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Abstract—Refactoring a large and complex class can be chal-
lenging, not only because the class aggregates many different
responsibilities but also because of its potentially extensive impact
on external classes. Although many extract class methods have
been proposed, few support a holistic decomposition that can
uncover multiple distinct responsibilities within a complex class,
along with their system-wide impacts. Recent research highlights
the need for such a holistic view before an organization can
commit to redesigning and refactoring. To identify distinct
responsibilities while minimizing internal and external impacts,
we created Deicide, a new decomposition algorithm that uses an
internal call graph, external usage patterns, and semantic similar-
ity of identifiers to calculate a hierarchical set of cohesive clusters,
each forming a responsibility module. We evaluated Deicide
against three state-of-the-art extract class recommenders using
123 large, change-prone classes from 9 open-source projects. Our
results show that the entities within the clusters identified by
Deicide are more likely to be changed together and changed
by the same group of developers, indicating de facto cohesive
responsibilities. The implication is that refactoring based on
Deicide’s recommendations would have minimal impact on the
system, and these newly extracted classes would be able to evolve
independently.

Index Terms—class decomposition, refactoring, extract class,
code smells, clustering algorithms

I. INTRODUCTION

Large and complex classes are among the most challenging
code smells [1]—indicators of potential problems in the design
or structure of code that may not immediately cause errors
but can lead to maintainability, evolvability, and other quality
issues over time [2]-[12]. Recent industrial studies [13], [14]
have shown that decomposing these large, complex classes
is challenging, despite the numerous extract class or extract
method recommenders that have been proposed [10], [15]-
[26]. These tools often output a sequence of refactoring
suggestions, with each step extracting one or two new classes.
However, practitioners have noticed that decomposing a class
is “not just a matter of applying several extract method,
extract class, or move method refactorings.” Instead of blindly
following the refactoring steps recommended by a refactoring
tool, there should be a planning stage, where the designers
first inspect which and how many distinct responsibilities are
aggregated in a complex class, how they are related, and most
importantly, how they impact external classes, and make their
refactoring decisions accordingly [13], [14].
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While current extract class/method tools do generate in-
ternal decompositions (clusterings) to inform their recom-
mendations, these decompositions are not provided to the
user for redesign planning. And these internal decompositions
have not been evaluated to assess if the decomposition can
identify multiple distinct responsibilities, that is, entities that
can evolve and change independently.

In this paper, we address these problems by first comparing
three class decomposition algorithms from state-of-the-art
extract class recommenders and evaluating their effectiveness
at producing holistic decompositions. As we will show, these
algorithms produce dramatically different decompositions due
to their different choices of clustering criteria, using internal
structural dependencies, client dependencies, or identifier se-
mantics. Most interestingly, these algorithms often produce
imbalanced (or “lopsided”) decompositions because of their
bottom-up approach. As a result, they tend to extract one or
two new classes, rather than revealing all distinct responsibil-
ities. A complex class with thousands of lines of code (LOC),
however, often contains dozens, if not hundreds, of distinct
responsibilities, and these should be presented to the designer
for inspection before making refactoring decisions. This moti-
vates our approach, Deicide, which uses a comprehensive set
of criteria and identifies a set of distinct responsibility modules
suitable for the planning stage of a class refactoring.

Unlike existing approaches, Deicide evaluates the three key
criteria: internal structural dependencies, client dependencies,
and identifier semantics to identify cohesive responsibility
modules comprehensively, resulting in hierarchical decompo-
sition. Using such a decomposition, a designer can flexibly
choose to decompose a complex class into multiple new
classes at different levels of granularity, ensuring maximum
internal cohesiveness and minimal external impact. Unlike
existing algorithms, Deicide employs a top-down acyclic graph
partitioning approach that considers indirect transitive rela-
tionships so that entities for the same responsibility can be
clustered together.

To evaluate whether Deicide’s responsibility modules are
truly cohesive and thus supporting independent evolution and
maintenance, we compare its recommended clusterings against
each project’s revision history to assess how well the entities
that were clustered together were actually changed together
or changed by the same developers. Our rationale builds upon



prior research, which demonstrates that frequently co-changing
entities are strong indicators of cohesion and evolutionary
coupling, with the same group of authors often revising these
entities to fulfill related responsibilities [27]-[39]. Conse-
quently, we explore the following research questions:

RQ1: 7o what extent are the entities clustered together by
a decomposition algorithm actually changed together? 1f a
majority of the entities that were clustered together actually
changed together, as recorded in their commit history, it means
that these entities belong to a de facto cohesive responsibility
group.

RQ2: To what extent are the entities clustered together
actually changed by the same developers? Since the same
responsibilities are more likely to be maintained by the same
developers, if the recommended clusters include entities fre-
quently committed by the same authors, it is more likely that
these entities belong to the same responsibility modules.

Here we benchmark Deicide against three hierarchical class
decomposition algorithms used by state-of-the-art extract class
recommenders: Fokaefs et al.’s JDeodorant [10], [18], [19],
Akash’s algorithm [21], and Alzahrani’s algorithm [22]-[24].
Our results demonstrate that Deicide’s decompositions align
significantly better with the actual commit history of the
projects, achieving nearly double the score of the next best
algorithm—33.32% versus 17.70% on average. This indicates
that if a class was refactored using Deicide’s decomposition,
the resulting newly extracted classes would more likely evolve
independently with minimal impact on the rest of the archi-
tecture, which is highly desirable.

II. CLASS DECOMPOSITION

In this section, we use a running example to illustrate how
and why existing well-known and/or state-of-the-art class de-
composition algorithms generate drastically different clusters
and highlight the remaining challenges. For this study, we
select the following three tools/algorithms:

1) JD: JDeodortant by Fokaefs et al. [19] uses a hierarchical
agglomerative clustering (HAC) algorithm to iteratively merge
entities based on the Jaccard index of their “entity sets.” Each
method’s entity set includes all methods and fields it uses,
and each field’s entity set includes all methods that use it.
This well-known tool is available as an Eclipse plug-in.

