≥ τ

}
. (28)

with 9ε∗ ≤ ρ∗∗−ρ∗, then with probability Pn not less than 1− e−ς , we have a D ∈ Xn

such that the following statements are true for Algorithm 1:

(a) The returned level ρD,out satisfies both ρD,out ∈ [ρ∗ + 2ε, ρ∗ + ε∗ + 5ε] and

τ − ψ(2σ) < 3τ∗
(
ρD,out − ρ∗ + ε

)
.

(b) Two sets B1(D) and B2(D) are returned and these can be ordered such that for
Ai

ρD,out+ε ∈ C(MρD,out+ε) ordered in the sense of Ai
ρD,out+ε ⊂ A∗

i we have

2∑

i=1

λd
(
Bi(D) △ A∗

i

)
≤ 2

2∑

i=1

λd
(
A∗

i \(Ai
ρD,out+ε)

−2σ
)
+ λd

(
M+2σ

ρD,out−ε\{h > ρ∗}
)
.

(29)

For our subsequent asymptotic analysis we note that the assumptions δ ∈ (0, e−1] and
ς ≥ 1 of Theorem 17 show that (26) is satisfied if

max
{
1, 2d2 vold} · c · δ| log δ|+d/2 ≤ C

2

√
‖h‖∞
n

, (30)

and if we choose δ in terms of n, i.e., δ = δn, then (30) is satisfied for large n if δn ∈ O(n−a)
for some small a > 0. We shall see below, that such rates for δn are typical.

While (24) only provides a lower bound on possible values for σ, Theorem 17 actually
indicates that σ should not be chosen significantly larger than these lower bounds, either.
Indeed, the choice of σ also implies a minimal value for τ by the condition τ > ψ(2σ), which
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in turn influences ε∗ by (28). Namely, larger values of σ lead to larger τ and thus to larger
ε∗. As a result, the guarantees in (a) become weaker, and in addition, larger values of σ
also lead to weaker guarantees in (b). For a similar reason we do not consider kernels K
with heavier tails than (9). Indeed, if K only has a polynomial upper bound for its tail,
i.e., there are constants c and α > d with

K(x) ≤ c · ‖x‖−α
2 , x ∈ R

d ,

then κ1(r) � r−α+d and κ∞(r) � r−α. Now, if we picked σ = δ| log δ|b for some b > 0, then
we would need to replace (26) by a bound of the form c̃δ−d| log δ|−αb ≤ ε, and this would
rule out ε→ 0 for δ → 0. As a result, no rates would be possible. Now, one could address
this by choosing σ := δb for some b ∈ (0, 1), which in turn would require a bound of the
form c̃ · δα(1−b)−d ≤ ε, instead of (26). Arguing as around (30) this is guaranteed if

c̃δα(1−b)−d/2 ≤ C

2

√
‖h‖∞
n

,

and if δ → 0 the latter would require b < 1− d
2α . In particular, b would be strictly bounded

away from 1. However, such a choice for σ would significantly weaken the guarantees given
in (a) and (b) as explained above, and as a consequence, the rates obtained below would be
worse. Note that from a high-level perspective this phenomenon is not surprising: indeed,
heavier tails smooth out the infinite sample density estimator hP,δ and as consequence,
the uncertainty guarantees (16) become worse in the horizontal direction, i.e., we get more
blurry estimates LD,ρ ofMρ. However, for the detection of connected components at a level
ρ, less blurry estimates are preferable.

In the remainder of this section, we illustrate how the finite sample guarantee of Theorem
17 can be used to derive both consistency and rates. We begin with the following result.

Corollary 18 Let P be a distribution with bounded Lebesgue density and with Assumption
P being satisfied. Moreover, let K be a symmetric kernel with exponential tail behavior, for
which the assumptions of Theorem 16 hold. Let (δn) be a positive sequence with δn � n−a

for some a > 0 and pick a null sequence (σn) satisfying (24) for all sufficiently large n.
Moreover, let (εn) and (τn) be positive null sequences with ψ(2σn) < τn for all sufficiently
large n, and

lim
n→∞

log δ−1
n

nε2nδ
d
n

= 0 .

Now assume that for each data set D ∈ Xn sampled from Pn, we feed Algorithm 1 with the
level set estimators (LD,ρ)ρ≥0 given by (15), the parameters τn and εn, and the start level
ρ0 := εn. Then the following statements are true:

i) If P satisfies Assumption S with ρ∗ = 0, then for all ǫ > 0 we have

lim
n→∞

Pn
({
D ∈ Xn : 0 < ρD,out ≤ ǫ

})
= 1 ,

and if λd({h > 0} \ {h > 0}) = 0 we also have

lim
n→∞

Pn
({
D ∈ Xn : λd(LD,ρD,out

△ {h > 0}) ≤ ǫ
})

= 1 ,
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ii) If P satisfies Assumption M, then, for all ǫ > 0, we have

lim
n→∞

Pn
({
D ∈ Xn : 0 < ρ∗D − ρ∗ ≤ ǫ

})
= 1 ,

and, if λd(A∗
i ∪A∗

2 \ (A∗
1 ∪A∗

2)) = 0, we also have, for B1(D), B2(D) as in (29):

lim
n→∞

Pn
({
D ∈ Xn : λd(B1(D) △ A∗

1) + λd(B2(D) △ A∗
2) ≤ ǫ

})
= 1 .

Our next goal is to establish rates of convergence for estimating ρ∗ and the clusters. We
begin with a result providing a rate of ρ∗D → ρ∗. To this end we need to recall the following
definition from Steinwart (2015a) that describes how well the clusters are separated above
ρ∗.

Definition 19 Let Assumption M be satisfied. Then the clusters of P have a separation
exponent κ ∈ (0,∞], if there is a constant csep > 0 such that for all ε ∈ (0, ρ∗∗ − ρ∗] we
have

τ∗(ε) ≥ csep ε
1/κ .

Moreover, the separation exponent κ is exact, if there is a csep > 0 such that

τ∗(ε) ≤ csep ε1/κ , ε ∈ (0, ρ∗∗ − ρ∗] .

The separation exponent describes how fast the connected components of Mρ approach
each other for ρց ρ∗. The “best” separation exponent is κ =∞ and in this case we have
d(A∗

1, A
∗
2) ≥ csep, i.e. the clusters A∗

1 and A∗
2 do not touch each other.

The separation exponent makes it possible to find a good value for ε∗ in Theorem 17.
Indeed, the proof of (Steinwart, 2015a, Theorem 4.3) shows that the value ε∗ := ε+(τ/csep)

κ

satisfies (28) as soon as we have 9ε∗ ≤ ρ∗∗ − ρ∗. Consequently, the bound in part ii) (a) of
Theorem 17 becomes

2ε ≤ ρD,out − ρ∗ ≤ 6ε+
( τ

csep

)κ
(31)

if we have a separation exponent κ ∈ (0,∞]. Moreover, if the separation exponent κ ∈ (0,∞)
is exact and we choose τ ≥ 2ψ(2σ), then (31) can be improved to

ε+
1

4

( τ

6csep

)κ
≤ ρD,out − ρ∗ ≤ 6ε+

( τ

csep

)κ

as the proof of Theorem (Steinwart, 2015a, Theorem 4.3) shows. To establish rates, it
thus suffices to find null sequences (εn), (δn), (σn), and (τn) that satisfy (24) and (25),
and additionally δn ∈ O(n−a) for some a > 0, if K does not have bounded support. The
following corollary presents the resulting rates that are, modulo logarithmic terms, the best
ones we can obtain from this approach.

Corollary 20 Let P be a distribution for which Assumption M is satisfied and whose
Lebesgue density is bounded. Moreover, consider a symmetric kernel K with exponential
tail behavior, for which the assumptions of Theorem 16 hold. In addition, assume that the
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clusters of P have separation exponent κ ∈ (0,∞). Furthermore, let (εn), (δn), (σn), and
(τn) be sequences with

εn ∼
((log n)3 · log log n

n

) γκ
2γκ+d

, δn ∼
( log n

n

) 1

2γκ+d
,

σn ∼
((log n)3

n

) 1

2γκ+d
, τn ∼

((log n)3 · log log n
n

) γ
2γκ+d

,

and assume that, for n ≥ 1 D ∈ Xn sampled from Pn, we feed Algorithm 1 with the level set
estimators (LD,ρ)ρ≥0 given by (15), the parameters τn and εn, and the start level ρ0 := εn.
Then there exists a K ≥ 1 such that for all sufficiently large n we have

Pn

({
D ∈ Xn : 0 ≤ ρ∗D − ρ∗ ≤ Kεn

})
≥ 1− 1

n
.

Moreover, if the separation exponent κ is exact, there exists another constant K ≥ 1 such
that for all sufficiently large n we have

Pn

(
∈ Xn : Kεn ≤ ρ∗D − ρ∗ ≤ Kεn

)
≥ 1− 1

n
. (32)

Finally, if κ =∞ and suppK ⊂ B‖·‖, then (32) holds for all sufficiently large n, if σn = δn
and

εn ∼
( log n · log log n

n

) 1

2
, δn ∼

(
log log n

)− 1

2d , and τn ∼
(
log log n

)− γ
3d .

Note that the rates obtained in Corollary 20 only differ by the factor (log n)2 from the
rates in (Steinwart, 2015a, Corollary 4.4). Moreover, if K has a bounded support, then
an easy modification of the above corollary yields exactly the same rates as in (Steinwart,
2015a, Corollary 4.4).

Our next goal is to establish rates for λd(Bi(D) △ A∗
i ) → 0. Since this is a modified

level set estimation problem, we need to recall some assumptions used in this context. The
first assumption in this direction is one-sided variant of a well-known condition introduced
by Polonik (1995).

Definition 21 Let P be a distribution on X ⊂ R
d that has a Lebesgue-density h. For a

level ρ ≥ 0, we say that P has flatness exponent ϑ ∈ (0,∞], if there is a cflat > 0 with

λd
(
{0 < h− ρ < s}

)
≤ (cflats)

ϑ , s > 0.

Note that the larger ϑ is, the steeper h must approach ρ from above. In particular, for
ϑ =∞, the density h is allowed to take the value ρ but is otherwise bounded away from ρ.

The second definition describes in some sense the roughness of the boundary of the
clusters.

Definition 22 Let Assumption M be satisfied and α ∈ (0, 1]. Then the clusters have an
α-smooth boundary, if there is a cbound > 0 such that, for all ρ ∈ (ρ∗, ρ∗∗] and δ ∈ (0, δthick]
we have

λd
(
(Ai

ρ)
+δ \ (Ai

ρ)
−δ
)
≤ cboundδα ,

where i ∈ {1, 2} and A1
ρ and A2

ρ denote the two connected components of the level set Mρ.
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Note that in R
d, considering α > 1 does not make sense, and for an A ⊂ R

d with
rectifiable boundary we always have α = 1, see (Steinwart, 2015b, Lemma A.10.4).

The following assumption collects the different properties of P we have introduced.

Assumption R. Assumption M is satisfied and P has a bounded Lebesgue density h.
Moreover, P has flatness exponent ϑ ∈ (0,∞] at level ρ∗, its clusters have an α-smooth
boundary for some α ∈ (0, 1], and its clusters have separation exponent κ ∈ (0,∞].

With the help of Assumption R we can now establish rates for estimating the clusters,
that is, for λd(Bi(D) △ A∗

i )→ 0.

Corollary 23 Let Assumption R be satisfied and K be as in Corollary 20. and write
̺ := min{α, ϑγκ}. Furthermore, let (εn), (δn), and (τn) be sequences with

εn ∼
( log n

n

) ̺
2̺+ϑd

(log log n)
− ϑd

8̺+4ϑd , δn ∼
( log n · log log n

n

) ϑ
2̺+ϑd

,

σn ∼
((log n)3 · log log n

n

) ϑ
2̺+ϑd

, τn ∼
((log n)3 · (log log n)2

n

) ϑγ
2̺+ϑd

.

