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Abstract

We study statistical estimation and inference for the ranking problems based on pairwise
comparisons with additional covariate information. In specific, in this paper, we study a
Covariate-Assisted Ranking Estimation (CARE) model in a systematic way, that extends
the well-known Bradley-Terry-Luce (BTL) model by incorporating the covariate informa-
tion. We impose natural identifiability conditions, derive the statistical rates for the MLE
under a sparse comparison graph, and obtain its asymptotic distribution. Moreover, we
validate our theoretical results through large-scale numerical studies.

Keywords: High-Dimensional Inference, Entity ranking, Ranking with covariates, Un-
certainty quantification, Maximum likelihood estimator.

1 Introduction

Ranking plays an essential role in many real-world applications. For example, it is crucial
in individual choice (Luce, 2012), psychology (Thurstone, 1927, 2017), recommendation
systems (Baltrunas et al., 2010; Li et al., 2019), and many others. The ranked items such as
sports teams (Massey, 1997; Turner and Firth, 2012), scientific journals (Stigler, 1994), web
pages (Dwork et al., 2001), election candidates (Plackett, 1975), or even movies (Harper
and Konstan, 2015) will not only illustrate their qualities but also affect people’s future
choices. Thus, the ranking problem has been extensively studied in statistics, machine
learning, operations research, etc.; see, for example, (Hunter, 2004; Richardson et al., 2006;
Jang et al., 2018; Chen et al., 2019, 2022b,a; Liu et al., 2022) for more details.

Among various models for the ranking problem, the most well-known one is the Bradley-
Terry-Luce (BTL) model (Bradley and Terry, 1952; Luce, 2012), which assumes the exis-
tence of scores {6} | of n compared items such that the preference between item ¢ and
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item j is given by
P(item i is preferred over j) = e /(e% + %), for (i,7) € [n] x [n].

The underlying assumption of this BTL model is the scores of compared items are fixed and
do not explicitly use their attributes. However, in many real-world applications, covariate
information often exists and this heterogeneity needs to be incorporated. For example, US
News and Times Higher Education consider many characteristics of universities, such as
international research reputation, teaching quality, the ratio between students and profes-
sors, and citations to conduct global university rankings. In addition, in NBA basketball
competitions, the final rank of a team is also affected by its underlying attributes, such as
the ability to defend, make a three-point shot, etc.
Thus, a crucial question still remains open:

“Can one design a provably efficient mechanism for ranking by incorporating
features of compared items and conduct associated high-dimensional statistical
inference?”

To this end, we follow the idea from related literature Turner and Firth (2012); Li
et al. (2022), by incorporating feature information of items into the BTL model, and call
the model as the Covariate-Assisted Ranking Estimation (CARE) model. Specifically, we
address covariate heterogeneity by assuming the underlying score (ability) of the i-th item
is given by o +$;r 3%, where :c;r B* captures the covariate effect and o is the intrinsic score
that cannot be explained by the covariate. In this case, the outcome of pairwise comparison

is modeled as
.
ea;‘+azi B*

P(item i is preferred over j) = IS R e

We do not assume that all pairs are compared. Rather, each pair is selected at random for
comparison. In specific, we let the underlying comparison graph be the Erdés-Rényi random
graph with edge probability p. In addition, once a pair is selected, they are compared L
times. In this work, we consider the fixed design in the sense that the randomness only
comes from results of comparisons.

There are several challenges in studying statistical inference for our CARE model. First,
our model incorporates feature information into the original BTL model, not only the
underlying scores {c}!' | but also B* shall be estimated and analyzed in a novel way. This
also gives rise to the issue of identifiability. Second, given consistent estimators, it remains
open to quantify these key components’ uncertainty. Most existing work focuses more on
deriving statistical rates of covergence for those underlying scores via various estimators in
the BTL model to achieve specific rank recoveries such as top-K and partial recovery (Chen
et al., 2019, 2022b). There are few results established for the inference of the BTL model
(Simons and Yao, 1999; Han et al., 2020; Gao et al., 2021; Liu et al., 2022), letting alone the
uncertainty quantification for the more general BTL model with covariates (CARE model).
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In our work, we resolve the first challenge by designing a novel constrained maximum
likelihood estimator (MLE) (&M,BM) which efficiently estimates the underlying scores
{of}, and B*. With some proper initialization, the MLE can be solved by simply running
the projected gradient descent algorithm. By leveraging the ‘leave-one-out’ technique (Chen
et al., 2019), we prove that the statistical rate of convergence of the MLE of the intrinsic
scores {af}"_; and overall scores {a} +x; 3*}"_, in fo-norm are of order O(y/logn/npL),
in which d is the dimension of the observed covariates. These statistical rates reduce to
the standard minimax rates for estimating the BTL model when no covariate exists, (Chen
et al., 2019).