2) AK: The approach of Akash et al. [21] also uses a HAC
algorithm to iteratively merge entities but measures similarity
by averaging three different metrics together, including two
structural metrics that, like JD, are based on the direct in-
coming and outgoing dependencies between methods, and one
metric that uses Latent Dirichlet Allocation (LDA) to measure
the semantic similarity between method pairs. This approach
improves the well-known refactoring recommender work of
Bavota et al. [16], [17], [20], but is the first in this line of
work to produce a hierarchical decomposition.

3) AL: Alzahrani’s approach [24] uses a greedy HAC-
like algorithm that prioritizes merging with the most recently
created cluster from the previous iteration. Similarity between
two methods is defined as the Jaccard index of their “client
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sets”, where the client set of a method is the set of all classes
that call that method (i.e., clients).

These algorithms were selected because they are either
well-known or represent the state-of-the-art in hierarchical
class decomposition. JDeodorant is the most widely cited and
used tool, while Akash’s and Alzahrani’s algorithms repre-
sent the latest advancements in hierarchical clustering-based
techniques. Although each method uses a distinct combination
of structural, semantic, or client information, they all share a
similar bottom-up clustering approach.

In addition to hierarchical decomposition, there are many
extract class recommenders that employ partitional decomposi-
ton [15]-[17], [20], [25], [26]. While larger modules derived
from hierarchical decomposition can be further divided into
smaller responsibility modules, the modules from partitional
decomposition are mutually exclusive. In this paper, we focus
on hierarchical decompositions because they offer architects
better flexibility during refactoring, allowing them to examine
class responsibilities at varying levels of granularity. Moreover,
none of these partitional algorithms consider both internal and
external relations of class entities. An in-depth comparison of
these two categories is future work.

A. How Different Methods Decompose

To illustrate the behavior of these algorithms, we present the
resulting decompositions obtained by executing each one on
the same class, TsFileSequenceReaderForV2. java
of Apache ToTDB.! Figure 1 depicts how the 21 methods of
this class are clustered by different algorithms. To highlight
their differences, we selected six methods, from m; to mqs
(Figure le), which are supposed to be clustered together as a
distinct module, according to their relations and according to
how they have changed in the past.

Figure 1 shows the distinct structures produced by JDeodor-
ant (JD), Akash’s algorithm (AK), Alzahrani’s algorithm (AL),
and our Deicide algorithm (DC), which will be detailed in the
next section. The bottom layer of each subfigure represents
all 21 methods of the class, labeled m; through me;. The
remaining layers contain clusters that aggregate the elements
from the layers below. For convenience, we assign IDs to
these clusters, following a left-to-right, top-to-bottom order.
For instance, Cluster 26 in Figure la includes methods m;,
mg, and myo, while Cluster 22 encompasses all the methods
in Cluster 26 along with method ms.

Our first observation is that the decompositions produced by
these algorithms are drastically different. Notice the placement
of the six highlighted methods: In JD, they are grouped into the
same top-level cluster along with eight other methods. In AK,
they are split between two top-level clusters, displaying some
grouping within each half (e.g., Cluster 17 and Cluster 6). In
AL, these six methods are distributed more evenly across the
hierarchy.

IThis class is identifed as iotdb-14711 in our replication package.
Source code is available at https://github.com/apache/iotdb/blob/v1.1.0/tsfile/
src/main/java/org/apache/iotdb/tsfile/v2/read/TsFileSequenceReaderForV2.
java.
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Fig. 1: Example decompositions produced by JD, AK, AL, and DC

These differences arise from the unique relationships each
algorithm considers. JD relies solely on internal structure,
AK incorporates both internal structure and semantics, while
AL focuses exclusively on external dependencies (i.e., client
relationships). For example, AK places m; and mg close
together due to their similar names, while JD and AL place
them much further apart. In contrast, AL places m7 and mg
near each other due to their shared client (not shown), but
neither JD nor AK positions them similarly. Note that none
of these methods aggregate these six methods together as one
distinct module as they should be.

Finally, JD, AK, and AL exhibit a shared imbalance or
“lopsidedness.” These methods tend to identify a few central
entities and assign all other entities to singleton clusters,
sorted by their degree of association with these central entities.
This phenomenon is particularly evident in AK (centered
on Clusters 28 and 24) and AL (centered on Cluster 38).
Consequently, these decompositions are not holistic as they
focus on only one or two particular responsibilities of the class
instead of capturing its full range of responsibilities.

B. Remaining Challenges

After carefully analyzing these algorithms, we have iden-
tified two primary challenges that remain to be addressed.
First, these algorithms are limited by the types of connections
they consider between entities. JD and AL, for instance, do
not capture semantic relationships among methods, while JD
and AK do not account for client dependencies. Second, the
bottom-up strategy employed by these algorithms limits their
ability to capture the full range of responsibilities within

a class. Unlike top-down clustering algorithms, bottom-up
approaches merge clusters using only information local to the
clusters being merged, which prevents them from capturing
broader relations [40], [41]. For example, if method m, calls
my, which calls m., which in turn calls mg4, JD and AK
would fail to identify any relationship between m, and my
until a sufficient number of intermediate clusters had already
been merged. Meanwhile, AL would overlook this relationship
entirely, as it only considers client dependencies. To produce
a holistic class decomposition, we must take into account rela-
tionships comprehensively, e.g., including transitive relations.

Figure 1d illustrates the outcome of Deicide, which ad-
dresses these challenges, leveraging internal structure, seman-
tics, and client dependencies comprehensively and presenting
a top-down hierarchical decomposition. Deicide is the only
algorithm that aggregates all six methods together, and only
these six methods, in Cluster 4 as they should be. Further-
more, Deicide’s decomposition is significantly more balanced,
clearly identifying the distinct responsibility modules. Unlike
other algorithms, Deicide generates clear splits between mod-
ules at every level. For example, at the top layer of Figure 1d,
the class is divided into three larger responsibility modules:
Clusters 1, 2, and 3, and Cluster 2 and 3 can be further divided.
At the second-highest layer, the class is further decomposed
into five responsibility modules: Clusters 1, 4, 5, 6, and 7, each
representing distinct responsibilities. Based on this decompo-
sition, the user can choose to refactor the class into three or
more new classes depending on their preferred granularity. In
the following section, we introduce the Deicide algorithm in
detail.