Assume that, for n ≥ 1, we feed Algorithm 1 as in Corollary 20. Then there is a constant
K ≥ 1 such that, for all n ≥ 1 and the ordering as in (29), we have

Pn

(
D :

2∑

i=1

λd
(
Bi(D)△A∗

i

)
≤ K

((log n)3 · (log log n)2
n

) ϑ̺
2̺+ϑd

)
≥ 1− 1

n
.

Again, the rates obtained in Corollary 23 only differ by the factor (log n)2 from the rates
in (Steinwart, 2015a, Corollary 4.8). Moreover, if K has a bounded support, then an easy
modification of Corollary 23 again yields exactly the same rates as in (Steinwart, 2015a,
Corollary 4.8).

Our final goal is to modify the adaptive parameter selection strategy for the histogram-
based clustering algorithm of Steinwart (2015a) to our KDE-based clustering algorithm. To
this end, let ∆ ⊂ (0, 1] be finite and n ≥ 1, ς ≥ 1. For δ ∈ ∆, we fix σδ,n > 0 and τδ,n > 0
such that (24) and τδ,n ≥ 2ψ(2σδ,n) are satisfied. In addition, we define

εδ,n := Cu

√
| log δ|(ς + log |∆|) log log n

δdn
+max

{
1, 2d2 vold} · c · δ| log δ|−d , (33)

where Cu ≥ 1 is some user-specified constant and the second term can be omitted if the
used kernel K has bounded support. Now assume that, for each δ ∈ ∆, we run Algorithm
1 with the parameters εδ,n and τδ,n, with the start level ρ0 := εδ,n, and with the level set
estimators (LD,ρ)ρ≥0 given by (15). Let us consider a width δ∗D,∆ ∈ ∆ that achieves the
smallest returned level, i.e.

δ∗D,∆ ∈ argmin
δ∈∆

ρD,δ,out . (34)

In general, this width may not be unique, and hence we assume in the following that we
have a well-defined choice, e.g. the smallest δ ∈ ∆ satisfying (34). Moreover, we write

ρ∗D,∆ := min
δ∈∆

ρD,δ,out
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for the smallest returned level. Note that unlike the width δ∗D,∆, the level ρ∗D,∆ is always
unique. Finally, we define εD,∆ := εδ∗D,∆,n and τD,∆ := τδ∗D,∆,n.

With these preparation we can now present the following finite sample bound for ρ∗D,∆.

Theorem 24 Let P be a distribution for which Assumption M is satisfied and whose
Lebesgue density is bounded. Moreover, consider a symmetric kernel K with exponential
tail behavior, for which the assumptions of Theorem 16 hold. In addition, assume that the
two clusters of P have separation exponent κ ∈ (0,∞]. For a fixed finite ∆ ⊂ (0, e−1], and
n ≥ 1, ς ≥ 1, and Cu ≥ 1, we define εδ,n by (33) and σδ,n > 0 and τδ,n > 0 such that (24),
τδ,n ≥ 2ψ(2σδ,n), and 2σδ,n ≤ δthick are satisfied for all δ ∈ ∆. Furthermore, assume that
4C2

u log log n ≥ C‖h‖∞, where C is the constant in (23) and εδ,n+(τδ,n/csep)
κ ≤ (ρ∗∗−ρ∗)/9

for all δ ∈ ∆. Then we have

Pn
({
D ∈ Xn : εD,∆ < ρ∗D,∆ − ρ∗ ≤ min

δ∈∆

(
(τδ,n/csep)

κ + 6εδ,n
)})
≥ 1− e−ς .

Moreover, if the separation exponent κ is exact and κ <∞, then we even have

Pn
(
D : min

δ∈∆

(
c1τ

κ
δ,n + εδ,n

)
< ρ∗D,∆ − ρ∗ ≤ min

δ∈∆

(
c2τ

κ
δ,n + 6εδ,n

))
≥ 1− e−ς ,

where c1 :=
1
4(6csep)

−κ and c2 := c−κ
sep, and similarly

Pn
({
D ∈ Xn : c1τ

κ
D,∆ + εD,∆ < ρ∗D,∆ − ρ∗ ≤ c2τ

κ
D,∆ + 6εD,∆

})
≥ 1− e−ς .

For an adaptive parameter selection strategy, it thus suffices to define appropriate ∆,
σδ,n, and τδ,n. Here we proceed as in (Steinwart, 2015a, Section 5). Namely, for n ≥ 16, we
consider the interval

In :=

[( log n · (log log n)2
n

) 1

d
,
( 1

log log n

) 1

d

]
(35)

and fix some n−1/d-net ∆n ⊂ In of In with |∆n| ≤ n. Furthermore, for some fixed Cu ≥ 1
and n ≥ 16, we define σδ,n by (24), write τδ,n := σγδ,n log log log n, and define εδ,n by (33) for
all δ ∈ ∆n and ς = log n. Following the ideas of the proofs of (Steinwart, 2015a, Corollaries
5.2 and 5.3) we then obtain a constant K such that for all sufficiently large n ≥ 16 we have

Pn

(
D : ρ∗D,∆n

− ρ∗ ≤ K
((log n)3 · (log log n)2

n

) γκ
2γκ+d

)
≥ 1− 1

n
. (36)

Here, (36) holds if P has separation exponent κ ∈ (0,∞), and if the kernel K has bounded
support, it remains true for κ =∞. In addition, the upper bound in (36) can be matched by
a lower bound that only differs by a double logarithmic factor provided that the separation
exponent κ ∈ (0,∞) is exact. Finally, if Assumption R is satisfied, we further find

Pn

(
D :

2∑

i=1

λd(Bi(D)△A∗
i ) ≤ K̂

((log n)3 · (log log n)2
n

) ϑγκ
2γκ+ϑd

)
≥ 1− 1

n
,

for all sufficiently large n ≥ 16, where K̂ is another constant independent of n.
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Finally, we like to mention that the presented adaptive strategy works optimally as long
as all split levels have the same exact separation exponent κ. Indeed, as described above,
our strategy detects, modulo some logarithmic terms, an asymptotically optimal choice δ∗D,∆

for the first split level, and since for all other split levels this choice is also asymptotically
optimal as long as they have the same exact separation exponent κ, we see that Algorithm
2 is adaptive when using δ∗D,∆.

6. Comparisons

In this section we compare our findings to the most closely related papers, namely (Wang
et al., 2019) and (Chaudhuri et al., 2014). In particular, we discuss the different assumptions
as well as the obtained statistical guarantees.

To begin with, let us have a look at the assumptions on P , respectively its density h
made by Wang et al. (2019). Here, we first note that h is assumed to be α-smooth for some
α > 0, that is, h is s := ⌊α⌋-times continuously differentiable and all partial derivatives of
order s are (α−s)-Hölder continuous. In general, h does not need to have compact support,
instead, Wang et al. (2019) only assume that {h ≥ ρ} is compact for all ρ > ρ∗, where ρ∗

is the smallest split level, see their Assumptions C and C’, respectively. In this respect
we note that for P having a continuous density their notion of split levels is closely related
to ours and that their Assumption S(κ) equals our separation exponent κ. Finally, Wang
et al. (2019) do not impose a thickness assumption, instead a so-called inner cone condition
is considered. Recall that this cone condition assumes that constants εI > 0, cI > 0, and
rI > 0 exist such that for all split levels ρ∗ and all ρ ∈ (ρ∗ − εI , ρ∗ + εI) we have

λd
(
B(x, r) ∩ {h ≥ ρ}

)
≥ cIrd , x ∈ {h ≥ ρ}, r ∈ (0, rI ] .

In general, it seems unclear how this condition relates to our thickness assumption, but in
many natural situations the inner cone condition and the thickness assumption with γ = 1
are simultaneously satisfied. For details, we refer to the discussion in (Steinwart, 2015b,
Appendix A.5), the rather generic examples considered in (Steinwart, 2015c, Appendix
B.2), and the discussion in (Wang et al., 2019, page 15). In the following comparison we
therefore assume that the inner cone condition and the thickness assumption with γ = 1
are simultaneously satisfied. In addition, we assume that h has finitely many split levels.

Like our results, the clustering algorithm of Wang et al. (2019) is also based on a kernel
density estimator. However, their central Algorithm 2 is using so-called α-valid kernels,
whose KDEs enjoy the ideal approximation error behavior ‖hP,δ − h‖∞ � δα for δ → 0 and
α-smooth densities h. We refer to (Wang et al., 2019, page 9) for details. Finally, their split
level estimator uses a verification strategy that is similar to Line 3 of our Algorithm 1, see
(Wang et al., 2019, Definition 6).

To compare the split level guarantee of Wang et al. (2019) to ours, we assume that h is
α-smooth, that all split levels have separation exponent α, and that h satisfies the additional
assumptions discussed above. Also, we assume that their Algorithm 2 uses an α-valid kernel.
Then (Wang et al., 2019, Proposition 3) shows that, modulo some logarithmic factors, all

split levels can be estimated with rate n−
α

2α+d . Since we can choose α = κ and γ = 1, these
rate coincide with ours established in Corollary 20 if we again ignore logarithmic factors.
Given any κ > 0, however, our results do not require h to be κ-smooth, while (Wang
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et al., 2019, Proposition 3) only holds for κ-smooth densities. Moreover note that there
are α-smooth densities with κ ≫ α, in fact we may have α = 1 and κ = ∞, and for such
densities, our rates are significantly better than those of Wang et al. (2019). In addition,
our clustering algorithm does not need to use kernels that are aligned with the smoothness
of h, and unlike Wang et al. (2019) we also present a way to make our algorithm adaptive
to the unknown κ. Finally, we like to emphasize that apart from Proposition 3, (Wang
et al., 2019) contains several other interesting results, which are, however, not comparable
to ours.

Unlike the comparison to (Wang et al., 2019), the comparison to (Chaudhuri et al.,
2014) turns out to be much more involved, as the latter paper uses assumptions that are
quite different to ours. Providing a detailed comparison is therefore beyond the scope
of this paper and we refer the interested reader to (Steinwart et al., 2021, Appendix A)
for a detailed comparison. To summarize the key points of this comparison, we show
that, up to logarithmic factors, the best possible convergence rate achieved by the central
Theorem VII.5 of Chaudhuri et al. (2014) for estimating the split levels is n−

α
3α+d while

our algorithm achieves a rate of n−
α

2α+d , which is strictly better for all dimensions, with
α being the Hölder-continuity of the underlying density. In particular, our rates can be
achieved without knowing α, while Chaudhuri et al. (2014) do not offer such adaptivity. In
addition, our results can handle discontinuous densities, e.g. step functions on rectangles
with mutually positive distances, while their Theorem VII.5 does not provide any guarantee
at all for such densities. In particular, the consistency results for their unpruned algorithm
require “mild uniform continuity conditions”, see the end of Section III.B in (Chaudhuri
et al., 2014), and the guarantees for the pruned algorithm stated in their Theorem VII.5
explicitly require control on the uniform modulus of continuity. Finally, apart from split
level estimation, our results also provide guarantees for corresponding clusters in measure
while no such guarantees are in (Chaudhuri et al., 2014).

7. Experiments

In this section, we illustrate the behavior of our generic KDE-based clustering algorithm
on a few artificial data sets for which the ground truth clustering can be computed. In
addition, we compare their performance to k-means and hierarchical clustering.

