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Abstract

We derive and analyze a generic, recursive algorithm for estimating all splits in a finite
cluster tree as well as the corresponding clusters. We further investigate statistical prop-
erties of this generic clustering algorithm when it receives level set estimates from a kernel
density estimator. In particular, we derive finite sample guarantees, consistency, rates of
convergence, and an adaptive data-driven strategy for choosing the kernel bandwidth. For
these results we do not need continuity assumptions on the density such as Holder continu-
ity, but only require intuitive geometric assumptions of non-parametric nature. In addition,
we compare our results to other guarantees found in the literature and also present some
experiments comparing our algorithm to k-means and hierarchical clustering.

Keywords: cluster analysis, kernel density estimation, consistency, rates, adaptivity

1. Introduction

A widely acknowledged problem in cluster analysis is the definition of a learning goal that
describes a conceptually and mathematically convincing definition of clusters. One such
definition, which goes back to Hartigan (1975) and is known as density-based clustering, as-
sumes i.i.d. data D = (x1,...,2,) generated by some unknown distribution P on X C R¢.
Given some level p > 0, the clusters of P are then defined to be the connected components
of the level set {h > p}:={z € X : h(x) > p}, where h is the density of P with respect to
the Lebesgue measure. This single level approach has been studied, for example by Harti-
gan (1975); Cuevas and Fraiman (1997); Rigollet (2007); Maier et al. (2009); Rinaldo and
Wasserman (2010). However, one of the conceptual drawbacks of the single level approach
is that different values of p may lead to different (numbers of) clusters, see Figure 1, and in
addition, there is no general rule for choosing p. To address this conceptual shortcoming,
one often considers the so-called cluster tree approach instead, which tries to consider all
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Figure 1: The single level approach applied to a probability density h on [0,1]. Left. The
level set {h > p;} displayed by the orange horizontal line consists of one connected
component, which results in one cluster for p;. For illustrational purposes, the
part of the graph of h that belongs to this level set is also colored in orange.
Right. For a slightly larger po, the level set {h > pa} consists of two connected
components, which are indicated by the green and purple horizontal lines. As a
result, we obtain two clusters for this level ps.

levels and the corresponding connected components simultaneously, see the left picture in
Figure 2 for an illustration.

There exists a variety of articles investigating properties of the cluster tree approach,
see e.g. (Hartigan, 1975; Stuetzle, 2003; Chaudhuri and Dasgupta, 2010; Stuetzle and Nu-
gent, 2010; Kpotufe and von Luxburg, 2011; Chaudhuri et al., 2014; Wang et al., 2019)
for details. For example, Chaudhuri and Dasgupta (2010) show, under some assumptions
on h, that a modified single linkage algorithm recovers this tree in the sense of Hartigan
(1981), and Kpotufe and von Luxburg (2011); Chaudhuri et al. (2014) obtain similar results
for an underlying k-NN density estimator. In addition, Kpotufe and von Luxburg (2011);
Chaudhuri et al. (2014) propose a simple pruning strategy, that removes connected com-
ponents that artificially occur because of finite sample variability. However, the notion of
recovery taken from Hartigan (1981) only focuses on the correct estimation of the cluster
tree structure and not on the estimation of the clusters itself, cf. the discussion by Steinwart
(2011). Finally, the most recent paper (Wang et al., 2019) establishes guarantees including
rates of convergence for each fixed level set, provided that a kernel-density estimator is used
to produce level set estimates and the density has a certain smoothness such as a-Holder
continuity.

A third approach taken by Steinwart (2011); Sriperumbudur and Steinwart (2012); Stein-
wart (2015a) tries to estimate both the first split p* in the cluster tree, and the corresponding
clusters, see the right picture in Figure 2 for an illustration. As in the previously discussed
papers, finite sample bounds are derived, which in (Steinwart, 2015a) are extended to learn-
ing rates. For example, these learning rates for estimating p* are of the probabilistic form

1
P”<{D€X”:0<p*D—p*<Kan}) >1-——,

n
where p7, is the sample based estimate constructed by the considered algorithm and K is a
constant depending on some assumptions on P. In other words, with high probability, the
algorithm estimates p* up to precision Ka,. The learning rates for estimating the resulting
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Figure 2: A density h on [0,1] and different density-based clustering approaches. Left.
The cluster tree approach considers various, or ideally even all, levels (in grey)
simultaneously, making it superfluous to choose one level in advance. However,
for a given algorithm the difficulty of detecting connected components may change
with the considered level, since, for example, the distances of related connected
components, i.e. clusters having the same color, change with the level as it can be
seen for the second and third level from below. Right. The split tree approach
tries to estimate both the levels at which a split in the infinite, ideal cluster tree
of h occurs and the resulting clusters at these levels. For the depicted h this leads
to the problem of estimating the split levels pj, p5 (drawn in yellow) as well as
the resulting clusters for pj (drawn in green and purple) and for p3 (drawn in
blue and dark pink). Our previous work, see (Steinwart, 2011; Sriperumbudur
and Steinwart, 2012; Steinwart, 2015a) only considered the first split pj and its
clusters.

clusters are of similar probabilistic nature. Moreover, Steinwart (2015a) shows that these
learning rates can also be obtained by an adaptive, fully data-driven hyper-parameter selec-
tion strategy. Unfortunately, however, Steinwart (2011, 2015a) only considers the simplest
possible density estimator, namely a histogram approach, and Sriperumbudur and Stein-
wart (2012) restrict their considerations to compactly supported moving window density
estimates for a-Holder-continuous densities. In addition, the method by Sriperumbudur
and Steinwart (2012) requires the user to know «, and hence it is not data-driven. Finally,
all three papers completely ignore the behavior of the considered algorithm for single cluster
distributions, i.e. for distributions that do not have a split in the cluster tree, and for multi
cluster distributions, i.e. for distributions that have more than one split in the cluster tree.
As a consequence, it remained unclear whether and how a suitably modified version of this
algorithm can be used to estimate the split-tree, i.e. the combination of all levels at which a
split in the cluster tree occurs together with the resulting clusters at these splits. We refer
to Figure 2 for an illustration of such a split tree.

The goal of this paper is to address the discussed issues of Steinwart (2011); Sriperum-
budur and Steinwart (2012); Steinwart (2015a). To be more precise, compared to these
articles, we establish the following new results:

i) For single cluster distributions, we propose a new set of regularity assumptions for
levels p at which the level set {h > p} is small. For example, for bounded densities,
these assumptions roughly speaking guarantee, that the level sets do not frazzle for
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Figure 3: Guarantees provided in previous papers such as Steinwart (2015a) and in this

paper. Left. Steinwart (2015a) etc. only provide guarantees for estimating the
first split level p] and the corresponding clusters. In other words only the light
blue area below the algorithm’s split level estimate pi out is covered. Right. In
this paper we provide guarantees for estimating the entire split tree. To be more
specific, Part i) of Theorem 9 ensures that the generic cluster algorithm works
correctly in the green area between p1 out and a distribution dependent value p?.
On the left hand in the yellow area, Theorem 7 then guarantees, that the cluster
algorithm correctly recognizes that there is no further split in the splitting tree. In
contrast, on the right hand side, Part 4ii) of Theorem 9 makes it possible to reuse
the guarantees of Steinwart (2015a) after some minor technical modifications. As
a consequence, it can be ensured in the gray-blue area on the right hand side that
the algorithm outputs an estimate ps o4 of the second split level p5 together with
estimates for the corresponding clusters. Then in the green area on top of this,
Part i) of Theorem 9 again guarantees that the cluster algorithm works correctly
up to some distribution dependent py. Finally, Theorem 7 ensures in the two
yellow areas at the very top that the cluster algorithm correctly recognizes that

there is no further split in the cluster tree.

levels p close to the maximum | k||« of the density h. Such assumptions were missing
in (Steinwart, 2011; Sriperumbudur and Steinwart, 2012; Steinwart, 2015a).

We present a simple modification of the output behavior of the generic cluster al-
gorithm of Steinwart (2015a) to deal with distributions that do not have a split in
the cluster tree. Based on our new regularity assumptions in i) and the ones from
Steinwart (2015a), we then show that this new cluster algorithm is able to:

a) provide an estimate poyt of the first split level p* if there is one;

b) correctly detect distributions for which there is no such split level;

c¢) construct estimates B; of the clusters A} occurring at the first split level.
Note that from a technical side both a) with finite sample bounds on |pout — p*| and ¢)
with finite sample bounds on A\4(B; A A}) directly follow from Steinwart (2015a), since
our modification of the generic cluster algorithm scans through candidate levels p in

exactly the same way as the original algorithm of Steinwart (2015a) does. Therefore,
the surprising, and compared to (Steinwart, 2015a) new part of our finite sample
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guarantees is the fact that this scanning procedure does not need to be changed for
correctly detecting single cluster distributions in ). Note that a highly beneficial
side-effect of this fact is that our analysis in b) as well as in 7) and iv) below, can
rely on the extensive set of tools developed by Steinwart (2015a).

i11) We then show how the results of i) can be used to estimate the entire split-tree by
recursively applying the new generic cluster algorithm. While from a higher perspec-
tive this result does not seem to be too surprising, it turns out that there are still a
couple of serious technical difficulties involved. In a nutshell, these difficulties relate
to the fact, that the generic algorithm may return an estimate poyt for p* for which the
connected components of {h > pou} are not yet sufficiently apart from each other.
While such an estimate poy for p* is desirable, it also prohibits a direct recursive
application of the results of ). To address this issue, we analyze the behavior of the
generic cluster algorithm above the returned level poyt. In this analysis, which also
goes beyond (Steinwart, 2011; Sriperumbudur and Steinwart, 2012; Steinwart, 2015a),
it turns out, that the algorithm behaves correctly until it reaches a level pt for which
the connected components of {h > p} are sufficiently apart from each other. Above
this level pft, we further show that the results of 4 ) can then be recursively applied,
leading to guarantees for the entire split-tree. We refer to Figure 3 for a detailed de-
scription on how the different guarantees can be combined and how these guarantees
differ from our previous work (Steinwart, 2011; Sriperumbudur and Steinwart, 2012;
Steinwart, 2015a).

Besides these improvements for the generic cluster algorithm we additionally present
the following results:

iv) We show that the new generic cluster algorithm does not only work with an underlying
histogram density estimator (HDEs) as in (Steinwart, 2011, 2015a), but also for a
variety of kernel density estimators (KDEs). Here it turns out that the results of
Steinwart (2015a), including those for the adaptive, fully data-driven hyper-parameter
selection strategy, remain valid for the resulting new clustering algorithm, provided
that the kernel has a bounded support. Moreover, if the kernel has an exponential tail
behavior, then the results remain true modulo an extra logarithmic term, while in the
case of even heavier tails, we show that the rates become worse by a polynomial factor.
Note that compared to Steinwart (2015a), all the results for KDEs are new. Moreover,
the results for KDEs substantially extend the results of Sriperumbudur and Steinwart
(2012), since there a) only moving window kernels were treated, and b) only a-Hélder
continuous densities with known « were considered. In contrast, our new results do
not even require continuous densities, and for this reason, we also obtain significantly
more general results than the currently best results for KDE-based clustering achieved
by Wang et al. (2019). The latter improvement is partially made possible, because
we can rely on the tools of Steinwart (2015a). However, compared to the HDEs in
(Steinwart, 2015a) considering KDEs still requires significant technical efforts such as
finite sample bound for the || - ||o-distance between a KDE and its population version.

v) We discuss in some detail the differences of our results and those of Chaudhuri et al.
(2014) and Wang et al. (2019), which in some sense are the articles closest to ours.
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Here it turns out that, depending on the set of assumptions, sometimes the learning
rates for estimating the split levels obtained by Wang et al. (2019) are better and
sometimes the ones obtained by us are better. However, adaptivity, for example, is
not achieved by Wang et al. (2019). The latter is also true for the paper by Chaudhuri
et al. (2014), but in addition their rates are worse than ours, and in addition, their
set of assumptions is more restrictive.

vi) We present some experiments comparing our algorithm run with either the moving
window kernel or the Epanechnikov kernel to both k-means and hierarchical clustering.
Here, it turns out that our algorithm outperforms the latter two as soon as the sample
size is sufficiently large. In addition, our algorithm is less sensitive to clusters having
different spatial scales.

This paper is organized as follows: In Section 2 we recall the key concepts of Steinwart
(2015a). In Section 3 we first introduce the new regularity assumptions mentioned in 7). We
then introduce and analyze the new generic cluster algorithm as described in 4i). Moreover,
the recursive approach described in 4ii) is analyzed in detail. Section 4 then presents
key uncertain guarantees for level sets generated by KDEs, and Section 5 contains the
material mentioned in 7v), namely finite sample bounds as well as consistency results, rates
of convergence, and an adaptive data-driven strategy for choosing the kernel bandwidth. In
Section 6 we present the comparison to the articles by Chaudhuri et al. (2014) and Wang
et al. (2019), and Section 7 contains the experiments. All proofs can be found in Section 8.

2. Preliminaries

In this section we recall the setup for defining density-based clusters in a general context
from Steinwart (2015a). To this end, let || - || be a norm on R?. Then we denote the closed
unit ball of this norm by B and write By (v,d) := z + 6B). If the norm is known
from the context, we usually write B(z,§) instead. Moreover, the Euclidean norm on R? is
denoted by | - ||2 and for the Lebesgue volume of its unit ball we write voly. Finally, || - ||
denotes the supremum norm for functions.

Let us now assume that we have some A C X C R as well as some norm || - || on R%.
Then, for § > 0 we define the J-tube and §-trim of A in X by

AP = AL = {2z € X : d(z, A) < 5}, and A7 =AY =X\ (X \ AT,

where d(z, A) := infc4 ||z — 2||. We refer to Figure 4 for an illustration of these concepts
as well as to some possible topological changes when going from A to either A*® or A~9.
We further write A for the interior of A and 4 for the closure of A. Moreover, 94 := A\ A
denotes the boundary of A. Obviously, we have AT? = A, and hence also A0 = A.
Furthermore, since 2 — d(z, A) is continuous, A*? is always closed in X and A~ is always
open in X. Note that if A is bounded, we always find compact and convex X C R¢ with
A}‘s = AI'Rtg and A)_(‘s = A&g . Based on this observation and the fact that we usually consider
d € (0,1] in combination with some suitably chosen X, see Assumption P below for details,
we often ignore the surrounding set X. In addition to this notations, we denote the inradius
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Figure 4: Left. A set A in blue together with a §-tube A1? of it in green and a d-trim
A~9 of it in orange, where in both cases we considered the supremum norm in
R2. All three sets are connected. Middle. A set A in blue that consists of
two connected components. This time, however, its 6-tube A1? is connected.
Right. A connected set A in blue, for which its é-trim A~% has two connected
components. In summary, we see that the connected component structure of A
does not necessarily relate to those of AT9 and A~9.

and diameter of a bounded A C R? by inrad A and diam A, respectively, that is

inrad A := sup{r > 0: 3z € A with B(z,r) C A}
diam A := sup{ ||z — 2| : z,2" € A}.

Some interesting properties of these quantities can be found in (Steinwart et al., 2021,
Lemma 8.1 and Lemma 8.2).

Throughout this work, 14 denotes the indicator function of a set A, and A A B the
symmetric difference of two sets A and B. Let us now assume that P is a probability
measure on a closed X C R? that is absolutely continuous with respect to the Lebesgue
measure A\%. Then P has a \%density h and one could define the clusters of P to be the
connected components of the level set {h > p}, where p > 0 is some user-defined threshold.
Unfortunately, however, this notion leads to serious issues if there is no canonical choice of
h such as a continuous version, see the illustrations in (Steinwart, 2015a, Section 2.1). To
address this issue, Steinwart (2015a) considered, for p > 0, the measures

pp(A) = M(AN{h = p}), AeBRY).
Since p, is independent of the choice of h := dP/ d\?, the set
M, = supp pp ,

where supp p, denotes the support of the measure p,, is independent of this choice, too.
For any A%-density h of P, the definition immediately gives

X ({h > p}\ M) = X({h > p} 1 (RY\ M) = iy (R \ M) =0, (1)

i.e. modulo A%-zero sets, the level sets {h > p} are not larger than M,. In fact, M, turns
out to be the smallest closed set satisfying (1) and it is shown in (Steinwart, 2015b, Lemma
A.1.2), that

{(h>pcM,c{h>p} and M, a{h>p}cCd{h>p}.
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Figure 5: Examples of injective, surjective, and bijective of CRMs, which also illustrate
partitions generated by connected components. Left. For A := A’/UA", P(A) :=
{A', A"}, and P(B) := {B}, the CRM ( : P(A) — P(B) is surjective but not
injective. Middle. For B := B’ U B” and the obvious definitions of P(A)
and P(B), the CRM (¢ : P(A) — P(B) is injective but not surjective. Right.
Analogously, for A := A’U A” and B := B'UB”, the CRM ( : P(A) — P(B) is
bijective and hence P(A) is persistent in P(B). In this case the structure of the
cells in A and B have a clear one-to-one relation to each other. Note that in all
cases we further have P(A) = C(A) and P(B) = C(B).