1II. ALGORITHM

The Deicide algorithm aims to produce holistic decom-
positions by integrating multiple dependency types—internal
call graph relationships, external client usage patterns, and
semantic similarities, to maximize internal cohesiveness and
minimize external impact. Deicide also captures transitive
structural dependencies, and ensures that the resulting decom-
position is acyclic. To demonstrate the algorithm in action, we
use a running example of decomposing one of our evaluation
subjects, Ur1Utils. java of Apache Dubbo?. In the fol-
lowing subsections, we detail the steps of graph construction,
condensation, and partition.

A. Graph Construction

First, we construct the internal syntactic dependency graph
of the target class. Let G; = (V;, E;) be this graph. The vertex
set V; contains the internal entities that are to be clustered. In
a typical Java class file, this would be all fields, methods,
and nested classes that sit immediately inside the body of the
outermost class definition. The directed edge set E; contains
the internal structural dependencies between these entities such
as method calls and field accesses. Each entity v € V; has
unit weight: w(v) = 1, and each edge (u,v) € E; has unit
cost: cost;(u,v) = 1.

1) External Usage: Now we extend this graph to include
client files. Let V' = V; UV, where the vertex set V. contains
the external client files. These are all files that structurally
depend on the target class. Furthermore, let £; = E; U E, be
the set of all structural dependency edges where E. contains
the external dependencies from client files to the internal
entities. Now, our graph can be expressed as G4 = (V, Ey).
The cost of each edge (u,v) € E. is also cost.(u,v) = 1, but
we set the weight of each client v € V, to w(v) = 0.

By including client files in the graph, we introduce a penalty
for separating internal entities that are frequently used together
by the same clients. A client file contributes an edge for
every internal entity it uses. For instance, if two methods
are frequently called together, separating them will cut across
more edges and therefore incur a higher cost than separating
two methods that are rarely used together. The client files are
weighted as zero to avoid counting towards the total size of
their containing clusters.

Figure 2 illustrates this graph as an adjacency matrix. The
rows and columns are labeled with a subset of V' that includes
nine methods (mq,ms,...,mi7) and one client file (fi4).
Each non-empty cell indicates an edge between the item on
the row to the item on the column. Figure 2 shows that
the methods mi5, myg, and my7 do not share any structural
dependencies. If the decomposition was done using only the
internal call graph, there would be no incentive to group these
together. However, when we “zoom out” by including the
client files into the graph, we notice that these methods are all

>This class is identified as dubbo-5318 in our replication package.
Source code available at https://github.com/apache/dubbo/blob/dubbo-3.1.10/
dubbo-common/src/main/java/org/apache/dubbo/common/utils/UrlUtils.java.
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m1 |ma|m3|mg|ms|memismigmid fia
my | parseURL — S
my | parseURLs B|—
m3 | convertRegister —|S|S
my | convertSubscribe S| — S
ms revertRegister S — | S
meg | revertSubscribe S|S|—
mi1s | isConfigurator —
mig | 1sRoute —
mi7 | isProvider —
fia | RegistryDir.java D|D|D|—
Fig. 2: Adjacency matrix of G, truncated
D: Structural Dependencies (Eg4); S: Semantic Similarites (Es);

B: Both (E4 N Es)

used by the client file f14 as denoted by the “D” cells in the last
row. This shared client implies that these three methods may
fill a similar role in the wider system. After adding clients, we
would expect all four items to be grouped together to avoid
the penalty of cutting any of these edges.

2) Identifier Semantics: Now we extend Gy to include
undirected edges between internal entities that have semanti-
cally similar names. An entity name often contains a number
of keywords. For instance, 1 sRoute contains is and route.
Their semantic similarity is calculated using a semantic vector
space model formed by these keywords [42], [43].3

Let the edge set E contain the semantic edges between
internal entities. Each undirected edge {u,v} € FE; has
a cost costg(u,v) € [0,1] equal to the semantic similarity
score between the entities v and v. Because these scores
are calculated using a vector space model, almost every pair
of entities will have a nonzero score, even if their semantic
similarity is negligible. We define a semantic threshold, thr.
Semantic edges with a cost, < thr, are deemed negligible and
dropped. This creates a more sparse graph which improves the
performance of graph processing. Finally, we define this graph
with comprehensive information as G = (V, E4, E;) to be a
triple of 1) internal entities and external clients, 2) directed
dependency edges, and 3) undirected semantic edges.

The inclusion of semantic edges reveals shared concepts that
may not be reflected by structural dependencies. In Figure 2,
notice how the methods mg3, my4, ms, and mg do not share
any direct structural dependencies or clients. However, they
do share many semantic edges with one another, as denoted
by “S” cells. A pair of entities can have both semantic and
structural edges between them. The “B” cell denotes that mso
structurally uses m; while also having a semantically similar
name. Their names make it clear that these methods belong
to a cohesive group.

B. Condensation

To ensure a decomposition without cyclical dependencies,
we start by constructing a condensation graph. If any two
vertices {u,v} C V are mutually reachable through the
edges of E, then they are merged into the same condensed

3We use mutual information as the term-weighting scheme and correlation
as the similarity measure, following Kiela and Clark [43].