Data. We consider six cluster problems, which are based on two-dimensional distri-
butions cut down to [0, 1]2, with different degrees of difficulty: The first distribution, see
Figure 9, is a mixture of 15 Gaussian distributions and a uniform “background” distribu-
tion. In addition, 12 out of the 15 well-separated distributions have a covariance of the form
λI2, where I2 is the 2× 2-identity matrix and λ is some scaling factor, while the remaining
3 Gaussians have a different covariance matrix. Since this distribution was inspired by the
S2-data set of Fränti and Virmajoki (2006) we will call it S2 in the following. The second
distribution, see Figure 10, is a modification of the first. Namely, two of the 15 clusters
have been shrunken and moved towards each other, while the remaining clusters have re-
mained unchanged. In the following we call it S2−modified. The third distribution, called
toy−3G , is a mixture of 3 Gaussian distribution with similar but not identical covariances,
see Figure 11. Unlike in the first data set, however, the Gaussians are less separated and
less concentrated making this distribution slightly more difficult. The fourth distribution,
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Figure 9: Left. A sample data set (top) of size n = 5000 from S2 and its ground truth
clustering (bottom). Middle-Left. The 25th (bottom) and 75th (top) best run
of kmeans on the S2 data sets. Middle. Corresponding 25th (bottom) and 75th

(top) best runs of hclust. Middle-Right and Right. The 25th (bottom) and
75th (top) best runs of our algorithm for the moving window kernel (middle-right)
and the Epanechnikov kernel (right). All algorithms perform well.

see Figure 12, is based upon the third distribution. To be more precise, two Gaussians
with close-by centers and with small variances have been added. In the following we call
it toy − 5G. The fifth distribution, called bananas, is a variant of the classical bananas, or
two-moon, data distribution, which is often used to assess the clustering performance on
non-centroid-like clusters. Unlike its usual form, however, our variant consists of two very
“fuzzy” bananas, which makes even a visual inspection not immediately obvious, see Figure
13. As a result of this noise, both clusters can be almost perfectly separated by a diagonal
line, and therefore, it is in principle possible to find a decent clustering with the help of
two suitably chosen centroids. The sixth distribution, see Figure 14, is another mixture of
Gaussians. In this distribution, however, each of its three clusters corresponds to a mixture
of two Gaussians that have the same mean but different variances. In addition, the clusters
are “merging” into each other, and as a result, this data set can be viewed as the most
challenging one from a visual perspective. In the following, we call it crosses.

For each of the six cluster problems described above and the following sample sizes

n ∈ {2500, 3000, 3500, 4200, 5000, 6000, 7000, 8200, 10000, 14000, 20000} .

we generated 100 data sets. In addition, we also computed the true densities of the 6
distributions on a 1000× 1000 grid of [0, 1]2 to find a high-resolution approximation of the
ground truth clustering. Applying these ground true clusters to the data sets, makes it
possible to assess how well the different algorithms work.

Performance Measures. Besides visual inspection we consider two different ways of
comparing clustering algorithms. To describe these comparisons, let us assume that we have
a data setD, ground truth clusters C1, . . . , Ck ⊂ D, and estimated clusters Ĉ1, . . . , Ĉm ⊂ D.
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Figure 10: Left. A sample data set (top) of size n = 5000 from S2 − modified and its
ground truth clustering (bottom). Middle-Left. The 25th (bottom) and 75th

(top) best run of kmeans on the S2−modified data sets. Middle. Corresponding
25th (bottom) and 75th (top) best runs of hclust. Middle-Right and Right.

The 25th (bottom) and 75th (top) best runs of our algorithm for the moving
window kernel (middle-right) and the Epanechnikov kernel (right). Even in the
better runs kmeans and hclust cannot separate the two modified clusters in the
bottom-right, while for our algorithms a problem occurs only for the moving
window kernel in the worse run. Namely, in this case one cluster remained
undetected.

In all experiments we always observed m ≤ k. Since k-means and hierarchical clustering
produce clusterings with Ĉ1 ∪ · · · ∪ Ĉm = D, while the ground truth clusters do not have
this property for our data sets, we restrict the considered data set to the samples that occur
in both a true and an estimated cluster, that is

Dperf :=

{
x ∈ D : x ∈

k⋃

i=1

Ci ∩
m⋃

j=1

Ĉj

}
.

Since in general the jth estimated cluster does not relate to the jth ground truth cluster, we
first needed to find a suitable matching, that is an injective map Φ : {1, . . . ,m} → {1, . . . , k}.
To this end, we define the matching error to be

E(Φ) :=
|{x ∈ Dperf : x 6∈ CΦ(j(x))}|

|Dperf |
, (37)

where for all x ∈ Dperf , we denote by j(x) the unique index j with x ∈ Ĉj . In other
words, E(Φ) equals the fraction of samples x in Dperf for which Φ does not provide a correct

matching of clusters Ĉj(x) → CΦ(j(x)). Note that if Φ is a perfect matching in the sense

of Ĉj ∩ Dperf = CΦ(j) ∩ Dperf for all j = 1, . . . ,m, then E(Φ) = 0. For this reason, we
determined a matching Φ∗ that minimizes E(·), where we note that even in the case of
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Figure 11: Left. A sample data set (top) of size n = 5000 from toy−3G and its ground truth
clustering (bottom). Middle-Left. The 25th (bottom) and 75th (top) best run
of kmeans on the toy−3G data sets. Middle. Corresponding 25th (bottom) and
75th (top) best runs of hclust. Middle-Right and Right. The 25th (bottom)
and 75th (top) best runs of our algorithm for the moving window kernel (middle-
right) and the Epanechnikov kernel (right). All algorithms perform well.

the first two cluster problems this was computationally feasible with the help of a greedy
approach followed by a brute-force calculation over a restricted set of permutations. The
corresponding optimal matching errors E(Φ∗), averaged over all 100 repetitions of each
cluster problem and each considered algorithm, are reported in Figure 15.

At this point let us briefly discuss alternative ways to define the (optimal) matching
error. To this end, we define C0 := D \ (C1, . . . , Ck) and Ĉ0 := D \ (Ĉ1, . . . , Ĉm), that is,
we have Dperf = D \ (C0∪ Ĉ0). Of course, we could also consider e.g. Dperf := D \ Ĉ0 in the
definition of (37) by setting Φ(0) := 0 for all considered maps Φ : {1, . . . ,m} → {1, . . . , k}.
In this alternative, all samples x ∈ C0 \ Ĉ0 are additionally counted for the matching error.
Now kmeans and hclust both assign all samples to some estimated cluster, that is, we have
Ĉ0 = ∅. In other words, all samples x ∈ C0 are automatically counted as an error for both
algorithms. This effect is clearly not desirable in a fair comparison, in particular since for
some distributions such as bananas and crosses the set C0 is substantial, see Figures 13 and
14. Conversely, if we consider Dperf := D \ C0 then (37) additionally counts all samples

x ∈ Ĉ0 \ C0. For kmeans and hclust, this set is empty by design, while our algorithms
usually satisfy |Ĉ0 \C0| > 0. Consequently, we would again have an undesirable effect. The
final choice Dperf := D inherits both issues of the previously considered alternatives.

For the second numerical comparison, we again consider Φ∗. For this Φ∗, we counted
the number of ground truth clusters not found by the considered algorithm, that is k −m,
and added the number of non-covering clusters, that is, the number of clusters Ĉj that do
not cover at least 50% of the samples in the matched ground truth cluster CΦ∗(j) ∩Dperf .
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Figure 12: Left. A sample data set (top) of size n = 5000 from toy − 5G and its ground
truth clustering (bottom). Middle-Left. The 25th (bottom) and 75th (top)
best run of kmeans on the toy − 5G data sets. Middle. Corresponding 25th

(bottom) and 75th (top) best runs of hclust. Middle-Right and Right. The
25th (bottom) and 75th (top) best runs of our algorithm for the moving window
kernel (middle-right) and the Epanechnikov kernel (right). Both kmeans and
hclust cannot separate the two spatially smaller clusters on the right, and as
result, they are forced to cut through one of the spatially larger clusters. In
contrast, our algorithms perform well.

The averages over the resulting identification errors

I(Φ∗) := k −m+

∣∣∣∣
{
j :
|Ĉj ∩ CΦ(j) ∩Dperf |
|CΦ(j) ∩Dperf |

≤ 1/2

}∣∣∣∣

are reported in Figure 16.
Finally, for visual inspection we ordered the 100 results of each of the algorithms de-

scribed below on each of the six cluster problems with n = 5000 with the help of the joint
error E(Φ∗). We then plotted the clusterings on the 25th and 75th best run, see Figures 9 to
14. These visualizations help to understand the sources of the typical errors made by the
individual algorithms.

Algorithms. We implemented an iterative version of Algorithm 2, in which for k =
0, 1, . . . we first computed the τ -connected components of Lρ+kε that do not vanish at level
Lρ+(k+2)ε, see also Line 3 of Algorithm 1. With the help of these connected components we
then generated the corresponding cluster tree estimate, where we note that we skipped the
Line 7 of Algorithm 1 since this line has only been inserted into Algorithm 1 to simplify
the form of the statistical guarantees. We then called the resulting cluster tree estimator
for different KDE level set estimators, that is, for different values of δ. The first split in
the cluster tree was then obtained by choosing the δ∗ that resulted in the smallest first
split level. If all split levels have the same separation exponent κ, then it asymptotically
suffices to consider this δ∗ for the entire cluster tree. In general, however, splits further
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Figure 13: Left. A sample data set (top) of size n = 5000 from bananas and its ground
truth clustering (bottom). Middle-Left. The 25th (bottom) and 75th (top)
best run of kmeans on the bananas data sets. Middle. Corresponding 25th

(bottom) and 75th (top) best runs of hclust. Middle-Right and Right. The
25th (bottom) and 75th (top) best runs of our algorithm for the moving window
kernel (middle-right) and the Epanechnikov kernel (right). While the implicit
bias of kmeans seems to consistently direct it towards imperfect centroids, the
performance of hclust seems to be rather sensitive to the instance of the data
set. In comparison, our algorithms are less sensitive and perform sufficiently
well even in their worse runs.

up in the tree may have either a different κ or at least a different constant csep. In these
cases, choosing a different δ at different splits may be beneficial. We adopted this insight
by considering, after each detected split level ρ, those δ whose estimated cluster tree has
another split level within one of the clusters emerging at ρ. Among those δ we then again
choose the one resulting in the smallest next split level.

We considered 500 geometrically spaced candidate values of δ between c(ln(n)/n)1/d

and c(lnn)−1/d, where in the experiments, the factor c was determined by an estimate of
the median mutual distance between the samples of the considered data set. Notice that
modulo this factor c and some (double) logarithmic terms, this setup coincides with the
theoretically derived one, see (35). Moreover, we considered both a plain moving window
kernel and the Epanechnikov kernel, where in both cases the underlying norm was the
Euclidean distance. Since both kernels have bounded support, we simply chose σ := δ, see
(24), and ε := 3

√
‖hD,δ‖∞n−1δ−d for each candidate value δ. Modulo some logarithmic

terms, this choice for ε follows our theoretical insights, see (33). Finally, we decided to focus
on thickness guarantees with the most natural choice γ := 1, see the detailed discussion
in (Steinwart, 2015b, Appendix A.5), that is, we do not expect the algorithm to correctly
keep clusters together that have thinner cusps or bridges. Based on this decision, we choose
τ := (2 + ǫ) · δ with ǫ = 0.00001, where we note that our theoretical findings actually hold
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Figure 14: Left. A sample data set (top) of size n = 5000 from crosses and its ground truth
clustering (bottom). Middle-Left. The 25th (bottom) and 75th (top) best run
of kmeans on the crosses data sets. Middle. Corresponding 25th (bottom) and
75th (top) best runs of hclust. Middle-Right and Right. The 25th (bottom)
and 75th (top) best runs of our algorithm for the moving window kernel (middle-
right) and the Epanechnikov kernel (right). While the implicit bias of kmeans
seems to consistently direct it towards centroids with sufficiently benign Voronoi
partitions, the behavior of hclust seems to be rather sensitive to the instance
of the data set. In comparison, our algorithm with the moving window kernel
is less sensitive and performs sufficiently well even in its worse runs, while the
Epanechnikov kernel performs less reliably.

true for each value τ > 2δ, if one carefully tracks all constants. In addition, this choice
makes it possible that the estimated clusters can be as close as ǫ · δ to each other.

Besides our methods we also considered k-means and hierarchical clustering. To this
end, we used the functions kmeans, kmeans++, and hclust of R. Both types of algorithms
have some hyper-parameters, which ideally would be chosen in a data-driven approach. To
ensure fairness for kmeans, kmeans++, and hclust, such data-driven approaches would need
to be calibrated to at least one of our two performance measures E(Φ∗) or I(Φ∗). However,
we are not aware of any method to reliably estimate these performance measures, or some
calibrated surrogates for them, from data alone and hence we proceeded differently. Namely,
kmeans, kmeans++, and hclust received the correct number k of ground truth clusters as
an input parameter, and kmeans was repeated with 100 random initializations using the
parameter nstart = 100. In addition, we first considered the 3 different “versions” of
the kmeans function on our data sets and identified the best one with the help of our
performance metrics. Here it turned out that all three “versions” led to very similar results
with Lloyd having a marginal advantage over the over two. In addition, all three versions
produced better results than kmeans++, probably because we used 100 random initializations
for kmeans. Similarly, we considered the 8 different “versions” of hclust. It turned out
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Figure 15: Average matching errors E(Φ∗) for optimal matching Φ∗, see (37) for the different
cluster algorithms and for different sample sizes. While kmeans and hclust are
essentially not influenced by the sample size, our methods clearly become better
with increasing sample size n.

that ward.D and ward.D2 performed best with a slight advantage of ward.D2, which we then
used in the comparisons.