In order to ensure inclusions that are “inverse” to (1), Steinwart (2015a) said that P is
normal at level p if there exist two Ae-densities hy and hsy of P such that

MM, \ {h1 > p}) = X({ha > p} \ M,) = 0.

In particular, if P is normal at level p, then M, and {h; > p} only differ by a Lebesgue zero
set. Moreover, it is shown in (Steinwart, 2015b, Lemma A.1.3)! that P is normal at every
level, if it has both an upper semi-continuous A\%-density h; and a lower semi-continuous
A-density hg. Furthermore, if P has a A%-density h such that A4(0{h > p}) = 0, then
the same lemma shows that P is normal at level p. This implies that essentially all P one
usually thinks of are normal. Finally, if the conditions of normality at level p are satisfied
for some \%densities h; and hy of P, then they are actually satisfied for all A\?-densities h
of P and, as mentioned above, we have A\4(M, A {h > p}) = 0.
The next assumption collects the concepts introduced so far.

Assumption P. We have a A%-absolutely continuous, probability measure P that is normal
at every level. In addition, supp P is compact, and X C R? is a compact and connected set
with (supp P)ﬁ? C X.

Note that the assumption (supp P)+2 C X ensures both AJ”S AJ“S and Ay g = Ags 3 for
all § € (0,1] and A C supp P. In this case, we therefore usually ignore the surroundmg X.

Let us now recall the definition of clusters from Steinwart (2015a). We begin with the
following definition.

Definition 1 Let P(A) and P(B) be partitions of A C B with A # (). Then P(A) is
comparable to P(B), write P(A) C P(B), if, for all A’ € P(A), there is a B' € P(B) with
A CB.

Informally speaking, P(A) is comparable to P(B), if no cell A’ € P(A) is broken into
pieces in P(B). In particular, if P; and Py are two partitions of A, then P; T Ps if and

1. In this lemma, the term “upper normal at level p” means that A*(M, \ {h1 > p}) = 0 for some
density hi := dP/dA? while “lower normal at level p” means A%({hy > p} \ M,) = 0 for some density
he == dP/d\°.
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only if P is finer than P2. Now assume that P(A) and P(B) are two partitions with
P(A) C P(B). Then (Steinwart, 2015b, Lemma A.2.1) shows that there exists a unique
map ¢ : P(A) — P(B) with

Al C (A, A e P(A).

Following Steinwart (2011, 2015a), we call ¢ the cell relating map (CRM) between A and B.
Moreover, if ¢ is bijective, we say that P(A) is persistent in P(B) and write P(A) C P(B).
We refer to Figure 5 for illustrations of persistent and non-persistent partitions.

The first example of comparable partitions come from connected components. To be
more precise, let A C R? be a closed subset and C(A) be the collection of its connected
components. By definition, C(A) forms a partition of A, and if B C R? is another closed
subset with A C B and |C(B)| < oo then we have C(A) T C(B), see (Steinwart, 2015b,
Lemma A.2.3) as well as Figure 5.

Following Steinwart (2015a), another class of partitions arise from a discrete notion of

path-connectivity. To recall the latter, we fix a 7 > 0, an A C R? and a norm || - || on
R?. Then z,2' € A are T-connected in A, if there exist z1,...,z, € A such that z; = =,
xn =" and ||z; — 41| < 7 for all i = 1,...,n — 1. Clearly, being 7-connected gives an

equivalence relation on A. We write C,(A) for the resulting partition and call its cells the
T-connected components of A. It has been shown in (Steinwart, 2015b, Lemma A.2.7), that
C-(A) C C(B) for all A C B and 7 > 0. Moreover, if |C(A)| < oo then C(A) = C,(A) for
all sufficiently small 7 > 0, see (Steinwart, 2015a, Section 2.2) for details.

Following Steinwart (2015a), we can now describe probability measures that can be
clustered.

Definition 2 Let Assumption P be satisfied. Then P can be clustered between p* > 0 and
p** > p*, if for all p € [0, p**], we have |C(M,)| € {1,2} and the following two conditions
are met:

i) If we have |C(M,)| =1, then p < p*.
ii) If we have |C(M,)| =2, then p > p* and C(Mp~) C C(M,).
Using the CRMs (, : C(My+) — C(M,), we then define the clusters of P by
Ar= U ¢4y, ie{1,2},
PE(p*,p**]

where Ay and Aa are the topologically connected components of My« . Finally, we define

T'(e) = % +d(Corte (A1), Gprre(A2)) e (0,p™ — p*. (2)

Definition 2 ensures that the level sets below p* are connected, while for a certain range
above p* the level sets have exactly two components, which, in addition, are assumed to
be persistent, see the right picture in Figure 6 for an illustration. Thus, the topological
structure of M, between the split level p* and an anchor level p™ for p* equals that of
M+ Consequently we can use the connected components of M« to number the connected
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Figure 6: Left. A density h on [0, 1] that can be clustered between pj and pj*. Below
the split level p7, all level sets M), only have one connected component. Between
the split level pi and an anchor level pi* of it, that is for all p € (pi, pi*], all
level sets M, have two connected components (in green and purple). Moreover,
we have persistence C(Mps<) £ C(M,) as indicated by the same color of the
related cells. Taking their unions results in the two clusters A] and A3 at the
split level p}, which are again indicated in green and purple. Finally, note that
7*(¢) equals the distance of the green and purple component at level p* + ¢
modulo the factor 3. Middle. A connected set B with M~ 0 = A'UA". The
resulting CRM ¢ : C(A) — C(B) is only surjective and since the bridge in the
middle narrows faster than linearly, the thickness function has an exponent vy < 1.
Right. Again, a connected set B with M 0 = A’ U A", for which the resulting
CRM ¢ : C(A) — C(B) is only surJectlve This time, however, the thickness
function has an exponent v = 1.

components of M, for p € (p*, p**). This is done in the definition of the clusters A} as well
as in the definition of the function 7*, which essentially measures the distance between
the two connected components at level p* + . We again refer to Figure 6 for some visual
impressions.

The major goal of Steinwart (2011, 2015a) was to design an algorithm that is able to
asymptotically estimate both the correct value of p* and the clusters A} and A5. However,
this algorithm required that the level sets do not have bridges or cusps that are too thin. To
make this precise, let us recall that for a closed A C R?, Steinwart (2011, 2015a) considered
the function ¢% : (0,00) — [0, cc] defined by

P (6) == supd(z, A0), §>0.
z€A

Roughly speaking, 9% (6) describes the smallest radius € needed to “recover” A from A9
in the sense of A C (A7%)%¢, see (Steinwart, 2015b, Section A.5) for this and various other
results on %. In particular, we have ¥ (§) > ¢ for all § > 0 and ¥* () = oo if A7 = 0.
Moreover, 4% behaves linearly, if bridges and cusps of A are not too thin, and even thinner
cusps and bridges can be included by considering sets with ¢% (6) < ¢6” for some fixed ¢ > 1,
v € (0,1] and all sufficiently small § > 0. However, the discussion in (Steinwart, 2015b,
Section A.5) also showed that 7 = 1 can be viewed as the most normal case. Finally, we
refer to Figure 6 for some examples of linear and nonlinear behavior of ¥* that is relevant
for the following definition taken from Steinwart (2015a).

10
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Definition 3 Let Assumption P be satisfied. Then we say that P has thick level sets of
order v € (0,1] up to the level p*™* > 0, if there exist constants cpick > 1 and depick € (0, 1]
such that, for all § € (0, d¢nick] and p € [0, p**], we have

Vi, (6) < Ceniek 07 -

In this case, we call (0) := 3cnickd? the thickness function of P.

Now, the following assumption describes the probability measures we wish to cluster.

Assumption M. The probability measure P can be clustered between p* and p**, see
Definition 2. In addition, P has thick level sets of order v € (0, 1] up to the level p**. We
denote the corresponding thickness function by 1 and write 7* for the function defined in

(2).

The theory developed by Steinwart (2011); Sriperumbudur and Steinwart (2012); Stein-
wart (2015a) focused on the question, whether it is possible to estimate p* and the resulting
clusters for distributions that can be clustered. To this end, it was assumed that we had an
estimation algorithm that constructs, for a given data sets D, level set estimates Lp , for
all p > 0. Moreover, it was assumed that these level set estimates satisfy the guarantees

M,{. C Lp, C M. (3)
for all p € [0, p**] and some €, > 0. Based on these assumptions, a generic cluster algorithm
was developed, where “generic” refers to the fact, that the cluster algorithm does not not
need to know specifics about the construction of Lp ,. Instead, only the guarantees (3) with
known values for € and § are needed. The key result (Steinwart, 2015a, Theorem 2.9) then
specified in terms of € and ¢ how well this algorithm estimates both p* and the clusters A}
and A3. Here the main difficulty of establishing this result arose from the fact no pair of
Mpye, and My, M, er, and M ;‘l need to have the same topological structure in terms of
their connected components. Indeed, parts of these incompatibilities can already be seen in
Figures 1 and 4.

What is missing in this analysis, however, is an investigation of the behavior of the
generic cluster algorithm in situations in which P cannot be clustered because all level sets
are connected. Now observe that the reason for this gap was the notion of thickness: Indeed,
if P is a single-cluster probability measure, i.e. |C(M,)| < 1 for all p > 0, and P has thick
level sets of the order v up to the level p*™* := sup{p : p > 0 and |C(M,)| = 1}, then the
proof of (Steinwart, 2015a, Theorem 2.9) can be easily extended to show that at each visited
level p the algorithm correctly detects exactly one connected component. Unfortunately,
however, the assumption of having thick levels up to the height p** of the peak of h is too
unrealistic, as it requires M, 0 £ () for all p € [0,p**] and & € (0, Ginick], that is, the peak
needs to be a plateau that contains a ball of radius dinick, as the following lemma shows.

Lemma 4 Let A C R¢ be bounded and § > 0. Then Aﬂgg # 0 if and only if 6 < inrad A.

11
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3. A Generic Algorithm for Estimating the Split-Tree

In this section we present a generic algorithm for estimating the entire split-tree. To this
end, we first introduce a new set of assumptions for single-cluster distributions that rule out
irregular behavior of the level sets in the vicinity of the peak of the density. Unlike the naive
approach we have discussed at the end of Section 2, this new set of assumptions includes a
variety of realistic behaviors. In the second step we then present a generic cluster algorithm,
whose only difference to the one in (Steinwart, 2015a) is its output behavior in situations
in which no split has been detected. We then show that this new cluster algorithm, like its
predecessor in (Steinwart, 2015a), correctly identifies a split in the cluster tree. Moreover,
we demonstrate that, unlike the one in (Steinwart, 2015a), the new cluster algorithm also
correctly identifies single-cluster distributions. Finally, we combine these insights to develop
a new generic algorithm for estimating the entire cluster tree.

Let us begin by introducing a new assumption for dealing with single-cluster distribu-
tions.

Assumption S. Assumption P is satisfied and there are p, > 0, v € (0, 1], ¢thick > 1 and
dthick € (0, 1] such that for all p > p, and § € (0, d¢nick|, we have [C(M,)| < 1 as well as:

i) If M # ) then Wiy, (6) < cenickd™-

ii) If M;‘S = (), then, for all ) # A C M;”s and 7 > 2¢gnickd”, we have |C,(A)| = 1.

Note that |C(M,)| < 1 simply means that the level sets of P above p, are either empty
or connected. If they are empty, there is nothing more to assume and in the other case, we
can either have M;‘S # () or Mp*‘; =0. If Mp*‘; # () , then condition 7) ensures that the level
set M, is still thick in the sense of Definition 3, while in the other case M o 9 = (), condition
ii) guarantees that the larger sets M /f % cannot have multiple 7-connected components as
long as we choose 7 in a way that is required in the case of multiple clusters, too. In this
respect note that (Steinwart et al., 2021, Lemma 8.3) shows that for all 6 € (0, d¢nick], there
exists a p > p, with M % = (), and therefore dealing with the case ii) cannot be avoided.

In the case v = 1, Condition i) can also be interpreted in terms on inradius and diameter
as the following lemma shows:

Lemma 5 For compact M C R% and ¢ > 1 the following statements are equivalent:

i) For all § >0 with M= =0 and all ) # A C MT° and 7 > 2¢5, we have |C,(A)| = 1.

it) We have 2(c — 1) inrad M > diam M.

Since by Lemma 4 there only exists some 0 € (0, d¢pick] with M ” o — () if inrad M. » < Othick,
we thus see that for v = 1, Condition i) is equivalent to

2(cthick — 1) inrad M, > diam M, (4)

for all p > p* with inrad M, < dinick. Inequality (4) essentially states that the diameter-
inradius ratio must be bounded for increasing p. Consequently, (4) is satisfied for cipick := 2
if all M, above p, are balls with respect to the considered norm since in this case we have

12
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Figure 7: Contour lines of two continuous densities. The levels p are chosen such that we
have inrad M, € {0,1,2,3,4,5} with respect to the || - ||. Left. Assumption S
is satisfied for v = 1, since, for increasing p, diam M, decays faster than inrad M,
does, and hence (4) holds. Right. Assumption S is not satisfied for v = 1, since
the highest level set satisfies inrad M, = 0 and diam M, > 0, which violates (4).

Algorithm 1 Clustering with the help of a generic level set estimator
Require: Some £,7 > 0 and a start level pg > 0. A decreasing family (L,),>0 of subsets
of X.
Ensure: An estimate of p, or p* and the corresponding clusters.
Lp<po
2: repeat
3 Identify the 7-connected components By, ..., By of L, satisfying B; N L,j2. # 0.
4 p—p+e
5. until M # 1
6
7
8
9

cp—p+2
: Identify the 7-connected components By, ..., By of L, satisfying B; N L,yo. # 0.
. if M > 1 then
return poy; = p and the sets B; fori =1,..., M.
10: else
11:  return pou = po and the set L.
12: end if

2inrad M, = diam M,. Moreover, by increasing cinick we see that (4) remains true if we
distort these balls by bi-Lipschitz continuous maps with constants that can be bounded
independently of p. Analogously, (4) is satisfied, if M, are balls with respect to a fized
norm that is different to the one used for the J-tubes and é-trims in condition 4i). In
addition, if we have a flat plateau at the highest level pyax := sup{p > 0 : M, # 0} <
oo, that is inrad M, .. > 0, then (4) is always satisfied for some cipick > 1 because of
diam M, < diam X < oco. In contrast, (4) is violated, if, for example, inrad M,, .. = 0 and
diam M, . > 0. Finally, for d = 1, we always have 2inrad M, = diam M, for all non-empty
level sets M, since for these |C(M,)| = 1 ensures that M, is an interval. Consequently, for
d =1 Assumption S is satisfied with v = 1, ¢thick = 2, and dgpiec = 1 whenever Assumption
P is satisfied. For two-dimensional examples we refer to Figure 7 for an illustration.

The next task is to formulate a generic algorithm that is able to estimate p* and the
resulting clusters if P can be clustered in the sense of Assumption M and that is also able to

detect distributions that only have one cluster in the sense of Assumption S. We will see in

13
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the following that Algorithm 1 is such an algorithm. Before we present the corresponding
results we first note that the only difference of Algorithm 1 to the algorithm considered
by Steinwart (2015a) is the more flexible start level pg, compared to pg = 0 in (Steinwart,
2015a), and the modified output in Lines 8-12. Indeed, the algorithm in (Steinwart, 2015a)
always produces the return values of Line 9. In contrast, Algorithm 1 distinguishes between
the cases M > 1 and M = 0. While for M > 1 the output of both algorithms exactly
coincide, the new Algorithm 1 now returns py and L, in the case of M = 0. We will see
in Theorem 7 that the latter case typically occurs for P satisfying Assumption S. In this
respect recall that L,, can be viewed as an estimate of M,; and therefore returning L,
makes sense for such distributions.

The next theorem adapts (Steinwart, 2015a, Theorem 2.9) to Algorithm 1. Since the
proof of (Steinwart, 2015a, Theorem 2.9) can be easily adapted to arbitrary start levels
po > 0 and this proof also shows that the case M < 1 is not occurring under the assumptions
of this theorem, we omit the proof of Theorem 6.

Theorem 6 Let Assumption M be satisfied. Furthermore, let e* < (p** — p*)/9 , § €
(0, Otnick), T € (¥(9),7*(e¥)], and € € (0,e*], and py < p*. In addition, let (L,),>0 be a
decreasing family satisfying (3) for all p > po. Then we have:

i) The level pout Teturned by Algorithm 1 satisfies pout € [p* + 2, p* + €* + 5e| and
T —(d) < 377 (pout —p" + 5) )

i1) Algorithm 1 returns two sets By and By and these can be ordered such that we have

2 2
SON(B: & A7) <23 XA (A ) ) XL\ (> )
i=1 i=1
Here, Aﬁ)outﬁ € C(Mp,.+<) are ordered in the sense of A,"OOHHFE C A7

Theorem 6 shows that Algorithm 1 is still able to estimate p* and the corresponding
clusters if the P can be clustered in the sense of Assumption M. The main motivation for
this section was, however, to have an algorithm that also behaves correctly for P that only
have one cluster in the sense of Assumption S. The next theorem ensures such a behavior.