To take on the second challenge, namely, depicting the asymptotic distribution of the
MLE, we first approximate the MLE by the minimizer of the quadratic approximation of our
joint likelihood function, whose uncertainty is easier to depict. The critical difficulty lies in
quantifying this approximation error. To tackle this issue, we then utilize the ‘leave-one-out’
technique and derive novel proofs, which is valid under the minimal sample complexity up
to logarithm terms. In a more specific BTL model, the seminal works by Gao et al. (2021)
and Fan et al. (2022) (when considering pairwise comparison) leverage the minimizers of
the more restricted diagnonal quadratic approximations of their marginal likelihoods to
approximate the MLE. They capture the approximation errors based on a ‘leave-two-out’
technique. In contrast, in this work, we utilize the minimizer of the quadratic approximation
of the joint likelihood to approximate the MLE, and achieve a tighter approximation error
than Gao et al. (2021); Fan et al. (2022).

Finally, we conduct numerical experiments to corroborate our theory. The performance
of the model is also convincingly illustrated by analysis of the pokemon competition data.
From the perspective of stock selection and return prediction, our proposed covariate-
assisted BTL model (CARE) outperforms the original BTL model in many aspects.

To summarize, the contributions of this work are of multiple folds. First, we study a
Covariate-Assisted Ranking Estimation (CARE) model in a systematic way that extends
the well-known Bradley-Terry-Luce (BTL) model by incorporating the covariate informa-
tion. Specifically, we derive ¢o- and flo- statistical rates for the MLE of {a}}? ; and 8%,
respectively. Moreover, we also conduct uncertainty quantification for our MLE, where we
improve the approximation errors given in existing works and derive more general asymp-
totic results. Furthermore, our results hold even on the sparse comparison graph, i.e. the
probability of pairwise comparison p < 1/n up to logarithm terms, with minimal sample
complexity. Finally, we illustrate our methods via large-scale numerical studies on synthetic
and real data. Numerical results lends further support of our proposed CARE model over
the original BTL model.

1.1 Prior Arts

Ranking problems based on pairwise comparison for parametric and non-parametric models
have received much attention. For the BTL model, Hunter (2004) studies its variants and
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establishes theoretical properties using a minorization-maximization algorithm. Chen and
Suh (2015) use a two-step method to study the BTL model which is provably optimal in
terms of sample complexity. Jang et al. (2016) leverage the spectral method to recover
the top-K items with only minimal samples. In addition, Negahban et al. (2012) propose
an iterative rank aggregation algorithm named Rank Centrality to recover the underlying
scores of the BTL model in optimal /- statistical rate. In the sequel, Chen et al. (2019)
derive both f5- and /.- optimal statistical rates of those underlying scores and prove that
the regularized MLE and spectral method are both optimal for recovering top-K items
when the conditional number is a constant. Furthermore, Chen et al. (2022b) prove that
for partial recovery, MLE is optimal but the spectral method is not when we have a general
conditional number. It is worth noting that the aforementioned prior arts mainly focus on
studying the parametric BTL model. There is also a series of works that studies specific
non-parametric variants of the BTL model. For instance, Shah and Wainwright (2017)
develop a counting-based algorithm to recover top-K ranked items under the nonparametric
stochastically transitive model. For more details on the non-parametric comparison models,
see Shah et al. (2016); Shah and Wainwright (2017); Chen et al. (2017); Pananjady et al.
(2017) and the references therein.