In the experiments both kmeans and hclust were thus privileged in two ways: a) the
correct number of clusters were given to them, while our algorithms had no information
at all about the cluster problems at hand; and b) the best performing version of kmeans
and hclust were chosen in hindsight, and with respect to our ground-truth performance
measures. In contrast, our algorithms had to choose their hyper-parameters in a fully
adaptive way and without access to ground truth performance measures.

Results. Figures 15 and 16 clearly show that the performance of kmeans and hclust

is almost independent of the data set size n, while our two algorithms heavily depend on n.
For example, on five of the six cluster problems, namely on all but toy − 5G, the matching
errors achieved by our algorithms for n = 2500 are substantially worse than those of kmeans
and hclust and the same is true for the identification errors. For n = 5000, however, the
matching errors of our algorithms are at least as good as those of kmeans and hclust and
on at least four of cluster problems our algorithms clearly outperform kmeans and hclust.
For the identification errors the situation is still mixed, but this is not really surprising, as
the first term k − m in the computation of I(Φ∗) vanishes for kmeans and hclust since
the privileged information given to these two algorithms always ensures k = m. Despite
this advantage, our algorithms always achieve identification errors that are as least as good
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Figure 16: Average identification errors I(Φ∗) for optimal matching Φ∗. Both kmeans and
hclust have difficulties on the two modified data sets. Our methods become
better with increasing sample sizes and in all cases, nor errors are made for
n ≥ 10000.

as those of kmeans and hclust as soon as we have n ≥ 8.200. Finally, for n ≥ 10000 our
algorithms work almost error free with respect to both performance measures on all six
cluster problems.

In terms of identification errors, both kmeans and hclust have substantial difficulties
with the two modifications S2−modified and toy− 5G, while on the remaining four cluster
problems they perform almost flawless. A closer visual inspection reveals, that both cluster
algorithms cannot identify the two spatially smaller, close-by clusters in the modifications,
see Figures 10 and 12 and this phenomenon occurs at least on most of the data sets of
e.g., size n = 5000. In comparison, our algorithm with the moving window kernel has some
problems identifying one cluster in S2−modified, see Figure 10, but this phenomenon does
not occur as often as the the problems of kmeans and hclust. The same observation can
be made for our algorithm working with the Epanechnikov kernel on crosses.

Unsurprisingly, the poor identification error performance of kmeans and hclust on the
two modified cluster problems S2 − modified and toy − 5G directly translate into poor
matching errors. In addition, both algorithms have problems on bananas and on crosses, see
Figure 15. The reasons for these problems are different: While kmeans constantly choose
imperfect centroids on the bananas data sets, see Figure 13, hclust seems to be sensitive
to the particular instance of the data set. The same behavior of both algorithms can be
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observed on crosses, see Figure 14. In comparison, a poor matching error performance of
our algorithms seem to be directly related to the identification errors made in some cases.

8. Proofs

Proof of Lemma 4: Let us first assume that A−δ 6= ∅. Then there exists an x ∈ A−δ and
since A−δ is open there also exists an ε > 0 with B(x, ε) ⊂ A−δ. Our first intermediate goal
is to show

B(y, δ) ⊂ A , for all y ∈ B(x, ε) . (38)

To this end, we note that y ∈ B(x, ε) ⊂ A−δ implies y 6∈ (Rd \A)+δ. For z ∈ R
d \A we thus

find d(y, z) ≥ d(y,Rd \A) > δ, which shows (38).

Now observe that for the proof of δ < inradA it clearly suffices to establish

B(x, δ + ε) ⊂ A . (39)

Let us therefore fix a z ∈ B(x, δ+ ε). By considering y := x in (38) we first note that in the
case ‖x− z‖ ≤ δ we have z ∈ A. Hence it suffices to consider the case δ < ‖x− z‖ ≤ δ + ε.
For t := δ/‖x − z‖ ∈ (0, 1) and y := (1 − t)z + tx a quick calculation then shows both
‖y − z‖ = δ and ‖x− y‖ = ‖x− z‖ − δ ≤ ε. Applying (38) then yields (39).

Let us now assume that δ < inradA. Then there exists an ε > 0 with δ+ε < inradA and
hence we find an x ∈ A with B(x, δ + ε) ⊂ A. Clearly, it suffice to show that x ∈ A−δ. To
this end, we assume that x 6∈ A−δ, that is x ∈ (Rd \A)+δ. Since this means d(x,Rd \A) ≤ δ,
we then find a y ∈ R

d \A with d(x, y) ≤ δ + ε. This contradicts B(x, δ + ε) ⊂ A.

8.1 Proofs for the Generic Algorithm in Section 3

Proof of Lemma 5: i) ⇒ ii). We choose a τ > 2c inradM and δ := inradM . By Lemma
4 we then know M−δ = ∅, and our construction also gives τ > 2cδ. If |M+δ| = 1 we
obviously have diamM+δ = 0 < τ . Moreover, if |M+δ| > 1, there exist x, y ∈ M+δ with
‖x− y‖ = diamM+δ since M+δ is compact and ‖ · − · ‖ : M+δ ×M+δ → R is continuous.
For A := {x, y} ⊂ M+δ we then have |Cτ (A)| = 1, which shows ‖x− y‖ < τ . In summary,
we therefore always have diamM+δ < τ .

Now a simple calculation shows diamM+δ = 2δ + diamM , see also (Steinwart et al.,
2021, Lemma 8.2), and thus we obtain τ > 2 inradM + diamM . Since we initially chose
τ > 2c inradM arbitrarily, we conclude that 2c inradM ≥ 2 inradM + diamM .

ii) ⇒ i). Let us fix a δ > 0 with M−δ = ∅. Lemma 4 then shows δ ≥ inradM . We
know fix a non-empty A ⊂M+δ and some τ > 2cδ. This yields

τ > 2(c− 1)δ + 2δ ≥ 2(c− 1) inradM + 2δ ≥ diamM + 2δ = diamM+δ .

For x, y ∈ A we thus find ‖x− y‖ ≤ diamA ≤ diamM+δ < τ , and hence A is τ -connected,
that is |Cτ (A)| = 1.
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Theorem 25 Let ρ∗ ≥ 0 and Assumption P be satisfied with |C(Mρ)| ≤ 1 for all ρ ≥ ρ∗.
Moreover, let (Lρ)ρ≥0 be a decreasing family of sets Lρ ⊂ X such that

M−δ
ρ+ε ⊂ Lρ ⊂M+δ

ρ−ε (40)

for some fixed ε, δ > 0 and all ρ ≥ ρ∗. For all ρ ≥ ρ∗ we then have:

i) If M−δ
ρ+3ε 6= ∅, then |Cτ (M−δ

ρ+ε)| = 1 for all τ > 2ψ∗
Mρ+ε

(δ) and the corresponding CRM

ζ : Cτ (M−δ
ρ+ε)→ Cτ (Lρ) satisfies

Cτ (Lρ) = ζ
(
Cτ (M−δ

ρ+ε)
)
∪
{
B′ ∈ Cτ (Lρ) : B

′ ∩ Lρ+2ε = ∅
}
. (41)

ii) If M−δ
ρ+ε = ∅, Assumption S is satisfied, and δ ∈ (0, δthick], then we have

∣∣{B ∈ Cτ (Lρ) : B ∩ Lρ+2ε 6= ∅
}∣∣ ≤ 1 , τ > 2cthickδ

γ . (42)

Proof of Theorem 25: i). We first note that M−δ
ρ+3ε 6= ∅ implies M−δ

ρ+ε 6= ∅. Now,

(Steinwart, 2015b, Lemma A.4.3) showed that for all bounded A ⊂ R
d with |C(A)| < ∞,

all δ > 0 with A−δ 6= ∅, and all τ > 2ψ∗
A(δ) we have |Cτ (A−δ)| ≤ |C(A)|, Thus we find

|Cτ (M−δ
ρ+ε)| ≤ |C(Mρ+ε)| ≤ 1, and by the already observed Mρ+ε 6= ∅ we conclude that

|Cτ (M−δ
ρ+ε)| = 1. To establish (41) we now write A := M−δ

ρ+ε and B := ζ(A). Our first
intermediate goal is to establish the following disjoint union:

Cτ (Lρ) = {B} ∪
{
B′ ∈ Cτ (Lρ) \ {B} : B′ ∩ Lρ+2ε 6= ∅

}
∪
{
B′ ∈ Cτ (Lρ) : B

′ ∩ Lρ+2ε = ∅
}
.

(43)

To this end, note that M−δ
ρ+3ε 6= ∅ and M−δ

ρ+3ε ⊂ A together with A ⊂ ζ(A) = B implies

∅ 6=M−δ
ρ+3ε = A ∩M−δ

ρ+3ε ⊂ B ∩ Lρ+2ε ,

and thus {B′ ∈ Cτ (Lρ) \ {B} : B′ ∩ Lρ+2ε = ∅} = {B′ ∈ Cτ (Lρ) : B′ ∩ Lρ+2ε = ∅}. This
gives (43).

Let us now show (41). To this end, we first observe that |Cτ (M−δ
ρ+ε)| = 1 implies

Cτ (M−δ
ρ+ε) = {A} and hence ζ

(
Cτ (M−δ

ρ+ε)
)

= {B}. In view of (43) it thus remains to
show

B′ ∩ Lρ+2ε = ∅ ,
for all B′ ∈ Cτ (Lρ) with B

′ 6= B. Let us assume the converse, that is, there is a B′ ∈ Cτ (Lρ)
with B′ 6= B and B′ ∩Lρ+2ε 6= ∅. Since Lρ+2ε ⊂M+δ

ρ+ε, there then exists an x ∈ B′ ∩M+δ
ρ+ε.

By part i) of (Steinwart, 2015b, Lemma A.3.1) this gives an x′ ∈ Mρ+ε with d(x, x′) ≤ δ,
and hence we obtain

d(x′,M−δ
ρ+ε) ≤ ψ∗

Mρ+ε
(δ) <

τ

2
.

From this inequality we conclude that there is an x′′ ∈M−δ
ρ+ε satisfying d(x

′, x′′) < τ/2. The

CRM property then yields x′′ ∈ M−δ
ρ+ε = A ⊂ B and hence δ ≤ ψ∗

Mρ+ε
(δ), see (Steinwart

et al., 2021, Lemma 8.5), gives

d(B′, B) ≤ d(x, x′′) ≤ d(x, x′) + d(x′, x′′) < δ + τ/2 ≤ ψ∗
Mρ+ε

(δ) + τ/2 < τ
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However, B′ 6= B implies d(B′, B′′) ≥ τ by (Steinwart, 2015b, Lemma A.2.4), i.e. we have
found a contradiction.

ii). If Lρ+2ε = ∅ there is nothing to prove, and hence we may assume that Lρ+2ε 6= ∅.
Now assume that (42) is false. Then there exist B1, B2 ∈ Cτ (Lρ) with B1 6= B2 and
Bi ∩ Lρ+2ε 6= ∅ for i = 1, 2. For i = 1, 2 we consequently find xi ∈ Bi ∩ Lρ+2ε, and
for these there exist Ai ∈ Cτ (Lρ+2ε) with xi ∈ Ai. Now recall from (Steinwart, 2015b,
Lemma A.2.7) that Lρ+2ε ⊂ Lρ implies Cτ (Lρ+2ε) ⊏ Cτ (Lρ), and therefore we have a CRM
ζ : Cτ (Lρ+2ε)→ Cτ (Lρ). Our construction then gives

xi ∈ Ai ∩Bi ⊂ ζ(Ai) ∩Bi ,

and thus ζ(Ai) ∩ Bi 6= ∅ for i = 1, 2. However, ζ(Ai) and Bi are both elements of the
partition Cτ (Lρ) and hence we conclude ζ(Ai) = Bi for i = 1, 2. Moreover, ζ is a map,
and therefore B1 6= B2 implies A1 6= A2. Let us write A := A1 ∪ A2. Since we know
from (Steinwart, 2015b, Lemma A.2.4) that d(A1, A2) ≥ τ , we conclude by (Steinwart,
2015b, Lemma A.2.8) that Cτ (A) = {A1, A2}, and thus |Cτ (A)| = 2. However, we also have
A ⊂ Lρ+2ε ⊂ M+δ

ρ+ε, and since M−δ
ρ+ε = ∅ holds, Assumption S together with δ ∈ (0, δthick]

and τ > 2cthickδ
γ ensures |Cτ (A)| = 1. Since this contradicts |Cτ (A)| = 2 we have proven

(42).