Theorem 7 Let Assumption S be satisfied and (L,)p>0 be a decreasing family of sets L, C
X such that (3) holds for some fized £,6 > 0 and all p > po. If po > p«, § € (0, Stnick), and
T > 2¢tnickd”, then Algorithm 1 returns pg and L.

Note that Theorem 6 requires 7 > ¥ (d) = 3¢thickd”, while Theorem 7 even holds under
the milder assumption 7 > 2c¢hicd”?. Consequently, if we choose a 7 with 7 > 3c¢ipicd”,
then the corresponding assumptions of both theorems are satisfied. Moreover, the additional
assumption 7 < 7*(&*) in Theorem 6 is actually more an assumption on £* than on 7 as we
will see later.

Now assume that the assumptions of Theorem 6 are satisfied and that Algorithm 1
returned poyy and the cluster estimates By, By. Our goal is to apply Algorithm 1 on the
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Algorithm 2 Estimating the split-tree with the help of a generic level set estimator
Require: Some 7 > 0, € > 0 and a start level py > 0.
decreasing family (L,),>0 of subsets of X.

Ensure: Estimates of all splits of the cluster tree and the corresponding clusters.
: Call Algorithm 1 with pg and (L,),>0
if pout > po then

Store the return values of Algorithm 1 in the split-tree

Call Algorithm 2 with pou + € and (L1,,),>0

Call Algorithm 2 with pou + € and (L2 ) >0
else if poy; = 0 then

Store the return values of Algorithm 1 in the split-tree
end if
return split-tree

two detected clusters By and Bs separately, see Algorithm 2. To this end, we define the
new level set estimates

Lz’,p = Lp N B;, 1=1,2, p > pout,

and let the Algorithm 1 run on both families of level set estimates separately. Of course,
we want to use our insights into Algorithm 1, and for this reason, we need to replace (3)
by a suitable new horizontal and vertical control. To find such a new control, let us assume
that Assumption M is satisfied and that we have fixed a p' € (p*, p**]. Moreover, let Ayt
and A2, ot be the two connected components of M, ot - We then define two new “children”
distributions P, and P» by

P(B) = ——— 2~ i=1,2, 5
Z( ) P(Az',pT) ( )
for all measurable B C X. Moreover, for p > 0 we denote the level sets of P and P, by
M , and M; ,, respectively. We can now introduce distributions having a finite split tree.

Definition 8 Let P be a distribution satisfying Assumption P and |C(M,)| < oo for all
p > 0. Moreover, assume that there is a pmax > 0 such that M, =0 for all p > pmax. Then
P has a finite split-tree with minimal step size € > 0, if one of the following two conditions
are satisfied:

i) P satisfies Assumption S.

i) P satisfies Assumption M with p** — p* > €, and for pl = (p** + p*)/2 the two
probability measures Py and Py defined by (5) have a finite split-tree with minimal
step size € > 0.

For example, the distribution shown repeatedly in the introduction, see e.g. Figure 2 for

the split tree of this distribution, can be clustered. Our next goal is to show that Algorithm
2 can be used to estimate the split-tree for distributions having a finite split-tree with some
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unknown minimal step size € > 0. To this end, we need the rather technical Theorem 9
below, which in its formulation requires the sets of 7-connected components of L, that are
identified in Lines 4 and 7 of Algorithm 1, that is, the sets

Cr(Ly) = {B€Cr(L,): BN Ly #0}, p > 0.

Theorem 9 Let Assumption M be satisfied. Furthermore, let e* < (p** — p*)/16, ¢ €
(0, Otnick), T € (¥(9),7*(e¥)], and € € (0,e*], and po < p*. In addition, let (L,),>0 be a
decreasing family satisfying (3) for all p > po. Finally, let pouy be the estimate of p* and
By, By be the cluster estimates returned by Algorithm 1. Then the following statements are
true:

i) We have |C7'(Mp_*£)’ = 2 and the sets Vi := Aii** and Va = Ag_j)** are the two
T-connected components of Mp_*‘f.
it) For all p € [pout, p** — 3€] we have \CAT(LP)| = 2. Moreover, we can order the two
elements B} and BY of C-(L,) such that
V; C BY C B;, i=1,2. (6)
iii) If pT € [p* + &* + 6¢, p** — 5e|, then for all p > p' + 4¢ we have L;, C Bfu25 and
= 4
Mi,p+z—: - Lw; - Mi—j_pfe' (7)

To illustrate Theorem 9, we now define p' := (p** +p*) /2 and assume * < (p** — p*)/16.
For € € (0,e*] we then find p' € [p* + * + 6¢, p** — 5¢] and

p' +4e < 5 + 1 1 +

s

Then we have, p** — 3¢ > p** — 4e* > p** — (p** — p*)/4 = pit, and part i) of Theorem
9 thus shows (6) for all p € [pous, p'T]. Consequently, Algorithm 1, when working with
the level sets (L; ) pE[pout pit]> doES identify exactly one connected component in its Line 3.
In other words, the loop between its Lines 2 and 5 is not left for such p. Moreover, for
p > pit > pl 4 4e part 4ii) of Theorem 9 ensures (7). Consequently, Theorems 6 and 7 can
be applied to Algorithm 1 when working with the level sets (L; ,) p>pit for the distribution
FP;. We refer to Figure 8 for a detailed description of how these guarantees work together.
In summary, these considerations show that Algorithm 2 can be recursively analyzed with
the help of Theorems 6 and 7 to show that Algorithm 2 indeed estimates the split-tree for
all distributions P having a finite split-tree with some unknown minimal step size ¢ > 0.
In particular, for all quantitative guarantees it actually suffices to describe the behavior of
Algorithm 1 for distributions satisfying Assumption S and Assumption M. This insight will
be adopted later in the statistical analysis of Section 5.
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Figure 8: A density of a P that has a finite split-tree with minimal step size ¢ > 0 and the
resulting guarantees. Left. Situation at the lowest split level pj. The distribution
P can be clustered between p} and pi* and the (unnormalized) densities of the
“children” distributions P (green) and P; > (purple) above pJ{ = (p7* + p7)/2
are shown. Assumption S is satisfied by P; 1, while P o satisfies Assumption M.
Algorithm 2 initialized with pg := 0 calls Algorithm 1 in its Line 1, which in
turn returns pi out ~ p7 With p1out > p] and two corresponding clusters denoted
by By, and Bi 2 as guaranteed by Theorem 6. Algorithm 2 stores these in its
Line 3 and continues by calling a second instance of Algorithm 2 with start level

p1,0ut +€ and the family (L1 ,),>0 in Line 4. This instance of Algorithm 2 in turn
calls Algorithm 1 with pi ou + € and the family (L1,,),>0. For p € [pl,out,p?]
with pr = 0.75p] + 0.25p7", that is, for levels between the two cyan lines, Part
ii) of Theorem 9 ensures that Algorithm 1 only detects one cluster Bf in its
loop, see also the calculations following Theorem 9. Consequently, this loop
is not left below pIT. Moreover, for p > p]ﬁ, Part i) of Theorem 9 ensures
Ml_ g . C Ly, C ]\41+ 378, and hence Theorem 7 shows that Algorithm 1 returns its
start level py out +€ and Ly, +e- As a consequence, both if-clauses of the second
instance of Algorithm 2 are not satisfied and the overall program continues at
Line 5 of the first instance of Algorithm 2. There, a third instance of Algorithm 2
is called with p1 out + € and (Lo,,),>0, which in turn begins by calling Algorithm
1 with the same values. Again, Theorem 9 ensures, that for p € [pl’out,p?]
Algorithm 1 only detects one cluster and that for p > pr, the crucial inclusions
M, g . C Lo, C M2Jr g_s are satisfied. Theorem 6 hence ensures that Algorithm
1 returns a pg out & p3 With paout > p5 > p1,ous + € and corresponding clusters
denoted by By 1 and B to the third instance of Algorithm 2. These values are
then stored in the split tree and a fourth and fifth instance of Algorithm 2 are
called with pg out +€ and the newly defined (L(a,1),,)p>0, respectively (L2 9 ,) >0,
given by Ly ;) , := L2 ,N By ;. Right. Assumption S is satisfied for both children
measures occurring at the split p5. As for B; on the left image, the combination
of Theorem 9 and Theorem 7 ensures that Algorithm 1 called by the fourth and
fifth instance of Algorithm 2 with pa out+€ and (L2 ) p>0 returns these values to
these instances of Algorithm 2. Thus, the fourth and fifth instance of Algorithm
2 return to the third instance of Algorithm 2 without any further action, and
in turn the third instance returns to the first instance of Algorithm 2. This
instance then reaches its Line 9, and therefore the overall program terminates

with (p1,0ut, B1, B2) and (p2,out, B2,1, B22) being stored in its split tree.
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4. Uncertainty Control for Kernel Density Estimators

The results of Section 3 provide guarantees as soon as the input level sets satisfy (3).
Steinwart (2015a) has shown that guarantees of the form (3) can be established for the level
sets of histogram-based density estimators. The goal of this section is to show that (3) can
also be established for a variety of kernel density estimators. Our first definition introduces
the considered kernels.

Definition 10 A bounded, measurable function K : R* — [0,00) is called symmetric ker-
nel, if K(x) > 0 in some neighborhood of 0, K (z) = K(—x) for all x € R, and

K(z)d)\i(z) =1. (8)
Rd
For 6 > 0 we write K := 6 “K(67-), and for r > 0 and a norm || - || on R? we define
ki(r) := / K(z) d\%(z), Reo(r):= sup K(x).
R4\ B(0,r) z€RNB(0,r)

We call k1(+) and koo(+) tail functions. Finally, we say that K has a bounded support if
supp K C Bj.|, and that K has an exponential tail behavior, if there exists a constant ¢ > 0
such that

K(x) < cexp(—llz]2) r e R (9)

Recall that the integrability condition (8) is standard for kernel density estimators.
Moreover, kernels of the form K (x) = k(||z||) are always symmetric and if the representing
k : [0,00) — [0,00) is bounded and measurable, so is K. Moreover, if k(r) > 0 for all
r € [0,¢), where € > 0 is some constant, then K(z) > 0 in some neighborhood of 0. In
particular, for k = ¢l ;) we obtain the “rectangular window kernel”, which is a symmetric
kernel with bounded support, and if & is of the form k(r) = cexp(—r2) or k(r) = cexp(—r),
then we obtain a symmetric kernel with exponential tail behavior. Examples of the latter
are Gaussian kernels, while the triangular, the Epanechnikov, the quartic, the triweight,
and the tricube kernels are further examples of symmetric kernels with bounded support.
Finally note that each symmetric kernel with bounded support also has exponential tail
behavior, since we always assume that K is bounded.

Given a kernel function K, it is standard in kernel density estimation to consider the
modified versions K of K with § — 0 for increasing sample sizes n, see for example (Devroye
and Lugosi, 2001). Roughly speaking, this is because one can show that the infinite-sample
kernel density estimator hps defined below in (13) converges to the density h for 6 — 0.
Also note that for the kernels discussed above and § € (0,1), these versions K; are more
narrow than the original function K.

Before we proceed with our main goal of establishing (3) let us briefly discuss a couple
of simple properties of symmetric kernels K in the sense of Definition 10. To this end, we
first note that the properties of the Lebesgue measure A? ensure that

Ks(x—y)d\iy) = | K@—y)d\(y)= | Ky—z)d\(y) =1 (10)
Rd Rd Rd
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for all z € R%, § > 0, and then by an analogous calculation we obtain

/ Kj(x — ) dN(y) = / K(y) d\(y) = m1(2). (11)
R4\ B(z,0) R4\ B(0,0/6)

In addition, we always have x1(r) — 0 for r — oo and if K has bounded support, then the
tail functions with respect to this norm satisfy

k1(r) = Koso(r) =0, r>1. (12)

Moreover, for kernels with exponential tail, (Steinwart et al., 2021, Lemma 4.2) shows
that the behavior of the tail functions can be bounded by r1(r) < cd?volge "r?1 and
Koo(r) < ce™".

Now, let K be a symmetric kernel on R? and P be a distribution on R%. For § > 0 we
then define the infinite-sample kernel density estimator hpg : R? — [0,00) by

hps(z) =04 g K(f‘ ; y) dP(y) z e R (13)

It is easy to see that hps > 0 is a bounded measurable function with ||hps|jec < 0% K |sc-
Moreover, a quick application of Tonelli’s theorem together with (10) yields [|hps][ 1, (1) = 1,
and hence hps is a Lebesgue probability density. Moreover, if P has a Lebesgue density
h, then it is well-known, see e.g. (Devroye and Lugosi, 2001, Theorem 9.1), that ||hps —
hllz,(xay = 0 for § — 0. In addition, if this density is bounded, then (10) yields

_ T —
Ihpslloe = sup 5= | K (*=2 ) h(y) dN(y) < [hl]oc sup / Ks(x —y) d\(y)
zER4 Rd reRd JR4

= |[loo -

Clearly, if D = (x1,...,z,) € X" is a data set, we can consider the corresponding empirical
measure % >oity 0z,, where 0, denotes the Dirac measure at z. In a slight abuse of notation
we also denote this empirical measure by D. The resulting function hp s : R? — R, called
kernel density estimator (KDE), can then be computed by

1 — Tr—x;

One way to define level set estimates with the help of hp s is a simple plug-in approach,
that is

Lp,:={hps > p}. (14)

While from a statistical perspective, this level set estimator is perfectly fine, it is also
computationally intractable. For example, if hp s is a moving window estimator, that is
K(z) = cljgqy(||z]]) for z € R?, then the up to 2" different level sets (14) are generated by
intersection of balls around the samples, and the structure of these intersections may be
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too complicated to compute 7-connected components in Algorithm 1. For this reason, we
consider level set estimates of the form

LD,p = {.%' eD: hD,5('T) > p}+07 (15)

where o > 0. Note that computing connected components of (15) is indeed feasible, since
it amounts to computing the connected components of the neighborhood graph, in which
two vertices z; and z; with i # j have an edge if ||z; —z;|| < o +7. In particular, DBSCAN
can be viewed as such a strategy for the moving window kernel.

With these preparations we can now present our first result that establishes a sort of
uncertainty control (3) for level set estimates of the form (15).

Theorem 11 Let || - || be some norm on RY, K : R? — [0,00) be a symmetric kernel, and
k1(+) and keo(+) be its associated tail functions. Moreover, let P be a distribution for which
Assumption P is satisfied, and D be a data set such that the corresponding KDFE satisfies
|hps — hpslles < € for some e >0 and § > 0. For p >0 and o > 0 we define

Lp,:={z€D:hps(x)>p}’
and € := max{pr1(%),0 %o ($)}. Then, for all p > 6 Ukoo(%), we have

M, . CLp,CM™ (16)

p—e—e"

Moreover, if P has a bounded density h, then (16) also holds for € = [|h||cck1(5)-

If K has bounded support for the norm considered in Theorem 11, Equation (12) shows
that (16) actually holds for e = 0 and all p > 0 and all 0 > 4. Therefore, we have indeed (3)
with ¢ replaced by 20. In general, however, we have an additional horizontal uncertainty e
that affects the guarantees of Theorem 6. To control this influence, our strategy will be to
ensure that e < e, which in view of € = [|h[|oo#1(§) means that we need to have an upper
bound on £1(+) and o.

Theorem 11 tells us that the uncertainty control (16) is satisfied as soon as we have a
data set D with ||hp s —hps|lec < €. Recall that rates for |hp s — hps|lec — 0 have already
been proven by Giné and Guillou (2002). However, these rates only hold for n > ng, where
ng may depend on D. In addition one needs to choose a sequence (d,) of bandwidths a-
priori, which excludes adaptivity as we will see below. Finally, the theory developed by
Steinwart (2015a) requires bounds of the form ||hps — hps|leo < €(6,n,<) that hold with
probability not smaller than 1 — e~¢. Thus, the results of Giné and Guillou (2002) are not
suitable for our purposes. To establish suitable bounds, we need to recall some notions first.

Definition 12 Let E be a Banach space and A C E be a bounded subset. Then, for all
€ > 0, the covering numbers of A are defined by

N(A, H . HE,E) = 1nf{n >1:dx,...,2, € E such that A C U(l’z +€B”|)},
=1

where inf () :== oco. Furthermore, we use the notation N'(A, E,¢) == N (A, | - ||, ¢).
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We now introduce the kind of covering number bound we will use in our analysis.

Definition 13 Let (Z, A) be a measurable space and G be a set of measurable functions
from Z to R for which there is a B > 0 with ||g|lcc < B for all g € G. Then G is called a
uniformly bounded VC-class, if there are A > 0 and v > 0 such that, for every distribution
P on Z we have

N (G, La(P),€) < (AB)V , 0<e<B. (17)

€

Let us briefly look at two important, sufficient criteria for ensuring that the set of
functions

Ks = {Ks(x—-):z € X} (18)
is a uniformly bounded VC-class. The first such result considers moving window kernels.