Going beyond the pairwise comparison, there also exist other works which study ranking
problems using M-way comparisons (M > 2). The first well-known model is the Plackett-
Luce model and its variants (Plackett, 1975; Guiver and Snelson, 2009; Cheng et al., 2010;
Hajek et al., 2014; Maystre and Grossglauser, 2015; Szorényi et al., 2015; Jang et al., 2018;
Fan et al., 2022). For instance, a closely related work is Jang et al. (2018), who study
the Plackett-Luce model under a uniform hyper-graph. They divide M-way compared data
into pairs and utilize the spectral method to derive the /.- statistical rate of underlying
scores. They further provide a lower bound for sample complexity to recover top-K items in
the Plackett-Luce model. Another well-known model is the Thurstone model (Thurstone,
1927), which admits the Plackett-Luce model as a particular case; see Thurstone (1927);
Guiver and Snelson (2009); Hajek et al. (2014); Vojnovic and Yun (2016); Jin et al. (2020)
for more details.

The aforementioned literature mainly focuses on non-asymptotic statistical consistency
results for the underlying scores of compared items through various ranking frameworks.
However, the limiting distributional results for ranking models still remain highly under-
explored. There are several results on the asymptotic distributions for the ranking scores
in the BTL model. For instance, Simons and Yao (1999) derive the asymptotic normality
of the MLE of the BTL model in the scenario where all pairs of comparison are fully
conducted (i.e., p = 1). Han et al. (2020) further extend the results to the regime where
the comparison graph (Erdés-Rényi random graph) is dense but not fully connected, i.e.,
[ e n~1/10 In addition, recently, Liu et al. (2022) propose a Lagrangian debiasing method
to derive asymptotic distribution for ranking scores, where they allow sparse comparison
graph p < 1/n but require comparison times L to be larger than n?. Moreover, Gao et al.
(2021) utilize a ‘leave-two-out’ trick to derive asymptotic distributions for ranking scores
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with optimal sample complexity in the regime where the comparison graph is sparse, i.e.,
p = 1/n up to logarithm terms.

All aforementioned models and methods mainly study the estimation and uncertainty
quantification for ranking models without considering any individual feature information.
Yet, covariate data exist in most applications, and this results in additional challenges in
technical derivations and computation. Although there exists some other literature that
also considers incorporating covariate information into the ranking problems (Guo et al.,
2018; Schéfer and Hiillermeier, 2018; Zhao et al., 2022; Chau et al., 2023; Finch, 2022),
their motivations, model settings, methodology, and theoretical contributions are different
from us. In specific, most of them assume the underlying scores of all compared items are
fully explained by covariates without studying the effects of individual intrinsic scores (i.e.,
no o). In addition, we allow the comparisons to be realized through (sparse) comparison
graphs, which take on extra challenges. Moreover, in terms of the theoretical contribution,
most of them only establish the /- statistical rates for estimating 5* whereas we not only
obtain l.-and /»- statistical rates for estimators of {o;}]",; and g* but quantify their
uncertainty as well. In addition, even though our CARE model is related to Turner and Firth
(2012); Li et al. (2022), we propose a systematic model estimation and inference framework.
In contrast, these previous works only formulate ranking with covariates intuitively and do
not discuss methodological implementations or theoretical guarantees.

Therefore, this paper takes up this challenge by presenting a systematic framework
for model estimation and uncertainty quantification of our CARE model over a random
comparison graph. Notably, this framework admits all previous advancements made on the
BTL model, which do not incorporate covariate information as special cases.

1.2 Notation

We introduce some useful notations before proceeding. We denote by [M] = {1,2,...,M}
for any positive integer M. For any vector u and ¢ > 0, we use |lul|s, to represent the
vector £, norm of u. In addition, the inner product (u,v) between any pair of vectors
u and v is defined as the Euclidean inner product u'v. For vector u € R™ and index
i € [m], we denote by u_; the vector we get by deleting the i-th element in u. For any given
matrix X € R1*% we use ||X||, [|X]||#, [|X]||« and ||X]|2,00 to represent the operator norm,
Frobenius norm, nuclear norm and two-to-infinity norm of matrix X respectively. Moreover,
we use X = 0 or X < 0 to denote positive semidefinite or negative semidefinite of matrix
X. Moreover, we use the notation a,, < by, or a,, = O(by,) for non-negative sequences {ay, }

~

and {b,} if there exists a constant v; such that a, < v1b,. We use the notation a,, = by,
for non-negative sequences {a,} and {b,} if there is a constant v such that a,, > v»b,. For
simplicity, we define function ¢(t) = e'/(e' +1). We write a,, < b, if a, < b, and b, < ay,.

