
Understanding Architectural Complexity,
Maintenance Burden, and Developer Sentiment

—a Large-Scale Study
Yuanfang Cai

Drexel University, USA
Email: yuanfang.cai@drexel.edu

Lanting He, Jun Qian, Yony Kochinski, Nan Zhang, Ciera Jaspan, Antonio Bianco
Google LLC, USA

Emails: {lantinghe, juqian, yonyk, nanzh, ciera, abianco}@google.com

Abstract—Intuitively, the more complex a software system is,
the harder it is to maintain. Statistically, it is not clear which
complexity metrics correlate with maintenance effort; in fact, it
is not even clear how to objectively measure maintenance burden,
so that developers’ sentiment and intuition can be supported by
numbers. Without effective complexity and maintenance metrics,
it remains difficult to objectively monitor maintenance, control
complexity, or justify refactoring. In this paper, we report a large-
scale study of 1252 projects written in C++ and Java from Google
LLC. We collected three categories of metrics: (1) architectural
complexity, measured using propagation cost (PC), decoupling
level (DL), and structural anti-patterns; (2) maintenance activity,
measured using the number of changes, lines of code (LOC)
written, and active coding time (ACT) spent on feature-addition
vs. bug-fixing, and (3) developer sentiment on complexity and
productivity, collected from 7200 survey responses. We statisti-
cally analyzed the correlations among these metrics and obtained
significant evidence of the following findings: 1) the more complex
the architecture is (higher propagation cost, more instances of
anti-patterns), the more LOC is spent on bug-fixing, rather than
adding new features; 2) developers who commit more changes
for features, spend more lines of code on features, or spend
more time on features also feel that they are less hindered by
technical debt and complexity. To the best of our knowledge, this
is the first large-scale empirical study establishing the statistical
correlation among architectural complexity, maintenance activity,
and developer sentiment. The implication is that, instead of
solely relying upon developer sentiment and intuition to detect
degraded structure or increased burden to evolve, it is possible to
objectively and continuously measure and monitor architectural
complexity and maintenance difficulty, increasing feature delivery
efficiency by reducing architectural complexity and anti-patterns.

Software Design, Software Metrics, Software Maintenance

I. INTRODUCTION

Intuitively, the more complex a software system is, the
harder it is to maintain. However, it is not clear which
complexity metrics correlate with maintenance burden, espe-
cially developers’ ability to add new features. In the past five
decades, numerous metrics have been proposed to measure
code complexity [1]–[3], from lines of code (LOC), fan-
in, fan-out, to McCabe’s Cyclomatic Complexity [3] and
Chidamber & Kemerer’s coupling-cohesion metrics suite [4].
These metrics have been used for various software analyses,
such as defect prediction and localization [5]–[9], but there is
no empirical evidence on how well these metrics are correlated

with developers’ ability to deliver features or their sentiment.
Moreover, these well-known metrics measure individual files,
rather than the architectural complexity rooted in the depen-
dencies among files and components.

MacCormack et al. proposed a new metric, propagation
cost (PC) [10], to measure how tightly source files are cou-
pled, calculated using both direct and indirect dependencies.
This metric has been successfully used to compare different
projects of similar sizes. Mo et al. proposed decoupling level
(DL) [11], another metric assessing how files are decoupled
into independent modules based on options theory [12]. Mo
et al. also proposed a suite of architecture anti-patterns [13],
[14] that capture file and component structures that violate
design principles, including Clique, Unhealthy Inheritance,
and Package Cycle.

While prior studies have shown that these anti-patterns
are linked to high maintenance costs [13]–[17], in daily
software development practice, it remains unclear when teams
should pause to refactor and reduce complexity. Moreover,
it is uncertain whether removing these anti-patterns or im-
proving these modularity scores directly enhances a team’s
ability to deliver features, a critical productivity metric for
software organizations. In this study, we measure the effort
required for developers to add new features compared to
fixing bugs and examine whether these productivity metrics
correlate with architecture complexity and developer sentiment
on complexity-related technical debt. If such correlations exist,
organizations should systematically and continuously collect
this data, rather than relying solely on developers’ intuition, to
identify when a decline in feature-adding capability signals the
need for refactoring, and guide refactoring strategies to reduce
complexity, ultimately enhancing productivity and reducing
maintenance costs.

Research on open-source projects often proximate produc-
tivity and quality using data mined from the revision histories
of the subject projects, including: change frequency—the
number of changes in a unit time range; bug frequency—the
number of bugs closed in a unit time range; change churn—the
average number of LOC spent on changes; and bug churn—
the average number of LOC spent on bug-fixing. Using these
measures, researchers have revealed that files involved in anti-
patterns—defined as dependency structures that violate design

principles, are more error-prone and change-prone [11], [13],
[18]. These four measures, however, do not directly measure
development effort, such as time and LOC spent on bug fixing
versus developing new features.

Delivering features quickly is critical to most software
companies, but change frequency (or change throughput)
alone does not represent a team’s capability to add features:
change throughput could be high due to intensive bug fixing
or migrations. A more productive team should be able to
spend relatively more effort on accommodating requirement
changes/adding new features [19]. There is no research in-
vestigating how architectural complexity influences feature-
addition capabilities. Without such a measure, the only way to
distinguish between codebases that enable high velocity from
those that do not is to ask developers directly, a costly option
that is difficult to use for monitoring and to justify refactorings.

In this paper, we report on a large scale study to answer the
following two research questions:

Q1: Can developers’ effort of adding features vs. fixing bugs
reflect their sentiment of complexity in their codebase?

Q2: Does their feature vs. bug activity ratio correlate with
architectural complexity?

The first question explores whether these recorded main-
tenance activities are consistent with developers’ sentiment
about being hindered by complexity; if they are, we can
use these measures instead of relying on periodic sentiment
survey data to assess complexity, which is a lagging indicator
and expensive to collect. Our second objective is to assess
whether architectural complexity metrics are correlated with
maintenance burden as recorded in the revision history; if
so, it indicates that those architectural complexity metrics can
be used to indicate opportunities for refactoring toward more
efficient feature delivery.

To answer these questions, we collect the following three
categories of metrics from 1252 projects and 7,200 developers
in Google LLC:

1) Developer sentiment about the extent to which complex-
ity is hindering the developer’s productivity, measured
through survey responses (Section III-A);

2) Maintenance activity, measured using the number of
change lists (#CL), lines of code spent (#LOC), and
active coding time (ACT) spent on feature-addition vs.
bug-fixing (Section III-B);

3) Architectural complexity, measured using propagation
cost (PC), decoupling level (DL), and three structural
anti-patterns calculated using a tool called DV8 [20]
(Section III-C).

Our statistical analysis (Section IV-E) reveals significant
evidence that:

• Developers who spent more effort on features compared
to bugs also feel that they are less hindered by technical
debt and complexity.

• Systems with higher architectural complexity, less modu-
larity, or more instances of design anti-patterns, especially
cycles among files and improper usage of inheritance, are

correlated with more development effort on bug-fixing
rather than feature-addition.