Lemma 14 Consider the kernel K = clp , where | - || is either the Euclidean- or the
supremum norm. Then for all § > 0 the set K5 defined by (18) is a uniformly bounded
VC-class with B := 64| K||oc = 0~ % and A and v being independent of §.

The next lemma shows that Holder continuous kernels also induce a uniformly bounded
VC-class K5, provided that the input space X in (18) is compact. For its formulation we
need to recall that for every norm ||-|| on R? and every compact subset X C R? there exists
a finite constant Cj,(X) > 0 such that for all 0 < & < diam.;;(X) we have

N |- [l e) < Cpy(X)e . (19)

Lemma 15 Let K : R? — [0,00) be a symmetric, a-Hélder continuous kernel and || - ||
be a norm on RY. We write |K|, for the corresponding a-Hélder constant. Moreover,
let X C R? be a compact subset and K defined by (18). Then for all 6 > 0 with § <

(Illfl((l‘ljo)l/a diam. (X), all 0 <e < B := 6 K||oo, and all distributions P on R we have

d/a
Ko ) : (20)

jatde

N(Kg,LQ(P),e) < C||,(X)<

In other words, Ks is a uniformly bounded VC-class with v := d/a and constant A :=
(Cp () Kol K[| 67

Now, the second main result of this section establishes a finite sample bound on the
norm ||hp s — hpsllco. Later we will combine it with Theorem 11.

Theorem 16 Let X C R? and P be distribution on X that has a Lebesque density h €

L1(RY) N Ly(RY) for some p € (1,00]. We write %4— 1% = 1. Moreover, let K : R — [0, 00)
be a symmetric kernel for which there is a §p € (0,1] such that for all § € (0,dp] the set K
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defined in (18) is a uniformly bounded VC-class with constants of the form Bs = 6~ K |0,
As = Apd™%, and Ay > 0,a > 0,v > 1 being independent of 8, that is,

—(d+a)\ ¥
A=) o

€

N (s, L2(@)ve) <

holds for all § € (0,d], all € € (0, Bs], and all distributions Q on RY. Then, there exists a
C > 0 only depending on d, p, and K such that, for alln > 1, § > 0, and ¢ > 1 satisfying

1

: Koo [IBllp" " llogé| _ [[hllp
we have
n h||p |log d| ¢ _
P ({D : HhDﬁ - hP7(§ Loo(X) <C Hn(lz(|1+1/p|)}> > 1—e". (23)

For bounded densities, Theorem 16 recovers the same rates as Giné and Guillou (2002).
However, Giné and Guillou (2002) established the rates in an almost sure asymptotic form,
whereas Theorem 16 provides a finite sample bound. Moreover, unlike Giné and Guillou
(2002), Theorem 16 also yields rates for unbounded densities.

5. Statistical Analysis of KDE-based Clustering

In this section we combine the generic results of Section 3 with the uncertainty control for
level set estimates obtained from kernel density estimates we obtained in Section 4. As a
result we will present finite sample guarantees, consistency results, and rates for estimating
split levels p* and the corresponding clusters. In this respect recall the discussion following
Theorem 9, which showed that for deriving guarantees for estimating the split tree with
the help of Algorithm 2 it actually suffices to analyze the behavior of Algorithm 1 for
distributions satisfying Assumption S and Assumption M. Following this insight, we will
focus on such guarantees for Algorithm 1.

Our first result presents finite sample bounds for estimating both p* and the single or
multiple clusters with the help of Algorithm 1. To treat kernels with bounded and un-
bounded support simultaneously, we restrict ourselves to the case of bounded densities, but
at least for kernels with bounded support an adaption to p-integrable densities is straight-
forward as discussed by Steinwart et al. (2021).

Theorem 17 Let P be a distribution with bounded Lebesgue density and with Assumption
P being satisfied. Moreover, let K be symmetric kernel with exponential tail behavior, for
which the assumptions of Theorem 16 hold. For fized § € (0,e!] and 7 > 0, we choose a
o > 0 with

(24)

S ) if supp K C B)|,
~ | 8|logd|?  otherwise.
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and we further assume that this o satisfies both 0 < dnick/2 and T > 1p(20). Moreover, for
fized ¢ > 1, n > 1 satisfying the assumptions (22), we pick an € > 0 satisfying the bound

C [||h]leo |logd|s
> ) — =
=3 ndd ’ (25)

and if K does not have bounded support, also
e > max{1,2d’volg} - c- §llogdl=d (26)

Now assume that for each data set D € X™ sampled from P™, we feed Algorithm 1 with
the level set estimators (Lp ,),>0 given by (15), the parameters T and €, and a start level
po > €. Then the following statements are true:

i) If P satisfies Assumption S and py > ps«, then with probability P™ not less than 1 —e™°

Algorithm 1 returns pg and Lo and with M L= Up>p* M, we have

X (Lpy & My,) < A (MFE2N\ M,,) + XM, \ M, %) . (27)

it) If P satisfies Assumption M and we have an
e* > e+inf{e' € (0,p™ — p]: 77(e') > 7}. (28)

with 9* < p** — p*, then with probability P™ not less than 1 —e™°, we have a D € X"
such that the following statements are true for Algorithm 1:

(a) The returned level pp out satisfies both pp out € [p* + 2¢, p* +€* + be] and
T—1(20) < 377 (prut —p" + 5) )

(b) Two sets B1(D) and Ba(D) are returned and these can be ordered such that for

App owite € C(Mpp, i +¢) ordered in the sense of A . C Af we have

2 2
SN(BID) & A7) <23 N(AN (AL, 1))+ N> ).
=1 =1

(29)

For our subsequent asymptotic analysis we note that the assumptions § € (0,e~!] and
¢ > 1 of Theorem 17 show that (26) is satisfied if

hllo
max{1,2d* volg} - c- §llogdl+d/2 < % ||1’|L| ; (30)

and if we choose § in terms of n, i.e., § = J,, then (30) is satisfied for large n if 6, € O(n™%)
for some small @ > 0. We shall see below, that such rates for é,, are typical.

While (24) only provides a lower bound on possible values for o, Theorem 17 actually
indicates that o should not be chosen significantly larger than these lower bounds, either.
Indeed, the choice of o also implies a minimal value for 7 by the condition 7 > ¢(20), which
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in turn influences £* by (28). Namely, larger values of o lead to larger 7 and thus to larger
e*. As a result, the guarantees in (a) become weaker, and in addition, larger values of o
also lead to weaker guarantees in (b). For a similar reason we do not consider kernels K
with heavier tails than (9). Indeed, if K only has a polynomial upper bound for its tail,
i.e., there are constants ¢ and o > d with

K(z) <c-|z[*, z eR?,

then 1(r) < %% and koo (r) < 7~ Now, if we picked o = |log 6| for some b > 0, then
we would need to replace (26) by a bound of the form & ~¢|log§|~®* < ¢, and this would
rule out € — 0 for 4 — 0. As a result, no rates would be possible. Now, one could address
this by choosing o := 6° for some b € (0,1), which in turn would require a bound of the
form & §*(1=0)~=4 < ¢ instead of (26). Arguing as around (30) this is guaranteed if

asse-b—-d2 o C [llhlls
Py 2 n b

and if § — 0 the latter would require b < 1 — %. In particular, b would be strictly bounded
away from 1. However, such a choice for o would significantly weaken the guarantees given
in (a) and (b) as explained above, and as a consequence, the rates obtained below would be
worse. Note that from a high-level perspective this phenomenon is not surprising: indeed,
heavier tails smooth out the infinite sample density estimator hps and as consequence,
the uncertainty guarantees (16) become worse in the horizontal direction, i.e., we get more
blurry estimates Lp , of M,. However, for the detection of connected components at a level
p, less blurry estimates are preferable.

In the remainder of this section, we illustrate how the finite sample guarantee of Theorem
17 can be used to derive both consistency and rates. We begin with the following result.

Corollary 18 Let P be a distribution with bounded Lebesque density and with Assumption
P being satisfied. Moreover, let K be a symmetric kernel with exponential tail behavior, for
which the assumptions of Theorem 16 hold. Let (6,) be a positive sequence with §, < n~*
for some a > 0 and pick a null sequence (oy,) satisfying (24) for all sufficiently large n.
Moreover, let (e,,) and (7,) be positive null sequences with 1(20,) < T, for all sufficiently
large n, and

logd,t 0

im
n—o0 ng%dﬁl

Now assume that for each data set D € X™ sampled from P", we feed Algorithm 1 with the
level set estimators (Lp,),>0 given by (15), the parameters 7, and e,, and the start level
po ‘= &pn. Then the following statements are true:

i) If P satisfies Assumption S with p, = 0, then for all € > 0 we have

lim P”({D €X":0< ppout < e}) —1,

n—oo

and if X2({h > 0} \ {h > 0}) = 0 we also have

lim P"({D € X" X(Lp,pp o, 5 {h >0} S e}) =1,

n—oo
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it) If P satisfies Assumption M, then, for all € > 0, we have

n—oo

lim P"({DeX":0<pp—p <e}) =1,
and, if N(AF U A3\ (A} U A3)) = 0, we also have, for Bi(D), Bz(D) as in (29):

lim P"({D e X" AXY(By(D) & A}) + AXU(By(D) & A}) < e}> —1.

n—o0

Our next goal is to establish rates of convergence for estimating p* and the clusters. We
begin with a result providing a rate of p;, — p*. To this end we need to recall the following

definition from Steinwart (2015a) that describes how well the clusters are separated above

pr.

Definition 19 Let Assumption M be satisfied. Then the clusters of P have a separation
exponent x € (0,00], if there is a constant c., > 0 such that for all € € (0,p™ — p*] we
have

7€) 2= Coep gl/x,

Moreover, the separation exponent K is exact, if there is a Csep > 0 such that

() < Cepe”,

g€ (0,p™ —p7].

The separation exponent describes how fast the connected components of M, approach
each other for p \, p*. The “best” separation exponent is kK = oo and in this case we have
d(A7, A3) > Cgeps 1-€. the clusters A7 and A3 do not touch each other.

The separation exponent makes it possible to find a good value for €* in Theorem 17.
Indeed, the proof of (Steinwart, 2015a, Theorem 4.3) shows that the value * 1= e+ (7/cgep)"
satisfies (28) as soon as we have 9¢* < p** — p*. Consequently, the bound in part i) (a) of
Theorem 17 becomes

Qsep

2e < PD,out —P* < 6e + (

~) (31)

if we have a separation exponent k € (0, oo]. Moreover, if the separation exponent x € (0, 00)
is exact and we choose 7 > 21¢)(20), then (31) can be improved to

w4
8 —
4

K

K . T
) < PDout — P =< 6e + <7>

Gcsep Qsop

as the proof of Theorem (Steinwart, 2015a, Theorem 4.3) shows. To establish rates, it
thus suffices to find null sequences (ey,), (6r), (on), and (7,) that satisfy (24) and (25),
and additionally §,, € O(n™) for some a > 0, if K does not have bounded support. The
following corollary presents the resulting rates that are, modulo logarithmic terms, the best
ones we can obtain from this approach.

Corollary 20 Let P be a distribution for which Assumption M is satisfied and whose
Lebesgue density is bounded. Moreover, consider a symmetric kernel K with exponential
tail behavior, for which the assumptions of Theorem 16 hold. In addition, assume that the
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clusters of P have separation exponent k € (0,00). Furthermore, let (€y), (0n), (0n), and
(1) be sequences with

o~ ((10gn)3 -log logn>%
n
o (L8
n

log n\ 35x7a
5n ~ ( ) 2vk+d 7
n

o~ ((10gn)3 : loglogn>m
" n

)

) )

and assume that, forn > 1 D € X™ sampled from P™, we feed Algorithm 1 with the level set
estimators (Lp p)p>0 given by (15), the parameters 7, and €, and the start level py := €.
Then there exists a K > 1 such that for all sufficiently large n we have

— 1
P”({DEX":OSpE—p*SKE,}) >1——.
n
Moreover, if the separation exponent k is exact, there exists another constant K > 1 such

that for all sufficiently large n we have

— 1
P”(EX":KeSnSp*D—p*SKan>21—. (32)
n
Finally, if k = co and supp K C By, then (32) holds for all sufficiently large n, if o = dy,
and

. (logn -loglogn

1 _a
24 and T, ~ (log log n) 3d
n

1
)2 , Op ~ (loglog n)

Note that the rates obtained in Corollary 20 only differ by the factor (logn)? from the
rates in (Steinwart, 2015a, Corollary 4.4). Moreover, if K has a bounded support, then
an easy modification of the above corollary yields exactly the same rates as in (Steinwart,
2015a, Corollary 4.4).

Our next goal is to establish rates for A¥(B;(D) A Af) — 0. Since this is a modified
level set estimation problem, we need to recall some assumptions used in this context. The
first assumption in this direction is one-sided variant of a well-known condition introduced
by Polonik (1995).

Definition 21 Let P be a distribution on X C R? that has a Lebesque-density h. For a
level p > 0, we say that P has flatness exponent 9 € (0, 00], if there is a cgay > 0 with

)\d({() <h—-p<s}) < (caas)?, 5> 0.

Note that the larger 9 is, the steeper h must approach p from above. In particular, for
¥ = o0, the density h is allowed to take the value p but is otherwise bounded away from p.

The second definition describes in some sense the roughness of the boundary of the
clusters.

Definition 22 Let Assumption M be satisfied and o € (0,1]. Then the clusters have an
a-smooth boundary, if there is a cpound > 0 such that, for all p € (p*, p**] and § € (0, dtnick]
we have

Ad((‘A;;J)—HS \ (Alp)_(s) < Cbound(sa )

where i € {1,2} and A; and A,% denote the two connected components of the level set M,.
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Note that in RY, considering av > 1 does not make sense, and for an A C R? with
rectifiable boundary we always have a = 1, see (Steinwart, 2015b, Lemma A.10.4).
The following assumption collects the different properties of P we have introduced.

Assumption R. Assumption M is satisfied and P has a bounded Lebesgue density h.
Moreover, P has flatness exponent J € (0, 00| at level p*, its clusters have an a-smooth
boundary for some « € (0, 1], and its clusters have separation exponent s € (0, co].

With the help of Assumption R we can now establish rates for estimating the clusters,
that is, for \X4(B;(D) A A}) — 0.

Corollary 23 Let Assumption R be satisfied and K be as in Corollary 20. and write
o0 := min{a, Vyk}. Furthermore, let (y,), (0,), and (1,,) be sequences with

Q i 9
En ~ (7105") *"" (loglog n)_g‘-"fﬁ : Oy ~ (—logn fg logn> servd

I

< (logn)? - loglog n) sovd
Op

o~ ((log n)® - (loglogn)? ) 5579
n .
n

n

)

éssume that, for n > 1, we feed Algorithm 1 as in Corollary 20. Then there is a constant
K > 1 such that, for all n > 1 and the ordering as in (29), we have

2 3 2 Yo
p" <D Y X(Bi(D) s AF) < K((log”) - (loglogn) )29“”) >1- L
i=1 " "

Again, the rates obtained in Corollary 23 only differ by the factor (logn)? from the rates
in (Steinwart, 2015a, Corollary 4.8). Moreover, if K has a bounded support, then an easy
modification of Corollary 23 again yields exactly the same rates as in (Steinwart, 2015a,
Corollary 4.8).

Our final goal is to modify the adaptive parameter selection strategy for the histogram-
based clustering algorithm of Steinwart (2015a) to our KDE-based clustering algorithm. To
this end, let A C (0,1] be finite and n > 1, ¢ > 1. For 6 € A, we fix 05, > 0 and 75, > 0
such that (24) and 75, > 21¢(205,,) are satisfied. In addition, we define

|log d|(s + log |A]) loglog n
esm = Oy 5
n

where C,, > 1 is some user-specified constant and the second term can be omitted if the
used kernel K has bounded support. Now assume that, for each 6 € A, we run Algorithm
1 with the parameters e5, and 75,, with the start level py := &5, and with the level set
estimators (Lp,),>0 given by (15). Let us consider a width 6, , € A that achieves the
smallest returned level, i.e.

+ max{1, 2d% volg} - ¢ - §l1o8dl=d (33)

DA € argmin pp s out - (34)
’ JEA

In general, this width may not be unique, and hence we assume in the following that we
have a well-defined choice, e.g. the smallest § € A satisfying (34). Moreover, we write

* .
= Imin
pD,A SEA PD,s,0ut
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for the smallest returned level. Note that unlike the width 67, A, the level pp, o is always
unique. Finally, we define ep A := 6% Am and Tp A = Ts% o n
With these preparation we can now present the following finite sample bound for p*D7 A

Theorem 24 Let P be a distribution for which Assumption M is satisfied and whose
Lebesgue density is bounded. Moreover, consider a symmetric kernel K with exponential
tail behavior, for which the assumptions of Theorem 16 hold. In addition, assume that the
two clusters of P have separation exponent r € (0,00]. For a fived finite A C (0,eY], and
n>1,¢>1, and C, > 1, we define 5, by (33) and 05y, > 0 and 75, > 0 such that (24),
Tom = 20(205,), and 205, < Owick are satisfied for all 6 € A. Furthermore, assume that
4C2loglogn > C||h||o, where C is the constant in (23) and €55+ (Tsn/ Csop)™ < (07 —p*) /9
for all d € A. Then we have

P"({D €X":epa < ppa—p° < %%%1((7'5771/%@)” + 6557,1)}) >1—e°.