1 2 13
3 4 12 11

5(6|7|8 10 9
mi parseURL X 8 7
ms | parseURLs X 6 5
ms convertRegister X 41 3
my convertSubscribe X 2711
ms revertRegister X mi parseURL X
me revertSubscribe X mso parseURLs +
mr revertNotify X ms convertRegister a
ms revertForbid X ma convertSubscribe ar
mg | getEmptyUrl X ms revertRegister ar
mio | isMatchCategory X me | revertSubscribe 4
m11 | isMatch X my | revertNotify a4
mi2 | isMatchGlobPattern X ms revertForbid X
mi3 | isServiceKeyMatch X mg | getEmptyUrl ar
mis | classifyUrls X mio | isMatchCategory aF
mis | isConfigurator X mi1 isMatch X
mie | isRoute X mi2 | isMatchGlobPattern aF
mi17 | isProvider X mi3 | 1sServiceKeyMatch X
mig | isRegistry aF mi14 | classifyUrls aF
mi9 | hasServiceDiscoveryRegi... X m1s | isConfigurator X
Mmoo | hasServiceDiscoveryRegi... X mie | isRoute X
mo1 | isServiceDiscoveryURL X mi7 | isProvider X
ma2 | isItemMatch X mig | isRegistry X
mo3 | parseServiceKey + mi9 | hasServiceDiscover... aF
mo4 | valueOf + moo | hasServiceDiscover... X
mes | isConsumer + ma1 isServiceDiscoveryURL +
fi | RegistryProtocol.java X ma2 | isTtemMatch +
f2 | InjvmProtocol.java X me3 | parseServiceKey +
fs | AbstractRegistry.java X maq | valueOf +
fa | MulticastRegistry.java X mes | isConsumer 2
Js NacosReglstry.Java X Fig. 4: File decomposed by JDeodorant
fo ZookeeperRegistry.java al : Th tity in the row is aggregated into the cluster(s) on the column;
fr ConfigCenterConfig. java X x: The entity gg & ) ’
T MetricsConfig. java = +: Single entity cluster.
fo ConfigValidationUtils. java X
fio | OfflineApp.java X
fi1 | OfflineInterface.java X C. Partitioning
fi2 | OnlineApp.java X
fis | ServiceCheckUtils. java X We continue by dividing each top-level cluster into two
Jf14 | RegistryDirectory.java X smaller clusters using an acyclic partitioning algorithm that

Fig. 3: File decomposed by Deicide

x: The entity on the row is aggregated into the cluster(s) on the column;
+: Single entity cluster.

vertex v’, so {u,v} C /. Let G' = (V',E},E]) be the
condensation graph of G. The weight w(v") of each condensed
vertex v/ € V' is the sum of its members. The dependency
cost costq(u',v") of any condensed edge (u',v") € E/, is the
maximum costq(u,v) obtained for any v € u’ and v € v’. The
semantic cost costs is calculated similarly. This condensation
graph ensures that if there is a path from ' to v/ in EJ,
then no path from v’ to u’. After condensation, completely
disconnected components become the top-level clusters of
the decomposition, which represent the largest responsibility
modules (such as Cluster 1, 2, and 3 in Figure 1d, or Cluster 1
and 2 in Figure 3). These top-level clusters can be further
divided, as described in the next section.
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we refer to as BISECT [44], [45]. This algorithm ensures: 1)
minimal cut-edge costs, 2) roughly equal cluster sizes, and 3)
no cycles between clusters. The process is recursively applied
to generate finer clusters until a stopping threshold is reached,
resulting in the final decomposition. The graph edges and
their associated costs have been selected to penalize separating
cohesive subsets, thereby maximizing intra-cluster cohesion.
Enforcing balanced cluster sizes avoids trivial solutions, such
as isolating low-degree vertices [46]. Restricting solutions to
acyclic partitions ensures that the resulting clusters correspond
to operable extract class opportunities.

Algorithm 1 presents the PARTITION pseudocode. The con-
densation graph G’ is treated as constant, and the algorithm
starts with all vertices active (A < V'), where only active
vertices are considered for division. Lines 2—4 check whether
the weight of the active set is below the threshold thr;..; if so,
further division is halted. Lines 5-10 construct maps w (active
vertex weights) and ¢ (edge costs), assigning inactive vertices a
weight of zero. On line 11, BISECT creates a balanced, acyclic




Algorithm 1 PARTITION

Vertex set V'
Require: Vertex weight function w(-)
Require: Structural edge set E/, with cost function costq(-, -)
Require: Semantic edge set £’ with cost function cost(,-)
Require: Weight threshold thrg;,.

1: procedure PARTITION(A)

Require:

2: if w(A) < thrg;,. then

3: return

4: end if

5 for v € V/ do

6: wlv] <~ w(v) if v € A else 0
7: end for

8. for u,v € (E,UE.) do

9: ¢lu,v] + costq(u,v) + costs(u,v)
10: end for

11: Py, Py < BISECT(V',w, ¢)

12: Py + AN Py

13: P, AN P

14: for v € Py do

15: RECORD(v, 0)

16: end for

17: for v € P, do

18: RECORD(v, 1)

19: end for

20: PARTITION(F))

21: PARTITION(P;)

22: end procedure

partition of V', guided by edges to preserve cohesion between
related entities. While inactive vertices and clients do not affect
the cut balance due to their zero weight, their incoming and
outgoing edges influence BISECT, discouraging separation of
closely related entities. Lines 12—13 remove inactive vertices,
and lines 14-19 use the RECORD subroutine to log which
side of the cut each active entity is assigned to by appending
a binary value (0 or 1) to a string associated with each vertex.
The algorithm then recurses on each side of the cut.

The BISECT subroutine solves the acyclic partitioning prob-
lem [44]. Although this problem is NP-Hard, the relatively
small graph sizes allow for exact solutions to be computed.
We use the integer linear programming (ILP) formulation
proposed by Ozkaya and Catalyiirek [45], solving it with
Google OR-Tools [47]. In our experiments, each instance
completes within two to three minutes.

D. Qualitative lllustration

In Figure 3, we demonstrate how UrlUtils. java is
decomposed by Deicide. The rows contain the entities of the
class, while the column headers contain the cluster hierarchy.
Each yellow “x” cell indicates that the entity on that row
belongs to the cluster(s) in the corresponding column header.
For example, m1g, m11, and myo are aggregated together in
Clusters 1, 3, and 6. To save space, clusters containing only a
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single entity are placed together in the far-right column marked
using pink “+” cells.

In Section III-B, we described how a class is condensed. In
this case, the condensation graph is the same as the original
graph, as it is already acyclic. The disconnected components
of the graph form the top-level clusters. Because they do
not share any internal dependencies or external clients, notice
how Cluster 2 (my5, mig, and mq7) is separated from Clus-
ter 1 (containing the other 22 entities and further divided into
three layers). Furthermore, there are four entities (1m1g, ma3,
may4, and mes) which are entirely isolated and placed in their
own singleton clusters. They have no internal dependencies
and no shared external dependencies with any other members.