To the best of our knowledge, this is the first large-scale
study establishing the statistical correlation among architec-
tural complexity metrics, maintenance activity metrics, and
developers’ sentiment reflected in survey responses.

The implication is that, instead of relying upon developer
sentiment and intuition, it is possible to objectively and
continuously measure, monitor, and hence control/improve,
both the architectural complexity, and the maintenance burden,
especially the ability to add new features. The detected anti-
patterns can be used to pinpoint specific files that need
refactoring, and provide guidance on how to reduce architec-
tural complexity, improve feature productivity, which in turn,
increase developers’ satisfaction.

II. BACKGROUND

The study is based on the rich experiences of technical debt
management and code quality measurement within Google
LLC, and state-of-the-art research results.

Since 2018, Google LLC conducts quarterly anonymous
survey to collect developers’ opinions on technical debt (TD),
and to what extent this TD have impacted their productivity.
Each quarter, the survey is distributed to a rotating set of
developers, and each developer gets invited to take the survey
every 9 months. While this survey can provide high level
indicators of technical debt, the sampling method (and using
a survey at all) means that the survey results cannot be used
for continuous monitoring of TD on smaller teams. While
Google LLC has evaluated many per-file metrics, such as
cyclomatic complexity and cognitive complexity, their internal
studies have found that these do not correspond with developer
perceptions of technical debt or code quality and they are
therefore not heavily used. Google LLC has not evaluated
metrics of the complexity across source files.

Academic research has proposed new complexity metrics
and technical debt detection methods that could be used in
a more “always on” fashion to allow regular monitoring of
technical debt. In particular, propagation cost (PC) [10] and
decoupling level (DL) [11] are two state-of-the-art metrics
measuring the architectural complexity and modularity formed
by file dependencies. As the counterpart of the widely studied
code smells [21]–[24] (e.g., cloned code, God class, spaghetti
code) that focus on individual files, a suite of design anti-
patterns (e.g., cliques, unhealthy inheritance) based on depen-
dency structures were proposed [13], [18] to detect problem-
atic dependency structures among files. These file-dependency
based measures, PC, DL, and anti-patterns, supported by the
DV8 tool [20], have been applied and validated using a large
number of open-source and industrial projects [11], [14]–[17],
[19], [25], [26].

Prior research reveals that, if a system has low DL/high
PC scores, it can be hard to maintain [10], [11], [14]. Files
associated with more anti-patterns are more error-prone and
change-prone, measured using change frequency, bug fre-
quency, change churn, and bug churn [11], [13], [14], [26]–

[28]. A recent longitudinal case study revealed that after
reducing anti-patterns through refactoring, the maintainability
score improved, and the LOC/days needed to fix bugs and
make changes significantly reduced [15].

Using change frequency/churn and bug frequency/churn
alone, however, cannot fully capture the severity of mainte-
nance burden: increased change frequency/churn could be the
result of frequent bug fixing, a consequence of degraded qual-
ity, rather than improved maintainability. Moreover, change
frequency and churn do not directly measure the most critical
aspect of productivity: adding new features, nor do they
reflect an important aspect of “effort”: coding time spent on
maintenance activities. Given this background, in this study,
we merge Google LLC’s internal research with latest academic
advances to investigate effective and objective complexity
and maintenance burden measures that are consistent with
developers’ perceptions.

III. THREE CATEGORIES OF METRICS

In this section, we introduce the three types of metrics
collected from three independent data sources: developers’
sentiment collected from periodic surveys, maintenance activi-
ties extracted from revision history in the form of activity logs,
and architectural complexity obtained from static analysis.

A. Developer Sentiment

To collect developers’ sentiment toward code quality, com-
plexity, and technical debt, we leverage the responses collected
from an existing developer satisfaction survey. This survey has
been run quarterly within the company for several years. A
rotating one third of developers take the survey each quarter,
so that every developer gets the survey every 9 months. The
response rate each quarter is about 33%. The survey has many
questions, and each participant only needs to answer some of
them. For this study, we focus on the following question, to
which all participants are required to answer:

“In the last three months, how much has technical debt or
overly complicated code inside your project hindered your
productivity?”. Among all the survey questions designed by
Google experts, this is the only one that directly addresses
technical debt and complexity, making it the most rele-
vant to our study. Respondents can choose from “Extremely
hindered”, “Very much hindered”, “Moderately hindered”,
“Slightly hindered”, or “Not at all hindered”. The responses
are re-coded on a scale from 1 to 5, where a lower score
indicates that the developer was more hindered by technical
debt or code complexity. The question is specifically worded to
ask how much a developer is hindered by technical debt, rather
than asking whether the developer has encountered technical
debt, as most developers encounter technical debt regularly
(and indeed, a certain amount of incurred debt can be a prudent
decision [21]).

B. Maintenance Activity

To measure “maintenance activity”, the unique concept we
took is to measure the proportion of feature development effort

relative to the total spent on feature development and bug
fixing. The idea is to capture how much “overhead” is being
taken up with fixing bugs, an indicator of maintenance costs.

Within Google LLC, development activities are centered
around a changelist (CL); a set of code changes that are
submitted together. Changelists may be associated with issues
in the issue tracker, and those issues can be categorized as a
bug, a feature request, or one of the other 13 types defined
in the issue tracker. We found that 75% of all CLs were
associated with an issue, and of those, 60% of the CLs could
be labeled as either “feature request” or “bug”. The remaining
40% were associated with the other 13 issue types, including
“process”, “vulnerability”, or “milestone”, these other 13 types
are used inconsistently across the Google LLC though and so
are removed from our analyses.

We then defined three metrics of development effort:
1) Number of changelists (CL),
2) Lines of code (LOC), including added, modified, and

deleted lines in the CLs,
3) Active coding time (ACT), capturing the “fingers on

keyboard” time spent on coding, including time spent
on editing code, looking up relevant documentation,
and debugging test results, among other activities. This
metric is described and validated in [29].

For each of these metrics, we then calculate the ratio of
effort spent on CL/LOC/ACT associated with only feature
requests to the CL/LOC/ACT associated with either feature
requests or bugs. This gives us a measure of “maintenance
burden”: a ratio of 1.0 means there is no maintenance burden,
while 0.7 means developers are spending 30% of their “effort”
on bug fixing, measured using CL, LOC, or ACT.

If a system is getting more and more complex, and the
complexity starts to impact team productivity, it is common
to observe that the team has to reduce their feature delivery
speed and spend more time fixing bugs. Figure 1 depicts
the feature-over-bug ratio measured using LOC and ACT
respectively from a sample project to illustrate the increased
maintenance burden: at the beginning of the project, around
2019, most coding time and LOC were spent on new features;
starting from the middle of 2020, the LOC and ACT spent
on bug fixing exceeded that of feature addition. The blue
lines (feature LOC/ACT) keep decreasing, indicating reduced
feature delivery velocity and increased maintenance burden.