Moreover, if the separation exponent k is exact and k < 0o, then we even have
P (D : gnig(cy’fn + 85n) < ppa—p° < gniél(CQTg“n + 6€5n)> >1—e°,
c kl ? ’ c ) ?

where ¢1 1= %(665613)_"“ and ¢z := ¢y, and similarly

P"({D €EX":atpatepa < p*D,A —pF < COTD A +6£D,A}> >1—e"°.

For an adaptive parameter selection strategy, it thus suffices to define appropriate A,
05, and 75,,. Here we proceed as in (Steinwart, 2015a, Section 5). Namely, for n > 16, we
consider the interval

- n loglogn

I - [(logn‘ (loglogn)2>§’ ( 1 )i] (35)

and fix some n~Y%net A,, C I,, of I,, with |A,| < n. Furthermore, for some fixed Cy, > 1
and n > 16, we define o5, by (24), write 75, := 0, logloglogn, and define 5, by (33) for
all § € A, and ¢ = logn. Following the ideas of the proofs of (Steinwart, 2015a, Corollaries
5.2 and 5.3) we then obtain a constant K such that for all sufficiently large n > 16 we have

- 3. 1 2, a5 1
Pn<D:P*D7An < K((logn) (loglogn) )27n+d> 1ot (36)

n n

Here, (36) holds if P has separation exponent x € (0, 00), and if the kernel K has bounded
support, it remains true for kK = oo. In addition, the upper bound in (36) can be matched by
a lower bound that only differs by a double logarithmic factor provided that the separation
exponent k € (0,00) is exact. Finally, if Assumption R is satisfied, we further find

)

(logn)® - (loglog n)Q)m o 1
n - n

2
pr <D S AN(B(D)a A < K(
i=1
for all sufficiently large n > 16, where K is another constant independent of n.
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Finally, we like to mention that the presented adaptive strategy works optimally as long
as all split levels have the same exact separation exponent . Indeed, as described above,
our strategy detects, modulo some logarithmic terms, an asymptotically optimal choice 5*D, A
for the first split level, and since for all other split levels this choice is also asymptotically
optimal as long as they have the same exact separation exponent x, we see that Algorithm
2 is adaptive when using 0}, -

6. Comparisons

In this section we compare our findings to the most closely related papers, namely (Wang
et al., 2019) and (Chaudhuri et al., 2014). In particular, we discuss the different assumptions
as well as the obtained statistical guarantees.

To begin with, let us have a look at the assumptions on P, respectively its density h
made by Wang et al. (2019). Here, we first note that h is assumed to be a-smooth for some
a > 0, that is, h is s := |«]-times continuously differentiable and all partial derivatives of
order s are (a— s)-Holder continuous. In general, h does not need to have compact support,
instead, Wang et al. (2019) only assume that {h > p} is compact for all p > p*, where p*
is the smallest split level, see their Assumptions C and C’, respectively. In this respect
we note that for P having a continuous density their notion of split levels is closely related
to ours and that their Assumption S(k) equals our separation exponent x. Finally, Wang
et al. (2019) do not impose a thickness assumption, instead a so-called inner cone condition
is considered. Recall that this cone condition assumes that constants e; > 0, ¢y > 0, and
r; > 0 exist such that for all split levels p* and all p € (p* — €7, p* + 1) we have

)\d(B(a:,r) N{h>p}) > crr?, x e {h>p},re(0,rf].

In general, it seems unclear how this condition relates to our thickness assumption, but in
many natural situations the inner cone condition and the thickness assumption with v =1
are simultaneously satisfied. For details, we refer to the discussion in (Steinwart, 2015b,
Appendix A.5), the rather generic examples considered in (Steinwart, 2015¢, Appendix
B.2), and the discussion in (Wang et al., 2019, page 15). In the following comparison we
therefore assume that the inner cone condition and the thickness assumption with v = 1
are simultaneously satisfied. In addition, we assume that A has finitely many split levels.

Like our results, the clustering algorithm of Wang et al. (2019) is also based on a kernel
density estimator. However, their central Algorithm 2 is using so-called a-valid kernels,
whose KDEs enjoy the ideal approximation error behavior ||hps — hl|cc = 6% for 6 — 0 and
a-smooth densities h. We refer to (Wang et al., 2019, page 9) for details. Finally, their split
level estimator uses a verification strategy that is similar to Line 3 of our Algorithm 1, see
(Wang et al., 2019, Definition 6).

To compare the split level guarantee of Wang et al. (2019) to ours, we assume that h is
a-smooth, that all split levels have separation exponent «, and that h satisfies the additional
assumptions discussed above. Also, we assume that their Algorithm 2 uses an a-valid kernel.
Then (Wang et al., 2019, Proposition 3) shows that, modulo some logarithmic factors, all
split levels can be estimated with rate n~ 774 . Since we can choose a = k and v =1, these
rate coincide with ours established in Corollary 20 if we again ignore logarithmic factors.
Given any k > 0, however, our results do not require h to be k-smooth, while (Wang
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et al., 2019, Proposition 3) only holds for k-smooth densities. Moreover note that there
are a-smooth densities with x > «, in fact we may have o = 1 and k = oo, and for such
densities, our rates are significantly better than those of Wang et al. (2019). In addition,
our clustering algorithm does not need to use kernels that are aligned with the smoothness
of h, and unlike Wang et al. (2019) we also present a way to make our algorithm adaptive
to the unknown k. Finally, we like to emphasize that apart from Proposition 3, (Wang
et al., 2019) contains several other interesting results, which are, however, not comparable
to ours.

Unlike the comparison to (Wang et al., 2019), the comparison to (Chaudhuri et al.,
2014) turns out to be much more involved, as the latter paper uses assumptions that are
quite different to ours. Providing a detailed comparison is therefore beyond the scope
of this paper and we refer the interested reader to (Steinwart et al., 2021, Appendix A)
for a detailed comparison. To summarize the key points of this comparison, we show
that, up to logarithmic factors, the best possible convergence rate achieved by the central
Theorem VIL5 of Chaudhuri et al. (2014) for estimating the split levels is n~%atd while
our algorithm achieves a rate of niﬁﬂi, which is strictly better for all dimensions, with
« being the Holder-continuity of the underlying density. In particular, our rates can be
achieved without knowing «, while Chaudhuri et al. (2014) do not offer such adaptivity. In
addition, our results can handle discontinuous densities, e.g. step functions on rectangles
with mutually positive distances, while their Theorem VII.5 does not provide any guarantee
at all for such densities. In particular, the consistency results for their unpruned algorithm
require “mild uniform continuity conditions”, see the end of Section IIL.B in (Chaudhuri
et al., 2014), and the guarantees for the pruned algorithm stated in their Theorem VIIL.5
explicitly require control on the uniform modulus of continuity. Finally, apart from split
level estimation, our results also provide guarantees for corresponding clusters in measure
while no such guarantees are in (Chaudhuri et al., 2014).

7. Experiments

In this section, we illustrate the behavior of our generic KDE-based clustering algorithm
on a few artificial data sets for which the ground truth clustering can be computed. In
addition, we compare their performance to k-means and hierarchical clustering.

Data. We consider six cluster problems, which are based on two-dimensional distri-
butions cut down to [0,1]%, with different degrees of difficulty: The first distribution, see
Figure 9, is a mixture of 15 Gaussian distributions and a uniform “background” distribu-
tion. In addition, 12 out of the 15 well-separated distributions have a covariance of the form
Ao, where [s is the 2 x 2-identity matrix and A is some scaling factor, while the remaining
3 Gaussians have a different covariance matrix. Since this distribution was inspired by the
S2-data set of Franti and Virmajoki (2006) we will call it S2 in the following. The second
distribution, see Figure 10, is a modification of the first. Namely, two of the 15 clusters
have been shrunken and moved towards each other, while the remaining clusters have re-
mained unchanged. In the following we call it S2 — modified. The third distribution, called
toy — 3G, is a mixture of 3 Gaussian distribution with similar but not identical covariances,
see Figure 11. Unlike in the first data set, however, the Gaussians are less separated and
less concentrated making this distribution slightly more difficult. The fourth distribution,
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Figure 9: Left. A sample data set (top) of size n = 5000 from S2 and its ground truth
clustering (bottom). Middle-Left. The 25" (bottom) and 75" (top) best run
of kmeans on the S2 data sets. Middle. Corresponding 25" (bottom) and 75"
(top) best runs of hclust. Middle-Right and Right. The 25! (bottom) and
75" (top) best runs of our algorithm for the moving window kernel (middle-right)
and the Epanechnikov kernel (right). All algorithms perform well.

see Figure 12, is based upon the third distribution. To be more precise, two Gaussians
with close-by centers and with small variances have been added. In the following we call
it toy — 5G. The fifth distribution, called bananas, is a variant of the classical bananas, or
two-moon, data distribution, which is often used to assess the clustering performance on
non-centroid-like clusters. Unlike its usual form, however, our variant consists of two very
“fuzzy” bananas, which makes even a visual inspection not immediately obvious, see Figure
13. As a result of this noise, both clusters can be almost perfectly separated by a diagonal
line, and therefore, it is in principle possible to find a decent clustering with the help of
two suitably chosen centroids. The sixth distribution, see Figure 14, is another mixture of
Gaussians. In this distribution, however, each of its three clusters corresponds to a mixture
of two Gaussians that have the same mean but different variances. In addition, the clusters
are “merging”’ into each other, and as a result, this data set can be viewed as the most
challenging one from a visual perspective. In the following, we call it crosses.
For each of the six cluster problems described above and the following sample sizes

n € {2500, 3000, 3500, 4200, 5000, 6000, 7000, 8200, 10000, 14000, 20000} .

we generated 100 data sets. In addition, we also computed the true densities of the 6
distributions on a 1000 x 1000 grid of [0, 1] to find a high-resolution approximation of the
ground truth clustering. Applying these ground true clusters to the data sets, makes it
possible to assess how well the different algorithms work.

Performance Measures. Besides visual inspection we consider two different ways of
comparing clustering algorithms. To describe these comparisons, let us assume that we have
a data set D, ground truth clusters C', ..., Cy C D, and estimated clusters C’l, e C,, C D.
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Figure 10: Left. A sample data set (top) of size n = 5000 from S2 — modified and its
ground truth clustering (bottom). Middle-Left. The 25" (bottom) and 75"
(top) best run of kmeans on the S2—modified data sets. Middle. Corresponding
25! (bottom) and 75 (top) best runs of hclust. Middle-Right and Right.
The 25" (bottom) and 75" (top) best runs of our algorithm for the moving
window kernel (middle-right) and the Epanechnikov kernel (right). Even in the
better runs kmeans and hclust cannot separate the two modified clusters in the
bottom-right, while for our algorithms a problem occurs only for the moving
window kernel in the worse run. Namely, in this case one cluster remained
undetected.

In all experiments we always observed m < k. Since k-means and hierarchical clustering
produce clusterings with Ciu---uCy, = D, while the ground truth clusters do not have
this property for our data sets, we restrict the considered data set to the samples that occur
in both a true and an estimated cluster, that is

Since in general the jth estimated cluster does not relate to the jth ground truth cluster, we
first needed to find a suitable matching, that is an injective map ® : {1,...,m} — {1,... k}.
To this end, we define the matching error to be

|{xEDerf:x¢C<I>'x }|
5(@) — p |D (§(=)) ’
perf’

(37)

where for all © € Dy, we denote by j(z) the unique index j with x € C'j. In other
words, £(®P) equals the fraction of samples z in Dper for which ® does not provide a correct
matching of clusters C'j(x) — Co(j(z))- Note that if @ is a perfect matching in the sense
of C’j N Dpert = Co(jy N Dperr for all j = 1,...,m, then £(®) = 0. For this reason, we
determined a matching ®* that minimizes £(-), where we note that even in the case of
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Figure 11: Left. A sample data set (top) of size n = 5000 from toy—3G and its ground truth
clustering (bottom). Middle-Left. The 25" (bottom) and 75" (top) best run
of kmeans on the toy — 3G data sets. Middle. Corresponding 25" (bottom) and
75! (top) best runs of hclust. Middle-Right and Right. The 25! (bottom)
and 75" (top) best runs of our algorithm for the moving window kernel (middle-
right) and the Epanechnikov kernel (right). All algorithms perform well.

the first two cluster problems this was computationally feasible with the help of a greedy
approach followed by a brute-force calculation over a restricted set of permutations. The
corresponding optimal matching errors £(®*), averaged over all 100 repetitions of each
cluster problem and each considered algorithm, are reported in Figure 15.

At this point let us briefly discuss alternative ways to define the (optimal) matching
error. To this end, we define Cy := D\ (C4,...,C}) and Cy := D\ (C1,...,Cp), that is,
we have Dperf = D\ (CoU C’o). Of course, we could also consider e.g. Dperf := D\ Co in the
definition of (37) by setting ®(0) := 0 for all considered maps ® : {1,...,m} — {1,... k}.
In this alternative, all samples x € Cj \ Cy are additionally counted for the matching error.
Now kmeans and hclust both assign all samples to some estimated cluster, that is, we have
Cy = 0. In other words, all samples x € Cy are automatically counted as an error for both
algorithms. This effect is clearly not desirable in a fair comparison, in particular since for
some distributions such as bananas and crosses the set Cj is substantial, see Figures 13 and
14. Conversely, if we consider D¢ := D \ Cp then (37) additionally counts all samples
z e Cy \ Cy. For kmeans and hclust, this set is empty by design, while our algorithms
usually satisfy ]C‘o \ Co| > 0. Consequently, we would again have an undesirable effect. The
final choice Dyerf := D inherits both issues of the previously considered alternatives.

For the second numerical comparison, we again consider ®*. For this ®*, we counted
the number of ground truth clusters not found by the considered algorithm, that is £ — m,
and added the number of non-covering clusters, that is, the number of clusters C’j that do
not cover at least 50% of the samples in the matched ground truth cluster Cq>*(j) N Dperf-
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Figure 12: Left. A sample data set (top) of size n = 5000 from toy — 5G and its ground
truth clustering (bottom). Middle-Left. The 25t (bottom) and 75" (top)
best run of kmeans on the toy — 5G data sets. Middle. Corresponding 25"
(bottom) and 75" (top) best runs of hclust. Middle-Right and Right. The
25" (bottom) and 75" (top) best runs of our algorithm for the moving window
kernel (middle-right) and the Epanechnikov kernel (right). Both kmeans and
hclust cannot separate the two spatially smaller clusters on the right, and as
result, they are forced to cut through one of the spatially larger clusters. In
contrast, our algorithms perform well.

The averages over the resulting identification errors

‘éj N Cq)(j) N Dperf‘ }‘
Z(®) =k—m+1|<j: <1/2
( ) ‘{j |C<I>(j) mDperf| /

are reported in Figure 16.

Finally, for visual inspection we ordered the 100 results of each of the algorithms de-
scribed below on each of the six cluster problems with n = 5000 with the help of the joint
error £(®*). We then plotted the clusterings on the 25" and 75" best run, see Figures 9 to
14. These visualizations help to understand the sources of the typical errors made by the
individual algorithms.

Algorithms. We implemented an iterative version of Algorithm 2, in which for & =
0,1,... we first computed the 7-connected components of L, . that do not vanish at level
Lyt (k42)e, see also Line 3 of Algorithm 1. With the help of these connected components we
then generated the corresponding cluster tree estimate, where we note that we skipped the
Line 7 of Algorithm 1 since this line has only been inserted into Algorithm 1 to simplify
the form of the statistical guarantees. We then called the resulting cluster tree estimator
for different KDE level set estimators, that is, for different values of §. The first split in
the cluster tree was then obtained by choosing the 0* that resulted in the smallest first
split level. If all split levels have the same separation exponent k, then it asymptotically
suffices to consider this §* for the entire cluster tree. In general, however, splits further
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Figure 13: Left. A sample data set (top) of size n = 5000 from bananas and its ground
truth clustering (bottom). Middle-Left. The 25" (bottom) and 75" (top)
best run of kmeans on the bananas data sets. Middle. Corresponding 25"
(bottom) and 75" (top) best runs of hclust. Middle-Right and Right. The
25" (bottom) and 75" (top) best runs of our algorithm for the moving window
kernel (middle-right) and the Epanechnikov kernel (right). While the implicit
bias of kmeans seems to consistently direct it towards imperfect centroids, the
performance of hclust seems to be rather sensitive to the instance of the data
set. In comparison, our algorithms are less sensitive and perform sufficiently
well even in their worse runs.

up in the tree may have either a different x or at least a different constant cg,,. In these
cases, choosing a different 0 at different splits may be beneficial. We adopted this insight
by considering, after each detected split level p, those § whose estimated cluster tree has
another split level within one of the clusters emerging at p. Among those § we then again
choose the one resulting in the smallest next split level.

