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Abstract

Motivated by engineering applications such
as resource allocation in networks and inven-
tory systems, we consider average-reward Re-
inforcement Learning with unbounded state
space and reward function. Recent work
Murthy et al. (2024) studied this problem
in the actor-critic framework and established
finite sample bounds assuming access to a
critic with certain error guarantees. We com-
plement their work by studying Temporal
Difference (TD) learning with linear func-
tion approximation and establishing finite-
time bounds with the optimal sample com-
plexity. These results are obtained using the
following general-purpose theorem for non-
linear Stochastic Approximation (SA).

Suppose that one constructs a Lyapunov
function for a non-linear SA with certain drift
condition. Then, our theorem establishes
finite-time bounds when this SA is driven
by unbounded Markovian noise under suit-
able conditions. It serves as a black box tool
to generalize sample guarantees on SA from
i.i.d. or martingale difference case to poten-
tially unbounded Markovian noise. The gen-
erality and the mild assumptions of the setup
enables broad applicability of our theorem.
We illustrate its power by studying two more
systems: (i) We improve upon the finite-time
bounds of Q-learning in Chen et al. (2024) by
tightening the error bounds and also allowing
for a larger class of behavior policies. (ii) We
establish the first ever finite-time bounds for
distributed stochastic optimization of high-
dimensional smooth strongly convex function
using cyclic block coordinate descent.
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1 INTRODUCTION

Reinforcement Learning (RL) is an important
paradigm in machine learning that provides a pow-
erful framework for learning optimal decision-making
strategies in uncertain environments (Sutton, 2018;
Szepesvéri, 2022). Since its inception, it has been em-
ployed in a variety of practical problems such as health
care (Dann et al., 2019), robotics (Kober et al., 2013),
autonomous vehicles (Aradi, 2020), and stochastic net-
works (Liu et al., 2019). This remarkable success has
led to an extensive study of its convergence behavior
both asymptotically (Bertsekas, 1996; Tsitsiklis, 1994;
Sutton, 1988) and in finite-time (Beck and Srikant,
2012; Bhandari et al., 2018; Srikant and Ying, 2019;
Qu and Wierman, 2020; Chandak et al., 2022; Chen
et al., 2024; Zhang and Xie, 2024).

The underlying problem structure in RL is typically
modeled by a Markov Decision Process (MDP) (Put-
erman, 2014) whose transition dynamics are unknown.
Several real-world problems such as inventory man-
agement systems or queueing models of resource al-
location in stochastic networks involve infinite state
spaces, and moreover rewards or costs usually go to
infinity with the state. Despite these challenges, RL
algorithms have shown promising empirical results in
these extreme settings (Liu et al., 2019; Cuartas and
Aguilar, 2023; Wei et al., 2024; Bharti et al., 2020).
In contrast, there is little analytical understanding of
their performance in the unbounded setting. In partic-
ular, their finite time/sample performance is not well
understood. Most of the literature focusing on the
finite-time analysis of RL algorithms either assumes fi-
nite state space for the underlying MDP (Chen et al.,
2024; Khodadadian et al., 2023; Qiu et al., 2021; Chen
et al., 2022) or bounded rewards (Wu et al., 2020; Yang
et al., 2018; Wang et al., 2017). Furthermore, these as-
sumptions are crucial to their analysis, and thus, their
results cannot be easily extended.

One of the widely adopted approaches to find the op-
timal policy is the actor-critic (AC) framework (Barto
et al., 1983). In this method, the actor improves the
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current policy by updating it in a direction that maxi-
mizes the expected long-term rewards, while the critic
evaluates the performance of the policy based on the
data samples from the MDP. A recent prior work that
analytically studied infinite state MDPs in this con-
text is Murthy et al. (2024), where the authors focus
on the actor phase and established finite-time conver-
gence bounds of policy optimization algorithms assum-
ing that the critic evaluates a given policy with certain
error guarantees. In this paper, we complement their
work by providing finite sample guarantees of such a
critic. In particular, we analyze Temporal Difference
(TD) learning, a popular algorithm for policy evalua-
tion in critic, and establish finite-time bounds on the
mean square error.

The main contributions of the paper are as follows.

Performance of TD-Learning in Unbounded
State Space and Rewards: In the policy evaluation
problem, the infiniteness of the state space manifests
itself through unbounded feature vectors and rewards
in the algorithm. We analyze average-reward TD(\)
with linear function approximation (LFA) under asyn-
chronous updates, a popular algorithm for policy eval-
uation in RL. We establish the first known finite-time
convergence bounds for this setting, and show an opti-
mal O(1/k) convergence rate under appropriate choice
of step sizes. Due to the challenges in the average-
reward setting, to the best of our knowledge, even the
asymptotic convergence has not been formally estab-
lished in the literature. By a careful projection of the
iterates to an appropriate subspace, we also establish
its almost-sure (a.s.) convergence.

Finite-Time Convergence Guarantees for SA
with Unbounded Markov noise: TD learning is
based on using SA to solve the underlying Bellman
equation of the MDP. The aforementioned results on
TD learning is obtained by studying a general class
of non-linear SA corrupted by unbounded Markovian
noise, and establishing the following general-purpose
result.

Informal Theorem. Consider a nonlinear SA, and
suppose that a Lyapunov function satisfying certain
drift condition is constructed in the setting when the
noise is i.i.d. or martingale difference. Then, we
establish finite sample bounds when the same SA is
driven by Markovian noise with unbounded state space
under appropriate assumptions.

In other words, we decouple the challenge of handling
Markovian noise from the issue of analyzing the SA
itself. Our result complements the existing literature
by enabling one to generalize any SA result to the case
of unbounded Markovian noise. Therefore, we believe
that this powerful result is of independent interest due

to its applicability in a wide variety of settings.

Methodological Contribution: The key technique
that enables us to establish these results is the use of
the solution of the Poisson equation to analyze Markov
noise. Recent works control Markov noise by exploit-
ing the geometric mixing properties of Markov chains
(Bhandari et al., 2018; Srikant and Ying, 2019; Qu
and Wierman, 2020; Mou et al., 2021; Xu and Liang,
2021; Khodadadian et al., 2022; Chen et al., 2024).
However, it is unclear if this approach enables one
to analyze unbounded Markovian noise. We instead
adopt the use of Poisson equation, which has been used
to study asymptotic convergence and statistics of SA
(Harold et al., 1997; Benveniste et al., 2012; Borkar
et al., 2024; Lauand and Meyn, 2024; Allmeier and
Gast, 2024). Although this approach has also been re-
cently used to study linear SA under bounded Marko-
vian noise in Kaledin et al. (2020); Haque et al. (2023);
Agrawal et al. (2024), we use it to obtain finite sam-
ple bounds for nonlinear SA under unbounded noise
settings. Compared to the mixing-time approach, this
approach is not only more elegant but also has the
added advantage of giving tighter bounds (in terms
of log factors) and allows for a larger class of Markov
chains (such as periodic chains). The next two contri-
butions focus on exploiting these improvements.

Performance of ()-learning Algorithm: As an il-
lustrative application in the case of finite-state Marko-
vian noise, we consider )-learning in the discounted
setting. Using our black box, we immediately ob-
tain finite-sample bounds for QQ-learning using the Lya-
punov function constructed in Chen et al. (2024). Our
result improves Chen et al. (2024) by (i) shaving off
additional O(log(k)), and O (log (1/1 — 7)) factors in
the convergence bounds and (ii) allowing for a larger
class of behavior policies, including those that may not
have geometric mixing or lead to periodic behavior.

Performance of Stochastic Cyclic Block Coordi-
nate Descent: The general setup of our theorem also
allows us to consider settings beyond RL. We study the
stochastic optimization of a high-dimensional smooth
strongly convex function, where one is only allowed
to update a subset of components at each time. This
is commonly done using a variant of stochastic gra-
dient descent called cyclic block coordinate descent
(CBCD). While other versions of block coordinate de-
scent were studied in the literature (Nesterov, 2012;
Diakonikolas and Orecchia, 2018; Lan, 2020), finite
sample bounds of CBCD in the stochastic setting were
not known. We provide a new perspective to handle
the cyclic nature of updates by viewing each block as
the states of a periodic Markov chain. This outlook
in conjunction with our black box immediately gives
optimal O (1/k) convergence rate.
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We have provided a detailed comparison with the re-
lated literature in Appendix A.

2 PROBLEM SETTING AND MAIN
RESULT

Consider a non-linear operator F : R? — R%. Our
objective is to find the solution z* to the following
equation:

F(z) = Ey~ulF(2,Y)] =0, (1)

where Y represents random noise sampled from a
Markov chain with a unique stationary distribution
u, and F' is a general non-linear operator. The state
space of the Markov chain is denoted by ).

Suppose F(-) is known, then Eq. (1) can be solved
using the simple fixed-point iteration zj41 = F(zy).
The convergence of this iteration is guaranteed if one
can construct a potential function—also known as Lya-
punov function in stochastic approximation theory—
that strictly decreases over time. However, when the
distribution p is unknown, and thus F(x) is unknown,
we consider solving Eq. (1) using the stochastic ap-
proximation iteration proposed as follows.

Let {Yi}k>0 be a Markov process with stationary dis-
tribution p. Then, the algorithm iteratively updates
the estimate zj, by:

Tpr1 =y (l‘k + Olkz(F(wka Yk) + Mk)) ) (2>

where {ag}r>0 is a sequence of step-sizes, {My}i>o0
is a random process representing the additive external
noise, and IIx(-) is £3-norm projection of the iterates
to set X. The projection on the set X is included for
generality, where X’ can be either a compact set or the
entire space R%, depending on the context. We em-
phasize the importance of projection operator Iy to
get meaningful mean square bounds here. In a recent
study Borkar et al. (2024), the authors constructed an
SA with unbounded noise that operates without any
projection step. It is shown that such an algorithm
will converge to the stationary point a.s., however, the
mean square error diverges (Proposition 4, Section 3.3,
(Borkar et al., 2024)). Thus, projecting the iterates to
a bounded set is not a proof artifact, but rather a
technical necessity.

We begin by outlining the set of assumptions for Algo-
rithm 2. These assumptions are motivated by practi-
cal applications of SA algorithms, such as those in RL
and optimization algorithms, which will be studied in
Sections 3 and 4. Let || - ||c be an arbitrary norm in
R,

Assumption 2.1.  There exist functions
A1(y), B1(y) : Y — [0, 00) such that for all x € X and

y € Y the operator I satisfies the following:
1E(z,y9)lle < Ar(y)llz — 2™ [lc + Bui(y).

Remark. Prior works such as Srikant and Ying (2019);
Mou et al. (2021); Chen et al. (2024) assumed that
the state space of the Markov chain is bounded, thus
could replace the functions A;(y) and By (y) by their
upper bounds. However, in contrast, we consider the
case of unbounded state space where these functions
can possibly be unbounded as well.

Next, we state the assumptions about the Markov
process. Let P : ) x Y — [0,1] be the transition
kernel, and let us denote the one-step expectation of
any measurable function G conditioned on z € ) as
E.[G(Y1)] = [}, G(y)P(z,dy). Note that if ) is count-
able, then E.[G(Y1)] = >_,cy G(1)P(j]2).
Assumption 2.2. We assume the following proper-
ties on the Markov process:

(a) The Markov process has a unique stationary dis-
tribution denoted by p. Moreover, Ey ., [F(x,Y)]
exists for all z € R? and is denoted by F(z).

(b) There exists a function V,(z) for all z € Y and
x € R? which satisfies the Poisson equation:

Va(2) = Fla,2) + E[Va ()] - F(2).  (3)

(¢) There exist functions As(y), B2(y) : Y — [0,00)
such that for all 21,29 € A and y € Y, the solution
V., satisfies the following:

Ve, (y) = Ve, (W)lle < A2(y) |22 — 2ale,

Ve @)l < Baly): (4)

(d) Let {Yi}r>0 be a sample path starting with an
arbitrary initial state Yy = yo, then for all £ > 0
we have the following:

(1) Starting from any initial state o, second mo-
ment of the functions A;(-), As(-), B1(+), and
By(+) are finite and given as follows:

max{E,, [A](Yy)], 1}

max{E,, [45(Yy)], 1}
By, [BY (Yi)] = B (v0), By, [B3(Y2)] = B3 (y0),
where E, -] = E[-|Ys = yo].

(2) If the state space is bounded then we denote
the upper bound on these functions as follows:

1y =A
1Y =A

max{| max A;(y)|,1} = 4y,
yey

max{| max As(y)|,1} = Aa,
yey

max B = By, |maxB = B».
|y€y 1Y) =B ‘yey 2(y)| = B2



Stochastic Approximation with Unbounded Markovian Noise: A General-Purpose Theorem

Remark. This set of assumptions is inspired by the
asymptotic analysis of SA in Benveniste et al. (2012).
Implicit in them is the fact that the Markov process
exhibits a certain degree of stability. It is important
to note that these assumptions are always satisfied for
bounded state space Markov chains under fairly gen-
eral conditions. Additionally, they also hold in many
scenarios of practical interest when the state space )V
is unbounded, as will be demonstrated in Section 3.
Remark. There is a parallel line of research that stud-
ies the a.s. convergence of SA under even more general
setting where the Poisson’s equation may not have a
solution Yu (2012, 2017, 2018); Liu et al. (2025). This
line of work relies on the ergodic theorem for Markov
chains to get a handle on the noise, and focuses on
asymptotic convergence. For a comprehensive discus-
sion, see detailed literature survey in Appendix A.

Let {Fi} be a set of increasing families of o-fields,
where ]:k = O'{Jio,Yb, Mo, ey L1, Yk—h Mk—l; Yk}
Assumption 2.3. Let A3,B3 > 0. Then, pro-
cess {My}i>o satisfies the following conditions: (a)
E[Mg|Fg] = 0 for all & > 0, (b) ||Mg|l. < Asl|lzx —
LL’* ”c + Bg.

Remark. Assumption 2.3 implies that {Mj },>o forms
a martingale difference sequence with respect to the
filtration Fj, and its growth is at most linear with
respect to the iterate xy.

Let | - ||s be a norm in R%. To study the convergence
behavior of Eq. 1, we assume the existence of a smooth
Lyapunov function with respect to || - ||s that has neg-
ative drift with respect to the iterates xj. More con-
cretely, the Lyapunov function satisfies the following
assumption.