Note that the changing ratio of feature-over-bug as shown
in Figure 1 can be caused by other reasons than increased
complexity. It is possible that a product grows to have more
users and hence more bugs are reported, or the features of a
project are all implemented, and the project is transforming
from focusing on features to focusing on bug-fixing. In this
case, the trends in Figure 1 could be the reflection of a natural
life cycle of a project. In our study, we didn’t conduct a
longitudinal study to track the lifecycle of a product, or look
for a perfect causality from architectural complexity scores
to feature-over-bug ratio. Instead, we test the hypothesis that
higher architectural complexity is correlated with more bug-
fixing effort, across all 1252 projects. If this hypothesis is true,

it means that for a project in its bug-heavy stage, it tends to
have higher architectural complexity; on the other hand, if a
project is still in the feature-heavy stage, high architectural
complexity can become a hindering technical debt.

In this project, we measure maintenance activities from two
perspectives: the activities of each individual developer, and
the maintenance activity of each individual project. For each
perspective, we propose three metrics:

Developer activity metrics. To measure the maintenance
activity of a developer, we collected the total number of CL,
LOC, and ACT committed and spent by each developer. As
we are comparing these values against quarterly survey data,
we calculate the total counts of each measure across the entire
quarter, using the three metrics as listed in Table I.

Project activity metrics. A project is represented by one
or more file paths containing all the files involved in a
project. For a project, we are similarly interested in the LOC,
ACT, and CL spent on it in a given time range. For each
project, we first collected the weekly totals of CL, LOC,
and ACT spent on features and bugs, respectively. We then
calculated the ratio of these metrics spent on features versus
the total spent on both features and bugs. Finally, we used
the median of these weekly metrics over the past six months
to represent the project’s maintenance activity. For example,
“In project Foo, the med_feature_bug_loc_ratio is
.26” means that the median weekly percentage of LOC spent
on adding new features is 26% over all the LOC spent on
adding features or fixing bugs. This gives us the 3 metrics
shown in Table II. Unlike metrics commonly used in prior
studies—such as bug frequency, change frequency, bug churn,
and change churn—the feature-to-bug ratio is less influenced
by the number of developers or commits. Instead, it directly
reflects the portion of effort that can be spent on features.

C. Architectural Complexity

As we briefly introduced in Section II, in this study, we
adopt two state-of-the-art metrics and a suite of structural
anti-patterns to assess architectural complexity formed by
dependency among files. These metrics and anti-patterns are
all based on a dependency model called the design structure
matrix (DSM) [12], [30]–[32].

Figure 2 and 3 depict four DSMs1 that are used to illustrate
these concepts. In a DSM, the columns and rows are labeled
with the same set of files or packages of the same order, and
a mark in row i, column j indicates that the item on row i
depends on the item on column j. In Figure 2, the columns
and rows are labeled with package names. The numbers on
the first row, first column, and along the diagonal are indexes
of these 15 packages. The numbers in the cell indicate the
number of dependencies among the files within each package.
For example, the number “86” in row 4, column 3 indicates
that there are 86 dependencies from the files in the clients
folder to the files in the sdk folder.

1All the DSMs displayed in this paper are generated from open source
projects for illustration purposes, not from proprietary Google LLC projects.

In Figure 3, the three DSMs are labeled with file names.
Consider Figure 3c as an example: this DSM presents the
dependency structure among these 9 files. Row 2, column 1
is labeled with “1”, meaning that TopicName.java has one
dependency on ServiceUnitID.java. The blocks along the
diagonal are file group clusters: Figure 3c depicts 3 file groups,
formed by File 1, File 2-4, and File 5-9 respectively.

Definitions. Using the DSM model, architectural metrics
and anti-patterns are defined as follows:

(1) Propagation Cost (PC), measuring to what extent files
are coupled with each other [10]. To calculate PC, we first
represent the dependencies among files using a DSM, and then
calculate its maximum transitive closure to account for all the
direct and indirect dependencies. The PC is calculated as the
total number of direct and indirect dependencies divided by
the total number of cells in the DSM. The larger the PC, the
more coupled the files are.

(2) Decoupling Level (DL), measuring to what extent file
modules can evolve independently [11]. To calculate DL,
we first reorder a DSM into a hierarchical structure [33], in
which each layer contains a number of mutually-independent
modules. Using this hierarchical structure, DL is calculated
based on the following rationales: the more modules are truly
independent, the higher the DL; the larger a module, and
smaller the DL; the more dependencies between layers, the
lower the DL. These new metrics have been applied and
validated in multiple case studies [14], [15], [17].

(3) Structural Anti-patterns. Mo et al. proposed 6 anti-
patterns [13], [18], defined based on the violations of design
principles. Three of these anti-patterns, Unstable Interface,
Crossing, and Modularity Violation are defined using both
structural dependencies and evolutionary dependencies [13],
[18], that is, the co-change frequency between two files.
We do not consider these history-based anti-patterns in this
study, otherwise these data will not be independent from
the development activity data source. In addition, different
projects have different number of developers, different level
of activeness, and it is hard to form a fair comparison.

Here we only consider anti-patterns formed by structural
dependencies only, including:

Cliques: files that form a strongly connected component.
That is, changing one of these files may impact other files
within the same clique. It is widely accepted that cyclical
dependencies should be avoided [23], [34]–[38]. Figure 3a
depicts an example of Clique, in which changes to any of these
14 files may propagate to all the other files through direct or
indirect dependencies.

Package Cycles: pairs of folders that depend on each other.
Ideally namespaces/packages/folders should form a hierarchi-
cal structure to ease extension and contraction [36], [38]. Such
a hierarchical structure can be ordered into a lower-triangle
form in a DSM, that is, no dependency above the diagonal
as depicted in Figure 2. Cycles among packages make it
impossible to form such a hierarchical structure. Figure 3b
depicts a package cycles between the package containing files
1-3 and the package containing files 4-14. These marked

(a) Feature vs. Bug LOC ratio (b) Feature vs. Bug ACT ratio

Fig. 1: Maintenance Activity Trend of a Sample Project

TABLE I: Developer Feature-Bug Activity Metrics

Name Definition (Time Unit: Quarter)
dev_feature_bug_cl_count_ratio Total FEATURE CLs / (Total FEATURE CLs + Total BUG CLs)
dev_feature_bug_loc_ratio Total FEATURE LOC / (Total FEATURE LOC + Total BUG LOC)
dev_feature_bug_coding_time_ratio Total FEATURE ACT / (Total FEATURE ACT + Total BUG ACT)

TABLE II: Project Feature-Bug Activity Metrics

Name Definition (Time Span: 6 Months)
med_feature_bug_cls_ratio Median (Weekly FEATURE CLs / (Weekly FEATURE CLs + Weekly BUG CLs))
med_feature_bug_loc_ratio Median (Weekly FEATURE LOC / (Weekly FEATURE LOC + Weekly BUG LOC))
med_feature_bug_act_ratio Median (Weekly FEATURE ACT / (Weekly FEATURE ACT + Weekly BUG ACT))

Fig. 2: Hierarchical Structure of a Sample Project

symmetric cells, such as cell (r3,c10) and cell (r10,c3) indicate
that changes to one package may propagate to the other.