We considered 500 geometrically spaced candidate values of § between ¢(In(n)/n)Y/®
and c(In n)_l/ ¢ where in the experiments, the factor ¢ was determined by an estimate of
the median mutual distance between the samples of the considered data set. Notice that
modulo this factor ¢ and some (double) logarithmic terms, this setup coincides with the
theoretically derived one, see (35). Moreover, we considered both a plain moving window
kernel and the Epanechnikov kernel, where in both cases the underlying norm was the
Euclidean distance. Since both kernels have bounded support, we simply chose ¢ := §, see
(24), and € := 3y/||hpslloon 169 for each candidate value 6. Modulo some logarithmic
terms, this choice for € follows our theoretical insights, see (33). Finally, we decided to focus
on thickness guarantees with the most natural choice v := 1, see the detailed discussion
in (Steinwart, 2015b, Appendix A.5), that is, we do not expect the algorithm to correctly
keep clusters together that have thinner cusps or bridges. Based on this decision, we choose
T:=(24¢€) -0 with e = 0.00001, where we note that our theoretical findings actually hold
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Figure 14: Left. A sample data set (top) of size n = 5000 from crosses and its ground truth
clustering (bottom). Middle-Left. The 25" (bottom) and 75" (top) best run
of kmeans on the crosses data sets. Middle. Corresponding 25" (bottom) and
75! (top) best runs of hclust. Middle-Right and Right. The 25! (bottom)
and 75" (top) best runs of our algorithm for the moving window kernel (middle-
right) and the Epanechnikov kernel (right). While the implicit bias of kmeans
seems to consistently direct it towards centroids with sufficiently benign Voronoi
partitions, the behavior of hclust seems to be rather sensitive to the instance
of the data set. In comparison, our algorithm with the moving window kernel
is less sensitive and performs sufficiently well even in its worse runs, while the
Epanechnikov kernel performs less reliably.

true for each value 7 > 26, if one carefully tracks all constants. In addition, this choice
makes it possible that the estimated clusters can be as close as € - § to each other.

Besides our methods we also considered k-means and hierarchical clustering. To this
end, we used the functions kmeans, kmeans++, and hclust of R. Both types of algorithms
have some hyper-parameters, which ideally would be chosen in a data-driven approach. To
ensure fairness for kmeans, kmeans++, and hclust, such data-driven approaches would need
to be calibrated to at least one of our two performance measures £(®*) or Z(®*). However,
we are not aware of any method to reliably estimate these performance measures, or some
calibrated surrogates for them, from data alone and hence we proceeded differently. Namely,
kmeans, kmeans++, and hclust received the correct number &k of ground truth clusters as
an input parameter, and kmeans was repeated with 100 random initializations using the
parameter nstart = 100. In addition, we first considered the 3 different “versions” of
the kmeans function on our data sets and identified the best one with the help of our
performance metrics. Here it turned out that all three “versions” led to very similar results
with Lloyd having a marginal advantage over the over two. In addition, all three versions
produced better results than kmeans++, probably because we used 100 random initializations
for kmeans. Similarly, we considered the 8 different “versions” of hclust. It turned out
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Figure 15: Average matching errors £(®*) for optimal matching ®*, see (37) for the different
cluster algorithms and for different sample sizes. While kmeans and hclust are
essentially not influenced by the sample size, our methods clearly become better
with increasing sample size n.

that ward.D and ward.D2 performed best with a slight advantage of ward.D2, which we then
used in the comparisons.

In the experiments both kmeans and hclust were thus privileged in two ways: a) the
correct number of clusters were given to them, while our algorithms had no information
at all about the cluster problems at hand; and b) the best performing version of kmeans
and hclust were chosen in hindsight, and with respect to our ground-truth performance
measures. In contrast, our algorithms had to choose their hyper-parameters in a fully
adaptive way and without access to ground truth performance measures.

Results. Figures 15 and 16 clearly show that the performance of kmeans and hclust
is almost independent of the data set size n, while our two algorithms heavily depend on n.
For example, on five of the six cluster problems, namely on all but toy — 5G, the matching
errors achieved by our algorithms for n = 2500 are substantially worse than those of kmeans
and hclust and the same is true for the identification errors. For n = 5000, however, the
matching errors of our algorithms are at least as good as those of kmeans and hclust and
on at least four of cluster problems our algorithms clearly outperform kmeans and hclust.
For the identification errors the situation is still mixed, but this is not really surprising, as
the first term k& — m in the computation of Z(®*) vanishes for kmeans and hclust since
the privileged information given to these two algorithms always ensures k¥ = m. Despite
this advantage, our algorithms always achieve identification errors that are as least as good
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Figure 16: Average identification errors Z(®*) for optimal matching ®*. Both kmeans and
hclust have difficulties on the two modified data sets. Our methods become
better with increasing sample sizes and in all cases, nor errors are made for
n > 10000.

as those of kmeans and hclust as soon as we have n > 8.200. Finally, for n > 10000 our
algorithms work almost error free with respect to both performance measures on all six
cluster problems.

In terms of identification errors, both kmeans and hclust have substantial difficulties
with the two modifications S2 — modified and toy — 5G, while on the remaining four cluster
problems they perform almost flawless. A closer visual inspection reveals, that both cluster
algorithms cannot identify the two spatially smaller, close-by clusters in the modifications,
see Figures 10 and 12 and this phenomenon occurs at least on most of the data sets of
e.g., size n = 5000. In comparison, our algorithm with the moving window kernel has some
problems identifying one cluster in S2 — modified, see Figure 10, but this phenomenon does
not occur as often as the the problems of kmeans and hclust. The same observation can
be made for our algorithm working with the Epanechnikov kernel on crosses.

Unsurprisingly, the poor identification error performance of kmeans and hclust on the
two modified cluster problems S2 — modified and toy — 5G directly translate into poor
matching errors. In addition, both algorithms have problems on bananas and on crosses, see
Figure 15. The reasons for these problems are different: While kmeans constantly choose
imperfect centroids on the bananas data sets, see Figure 13, hclust seems to be sensitive
to the particular instance of the data set. The same behavior of both algorithms can be
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observed on crosses, see Figure 14. In comparison, a poor matching error performance of
our algorithms seem to be directly related to the identification errors made in some cases.

8. Proofs

Proof of Lemma 4: Let us first assume that A= # (. Then there exists an z € A~° and
since A~ is open there also exists an € > 0 with B(x,e) C A7, Our first intermediate goal
is to show

B(y,0) C A, for all y € B(x,¢). (38)

To this end, we note that y € B(z,e) € A~ implies y ¢ (R?\ A)*°. For z € R?\ A we thus
find d(y, z) > d(y,R?\ A) > §, which shows (38).
Now observe that for the proof of § < inrad A it clearly suffices to establish

B(z,0+¢)C A. (39)

Let us therefore fix a z € B(x,0+¢). By considering y := x in (38) we first note that in the
case ||z — z|| < we have z € A. Hence it suffices to consider the case § < ||z —z|| < d +e.
For t := ¢/||lx — z|| € (0,1) and y := (1 — t)z + tz a quick calculation then shows both
ly — 2| =6 and ||z — y|| = ||z — z|| — 6 < e. Applying (38) then yields (39).

Let us now assume that § < inrad A. Then there exists an ¢ > 0 with d+¢ < inrad A and
hence we find an 2 € A with B(z,8 +¢) C A. Clearly, it suffice to show that = € A=, To
this end, we assume that 2 ¢ A=, that is x € (R%\ A)™. Since this means d(z, R?\ A) < §,
we then find a y € R?\ A with d(x,y) < 6 + ¢. This contradicts B(z,d +¢) C A. [ |

8.1 Proofs for the Generic Algorithm in Section 3

Proof of Lemma 5: i) = ii). We choose a 7 > 2cinrad M and ¢ := inrad M. By Lemma

4 we then know M~ = (§, and our construction also gives 7 > 2¢6. If [M1| = 1 we
obviously have diam M9 = 0 < 7. Moreover, if |M19| > 1, there exist =,y € M*+° with
|z — y|| = diam M*9 since M+ is compact and || - — - || : M+ x M9 — R is continuous.

For A := {z,y} € M*% we then have |C,;(A)| = 1, which shows ||z — y|| < 7. In summary,
we therefore always have diam M 19 < 7.

Now a simple calculation shows diam M T = 2§ + diam M, see also (Steinwart et al.,
2021, Lemma 8.2), and thus we obtain 7 > 2inrad M + diam M. Since we initially chose
T > 2cinrad M arbitrarily, we conclude that 2cinrad M > 2inrad M + diam M.

i) = i). Let us fix a § > 0 with M~° = (). Lemma 4 then shows § > inrad M. We
know fix a non-empty A C M™% and some 7 > 2¢6. This yields

7> 2(c—1)8 + 26 > 2(c — 1) inrad M + 26 > diam M + 26 = diam M.

For z,y € A we thus find ||z — y|| < diam A < diam M*? < 7, and hence A is T-connected,
that is |C-(A)| = 1. [ |
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Theorem 25 Let p, > 0 and Assumption P be satisfied with |[C(M,)| < 1 for all p > py.
Moreover, let (L,),>0 be a decreasing family of sets L, C X such that

M0

o CL,c M (40)

for some fixred £,6 > 0 and all p > py. For all p > p, we then have:

i) If M, p+3€ # 0, then |C-( p+5)\ =1 forall ™ > 2y, | _(0) and the corresponding CRM
¢:Co( p_,_a) — Cr(L,) satisfies

Co(Ly) = C(Cr (M

L)) U{B €Cr(Ly) : B'N Lpo- =0} (41)

ii) If M p+5 = (), Assumption S is satisfied, and 6 € (0, d¢pick], then we have

‘{B S CT(Lp) BN Ljyjoe #* @H <1, T > 2Cthickd - (42)

Proof of Theorem 25: i). We first note that M p+3€ # () implies M p+£ # (. Now,
(Steinwart, 2015b, Lemma A.4.3) showed that for all bounded A € R? with |C(A)| < oo,
all § > 0 with A= # (), and all 7 > 21%(J) we have |C-(A7%)| < |C(A)|, Thus we find
IC-( p+5)| < |C(Mp1e)] < 1, and by the already observed Mp+5 # 0 we conclude that
IC-( p+€)] = 1. To establish (41) we now write A :== M, and B := ((A). Our first

pte
intermediate goal is to establish the following disjoint union:

C-(Lp) ={BYU{B € Cr(L,)\{B} : B NLypo #0} U{B €C-(Ly) : BN L2 =0}.
(43)

To this end, note that Mp+35 # () and M p+35 C A together with A C ((A) = B implies

0#M7P =ANM % C BN Lpio.,

and thus {B' € C-(L,)\ {B} : B' N Lyso. = 0} = {B' € C-(L,) : B'N L5 = 0}. This
gives (43).

Let us now show (41). To this end, we first observe that [C;(M, Jr6)| = 1 implies
Cr (MerE) {A} and hence ((C-( p+5)) = {B}. In view of (43) it thus remains to
show

B'n Lp+25 =0,

for all B' € C;(L,) with B’ # B. Let us assume the converse that is, there is a B’ € C,(L,)
with B’ # B and B' N L2 # 0. Since Lyy0. C M e, there then exists an x € B'N M+‘€
By part i) of (Steinwart, 2015b, Lemma A.3.1) thls gives an ' € My, with d(z,z') S 5
and hence we obtain

% T
A’ My L) < iy, (0) < 2.

From this inequality we conclude that there is an " € M _ satisfying d(2/, ") < 7/2. The
CRM property then yields z” € Mpfs = A C B and hence § < ¢MP+€( ), see (Steinwart
et al., 2021, Lemma 8.5), gives

d(B',B) < d(z,2") < d(z,2") +d(z',2") <d+7/2 < ¢7\4p+5(5) +71/2<T
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However, B" # B implies d(B’, B”) > 7 by (Steinwart, 2015b, Lemma A.2.4), i.e. we have
found a contradiction.

ii). If L,42. = 0 there is nothing to prove, and hence we may assume that L,jo. # 0.
Now assume that (42) is false. Then there exist By, By € C,(L,) with By # By and
Bi N Lyta. # 0 for i = 1,2. For i = 1,2 we consequently find z; € B; N Lj42., and
for these there exist A; € Cr(Lpt2-) with x; € A;. Now recall from (Steinwart, 2015b,
Lemma A.2.7) that L, 2. C L, implies C;(L,12:) C C+(L,), and therefore we have a CRM
¢ :Cr(Lpt2e) = C(L,). Our construction then gives

$i€AiﬂBiC<(Ai)mBia

and thus ((A;) N B; # 0 for i = 1,2. However, ((A4;) and B; are both elements of the
partition C;(L,) and hence we conclude ((A;) = B; for i = 1,2. Moreover, ( is a map,
and therefore By # Bs implies A; # As. Let us write A := Ay U As. Since we know
from (Steinwart, 2015b, Lemma A.2.4) that d(A;, A2) > 7, we conclude by (Steinwart,
2015b, Lemma A.2.8) that C;(A) = {41, A2}, and thus |C-(A)| = 2. However, we also have
A C Lyyo: C M;i, and since M;fg = () holds, Assumption S together with § € (0, d¢nick]
and 7 > 2c¢phied” ensures |C-(A)| = 1. Since this contradicts |C-(A)| = 2 we have proven

(42). |
Proof of Theorem 7: For ¢ > 0 we write p; := pg + ic for the sequence of potential
levels Algorithm 1 visits. Moreover, let i* := max{i > 0 : Mp_ii?)s # 0}, where we note

that this maximum is finite by (Steinwart et al., 2021, Lemma 8.3). For i = 0,... 3",
part i) of Theorem 25 then shows that Algorithm 1 identifies exactly one component in its
Line 3, and therefore it only identifies more than one component in Line 3, if ¢ > ¢* + 1.
If it finishes the loop at Line 5, we thus know that p > p;=19, and therefore the level p

considered in Line 7 satisfies p > pj«14. Now the definition of ¢* yields M f+1 43. =0, and
since pj+41 4 3e = (i* + 1)e + 3e = (i* + 4)e = pj=+4, we find M;‘S = () for the p considered
in Line 7. This implies M. st = (), and hence part 4i) of Theorem 25 shows that Algorithm
1 identifies at most one component in Line 7. |

Lemma 26 Let Assumption M be satisfied, p € (p*, p**], € := p — p*, and A1, and Ay,
be the two connected components of M, i.e. C(M,) = {A1,,A2,}. Then the following
statements hold:

i) For all 0 < 7 < 37%(e) we have Cr(M,) = C(M,).

ii) For all 0 < 6 <1 < 71%(e) we have C-(M,) T CT(M:,F‘s) = {AIg,A{Z}.

iii) For 6 € (0,0mick] and ¥(8) < 7 < 7*(e) we have ]CT(M;‘;)] = 2 with CT(M;J) =
{Arp Az}
P P
Proof of Lemma 26: To adapt to the notation of Steinwart (2015a,b) we write T]T4p =
d(Ai,, Az ,). Note that this definition gives Thy, = 37" (p—p*) =37*(e).

i). The assertion directly follows part i) from (Steinwart, 2015b, Proposition A.2.10).
it). The assertion has been shown in part i) of (Steinwart, 2015b, Lemma A.4.1).
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i11). We first note that using part i) of (Steinwart, 2015a, Theorem 2.7) with £* := ¢
and p = p* + ¢* we find \CT(MP_‘S)\ = |C(M,)| = 2. Moreover, we have

d(Avp, Asp) = Thy = 377(e) = 7 > 9¥(8) = Bewmiad” > Uiy, (8) > 9, (44)

where the last inequality follows from (Steinwart et al., 2021, Lemma 8.5) since Assumption
M implies Assumption P, and hence X is connected. Consequently, part v) of (Steinwart,
2015b, Lemma A.3.1) yields

— -4 _ _
M, = (A1,UAy,) " = AT0U A, (45)

and we additionally note that (44) implies

d(A7°

10 A30) > d(Ayy, Azp) > 7 (46)

Now let A; and Ay be the two 7-connected components of C,(M o 4 ). Let us assume that
A # Aii and Ay # AQ_j). Then (45) shows that there exist 2/ € A3 N Aig and z” €
A N Aii. Since A; is T-connected, there further exist z1,...,z, € A; with z; = 2/,
xp = 2" and d(x;,241) < T foralli =1,...,n—1. By z1 € Aii, Ty € Aii, and (45)
we conclude that there is an i = {1,...,n — 1} with x; € Al_fsp and x;11 € Aii. This gives
d(Aiiv Az_z) < d(xi,xi+1) < 7, which clearly contradicts (46). [ |

Lemma 27 Let Assumption M be satisfied, and P; and Py be defined by (5) for some fized
pl € (p*,p™]. Then fori=1,2 and p > p' we have

Mi7p = Mp N Ai,p’[ . (47)

Proof of Lemma 27: We first note that since P is normal at all levels p > 0, we have
M (M, & {h > p}) = 0 for all A\-densities h of P and all p > 0. For a fixed p > pl > 0.
we can thus find a A%density h of P such that M, = {h > p} and My ={h > p'}. Let us
define h; :=1 A, pTh. Then h; is a /\d—density of P; and we have

{hi > py=M,NA, . (48)
Moreover, we have M;, = supp )\d(- N {h; > p}), and hence it suffices to show that
M; , = {h; > p}.