Assumption 2.4. Given a Lyapunov function ®(x),
there exists constants 7, L, [, u > 0, such that we have

(Ve — ), F(a)) < —nb(s — a°), 5
B(y) < @) + (VO(),y — ) + o~y

19(x) < 22 < ud(@),
B(Mx(z) — 2*) < D(a — 2%),

6

7

)
)
)
8)

(
(
(
(

where Eq. (5) is the negative drift condition, Eq. (6)
is smoothness with respect to || - ||s, Eq. (7) is equiv-
alence relation with the norm | - ||, and Eq. (8) is
nonexpansivity of the Lyapunov function ®(z). Note
that we allow || - || and || - ||s to be two different norms
for generality. Often, one can fine-tune the s-norm to
get tighter bounds.

Assumption 2.5. Finally, we assume that the step-
size sequence is of the following form:

>
(k+ K)¢’

A —

where a > 0, K > 2, and £ € [0, 1].

2.1 Unbounded State Space

We will now present finite bounds for the two most
popular choices of step size, which are common in prac-
tice. Let X denote an £5-ball of sufficiently large radius
chosen such that z* € X. Then, the resulting mean-
squared error is as follows.

Theorem 2.1. Suppose that we run the Markov chain
with initial state yo. When the state space Y is un-
bounded and the set X is an £o-ball, then under the As-
sumptions 2.1-2.5, {xp} k>0 in the iterations (1) sat-
isfy the following:

(a) When ay, = a < 1, then for all k > 0:

E[||zrr1 — 2*)|2] < @oexp (—nak) + 3¢1C (yo)a
N 6@16A‘77(yo)04'

(b) Whené=1, a > % and K > max{a,2}, then for
all k> 0:

K \"  ¢1Cyo)a
E —z*2] <
llowes =2 <00 () + S

4(6 + 4n)p1C (yo) e
(ma—1)(k+K)

The rate of convergence under other choices of step-
size and the constants {¢;}; and C(yo) are defined in
Appendix C.

Remark. In part (a), the error never converges to 0 due
to noise variance, however, the expected error of the
iterates converges to a ball around x* at an exponen-
tial rate. In part (b), using a decreasing step size with
appropriately chosen a, we obtain the O (1/k) conver-
gence rate, which leads to the sample complexity of
O (1/€®) to achieve E[||zi41 — 2*||] < e.

Remark. Note that Ily(xz) = argming, cy ||z — 2'|2.
Thus, from a computational standpoint, this only in-
volves rescaling the iterates, as the projection operator
Iy (x) reduces to %x if ||z]|2 > radius(X) and
is x otherwise.

We introduce the projection onto the ball X for ana-
Iytical tractability !. The interplay of the unbounded
state space ) and the iterate space R? makes the anal-
ysis significantly challenging. Prior works assume that
the set ) is bounded and thus do not need projec-
tion. In contexts like queueing systems, truncating

!One way to bypass projection is if one can show by
other means that the iterates remain bounded, such as in
discounted bounded rewards settings (Chapter 1, (Bert-
sekas et al., 2011))
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the state space would change the stationary distribu-
tion, thereby altering the optimal policy. However,
projecting the iterates is a more realistic solution in
such cases, as it does not change the solution provided
that the projecting set is taken to be large enough.
Nonetheless, it is worth noting that even after projec-
tion, handling the noise is substantially challenging,
and no previous work handles this.

2.2 Bounded State Space

Now we state the sample complexity when ) is
bounded and X = R? which implies no projection is
required.

Theorem 2.2. When the state space Y is bounded and
the set X = R, then under the Assumptions 2.1-2.5,
{zk}r>0 in the iterations (1) satisfy the following:

(a) When ap = a < min{l, m}, then for all
k>0:
* (|12 —7704745
llai "2 < wexp (12) 1188010
n 4039104.
n

(b) When & = 1, a > % and K > max{Aa(5a +
8)01,2}, then for all k > 0:

2Bo1a
k+ K

* (12 K %
El|zrg1 — 2*|Z] < 00 <k+K> +

8B(5 + 4n)o1ea®
(5 —1) (k+ K)

Please refer to Appendix C for error bounds under
other choices of step-sizes and the constants {g;};, A,
and B.

Remark. Compared to the existing literature with fi-
nite state Markov chains, such as Chen et al. (2024),
we do not need any mixing property of the Markov
chain to establish the bounds. We instead assume
that the solution to the Poisson equation exists, which
is true in finite state Markov chains even when there
is no mixing (such as under periodic behavior). This
also has an additional benefit of eliminating the poly-
logarithmic factors from the bounds.

3 APPLICATION IN
REINFORCEMENT LEARNING:
POLICY EVALUATION

In this section, we consider the infinite-horizon
average-reward MDP which is specified by the tuple

(S8, A, R,P). Here, S is the state space which may
be countably infinite, A is the finite action space,
R :Sx A — R is the reward function, and P :
SxSxA — [0,1] is the transition kernel. At each time
step k = 0,1,2,..., the agent in state S € S selects
an action Ay € A sampled from a policy 7(:|Sk), re-
ceives a reward R (S, Ag), and transitions to the next
state Sk41 sampled from P(:|Sk, Ax).

Consider the problem of evaluating the perfor-
mance of a policy nm from data generated by ap-
plying m to the MDP. Let us denote Pr(s'|s) =
Y acg P(s'|s,a)m(als) as the transition probabilities,
and Rr(s) = > ,c4 R(s,a)m(als) as the average re-
ward for each state. For clarity, we will drop the sub-
script 7 from the notation wherever it is evident. We
assume that the policy 7 has the following property:

Assumption 3.1. The Markov chain generated by
policy 7 is irreducible, aperiodic and has a unique sta-
tionary distribution given by p. Furthermore, the re-
wards have a finite fourth moment under pu.

E,[R*(Sk, Ap)] = #* < oo,

where E,[-] denotes the stationary expectation. Let
T = .cs(8)Rx(s). Then, Assumption 3.1 is suffi-
cient for the existence of a differential value function
V* 1§ — R that satisfies the Bellman/Poisson equa-
tion B,V* = V* (Derman and Veinott, 1967). Here B
is defined as:

BV (s) =Rx(s)+ Z P(|s)V(s')—T, Vs € S.
s'eS
It should be noted that the average-reward Bellman
equation has a unique solution only up to the addi-
tive constant. Thus, if there exists a ¢ € R such that
V'(s) = V*(s) + ¢, for all s € S, then V' is also a
solution to the Bellman equation.

Since the state space is infinite, directly estimating V*
from data samples is intractable. Hence, we will use
linear function approximation (LFA) to approximate
V. Denote 1(s) = (t1(s), ¥a(s), - ., a(s))T € RY
as the feature vector for state s. Consider an arbi-
trary indexing of the state space S = {s1,s2,53,...}
such that P(s;11]s;) > 0 for all ¢ > 1. For notational
ease, we will concatenate the feature vectors ¢ (s;) into
a feature matrix ¥ which has d columns and infinite
rows such that the i-th row of ¥ corresponds to s;.
Let A be a diagonal matrix (infinite dimensional) with
diagonal entries as p(s). Then, we have the following
assumption on W.

Assumption 3.2. (a) The columns of matrix ¥ are
linearly independent. More explicitly,

d
Z“ﬂ/fj(S)ZO, Vs€S = a; =0, 1 <j<d.
Jj=1
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(b) The columns v; of ¥ satisfy:

;13 = Zu

Remark. The abbumptlon of linear independence holds
without loss of generality. If any columns of the ma-
trix are linearly dependent, they can be removed with-
out affecting the approximation accuracy. Part (b)
states that the u-weighted ¢ norm of columns of ¥ are
bounded. Note that due to Assumption 3.1, u(s) > 0
for all s € S, hence || - || is a valid norm.

2(s1) <P? <00, 1<j<d.

Assumption 3.3. For any initial state sy € & and
m > 0, there exist functions fi, fa, f3 : S — [0,00)
and a constant p € (0, 1) satisfying the following:

[Eso [R(Sk, Ar)] = 7| < p* f1(s0

)

B [ (Sk)] — Epltb(Si)]ll2 < o fi(s0),
o [ (S) P (Skrm) "] = Bl (Sk)9(Sktm) " Illa
< 0" fi(s0),
[ Eso [¢(Sk)R(Sktm, Ak+m)] — Eptr(Sk) R (Sktm )] |2
< 0" fi(s0),

where for all k > 0, fi(-) satisfies: Eg,[fi(Sk)] <
f2(s0). Furthermore, for all k > 0, we have

Eso[[0(Sk)II3] < f3(50); Eao[R*(Sk, Ar)] < f3(s0).

Remark. Note that these assumptions are always true
for finite state space. For infinite-state space, they
quantify the stability of the Markov chain. Overall,
while these assumptions are technical, they are fairly
mild in many practical applications of interest. For
example, in stable queueing systems with downward
drift, the stationary distribution is light-tailed and
decreases geometrically fast with queue length which
forms the state space of the Markov chain. Moreover,
one can show rapid convergence of P™(-|sg) — p for
these Markov chains (Stamoulis and Tsitsiklis, 1990;
Meyn and Tweedie, 1994; Lund and Tweedie, 1996).
Thus, for rewards and feature vectors with polynomial
growth with the queue length, these assumptions are
readily satisfied.

Remark. Although, these assumptions imply certain
level of mixing in the Markov chain, it remains unclear
if one can use the techniques in the existing literature
for this setting. This is because these works use the
finiteness of the noise to control the growth rate of the
iterate by picking small enough step-size. However,
this is not possible in the case of unbounded space
since the noise can be arbitrarily large.

3.1 Average-Reward TD()\)

We now define a modified version of the Bell-
man operator which is essential for understanding

TD(A). For any A € [0,1), define Bgr’\)(V) =(1-
N (oo A B™(V)), where B'(-) is the m-step Bell-
man operator. It is easy to verify that 87({\) and B,
have the same set of fixed points. Since we are restrict-
ing our search for the value function in the subspace
spanned by ¥, we instead solve the corresponding pro-
jected Bellman equation:

U0 =Ty g (379)\119) : 9)

where § € R? is the parameter variable and Ip g =
U(UTAW)~IUTA (PTAW)~! is a d x d matrix which
well defined due to Assumption 3.2) is the projection
operator onto the column space of ¥ with respect to
Il |la. Let Eg be a subspace defined as follows:

By = span{0|u(s;)T0 = 1,Vi}

| {cbe|c € R}, if 30, € R? and ¢ (s;)T6. = 1,Vi
~ {0}, otherwise

Observe that if Fy # {0}, then Eq. 9 has infinitely
many solutions of the form {6* + cf.|c € R}, where
0* is the solution in the orthogonal complement of Ey
denoted by Eg. As shown in Part (b) of Proposition
E.1, this solution is unique in the subspace Ei. Let
Iy pu(0) = 0 — 0,6.)/(|10]13)8e, which is the pro-
jection operator onto the subspace E$2 and X be an
{y-ball in R%*! such that [7,0*T]T € X. Then, we have
Algorithm 1 to estimate 7 and 6*.

Algorithm 1: Average-reward TD()\) with LFA
: A €[0,1), ¢q > 0, basis functions
{;}4_,, step-size sequence {ay }r>o-

Initialize z_1 =0, 7p € R and 6, € E$ arbitrarily.
for k=0,1,...do

Observe (Sk, R(Sk, Ak), Sk+1)

O = R(Sk, Ak) — 71 + ¥ (Sk11)" O — P (Sk) " bx

2k = Azp—1 + ¥(Sk)

Trh1 = Tk + caar(R(Sk, Ar) — Tk)

Or+1 = Ok + cudilly po 2

= I ([Frs1, 07, 4])

Input

[Fht1, 0144]
end

The algorithm is essentially equivalent to TD(\) for
average-reward setting, however one difference lies in
the update of the parameter 6. Specifically, we
project the eligibility trace vector zj onto E$ which
restricts the iterates {0y }r>o to the subspace Eg. This
ensures that the convergent point of the algorithm
unique. Finally, we use projection onto X to control
the growth of the concatenated vector [F11, 0], 4].

2This should not be confused with ITx(-) which is pro-
jection onto the compact set X.
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3.1.1 Properties of TD()\) algorithm

To transform Algorithm 1 in the form of iteration (2),
we construct a process Yy = (Sk, Ak, Sk+1,2k) tak-
ing values in the space Y := S x A x & x R%. It
is easy to verify that Y, forms a Markov process in
the continuous unbounded state space3. Let us define
zp := [Pk, 0F]T, then the iterations can be compactly
written as:

g1 = Hx (2 + o F(xg, Yi)) (10)

where F(Ik, Yk) = T(Yk):zzk + b(Yk) and

—Ca 0 .
) = |:_H2,E$Zk Iy gg 2k (V(Sks1)" — WSk)T)}

R(Sk, Ar)
b(Yy) = {HQ,EQ;R(;]“I:]C)ZJ .

To consider the stationary behavior of Yj, let
{Sk,Ak}kzo denote the stationary process. Then,
Zp = ZIZ:—oo )\k_z’(ﬂ(S[) and Y, = (SkaAkaSk+172k)
are the stationary analogs of z; and Y}, respectively.
Let the stationary expectation of the matrices T'(Y3)
and b(Y}) be denoted by T and b. Then, we have the
following lemma for T and b whose proof is given in
Appendix E.1.

Lemma 3.1. Under Assumption 3.1 and 3.2, the sta-
tionary expectations T and b are finite and given by

_ —Cq 0
T= [(A il s U T, s (WTAPOY — WTAY)

b— CaT
T Iy g WTARW |

where P = (1—\) Y
A) Yoo A" 2% P' R

Using Lemma 3.1 and Assumptions 3.1-3.3 one can
verify with some algebra that TD(\) satisfies all the
Assumptions 2.1-2.2. We present the proof of this in
Appendix E.2.

o AP and RV = (1 —

3.1.2 Finite Sample Bounds for TD())

We pick ®(z —2*) = (7x —7)?+ |0k —0*||3 as our Lya-
punov function. A key insight in Zhang et al. (2021)
that established the negative drift was the observa-
tion that for any function in the set {V|> sV (s) =
0, ,cs V3(s) = 1}, there exists a A > 0 such that

VIAV —VTAPMY > AL

3We would like to highlight the distinction between in-
finite and unbounded state space here. In the analysis of
TD()) for finite MDPs, the process Y also has infinite
state space, but it is bounded.