Unhealthy Inheritance: here we detect two cases that vio-
late Liskov Substitution Principle [39]: either a parent class
depends on one or more of its subclasses, or a client of an
inheritance hierarchy uses both the parent class and one or
more of its subclasses. In both cases, the parent class does not
serve as an interface that decouples clients from subclasses,
and does not support polymorphism or run-time substitution.
Figure 3c depicts a groups of files that violate both rules:
the parent class ServiceUnitId.java depends on two of its
subclasses TopicName.java and NamespaceName.java.
In the meantime, the clients of this inheritance family, files 5
to 9, all depend on the parent class as well as one or more of
its subclasses.

Architectural Complexity Metric Suite. In addition to

TABLE III: The Influence of Size

Cpp
#Clique #UnhInh #PkgClc

#Files 0.3222 0.6703 0.7677
Java

#Clique #UnhInh #PkgClc
#Files 0.5558 0.6525 0.6160

PC and DL that measure the overall modularity structure, we
also derive a number of architectural complexity metrics based
on anti-patterns because prior work has confirmed that these
anti-patterns often reflect real technical debt [14]–[16]. For
example, if a system has more cliques, it is more likely to be
more complex and incur higher maintenance burdens.

Note that the size of a project, measured using the number
of files (#File), or the total LOC count (#LOC), not only
reflect an important aspect of architectural complexity, but
also have significant impact on anti-patterns: it is intuitive
that the larger the projects, i.e., the more files are there, and
the more anti-patterns can be found. To assess the impact of
size, we summarize the correlations between file counts and
the number of detected anti-pattern instances in Table III for
C++ and Java projects respectively. All these correlations have
significant p-values less than 0.01. The results revealed that
project sizes have significant impact on the number of anti-
pattern instances.

To offset the impact of size, in our study, we measure
the density of each type of structural anti-patterns, using
both #Files and #LOC as the denominator respectively. For
example, to assess the density of Cliques, we measure both
#Clique/#File and #Clique/#LOC. Table IV summa-
rizes all the 10 architectural complexity metrics we use in this

(a) Clique
All 14 files form a connected graph

(b) Package Cycle
Files in both packages depend on each other

(c) Unhealthy Inheritance
(1) Parent class ServiceUnitId depends on its two subclasses;

(2) The clients of this inheritance family all depend on
both the parent class and the subclasses

Fig. 3: Design Structure Matrices and Anti-patterns.
Note: all these DSMs are from open source projects for illustration

purposes.

study. Using this metric suite, we plan to assess which ones
can better reflect maintenance burden.

D. Metrics Summary

To summarize, in this study, we assess developer sentiment,
maintenance activity, and architectural complexity, using four
sets of metrics:
M1: developer sentiment score,
M2: developer activity metrics (Table I),
M3: project activity metrics (Table II), and
M4: architectural complexity metrics (Table IV).

TABLE IV: Architectural Complexity Metrics Suite

Name Definition
#File The total number of files in a project.
#LOC The total number of lines of code in a

project.
PC The propagation cost score calculated from

the project DSM.
DL The decoupling level score calculated from

the project DSM.
#Clique/#File Clique density per file.
#Clique/#LOC Clique density per line of code.
#PkgClc/#File Package Cycle density per file.
#PkgClc/#LOC Package Cycle density per line of code.
#UnhInh/#File Unhealthy Inheritance density per file.
#UnhInh/#LOC Unhealthy Inheritance density per line of

code.

Our objective is to assess the relation between developers’
activities (M2) and their sentiment (M1) to answer Q1, and
between architectural complexity (M4) and project activity
(M3) to answer Q2. As we will elaborate in the next section,
(M1) was extracted from developer surveys, and (M4) was
calculated from source code snapshots. Both (M2) and (M3)
are extracted from the revision history of Google projects, but
from different time periods to make fair comparisons with
developer sentiment and architectural complexity respectively.

IV. METHODOLOGY

Given the definition of these three categories of metrics,
in this section, we elaborate the methodology of our study:
project selection, data collection, and statistical analyses that
answer the two research questions proposed in Section I.

Here we elaborate how we collected data for the four sets
of metrics, M1, M2, M3, and M4 respectively.

A. M1: Developer Sentiment Data Collection

The developer sentiment data were extracted from employee
survey collected quarterly from all developers of Google LLC.
We started with the data for all respondents from the prior
12 quarters. However, as we plan to do a panel analysis, we
need to have data from developers who took the survey at
least twice in this time period; this gave us 7200 developers
who responded at least twice. Of the responses collected each
quarter, about 55% indicated “not at all hindered”.

B. M2: Developer Activity Data Collection

For each developer and quarter that we have survey data
for, we collected their maintenance activity data from the
prior 12 quarters as listed in Table I. This data is used
to conduct a panel analysis [40] to investigate if and how
developers’ sentiment changes with the maintenance activities
they perform.

C. M3: Project Activity Data Collection

To answer Q2, we need data at the project level. Our goal
was to select non-trivial and active projects from the code
repository. Therefore, we collected all projects which met the
following criteria:

1) The project should have least 500 Java files or 500 C++
files. We selected these languages since they are the ones
for which we can calculate the dependency metrics.

2) The project should have had changes submitted by at
least 20 developers in the prior 12 months.

These criteria ensure that these projects are non-trivial, long-
lasting, and being actively developed or maintained by a team
with considerable number of developers. We obtained 1252
projects as the subjects for our study: 642 Java projects and
610 C++ projects.

To assess the relation between architectural complexity and
maintenance activity, we measure the architectural complexity
of the latest version for each of the 1252 projects (see the next
subsection), and collected project activity metrics, as listed in
Table II, spanning 6 months prior to the snapshot was scanned,
and use their median values as the final project activity scores.
For example, if we collected Project A’s architectural com-
plexity metrics in April 2022, then we collect and aggregate
its activity data from Nov 2021 to April 2022.

D. M4: Architectural Complexity Data Collection

For each project, we collected the 10 architectural complex-
ity metrics as listed in Table IV, and the 3 activity metrics
as listed in Table II. These total 30 pairs of variables are
used to conduct architectural complexity vs. project activity
correlation analysis. For each pair of variables, e.g., PC vs.
med_feature_bug_loc_ratio, we calculate their corre-
lation from all 1252 projects, including 642 Java projects and
610 C++ projects. As we mentioned above, the architectural
complexity metrics are extracted from the latest version of
each of the 1252 projects. Ideally, we would like to collect
longitudinal data for each project over a longer period of
time, as we did for the developers’ sentiment data. However,
given the way projects are managed within Google, there is
no straightforward method to extract snapshots in history like
we can do for projects managed in Github. But it is possible
to periodically collect architectural complexity data using our
workflow, which is our future work.

Different from the activity data that were collected by query-
ing corresponding data tables, all the architectural complexity
metrics are calculated from each project’s codebase, using a
workflow with the following steps:

1. Extract dependencies from source code. Google uses
Kythe2 to index all the dependencies among all files, and our
first step is to write scripts to extract dependency information
from Kythe, and export it into a standard JSON format. Given
the complexity of language syntax, we only have scripts to
extract dependencies from Java and C++ projects.