For the proof of the inclusion “C” we fix an z € M; , and an open U C X with x € U.
The definition of the support of a measure then yields

NOUNM,) =2 XUN{h>p}) > X(UN{h > p}) >0,

which in turn implies € M,,. This shows M; , C M,. Moreover, A
and we further have

i,pt 1s closed by definition

A (A i N {hi = p}) = M({hi > p}) = X(X N {h; > p}).
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Since the support of a finite measure is also the smallest closed subset having full measure, we
conclude that M; , C Ai’pt. Combining the two found inclusions M; , C M, and M; , C Ai’pT
with (48) we have thus found the desired M; , C {h; > p}.

For the proof of the converse inclusion we fix an z € {h; > p} = M,NA, ;. Moreover, we
fix an open U C X with z € U, so that it suffices to show A*(UN{h; > p}) > 0. To this end,
we may assume without loss of generality that 7 = 1. Moreover, since d(A; i, Ay ;1) > 0
and z € A 1 we may additionally assume that U N A, ;i = 0. Now, z € M, implies
AU N M,) > 0. Let us write Ay := M, N Ay 1 = {h, > p}. This yields M, = A; U Ay,
A1 NAy = @, and

AU N Ag) < AHU N Ay 1) =0.
Using the disjoint union U N M, = (U N A1) U (U N Az), we conclude that
MU N{h > p}) =AU NA) =2 (UNM,)>0.

As mentioned above this shows z € My ,. |

Lemma 28 Let Assumption M be satisfied, and P; and P be defined by (5) for some fized
ol € (p*, p**]. Then, fori = 1,2, the following statements are true:

i) For el :=pl — p* and all 0 < 6 < 7*(e") and p > p' we have M;rp‘; = M;”S ﬂA::fT.

i) For all § >0 and p > p' we have Mijp‘s = Mp*‘; N Ai_gf'

Proof of Lemma 28: i). Let § : C(M,) — C(Mi) be the CRM and By, ..., By, be the
connected components of C(M,). Without loss of generality we may assume there is an
m € {0,...,n} such that {(B;) C Ay, for all j = 1,...,m and {(B;) C Ay ¢ for all
j=m+1,...,n. Wedefine A} :=B1U---UB,, and Ay := B;,4+1 U---U B,,. Clearly, this
construction ensures

A C f(Ak) C Ak.yp]‘ R k=1,2. (49)

Moreover, we have M, = A; U Ay, and hence we find Mp*‘s = Af‘s U A;“‘s by part iv) of
(Steinwart, 2015b, Lemma A.3.1). In view of (47), we consequently need to prove that

(41U A2) N 4 ,) 7 = (AT U AP N AF2 (50)
Be begin by observing that
(ATUA2) N At = (A1 NA 1)U (A2 NA; 1) = Ay, (51)

where we used (49) and A; ;s N Ay 1 = (). Similarly, the right-hand side of (50) can be
written as

(AP U AT 1A = (AT 0 AYS) U (AF° A7) 62)
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In addition, (49) ensures A;° C AjjT, and by continuing (52) we thus find
(AFPUAS)NA = AP U (A N AT, ke{1,2}\ {i} (53)
1 2 i,pT 7 i p]‘ 5 .

Moreover, by part 4i) of Lemma 26 we know that A'HsT and A'HsT are the two 7-connected
components of M;‘S for any 7 with § < 7 < 7*(¢"). Thus, we have AJ”ST N A2 . =0, and

since (49) ensures Ag‘s C A;‘;T we conclude that A'HS N Aj;; = (). Inserting the latter into
(53) gives

(AP uAP) nAl, = Af. (54)

Now, (50) follows from combining (51) with (54).
i1). This directly follows from combining (47) with (Steinwart et al., 2021, Lemma 8.7).
]

Proof of Theorem 9: i). We first note that ¢* < &** := p™ — p* implies 7*(e*) < 7%(e**).
Consequently, part i) of Lemma 26 applied for p := p** gives the assertion.

ii). We begin by showing that the CRMs £,1. : CT(M[;‘E) — C( p+5) and £ :
Cr (M, 0) = o po‘jt +e) are bijective. To this end we consider the following commuta-

tive diagram of CRMs:

_5 £Pout +e 5
C-(M29) L (M0 )
ép—l—e f
CT (M;fs)

Now, part iv) of (Steinwart, 2015b, Theorem A.6.2) shows that &, .+ is bijective, and
consequently, £p+€ is injective. Moreover, part i) of (Steinwart, 2015a, Theorem 2.7) shows
that 1 < |C,( p+5)\ < 2, and since we already know that |C.(M **)| = 2 and that £, . is

injective, we conclude that |C,( p+€)| = 2 and that {,.. is bijective. Using the diagram
we then see that the CRM ¢ is also bijective.

Our next goal is to show that the CRM Ep : CT(Mp_fE) — (?T(Lp) is well-defined and

bijective. To this end, we first recall that our assumption p < p** — 3¢ together with
(Steinwart, 2015a, Theorem 2.8) gives the following disjoint union:

o~

Cr(Lp) = & (C-(M

p+E)U{B’eC( p) i B N Ly =0}.

Consequently, we have EP(CT(M Py Jfa)) =C, (L,), that is, we can view Ep as a surjective CRM

fp (M, fa) —C, (L,). Similarly, part i) of Theorem 6 ensures
pout Sp*+€*+5ESp*+6€* Sp**_357
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and repeating the reasoning above we see that the CRM Epom : Cr(M, it o) = Cr(Lpour)
can be viewed as a surjective CRM Epom G (M0 L) — CAT(Lpout). Finally, consider the

Pout +E€
CRM € : C-(L,) = C+(Lpg,, ) For B € C+(L,) we then have

Pout
0 # B0 Lytae CE(B) N Lptoe CE(B) N Lygyitoe 4

ie. £(B) € CAT(Lpout). Consequently, the restriction g|5T(L,,) : CAT(LP) — CAT(Lpout) is well-
defined, and obviously also a CRM. In summary, we obtain the following commutative
diagram of CRMs

gpout ~

C(M2 )~ Cr(Lpu)

§16. (L)

CT(M;;,(-Sa) é’?p CT(LP)
Now, we have already seen that ¢ is bijective, and in addition, part i) of (Steinwart, 2015b,
Theorem A.6.2) shows that Epout is injective. Moreover, our considerations above showed
that Epout is surjective, and hence it is bijective. Using the diagram we conclude that
Ep t Cr (M, Jfa) — @T(Lp) is injective. Since we have already seen that it is surjective, we
conclude that it is indeed bijective.

With the help of these preparations, the first assertion now easily follows from 1 ) and
the bijectivity of £, and {,,., namely

1Cr(Ly)| = |€y 0 €pie ((Cr (M) | = [C-(M2)] = 2.

To show the second assertion, we write BY := Ep 0&pte(Vi). This immediately gives V; C BY
for ¢ = 1,2. Moreover, using the diagram we find

B} C €|€T(LP)(B5) = §|5T(Lp) ° gp 0 &pre(Vi) = gpout 0§ 0épe(Vi) = Bi,

where the latter identity follows from part éii) of (Steinwart, 2015b, Theorem A.6.2).
iii). We first observe that ef := pt — p* satisfies ef > ¢* and by (Steinwart et al., 2021,
Lemma 8.5) we hence find 6 < ¢*(8) < 7%(¢*) < 7*(el). Lemma 28 then shows
R, S +0 _ Aftd A A+D
M; ;) =M, N Ai,p* and M; ) =M;nN Ai,pT .
By the definition of L; , we thus have to show the following two inclusions
-4 —0
Myf.N AWT Cc L,NB;, (55)
é 0
L,NB; C M. n AT, (56)

We begin by proving (55). To this end, we first observe that (3) ensures M st C L, and

hence it suffices to establish Az’_;jT C B;. Now, we have already observed that 7 < 7%(e*) <
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7*(e"), and consequently part iii) of Lemma 26 shows that Al_,f)’f and A; i* are the two 7-
connected components of M[;(S. Moreover, part i) of Theorem 6 shows pout < p* +e*+5e <
p! —¢, and hence we have pf —¢ € [pout, p** — 3¢]. Applying (Steinwart, 2015a, Theorem 2.8)
and the already established part i) to the level p! — ¢ we then obtain A;;; C B! f-e C B;
for i € {1,2}.

Let us now establish L; , C BY "2 Without loss of generality we may assume ¢ = 1.

Now, consider the CRM € : C-(L,NBy) — C; (LMHEHBl), which is possible since p > pf+2e.
Let us assume that there was a B’ € C-(L, N By) with

(B ¢ BYE.

. T . . .
Since BY 7% is a 7-connected component of L,i49. N By by part i) applied to the level
pl42¢ € [pout, p** — 3¢] and £(B’) is another such 7-connected component we conclude that

i . o
£(B') N BY' T = ). Moreover, our construction and part ii) give
i i
EBYNBS Y cBINBY "™ cBNBy =10,

and therefore part i) shows &£(B') ¢ CAT(LPT + 2¢). Together with p > pf + 4¢ the latter
implies
B'NL,CB NLyiy CEB)NLyiige=0.

.. T
Consequently, we have found a contradiction, and therefore we have £(B') C BY ™ for
all 7-connected components of L, = L, N By. Since B’ C &(B’) we have thus found
t
Ly, C Bt

Let us now show (56). To this end, we note that (3) ensures L, C M, e

suffices to prove L, N B; C AJ”S Moreover, we have already shown that L, N B; C Bj
and therefore, it sufﬁces to estabhsh

and hence it
ot +25

f42 )

B TF C AL
To this end, recall that we have already observed 7 < 7*(e*) < 7*(ef). Part ii) of Lemma 26
thus shows that A+‘5T and A ot are the two T-connected components of M:‘s Now consider
the CRM ¢ : Cr(L,t19.) — CT(M;‘S). Then the 7-connected component Bf 42 o Lyt o

. f i . .- .
satisfies BY T &(BY +2€), and therefore, exactly one of the following two conditions is
satisfied

T+2€
By C A1 N (57)
42 +6
BY T C AT (58)
oy . f .
However, our construction ensures V; C A1 +» and part i) gives Vi C BY *2€ This gives

0#VcC By 4220 A+ and therefore we can exclude (58). Consequently (57) is true. The

1,pt”
inclusion B T+2e C A;iT can be shown analogously. |
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8.2 Proofs for Section 4

Lemma 29 Let K : R? — [0,00) be a symmetric kernel with tail function r1(-). Moreover,
let P be a X\*-absolutely continuous distribution on R® that is normal at some level p > 0.
Then for all x € R? and o > 0 with B(x,0) C M, and all § > 0 we have

hps(z) > p— pri(§) (59)
while for all z € RY and o > 0 with B(z,0) C X \ M, and all § > 0 we have
hps(z) < p+ 0 Tkoo($). (60)
Finally, if P has a bounded density h, then the inequality (59) can be replaced by
hps(x) 2 p— k() - Al (61)
whenever 0 < p < ||h||s and (60) can be replaced, for all p > 0, by
hps(z) < p+r1(§) - 7l - (62)

Proof of Lemma 29: Let h be a A%-density of P. For the proof of (59), we first observe

that A(B(z,0)\ {h > p}) < XYM, \ {h > p}) = 0, since P is normal at level p. Therefore,
we obtain

/ Ks(z —y) h(y) dX%(y) = / Ks(x —y) h(y) A\ (y)
B(z,0) B(z,0)n{h=p}
> p/ Ks(z —y) dM(y)
B(z,0)n{h=>p}
o [ Ksla ) ). (63)
B(z,0)
and this leads to
hpgs(z) = /Rd Ks(z —y) h(y) dX(y)
> p/ Ks(xz —y) dX%(y) + / Ks(z —y) h(y) dX(y)
B(z,0) R\ B(z,0)
— p/ Ks(xz —y) d\(y) +p/ Ks(z —y) dA(y)
B(z,0) RN\ B(z,0)
— p/ Ks(z —y) dX%(y) + / Ks(z —y) h(y) dX(y)
R\ B(z,0) R4\ B(z,0)

> - p/ Ks(z — y) dXi(y)
R\ B(z,0)

where in the last step we used (10). Now, the assertion follows from (11), and for a bounded
density h and p < |||, the inequality (61) is a direct consequence of (59).
To show (60) we first note that (1) yields

M(B(x,0) \ {h < p}) < AR\ M)\ {h < p})= X' ({h = p} \ M,) =0.
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Analogously to (63) we then obtain

Ks(z — y) h(y) dXi(y) = / Ks(z —y) h(y) dXi(y)
B(z,0) B(z,0)n{h<p}

< p/ Ks(z —y) d\%(y)
B(z,0)N{h<p}

= p/ Ks(z —y) dX(y),
B(z,0)

where for the strict inequality we used our assumption that K is strictly positive in a
neighborhood of 0. Adapting the last estimate of the proof of (59) we then find

hps(x) < p / Ks(z — ) () + / Ks(z - y) h(y) dXI(y)
B(z,0) RN\ B(z,0)

:P/ Ks(z —vy) dkd(y)ﬂ)/ Ks(z —y) d\(y)
B(z,0) R\ B(z,0)

- p/ Ks(z —y) dx’(y) + / Ks(z —y) h(y) d\(y)
R\ B(z,0) R\ B(z,0)
< p+/ Ks(x —y) hy) dx(y) .
R4\ B(z,0)
Now, for bounded h inequality (62) follows from (11), while in the general case the estimate

/ Ks(@—y)h(y) D) < swp  Ks(z —y) = 6 koo($)
R\ B(z,0) yERN\B(z,0)

leads to (60). [ |

Proof of Theorem 11: To prove the first inclusion, we fix an z € M, ff '+ This means
¢ (RIN\ Mprer)™2, ie., for all 2/ € R\ M,4.1. we have ||z — 2/|| > 20. In other words,
for all 2’ € R? with ||z — 2| < 20, we have 2’ € M, .., i.e., we have found

B(JZ‘, 20’) C Mp+5+5 . (64)

Let us now suppose that there exists a sample x; € D such that hp 5(z;) < p and ||z — ;|| <
o. By ||hp,s — hpsl|lec < € we then find

hpﬁ(l‘i) <p+t+e. (65)

On the other hand, ||z — z;|| < o together with the already shown (64) implies B(z;,0) C
M4 cie by a simple application of the triangle inequality. Consequently, (59) together with
€ > pr1(§) gives hps(z;) > p+ ¢, which contradicts (65). For all samples x; € D, we thus
have hD,g(xZ) > por ||z — x| > 0. Let us assume that we have ||z — ;|| > o for all z; € D.
Then we find

hps(x) = f25 dK( ) Za Uno(3) = 6 %Rao(§) < (66)
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On the other hand, we have B(x,0) C B(x,20) C M,1-4. and therefore (59) together with
€ > pr1(§) gives hps(z) > p+e. By [|[hps—hpslle < € we conclude that hp s(x) > p, which
contradicts (66). Therefore there does exist a sample x; € D with ||z — z;]] < 0. Using the
inclusion (64) together with the triangle inequality we then again find B(x;,6) C M,ycqe,
and hence (59) yields hps(x;) > p +e. This leads to hp s(x;) > p, and hence we finally
obtain

ze{r' €D :hps(a’)>p}t"=Lp,.

Finally, if h has a bounded density, then we have M, = 0 for p > ||h|/s and therefore
M, 2%.. C Lp, is trivially satisfied. Moreover, to show the assertion for p < [|Aloc, We
simply need to replace (59) with (61) in the proof above.

To prove the second inclusion, we pick an z € Lp ,. By the definition of Lp ,, there then
exists an x; € D such that ||x—x;|| < o and hp s(x;) > p. The latter implies hps(z;) > p—e.

Our first goal is to show that M, ._. N B(z;,0) # 0. To this end, let us assume
the converse, that is B(z;,0) C R\ M,_._.. By (60) and € > 6 %koo(%) we then find
hps(x;) < p — e, which contradicts the earlier established hpgs(z;) > p —e. Consequently,
there exists an & € M,_._. N B(x;,0), which in turn leads to

d(x, Mp—e—e) < |z = 2| <[l =zl + || — 2| < 20

This shows the desired z € M ;_2;’_5. Finally, to show the assertion for bounded densities,

we simply need to replace (60) with (62) in the proof above. [ |

For the proof of Lemma 14 we need to recall the following classical result, which is a
reformulation of (van der Vaart and Wellner, 1996, Theorem 2.6.4).

Theorem 30 Let A be a set of subsets of Z that has finite VC-dimension V. Then the set
of indicator functions § := {14 : A € A} is a uniformly bounded VC-class for which we
have B =1 and the constants A and v in (17) only depend on V.

We also need the next result, which investigates the effect of scaling in the input space.