However, in general, such an inequality is not true for
infinite state space, as explained in Appendix E.5.

To establish a similar drift condition in our setting, we
leverage the fact that the matrix ¥ has a finite num-
ber of linearly independent columns. This effectively
restricts the value function to a finite-dimensional sub-
space, allowing us to prove the following lemma. For
proof, please refer to Appendix E.3.

Lemma 3.2. Under Assumption 3.1 and 3.2, we have
A= min 6711, . (\IJTA\I/ - \I/TAP(’\)\I') 0> 0.

0B
llollz=1

d2q4

Furthermore, when co > A+ \/A2 T (151:2’;)2,
have —xTTx > 5|23 for all z € R x EJ‘.

we

Since ®(x) is f-norm squared and has a negative drift,
Assumption 2.4 is also verified. With all the assump-
tions now satisfied, we can apply Theorem 2.1 to get
the following sample complexity for TD(A).

Theorem 3.1. Consider the iterates {0k, 7} k>0 gen-
erated by Algorithm 1 under Assumption 3.1-3.8 and
Co be chosen as in Lemma 3.2. When £ =1, a > %
and K > max{a, 2}, then for all k > 0:

Aa
K 2
Eltr — 1 + 16— 0°13] < ovo (5 7
Cv(so,s1)a  4(6 +2A)Cy (s, 51)ea?
k+ K (82 —1) (k+ K)

Refer to Appendix E.4 for rate of convergence for con-
stant step-size and the constants ¢y, and Cy (so, 81)-
Remark. It is evident from the above bound that
to find a pair (r,6) such that E[|r — 7|]] < € and
E[[|0 — 6*|]] < ¢, one needs at most O (1/€?) number
of samples.

Remarkably, one can show the a.s. convergence of Al-
gorithm 1 even without using IIy(-) in the final step.
Recall that due to the projection of the iterates on Eg,
the fixed point 6* is unique. Thus, with an additional
assumption on Markov chain, we can apply the general
result on SA from Benveniste et al. (2012) (Theorem
17, Page 239) to show a.s. convergence.

Theorem 3.2. Suppose that in addition to Assump-
tions 3.1-3.3, we have Eq [f{(Sk)] < fi(so) for all
q > 0. Then, the Algorithm 1 a.s. converges to (F,6*).

Remark. Previous works showed a.s. convergence
when Ey = {0} since the limit point is unique in this
case. However, by utilizing the uniqueness of solution
in E\{; and the ease of projection in such a space, we
eliminate any such assumptions on W. As highlighted
before, one does not need the final projection onto the
bounded set for asymptotic convergence.
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3.2 Q-learning for Discounted-Reward
Setting in Finite State Space

As discussed in Section 2.2, our bounds are applicable
for finite state Markov chains which do not mix and
hence removing the requirement on the behavior policy
to induce an aperiodic chain. Due to this flexibility,
often one can design more effective behavior policies
from a wider class of distributions to balance the trade-
off between exploration and exploitation. Due to space
constraints, we present the details in Appendix B.

4 APPLICATION IN
OPTIMIZATION: CYCLIC
BLOCK COORDINATE
DESCENT

Consider an optimization problem min,cgae f(z) where
the objective function f(x) is u-strongly convex and L-
smooth. Denote z* as the unique minimizer of f(z).
We assume that any vector x can be partitioned into
p blocks as follows:

where x(i) € R% with d; > 1 for all 1 <4 < p and
satisfying > % _, d; = d. Furthermore, V, f(z) denotes
the partial derivatives with respect to the i-th block.
Suppose that we have access to the partial gradients
only through a noisy oracle which for any = € R% and
block @ returns V;f(x) + w. Here w represents the
noise with appropriate dimension which satisfies the
following assumption.

Assumption 4.1. Let F; be the o-field generated by
{zi, w; }o<i<k—1 U {zr}. Then, there exists constants
C1,C5 > 0 such that for all k > 0: (a) E[wg|Fx] =0,
(b) llwell2 < Cillak — 2|2 + Co.

Assumption 4.1 is a standard assumption in optimiza-
tion and basically implies that wy is a martingale dif-
ference sequence with respect to F and grows linearly
with the iterates. Then, we have the following stochas-
tic iterative algorithm to estimate z*:

Algorithm 2: Stochastic Cyclic Block Coordinate
Descent (SCBCD)
Initialize zo € R¢, and step-size {ak }>o0-
for k=0,1,... do
Set i(k) = k mod p + 1
Trt1(J) =
zi(j) + ap(=V,if(zr) +wy), if j =i(k)
2k (j), otherwise

end

Without loss of generality, we assume that at kK = 0
we update the first block. At each time step k, we
cyclically update a block, where the block index i(k) is
determined through the modulo function. The oracle
provides a noise gradient —V; f(zx) 4wy and the block
corresponding to i(k) gets updated while the rest of the
blocks remain unchanged.

4.1 Properties of SCBCD

To fit Algorithm 2 in the framework of (2), we will
set up some notation. Define the matrices U; €
R¥*di 1 <4 < p which satisfy,
(Ul, UQ, ey Up) = Id.

Note that x(i) = Ulx for any vector z € R? and
similarly the partial derivatives with respect to the
i-th block can be written as V;f(zx) = ULV f(zx).
Thus, we rewrite the update equation as follows:

Try1 = Tp + (Ui Vi) f (2r) + Uiy wr)
= xg + ag(F(2k,i(k)) + M) (11)

where F(xy,i(k)) = —U;u)Vigf(rx) and My =
Uirywy. Observe that My = {i(k) }r>0 can be viewed
as a periodic Markov chain defined on the state space
S = {1,2,...,p} with transition probabilities given
as P(i mod p + 1Ji) = 1, Vi € S. Furthermore,
it is easy to verify that u(i) = %, Vi € S is the
unique stationary distribution for this Markov chain.
This implies Ei~,, [U;V;f(x)] = JVf(x). Thus, solv-
ing for Vf(z) = 0 is equivalent to finding the root of
Einp [U;Vif(x)] = 0. It is now easy to verify from Eq.
(11) that all the Assumptions 2.1-2.2 are satisfied. For
completeness, we provide the proof for the verification
in Appendix F.1.

4.2 Finite Sample Bounds for SCBCD

We choose ®(z — z*) = 1|z — 2*||3 as our Lyapunov
function. This immediately implies the properties of
®(xz — z*) in Assumption 2.4. In addition, n = %
and L; = 1 by smoothness and strong convexity of
f(z). We apply Theorem 2.2 to SCBCD to obtain the

following finite-time sample complexity.

Theorem 4.1. Consider the iterates {xy}r>0 gener-
ated by Algorithm 2 under Assumption 4.1.

(a) When ay = a < min
all k > 0:

{1’ Ac(5pf2u)9c,1 }’ then for

% ok
Elloss - o8] < acoesp (oo ) + 18Ba0c0

+ 40pBiQG’1a )
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(b) When & =1, a > %p and K > max{Aga(ba +
8)oa,1,2}, then for all k > 0:

. K \'7  2Bgecia
Bllin =) <00 (1) + e

16Bg (5p + 4) o 1ea’
(no = 2p)(k + K)

For the constants {pg.}: Ag, and Bg refer to Ap-
pendix F.2.

Remark. In the noisy case, we obtain the O (1/k) rate
of convergence similar to the randomized BCD in Lan
(2020). Moreover, setting Bg = 0 in the noiseless
case, one obtains a geometric rate of convergence with
a sample complexity of O ((p?L?/p?)log (1/€)). In the
most general setting, our bound is optimal with re-
spect to p as shown in Sun and Ye (2021). However,
we remark that the dependence on the condition num-
ber ﬁ is sub-optimal due to universal framework of our
theorem. Nevertheless, one can improve upon the con-
stants by using f(x)— f(z*) as the Lyapunov function
and refining our analysis with the additional structure.

Some interesting future directions are extending our
analysis to non-smooth functions, analyzing SCBCD
with block dependent step-size, and reducing p depen-
dence in specialized cases.
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(IRB) approvals if applicable. [Not Appli-
cable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Supplementary Materials

A DETAILED LITERATURE SURVEY

Reinforcement Learning: RL has been extensively studied in the literature, starting with asymptotic con-
vergence which was established in Tsitsiklis (1994); Tsitsiklis and Van Roy (1997); Bertsekas (1996). Off late,
there has been a growing interest in obtaining finite sample complexity of these algorithms as established in Beck
and Srikant (2012); Bhandari et al. (2018); Srikant and Ying (2019); Qu and Wierman (2020); Li et al. (2020);
Pananjady and Wainwright (2020); Chen et al. (2024); Zhang and Xie (2024). AC algorithms were initially
proposed and studied in Barto et al. (1983); Konda and Tsitsiklis (1999) with their finite time performance
analyzed in Kumar et al. (2023); Qiu et al. (2021); Wang et al. (2019); Chen et al. (2022). However, these finite
time studies are primarily focused on finite state space settings. Some notable exceptions include recent works
such as Shah et al. (2020); Murthy et al. (2024). In Shah et al. (2020), the authors focus on designing RL policies
that ensure stable behavior in queueing systems without emphasizing optimality. On the other hand, Murthy
et al. (2024) establishes finite time bounds for policy optimization using natural policy gradient in infinite state
settings under an oracular critic having guaranteed error margins. We focus on constructing such a critic based
on TD learning and characterizing its performance.

TD Learning: TD Learning is one of the most common algorithms for the critic phase, i.e., policy evaluation,
and has been extensively studied both in discounted and average reward settings. The asymptotic behavior of TD
learning in these regimes was characterized in Tsitsiklis and Van Roy (1997, 1999). Finite-sample complexity
of TD has been established in Bhandari et al. (2018); Srikant and Ying (2019); Pananjady and Wainwright
(2020) in the discounted reward setting and in Zhang et al. (2021) in the average-reward setting. However, most
of the prior work on finite-sample guarantees considers only finite state MDPs. Motivated by applications in
engineering systems, we study infinite state MDPs in the average reward setting, and establish finite sample
guarantees.

Asymptotic Analysis of Stochastic Approximation: SA was first proposed by Robbins and Monro (1951)
as a family of iterative algorithms to find the roots of an operator and has been extensively studied since then.
Asymptotic convergence of SA was studied in Borkar (2008); Benveniste et al. (2012); Kushner and Yin (1997).
More recent work including Borkar et al. (2024); Lauand and Meyn (2024); Allmeier and Gast (2024) studies
SA with unbounded Markovian noise using the Poisson’s equation, as we do in this paper. However, their focus

is on establishing a central limit theorem, i.e., an asymptotic result of the form (x — x*)/\/a 4N (0,%), for
appropriate choice of X. In contrast, the focus of our work is on establishing a finite-time bound. Another line
of work, inspired by off-policy algorithms in RL studies the asymptotic convergence of SA under more general
setup where the solution to Poisson’s equation may not exist. This approach, as seen in works by Yu (2012, 2017,
2018); Liu et al. (2025) only assumes the ergodic theorem for Markov chains, which is arguably the most general
framework for controlling the noise in the algorithm (Kushner and Yin, 1997). Note that even when one has a
finite-state MDP, off-policy RL algorithms such as Least Squares TD, Emphatic TD, and Gradient TD(\) lead to
SA with unbounded Markovian noise due to the product of importance sampling ratios. In some cases, such noise
can even have infinite variance (Glynn and Iglehart, 1989). While we make a more restrictive assumption on the
existence and moments of the solution of the Poisson’s equation, we obtain finite-time mean-square bounds.

Finite Time Bounds for Stochastic Approximation: Finite time analysis has gained significant attraction
in recent works such as Chen et al. (2020); Srikant and Ying (2019); Chen et al. (2024); Mou et al. (2021).
In particular, these works demonstrate that finite-time bounds on general SA algorithms immediately imply
performance guarantees of a large class of RL algorithms including V-Trace, Q-learning, n-step TD, etc. We
contribute to this line of work by providing a general-purpose theorem for SA with unbounded Markovian noise
which furnishes finite-sample bounds on various RL algorithms for infinite state MDPs, and we illustrate such
use in the context of TD learning.
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Poisson Equation for Markov Chains: Recent works on finite sample bounds of SA such as Bhandari et al.
(2018); Srikant and Ying (2019); Mou et al. (2021); Qu and Wierman (2020); Xu and Liang (2021); Chen et al.
(2024) have exploited geometric mixing of the underlying Markov chain. It is unclear if this approach generalizes
to the case of unbounded setting. In this paper, we adopt the use of Poisson equation to analyze Markov noise
which has been extensively used for this purpose in classical work on asymptotic convergence of SA, such as
Benveniste et al. (2012); Harold et al. (1997), and also in other domains such as queueing theory in Grosof et al.
(2023); Falin and Falin (1999). More recently, while this approach has recently been used to study linear SA in
Chandak et al. (2022); Kaledin et al. (2020); Agrawal et al. (2024); Haque et al. (2023), their analysis is restricted
to finite state space.

Block Coordinate Descent: Block coordinate descent (BCD) methods have been widely explored due to
their effectiveness in large-scale distributed optimization (Fercoq and Richtédrik, 2015; Richtdrik and Tak&c,
2016) for machine learning, such as in L1-regularized least squares (LASSO) (Fu, 1998; Sardy et al., 2000) and
support vector machines (SVMs) (Joachims, 1998; Chang and Lin, 2011; Chou et al., 2020). While a substantial
number of studies have investigated the Randomized and Greedy variants of BCD (Nesterov, 2012; Nutini et al.,
2015; Nesterov and Stich, 2017; Diakonikolas and Orecchia, 2018; Lan, 2020), the literature on CBCD is not as
rich. Some of the works that have analyzed it in deterministic settings include Beck and Tetruashvili (2013);
Gurbuzbalaban et al. (2017); Song and Diakonikolas (2023) but to the best of our knowledge, no prior work has
explored the stochastic version of CBCD.