2. Using these JSON-formatted dependency files as input,
we use a third-party component, DV8 [14], [20], to calculate
PC, DL, and anti-patterns.

3. Using the output of DV8, we created another script to
aggregate and calculate the 10 metrics as listed in Table IV,
which will be used in our statistical analysis.

2https://kythe.io

In summary, to understand how developers’ sentiment
change with their maintenance activities, we collected lon-
gitudinal data (M1 and M2) from the past 12 quarters; to
understand if a project with higher architectural complexity
also has higher maintenance burden, we collected a snapshot
from each of the 1252 project, calculated its architectural
complexity (M4), and collected 6-month project maintenance
activity data from the activity logs up to the time when the
snapshot was extracted (M3).
E. Statistical Analyses

Given the different natures of the three categories of data,
we need to employ two different types of statistical analyses:

1) Panel analysis: to discover the causal relation between
development activities and developer sentiment using
longitudinal data;

2) Regression analysis: to discover the relation between ar-
chitectural complexity and maintenance activities using
snapshot data.

1) Developer Sentiment and Maintenance Activity: Panel
analysis is a statistical method suitable to analyze two-
dimensional (typically cross sectional and longitudinal) panel
data, that is, data collected over time and over the same indi-
viduals. A regression is run over these two dimensions [40].
This method is most suitable to analyze per-developer senti-
ment and per-developer activity data collected for the past 12
quarters, assessing for an individual developer, whether his/her
sentiment changes with their development activities.

Let Yit denote the response of a developer, SWEi, at time
t, Xit an activity score, and Zit a set of control variables.
Here we use a differential model [41] to eliminate the factors
that may have an impact in the developers responses, but do
not change over time, such as the developer’s highest degree.
That is Zit = Zi for all time t. In this setting, the model we
use in this study is as follows:

∆Yit = α0 + αX ∗∆Xit + γi + εit (1)
Here ∆Yit = Yit − Yi(t−1) is the change in the responses
of a developer between consecutive surveys, and ∆Xit =
Xit − Xi(t−1) is the change in an activity measure. Note
that a per-developer random effect γi is still necessary after
differencing, because if a developer has responded to the
survey 3 or more times, this developer will still contribute
two or more potentially correlated data points to the analysis.
εit is a developer and time-point specific residual. Using this
model, we can interpret the coefficient for ∆Xit as the rate of
change of the expected response increment, per unit change
in the activity increment. We used the model above to analyze
the relation between ∆Yit, the variation of a developer’s
sentiment, and the three developer-based activity measures as
listed in Table I.

Table V presents the results from the panel analysis, show-
ing that the developers feel less hindered by complexity and
technical debt, if they spent more active coding time (ACT),
LOC, and CLs on features. The coefficients are small but the
correlation is significant with p-values < 0.05. The developers
sentiment could be affected by many factors, and the data

 https://kythe.io

reveal strong evidence that different types of development
activity they perform do have an impact on their sentiment.

Answer to Q1: Yes, developers report feeling less
hindered by complexity and technical debt if they
could spend more time adding features, rather than
fixing bugs.

2) Architectural Complexity and Maintenance Activity:
In this section, we introduce the process and results of our
complexity-activity analysis, answering the second research
question proposed in Section I.

Regression analysis. To discover the relationship between
architectural complexity and maintenance activity, we exper-
imented with quantile regression [42] analysis between 10
(architectural complexity) x 3 (maintenance activity) pairs of
metrics extracted from the 1252 projects.

Quantile regression estimates the conditional median of the
response variable. We chose quantile regression over ordinary
least square regression because it works better with outliers,
and we have found projects with much higher or lower than
normal architectural complexity scores.

For quantile regression, the null hypothesis is that here’s
no relationship between maintenance activity and architectural
complexity metrics. The p-value tests the null hypothesis that
the coefficient is equal to 0. A low p-value indicates there’s
strong evidence against the null hypothesis, meaning the effect
sizes are statistically significant. The results are considered to
be significant if p-values are less than 0.05.

Since we are conducting multiple experiments for
complexity-activity correlation analysis, we also report
adjusted p-values that are calculated using Benjamini
and Hochberg’s multiple hypothesis test correction
(FDR BH) [43]. A small adjusted p-value indicate a
“strong evidence”, a much higher standard than a typical
p-value alone, with most conservative assumptions. We
introduce coding language as a control variable for this
regression as the architectural complexity scores of C++ and
Java reveal very different characteristics.

Results. Table VI lists the analysis results between all
architectural complexity and maintenance activity metric pairs,
ranked by their p values. Activity measures are expressed
as ratios ranging from 0 to 1, and we applied min-max
normalization to the Complexity measures to scale them to
the same range. A coefficient with an absolute value greater
than 1 indicates a significant impact of Complexity, as a one-
unit change in Complexity is expected to result in a change of
more than one unit in Activity. The analysis reveals that there
are five significantly correlated metrics pairs (the top 5 rows
where Adj. p− value < 0.05) :

(1) The density of improper inheritance usage
(UnhInh/File and UnhInh /LOC) are negatively
correlated with feature-over-bug ratios, measured using LOC;

(2) The density of cycles (Clique/LOC) is also negatively
correlated with feature-over-bug ratios, measured using LOC;

(3) PC is negatively correlated with feature-over-bug ratio
measured using both LOC and active coding time (ACT).

The implication is that the more coupled the system is
(higher PC, more cycles among files), and the higher den-
sity of of improper inheritance, the more lines of code has
to be spent on bug-fixing, rather than feature-addition. For
example, the 3rd row in Table VI reveals that one unit
increase in #Clique/LOC leads to a -1.7% decrease in
feature loc ratio.

Note that of all the three types of anti-patterns, Package
Cycle does not seem to have significant impact on any of
the maintenance activity, which is expected because cycles
among packages may not be caused by cycles among files. We
also didn’t find significant correlation between architectural
complexity and CL-based maintenance metrics, which is also
expected because the number of CLs are mostly determined
by the activeness and the number of users of a project.
There is no significant relation between ACT-based metrics
and anti-pattern based metrics either, which is not surprising
because there are many factors that may impact a developer’s
coding time. To our surprise, there is no significant correlation
between DL and any maintenance activity metrics. As we will
discuss in Section VI, this could be due to the widely used
“installer” framework within Google.

To verify whether these anti-patterns are real issues from the
developers’ perspective, we conducted a qualitative analysis of
multiple projects, interviewed over a dozen teams at Google,
and confirmed that most anti-patterns reported by DV8 repre-
sent actual technical debt. These findings will be detailed in a
separate paper.

Answer to Q2: Objective architectural complexity
metrics have significant correlations with maintenance
effort: the more coupled, more file-level cycles, and
more problematic inheritance a system has, the less
portion of LOC is spent on feature-addition.