Lemma 31 Let G be set of measurable functions g : R? — R such that there exists a
constant B > 0 with ||g|lec < B for all g € §. For § > 0, we define gs : RY — R by
gs5(z) := g(x/0), x € R? Furthermore, we write S5 := {gs : g € §}. Then, for all € € (0, B]
and all 6 > 0, we have

Sl]ipN(g,LQ(P)7€) = Sl}ipN(957L2(P),€),

where the suprema are taken over all probability measures P on RY.

Proof of Lemma 31: Because of symmetry we only prove “<”. Let us fix ¢,§ > 0 and
a distribution P on R?. We define a new distribution P’ on R? by P'(A) := P(3A) for
all measurable A C RY. Furthermore, let € be an e-net of G5 with respect to Lo(P’). For
C:= 8’1/5, we then have |€| = |€'], and hence it suffices to show that € is an e-net of § with

respect to Lo(P). To this end, we fix a ¢ € §. Then gs € G5, and hence there exists an
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h' € € with ||gs — h'||p,(pry < €. Moreover, we have h := h’1/5 € C, and since the definition
of P’ ensures Ep/ f5 = Epf for all measurable f : R? — [0, 00), we obtain

lg = hllypy = 195 — BsllLopry = llgs — P\l Lycpry < e,
i.e. Cis an e-net of § with respect to La(P). [ |

Proof of Lemma 14: The set A := {z + By : = € R4} of has finite VC-dimension
by (Devroye and Lugosi, 2001, Corollary 4.2) or (Devroye and Lugosi, 2001, Lemma 4.1),
respectively. In both cases, Theorem 30 thus shows that for

G:= {K(:):—-)::UGRd}
there are constants A and v only depending on the VC-dimension of A such that

N (S, La(P). | K l€) = N (IKIZG. La(P).c) < (A)

€

for all € € (0, 1] and all distributions P on R?. Moreover, observe that

/

95:{K($5_1-):$6Rd}:{K<$5_'> :x'ERd}zédﬂC(g.

Consequently, Lemma 31 leads to

sup N (Ks, La(P), 6 %) = sup N (69Ks, La(P), €) = sup N (G, Lo(P), €) < <A||K||OO>
P P u

€

for all € € (0, || K||s]. A simple variable transformation then yields the assertion. [ |

Proof of Lemma 15: We first recall that if A C F is a compact subset of some Banach
space E and T : A — F is a a-Holder continuous map into another Banach space F' then
we have

N (DAY, |- ll7 [ Tlae™) N (A - gy6) e>0,

where |T|, is the a-Holder constant of 7. We now fix a 0 < 6 < (”‘II({"“;)UQ diam,.| (X) and

a probability measure P on R%. For z € X we now consider the map k; 5 : R — [0, 00]
defined by

_ r —
kes(y) i= Kolw —y) = 0K (*1) | y €RY

Since K is bounded and measurable, so is k; 5, and hence we obtain a map 7' : X — Lo (P)
defined by T'(z) := kg 5. Moreover, T is a-Holder continuous, since for z, 2’ € X, we have

|T(z) — T(2)]|oc = sup
yER4

o (MY - 5dK(f’?)' < 5K, o — '),

i.e. we have shown |T'|, < 6~(®t9|K|,. By our initial observation and (19) we then conclude
that

N (K, | oy I TIae®) = N(TX), N - za(pys [ Tlae®) < N (X ] lloor€) < Cpp(X)e?
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for all € € (0, diamy.|(X)]. A variable transformation together with our bound on |T'|, thus

yields
]\ ]K|a d/fa

for all 0 < e < 5_(“+d)|K|adiamH.||(X). Since the assumed § < (”‘g‘l‘“ ) He diam, | (X)
implies

0K oo < (diamy (X))~ T K],
we then see that (20) does hold for all 0 < € < 6| K| o0- [ ]

For the proof of Theorem 16 we quote a version of Talagrand’s inequality due to Bousquet
(2002) from (Steinwart and Christmann, 2008, Theorem 7.5).

Theorem 32 Let (Z, P) be a probability space and G be a set of measurable functions from
Z to R. Furthermore, let B > 0 and o > 0 be constants such that Epg = 0, Epg? < o2,
and ||gllec < B for allg € §. Forn > 1, define G: Z™ — R by

= sup —Zg ()], z=(21,...,20) € Z".

geg |1

Then, for all ¢ > 0, we have

P"({zeZ” L G(2) > AEpnG + 1 22’2 + %}) < e,

For the proof of Theorem 16 we also need (Giné and Guillou, 2001, Proposition 2.1),
which bounds the expected suprema of empirical processes indexed by uniformly bounded
VC-classes. The following theorem provides a slightly simplified version of that proposition.

Theorem 33 Let (Z, P) be a probability space and G be a uniformly bounded VC-class on
Z with constants A, B, and v. Furthermore, let o > 0 be a constant with o < B and
Epg? < o2 for all g € G. Then there exists a universal constant C' such that G defined in
Theorem 32 satisfies

g n g

2
EpnG<C(B1 AB vty AB).

We are now able to establish the following generalization of Theorem 16.

Proposition 34 Let X C R? and P be a probability measure on X with Lebesgue denszty
h € L1(R%) N Ly(RY) for some p € (1,00]. Moreover, let 11) + ]7 =1andq:= % =1-4
and K be a symmetric kernel. Suppose further that the set Ks defined in (18) satzsﬁes (21)
for all 6 € (0,60], where §g € (0,1]. Then, there exists a positive constant C only depending
on d, p, and K such that, for alln > 1, all § € (0,dg] satisfying 5Hh\|£l < A ||K |00, and all

¢ > 1 we have

Cc C C|lhllps ¢ })
P* (<D : ||lhps—~h < —l :
<{ Wins = healleco < gato8 Sy e \/5“”1/’”’” s

>1—e°.
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Proof of Proposition 34: We define 6 := % + ﬁ. Then K € L1(R%) N Lo (RY) leads to
1K |2y < K71 N = 1K1 -

We further define k; 5 := S UK (6‘1(33 — )) and fr5 := kg5 — Epkys. Then we have
Epfes = 0 and ||foslloc < 2||K||ocd™¢ for all z € X and § > 0. Moreover, we have

Epfi& < Epkié and thus

2 —2d 2(* Y d —2d 2 (T Y d v
Brf2s =7 [ K (S0 )ty axte) < 5l ( [k (250) axty
< 51Dy | K12

— 2

for all x € X and § > 0. In addition, for all D € X™ we have

Epfes = %Z Jr5(xi) = hps(x) — hps(x).
=1

Applying Theorem 32 to § := {f, s : © € X}, we thus see, for all § > 0, ¢ >0, and n > 1,
that

26 /26| Rl || 51128
lhps — hpslle.(x) < 4Ep~pnllhprs — hpslle. (x) + ol + Tsd0t i) (67)

holds with probability P™ not smaller than 1 — e™°. It thus remains to bound the term

Eprwpnllhprs — hpslle. x) = Epapn Su§|EDfx,5’ :
A

To this end, we first note that [Epk,s| < [[kzsllc = 679 K|lc =: Bs. Consequently, we
have
Fs5 = {fxﬁ cx € X} C {k‘w’(s —b:kys5 € Ks, |b] < B5} ,

and since N([—Bs, Bs], | - |,€) < 2Bse~" we conclude that for A := max{1, Ay} we have

€ € €

A K mé_(d-i-a) v K 005—(1 2A K 005—(d+a) v+1
sup N (5, La(Q), €) < 2( o K| ) Kl < < K] )
Q

for all § € (0,0¢], € € (0, Bs], where the supremum runs over all distributions @) on X. Now,
our very first estimates showed || f;s]|cc < 2Bs and Epf:?é < O'g, and since o5 < 2B;s is
equivalent to ’

§ < 4| KB )P = 47 K loo IR,

Theorem 33 together with 20 = 1 + 1/p thus yields

Epwpn sup|Ep fos]
rzeX

~ 1+1 ~
o2 DK 24K | [ DK 24K
— nod 0-55d+a 285d(1+1/p)p, & 0-65d+a
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for such §. Moreover, we have

o 2AIK e _ 2K 1o ALK
o500+ 501 /o) 2| [P K | 0tra T gorda b2

and hence the previous estimate can be simplified to

Epepn sup|Ep fz 4
zeX

i o .
cof WKl 2AIKIS Bl IEET 2K )
T\ et e SUET I gerda ]2

Combining this with (67) gives

Ihp,s — hpslle.x)

1+1
% ¢%wwmgm

<AEpnpollhps = heslle ) + 55 + ST 1/p)

: . :
g WKl 2AIEIE | BIKS 24K
N e A ] U

1+1
%+¢wmwm”

T s g d011/p)
G C Clplys  C
= nod 08 gat+da|| ||/ AP 7 satdq |1/
with probability P™ not smaller than 1 —e™°. |

Proof of Theorem 16: By Proposition 34, it suffices to find a constant C’ such that

cs c Cllhllys C , [Thll, log 8] s
nod | 1 <O TR 68
ndd og 6a+dq||h||11)/2 + \/5d(1+1/p)n 0og 5a+dq”h”110/2 = nod(1+1/p) (68)

To this end, we first observe that 69+ < HhH}D/QC_l implies C’<5_“_dq||h||;1/2 < §—2a—2dg

and thus we obtain log W < (2a+2dg) log 5. For C" := (2a+ 2dq)C we therefore
find ’
Cs C Cllhllys c C"S o1 ¢cwm<

—_ < — WP -1
ndd log 5a+dq||h||}17/2 * \/(Sd(lﬂ/l’)n log 5a+dQ||h”[1)/2 — ndd logo™" + ndd(1+1/p) log 0
Moreover, it is easy to check that the assumption :;’f/‘;‘, < ”Ch’,Ué’ ensures that

Cre s \/ ClPllpS st

néd log 1) S W log 1) s
and from the latter we conclude that (68) holds for C” := 2+/C". The assertion now follows
for the constant C" := max{C,C",C"}. [ |
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8.3 Proofs for the KDE-Based Clustering in Section 5

Proof of Theorem 17: Let us fix a D € X" with ||hps — hpsllec < €/2. By (23) we see
that the probability P" of such a D is not smaller than 1 —e™. We define € := ||hcor1(5).
In the case of supp K C By this leads to e =0 5_‘%00(%) = 0 < po as noted after Theorem
11. Furthermore, in the case of (9), (Steinwart et al., 2021, Lemma 4.2) shows

e = ||h]loori1(%) < ||hllcori1(|log 8]?) < cd?volg e 110807 109 5202 < cd?voly §11801-4 < ¢ /2,

where in the third to last step we used 0 < § < 1 and in the second to last step we used
(Steinwart et al., 2021, Lemma 8.17). In addition, we have 6 %k (%) < c6—deIogdl* —
collosdl—d < ¢ < po. Consequently, Theorem 11 shows, for all p > po, that
M} C Lp, C M. (69)

i). The assertion follows from Theorem 7 applied in the case d := 20. Indeed, we have
just seen that (40) holds for all p > po, if we replace ¢ by 4, and our assumptions guarantee
d € (0, 0¢hick], pPo = px, and 7 > P(J) = 3cenickd” > 2¢tnickd”. Moreover, (27) follows from
(69).

i1). We check that the assumptions of Theorem 6 are satisfied for § := 20, if % <
(p** — p*)/9. Clearly, we have ¢ € (0, dthick], € € (0,e*], and ¥(d) < 7. To show 7 < 7*(e¥)
we write

E:={ € (0,0 —p]:7%() > 7}

Since we assumed £* < oo, we obtain F # () by the definition of *. There thus exists an &’ €
E with ¢/ <inf E 4+ ¢ < &*. Using the monotonicity of 7* established in (Steinwart, 2015a,
Theorem A.4.2) we then conclude that 7 < 7%(&’) < 7*(¢*), and hence all assumptions of
(Steinwart, 2015a, Theorem 2.9) are indeed satisfied with ¢ replaced by 4. The assertions
now immediately follow from this theorem. |

Proof of Corollary 18: Using Theorem 17 the proof of ii) is a literal copy of the proof of
(Steinwart, 2015a, Theorem 4.1) and the proof of i) is an easy adaptation of this proof. W

Proof of Corollary 20: Using Theorem 17 the proof is a simple combination and adap-
tation of the proofs of (Steinwart, 2015a, Theorem 4.3) and (Steinwart, 2015a, Corollary
4.4). [ |

Proof of Corollary 23: Using Theorem 17 the proof is a simple combination and adap-
tation of the proofs of (Steinwart, 2015a, Theorem 4.7) and (Steinwart, 2015a, Corollary
4.8). |

Proof of Theorem 24: The definition of €5, in (33) together with 4C2loglogn > C||h/w
ensures that (25) and (26) are satisfied for all 6 € A. In addition, the assumptions of
Theorem 24 ensure that the remaining conditions of Theorem 17 are satisfied. Now the
assertion follows by some union bound arguments, which are analogous to those of the
proof of (Steinwart, 2015a, Theorem 5.1). [ |

54



ADAPTIVE CLUSTERING USING KERNEL DENSITY ESTIMATORS

Acknowledgment

The authors profusely thank the action editor and the reviewers for their comments and
suggestions that significantly improved the readability of the paper. The work of I. Steinwart
and P. Thomann was funded by the DFG Grant STE 1074/2-1. 1. Steinwart was also
funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy - EXC 2075 - 390740016. B. K. Sriperumbudur thanks the
National Science Foundation for support under the grant NSF-DMS-1713011.

References

O. Bousquet. Concentration inequalities and empirical processes theory applied to the
analysis of learning algorithms. Ph.D. thesis, Ecole Polytechnique, 2002.

K. Chaudhuri and S. Dasgupta. Rates of convergence for the cluster tree. In Advances in
Neural Information Processing Systems 23, pages 343-351. 2010.

K. Chaudhuri, S. Dasgupta, S. Kpotufe, and U. von Luxburg. Consistent procedures for
cluster tree estimation and pruning. IEEE Trans. Inf. Theory, 60:7900-7912, 2014.

A. Cuevas and R. Fraiman. A plug-in approach to support estimation. Ann. Statist., 25:
2300-2312, 1997.

L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, New
York, 2001.

P. Fréanti and O. Virmajoki. Iterative shrinking method for clustering problems. Pattern
Recognition, 39:761-765, 2006.

E. Giné and A. Guillou. On consistency of kernel density estimators for randomly censored
data: Rates holding uniformly over adaptive intervals. Ann. Inst. H. Poincaré Probab.
Statist., 37:503-522, 2001.

E. Giné and A. Guillou. Rates of strong uniform consistency for multivariate kernel density
estimators. Ann. Inst. H. Poincaré Probab. Statist., 38:907-921, 2002.

J. A. Hartigan. Clustering Algorithms. John Wiley & Sons, New York, 1975.

J.A. Hartigan. Consistency of single linkage for high-density clusters. J. Amer. Statist.
Assoc., 76:388-394, 1981.

S. Kpotufe and U. von Luxburg. Pruning nearest neighbor cluster trees. In Proceedings of
the 28th International Conference on Machine Learning, pages 225-232. 2011.

M. Maier, M. Hein, and U. von Luxburg. Optimal construction of k-nearest neighbor graphs
for identifying noisy clusters. Theoret. Comput. Sci, 410:1749-1764, 2009.

W. Polonik. Measuring mass concentrations and estimating density contour clusters—an
excess mass aproach. Ann. Statist., 23:855-881, 1995.

55



STEINWART, SRIPERUMBUDUR, AND THOMANN

P. Rigollet. Generalization error bounds in semi-supervised classification under the cluster
assumption. J. Mach. Learn. Res., 8:1369-1392, 2007.

A. Rinaldo and L. Wasserman. Generalized density clustering. Ann. Statist., 38:2678-2722,
2010.

B.K. Sriperumbudur and I. Steinwart. Consistency and rates for clustering with DBSCAN.
In Proceedings of the 15th International Conference on Artificial Intelligence and Statis-
tics 2012, pages 1090-1098, 2012.

I. Steinwart. Adaptive density level set clustering. In Proceedings of the 24th Conference
on Learning Theory 2011, pages 703-738, 2011.

I. Steinwart. Fully adaptive density-based clustering. Ann. Statist., 43:2132-2167, 2015a.

I. Steinwart. Supplement A to “Fully adaptive density-based clustering”. Ann. Statist., 43,
2015b.

I. Steinwart. Supplement B to “Fully adaptive density-based clustering”. Ann. Statist., 43,
2015¢.

I. Steinwart and A. Christmann. Support Vector Machines. Springer, New York, 2008.

I. Steinwart, B.K. Sriperumbudur, and P. Thomann. Adaptive clustering using kernel
density estimators. Technical report, 2021. http://arxiv.org/abs/1708.05254v3.

W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning
tree of a sample. J. Classification, 20:25-47, 2003.

W. Stuetzle and R. Nugent. A generalized single linkage method for estimating the cluster
tree of a density. J. Comput. Graph. Statist., 19:397-418, 2010.

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes.
Springer-Verlag, New York, 1996.

D. Wang, X. Lu, and A. Rinaldo. DBSCAN: Optimal rates for density-based cluster esti-
mation. J. Mach. Learn. Res., 20:1-50, 2019.

56