Proof of Theorem 7: For i ≥ 0 we write ρi := ρ0 + iε for the sequence of potential
levels Algorithm 1 visits. Moreover, let i∗ := max{i ≥ 0 : M−δ

ρi+3ε 6= ∅}, where we note
that this maximum is finite by (Steinwart et al., 2021, Lemma 8.3). For i = 0, . . . , i∗,
part i) of Theorem 25 then shows that Algorithm 1 identifies exactly one component in its
Line 3, and therefore it only identifies more than one component in Line 3, if i ≥ i∗ + 1.
If it finishes the loop at Line 5, we thus know that ρ ≥ ρi∗+2, and therefore the level ρ
considered in Line 7 satisfies ρ ≥ ρi∗+4. Now the definition of i∗ yields M−δ

ρi∗+1+3ε = ∅, and
since ρi∗+1 + 3ε = (i∗ + 1)ε+ 3ε = (i∗ + 4)ε = ρi∗+4, we find M−δ

ρ = ∅ for the ρ considered

in Line 7. This implies M−δ
ρ+ε = ∅, and hence part ii) of Theorem 25 shows that Algorithm

1 identifies at most one component in Line 7.

Lemma 26 Let Assumption M be satisfied, ρ ∈ (ρ∗, ρ∗∗], ε := ρ − ρ∗, and A1,ρ, and A2,ρ

be the two connected components of Mρ, i.e. C(Mρ) = {A1,ρ, A2,ρ}. Then the following
statements hold:

i) For all 0 < τ ≤ 3τ∗(ε) we have Cτ (Mρ) = C(Mρ).

ii) For all 0 < δ < τ ≤ τ∗(ε) we have Cτ (Mρ) ⊑ Cτ (M+δ
ρ ) = {A+δ

1,ρ, A
+δ
2,ρ}.

iii) For δ ∈ (0, δthick] and ψ(δ) < τ ≤ τ∗(ε) we have |Cτ (M−δ
ρ )| = 2 with Cτ (M−δ

ρ ) =

{A−δ
1,ρ, A

−δ
2,ρ}.

Proof of Lemma 26: To adapt to the notation of Steinwart (2015a,b) we write τ∗Mρ
:=

d(A1,ρ, A2,ρ). Note that this definition gives τ∗Mρ
= 3τ∗(ρ− ρ∗) = 3τ∗(ε).

i). The assertion directly follows part ii) from (Steinwart, 2015b, Proposition A.2.10).

ii). The assertion has been shown in part iii) of (Steinwart, 2015b, Lemma A.4.1).
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iii). We first note that using part ii) of (Steinwart, 2015a, Theorem 2.7) with ε∗ := ε
and ρ = ρ∗ + ε∗ we find |Cτ (M−δ

ρ )| = |C(Mρ)| = 2. Moreover, we have

d(A1,ρ, A2,ρ) = τ∗Mρ
= 3τ∗(ε) ≥ τ > ψ(δ) = 3cthickδ

γ > ψ∗
Mρ

(δ) ≥ δ , (44)

where the last inequality follows from (Steinwart et al., 2021, Lemma 8.5) since Assumption
M implies Assumption P, and hence X is connected. Consequently, part v) of (Steinwart,
2015b, Lemma A.3.1) yields

M−δ
ρ =

(
A1,ρ ∪A2,ρ

)−δ
= A−δ

1,ρ ∪A−δ
2,ρ , (45)

and we additionally note that (44) implies

d(A−δ
1,ρ, A

−δ
2,ρ) ≥ d(A1,ρ, A2,ρ) ≥ τ . (46)

Now let A1 and A2 be the two τ -connected components of Cτ (M−δ
ρ ). Let us assume that

A1 6= A−δ
1,ρ and A1 6= A−δ

2,ρ. Then (45) shows that there exist x′ ∈ A1 ∩ A−δ
1,ρ and x′′ ∈

A1 ∩ A−δ
2,ρ. Since A1 is τ -connected, there further exist x1, . . . , xn ∈ A1 with x1 = x′,

xn = x′′ and d(xi, xi+1) < τ for all i = 1, . . . , n − 1. By x1 ∈ A−δ
1,ρ, xn ∈ A−δ

2,ρ, and (45)

we conclude that there is an i = {1, . . . , n− 1} with xi ∈ A−δ
1,ρ and xi+1 ∈ A−δ

2,ρ. This gives

d(A−δ
1,ρ, A

−δ
2,ρ) ≤ d(xi, xi+1) < τ , which clearly contradicts (46).

Lemma 27 Let Assumption M be satisfied, and P1 and P2 be defined by (5) for some fixed
ρ† ∈ (ρ∗, ρ∗∗]. Then for i = 1, 2 and ρ ≥ ρ† we have

Mi,ρ =Mρ ∩Ai,ρ† . (47)

Proof of Lemma 27: We first note that since P is normal at all levels ρ > 0, we have
λd(Mρ △ {h ≥ ρ}) = 0 for all λd-densities h of P and all ρ > 0. For a fixed ρ ≥ ρ† > 0.
we can thus find a λd-density h of P such that Mρ = {h ≥ ρ} and Mρ† = {h ≥ ρ†}. Let us
define hi := 1A

i,ρ†
h. Then hi is a λ

d-density of Pi and we have

{hi ≥ ρ} =Mρ ∩Ai,ρ† . (48)

Moreover, we have Mi,ρ = suppλd
(
· ∩ {hi ≥ ρ}

)
, and hence it suffices to show that

Mi,ρ = {hi ≥ ρ}.
For the proof of the inclusion “⊂” we fix an x ∈ Mi,ρ and an open U ⊂ X with x ∈ U .

The definition of the support of a measure then yields

λd(U ∩Mρ) = λd
(
U ∩ {h ≥ ρ}

)
≥ λd

(
U ∩ {hi ≥ ρ}

)
> 0 ,

which in turn implies x ∈Mρ. This showsMi,ρ ⊂Mρ. Moreover, Ai,ρ† is closed by definition
and we further have

λd
(
Ai,ρ† ∩ {hi ≥ ρ}

)
= λd({hi ≥ ρ}) = λd

(
X ∩ {hi ≥ ρ}

)
.
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Since the support of a finite measure is also the smallest closed subset having full measure, we
conclude thatMi,ρ ⊂ Ai,ρ† . Combining the two found inclusionsMi,ρ ⊂Mρ andMi,ρ ⊂ Ai,ρ†

with (48) we have thus found the desired Mi,ρ ⊂ {hi ≥ ρ}.
For the proof of the converse inclusion we fix an x ∈ {hi ≥ ρ} =Mρ∩Ai,ρ† . Moreover, we

fix an open U ⊂ X with x ∈ U , so that it suffices to show λd(U∩{hi ≥ ρ}) > 0. To this end,
we may assume without loss of generality that i = 1. Moreover, since d(A1,ρ† , A2,ρ†) > 0
and x ∈ A1,ρ† we may additionally assume that U ∩ A2,ρ† = ∅. Now, x ∈ Mρ implies

λd(U ∩Mρ) > 0. Let us write Ak := Mρ ∩ Ak,ρ† = {hk ≥ ρ}. This yields Mρ = A1 ∪ A2,
A1 ∩A2 = ∅, and

λd(U ∩A2) ≤ λd(U ∩A2,ρ†) = 0 .

Using the disjoint union U ∩Mρ = (U ∩A1) ∪ (U ∩A2), we conclude that

λd(U ∩ {h1 ≥ ρ}) = λd(U ∩A1) = λd(U ∩Mρ) > 0 .

As mentioned above this shows x ∈M1,ρ.

Lemma 28 Let Assumption M be satisfied, and P1 and P2 be defined by (5) for some fixed
ρ† ∈ (ρ∗, ρ∗∗]. Then, for i = 1, 2, the following statements are true:

i) For ε† := ρ† − ρ∗ and all 0 < δ < τ∗(ε†) and ρ ≥ ρ† we have M+δ
i,ρ =M+δ

ρ ∩A+δ
i,ρ†

.

ii) For all δ > 0 and ρ ≥ ρ† we have M−δ
i,ρ =M−δ

ρ ∩A−δ
i,ρ†

.

Proof of Lemma 28: i). Let ξ : C(Mρ) → C(Mρ†) be the CRM and B1, . . . , Bn be the
connected components of C(Mρ). Without loss of generality we may assume there is an
m ∈ {0, . . . , n} such that ξ(Bj) ⊂ A1,ρ† for all j = 1, . . . ,m and ξ(Bj) ⊂ A2,ρ† for all
j = m+ 1, . . . , n. We define A1 := B1 ∪ · · · ∪Bm and A2 := Bm+1 ∪ · · · ∪Bn. Clearly, this
construction ensures

Ak ⊂ ξ(Ak) ⊂ Ak,ρ† , k = 1, 2. (49)

Moreover, we have Mρ = A1 ∪ A2, and hence we find M+δ
ρ = A+δ

1 ∪ A+δ
2 by part iv) of

(Steinwart, 2015b, Lemma A.3.1). In view of (47), we consequently need to prove that

(
(A1 ∪A2) ∩Ai,ρ†

)+δ
=
(
A+δ

1 ∪A+δ
2

)
∩A+δ

i,ρ†
. (50)

Be begin by observing that

(A1 ∪A2) ∩Ai,ρ† = (A1 ∩Ai,ρ†) ∪ (A2 ∩Ai,ρ†) = Ai , (51)

where we used (49) and A1,ρ† ∩ A2,ρ† = ∅. Similarly, the right-hand side of (50) can be
written as

(
A+δ

1 ∪A+δ
2

)
∩A+δ

i,ρ†
=
(
A+δ

1 ∩A+δ
i,ρ†

)
∪
(
A+δ

2 ∩A+δ
i,ρ†

)
. (52)
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In addition, (49) ensures A+δ
i ⊂ A+δ

i,ρ†
, and by continuing (52) we thus find

(
A+δ

1 ∪A+δ
2

)
∩A+δ

i,ρ†
= A+δ

i ∪
(
A+δ

k ∩A+δ
i,ρ†

)
, k ∈ {1, 2} \ {i} . (53)

Moreover, by part ii) of Lemma 26 we know that A+δ
1,ρ†

and A+δ
2,ρ†

are the two τ -connected

components of M+δ
ρ†

for any τ with δ < τ < τ∗(ε†). Thus, we have A+δ
1,ρ†
∩ A+δ

2,ρ†
= ∅, and

since (49) ensures A+δ
k ⊂ A+δ

k,ρ†
we conclude that A+δ

k ∩ A+δ
i,ρ†

= ∅. Inserting the latter into

(53) gives

(
A+δ

1 ∪A+δ
2

)
∩A+δ

i,ρ†
= A+δ

i . (54)

Now, (50) follows from combining (51) with (54).

ii). This directly follows from combining (47) with (Steinwart et al., 2021, Lemma 8.7).