B @-LEARNING FOR DISCOUNTED-REWARD RL IN FINITE-STATE
MDPs

In this section, we will consider the control problem in discounted-reward RL. In this setting, the goal is to
maximize the expected cumulative discounted-reward. More formally, let v € (0,1) be the discount factor and 7
be a policy, define the state value function V; : § — R as:

> AFR(Sk, Ak)|So = s

k=0

Vi(s) =E,

Then the objective of the control problem is to directly find an optimal policy 7* such that Vi« (s) > Vi(s), Vs € S
and any policy 7. It can be shown that, under mild conditions, such a policy always exists (Puterman, 2014).

Q@-learning (Watkins and Dayan, 1992) is one of the most popular algorithms for finding the optimal policy by
running the following iteration

Qua(5:0) = Qu(s,0) + x5 = 5, =} x (Rs.0) 4 70y QS a) = usca) ) (12)

where {(Sk, Ax) }rx>0 is a sample trajectory collected using a suitable behavior policy m, and 1{-} is the indicator
function. It can be shown that the Algorithm (12) converges to @* which is the unique fixed point of the Bellman
optimality operator B(Q) defined by

B(Q) =R(s,a) +v Z P(s'|s,a) f}?ﬁ Q(s',a)

s'eS

Since Q* and the optimal policy 7* satisfy the following relation: 7*(:|s) € argmax,c 4 Q*(s,a) (Bertsekas,
1996), estimation of @Q* directly related to finding the optimal policy.

We make the following standard assumption on the Markov chain generated by .

Assumption B.1. The behavior policy m, satisfies m,(als) > 0 for all (s,a) and the Markov chain M* = {Sj}
induced by m, is irreducible.

Remark. The condition that m(als) > 0 for all (s,a) and the irreducibility of the induced Markov chain Mg’
is a standard assumption which ensures that all state action pairs are visited infinitely often Bertsekas (1996).
Moreover, since the MDP is finite, Assumption B.1 implies that there exists a unique stationary distribution,
which we denote as i € AlSI
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Remark. Recent works on the finite-time analysis of @-learning often leverage the geometric mixing of Markov
chain to handle Markovian noise (Li et al., 2020; Qu and Wierman, 2020; Chen et al., 2024; Zhang and Xie,
2024). To ensure geometric mixing, these works commonly assume that M7" is also aperiodic, which is crucial
to achieving this property. However, in our case, we do not require the aperiodicity assumption, since we utilize
the solution to the Poisson equation, which exists under Assumption B.1. This flexibility is significant; often, one
can design more effective behavior policies from a wider class of distributions to balance the trade-off between

exploration and exploitation.

B.1 Properties of the Q-learning Algorithm

To apply Theorem 2.2 to @-learning we first rearrange the iteration (12) in the form of (1) and verify the
assumptions.

Qr+1(s,a) = Qr(s,a) + a1{S, = s, Ay, = a} x (R(s, a) + ¥ max Qr(Ski1,a) — Qu(s, a))

= Qi(s,a) + ar (F(Qk, (Sk, Ar)) (s, a) + Mi(Q)(s,a)) (13)
where
F(Q,(S,A))(s,a) =1{S =s,A=a} x (R(s,a) +7 ) P(s']s,a) g{lgﬁQ(S'»a') - Q(Sﬂ)) :
s'eS
and

Mi(Q)(s,a) = y1{Sk = s, Ay = a} x (mgﬁ Q(Skr1,a") = Y P(s'| Sk, Ag) gleaﬁcg(s',a'o .

s’eS

Furthermore, denote Y;, = (S, Ax). It is easy to verify that the process Mg = {Y}} is a Markov chain whose
state space Y := S x A is finite. Then, Q-learning algorithm can be written as

Qrt1 = Qr + ap(F(Qr, Yi) + Mi(Qr))

Note that by Assumption B.1, the Markov chain Mg is irreducible and therefore it has a unique stationary
distribution given by ug(s,a) = up(s)m(als) for all (s,a) € S x A. Let yo be some arbitrary state in ).
For any y € Y/{yo}, define 7y, as the expected hitting time of state yo starting from state y. Let 7, denote
max, ey 7. , which is a well-defined quantity in finite state space (Meyn and Tweedie, 2012). Furthermore, let
A € RISIAIXISIIAI be diagonal matrix with {1o(s,a)} as diagonal entries. Then, we have the following proposition
whose proof can be found in Appendix G.1.

Proposition B.1. Under Assumption B.1, the Q-learning algorithm satisfies the following:

(a) For any Q,Q1,Qz € RISIAl and y € Y, the operator F(Q,y) has the following properties:

(1) The operator F(Q,y) satisfies: [[F(Q,y)llo < 2[|Q — Q"[loc + [|Q" [l and |F(Q1,y) — F(Q2, 1)l <
2[Q — Q|-

(2) Define F(Q) = Eyuo[F(Q,Y)]. Then, F(Q) = A(B(Q) — Q), where B(Q) is the Bellman optimality
operator.

(8) The solution to Bellman equation, i.e., Q* is also the unique root of equation F(Q) = 0.

(b) There exists a solution to the Poisson equation (3) for the Markov chain Mq which satisfies Assumption
2.2 with Ay = 471y, and By = 0.

(¢) The noise sequence My(Qy) is a martingale difference sequence and satisfies Assumption 2.3 with constants
A3 =2 and B3 = 2”@*”00

Finally, we highlight the construction of a suitable Lyapunov function to study the convergence properties of the
R-learning algorithm.
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B.2 Finite Sample Bounds for Q-Learning

The authors in Chen et al. (2020) showed that the Generalized Moreau Envelope can serve as a Lyapunov
function for any operator which has the contraction property under a non-smooth norm. Specifically, consider

the function ®(z) = min,ega { 3|ull2 + 5|z — ul|2} where w > 0 and p > 2. The function ®(-) is known to
2

cH

be a smooth approximation of the function 3||z||?, with the smoothness parameter 2—*. Further details on the

properties of ®(-) can be found in Beck (2017).

For Q-learning || - || = || - ||s, which by the properties of £, norms implies that l.; = 1 and u.s = (|S|].A])*/?. To
verify Assumptions 2.4 in the context of @-learning, we will need the following lemma whose proof can be found
in Chen et al. (2020).

1+
2 T 20— Amin
ming g q){s(s)mp(als)} > 0 due to Assumption B.1. Then, the function ®(x) satisfies the following properties:

2
Lemma B.1. Assign p = 2log(|S||A]) and w = (1 %) — 1, where Apin =

(a) For all Q € RISIAI we have (VO(Q — Q*), F(Q)) < —(1 = V) Apmin®(Q — Q).

(b) ®(z) is convez, and E=-smooth with respect to || - ||,. That is ®(y) < ®(s) + (VO(x),y — ) + Bt ||z — yll?
for all x,y € R,

c et [ = + w/+/e) and u = +w). en, we have z) < |z||Z < ud(x).
Let 1l =2(1 d 2(1 Th h P 3 (]

With all the assumptions satisfied, we can apply Theorem 2.2 to @Q-learning. The exact characterization of the
constants can be found in Appendix G.2.

Theorem B.1. Consider the iterates {Qx}x>0 generated by iteration (12) under Assumption B.1.

(a) When aj = a < min {1 , then for all k > 0:

nQ }
> Aq(5+2nqQ)eqt
5SBQ 0Q1¢
no

* - ak
BllQus - @[] < soewp () +

(b) Whené=1, a > % and K > max{Aqa(5a + 8)0¢,1,2}, then for all k > 0:

no o«

K -5 2Bgog1c 72.BQQQ’1€C¥2
k+ K k+ K (122 1) (k+ K)

ElQusr — @°I2%] < 200 (

Remark. Note that for the case of constant step size, the above sample complexity immediately implies
@ <1°gg/e)) @ ((1717)5) @ (A;‘?n), Corollary G.3. Compared to Chen et al. (2024), we do not have any poly-

logarithmic factors and our bounds hold for a broader class of Markov chains (periodic or non-mixing). However,
we note that our bounds are sub-optimal with respect to A, and 1/(1 — v) as compared to Li et al. (2021).
It is possible to improve the bounds by exploiting the specific nature of updates in Q-Learning instead of using
our general-purpose theorem. Nevertheless, we include Q-learning as an illustrative application of our theorem
and show that one can also get reasonable bounds for finite-state MDPs.

C PROOF OF MAIN THEOREMS 2.1 AND 2.2

Before presenting the proof of the main theorems, we will set up some notations for ease of exposition.

Common Notation: Since we are working with finite-dimensional space R?, there exists positive constants
such that l.s||z]|c < [|z]ls < ues||z||e and las]|z]le < ||z]ls < ugs||z]|2. Denote || - ||s+ as the dual norm of || - ||s and

K= (§—|—n .

Notation for Theorem 2.1: Let max,cx [|z]|. = M/2, when X is an ¢y ball such that z* € X. Then, we
define the following constants for Theorem 2.1.

A(yo) = A3 (yo) + A3(yo) + A% B(yo) = Bi(yo) + B3 (yo) + B3; Clyo) = A(yo) M? + B(yo);
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2
uLsugsus,
l2s

Notation for Theorem 2.2: When the state space ) is bounded, the we define the following constants for
Theorem 2.2.

u % N
p1 = ;o = 7||$0 — 2|2 4+ 2¢01C(yo).

B 2
A_(A1+A3+1)2;B_<31+Bg+142> 3
2

[
Theorem C.1. Suppose that we run the Markov chain with initial state yo. When the state space Y is unbounded

and the set X is an l-ball of radius R/2, then under the Assumptions 2.1-2.5, {xi}r>0 in the iterations (1)
satisfy the following:

01 = uLsuZ Ag; 00 = [0 — 2|2 + 4Ber.

(a) When ax, = a < 1, then for all k > 0:

% A 601C (o) x
Bl - a°[] < poexp (~nak) + 3 Clun)a + S,
(b) When &§=1, a > % and K > max{«, 2}, then for all k > 0:
no A A 2
p1C(yo)a | 4(6 + 41)p1C(yo)ecx
E k2 < -
e~ =B < o0 (i) + Ea + Mo

(c) When € <1, a >0 and K > max{a'/¢ 2}, then for all k > 0:

Efllzss — * ] < o exp <(f 2 [ K0S K1 ) + f;i@g? L A6 : (‘*;)f;f)gym.

Theorem C.2. When the state space Y is compact and the set X = R?, then under the Assumptions 2.1-2.5,
{zk k>0 in the iterations (1) satisfy the following:

(a) When a, = a0 < min{l,m}, then for all k > 0:

N —nok 40B o
Ellowss - o712 < svexp (750 ) + 1850 + 002,

(b) When &€ =1, a> 2 and K > max{Aa(5a + 8)01,2}, then for all k > 0:

s
K \'? 2Bgia 8B(5+4n)oiea’

Ellown - < o0 (15 4 |
k+ K k+K (% -1)(k+K)

1/€
(c) When € <1, a>0 and K > max{(maw;%)gl) ,2}, then for all k > 0:

2Boiac  8B(5+ 2k)o1cx
(k+ K)* n(k + K)$

Ell[zx+1 — 2*[12] < oo exp (2(1_5

—na | {(k_’_K)l—g _ Kl‘fD n

Before starting the proof of the theorems, we have the following lemma which decomposes the Lyapunov function
at time k+1 using its properties in Assumption 2.4 and the recursion (2), thereby establishing a one-step recursive
relation. Define the following terms:

Ty = ap(VO(zhy1 — ") = V(2 — %), Vo, (Yiy1))),

Th2 = o (VO(zpt1 — %), Vayy, (Yit1) — Vi (Yet1))),

L.a?
Ty = =5 |F (e, Vi) + M3,

d, = (VO (g — 27), Vo, (Yi))-
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Lemma C.1. Under the Assumptions 2.1-2.5, we have the following one-step recursive relation:
E[@(zr1 —27)] < (1 —nap)E[@(zr — 27)] + ok (Eldi] — E[dr11]) + E[T11] + E[T} 2] + E[T2]. (14)
Proof. Using the property (8) of the Lyapunov function and the iteration (1), we have

@(karl —x ) (I)(H (.’L‘k + ak(F(mk,Yk) + Mk)) — .Z'*)
O(zy + ap(F(zg, Yi) + My) — z¥)

(

(

IA

IA

(zp — 27) + (V@(2k — a7), g (F (@, Yi) + M) + %Hak(F(ffk»Yk) + My)|12
(0] Tk — ) + ak<V<I>(xk — T ) F(xk)> + ak<V<I>(xk — {,C*),F({,Ek,yk) — F(l‘) + Mk>

T

2
Loz

+ | F(zk, Ye) + M2 . (15)

T>
We begin by re-organizing 77 with the help of solution to the Poisson’s equation as follows:
Ty = o (VO(xr — 27), Vo, (V) = BEyi [V, (Yet1)] + Mi)
= ap(Ve(zr — 27), Vi, (Yer1) — By, [V, (Yeg)] + Mi) + ap(VO(zp — 27), Vo, (Vi) = Vi, (Yit1))-

Observe that the first term is a martingale difference sequence with respect to the o-field F. We rewrite the
second term as follows:

ar(VO(zy — %), Vi (Vi) = Vi, (Yier1)) = an(di — diy1) + (VO (241 — 27) — VO(z1 — 27), Vi, (Yier1)))
T11
+ i (VO(zr1 — %), Viyyy (Y1) — Vi, (Yir1))) -

T1,2

Taking expectation conditioned on Fj, on both sides of Eq. (15), we get

E[®(zp 1 — 2%)|Fr] < ®(2p — 2*) + ap (VO (2 — %), F(x1)) + axE[(dx — diy1)|Fr]
+ E[T1 1| Fx] + E[ | + E[T3| F].

Using Tower property and Eq. (5), we have

E[®(z41 — 27)] < (1 — nog)E[®(zx — 27)] + ar(E[dy] — Eldi11]) + E[T1,1] + E[Ty 2] + E[T3].

Now we can proceed by bounding each of the terms in accordance with the specific settings.