For matrix A, we denote by AT its pseudoinverse (Banerjee, 1973).
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1.3 Roadmap

The remaining paper is organized as follows. We describe the problem formulation for our
BTL model with covariate and derive the corresponding maximum likelihood estimators for
its involved parameters in §2. In §3, we establish the statistical estimation results for our
MLE. In §4, we further conduct uncertainty quantification for the obtained MLE. In §5,
we corroborate our theoretical results by conducting large-scale numerical studies via both
synthetic and real data set.

2 Model Formulation

In this section, we introduce the Covariate-Assisted Ranking Estimation (CARE) model
which incorporates covariate information into the BTL model. In the traditional BTL
model (Bradley and Terry, 1952; Luce, 2012), it is assumed that each item ¢ € [n] has
a latent score ¢ and the outcomes of comparisons are modeled as the realizations of the
Bernoulli trials:

egi

e + e%

P{item j is preferred over item i} =
It is worth mentioning that the function exp(-) in (1) can be replaced by any increasing
differentiable functions.

In many applications, one observes individual features x; € R¢ and would like to incorpo-
rate them for conducting more accurate ranking. As an extension of the parameterization
exp(6;) (Chen et al., 2019, 2022b), we model the scores exp(f) as exp (af + -’B;rﬁ*) for
1 <i < n. The linear term :BZT,B* captures the part of the scores explained by the variables
x; and o] represents the intrinsic score that can not be explained by the covariate ;. This
leads to modeling the outcomes of comparisons as the Bernoulli trials with probabilities

* T %
etz B

P{item j is preferred over item i} = Vi<i#j<n. (2

eaf+w?ﬁ* + ea;erm;r,B* ’
We call this model Covariate Assisted Ranking Estimation (CARE) model.

We do not assume that all pairs are compared, but only those in the comparison graph
G=(W,E). Here V :={1,2,...,n} and & represent the collections of vertexes (n items)
and edges, respectively. More specifically, (i,5) € £ if and only if item 7 and item j are
compared. Throughout our paper, the comparison graph is assumed to follow the Erdds-
Rényi random graph G, ;, (Erdos et al., 1960) where each edge appears independently with
probability p. In short, items i and j with (¢,7) € [n] x [n] are compared at random with
probability p.

In addition, for any (i,j) € &£, we observe L independent and identically distributed
realizations from the Bernoulli random variables
pO ] B

Py =1) = ,
(yz,j ) ea:”rw;rﬁ* + ea;+m;r5*
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Let z; = (eg—,m;)T and 3 = (aT,,BT)T, where {e;}!" | stand for the canonical basis
vectors in R” and a = (ay, ag, ..., a,)" € R™ Then, the log-likelihood function conditioned

on G is given by

~T3 ~TAa
ewi ﬂ em]' /6
L- Z {yj7ilog+(1—yj7i)log~}.

(i.)€E€,i>] eTiB 1 B ¢TI 1 PP

where y; ; = % Zlel yz(l]) is a sufficient statistic. The identifiability question arises naturally
since we over-parametrized the problem. To remedy this issue, we restrict the parameter
space of ,5 onto some constrained set © with a natural interpretation. In specific, we denote
@; =L,z ]",Vi € [n], let X = [®1,---,2,]" € R™ (@) and consider the constrained set
O = {(a, 8) : X "ax = 0}. Throughout the paper, we assume that X has rank d+ 1. Under
these identifiability constraints, if the true parameter vector ,5* = (ozf, a5, ..., ap, B*T)T =
(a*T,ﬁ*T)T € O, the identifiability condition implies that > ;" ; o = 0 and XTa* =0
with X = [zq,--- ,wn]T € R™ 4. It admits clear interpretation: X 3* represents the scores
that be captured by the covariates, whereas the a* € R™ represents the residual scores (or
equivalently intrinsic scores) that can not be explained by the involved features (i.e., it does
not fall into the linear space spanned by the columns of covariates). Next, we prove the
identifiable property of © rigoriously in Proposition 1.