Proof of Theorem 9: i). We first note that ε∗ ≤ ε∗∗ := ρ∗∗− ρ∗ implies τ∗(ε∗) ≤ τ∗(ε∗∗).
Consequently, part iii) of Lemma 26 applied for ρ := ρ∗∗ gives the assertion.

ii). We begin by showing that the CRMs ξρ+ε : Cτ (M−δ
ρ∗∗) → Cτ (M−δ

ρ+ε) and ξ :

Cτ (M−δ
ρ+ε) → Cτ (M−δ

ρout+ε) are bijective. To this end we consider the following commuta-
tive diagram of CRMs:

Cτ (M−δ
ρ∗∗) Cτ (M−δ

ρout+ε)

Cτ (M−δ
ρ+ε)

✲

❅
❅
❅
❅❅❘ �

�
�

��✒

ξρout+ε

ξρ+ε ξ

Now, part iv) of (Steinwart, 2015b, Theorem A.6.2) shows that ξρout+ε is bijective, and
consequently, ξρ+ε is injective. Moreover, part i) of (Steinwart, 2015a, Theorem 2.7) shows
that 1 ≤ |Cτ (M−δ

ρ+ε)| ≤ 2, and since we already know that |Cτ (M−δ
ρ∗∗)| = 2 and that ξρ+ε is

injective, we conclude that |Cτ (M−δ
ρ+ε)| = 2 and that ξρ+ε is bijective. Using the diagram

we then see that the CRM ξ is also bijective.

Our next goal is to show that the CRM ξ̂ρ : Cτ (M−δ
ρ+ε) → Ĉτ (Lρ) is well-defined and

bijective. To this end, we first recall that our assumption ρ ≤ ρ∗∗ − 3ε together with
(Steinwart, 2015a, Theorem 2.8) gives the following disjoint union:

Cτ (Lρ) = ξ̂ρ
(
Cτ (M−δ

ρ+ε)
)
∪
{
B′ ∈ Cτ (Lρ) : B

′ ∩ Lρ+2ε = ∅
}
.

Consequently, we have ξ̂ρ
(
Cτ (M−δ

ρ+ε)
)
= Ĉτ (Lρ), that is, we can view ξ̂ρ as a surjective CRM

ξ̂ρ : Cτ (M−δ
ρ+ε)→ Ĉτ (Lρ). Similarly, part i) of Theorem 6 ensures

ρout ≤ ρ∗ + ε∗ + 5ε ≤ ρ∗ + 6ε∗ ≤ ρ∗∗ − 3ε ,
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and repeating the reasoning above we see that the CRM ξ̂ρout : Cτ (M−δ
ρout+ε) → Cτ (Lρout)

can be viewed as a surjective CRM ξ̂ρout : Cτ (M−δ
ρout+ε) → Ĉτ (Lρout). Finally, consider the

CRM ξ̆ : Cτ (Lρ)→ Cτ (Lρout). For B ∈ Ĉτ (Lρ) we then have

∅ 6= B ∩ Lρ+2ε ⊂ ξ̆(B) ∩ Lρ+2ε ⊂ ξ̆(B) ∩ Lρout+2ε ,

i.e. ξ̆(B) ∈ Ĉτ (Lρout). Consequently, the restriction ξ̆
|Ĉτ (Lρ)

: Ĉτ (Lρ) → Ĉτ (Lρout) is well-

defined, and obviously also a CRM. In summary, we obtain the following commutative
diagram of CRMs

Cτ (M−δ
ρout+ε) Ĉτ (Lρout)

Cτ (M−δ
ρ+ε) Ĉτ (Lρ)

✲

✻ ✻

✲

ξ̂ρout

ξ ξ̆
|Ĉτ (Lρ)

ξ̂ρ

Now, we have already seen that ξ is bijective, and in addition, part ii) of (Steinwart, 2015b,
Theorem A.6.2) shows that ξ̂ρout is injective. Moreover, our considerations above showed

that ξ̂ρout is surjective, and hence it is bijective. Using the diagram we conclude that

ξ̂ρ : Cτ (M−δ
ρ+ε) → Ĉτ (Lρ) is injective. Since we have already seen that it is surjective, we

conclude that it is indeed bijective.
With the help of these preparations, the first assertion now easily follows from i) and

the bijectivity of ξ̂ρ and ξρ+ε, namely

|Ĉτ (Lρ)| =
∣∣ξ̂ρ ◦ ξρ+ε

(
(Cτ (M−δ

ρ∗∗)
)∣∣ =

∣∣Cτ (M−δ
ρ∗∗)
∣∣ = 2 .

To show the second assertion, we write Bρ
i := ξ̂ρ ◦ ξρ+ε(Vi). This immediately gives Vi ⊂ Bρ

i

for i = 1, 2. Moreover, using the diagram we find

Bρ
i ⊂ ξ̆|Ĉτ (Lρ)

(Bρ
i ) = ξ̆

|Ĉτ (Lρ)
◦ ξ̂ρ ◦ ξρ+ε(Vi) = ξ̂ρout ◦ ξ ◦ ξρ+ε(Vi) = Bi ,

where the latter identity follows from part iii) of (Steinwart, 2015b, Theorem A.6.2).
iii). We first observe that ε† := ρ† − ρ∗ satisfies ε† ≥ ε∗ and by (Steinwart et al., 2021,

Lemma 8.5) we hence find δ ≤ ψ∗(δ) < τ∗(ε∗) ≤ τ∗(ε†). Lemma 28 then shows

M−δ
i,ρ =M−δ

ρ ∩A−δ
i,ρ†

and M+δ
i,ρ =M+δ

ρ ∩A+δ
i,ρ†

.

By the definition of Li,ρ we thus have to show the following two inclusions

M−δ
ρ+ε ∩A−δ

i,ρ†
⊂ Lρ ∩Bi , (55)

Lρ ∩Bi ⊂M+δ
ρ−ε ∩A+δ

i,ρ†
. (56)

We begin by proving (55). To this end, we first observe that (3) ensures M−δ
ρ+ε ⊂ Lρ and

hence it suffices to establish A−δ
i,ρ†
⊂ Bi. Now, we have already observed that τ ≤ τ∗(ε∗) ≤
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τ∗(ε†), and consequently part iii) of Lemma 26 shows that A−δ
1,ρ†

and A−δ
2,ρ†

are the two τ -

connected components ofM−δ
ρ†

. Moreover, part i) of Theorem 6 shows ρout ≤ ρ∗+ε∗+5ε ≤
ρ†−ε, and hence we have ρ†−ε ∈ [ρout, ρ

∗∗−3ε]. Applying (Steinwart, 2015a, Theorem 2.8)

and the already established part ii) to the level ρ† − ε we then obtain A−δ
i,ρ†
⊂ Bρ†−ε

i ⊂ Bi

for i ∈ {1, 2}.
Let us now establish Li,ρ ⊂ Bρ†+2ε

i . Without loss of generality we may assume i = 1.
Now, consider the CRM ξ : Cτ (Lρ∩B1)→ Cτ (Lρ†+2ε∩B1), which is possible since ρ ≥ ρ†+2ε.
Let us assume that there was a B′ ∈ Cτ (Lρ ∩B1) with

ξ(B′) 6⊂ Bρ†+2ε
1 .

Since Bρ†+2ε
1 is a τ -connected component of Lρ†+2ε ∩ B1 by part ii) applied to the level

ρ†+2ε ∈ [ρout, ρ
∗∗−3ε] and ξ(B′) is another such τ -connected component we conclude that

ξ(B′) ∩Bρ†+2ε
1 = ∅. Moreover, our construction and part ii) give

ξ(B′) ∩Bρ†+2ε
2 ⊂ B1 ∩Bρ†+2ε

2 ⊂ B1 ∩B2 = ∅ ,

and therefore part ii) shows ξ(B′) 6∈ Ĉτ (Lρ† + 2ε). Together with ρ ≥ ρ† + 4ε the latter
implies

B′ ∩ Lρ ⊂ B′ ∩ Lρ†+4ε ⊂ ξ(B′) ∩ Lρ†+4ε = ∅ .

Consequently, we have found a contradiction, and therefore we have ξ(B′) ⊂ Bρ†+2ε
1 for

all τ -connected components of L1,ρ = Lρ ∩ B1. Since B′ ⊂ ξ(B′) we have thus found

L1,ρ ⊂ Bρ†+2ε
1 .

Let us now show (56). To this end, we note that (3) ensures Lρ ⊂ M+δ
ρ−ε, and hence it

suffices to prove Lρ ∩Bi ⊂ A+δ
i,ρ†

. Moreover, we have already shown that Lρ ∩Bi ⊂ Bρ†+2ε
i ,

and therefore, it suffices to establish

Bρ†+2ε
i ⊂ A+δ

i,ρ†
.

To this end, recall that we have already observed τ ≤ τ∗(ε∗) ≤ τ∗(ε†). Part ii) of Lemma 26
thus shows that A+δ

1,ρ†
and A+δ

2,ρ†
are the two τ -connected components ofM+δ

ρ†
. Now consider

the CRM ξ : Cτ (Lρ†+2ε) → Cτ (M+δ
ρ†

). Then the τ -connected component Bρ†+2ε
1 of Lρ†+2ε

satisfies Bρ†+2ε
1 ⊂ ξ(Bρ†+2ε

1 ), and therefore, exactly one of the following two conditions is
satisfied

Bρ†+2ε
1 ⊂ A+δ

1,ρ†
, (57)

Bρ†+2ε
1 ⊂ A+δ

2,ρ†
. (58)

However, our construction ensures V1 ⊂ A+δ
1,ρ†

, and part ii) gives V1 ⊂ Bρ†+2ε
1 . This gives

∅ 6= V1 ⊂ Bρ†+2ε
1 ∩A+δ

1,ρ†
, and therefore we can exclude (58). Consequently (57) is true. The

inclusion Bρ†+2ε
2 ⊂ A+δ

2,ρ†
can be shown analogously.
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8.2 Proofs for Section 4

Lemma 29 Let K : Rd → [0,∞) be a symmetric kernel with tail function κ1(·). Moreover,
let P be a λd-absolutely continuous distribution on R

d that is normal at some level ρ ≥ 0.
Then for all x ∈ R

d and σ > 0 with B(x, σ) ⊂Mρ and all δ > 0 we have

hP,δ(x) ≥ ρ− ρκ1(σδ ) (59)

while for all x ∈ R
d and σ > 0 with B(x, σ) ⊂ X \Mρ and all δ > 0 we have

hP,δ(x) < ρ+ δ−dκ∞(σδ ) . (60)

Finally, if P has a bounded density h, then the inequality (59) can be replaced by

hP,δ(x) ≥ ρ− κ1(σδ ) · ‖h‖∞ (61)

whenever 0 ≤ ρ ≤ ‖h‖∞ and (60) can be replaced, for all ρ ≥ 0, by

hP,δ(x) < ρ+ κ1(
σ
δ ) · ‖h‖∞ . (62)

Proof of Lemma 29: Let h be a λd-density of P . For the proof of (59), we first observe
that λd(B(x, σ) \ {h ≥ ρ}) ≤ λd(Mρ \ {h ≥ ρ}) = 0, since P is normal at level ρ. Therefore,
we obtain

∫

B(x,σ)
Kδ(x− y)h(y) dλd(y) =

∫

B(x,σ)∩{h≥ρ}
Kδ(x− y)h(y) dλd(y)

≥ ρ
∫

B(x,σ)∩{h≥ρ}
Kδ(x− y) dλd(y)

= ρ

∫

B(x,σ)
Kδ(x− y) dλd(y) , (63)

and this leads to

hP,δ(x) =

∫

Rd

Kδ(x− y)h(y) dλd(y)

≥ ρ
∫

B(x,σ)
Kδ(x− y) dλd(y) +

∫

Rd\B(x,σ)
Kδ(x− y)h(y) dλd(y)

= ρ

∫

B(x,σ)
Kδ(x− y) dλd(y) + ρ

∫

Rd\B(x,σ)
Kδ(x− y) dλd(y)

− ρ
∫

Rd\B(x,σ)
Kδ(x− y) dλd(y) +

∫

Rd\B(x,σ)
Kδ(x− y)h(y) dλd(y)

≥ ρ− ρ
∫

Rd\B(x,σ)
Kδ(x− y) dλd(y) ,

where in the last step we used (10). Now, the assertion follows from (11), and for a bounded
density h and ρ ≤ ‖h‖∞, the inequality (61) is a direct consequence of (59).