Proof for Theorem 2.1. Using Eq. (16) in Lemma D.1 and Eq. (18) in Lemma (D.2) for E[T} 1] and E[T} o]
respectively, we get

4 2
E[Ty] < “2k%1

We use Eq. (21) in Lemma D.3 to get a bound on E[T3],

2 2
E[T3] < 2QgP1

Furthermore, to upper bound the second term in Eq. (14), we use Eq. (26) in Lemma D.5. Combining all the
bounds, we get

a3 (6 + 2r)p1C (yo)

E[®(zp41 — 2")] < (1 — nap)E[@(zr — 27)] + (1 — nax) ar—1E[di] — cxE[dk1] + "
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k k
<E[®(zo — )] [] (1 = now) + a1Eldo] ] (1 — now) — axEldi44]
n=0 n=0
A k k
N (6 +2K)1C(yo) Z o2 H (1 — nay)

Since K > 2, a_; is well-defined and is bounded above as a—; < 2ag < 2. Furthermore, using Eq. (23) in
Lemma D.4 for second and third term, we have

k A k k
E[‘P(i’]ﬁ,l _ .%'*)] < (]E[(I)({EO _ {,C*)] + 251) H (1 . 770(n) + APl + (6+ 2:“6)()010(y0) Zai H (1 _ naf)

u u

n=0 n=0 l=n+1
Using Eq. (7) in Assumption 2.4, we get
" k k k
Eflwess — 2|2 < (Flwo =22+ 201) [ (1= nan) + s + (6 +20001C(0) Y- a2 T (1= naw)
n=0 n=0 l=n-+1

The finite time bounds for all the choices of step sizes can be obtained using the above bound by a straightforward
application of Corollary 2.1.1 and Corollary 2.1.2 in Chen et al. (2020). O

Proof for Theorem 2.2. Using Eq. (17) Lemma D.1 and Eq. in (19) in Lemma D.2 for E[T} ;] and E[T} o]
respectively, we get

E[Ty] < 40‘7%91 (WAE[®(zf — 27)] + B) .

For E[T5], we use (21) in Lemma D.3 to get,

(WAE[®(zy — 2°)] + B)

Furthermore, to upper bound the second term in Eq. (14), we use Eq. (26) in Lemma D.5. Using all the bounds,
we get

E[®(zp1 — 2%)] < (1 — nag)E[@(z), — z*)] + (1 - %) as_1Eldy] — axEdji]

4 M (WAE[®(zy — )] + B).

Assume that «y is small enough such that we have

L;k > A(5 + 2K) 0107

Using the above condition, we get

%% B(5+2r)e1

E[@ (@i — )] < (1 L5 ) B0 —2")] + (1= BL) aprEldi] — anBldes] +af

Recursively writing the above inequality, we get

k k
E[®(zys — 7)) < E[@(wo — ™) [ (1 - 55%) +a-iEldo] TT (1 - %) - axBldisa]

n=0 n=0

k k
B(5+ 2k) 01 5 ( nay
2V TR0 1— 7)
+——==> oy ] 5

n=0 l=n+1
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Again, since K > 2, a_; is well-defined and is bounded above as a_; < 2ap < 2. Furthermore, using Eq. (24)
in Lemma D.4 for the second and the third term, we have

k

E[®(zq1 —27)] < <JE[<I>(900 -]+ 2%(uAIE[(I)(aco — )]+ B)) H (1 — %)

2
n=0

o B(5 + 2k) k k o
b (e, o)+ B+ B0 S [T (e
n=0 l=n+1

Note that 5+ 2k > 1. Thus, ai < implies that apAe; < 0.5, Vk > 0. Thus, we have

n
2A(54+2kK)01

B0 o)) < (20 + 240 Blo(ro — 2] + 122 (-
n=0

k

IT (1- W)

n l=n+1

2a B o B(5+ 2k)o
+— 42 z::

Using Eq. (7) in Assumption 2.4, we get

2u(1+2A0,)

* 12 * (|12 N0n
Ellors - o1 < (222 oy o2 4 450 ) TT (1- %57)

k
+ 2a;Bo1 + 2B(5+ 2k) 01 Z o

> 3
I
o
~~
=
|
3
N o
~
N———

Again, the above bound immediately implies finite time bounds for various choices of step sizes by applying
Corollary 2.1.1 and Corollary 2.1.2 in Chen et al. (2020).

O
D PROOF OF THE MAIN LEMMAS USED IN THEOREMS 2.1 AND 2.2
Lemma D.1. Under the Assumptions 2.1-2.5, we have the following:
(a) When the set X is an £2-ball of sufficiently large such that x* € X, then
5 A
BT, 1] < 2R ), (16)
(b) When Y is bounded and X = R?, then
20[%91 N
Proof. To handle E[T} 1], we use Holder’s inequality and the smoothness of ®(-) to get
E[T1,1] < arE[[VO(zr41 — 27) = V(i — 27) |5+ [[Var, Vies1)]s]
< ap LsE[|zr41 — alls 1 Vay, (Yer1)lls]
< o LouZ Efl|zpsr — 2hlel Vg (Vi) ]
< ap Lo Bl||lzprr — zrlle(As(Yigr)||zk — || + Ba(Yig1))]- (Eq. (4) in Assumption 2.2)

(a) Using Eq. (27) in Lemma D.6 and ||z — 2*||. < M, we get

L9 S zs
E[T1.] < o} == E[(Ay(Yo) M + Bi(Y) + AsM + By)(Aa(Yie1)M + Ba(Yicy))]

a 2s
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$1
2u
201

< 2 TLE[(AL(Yi)M + Bi(Ya) + AsM + By)? + (As(Yer )M + Ba(Yi1))?]  (ab < <32
<al

(E[AZ(Yo)M? + BY(Yy) + AZM? + B2 + A3(Yiey1) M2 + BE(Yii))
n 2 n
((imia) <n (Zi:l af))
Finally, using part (d) in Assumption 2.2, we get

2(,0104%

E[T11] < C(yo).

u
(b) From part (d) in Assumption 2.2, we get

E[T1,1] < apLoul E[((A1 + As)||lze — 2%l + By + Bs)(Asllak — 2*|c + Ba)]

B
< aiLsugsAgE |:((A1 + As)||lzr — 2*||c + B1 + Bs) <||$k — |+ Az)]
0 By\*
<oj B ((A1 + Ay + 1)|Jag — a*||c + By + By + AZ’> (A1, A3 > 0,41 + Ag +1> 1)
2
202 "
< =E2E [(Aflax — 2|2 + B] (a1 + a2)* < 2 (a? + a3))
203 01 . . .
< —=— (uAE[®(z, — 2™)] + B) . (Eq. (7) in Assumptions (2.4))
u
U

Lemma D.2. Under the Assumptions 2.1-2.5, we have the following:
(a) When the set X is an €2-ball of sufficiently large such that x* € X, then

] < 20[%()01@(?/0)

E[T; 18
[T12] < » (18)
(b) When Y is bounded and X =R, then
201%@1 N
E[T: 2] < —u (uAE[®(z — 2*)] + B). (19)
Proof. Denote s* as the dual norm of s. To handle 77 > we use Holder’s inequality to get
E[T1 2] < kB [[[VO (g1 — &) | [V, Vet1) = Vi (V1)) lls]
< apE[As(YVit1) V@ (xht1 — 7)o+ [|Th+1 — Tk|ls] - (Eq. (4) in Assumption 2.2)

Since ®(-) is convex-differentiable and achieves its minima at 0, V®(0) = 0. Along with smoothness of the
function, we get

IV® (21 — ") — VO(0)
= [|[VO(z11 — %)

s¢ < Lgllzpsr — 2™ s
s+ < L8||xk+1 - m*lls (2())

E[T: 2] < ap LB [Ao(Yiq 1) |oes1 — 2% ||sl|ong1 — oxlls]
< apLsucsE[As(Yig)llze+1 — *|sl|h1 — 2 lle]

(a) Using Eq. (27) in Lemma D.6 and the fact that ||z —z*|. < M, V z € X, we get

2
E[Tl,g] < Q%Ls U2sUg

) E[AQ(Yk+1)M(A1(Yk)M + Bl(Yk) + A3M + B3)] (||1‘k+1 — l‘*”s S UCSM)
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< a%%E[A%(Yk_H)MZ + (A1 (Ye)M + B1(Yy) + AsM + Bs)?]

u

Finally, using part (d) in Assumption 2.2, we get

20‘%%’1
u

203¢1C(yo)

—

E[T} 2]

IN

(b) Since in this case X = R¢, we use Eq. (1), to get

k1 = 2%[|s <ok — 2% |s + [lznsr — zalls
< lwr — 2%[|s + arues (A1 + As)||zk — 27lc + B1 + Bs)
< tes ((Ar + Az + D[y, — 27| + By + Bs)) -

Furthermore, from part (d) and Eq. (28) in Lemma D.6, we get

2
< 2R (B 42V M? + B(YVY) + M2+ B2+ (Vi) M)

(ab < <58

(Zry @)’ <n (X, a?))

((A3(w0) + A3(90) + 43) M? + Bl (yo) + B3)

(Eq. (28) in Lemma D.6)
(Assuming ay < 1)

E[Ty 2] < aduZ, Ly AsE[((A 4+ Az + )|z — 2%l + B1 + B3)) (A1 + A3)||zx — 2% + By + B3)]

2
< DR [(A) + Ag + 1)||2g — 27| + By + Bs)?)

u
2010}
< “ORE [(Ay + Ag + 12lfox — "2 + (By + Bo)?]
2
< 221% (AR (ay, — 27)] + B) .
u

Lemma D.3. Under the Assumptions 2.1-2.5, we have the following:
(a) When the set X is an £2-ball of sufficiently large such that x* € X, then

p— u .

E[T;

(b) When Y is bounded and X =R, then

E[Ty] < ot (WAE[®(z), — 27)] + B).
Proof. (a)
BITy) < SR e gy (i, Vi) o + 1M )7
< BE e Ay (1) — 2 e+ Bu(Ye) + gl — 2”4+ Ba)?]
< LMo (4, (1)) 4 By () + A3 + By)?

<202 Lu?E[A3(Y)M? + B} (Yy) + A3M? + B3]
< 203 L2, ((A3(yo) + ADM? + B (yo) + B3

< 20201C(yo)
—_ u .

(a1 + a2)® < 2 (a? + a3))

(Eq. (7) in Assumptions (2.4))

O

(Assumptions 2.1 and 2.3)

(lz —afle < M, Ve X)

(i a0)” <n (X0, a2))

(Part (d) in Assumption 2.2)

(72* >1and A3(yo), B3(yo) > 0)
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(b)
L R
E[T3] < 2= E[(||F (zx, Yi)lle + [ Mallc)?]
akL u2, " * 2 :
< 5 ——E[(A1(Y)||ler — 2™|c + B1(Yx) + As||lzx — 2"||c + B3)] (Assumptions 2.1 and 2.3)
a3 Lsu2, . .
< 5 S E(Ay |z — 2| + By + Asllar — 2*|| + Bs)? (Part (d) in Assumption 2.2)
< aj Lsul B[(Ay + As)?(|lze — 2*||2 + (By + Bs)?]
< G (wAE[®(zy, — 2¥)] + B). (A5 > 1 and Eq. (7) in Assumptions (2.4))
u
O

Lemma D.4. Under the Assumptions 2.1-2.5, we have the following:

(a) When the set X is an l3-ball of sufficiently large such that x* € X, then

@1é(y0).

El|dx|] < 23
e} < 21 (23)
(b) When Y is bounded and X = R?, then
E[ldi]) < 2 (uAE[®(x), — a*)] + B). (24)
Proof. Using Holder’s inequality, we have
Elldil] < E[[V®(zr — &) ||s- Ve (V) [l ]-
Using the same argument as in Eq. (20), we get
Elldil] < LsE[flzr — 27 ||s|[Vay, (Vi) [ls]
< Lsu?sE[”xk =& [|e[|Var (Vi) ]
< Lo El||zg — 2% || (A2 (Vi) ||2k — 2% || + Ba(Y))]- (Using Eq. (4) in Assumption 2.2)
(a) Since ||z — z*||. < M, we get
E[|dy]] < LsuZE[M (Ag(Yy) M + Ba(Y3))]
Lu?,
< TE[MQ + (A2(Y)M + Bs(Y2))?]
< Loug E[M? + A3(Yi)M? + B3 (V)] (a1 + a2)* < 2 (a? +a3))
< Lou2,C(yo) (Part (d) in Assumption 2.2)
< M (72; > 1)
U 2s
(b) For this part, we have
Lou?, Ay w2 X B;\? a?+b?
Elldi]] < === ( E |lzx —2"[I2+ (lzx — 2™[lc + (ab < &5)
2 Aa
B\ 2
< Lo, A, (Enxk ~ i+ () )
2
%(UAIE[ (xx —2")] + B). (Eq. (7) in Assumptions (2.4))
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O
Lemma D.5. Under the Assumptions 2.1-2.5, we have the following:
(a) When the set X is an €a-ball of sufficiently large such that x* € X, then
202 k1 C
ag(Elde] — Eldi41]) < (1 = na) axr—1E[dy] — axElde41] + %(yo). (25)
(b) When Y is bounded and X = R?, then
« 202 K
ar(Eldy] = Eldis]) < (1= 55 ) an-1Eldy] — anBldis] + -2 (wAB[® (o —2*)] + B).  (26)
Proof. (a) Re-writing the expression, we get
Ozk(]E[dk] — E[dk_;,_l]) = (1 — nak) O&k_ﬂE[dk] — akIE[dkH] + Ozk]E[dk] — (1 — nozk) Ozk_lE[dk}
= (1 = nay) ax—1E[di] — axEldg41] + ( — ag—1 + nagog—1) E[dy]
< (1 —nag) ag_1E[dy] — axE[dys1] + 203 <§ + 77) E[dy]. (Lemma H.1)
Using Eq. (23) in Lemma D.4, we get
202k, C
o (Bldh] ~ Eldha]) < (1~ mowe) a1 Efdy] — aoEldyr] + 2kP1C00)
(b) For this part, we re-write the expression as follows:
e’ e’
ar(Eldy] — Eldia])) = (1= 5% ) ax-1Elde] — axEldis] + anBlda] — (1 - 55 ) ax-1Eld]
o’ U g —
= (1 - M) a—1E[dy] — aEldy41] + (ak — Q-1 t M) E[dy]
2 2
2
< <1 — %) Oék_l]E[dk] — OékE[d]H.l] + Ozi (Of + 77) E[dk]. (Lemma H.l)
Using Eq. (24) in Lemma D.4 to get
e}
ok (Blde] ~ Eldin)) < (1= 75 ) onr Eldy] — oxEldi]
2
+ai (of + 77) % (uAE[®(xy, — z¥)] + B)
« 202k
< (1- ) aerElda] — axBldis] + E (AE[@() — 27)] + B).
O
Lemma D.6. Under the Assumptions 2.1 and 2.8,V k > 0, we have
(a) When the set X is an €2-ball of sufficiently large such that x* € X, then
U
|2rs1 — zille < an= (AL (V)M + By (Vi) + AsM + Bs) (27)

ch

(b) When Y is bounded and X =R, then

ki1 — zrlle < ar((Ar + Az)lley — 27|c + Bi + Bs) (28)
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Proof. (a) Using the iteration (2) and the fact that z) € X, we have

[Ze+1 — rlle < uzellpsr — zplle
= e[|y (2 + ap(F(2k, Yi) + My)) — Ha () 2
< agugc||F(zk, Yi) + Mg||2 (Non-expansive projection)

Use
< ag l; | F (2, Yi) + Mgl

U2¢
< a2 (1 (s Vil + M)
< ak%((Al(yk) + A3)|lzp — 2*||c + B1(Ya) + Bs) (Assumptions (2.1) and (2.3))
2c
U2s *
< ay, 22 ((A1(Yi) + A3)M + By1(Yi) + Bs). (= z*|lc < M)

(b) Using the iteration (2) and the fact that X = R, we have

lTh1 — zrlle = arl|F(2r, Yi) + Mgl|e
< o (| F'(wk, Yi) | + | Mk]|e)

< o ([ F(2r, Yi)lle + | Mi|lc)

< ap((A1(Ye) + A3)||lzk — 27| + B1(Yx) + Bs) (Assumptions (2.1) and (2.3))

< o ((Ay + As) ||z — z*||c + By + Bs). (Part (d) in Assumption 2.2)
O

E PROOF OF THE TECHNICAL RESULTS IN SECTION 3

Before beginning the proofs of the lemmas and propositions in this section, we need Lemma 7 from Tsitsiklis
and Van Roy (1997) in order to prove Lemma 3.1. We state it here for completeness, but we omit the proof as
it is essentially repeating the same arguments with the contraction factor being 1.