V. IMPLICATION AND IMPACT

Our study is the first that establishes the relations among
architectural complexity, maintenance activity, and developer
sentiment metrics, with the following implications:

(1) First of all, the development team should continuously
collect these triangulated metrics to determine “when” the
feature-adding capability is declining (see Figure 1) with
increased complexity and anti-patterns. If the team observes
both degraded effort on features (increased effort on bugs)
and increased architectural complexity, it indicates the need
to reduce architectural complexity by removing these anti-
patterns to save maintenance costs. Complex code does not
grow overnight. Instead, as Cunningham [44] pointed out,
complexity and technical debt emerge and accumulate when
shortcuts, compromises, or suboptimal design decisions were
made to expedite the delivery of features. To mitigate the
problem, a designer should be able to recognize when de-
sign debt occurs, for example, by detecting the emergence

TABLE V: Maintenance Activity and Developer Sentiment

Activity Coefficient Intercept Std. Err. p-value
dev_feature_bug_loc_ratio 0.081 0.044 0.025 0.001
dev_feature_bug_cl_count_ratio 0.113 0.044 0.033 0.001
dev_feature_bug_coding_time_ratio 0.067 0.044 0.028 0.015

of anti-patterns. More importantly, the designer should be
able to recognize the proper solution to remove these anti-
patterns, for example, by applying proper abstractions or
design patterns [45]. In other words, to prevent complexity
and technical debt from accumulating, the designers should
be knowledgeable on design principles [39], [46], [47], skilled
at abstraction, capable of applying these principles in coding,
and capable of rectifying their violations.

(2) The architectural complexity metrics and anti-patterns
can be used to provide guidance on when, where, and how to
reduce architectural complexity. Simply stating “this system
is too complex” does not lead to concrete actions. According
to Table VI, anti-patterns caused by cycles among files and
improper usage of inheritance present most impact on main-
tenance burden, indicating that it is possible to reduce archi-
tectural complexity by removing cycles and employing more
effective abstraction. Our DV8 workflow also outputs each
instance of each type of anti-patterns, pinpointing the specific
files involved in these anti-patterns. Using this information, the
team can take concrete actions to reduce overall architectural
complexity by addressing specific anti-patterns. Researchers,
educators, and students can leverage these insights to explore
solutions for anti-patterns that directly enhance feature addi-
tion, bridging the gap between academic design principles and
the productivity metrics most relevant to practitioners.

VI. THREATS TO VALIDITY

In this section, we discuss the external, internal, and con-
struct threats to the validity of our study [48].

External Threats to Validity. In this study, we only examined
projects written in Java and C/C++. Therefore, it is possible
that the results could be different for projects written in other
programming languages. Since we only studied projects within
Google LLC, it is also possible that other industrial projects
may have issues that require more refinement of our metrics.

Internal Threats to Validity. The primary internal threat to
validity is associated with the tool used to extract dependencies
between files. In this study, we used Kythe3 to extract depen-
dencies. It is possible that if we use another static analysis tool,
such as Understand4, the results could be different, especially
in complicated cases where sophisticated syntax are used.
Different tools extract and export these dependencies slightly
differently. We mitigated this threat by presenting the extracted
DSMs to the developers from a few sample projects, and didn’t
observed missed or misreported dependencies. Analyzing the
differences among these dependency tools is our future work.

3https://kythe.io
4https://scitools.com/

Another threat to our study of sentiment is that it is solely
based on survey responses. It is possible that developers who
are unhappy about their projects are not willing to respond
to the survey, or developers can be too busy and ignore these
survey requests. Using panel analysis to assess how sentiment
varies with development activities for each developer mitigates
the threat to some extent.

Although we obtained statistically significant results be-
tween architectural complexity and feature-over-bug activity
metrics, when it comes to a specific project, it is possible
that CLs are not properly labeled by some developers. On the
other hand, we hope these results will encourage more teams
to adopt more rigorous practice to label their CLs carefully.

We also noticed that a large number of Java projects uses
a dependency injection framework, which allows a class to
install other modules. As a result, these “connector” classes
depend on many other classes through the install relation,
which could form a big module that significantly reduce its
DL score, but not on PC or anti-patterns. Assessing the impact
of such framework is our future work.

Construct Threats to Validity. In this study, we statistically
analyzed the relations between two pairs of measures: archi-
tectural complexity vs. maintenance activity, and developer
sentiment vs. maintenance activity. Given the limitation of the
available data sources, we were not able to directly assess
the correlation between architectural complexity and developer
sentiment. Ideally, we would monitor the variation of PC,
DL, and anti-patterns within a project for an extended period
of time, and conduct panel analysis between architectural
complexity and sentiment directly.

Moreover, it is possible that some legacy projects with much
longer life span that have not employed the best practice
may have more anti-patterns. It is also possible that these
legacy projects do not need to add a lot of new features any
more, hence the lower feature-over-bug ratio. In this study,
we tried to mitigate this threat by selecting projects that have
evolved for at least one year (long-lasting), with more than 500
files (no-trivial), and with commits by at least 20 developers
(active), so that these projects are unlikely to be either brand
new or retiring. Adding the project age as a control variable
could be an interesting future work.

To assess developers’ sentiment, we recoded a Likert scale
to a numeric interval scale. This conversion assumes that the
distances between the survey response are equal (e.g. the
change in hindrance for someone to switch their rating from
”Moderately hindered” to ”Slightly hindered” is the same as
switching from ”Slightly hindered” to ”Not at all hindered”),
which may not be true. A better model choice would be to fit
an ordinal mixed effects regression to the panel data, which