In Section III-C, we described how each top-level cluster
is further partitioned. Notice how Cluster 1 is bisected to
create Cluster 3 and Cluster 4. Each method shares more
internal dependencies, client usages, and semantic similarities
with those in the same cluster than with methods in other
clusters. The different responsibilities of these clusters are
manifested by how client files use them. Notice how Cluster 3
and Cluster 4 are used by entirely different sets of clients,
{f1,.--, fe} versus {fr,..., fiz}. As a result, Cluster 3 and
Cluster 4 form separate responsibility modules, and each can
be a meaningful extract class opportunity.

Here we highlight the advantages of Deicide that is evident
in our running example. Figure 4 illustrates how the same
class is decomposed by JDeodorant (using the same format as
Figure 3). JDeodorant works bottom-up, starting with Clus-
ter 1 and iteratively merging similar clusters together before
terminating at Cluster 13. Each level “wraps” the one below
by including an additional one or two methods. Consequently,
no two sibling clusters appear to be representing distinct
responsibilities. By contrast, Figure 3 shows that in each level
of Deicide’s decomposition, there are two distinct responsi-
bilities. For example, Deicide identifies that the method sets
{mas, m1g, m17}, and {mig, mag, m21} address two distinc-
tive responsibilities that can not be further divided (Clusters 2
and 8 in Figure 3), while in JDeodorant’s decomposition,
the methods {mig,mag, ma1} are not clustered together at
all, while methods {mj5,mig, m17} are split across two
neighboring clusters (Clusters 1 and 2 in Figure 4), and they
would only be extracted together during the second round of
recommendation.

Figure 5 illustrates how these entities are co-changed as
recorded in the revision history. In this figure, the column
headers indicate that there are 10 commits that changed these
25 methods. For example, Commit 2 changes both m; and
my, and Commit 4 changes methods mjg, Mgy, and mao;
together, consistent with Cluster 8 in Deicide. Comparing
Figure 5 against Figure 3 and Figure 4, it is clear that Deicide
decomposition better conforms to the co-change history of
this class. Next, we empirically demonstrate that Deicide
decompositions are most aligned with co-change history.



IV. EVALUATION

The objective of our evaluation is to assess how well Dei-
cide can identify responsibility modules that can change and
evolve independently. We first attempted to mine open-source
repositories for confirmed extract class refactorings using a
tool such as Refactoring Miner (RM) [48]. Unfortunately, it
is rare for a large class to be completely decomposed. For
example, using RM, we discovered an Apache file named
ASTGenerator. java that has 3026 LOC before refac-
toring. After four new classes are extracted, 2052 LOC still
remains. It is hard to tell if a mined refactoring has split out
all responsibility modules that should be refactored out.

Instead, we use co-change history as an objective baseline:
if a group of methods are created to accomplish the same
responsibility, they will more likely be changed together and
by the same authors. Since Gall et al. [49] proposed the
concept of evolutionary coupling, co-change history has been
widely used to predict future changes, bug locations, and who
should fix a bug, and to identify code smells and architecture
violations [27]-[39], based on the rationale that frequent co-
changes and co-authorship are indications of cohesive units.
Consequently, we investigate the two research questions pro-
posed in Section I to evaluate the derived clusterings for all
four algorithms.

RQ1: Which algorithm(s) decompose entities into clusters
such that the clustered entities were changed together more
often, as recorded in a project’s revision history? In other
words, an effective decomposition should be able to identify
clustered entities that usually evolve together.

RQ2: Which algorithm(s) decompose entities into clusters
such that the grouped entities were likely to be modified by
the same authors, according to the project’s commit history?
That is, clusters decomposed by an effective algorithm should
contain entities maintained by similar authors, an objective
reflection of cohesive responsibilities.

Next, we introduce the subject selection, measurements, and
statistical analysis of our evaluation process, as well as the
results that answer these questions.

A. Subject Selection

Although we can apply DC, AK, and AL to any source files,
the application of JD is more complicated. The JDeodorant
plug-in for Eclipse requires a project to be compiled first
before generating refactoring suggestions. To compare against
JDeodorant, we must select projects that can be built in
Eclipse. From our original pool of the 30 most popular Apache
projects on GitHub with more than 2,000 Java source files,
we were able to compile 18 of them within Eclipse without
making extensive modifications to their build configurations.

Considering that the number of files and complexity levels
can vary considerably on a project-to-project basis, we select
the files that are in the top 10% of their project by lines of code
(LOC), as extract class recommendations are most relevant to
large classes. However, for some smaller projects, their top
10% still includes some fairly small files, e.g., around 200
LOC. Thus, we only select classes with 500 LOC or more.
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TABLE I: Projects Mined for Subjects

Project Tag Start End Files
ActiveMQ activemg-5.18.1 12/12/2005 4/10/2023 3.9K
Dubbo dubbo-3.1.10 10/20/2011 4/17/23  3.8K
Hudi release-0.12.3 12/16/2016 4/23/23  2.6K
IoTDB vl.1.0 5/712017 3/31/23 47K
Kafka 3.4.0 8/1/2011 131123 43K
Log4j 2 rel/2.20.0 5/13/2010 2/17/23  2.6K
NiFi rel/nifi-1.21.0 12/8/2014 4/3/23  7.7K
Pinot release-0.12.1 10/31/2014 2/27/23 3K
ShenYu v2.5.1 7/11/2018 1/30/23  2.6K

Next, since we need to compare our decomposition with
the revision history, we filter out files that were never revised,
revised just once, or revised by only one author. Finally,
because JDeodorant uses Eclipse to extract dependencies,
while Deicide uses Depends [50], an open-source dependency
analysis tool, they sometimes disagree on the exact entities
contained within a file. We remedy this by filtering out any
files where more than two entities could not be co-identified.
This leaves us with 123 subjects spanning 9 projects. Table I
lists the projects while Table II lists the subjects—truncated
to only show those that are larger than 1000 LOC for the sake
of space. Our subjects range from 503 to 3633 LOC where
each one is in the 90th percentile of their project in terms of
LOC. Our subjects contain dozens to hundreds of entities and
revised by 4 to 50 authors.

B. Measurements

Given the decompositions produced by the four algorithms,
we use the revision history of each project as the ground truth
and comparison baseline. For this purpose, we consider the
revision history of a file as a clustering: each commit is a
“cluster” containing the entities that it has created or modified.
Similarly, each author of a class can also be viewed as a
“cluster” containing the entities that they created or modified.
Figure 5 presents an example of how the commit history of a
class can be represented as a clustering. It is rare for a field to
be modified while maintaining the same identity, so we only
consider methods in our evaluation.