Lemma E.1. Under Assumptions 3.1 and 3.2, the following relations hold in the steady state of the Markov
process Yy,.

(@) Eulb(Sk)¢(Skim)T] = WTAP™U, for all m > 0.
(0) 11Eu[e(Sk) ¢ (Skam) ]l = ¢ < o0, for allm > 0.
(¢) Bz (Sp)T] = WA (g AmP™) U,

(@) BulZuh (k)] = OTA (S5 AP ) 0.

(¢) E ZkR(Sk, Ap)] = UTA (00 A" P™) R

E.1 Proof of Lemma 3.1

Proof. Using Lemma E.1, we have

E# [T(Yk)] =

—Cq 0
Ty g Eulz] Ty piEy [5k (7/’(gk+1)T0k - ¢(§k)T)ﬂ
B { —Ca 0 }
B _(1%,\) H2,E$ v H2,E$ (Z::o ATGTAPTY — ‘I/TAPM\II) '
Note that for any A € [0,1), we can rewrite A™ = (1 — X) Y2 Al Then, it follows that for any j > 0, we have

i )\um-‘rj _ (1 _ )\) i Pm-i-j i )\l
m=0 m=0 l=m
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L) l+j

=(1=XN)_ N> P
=0 v=j

Using the above relation for j =0 and j = 1, we get

%) oo 1+1 l
S OAGTAPT Y — GTAPTY = (1 X)) ANOTA <Z P> P’”) v
m=0 =0 m=1 m=0

=1 =X N (UTAPTY - UTAD)
=0
= UTAPNT — UTAD.

Thus, we have

- —Ca 0 I
E,[T(Yy)] = eS| AR LUTIS | AP (TTAPNT — \IITA\I!)] =T.

Similarly, using Lemma E.1 the steady-state expectation of b(Yy) is given by

Eu[b(Ye)] =

CaT
|5 UTA ((1 — AT A pmnﬂ)l

_ CaT -3
T My e WTARWN ] T

E.2 Properties of TD()\)

Next, we state the following lemma which will be crucial for proving desired properties of TD(A). Define

2k 1 . z 1+f’+1[)\/3 P ’ 7
Y, = (Sk7Ak7Sk+17Zk)) and Q(Yk) _ (1fi(/\5;lgzri)’)) + [zkll2p (lel(_s)l\@/));-f1(sk+1)) + Il ’6”2((1_)\) ) + ¢+(1¢1_+;Z)12\/3. Let
Yo = yo = (50, ao, 51, 20)-

Lemma E.2. Assume that the eligibility trace vector z, was initialized from zy. Then, the following relations
hold, for all yo € Y:

(a) Bulin] = iy W7 p. Furthermore, S5 o [y [2] — Bl 2 < 9(30)-

(b) 33 0 Iy [21(S1)7] — B2 (S)7)ll2 < glyo)-

(¢) Y5 By [zt (Ski1)T] — Epl240b(Sis) T2 < gyo).

(d) |YTAP™R, |2 < z/?r\/ﬁ Furthermore, Y ;~ o [|Ey, [26R(Sk, Ak)] — Eu[ékR(gk,Ak)}Hg < g(yo)-

4
+ 1
(e) Byl 3] < Lol

44/F2(s1) 16072/ 20134 fs(s1)\/Fa(s0)+ f2(s1) | 4(1474+9vVA)* /2ol fa(51) | a(p4’ +di/d)>
(f) Ey0[92(Yk)]§ (1_)\)22(1_1p)2_|_ 4 \/ 0(12_/\2)28(111/)\)22 o)tfa(sy) | ( ()1_/\)40 o+ f3(s1 + (¥ (1?_)\1@4 ) .

Proof. (a) From the definition of Zj, we have

k
> AET(Sy)

m=—0o0

By [5k] =E,
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k

= Z AF=ME L [4(Sk)] (Assumption 3.2 and Dominated Convergence Theorem)
k

- 3 v (St

m=—o00 seS

1 R

1o ZN(S)w(S) :ﬁ‘l’ M-

seES

Recall that 2z = Az + Zle AE=34)(S},). Using Assumption 3.3 and the above relation, we have

(k-1
Ey, [2k] — EulZk] = Xo20 + By, | D> M(Se—; ] ZAJ > u(s)y
j=0

= seES
[k—1
= Xz + By, ZAJ( (Sk—j) = Y uls)y )] ZAJZM
_j:O seS j=k seS

Taking norm both sides and using triangle inequality, we get

k—1
By, [Z N (W(Sk—3) = > M(S)(/J(S)]

By, (2] = Eplzx]ll2 < A[l20]l2 +

+ 1Y nle)w(s)ll YN
j=k

§=0 s€S s€S

2

j AW
< Nzl + 3N [Ba [@(Si-i) — EalwiS0] |, +
]_
(Jensen’s inequality and Assumption 3.2)
k-1 .

, . Ak
< Z )\]fl(sl)pk—]—l + )\kH20||2 + % (Assumption 3.3)
j=0
k—1 ) . Ak’l]}
< fils)p™! jz::OVpk*] + M 202 + T
Summing over all k, we get
o 0o k—1 . ) )\k,&
D By, [2]) - <Y | Als)p DN+ M|zl + X
k=0 k=0 §j=0
SIES [EY] J
—1 7 k—j 02
e 32 (o |+ 2R
fi(s1) lzollz , 9 - .
= TSV + ) + TENE (Fubini-Tonelli Theorem)
< 9(yo)-

(b) Using the formula for z; and part (c) of Lemma E.1, we have

k—1
By, [ka(sk)T] - Eu[5k¢(§k>T] = )‘kZOEyo [w(Sk)T] + Ey, Z Ajiﬁ(sm ] Z )‘jE Sk J (S )T]
| =0

= N 20Ey, [10(Sk)T] + By, Z)\] ( (Sk—)¥(Se)" —Eu[w@m)w@k)ﬂ)]
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—Z/\JE V(Sk_)0(Sk)T]

Taking norm both sides and using triangle inequality, we get

Eyo (290 (Sk)T] = Enl2kt(Sk) T ll2 < A¥llz0 ]2l By [(Sk) 12

Ew [ZM( (i) S@T—&W(Sk_w(&)ﬁ)]

2

+ZAJIIE V(S S) NIz

To bound the first term, we use Assumption 3.3 to get

Eyo (k) M2 < [Eyo [¥(S)T] = Eultb(Sk)]ll2 + 1wt (Sk)]l2
< P (fuls0) + fi(s1)) + (B[ (S]]
< PP (fu(s0) + fi(s1)) +9Vd (Jensen’s inequality and Assumption 3.2)

S1

— —

With the above bound, we have

k—1

1B (4 (50)7] = Eulm (S0 T2 < DN By 0 (S-)0(S1)7] = Bl Sy (S) 1,
=0

+ A" z0]l2 (Pkfl(fl(so) + fi(s1)) + %0\/&) + D N (Sk— ) (S)

=k

Mw

H]Eyo (Sk—3)(S)T] = M[w@w)w(ﬁk)T}Hz

<.
I
o

)\k,(/)/
-A

A¥lzo0]l2 (Pk_l(fl(so) + f1(s1)) + ?ﬂ\f) (Part (b) of Lemma E.1)

o
Ju

< DTN A1) T+ N zolle (057 (Fulso) + Fals) + BV + <

J

Ak
- A
(Assumption 3.3)
P
-\

Il
=]

k—1
< fils1)p P Y NPT+ M 20l (Pk_l(fl(st)) + f1(s1)) + 1/“[)
=0

Summing over all k, we get

[eS) k—1
D By, [2xt(S1) ] = EulZew(Sk) T2 < Z <f1 s1)p "t Y Mph
§=0

k=0

ko
X8 zolle (04 (a(so) + Fu(sa)) + 9vd) + W)

A
_ S i hei )L Nzl (Fi(s0) + fis1))
e g(;)\p )+ (1= \p)
L eollegva

(1-2x) (1—=X)2
__ filsy) n l[20ll2p~ " (f1(s0) + f1(s1))
(1=M@1=p) (1=Ap)
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o/ ,
n ||Z('01||iw)\‘)[ + a 1_/))\)2 (Fubini-Tonelli Theorem)

< 9(yo).

(c) Ttis easy to verify that an identical argument as in the previous part can be carried out for Ey, (260 (Ske1)T]—
E,.[2,k%(Sk+1)T]. Thus to avoid repetition, we omit the proof for this part.

(d) We bound j-th element of the vector WTAP™R . as follows:

(WTAP" R, )? (ZM s)1;(s) Z Pm<5/|3)R7r(s)>

s€ES s'eS

2

< (Z wu(s ¢J ) Z (s <Z Pm(s’s)Rw(s)> (Cauchy-Schwartz inequality)
seS seS s'eS

< (Z u(s ¢2 ) (Z (s Z |s)(Rﬂ(s))2> (Jensen’s inequality)
s€S s€eS s'eS

< 4? <Z ,u(s)(R,r(s))2> (Assumption 3.2 and Fubini-Tonelli Theorem)

sES
< 1[12722. (Assumption 3.1)

Thus, the norm can be bounded as
[TTAP™ R, |2 < V.

Proceeding in a similar fashion as in part (c), we have

Eyo [26R(Sk: Ak)] — Eu[ZeR(Sk, Ar)] = A 2Ry, [R(Sk, Ak)] + Ey,

k—1
Z N 1p(Sk—5)R(Sk, Ak)]

i=0

—i)\JE [t (Sk—3)R(Sk, Ar)]

Taking norm both sides and using triangle inequality, we get

I Eyo 2R (Sk, Ar)] = Ep[2R(Sk, Ar)]ll2 < N[l 20]|2|Eyo [R(Sk, Ak)]|

k1
By, {Z X (¢(5k )RSk, Ak) —EuW(gk—j)R(gk,Ak)])]

2

I Z)\j”E#[w(Sk,j)R(gk,Ak)]||2

To bound the first term, we use Assumption 3.3 to get

By [R(Sk, Ar)]| < [Eyy [R(Sk, Ar)] = Eu[Ra (Sl + [Eu[Ra (S1)]]
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< P (fi(s0) + fi(s1)) + B[R (S]]
< p" Y f1(s0) 4 fi(s1)) + 7 (Jensen’s inequality and Assumption 3.1)

With the above bound, we have

Iy, (26 R(Sk, Ar)] = EulZeR(Sk, Ar)lll2 < A¥[l20ll2(0* " (£1(50) + fu(s1)) +7)

E,, {Z )\J( Y(Sk—j)R(Sk, Ar) —]E#[@b(Skj)R(S’k,Ak)])]

+ Z N Eulth(Sk-3)R(Sk, Ap)]2
< Nlzoll2 (0" (fr(s0) + fs1)) +7)

k
+> N HEy [ (Sk—1)R(Sk, A)] = Ep[to(Sk_;)R(Sk, Ax)] H2
j=0

Arapin/d
T
k—
Z 1(51)p T+ A [20]1a (0" (i (s0) + F(51)) +7)
7=0
A?ﬁ_“/( (Assumption 3.3)

k—1
< fi(s1)p™ Do NPT N z0l2 (0P (fa(s0) + fi(s1)) +7)

=0
Arghin/d
+ T
Similar to part (d), summing over all k, we get
S s & fi(s1) [z0ll20~" (f1(s0) + fi(s51))
_ <
D By, [k RSk, Ap)] = EulZR(Sk, Ap)]ll2 < DN 11— )

k=0
n lzoll2f | ¥ivVd
(1= (1-=X)2

< 9(yo)-

(e) Using triangle inequality on the formula for zx, we have

k
lznllz < N llzollz + > A [ (Sk)ll2

Jj=1

)\k+1

_ -
:1(17)\) <( /\Hl || on+2 /\jﬂ 4(S )||2>

By taking fourth power both sides, we get

4
1_)\k+14 )\k—
el < S << 2 0H2+Z EA s >||2) .
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Since the weights % form a probability distribution, we can apply Jensen’s inequality to get
k .
(1= AFEDE [ (1= M)AF (1 — X)\F—J
laalld < STy | T ol 3 e ()
j=1

1 b
ST (Ak”zoi‘% + ZA’“JIw(Sj)II‘é) .
j=1

Taking expectation both sides conditioned on the initial state, we have

k
1 B
Ey, [l 3] < )R Aollzoll3 + > AR, [[14(S))13]
j=1
1 Mo
< m(ﬂ%llé + fa(s1)) [ D AR (Assumption 3.3)
i=0

l20ll3 + f3(s1)
ST

(f) Recall Yy = (S, Ak, Sk+1,2x) € Y. Then, we have

4F3(Ska) 4B (S + fi(Skn)?
o0 < T (v
4213 (1 + 7 +4Vd ’ b4+ DAVa)?
T 2((1_ e ) § MOV OVAT g (S0 00 < (0 )

Taking expectation both sides, conditioned on initial state yq,

AE, [F2(Sa0)] | 40— B[R (SK) + Fu(Senn)?] 4 (1+F+9VE) By [l

Ey,lg?(Y2)] < (1—N2(1—p)2 + (1—\p)? * (1 —X)2
LA+ + V)
(1=A)* '

Using Assumption 3.3, we can bound the first term as

4By, [£7 (Skt1)] Y fa(s1)
(1=2)21—=p)2 =~ (1-N2(1-p)?