Proposition 1. CARE model Eq. (2) with parameter space © = {(a,8) : X "o = 0} is
identifiable.

We denote by Z € Rdx(d+1) 4 matrix by padding 0 € R @+ matrix to X, i.e.
Zin, = X and Zpi1:ntd, = 0. As aresult, © can be also written as {B e R™td . ZTE = 0}.
Denote by P =1 — Z(Z"Z)"'ZT the projection matrix onto space ©.

Given the aforementioned identifiable condition, we consider the following constrained
maximum likelihood estimator (MLE)

B = argmin E(B), (3)
Beo
where
£@:= Y {-ui (@8 B-3]B) +10g (1+7F70) | (4)

(i,§)€E i>]

Note that when there is no covariate {z;}?,, we have © = {a € R", 1T = 0} and
the scores are identifiable up to a constant shift. Therefore, our formulation includes those
studies of the BTL model without covariate information as special cases (Chen et al., 2019).

The inference question arises naturally if some covariates can explain the underlying
scores, namely if some or all components of 3* are statistically significant. Similarly, one
might ask if the covariates are adequate for determining the underlying scores by testing
whether some or all components of a* are zero. In general, we would expect the variations
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among the components of a* to be smaller than the original scores {6} ;. This enables
us to improve data predictions by shrinking or regularizing the estimate of a*.

In the following context, we rescale x; to x;/K, where K > 0 is a positive number
such that ||x;||2 < v/(d + 1)/n for all x; after the transformation. The likelihood function,
prediction and the column space spanned by X are not affected by the scaling but this
normalization facilitates us with scaling issues in the technical derivations. Therefore, the
content that follows will be based on the scaled data and parameters.

3 Rate of Convergence of Maximum Likelihood Estimator

In this section, we show the statistical consistency results for the maximum likelihood
estimator BM in (3). Before proceeding to the main results, we begin by introducing
several key assumptions on the design matrix. First, we assume the projected matrix
Pg = X(XTX) !XT satisfies the following incoherence condition.

Assumption 2. [Incoherence Condition] Assume that there exists a positive constant co
such that

IPxll200 = [ X(XTX) ' X 200 < coV/(d+ 1)/n.

To demonstrate the rationality behind Assumption 2, we first note that the [|[Pg||% <
d + 1. Therefore, a sufficient condition for this assumption to hold is when the rows of Px
are nearly balanced, with row sum of squares all of the order (d + 1)/n or smaller. When
there does not exist the covariate (i.e. X = 1), we have Pg = 117 /n. In this scenario,
this assumption holds automatically with ¢y = 1. The following results of this paper are
established under this incoherence condition.

We next introduce a key assumption on the covariates x; which guarantees a well-
behaved landscape of the loss function as well as good statistical properties of the MLE
estimator. In specific, we put the following assumption on ¥ = 3, .(z; — &;)(x; — z;)"

Assumption 3. Assume that there exist positive constants c1 and co such that
can < Apin, 1 (B) < || X < arn,
where | X|| is the operator norm of X and
Amint () := min {,u\zTZz > ul|z|)2 for all z € @}.

In this Assumption 3, we assume that 3 is well-behaved in all directions inside our
parameter space ©, namely, both of its largest and smallest eigenvalues are of order n. This
assumption follows directly after we rescale the ||z;||2 such that ||z;]|2 < \/(d+ 1)/n for all
x;,i € [n]. When there is no covariate (i.e., d =0), then £ =3, .(e; —e;)(e; — ej)
Assumption 3 holds naturally with ¢; = ¢ = 1 (Chen et al., 2019).

and
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We next introduce the condition number of this problem as

max; w;

Kii= ———L = exp <max (a +x) B — —aj — acjﬁ*)) ,
1

*
1

where w} = exp(a} + x; 3*), which extends the condition number in Chen et al. (2019)
when there does not exist covariate. With all aforementioned assumptions in hand, we
next present our first main theorem on the statistical rates of convergence of the MLE
,BM Recall that we assume that the true parameter vector ,6* = (al, s, ..., 00, ,B*T)

(a*T, B*T) € O, without loss of generality.