To answer these research questions, we measure the de-
gree to which the decompositions produced by these four
algorithms conform to the revision histories, both in terms
of commits and authors, of our selected subjects. We use
the grand index (GRI) of Horta and Campello [51] for this
task. The GRI is a score between 0 and 1 that measures
the similarity between two clusterings, identifying the one
most similar to a ground truth. While there are many methods
available to measure the similarity between two clusterings, the
GRI is one of the few metrics specifically designed to support
non-exclusive clustering. * The clusterings derived from the re-
vision history are clearly non-exclusive. Entities can (and will)
be changed by multiple commits and authors. Furthermore, the

4The adjusted grand index (AGRI) introduced in the same paper is another
option but tends to overly penalize clusterings that diverge from the ground
truth cluster count. Since the number of commits is often far more than
decomposed clusters, the GRI is more practical for our evaluation.



11213(4(5(6(7]|8|9]10
m1 parseURL X | X X | X
mo | parseURLs X | X
ms3 convertRegister X X
maq convertSubscribe |X X
ms revertRegister X X X
me revertSubscribe X X
mz revertNotify X X
ms revertForbid X
mg getEmptyUrl X
mio | isMatchCategory X
mi1 | isMatch X X X | X X
mi2 | isMatchGlobPat...|X
mis isServiceKeyMatch| X X
m14 | classifyUrls X
mis isConfigurator X X X
m1e | isRoute X X X
mi7 | isProvider X X X
mis isRegistry X X X
mig | hasServiceDisc...|X X X
mao | hasServiceDisc...|X X
m21 | isServiceDisco...|X X
mas isItemMatch X X
ma3 | parseServiceKey X
mo4 | valueOf X X | X
mas isConsumer X X X

Fig. 5: Revision history as a non-exclusive clustering
x: The entity on the row is modified by the commit on the column.

decompositions produced by these four algorithms are also
non-exclusive: entities do not belong to a single cluster but to
a hierarchy of clusters. For instance, in Figure 3, parseURL
equally belongs to Clusters 1, 4, and 7.

For the i-th subject we analyzed, let DC';, JD;, AK,, and
AL; be the decomposition produced by the four algorithms,
and C; and A; be the clusterings derived from the commits
and authors respectively. We define “commit similarity” as
CS[z;] = GRI|C;, z;] where x; is a decomposition of the i-th
subject. Likewise, “author similarity” is defined as AS[z;] =
GRI[4;, z;]. To answer RQ1 and RQ2, we analyze the two
similarity scores between two decompositions. For example,
to test if CS[JD;] > CS[DS;], that is, the JD decomposition
better conforms to the revision history than that of Deicide,
we collect the commit similarity scores for all 123 files and
statistically test this hypothesis as elaborated in Section I'V-D.

C. Data Collection and Execution

We extract both historical and structural data from the 123
files identified in Section IV-A. First, we use Depends [50]
to extract syntactical relationships between files, including the
specific entities involved. Next, we created scripts to collect
method-level commit data, leveraging libgit2 [52] to interact
with the repositories, and tree-sitter [53] to quickly parse the
Java source files found. For each project, we store the entities,
dependencies, commits, and changes in a SQLite database.

We ran Deicide on each subject using a semantic thresh-
old thrs = 0.25 and entity size threshold thrg;,. = 7, the
latter being the median number of entities per class across our
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selected projects. For the remaining three algorithms, we use
the thresholds recommended by their respective authors and
ran them on the same subjects. The entire process is completed
in 52 minutes on a 2023 Apple MacBook Pro with an M2 Pro
CPU and 16 GB of RAM.

Table II presents the results from the largest 25 files. Sub-
jects are sorted in descending order by LOC. The number of
entities, client files, commits, and authors for each subject are
listed in the Ent., Cli.,, Com., and Aut. columns respectively.
The next eight columns show the commit and author similarity
scores for the four algorithms as percentages. The cell with
the best index score is highlighted. For example, the first row
shows a file found in Pinot that has 3633 LOC, contains 212
entities, is depended on by 110 external clients, has been
involved in 210 commits, and revised by 49 authors. Deicide
decomposed this file into 43 responsibility modules, and this
decomposition conforms to the revision history better than
the other three, in terms of commits and authorship. The
final column, Res., lists the number of responsibility modules
discovered. The full table, and all other artifacts, can be found
in our replication package [54].

D. Statistic Analysis and Results

To assess which statistic test should be used to evaluate
the two sets of four measures: CS[DC;], CS[JD;], CS[AK,],
first use the Shapiro-Wilk test [55], [56] to determine that
most of this data is not normally distributed. Accordingly, we
apply the Mann-Whitney U test [56], [57]. The p-values of the
pairwise tests are presented in Table III. Each cell is a p-value
of the test between the data set on the column and the one on
the row. For example, Table II shows that the similarity scores
in the CS[DC;] column are all higher than that of CS[AK]
except for one case; and in Table III, 2.17F — 08 in row AK,
column DC means that the differences are significant (the p-
value is much lower than 0.05). That is, the commit similarity
between DC and the co-change history are much higher than
that of AK. These tables confirm the observation we conveyed
in Section II: all the p-values are very small, meaning that
these algorithms produce drastically different decompositions.
Moreover, our DC is the winner in terms of both commit
similarity and author similarity.