For second term, we use Cauchy-Schwartz inequality for expectations, to get

4p7 2By, [l 213 (f1(Sk) + f1(Sk41))?] < 4p72\/Ey, [[|21]13] v/ Eyo [(F1(Sk) + f1(Sk11))Y]
(1= Ap)? - (1= Ap)?
802 v/Eyo 12k [13] v/ Eyo [f1 (k) + fi (Sk+1)]
(1= Ap)?

- 16072/ |[20l15 + f3(s1)\/f2(s0) + fa(s1)
- TESVIEESYE

(Jensen’s inequality)

IA

((a+b)* < 2a® + 2b?)

(Assumption 3.3)

For the third term, we use part (e) and Jensen’s inequality to get

(144 0Va) By llaly]) 4 (1474 va) VTl ¥ Falen)
(1- )2 = (1 =)

. (Jensen’s inequality)

The claim follows by combining all the bounds.
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Define T(so, 51) = c2 + YVEGUEL) o dsbolthylon) sy s1) = 2 \/Fa(s0) + falsn) + L0858 and

3(s0,51) = Ey,[9%(s0, a0, 51,%(0))]. Furthermore, for ease of notation, we will denote I as the identity ma-
trix (infinite dimensional).

Proposition E.1. The TD(\) algorithm satisfies the following:

(a) The operator F(xy,Yy) defined in Eq. (10) has the following properties:

(1) |F(zx, Yi)lla < | TYa)llzlle = a*ll2 + 16012 + |1 T(Ya) 2l |2, where By [IT(Yi)l[3] < T(s0,51) and
Eyo [(16(Y3)II3] < b(s0,51)- i
(2) Define F(x) = Eyu[F(x,Y)]. Then, under Assumptions 3.1 and 3.2, F(x) exists and is given by
F(z)=Txz+b.

(8) There exists a unique 0* € Eg such that x* = (7,0*T)T solves Tx + b = 0. Furthermore, it is also one
of the solutions to the Projected-Bellman equation 67({\)(\1/0) = V4.
(b) There exists a solution to the Poisson equation (3) for the Markov chain My which satisfies Assumption
N al 02 S S
2.2 with A3(yo) = 93(s0,51) and B3 (yo) = 209]z*[3 + 1)(so, s1) + “e V2022l

Proof. (a) (1) Since T'(Y}) is partitioned in a block form, we use Lemma H.3 and the non-expansivity of the
projection operator H2,E\§ to get

1T(Ye)lI3

\ /\

QN QN QN QN’

+ 1Ty, o zill3 + 1Ty, o 2 (V(Ska1)™ = 9(Sk) )3

+ lzell3 + 12k (Y (Se1)™ — (ST

+ 21115 + (lzell2 (19 (Sk41)ll2 + [[9(Sk)ll2))?

+ llzkl13 + 2025 (Ska) 115 + 119 (Sk)113)) ((Using (a +0)* < 2(a® +b?))

ININIA
Q.o

o

Note that z_; = 0 implies zp = ¥(s¢). Taking expectation both sides, we get
Ey, [IT(Y2)I3] < €& + Eyo[ll26l13] + 2By, [ll 26113119 (Se0)11%] + 2By, (212 14(Sk) 3]
< &4 Byl 131+ 24/ B [z 131 B 1Sk 18] + 24/ B [z 1814/ B [12(S0) 12

(Cauchy-Schwartz for expectation)

VIIYso)ll3 + f3(s1) | 4V 19 (s0)l13 + f3(s1)v/ fa(s0) + fals1)
<+ (1_2)\) + TESNE
(Part (e) Lemma E.2 and Assumption 3.3)
<2 4 VJs(s0) £ fs(s1) | A(fs(s0) + fals1))
- @ (1—N)2 (1=X)2

= T(So, 51).

Next, we bound b(Yy)
16(YR)[I5 = 3 R*(Sk, Ak) + R*(Sk, Ap) [Ty, 1 2113
Again using the non-expansivity of the projection operator Il EL and taking expectation, we get
Eyo [[16(Yi) 3] = 2By, [R? (St Ak)] + Eyo[R?(Sk, Ar) |21 l3]

< BB [RA(Sk, A0)] 4 /By [RA (k. Ai)]y Byl ]

(Cauchy-Schwartz for expectation)

fa(so) + fa(s1 \/fS (s0) + fa(s) V¥ (s0) 13 + fs(s1)

(1—A)2
(Part (e) Lemma E.2 and Assumption 3.3)
<c f3(50)+f3(51)+w28(80,81). (29)

(1—=A)?
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Combining both the bounds, we have
1F (@r, Yi)ll2 < 1TV ll2llz — 2% l2 + [16(Ye) 2 + 1T (Ye)[[2]l27 2,

where Ey, [|7(Yi) 3] < T(s0,51) and By, [[6(Y) 3] < b(so, 51).
(2) From Lemma 3.1, the stationary expectations of T'(Y}) and b(Y}) are finite. Thus,

E,[F(Yy, )] = Tx +b.

(3) o #0 c R? such that ¢(s)70 = 1, Vs € S: In this case, B¢ = R%. Lemma 3.2 implies that all the
eigenvalues of UTA(PXN) — )T are strictly negative, immediately suggesting that W7 A(P®) — I)W¥

is invertible. Thus, there exists a unique solution 6*
77

DY

UL+ OTAPY — 1w + TTARWN = 0.

e 30, € R? such that ¥(s)70, = 1, Vs € S: Note that due to linear independence of columns of ¥ and
the irreducibility of P, 6, is the unique left and right eigenvector of ¥TA(PW) — I)W corresponding
to eigenvalue 0. This implies that all the other generalized eigenvectors of \IITA(PO‘) — )T are
perpendicular to 6. and hence, they span E\f, Furthermore, note that

(1=X)

T (gTARN _ o7, = JTr™ _ T _
06< R I wR Y 0

Thus, the vector WTARW — (1f)\) U7y is perpendicular to 6. and therefore lies in Eg. By the
properties of generalized eigenvectors, it is easy to verify that there exists unique 0* € E\JI; which
satisfies

r

Ny T4+ OTAPY — 1)0* + WTARY = 0.

Note that IT, g WTA(PY) — 1)W6 = OTA(PY) —1)W, for all € Eg. Consider the expression Tz* 4 b.
Expanding the matrix T, we get

7+ 7

T o U7 1+ 10, g WTA(PY) — D) T0* + 0, o WTARN | = 0

Y

Thus, z* is the unique solution to Tz*+b =0 in the subspace Eg. Furthermore, rearranging the terms
in Te* +b=0, we get

T

TTADY* = —
(1=2)

T+ OTAPMwH* 4+ GTARD.

Multiplying both sides by U(UTAW)~! (UTAV is a d x d invertible matrix), we get

Uo* = U(UTAD) ! <\IJTAR(*) + UTAPMTH* — @ ! 9 sz%)

UO* =TI, o BN (6.
Thus, 6* is also one of the solutions for the Projected-Bellman equation for TD(A).

(b) We will use similar arguments as in Lemma 1 of Chapter 2, Part 2 from Benveniste et al. (2012) to show the
existence of a solution to the Poisson equation. Define V,(y) for all y = (s,a,s’,z) € Y as follows:

Valy) = (Z(Ey [T(Y)] - T)) z+ ) (B [b(Yi)] - b)
k=0

k=0
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Then, using Lemma E.2 we can bound each infinite summation as follows:

(o9}

> (ET(YR)] - T)

k=0

<y (nnw (Bylza] — Bulza) Iz + Mo,y (Eylza(S0)"] — Ealze(S0)7 )|

2

k=0
|| g (B lon(Sk)T) = Bulzrr(Si) )| >
(Lemma H.3 and triangle inequality)
< 3g(y). (Lemma E.2)

Next, for the second summation, we have

oo

D (Ey[o(Yi)]

k=0

IA

¢+ DM I

1By [6(Y2)] - ]|,

2

S <Ca|]Ey[R(Sk7Ak)] _EM[R(SIC?AIC)“

‘H27E$ (]Ey (26 R (Sk, Ar)] — Eu[2.R(Sk, Ak)]) H2 )

< anp (fr(s) + f1(s") + g(y) (Assumption 3.3 and Lemma E.2)

_ Ca(f1( )+ f1(s"))
1—p

+9(y).

Thus, both the series are convergent. Furthermore, note that Assumption 3.3 implies that E,[f1(Sg)] <
/f2(s) + fa(s'), for all y € ¥ and k > 0. Thus, following dominated convergence theorem,

<Z(EY1 [T(Ye)] - T)) 2+ (Ey; [b(Y2)] —b)

k=1 k=1

Ey[vm (Yl)] =E,

(Ey[Ey, [T(Yr)] — T])) 4+ Y (Ey[Ey, [b(Yr)] — b))
k=1

(Ey [T(Y2)] - T])> e+ (Eyb(Ye)] - b))
k=1

The claim follows. Now to show bounded expectations, we use part (f) of Lemma E.2 and the fact that
z0 = ¥(s0), to get

o] 2
A30) = Exo=(s0,a0,51,70) Z(Ey[T(Yk)] -T) < 9¢(s0, $1),
k=0 9
: x , Co Si) + fi(S 2
B%(yO) = EY0:(507GO751,ZO) {Hvx* (Yk)Hg} < EYOZ(so,aO,sh%) (39(Yk)17 4 (fl( ki i Zl( k+1)) _|_g(Yk))
* i s0) + fa(s
2(9)|* 13 + 1)g(s0,51) + J%l(_O)p)zh( 1).



Shaan Ul Haque, Siva Theja Maguluri

E.3 Proof of Lemma 3.2

Proof. The proof largely involves similar arguments as in Lemma 2 in Zhang et al. (2021) but we will also need
Lemma E.3 to adapt the infinite state space. Since P is an irreducible and aperiodic Markov kernel, for any
non-zero f € Eg, by Lemma E.4 we have

0T (BTAT — TAPM )G > 0.

Consider the set {# € E¢|||f]l2 = 1}. Note that this set is compact and closed, thus by the extreme value
theorem, we have

A= min TWTAY - GTAPMT)G > 0.
0eE,[0]2=1

By Lemma 3.1, in steady state E,[T(Y})] is given by

—Cqy 0

T= .
_rl)qn2,E$ \IITN HQ’E\t (\I/TA\II — \IJTAP(A)\:[/)

. . . . . T A .
Thus, the minimization problem min, gy g1 |4),=1 =% T can be written as

2 s T T T T A p(N)
min Cqr’ + ——0"11 U+ 6411 AT — U APYWT)6.
0cEL reR,r2+(0)|2=1 DY 2,Eg M Q,Eé}( )

Since 0 € Eg, HTHZE\% = (I, g4 0)T = 6, we have

min Car® + —— 0707 1y + 0T (BTAT — GTAPN )9,
0€EL rer,r2+(6)2=1 1-A

First, we bound the second term.

_ 7| T, T
H =y v

T aTaT
—0' v
’1—>\9

7]
1-A

< 101120197 |2 (Cauchy-Schwartz Inequality)

Since || 07T u||3 = 2?21 (Yses u(s)wi(s))Q which by Jensen’s inequality can be bounded as

d
T wl3 <D0 n(s)wis)

i=1 s€S
< di?.
Thus,
" Ty T MTHWHQ\/& 1
—0' v < = R Eg.
‘1_)\9 ul < Y , VreR, 0eFEy
and

o7 (BTAT — OTAPNW)Y > A||9)2, V0 € Eg.

Combining all the bounds, we get

min Car + ———TWT 1+ 9T (WTAT — GTAPNT)g
0cEL reR,r2+[6)2=1 1—A
blr|[10]]2v/d
> i car? — Plr|l6]l2vd UNTIE
0€EL reR,r2+|0|2=1 1—A



Stochastic Approximation with Unbounded Markovian Noise: A General-Purpose Theorem

Vdilr|y/T—]r]?
— i 2 _ 2
=2y el DY AL
. Vdip\/z(1 = 2)
B R
Vdip/z(1 = 2)

=A in (cq —A)z —
+ min (o — A)z 1 x

d24

When ¢, > A + \/A2(llﬁ/\)4 - (111_121/\2)2, we have

s
i (eo =202

Vi /z1—2) 1 d24)?
- = =3 @Q—Ay—¢@a—Ay+()

where for the last inequality we used the following fact

2
\/% -z — % > —A V. (r = A? is the minimizer)

min 27T >
zERXEG ||z|2=1

Therefore, it follows that

1\3.\ >

E.4 Proof of Theorem 3.1

Theorem E.1. Consider the iterates {0, T } x>0 generated by Algorithm 1 under Assumption 3.1-3.3 and cq >
AL \/ d24 _ dy?
AZ(1—NE T (1—-N2°

(a) When ax, =« < 1, then for all k > 0:

Aok

A 12Cy (s ,81)
E[(7x — 7)? + 1|0k — 07[|3] < @0 exp (—2) 3Cv (s0,81)a + M.