Theorem 4. (Rate of convergence) Suppose np > c,logn for some ¢, > 0 and d +1 <

n,(d + 1)logn < np. Consider L < ¢4 -n for any absolute constants cq,c5 > 0. Let
By = (on,,BM)T be the solution of the MLE given in (3). Then with probability at least
1—0(n%), we have

(d+1)logn HA H logn
(d+1)logn _ < :
laa = alloe S w1y [0 = |8 = BT, Sy [
XA XpB*
— d+1)logn eXPM — XP d+1)logn
| | e
~ 1 an ’ Hefﬁ* ~ 1 an ’
o
where X = (@1, %o, ..., Ty) "

Recall that we rescaled the covariates such that max;c, [|zill2 < \/(d+1)/n. This
scaling has an impact on the definition of 3* and influences its rate. This explains why B\M
converges slower and does not depends on d. However, when we view wiTﬁ as an whole, the

estimation rate is \/(d + 1)logn/npL, and this does not impact on the estimation of the
individual score, as shown in Theorem 4.

Remark 5. Following a similar proof, it holds that

HefﬁM _ efﬁ*

|&u —alz _ o [(@+1)logn

2 < .2 (d+1)logn
" S K T —
[lee*l2

’ ~ ™1

npL Hefﬁ* npL

which are the relative {2-statistical rates of the intrinsic scores o, i € [n] and overall scores
o + CL';rﬂ*,Z € [n], respectively. Combining this relative statistical rate in lo-norm with
that in Lso-norm mentioned in Theorem 4, we conclude that the estimation errors of latent
scores and overall scores spread out across all items.

Remark 6. We note that we are further able to get rid of the factor \/d + 1 in the statistical
rates of ||y — @*||oo ( ||@ar — @*||2 follows directly). This involves analyzing the non-
asymptotic expansion of the ayy, and the details will be discussed in the following section.
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4 Uncertainty Quantification of MLE

Most existing works on ranking mainly study the first-order asymptotic behavior of their
estimators (Hunter, 2004; Chen and Suh, 2015; Jang et al., 2016; Shah and Wainwright,
2017; Chen et al., 2019). Deriving limiting distributional results in ranking models is impor-
tant for uncertainty quantification, especially when covariate information is incorporated
into the ranking problem, are not studied in detail.

This section devotes to understanding the sampling variability of the MLE HM under
the CARE model. Directly studying the asymptotic behavior of B M is very challenging. To
address this issue, we approximate E A by considering

B = argminf(ﬂ), (5)
BeO

here Z(,@) is the quadratic expansion of the loss function E(B) around ,5* given by

* 2 a3 T % Lz = T a5\ (3 Aax
LB =L@B)+(B-B") VLB)+5(B-5) V@) (B-8).  ©
According to this definition, 3 can also be given by the following linear equations

{ PVL(B) +PV3L(B) (B-5) =0
PB=8.
Here P represents the linear projection onto space ©. Observe that 3 serves as a candidate
approximator of BM whose uncertainty is easier to quantify according to Berry-Esseen
theorem (Berry, 1941; Esseen, 1942). It is not a statistical estimator but an auxiliary
random variable that we used for the technical proof. It is worth mentioning that when
there is no covariate, our linear expansion reduces to 8 € R = [VQE(B*)HVE(B*), which
is equal to the expansion in Gao et al. (2021) up to the off-diagonal terms in VQE(,Z;*).
The critical difficulty falls in proving that the difference AB = BM — [ is negligible
compared to 3 — B* under certain conditions. To accommodate this, we derive novel
proofs by leveraging the ‘leave-one-out’ (Chen et al., 2019, 2021) technique to control the
approximation error A,@ = EM — B in fy-norm and Ao := AB’M in £5o-norm. The upper
bounds are summarized in the following Theorem 7.

Theorem 7. (Approzimation error) Under the assumptions of Theorem 4, if K31/ (d + 1)logn/npL <
c and K3 (x/(d +1)/np + log n/np) < ¢ for some fized constant ¢ > 0, we have

ay =a+Aa and By = B+ AB,
and with probability at least 1 — O(n™>), it holds that

(d+1)%51ogn
vnpL

1A <I%6(d—|—1)logn+/il1 (d+1)logn \/m+logn
o~ M L np L Jnp )

Jsd], <

10
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Remark 8. The assumptions k3+/(d + 1) logn/npL = O(1) and k7 (\/ (d+1)/np+ logn/np>
¢ for some fixed constant ¢ > 0 are mild. When d and k1 are bounded, they hold when

p 2 logn/n. This matches the lower bound of the sampling probability p to ensure the
connectivity of the Erdds-Rényi random graph, which is a mecessary requirement for item
ranking. Besides, K?l\/ d+ 1)logn/npL = O(1) is also required by the consistency results
of our estimator according to Theorem 4.