To show (60) we first note that (1) yields

λd
(
B(x, σ) \ {h < ρ}

)
≤ λd

(
(Rd \Mρ) \ {h < ρ}

)
= λd

(
{h ≥ ρ} \Mρ

)
= 0 .
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Analogously to (63) we then obtain

∫

B(x,σ)
Kδ(x− y)h(y) dλd(y) =

∫

B(x,σ)∩{h<ρ}
Kδ(x− y)h(y) dλd(y)

< ρ

∫

B(x,σ)∩{h<ρ}
Kδ(x− y) dλd(y)

= ρ

∫

B(x,σ)
Kδ(x− y) dλd(y) ,

where for the strict inequality we used our assumption that K is strictly positive in a
neighborhood of 0. Adapting the last estimate of the proof of (59) we then find

hP,δ(x) < ρ

∫

B(x,σ)
Kδ(x− y) dλd(y) +

∫

Rd\B(x,σ)
Kδ(x− y)h(y) dλd(y)

= ρ

∫

B(x,σ)
Kδ(x− y) dλd(y) + ρ

∫

Rd\B(x,σ)
Kδ(x− y) dλd(y)

− ρ
∫

Rd\B(x,σ)
Kδ(x− y) dλd(y) +

∫

Rd\B(x,σ)
Kδ(x− y)h(y) dλd(y)

≤ ρ+
∫

Rd\B(x,σ)
Kδ(x− y)h(y) dλd(y) .

Now, for bounded h inequality (62) follows from (11), while in the general case the estimate

∫

Rd\B(x,σ)
Kδ(x− y)h(y) dλd(y) ≤ sup

y∈Rd\B(x,σ)

Kδ(x− y) = δ−dκ∞(σδ )

leads to (60).

Proof of Theorem 11: To prove the first inclusion, we fix an x ∈ M−2σ
ρ+ε+ǫ This means

x /∈ (Rd \Mρ+ε+ǫ)
+2σ, i.e., for all x′ ∈ R

d \Mρ+ε+ε we have ‖x− x′‖ > 2σ. In other words,
for all x′ ∈ R

d with ‖x− x′‖ ≤ 2σ, we have x′ ∈Mρ+ε+ǫ, i.e., we have found

B(x, 2σ) ⊂Mρ+ε+ǫ . (64)

Let us now suppose that there exists a sample xi ∈ D such that hD,δ(xi) < ρ and ‖x−xi‖ ≤
σ. By ‖hD,δ − hP,δ‖∞ < ε we then find

hP,δ(xi) < ρ+ ε . (65)

On the other hand, ‖x− xi‖ ≤ σ together with the already shown (64) implies B(xi, σ) ⊂
Mρ+ε+ǫ by a simple application of the triangle inequality. Consequently, (59) together with
ǫ ≥ ρκ1(

σ
δ ) gives hP,δ(xi) ≥ ρ+ ε, which contradicts (65). For all samples xi ∈ D, we thus

have hD,δ(xi) ≥ ρ or ‖x−xi‖ > σ. Let us assume that we have ‖x−xi‖ > σ for all xi ∈ D.
Then we find

hD,δ(x) =
1

n

n∑

i=1

δ−dK
(x− xi

δ

)
≤ 1

n

n∑

i=1

δ−dκ∞(σδ ) = δ−dκ∞(σδ ) ≤ ρ . (66)
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On the other hand, we have B(x, σ) ⊂ B(x, 2σ) ⊂Mρ+ε+ǫ and therefore (59) together with
ǫ ≥ ρκ1(σδ ) gives hP,δ(x) ≥ ρ+ε. By ‖hD,δ−hP,δ‖∞ < ε we conclude that hD,δ(x) > ρ, which
contradicts (66). Therefore there does exist a sample xi ∈ D with ‖x− xi‖ ≤ σ. Using the
inclusion (64) together with the triangle inequality we then again find B(xi, δ) ⊂ Mρ+ε+ǫ,
and hence (59) yields hP,δ(xi) ≥ ρ + ε. This leads to hD,δ(xi) ≥ ρ, and hence we finally
obtain

x ∈ {x′ ∈ D : hD,δ(x
′) ≥ ρ}+σ = LD,ρ .

Finally, if h has a bounded density, then we have Mρ = ∅ for ρ > ‖h‖∞ and therefore
M−2σ

ρ+ε+ǫ ⊂ LD,ρ is trivially satisfied. Moreover, to show the assertion for ρ ≤ ‖h‖∞, we
simply need to replace (59) with (61) in the proof above.

To prove the second inclusion, we pick an x ∈ LD,ρ. By the definition of LD,ρ, there then
exists an xi ∈ D such that ‖x−xi‖ ≤ σ and hD,δ(xi) ≥ ρ. The latter implies hP,δ(xi) > ρ−ε.

Our first goal is to show that Mρ−ε−ǫ ∩ B(xi, σ) 6= ∅. To this end, let us assume
the converse, that is B(xi, σ) ⊂ R

d \Mρ−ε−ǫ. By (60) and ǫ ≥ δ−dκ∞(σδ ) we then find
hP,δ(xi) < ρ − ε, which contradicts the earlier established hP,δ(xi) > ρ − ε. Consequently,
there exists an x̃ ∈Mρ−ε−ǫ ∩B(xi, σ), which in turn leads to

d(x,Mρ−ε−ǫ) ≤ ‖x− x̃‖ ≤ ‖x− xi‖+ ‖xi − x̃‖ ≤ 2σ .

This shows the desired x ∈ M+2σ
ρ−ε−ǫ. Finally, to show the assertion for bounded densities,

we simply need to replace (60) with (62) in the proof above.

For the proof of Lemma 14 we need to recall the following classical result, which is a
reformulation of (van der Vaart and Wellner, 1996, Theorem 2.6.4).

Theorem 30 Let A be a set of subsets of Z that has finite VC-dimension V . Then the set
of indicator functions G := {1A : A ∈ A} is a uniformly bounded VC-class for which we
have B = 1 and the constants A and ν in (17) only depend on V .

We also need the next result, which investigates the effect of scaling in the input space.

Lemma 31 Let G be set of measurable functions g : R
d → R such that there exists a

constant B ≥ 0 with ‖g‖∞ ≤ B for all g ∈ G. For δ > 0, we define gδ : Rd → R by
gδ(x) := g(x/δ), x ∈ R

d Furthermore, we write Gδ := {gδ : g ∈ G}. Then, for all ǫ ∈ (0, B]
and all δ > 0, we have

sup
P
N (G, L2(P ), ǫ) = sup

P
N (Gδ, L2(P ), ǫ) ,

where the suprema are taken over all probability measures P on R
d.

Proof of Lemma 31: Because of symmetry we only prove “≤”. Let us fix ǫ, δ > 0 and
a distribution P on R

d. We define a new distribution P ′ on R
d by P ′(A) := P (1δA) for

all measurable A ⊂ R
d. Furthermore, let C′ be an ǫ-net of Gδ with respect to L2(P

′). For
C := C′

1/δ, we then have |C| = |C′|, and hence it suffices to show that C is an ǫ-net of G with

respect to L2(P ). To this end, we fix a g ∈ G. Then gδ ∈ Gδ, and hence there exists an
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h′ ∈ C′ with ‖gδ − h′‖L2(P ′) ≤ ǫ. Moreover, we have h := h′1/δ ∈ C, and since the definition

of P ′ ensures EP ′fδ = EP f for all measurable f : Rd → [0,∞), we obtain

‖g − h‖L2(P ) = ‖gδ − hδ‖L2(P ′) = ‖gδ − h′‖L2(P ′) ≤ ǫ,

i.e. C is an ǫ-net of G with respect to L2(P ).

Proof of Lemma 14: The set A := {x + B‖·‖ : x ∈ R
d} of has finite VC-dimension

by (Devroye and Lugosi, 2001, Corollary 4.2) or (Devroye and Lugosi, 2001, Lemma 4.1),
respectively. In both cases, Theorem 30 thus shows that for

G :=
{
K(x− ·) : x ∈ R

d
}

there are constants A and ν only depending on the VC-dimension of A such that

N
(
G, L2(P ), ‖K‖∞ǫ

)
= N

(
‖K‖−1

∞ G, L2(P ), ǫ
)
≤
(
A

ǫ

)ν

for all ǫ ∈ (0, 1] and all distributions P on R
d. Moreover, observe that

Gδ =
{
K(x− δ−1· ) : x ∈ R

d
}
=

{
K
(x′ − ·

δ

)
: x′ ∈ R

d

}
= δdKδ .

Consequently, Lemma 31 leads to

sup
P
N (Kδ, L2(P ), δ

−dǫ) = sup
P
N (δdKδ, L2(P ), ǫ) = sup

P
N (G, L2(P ), ǫ) ≤

(
A‖K‖∞

ǫ

)ν

for all ǫ ∈ (0, ‖K‖∞]. A simple variable transformation then yields the assertion.

Proof of Lemma 15: We first recall that if A ⊂ E is a compact subset of some Banach
space E and T : A → F is a α-Hölder continuous map into another Banach space F then
we have

N
(
T (A), ‖ · ‖F , |T |αǫα

)
≤ N

(
A, ‖ · ‖E , ǫ

)
, ǫ > 0 ,

where |T |α is the α-Hölder constant of T . We now fix a 0 < δ ≤
( |K|α
‖K‖∞

)1/α
diam‖·‖(X) and

a probability measure P on R
d. For x ∈ X we now consider the map kx,δ : Rd → [0,∞]

defined by

kx,δ(y) := Kδ(x− y) = δ−dK
(x− y

δ

)
, y ∈ R

d.

Since K is bounded and measurable, so is kx,δ, and hence we obtain a map T : X → L∞(P )
defined by T (x) := kx,δ. Moreover, T is α-Hölder continuous, since for x, x′ ∈ X, we have

‖T (x)− T (x′)‖∞ = sup
y∈Rd

∣∣∣∣δ
−dK

(x− y
δ

)
− δ−dK

(x′ − y
δ

)∣∣∣∣ ≤ δ−(α+d)|K|α ‖x− x′‖α ,

i.e. we have shown |T |α ≤ δ−(α+d)|K|α. By our initial observation and (19) we then conclude
that

N
(
Kδ, ‖ · ‖L2(P ), |T |αǫα

)
= N

(
T (X), ‖ · ‖L2(P ), |T |αǫα

)
≤ N

(
X, ‖ · ‖∞, ǫ

)
≤ C‖·‖(X)ǫ−d
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for all ǫ ∈ (0, diam‖·‖(X)]. A variable transformation together with our bound on |T |α thus
yields

N
(
Kδ, ‖ · ‖L2(P ), ǫ

)
≤ C‖·‖(X)

( |T |α
ǫ

)d/α

≤ C‖·‖(X)

( |K|α
δα+dǫ

)d/α

for all 0 < ǫ ≤ δ−(α+d)|K|α diam‖·‖(X). Since the assumed δ ≤
( |K|α
‖K‖∞

)1/α
diam‖·‖(X)

implies
δ−d‖K‖∞ ≤

(
diam‖·‖(X)

)α
δ−(α+d)|K|α

we then see that (20) does hold for all 0 < ǫ ≤ δ−d‖K‖∞.

For the proof of Theorem 16 we quote a version of Talagrand’s inequality due to Bousquet
(2002) from (Steinwart and Christmann, 2008, Theorem 7.5).

Theorem 32 Let (Z,P ) be a probability space and G be a set of measurable functions from
Z to R. Furthermore, let B ≥ 0 and σ ≥ 0 be constants such that EP g = 0, EP g

2 ≤ σ2,
and ‖g‖∞ ≤ B for all g ∈ G. For n ≥ 1, define G : Zn → R by

G(z) := sup
g∈G

∣∣∣∣∣∣
1

n

n∑

j=1

g(zj)

∣∣∣∣∣∣
, z = (z1, . . . , zn) ∈ Zn.

Then, for all ς > 0, we have

Pn
({
z∈Zn : G(z) ≥ 4EPnG+

√
2ςσ2

n
+
ςB

n

})
≤ e−ς .