 https://kythe.io
https://scitools.com/

TABLE VI: Architectural Complexity and Maintenance Activity

Activity Complexity Coeffi-
cient

p-value Adjusted
p-value

med_feature_bug_
loc_ratio

#UnhInh/
#File

-0.397 0.001 0.016

med_feature_bug_
loc_ratio

#UnhInh/
#LOC

-0.685 0.002 0.021

med_feature_bug_
loc_ratio

#Clique/
#LOC

-1.699 0.003 0.021

med_feature_bug_
loc_ratio

PC -1.345 0.003 0.021

med_feature_bug_
act_ratio

PC -1.027 0.008 0.045

med_feature_bug_
file_loc_ratio

#Clique/
#File

-1.567 0.046 0.231

med_feature_bug_
act_ratio

#Clique/
#LOC

-0.985 0.060 0.257

med_feature_bug_
act_ratio

#Clique/
#File

-1.233 0.076 0.284

med_feature_bug_
act_ratio

#UnhInh/
#File

-0.152 0.139 0.465

med_feature_bug_
act_ratio

#UnhInh/
#LOC

-0.523 0.184 0.553

med_feature_bug_
act_ratio

DL 0.077 0.409 1.000

med_feature_bug_
act_ratio

#PkgClc/
#File

-0.332 0.427 1.000

med_feature_bug_
file_loc_ratio

DL -0.069 0.515 1.000

med_feature_bug_
file_loc_ratio

#PkgClc/
#File

0.313 0.528 1.000

med_feature_bug_
act_ratio

Files -0.197 0.609 1.000

med_feature_bug_
file_loc_ratio

#PkgClc/
#LOC

0.148 0.646 1.000

med_feature_bug_
act_ratio

LOC -0.159 0.654 1.000

med_feature_bug_
file_loc_ratio

Files 0.175 0.698 1.000

med_feature_bug_
act_ratio

#PkgClc/
#LOC

1.011 0.807 1.000

med_feature_bug_
file_loc_ratio

LOC -0.098 0.811 1.000

med_feature_bug_
cls_ratio

PC 0.000 1.000 1.000

med_feature_bug_
cls_ratio

Files 0.000 1.000 1.000

med_feature_bug_
cls_ratio

LOC 0.000 1.000 1.000

med_feature_bug_
cls_ratio

#PkgClc/
#LOC

0.000 1.000 1.000

med_feature_bug_
cls_ratio

#UnhInh/
#LOC

0.000 1.000 1.000

med_feature_bug_
cls_ratio

#UnhInh/
#File

0.000 1.000 1.000

med_feature_bug_
cls_ratio

#Clique/
#LOC

0.000 1.000 1.000

med_feature_bug_
cls_ratio

#PkgClc/
#File

0.000 1.000 1.000

med_feature_bug_
cls_ratio

#Clique/
#Files

0.000 1.000 1.000

med_feature_bug_
cls_ratio

DL 0.000 1.000 1.000

could be our future work.

VII. RELATED WORK

In the past decade, technical debt analysis and its impact
on software productivity and quality have been widely studied

[26], [44], [49]. In these prior studies, technical debt is
mostly approximated as code smells or source files with poor
quality scores, which can be detected by various research
and commercial tools, as summarized by Fontana et al. [50],
Fernandes et al. [51], Thanis et al. [52], and Avgeriou et al.
[53]. The most common proxies of technical debt include God
Class, Cloned code, and Feature Envy. A recent comparative
study [54] reveals that even for commercial tools, the accuracy
of these tools and their capability of detecting true debt are
mostly questionable. There is also no direct evidence that these
file-level code smells have significant impact on productivity.

The impact of technical debt on productivity is mostly
estimated. Curtis et al. [55] presented a model to estimate
the cost of technical debt from source code static relations.
Nord et al. [56] proposed a formula to estimate technical
debt impact on long-term product evolution. Martini and
Bosch [57] proposed AnaConDebt, a TD management method
that aims to help practitioners to make decisions on refactoring
architectural debt items. Carriere et al. [58] also proposed a
cost-benefit model to estimate the benefits of reducing the level
of coupling in an e-commerce architecture. Still these works do
not directly link to maintenance activities objectively collected
from development logs.

Similar to our work, Kazman et al. [16] used anti-patterns
to pinpoint design debt, and estimate the return on investment
of potential refactoring activities. Mo et al. [14] reported that
anti-pattern analysis helped practitioners to make decisions
on if and how to refactor. Recently Nayebi et al. [15] also
reported a case study using anti-patterns, DL, and PC to
justify refactoring, and demonstrated productivity and quality
improvement after refactoring using activity logs.

These anecdotal evidences motivated our large-scale study
reported in this paper. None of the prior work establishes
statistical evidence on to what extent DL, PC and anti-
patterns impact maintenance effort, measured using LOC, CL,
and active coding time, especially the effort spent to adding
features, the most important aspect of productivity. This study
is also the first that establishes statistical relation between
maintenance effort and developer sentiment.

VIII. CONCLUSION

In this paper, we report a large-scale study of 1252 projects
written in C++ or Java from Google LLC, aiming to under-
stand the relation between architectural complexity, mainte-
nance activity, and developer sentiment. We have obtained
significant evidence of the following findings:

(1) Developers who felt that they are less hindered by
technical debt and complexity were able to spent more effort
on feature-addition rather than bug-fixing;

(2) The more complex a system is (higher propagation costs
and higher density of anti-patterns), the more LOC is spent on
bug-fixing, rather than adding new features.

The implication is that, it is possible to monitor the teams’
ability to add features vs. fixing bugs using development ac-
tivity logs, observing the variation of maintenance difficulties
objectively and continuously, instead of solely relying upon

developer surveys collected periodically. In order to reduce
maintenance burden and increase developers’ satisfaction, it
is important to control the architectural complexity caused
by file dependencies and reduce anti-patterns, so that both
design quality and feature-addition ability can be improved
in a measurable way. The three categories of measures can be
used together to help the team make informed decisions on
when should refactor, how to refactor, and assess the impact
of refactoring activities.

IX. ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation of the US under grants CCF-2232720, CCF-
2213764, and TI-2236824.

REFERENCES

[1] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. Boston, MA, USA: PWS Publishing Co.,
1998.

[2] F. B. e Abreu, “The mood metrics set,” in Proc. ECOOP’95 Workshop
on Metrics, 1995.

[3] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.

[4] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transaction on Software Engineering, vol. 20, no. 6, pp.
476–493, 1994.

[5] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to
evaluate software system maintainability,” Computer, vol. 27, no. 8, pp.
44–49, Aug 1994.

[6] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

[7] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Transactions on
Software Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[8] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proc. 28th International Conference on Software
Engineering, 2006, pp. 452–461.

[9] R. Mahouachi, M. Kessentini, and M. Ó. Cinnéide, “Search-based
refactoring detection using software metrics variation,” in International
Symposium on Search Based Software Engineering. Springer, 2013,
pp. 126–140.

[10] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,” Management Science, vol. 52, no. 7, pp. 1015–1030,
Jul. 2006.

[11] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level:
A new metric for architectural maintenance complexity,” in Proc. 38rd
International Conference on Software Engineering, 2016.

[12] C. Y. Baldwin and K. B. Clark, Design Rules, Vol. 1: The Power of
Modularity. MIT Press, 2000.

[13] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-
patterns: Automatically detectable violations of design principles,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[14] R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, and M. Naedele,
“Experiences applying automated architecture analysis tool suites,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 779–789.
[Online]. Available: https://doi.org/10.1145/3238147.3240467

[15] M. Nayebi, Y. Cai, R. Kazman, G. Ruhe, Q. Feng, C. Carlson, and
F. Chew, “A longitudinal study of identifying and paying down ar-
chitecture debt,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
May 2019, pp. 171–180.

[16] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka, “A case study in locating the architectural roots
of technical debt,” in Proc. 37th International Conference on Software
Engineering, May 2015.

[17] W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen, Y. Ge, W. Liu,
and J. Zhang, “Software architecture measurement—experiences from a
multinational company,” in Proceedings of the 12th European Confer-
ence on Software Architecture, 2018, pp. 303–319.

[18] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The
formal definition and automatic detection of recurring high-maintenance
architecture issues,” in Proc. 12th Working IEEE/IFIP International
Conference on Software Architecture, 2015.

[19] R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture quality by
structure plus history analysis,” in Proc. 35rd International Conference
on Software Engineering, May 2013, pp. 891–900.

[20] Y. Cai and R. Kazman, “DV8: Automated architecture analysis tool
suites,” in 2019 IEEE/ACM International Conference on Technical Debt
(TechDebt), 2019, pp. 53–54.