A

(b) When £ =1, a > & and K > max{a,2}, then for all k > 0:

K )A; Cv (s, 51)a  4(6 +2A)Cy (s0, 51)ea’

k+ K k+ K (82 —1) (k+ K)

El(Fe — 72 + 0 — 6°]3) < ovio (
2

Proof. Since there is no martingale noise in the algorithm A; = B3 = 0. From Proposition E.1, we have
Af(yo) = T(s0. 51) and A3(yo) = 99(s0,s1) which gives

A(yo) = A%(yo) + Ag(yo) + A3 = T(507 51) +99(s0, 51)-
Next, Eq, [([[b(Yx)[3] < b(s0,51), we have

Ey, [(I(Ye) |2 + I T(Ya)ll2ll2*[12)%] < 2b(s0, 51) + 2T (s0, 51) 12" 13-
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Combining above with B3 (yg), we get
B(yo)* = Bi(yo) + B3(yo) + B3

8c2+/ f2(s0) + f2(51).

= 2b(s0,51) + 2350, 51) + 2213 (99 (0, 51) + T(s0,51) ) +

(1—-p)?
Lot maxye zlla < M/2. Then, Cy (so, 51) = Clyo) = Algo)M? + Blyo). Since |-l = || - = || - |, we have
ULSU SU’ES — * * A
p1 = 172 =1; pvo = (Fo —1%)* + [|60 — 0|2 + 2Cv (50, 51).
2s

E.5 Challenges in the infinite state space

Consider a birth-death chain. Let the state space be given as S = {s; };>0 with the transition kernel P(s;y1|s;) = p
and P(s;—1]s;) =1 — p, where p < 1/2. Furthermore, P(so|sg) =1 — p. It is well known that for p < 1/2, this

chain is positive recurrent and the stationary distribution is given by u(s;) = 8:%’)& For simplicity, we will

consider the setting when A = 0, which implies P(®) = P. Consider a sequence of functions {V;};>1 in the set
{V[ > es V(s) =0,5,c5 V3(s) = 1} that satisfy the following:

L=
Vi(si) ={ —5, i=j+1
0, otherwise.

Then, we have the following:

1
ViAV; = VPAPY; = SEL[(Vi(Sk41) = V(Si))’]

= n(sj-1)p (;5) s (V2) + (534000 = p) (V2) + lsj2)(1 —p) (

_ (=2 (1 A(1-2p)p  (1— 2p)p2>
(1-py \2  (A-p  20-p?

Note that p < 1/2, therefore lim;_,, VjTAVj — VjTAPVj — 0. Thus,

2

)

inf Vi AV; — VAPV, = 0.

Observe that in the above example the vector has infinite dimension, thus the state at which the function value
has a variation for the first time can drift to infinity. However, by using linear function approximation with
a finite number of columns, we are essentially restricting the function in a finite-dimensional setting. More
concretely, in Lemma E.3 we establish that for any function given by a linear combination of columns of W, the
point of variation in the value of the function cannot drift to infinity.

E.6 Auxiliary Lemmas for TD()\)

Lemma E.3. Let S = {s1,2,53,...} be an indering of the state space such that v(s;)T is the i-th row in V.
Then, under the Assumption 3.2, there exists a finite N such that for all € Eg the following relation holds

d

0()s(sn) # Y 00w (si), 1 <i <N —1. (30)

Jj=1 Jj=1

Proof. From Lemma H.2, there exists N; such that the span of the first N; rows of ¥ is R?. Therefore, there
exists a set of d vectors that are linearly independent. Denote these row vectors by {¢(s;,), ¥ (i), .-+, %¥(s:i,)}
and construct a matrix W by concatenating these row vectors. Let e € R? be the vector of all ones. Now, we
have two cases: (i) Ey is non-empty, or (ii) Ey is empty. We will consider these two cases separately.
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e Ey is non-empty: Since ¥y is full rank and 6, is unique, W40 # e for all € Eg. The claim follows
immediately.

e Fy is empty: In this case Eg = RY. Let 0. be the vector for which we have ¥,0, = e. Then, from
Assumption 3.2, there exists a finite Ny such that Z?:l 0.(j)vj(sn,) # 1. Furthermore, W40 # e for any

0 # 0, Thus, for all 0 € R? | Y0 0(5);(si) # 351 0(j)1h;(s:), where N = max{Ny, Na}.

O

Lemma E.4. Let P be the transition kernel for an irreducible and aperiodic Markov chain. Then, for any
0 € E¢, the following is true:

0T (OTAY — TTAPT)O > 0. (31)

Proof. Let V(s;) = 1(s;)76 be a non-constant function of the states, where 1 (s;)7 is the i-th row of ¥. Note
that due to Lemma E.3, there exists a finite N where V(sy) # V(sy—1). Since the Markov chain is irreducible
and V() is a non-constant function of time, we have

0< % Z,u(si) Z P(s|s))(V(si) — V(s))? (P(si+1]|si) > 0 by the construction of )
i=1 s€S
=3 uls) (w@ ~V(s) ZP<s|sl>v<s>>
i=1 seS

=0T (UTAV — UTAPY)H.

F PROOF OF THE TECHNICAL RESULTS IN SECTION 4
F.1 Properties of SCBCD

Proposition F.1. The SCBCD algorithm has the following properties:

(a) The operator F(x,i), satisfies: ||F(z,q)|2 < Lljx — *||2, Vi € S.

(b) There exists a solution to the Poisson equation (3) for the Markov chain My which satisfies Assumption
2.2 with As = max{L,1} and By = 0.

(c) The noise sequence My, is a martingale difference sequence and satisfies: |My|la < Cy||lz — z*||2 + Cs.

Proof. (a) Using L-smoothness of the f(x) and the fact that V f(a*) = 0, we get

I = UiVif(@)llz = || = UV f(z) = UUTV f(27)]|2
< LU allz — 2|2
= Lljz — "[|s. (1U:UF ]2 = 1)

(b) Note that E;[G(Y)] = G(i mod p + 1) for any G : S — R, Thus, we can write Poisson equation as
1
V(i) = —~U;UF'V f(z) + V(i mod p+ 1) + ;Vf(x).

Set V(1) = 0, then we have

—1

Vi) =-3" (Uk+1U,?+Nf<z> - ;vm)) vie S/{1)
k

=0
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Note that Uy U,? is a also diagonal matrix. Hence, Z,’;;g (Uk+1 U,z;l — %Id is a diagonal matrix with entries

i=L in the first i places and —% in the remaining places. This implies that sz;g (UkHU,?_H — %Id) H <
2

P
% < 1. Thus, for all : € S, we have
p—
. 1 . 1
Ve (i) = Vy()l2 = Z Up1Uj 1 V() = ];Vf(x) = Up1Up i VI (y) + ];Vf(y)
2
- 1
< (UMU,Z’H 1) | 195@) - 101
k=0 p 2
<|IVf@) = Vil
< Lllz — y||2 (Smoothness of f(x))
Additionally, V f(z*) = 0 implies V.« (i) =0, Vi € S.
(¢) Using Assumption 4.1, we have
E[My|Fi] = E[Usywi| Fi]
= Uiy E[wg | Fi] (Ui(ry is deterministic)

= 0.
Furthermore,

[Mgll2 < [|Usrywe |2
< froellz (I1T3llz = 1)
< Chllzp — ¥ + Co.

O
F.2 Proof of Theorem 4.1
From Proposition F.1, we have
Ag = (L+Cy+1)% Bg=C3;
0.0 =2(1+2(L+ Cy +1)?max{L,1})||xg — *|? + 4C3 max{L,1}; oc1 = max{L,1}.
G PROOF OF TECHNICAL RESULTS FOR Q-LEARNING IN SECTION B
G.1 Proof of Proposition B.1
Proof. (a) (1) Recall that Q*(s,a) = R(s,a) + 7> ,cs P(5'|s,a) max, c 4 Q*(s',a’). Thus, we have
IFQ < |7 X P15 (@) - mox @ (5.a) ) = Qo) + Q)| +1Q" (sl
s'eS )
<2[Q = Qoo + 1@ |-
Similarly, for any @1 and @3 and y € Y we have
I1F(Q1,y) — F(Q2,9)|loo < ||y Z P(s'|s,a (male(s a) — an/lgﬁQz(s/’a/O — Q1(s,a) + Q2(s,a)
s’eS o]

<2||Q1 — Q2| -
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(2) Using the Markov property, we have for any @Q € RIS and (s, a):
ES}«NILb [F(Q7(Sk7 Ak?))(sv a)]

=Eg,u, l]l{Sk =s,A; =a} (R(s,a) +y Z P(s'|s,q) max Q(s',d) — Q(s, a))}

s'eS
= pp(s)ms(als)(B(Q)(s, a) — Q(s,a)).
Thus, F(Q) = AB(Q) - Q).
(3) Since Q* is the solution to the Bellman equation, we have
F(Q) = AB(Q) — Q")
=0.

Hence, Q* is a solution to the equation F(Q*) = 0. The uniqueness of the solution is immediate from
the fact that py(s)mp(als) > 0 and Q* is the unique solution to B(Q) — Q = 0.

(b) Fix a state yo = (s0,a0) € Y and define 7 = min{n > 0:Y, =yo} and E,[] = E[|]Yy = y], then forally € Y

T—1

ST (FQ.Y.) - FQ)

n=0

Voly) =E,

is a solution to the Poisson equation (Lemma 4.2 and Theorem 4.2 of Section VI.4, pp. 85-91, of Borkar
(1991)). Thus, we have

Var )~ Va0l = [By | (F(@uYa) — FI@2Ya) — (F(@) - F(an)]
<Ey |3 (1F(@1,¥a) — (@2 Vo)l + 1P(Q1) - F<Q2>|oo)]
<E, |3 2101~ Qall + IAB@1) ~ (B@2)lle + A - Q2>||oo>]

(Using property 1 and 2 from part (a))

< 4)|Q1 — Q2| Ey[7]
<A1y ||Q1 — Q2| so-

Furthermore, since @Q* solves the Bellman equation, for all y € ) we have
VQ* (y) =0.
(c) Define Fi, = {Qo, Yo, ..., Qr—1, Yi—1,Qk, Y }. Then due to the Markov property, we have

E[M}.(Qk)|F] = 0.

Furthermore,

S N - P(s'|Sk, A "a
max Qx (Sk+1,a') > P(s/|Sk, k) max Q(s’, a')

1My (@)oo < ymax (
7 s'eS

)

< 2[Qklloo
<2([1Qk = Qoo + Q7 lloo) -
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G.2 Proof of Theorem B.1

Proof. To identify the constants Ag, Bg and 7¢g, we use Lemma B.1 to get
2 B\’
Ag=(A1+ A3 +1)7 =25 Bo=(Bi+Bs+ = =91Q"I13; m@ = (1 = 1) Amin-

Since ng < 1, we have Q > Bg. Furthermore, from Lemma B.1 we get og 1 as follows:

2(1 +w)

0.1 = uLu? Ay = (p— 1) (|SI[A])*/* 47,

IN

BED e, l0s (15114)

_ 32emy, log (IS A])
(1 - 7)Amzn

~ 214+ w)(145000,1) 2

41+ 5000.1)[1Qo — Q12 + 36/1Q* |12, 0¢.1-

G.3 Sample complexity for Q-Learning

To find an estimate @, such that E[||Q — Q*||oc] < €, we need

[

58Bgogia _ €
Q 2

0 1Q )
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Using this bound on «, we have
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Since g1 < e(TfO_VO)—gAw and ||Q*[|2, <O (ﬁ), we have

w<0 (25 o () o k)

H AUXILIARY LEMMAS

Lemma H.1. The step-size sequence in Assumption 2.5 has following properties:

26

o < ap—1; ap—1 < 2ap; op—1 —ap < —ak (32)

Proof. The step-size is non-decreasing by construction. Now consider the ratio

Qp—1 K+k ¢
ar  \K+k-—1
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<‘+K+k—1)

< % < 1. Putting together with the expression above, we get

1

Since k > 1 we have 77—

<28 <2 (€<1)

For the final part, consider the function f(z) = m for x € [0,1] and k& > 1. Using Taylor’s series expansion,
there exists z € [z, 1] such that we have

fA) = f@) + (1 -2)f'(2)

_ (I —=x)¢
—f(l‘) (k+2)1+£
(1-a)¢
(1) = S
F@) — £ = e
(1—=z)¢
< TRt (Z > O)
(1-a)¢
Substituting x = 0, we have V k > 1
1 1 &
K Er1E = K%
a 28 5
= Qp_1— o < m < Eak- (ak—1 < 2ay)
]
Lemma H.2. Consider the following infinite set of equations:
a1y + a12x2 —+ ...+ aA14Tq = O
a91x1 + a22x2 + ... + asgrg =0 (33)

*

Assume that the set of equations has a unique solution, i.e., there exists a unique x* which satisfies 2?21 aijT;
0 for alli > 1. Define A(i) as a row vector, A(i) = [a;1, a2, ..., a;q]. Then, there exists a finite N such that the
span of {A(i)}i<n = RY.

Proof. Denote A; € R**? as the concatenation of the row vectors {A(j)},<; into a matrix. Let r; = rank(4;).
Then, r; is a non-decreasing sequence that is bounded above by d. This follows from the observation that the
span of a set of vectors is non-decreasing as new vectors are added to the set. Thus, by Monotone convergence
theorem, lim;_, o, ; must exist. Let us denote the limit by r.

Now, to show that » = d, we will use the method of contradiction. Assume that r < d. Since r; € Z, there exists
a finite number N such that r; = r, Vi > N. However, this implies that the null space of A; is nonempty for all
i, further implying that the set of equations (33) has more than one solution. Hence, we have a contradiction
and r must be equal to d. Since the column rank and the row rank of a finite-dimensional matrix are equal, this
implies dim({A(i)};<n) = rank(Ax) = d. The claim follows. O

Lemma H.3. Let P be a square matrixz with dimension dy + do which partitioned as follows

[t 3

where A € R4*d41 B e Rlixd ¢ e Ré2xd1 gnd D € R%2%%. Then, ||P|la < ||All2 + | Bllz + [|C]l2 + || D]|2.
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Proof. Using the definition of matrix norm, we have

[Pz = max [Pzl

llzll2=1

Let x = [ﬂ , where y € R% and z € R%2. Then, Pz can be written as

_ |Ay+Bz| |Ay Bz 0 0
pe=ley o] = [ 5] L)+ o
Then, by triangle inequality, we have
1Pzllz < ([|Allz + IC1l2)lyll2 + ([Bll2 + [ Dl[2)l|2]l2

Note that since max{||y|2, [|z]|2} < [|z|l2 < 1, we have

max |[Pzllz < [|All2 + [|Bllz + | Cllz + [ Dll2-

llzll2=
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