Table IV presents the max, median, and min of the two
similarity scores of these four algorithms. For example, the
commit similarities of Deicide range from 3.44% to 75.00%
with a median of 33.22%. The table reveals that the median
scores of DC, for both commit and author similarity, are much
higher than that of AK, JD, and AL. The authorship results are
similar: authorship similarities of Deicide range from 2.92%
to 72.36% with an median of 25.81%, which is much higher
than the median score of AK, JD, or AL. Now we are ready
to answer our two research questions:

Answer to RQ1: Deicide shows a much stronger alignment
with the co-change history than that of AK, JD, and AL,
meaning that if these responsibility modules were extracted



TABLE II: Results: Decompositions vs. History

# Projet | LOC Ent. Cli Com. Aut. | CS[DC;] CS[JD;] CS[AK;] CS[AL;] | AS[DC;] AS[JD;] AS[AK;] AS[AL;] | Res.
1 Pinot 3633 212 110 210 49 23.55% 0.50% 5.62% 8.09% 15.99% 0.33% 3.57% 5.11% 43
2 ActiveMQ | 3170 409 1082 131 26 14.30% 0.88% 6.84% 1.73% 7.89% 0.45% 3.37% 0.89% 88
3 Logdj2 2848 474 112 148 21 48.25% 1.81% 9.46% 0.16% 34.51% 0.75% 4.14% 0.06% 12
4 ActiveMQ | 2548 275 225 60 14 8.03% 0.51% 2.48% 2.47% 6.09% 0.38% 1.78% 1.80% | 58
5 ActiveMQ | 2154 143 56 312 12.74% 0.94% 6.69% 2.02% 9.85% 0.75% 4.68% 1.35% | 30
6 IoTDB 2148 103 96 205 50 31.08% 12.50% 52.76% 39.22% 54.85% 6.74% 34.12% 30.85% 22
7  Dubbo 1686 231 884 98 33 50.59% 4.64% 14.31% 1.08% 26.98% 2.11% 6.36% 0.48% 38
8 ActiveMQ | 1620 156 29 91 18 31.04% 4.14% 10.81% 5.05% 20.89% 2.29% 6.48% 3.00% 38
9 Kafka 1603 56 2 59 18 46.14% 4.68% 20.03% 2.06% 47.04% 2.86% 12.33% 1.29% 12
10 ActiveMQ | 1588 112 24 63 13 34.78% 2.05% 10.81% 2.48% 20.55% 0.93% 5.15% 1.13% | 22
11 NiFi 1574 98 4 57 22 30.85% 6.78% 20.63% 12.74% 19.54% 3.77% 11.16% 6.60% | 21
12 Pinot 1425 76 8 85 26 43.71% 4.66% 18.23% 11.28% 24.78% 2.00% 7.96% 5.15% 16
13 IoTDB 1423 71 2 58 15 54.27% 37.00% 28.09% 2.22% 60.21% 33.26% 22.85% 1.80% 29
14 ActiveMQ | 1416 150 20 55 14 26.54% 3.79% 12.85% 2.79% 17.03% 2.05% 6.36% 1.42% 32
15 NiFi 1372 111 23 43 18 33.91% 2.24% 9.61% 2.85% 10.39% 0.66% 2.74% 0.80% 21
16 Dubbo 1333 81 39 31 18 43.01% 15.00% 14.63% 1.10% 41.13% 15.86% 14.01% 1.04% | 27
17 Dubbo 1280 100 257 118 48 63.06% 18.78% 40.56% 4.05% 47.08% 11.64% 28.34% 240% | 22
18  Hudi 1273 47 19 92 24 51.95% 33.49% 27.40% 7.38% 33.52% 52.69% 13.22% 3.58% 11
19 ActiveMQ | 1272 196 768 26 9 29.67% 26.31% 17.02% 3.90% 14.46% 13.81% 7.26% 1.98% 42
20  Hudi 1228 108 25 81 36 25.11% 4.55% 10.00% 1.22% 16.50% 2.75% 6.09% 0.76% 29
21  Dubbo 1205 89 260 37 22 48.11% 10.91% 16.65% 0.95% 42.17% 12.56% 14.29% 0.82% 24
22 ActiveMQ | 1129 66 19 21 10 37.78% 3.28% 11.97% 1.46% 32.52% 2.73% 9.86% 1.22% 15
23 ActiveMQ | 1120 205 237 37 12 30.78% 20.97% 16.96% 11.06% 17.90% 12.80% 9.65% 5.92% | 41
24 ActiveMQ | 1114 43 28 11 6 48.86% 7.75% 19.34% 4.13% 26.46% 3.94% 9.43% 2.06% 10
25  Pinot 1065 33 2 13 7 48.39% 15.53% 35.27% 11.85% 34.22% 11.64% 24.82% 9.23% 7
Ent.: Entities; Cli.: Clients; Com.: Commits; Aut.: Authors; CS[z;]: Commit similarity; ASTa;]: Author similarity; Res. Responsibility

modules from Deicide

TABLE III: Mann-Whitney U Test Results

Commit Similarity (CS) Author Similarity (AS)
DC AK 1D AL DC AK D AL
DC - -
AK 2.17E-08 - 1.38E-11 -
D 2.22E-16 | 1.04E-02 - 2.40E-14 | 1.04E-02 -
AL | 0.00E+00 [ 3.89E-11 | 2.22E-16 - 0.00E+00 | 2.00E-10 | 9.50E-05
TABLE IV: Results Summary
Commit Similarity (CS) Author Similarity (AS)
DC AK D AL DC AK 1D AL
Max | 75.00% [ 66.67% | 67.26% | 50.49% | 72.36% | 66.67% | 66.67% | 60.12%
Median | 3332% | 1245% [ 17.10% | 7.07% | 2581% | 7.89% 10.11% | 3.96%
Min | 3.44% 0.26% 0.48% 0.08% 2.92% 0.20% 0.46% 0.06%

into new classes, they would be more likely to change and
evolve independently.

Answer to RQ2: Deicide demonstrates a much stronger
alignment with authorship history, indicating that if a responsi-
bility module is extracted into a new class, it can be maintained
by the same authors who previously worked on its entities.

V. DISCUSSION
A. Threats to Validity

An external threat is that we only compared Deicide with
three existing approaches—the most well-known, or those
presented in recent publications. Since JDeodorant requires
compiled binary Java code, our evaluation was limited to Java
projects that can be compiled and built in Eclipse. Our results
could be different for other projects, particularly those written
in different programming languages.