[21] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[22] A. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in 20th Working Conference on Reverse Engi-
neering (WCRE). IEEE, 2013, pp. 242–251.

[23] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg, “Are all code smells
harmful? a study of god classes and brain classes in the evolution of three
open source systems,” in Software Maintenance (ICSM), 2010 IEEE
International Conference on. IEEE, 2010, pp. 1–10.

[24] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, 2015.

[25] R. Mo, Y. Cai, R. Kazman, and Q. Feng, “Assessing an architecture’s
ability to support feature evolution,” in Proceedings of the 26th
Conference on Program Comprehension, ser. ICPC ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 297–307.
[Online]. Available: https://doi.org/10.1145/3196321.3196346

[26] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debts,” in Proc. 38rd International Conference
on Software Engineering, 2016.

[27] Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu, and H. Fang, “Active
hotspot: An issue-oriented model to monitor software evolution and
degradation,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 986–997.

[28] L. Xiao, Y. Cai, and R. Kazman, “Design rule spaces: A new form of
architecture insight,” in Proc. 36th International Conference on Software
Engineering, 2014.

[29] C. Jaspan, M. Jorde, C. Egelman, C. Green, B. Holtz, E. Smith,
M. Hodges, A. Knight, L. Kammer, J. Dicker, C. Sadowski, J. Lin,
L. Cheng, M. Canning, and E. Murphy-Hill, “Enabling the study of
software development behavior with cross-tool logs,” IEEE Software,
vol. 37, no. 6, pp. 44–51, 2020.

[30] D. V. Steward, “The design structure system: A method for managing
the design of complex systems,” IEEE Transactions on Engineering
Management, vol. 28, no. 3, pp. 71–84, 1981.

[31] A. MacCormack, J. Rusnak, and C. Baldwin, “The impact of component
modularity on design evolution: Evidence from the software industry,”
Harvard Business School, Working Paper 08-038, Dec. 2007.

[32] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The structure
and value of modularity in software design,” in Proc. Joint 8th Eu-
ropean Conference on Software Engineering and 9th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering,
Sep. 2001, pp. 99–108.

[33] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi, “Design
rule hierarchies and parallelism in software development tasks,” in
Proc. 24th IEEE/ACM International Conference on Automated Software
Engineering, Nov. 2009, pp. 197–208.

[34] J. Lakos, Large-Scale C++ Software Design. Addison-Wesley, 1996.
[35] H. Melton and E. Tempero, “An empirical study of cycles among

classes in java,” Empirical Softw. Engg., vol. 12, no. 4, p. 389–415, aug
2007. [Online]. Available: https://doi.org/10.1007/s10664-006-9033-1

[36] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency
models to manage complex software architecture,” in Proc. 20th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, Oct. 2005, pp. 167–176.

[37] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley, 2003.

[38] D. L. Parnas, “Designing software for ease of extension and contraction,”
IEEE Transactions on Software Engineering, vol. 5, no. 2, pp. 128–138,
Mar. 1979.

https://doi.org/10.1145/3238147.3240467
https://doi.org/10.1145/3196321.3196346
https://doi.org/10.1007/s10664-006-9033-1

[39] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM
Transactions on Programming Languages and Systems, vol. 16, no. 6,
pp. 1811–1841, 1994.

[40] Analysis of Panels and Limited Dependent Variable Models. Cambridge
University Press, 1999.

[41] G. Arminger, “Linear stochastic differential equation models for panel
data with unobserved variables,” Sociological Methodology, vol. 16, pp.
187–212, 1986. [Online]. Available: http://www.jstor.org/stable/270923

[42] R. Koenker, Quantile Regression, ser. Econometric Society Monographs.
Cambridge University Press, 2005. [Online]. Available: http://www.
amazon.de/Quantile-Regression-Econometric-Society-Monographs/dp/
0521608279/ref=sr 1 1?ie=UTF8&qid=1312553603&sr=8-1

[43] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995. [Online]. Available: http://www.jstor.org/stable/2346101

[44] W. Cunningham, “The WyCash portfolio management system,” in Ad-
dendum to Proc. 7th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Oct. 1992, pp.
29–30.

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[46] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices. Pearson, 2002.

[47] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–8,
Dec. 1972.

[48] M. H. M. O. B. R. C. Wohlin, P. Runeson and A. Wesslen, Experimen-
tation in Software Engineering, 2012.

[49] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, “Comparing four approaches for technical debt identification,”
Software Quality Journal, pp. 1–24, 2013.

[50] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic detection of
bad smells in code: An experimental assessment,” Journal of Object
Technology, vol. 11, no. 2, pp. 5:1–38, Aug. 2012.

[51] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A
review-based comparative study of bad smell detection tools,” in
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE ’16. New York, NY,
USA: Association for Computing Machinery, 2016.

[52] T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna, “On the
evaluation of code smells and detection tools,” Journal of Software
Engineering Research and Development, vol. 5, p. 7, 12 2017.

[53] P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana, T. Besker,
A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, N. Moschou, I. Pigazzini,
N. Saarimaki, D. D. Sas, S. S. de Toledo, and A. A. Tsintzira, “An
overview and comparison of technical debt measurement tools,” IEEE
Software, pp. 0–0, 2020.

[54] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, and H. Fang, “On
the lack of consensus among technical debt detection tools,” 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 121–130, 2021.

[55] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of
an application’s technical debt,” vol. 29, no. 6, 2012, pp. 34–42.

[56] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search
of a metric for managing architectural technical debt,” in SConference
on Software Architecture and European Conference on Software Archi-
tecture, 2012, pp. 91–100.

[57] A. Martini and J. Bosch, “An empirically developed method to aid
decisions on architectural technical debt refactoring: Anacondebt,” in
International Conference on Software Engineering Companion, 2016,
pp. 31–40.

[58] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework for
making architectural decisions in a business context,” 2010, pp. 149–
157.

http://www.jstor.org/stable/270923
http://www.amazon.de/Quantile-Regression-Econometric-Society-Monographs/dp/0521608279/ref=sr_1_1?ie=UTF8&qid=1312553603&sr=8-1
http://www.amazon.de/Quantile-Regression-Econometric-Society-Monographs/dp/0521608279/ref=sr_1_1?ie=UTF8&qid=1312553603&sr=8-1
http://www.amazon.de/Quantile-Regression-Econometric-Society-Monographs/dp/0521608279/ref=sr_1_1?ie=UTF8&qid=1312553603&sr=8-1
http://www.jstor.org/stable/2346101

	Introduction
	Background
	Three Categories of Metrics
	Developer Sentiment
	Maintenance Activity
	Architectural Complexity
	Metrics Summary

	Methodology
	M1: Developer Sentiment Data Collection
	M2: Developer Activity Data Collection
	M3: Project Activity Data Collection
	M4: Architectural Complexity Data Collection
	Statistical Analyses
	Developer Sentiment and Maintenance Activity
	Architectural Complexity and Maintenance Activity

	Implication and Impact
	Threats to Validity
	Related Work
	Conclusion
	Acknowledgements
	References