For the proof of Theorem 16 we also need (Giné and Guillou, 2001, Proposition 2.1),
which bounds the expected suprema of empirical processes indexed by uniformly bounded
VC-classes. The following theorem provides a slightly simplified version of that proposition.

Theorem 33 Let (Z,P ) be a probability space and G be a uniformly bounded VC-class on
Z with constants A, B, and ν. Furthermore, let σ > 0 be a constant with σ ≤ B and
EP g

2 ≤ σ2 for all g ∈ G. Then there exists a universal constant C such that G defined in
Theorem 32 satisfies

EPnG ≤ C
(
νB

n
log

AB

σ
+

√
νσ2

n
log

AB

σ

)
.

We are now able to establish the following generalization of Theorem 16.

Proposition 34 Let X ⊂ R
d and P be a probability measure on X with Lebesgue density

h ∈ L1(R
d) ∩ Lp(R

d) for some p ∈ (1,∞]. Moreover, let 1
p + 1

p′ = 1 and q := 1
2p′ =

1
2 − 1

2p
and K be a symmetric kernel. Suppose further that the set Kδ defined in (18) satisfies (21)
for all δ ∈ (0, δ0], where δ0 ∈ (0, 1]. Then, there exists a positive constant C only depending

on d, p, and K such that, for all n ≥ 1, all δ ∈ (0, δ0] satisfying δ‖h‖p
′

p ≤ 4p
′‖K‖∞, and all

ς ≥ 1 we have

Pn

({
D : ‖hD,δ − hP,δ‖ℓ∞(X) <

Cς

nδd
log

C

δa+dq‖h‖1/2p

+

√
C‖h‖pς
δd(1+1/p)n

log
C

δa+dq‖h‖1/2p

})

≥ 1− e−ς .
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Proof of Proposition 34: We define θ := 1
2 + 1

2p . Then K ∈ L1(R
d) ∩ L∞(Rd) leads to

‖K‖2p′ ≤ ‖K‖1−θ
1 ‖K‖θ∞ = ‖K‖θ∞ .

We further define kx,δ := δ−dK
(
δ−1(x− ·)

)
and fx,δ := kx,δ − EPkx,δ. Then we have

EP fx,δ = 0 and ‖fx,δ‖∞ ≤ 2‖K‖∞δ−d for all x ∈ X and δ > 0. Moreover, we have
EP f

2
x,δ ≤ EPk

2
x,δ and thus

EP f
2
x,δ = δ−2d

∫

Rd

K2

(
x− y
δ

)
h(y) dλd(y) ≤ δ−2d‖h‖p

(∫

Rd

K2p′
(
x− y
δ

)
dλd(y)

)1/p′

≤ δ−d(1+1/p)‖h‖p‖K‖2θ∞
=: σ2δ

for all x ∈ X and δ > 0. In addition, for all D ∈ Xn we have

EDfx,δ =
1

n

n∑

i=1

fx,δ(xi) = hD,δ(x)− hP,δ(x) .

Applying Theorem 32 to G := {fx,δ : x ∈ X}, we thus see, for all δ > 0, ς > 0, and n ≥ 1,
that

‖hD,δ − hP,δ‖ℓ∞(X) < 4ED′∼Pn‖hD′,δ − hP,δ‖ℓ∞(X) +
2ς

nδd
+

√
2ς‖h‖p‖K‖2θ∞
nδd(1+1/p)

(67)

holds with probability Pn not smaller than 1− e−ς . It thus remains to bound the term

ED′∼Pn‖hD′,δ − hP,δ‖ℓ∞(X) = ED′∼Pn sup
x∈X

∣∣EDfx,δ
∣∣ .

To this end, we first note that |EPkx,δ| ≤ ‖kx,δ‖∞ = δ−d‖K‖∞ =: Bδ. Consequently, we
have

Fδ := {fx,δ : x ∈ X} ⊂
{
kx,δ − b : kx,δ ∈ Kδ, |b| ≤ Bδ

}
,

and since N ([−Bδ, Bδ], | · |, ǫ) ≤ 2Bδǫ
−1 we conclude that for Ã := max{1, A0} we have

sup
Q
N
(
Fδ, L2(Q), ǫ

)
≤ 2

(
A0‖K‖∞δ−(d+a)

ǫ

)ν

· ‖K‖∞δ
−d

ǫ
≤
(
2Ã‖K‖∞δ−(d+a)

ǫ

)ν+1

for all δ ∈ (0, δ0], ǫ ∈ (0, Bδ], where the supremum runs over all distributions Q on X. Now,
our very first estimates showed ‖fx,δ‖∞ ≤ 2Bδ and EP f

2
x,δ ≤ σ2δ , and since σδ ≤ 2Bδ is

equivalent to
δ ≤ 4p

′‖K‖p′(2−2θ)
∞ ‖h‖−p′

p = 4p
′‖K‖∞‖h‖−p′

p ,

Theorem 33 together with 2θ = 1 + 1/p thus yields

ED′∼Pn sup
x∈X

∣∣EDfx,δ
∣∣

≤ C
(
2(ν+1)‖K‖∞

nδd
log

2Ã‖K‖∞
σδδd+a

+

√
(ν+1)‖h‖p‖K‖1+1/p

∞

2δd(1+1/p)n
log

2Ã‖K‖∞
σδδd+a

)
.
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for such δ. Moreover, we have

log
2Ã‖K‖∞
σδδd+a

= log
2Ã‖K‖∞

δ−d(1+1/p)/2‖h‖1/2p ‖K‖θ∞δd+a
= log

2Ã‖K‖q∞
δa+dq‖h‖1/2p

,

and hence the previous estimate can be simplified to

ED′∼Pn sup
x∈X

∣∣EDfx,δ
∣∣

≤ C
(
4ν‖K‖∞
nδd

log
2Ã‖K‖q∞
δa+dq‖h‖1/2p

+

√√√√ν‖h‖p‖K‖1+1/p
∞

δd(1+1/p)n
log

2Ã‖K‖q∞
δa+dq‖h‖1/2p

)
.

Combining this with (67) gives

‖hD,δ − hP,δ‖ℓ∞(X)

< 4ED′∼Pn‖hD′,δ − hP,δ‖ℓ∞(X) +
2ς

nδd
+

√
2ς‖h‖p‖K‖1+1/p

∞

nδd(1+1/p)

≤ 4C

(
4ν‖K‖∞
nδd

log
2Ã‖K‖q∞
δa+dq‖h‖1/2p

+

√√√√ν‖h‖p‖K‖1+1/p
∞

δd(1+1/p)n
log

2Ã‖K‖q∞
δa+dq‖h‖1/2p

)

+
2ς

nδd
+

√
2ς‖h‖p‖K‖1+1/p

∞

nδd(1+1/p)

≤ C̃ς

nδd
log

C̃

δa+dq‖h‖1/2p

+

√√√√ C̃‖h‖pς
δd(1+1/p)n

log
C̃

δa+dq‖h‖1/2p

with probability Pn not smaller than 1− e−ς .

Proof of Theorem 16: By Proposition 34, it suffices to find a constant C ′ such that

Cς

nδd
log

C

δa+dq‖h‖1/2p

+

√
C‖h‖pς
δd(1+1/p)n

log
C

δa+dq‖h‖1/2p

≤ C ′

√
‖h‖p |log δ| ς
nδd(1+1/p)

. (68)

To this end, we first observe that δa+dq ≤ ‖h‖1/2p C−1 implies Cδ−a−dq‖h‖−1/2
p ≤ δ−2a−2dq,

and thus we obtain log C

δa+dq‖h‖
1/2
p

≤ (2a+2dq) log δ−1. For C ′′ := (2a+2dq)C we therefore

find

Cς

nδd
log

C

δa+dq‖h‖1/2p

+

√
C‖h‖pς
δd(1+1/p)n

log
C

δa+dq‖h‖1/2p

≤ C ′′ς

nδd
log δ−1 +

√
C ′′‖h‖pς
nδd(1+1/p)

log δ−1 .

Moreover, it is easy to check that the assumption |log δ|

nδd/p
′ ≤ ‖h‖p

C′′ς ensures that

C ′′ς

nδd
log δ−1 ≤

√
C ′′‖h‖pς
nδd(1+1/p)

log δ−1 ,

and from the latter we conclude that (68) holds for C ′ := 2
√
C ′′. The assertion now follows

for the constant C ′′′ := max{C,C ′, C ′′}.
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8.3 Proofs for the KDE-Based Clustering in Section 5

Proof of Theorem 17: Let us fix a D ∈ Xn with ‖hD,δ − hP,δ‖∞ < ε/2. By (23) we see
that the probability Pn of such a D is not smaller than 1− e−ς . We define ǫ := ‖h‖∞κ1(σδ ).
In the case of suppK ⊂ B‖·‖ this leads to ǫ = 0 δ−dκ∞(σδ ) = 0 ≤ ρ0 as noted after Theorem
11. Furthermore, in the case of (9), (Steinwart et al., 2021, Lemma 4.2) shows

ǫ = ‖h‖∞κ1(σδ ) ≤ ‖h‖∞κ1(| log δ|2) ≤ cd2 vold e−| log δ|2 | log δ|2d−2 ≤ cd2 vold δ| log δ|−d ≤ ε/2,

where in the third to last step we used 0 < δ ≤ 1 and in the second to last step we used
(Steinwart et al., 2021, Lemma 8.17). In addition, we have δ−dκ∞(σδ ) ≤ cδ−de−| log δ|2 =

cδ| log δ|−d ≤ ε ≤ ρ0. Consequently, Theorem 11 shows, for all ρ ≥ ρ0, that

M−2σ
ρ+ε ⊂ LD,ρ ⊂M+2σ

ρ−ε . (69)

i). The assertion follows from Theorem 7 applied in the case d̃ := 2σ. Indeed, we have
just seen that (40) holds for all ρ ≥ ρ0, if we replace δ by δ̃, and our assumptions guarantee
δ̃ ∈ (0, δthick], ρ0 ≥ ρ∗, and τ > ψ(δ̃) = 3cthickδ̃

γ > 2cthickδ̃
γ . Moreover, (27) follows from

(69).

ii). We check that the assumptions of Theorem 6 are satisfied for δ̃ := 2σ, if ε∗ ≤
(ρ∗∗ − ρ∗)/9. Clearly, we have δ̃ ∈ (0, δthick], ε ∈ (0, ε∗], and ψ(δ̃) < τ . To show τ ≤ τ∗(ε∗)
we write

E := {ε′ ∈ (0, ρ∗∗ − ρ∗] : τ∗(ε′) ≥ τ}.

Since we assumed ε∗ <∞, we obtain E 6= ∅ by the definition of ε∗. There thus exists an ε′ ∈
E with ε′ ≤ inf E + ε ≤ ε∗. Using the monotonicity of τ∗ established in (Steinwart, 2015a,
Theorem A.4.2) we then conclude that τ ≤ τ∗(ε′) ≤ τ∗(ε∗), and hence all assumptions of
(Steinwart, 2015a, Theorem 2.9) are indeed satisfied with δ replaced by δ̃. The assertions
now immediately follow from this theorem.

Proof of Corollary 18: Using Theorem 17 the proof of ii) is a literal copy of the proof of
(Steinwart, 2015a, Theorem 4.1) and the proof of i) is an easy adaptation of this proof.

Proof of Corollary 20: Using Theorem 17 the proof is a simple combination and adap-
tation of the proofs of (Steinwart, 2015a, Theorem 4.3) and (Steinwart, 2015a, Corollary
4.4).

Proof of Corollary 23: Using Theorem 17 the proof is a simple combination and adap-
tation of the proofs of (Steinwart, 2015a, Theorem 4.7) and (Steinwart, 2015a, Corollary
4.8).

Proof of Theorem 24: The definition of εδ,n in (33) together with 4C2
u log log n ≥ C‖h‖∞

ensures that (25) and (26) are satisfied for all δ ∈ ∆. In addition, the assumptions of
Theorem 24 ensure that the remaining conditions of Theorem 17 are satisfied. Now the
assertion follows by some union bound arguments, which are analogous to those of the
proof of (Steinwart, 2015a, Theorem 5.1).
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