We also note several threats to internal validity. First, the
accuracy of dependency extraction largely depends on the
accuracy of the tools used as a preprocessor. Deicide uses
Depends [50]—an open-source dependency extraction tool, to
extract dependencies, while JDeodorant uses Eclipse. We have
noticed minor differences between the dependency relations
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extracted by both tools. To mitigate this threat, we have
manually checked the results to make sure there were no
significant differences, but we should evaluate the impact
of such differences automatically in the future. Second, the
stopping criterion for Deicide is the median number of entities
of all classes, which may or may not be the best choice
to find the optimal decomposition. It is also possible that
thresholds for different projects can be different. We will also
explore this parameter in future work. Third, Deicide leverages
semantic similarity among entity names, assuming that the
system follows a strict naming convention, where each entity
is named based on underlying concepts. The degree to which
this is true will impact the effectiveness of Deicide. Finally,
our selection of subjects from the top 10% LOC of a project
is another threat. A large class can have a single or a few
responsibilities, and a smaller file might also be a god class.
Exploring effective tools that can be used to identify complex
files that need refactoring is our future work.

B. Future Work

As revealed by recent industrial experience report [13], class
decomposition is a complicated problem that cannot be fully
automated. Instead, the responsibility modules produced by
Deicide can be used in the “planning stage” proposed by
Anquetil et al. [13] and Malavolta et al. [14], and an architect
should review the resulting clusters and choose the ones
that should be refactored based on their domain knowledge,
business goals, and estimated costs. After that, the chosen
refactoring can be automated. Creating such a complete and
interactive framework is our future work.

Currently, we evaluate Deicide using revision history. An-
other promising direction would be to apply Deicide to de-
compose a god class in an early version of the project and
then analyze its subsequent evolution to determine whether



the proposed decomposition aligns with how the project nat-
urally evolved. This forward-looking approach complements
the current backward-looking analysis of revision history.

Another important future task is to apply Deicide to more
systems written in other programming languages, and to assess
the impact of using different dependency extraction tools. As a
matter of fact, dependency extraction is a fundamental step for
much design related research, but the accuracy and consistency
of these tools has not been properly evaluated.

Finally, different clustering methods may perform better in
different scenarios. For instance, if a complex class has only
one or two primary responsibilities rather than multiple distinct
ones, these lopsided algorithms may generate better results. To
explore this further, we plan to conduct more empirical studies
in the future, and interview experienced software architects to
gather their feedback.

VI. RELATED WORK

Our work is most related to extract class refactoring al-
gorithms that have been proposed to address large or “god”
classes—the most prominent code smells. It is also related
to software redesign/refactoring to improve modularity and
evolution in general.

Fowler introduced the term “code smell” [1] to capture
problems that make code harder to change, maintain, or test
in the long run. Since then, the detection [2]-[4], [6], [58] and
removal [7]-[12], [18], [19] of code smells have been widely
studied. In this paper, we focus on the class decompositions
used by extract class recommenders to decompose large and
complex classes [10], [15]-[26]. These files are often foci
of maintenance difficulty, and interleave with other smells or
anti-patterns [13], [59], [60]. Dallal’s survey summarized the
methods proposed to detect god classes [61], using metrics,
clustering, graphs, etc. As Anquetil et al. pointed out [13],
god classes are usually easy to spot, and developers do not
need sophisticated methods to detect them. In this paper, we
chose the largest active files in each project as our subjects.

Several methods have been proposed to identify extract class
refactoring opportunities. De Lucia et al. [15] were among
the first to leverage structural and semantic cohesion metrics
to decompose large classes, employing a MaxFlow-MinCut
algorithm [62] to split a weighted graph of class entities into
cohesive subgraphs. Building on this, Bavota et al. [16], [17],
[20] introduced an approach that integrated Latent Semantic
Indexing (LSI) [63] to measure semantic similarity alongside
structural dependencies. Concurrently, Fokaefs et al. [10],
[18], [19] developed JDeodorant, which uses a Hierarchical
Agglomerative Clustering (HAC) algorithm to discover extract
class opportunities by analyzing the internal call graph.

Akash et al. [21] extended Bavota’s work by replacing LSI
with Latent Dirichlet Allocation (LDA) [64] for processing
semantic information and merging entities based on a com-
bination of structural and semantic metrics. Unlike Bavota’s
approach, which focused on binary or partitional class splits,
Akash’s method employs a HAC algorithm to produce a
hierarchical decomposition.
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Alzahrani et al. [22]-[24] introduced another notable ap-
proach, becoming the first to incorporate external client re-
lationships into the decomposition process. Unlike Akash
and Bavota, Alzahrani’s method measures coupling based on
shared client dependencies, resulting in decompositions that
emphasize interactions between the class and external systems.

Search-based software engineering methods have addressed
the problem of automated software refactoring [65]-[70]. The
work of Ivers et al, Masoud et al, and Schroder et al. are the
most recent advances in this area [71]-[73]. These methods
typically search for a sequence of refactorings that optimize
for some global quality metrics, seeking to recluster a large
number of classes, rather than a single complex class as we do.
Researchers have also recognized that refactoring can not and
should not be fully automated [74], [75]. Anquetil et al. [13]
proposed a “planning” stage before refactoring, which was
done manually, supported by visualization. Deicide is designed
to be used in such a planning stage, providing an automated
decomposition recommendation.

VII. CONCLUSION

This paper presented our approach to derive a holistic de-
composition of a large, complex class as a set of responsibility
modules. After analyzing the decomposed structures derived
from existing hierarchical decomposition algorithms, we pre-
sented Deicide, a novel algorithm that constructs a graph from
three distinct types of relations: internal entity dependencies,
external client-to-entity usage relations, and identifier semantic
similarity. Using this graph, we transformed the class de-
composition problem into an acyclic partitioning problem to
generate a balanced, acyclic, and hierarchical structure where
each cluster represents a responsibility module. Finally, we
empirically evaluated Deicide, comparing it with the three
state-of-the-art algorithms, using 123 classes identified from
9 open-source projects as subjects.

To assess how well the decomposed clusters can change and
evolve independently, we compared the resulting decomposi-
tions against each project’s revision history, checking to what
extent the entities in the same cluster were actually changed
together, and by the same authors. Our statistical analysis
revealed that the responsibility modules recommended by De-
icide are significantly more aligned with the project’s revision
history than the other three approaches. The implication is that
if a class is refactored based on Deicide’s recommendation,
these newly created classes will be much more independent,
making them easier to understand, maintain, and evolve.

VIII. DATA AVAILABILITY

We provide all data along with a replication package at [54].
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