Remark 9. Given the non-asymptotic expansion, and approzimation error Aa := Qipy —
B1.n presented in Theorem 7, we are able to achieve a tighter €~ statistical error bound for
|l — &||oo- Specifically, Under the assumptions of Theorem 4 and 7, as long as

S(d+ 1) 10gn [ (d logn> <1
\/np

Then with probability at least 1 — —2) we have

logn
npL

lanr — e S %1

Next, we utilize Berry-Essen theorem (Berry, 1941; Esseen, 1942) to derive the asymp-
totic distribution of the linear conbinaitons of 3, respectively. Since it holds for any linear
combinations, the result applies to any finite dimensional distribution of 3.

Theorem 10. (Asymptotic normality of MLE) Given ¢ € R, let € = Pc be the projec-
tion of ¢ onto linear space ©. Under the assumptions of Theorem 7, we have the following
decomposition

\FL<CTBM—CTB*)=\F<T[3M—C )+\F< ﬁ*),

where

VL ("B - <TP) <[,€§<d+1>1ogn+ i <d+1>10gn<

logn lle1n
< K Vd+1+ )] =
~ + v/npL n /N C

\/cT [Pv%(ﬁ*)P] c " P p/] el

4 ([d+1)%%logn ||enq1imtdll2

K — )
VL [ell2

with probability exceeding 1 — O(n=%) (randomness comes from G and yl(?) and
VL <CTB — CTB*>
sup |P = <z
rer \/cT [Pv2L(ByP| e
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with probability exceeding 1 — O(n=10)

(randomness comes from G). Combining the ap-
proximation error and asymptotic distribution together, and by taking all randomness into

consideration, we further obtain

[P VL (CTBM - CTB*)

<z | -P(WN(0,1) <x)
reR \/cT [PV?L(B*)P]%

o [l Diogn y fi e o)) el
< T P Y /Ly [/ gy TR L
npL |" /npL ! np vip) | el
+ ﬁzll (d + 1)0.5 IOgn ||Cn+1:n+d||2 + i

VpL €]l nd’
VI(cTB—cT§)

Ve [Pvec@np) e
ditioned on the comparison graph G, in the sense that we only take the randomness of

yl(l]) into consideration. These results are stronger than the distributional guranttees which

1)
7’7] )
Besides, combining with the approximation results, we further derive distributional guar-

In Theorem 10, we first obtain the distributional guarantee of

con-

make use of all the randomness from G and y;;, by the dominated convergence theorem.
antees for linear combinations of BM by taking all the randomness of into consideration.
The asymptotic variance of CTBM ise’ [PV2£(B*)P]+E as presented in Theorem 10, where
[PV2L(3*)P]T is exactly the inverse of the fisher information (conditioned on graph G)
that is projected into the space ©.

Moreover, recall that we have scaled the covariates to satisfy max;cp, [|Zill2 < v/(d +1)/n
in the data preprocessing step. Then, if k1, ||c1.n]]1/][€|l2 and vn|chi1.nrall2/(Vd + 1][€]2)
are bounded, the asymptotic normality holds when

(d+1)logn (d+1)ylogn logn\/(d+ 1)logn
max , , =o(1).
vnpL \/np np

in the sense that it allows the comparison graph to be sparse (when p < 1/n up to logarith-

(7)

mic terms) when the covariate dimension is bounded. This admits all existing uncertainty
quantification results for the BTL model without covariates as special cases.

Finally, we comment on the condition max{||ci.,|;, vVn/(d+ 1) [[ent1mtdllo} S |I€l2-
This is only a mild requirement. For instance, when d = 0 and ¢ € R" is sparse (the original
BTL model), this inequality holds naturally. In addition, the comparison of preference
ratings is another significant illustration that meets the requirement. In specific, for testing
Hy: %:B* < EJTB* v.s. Hy: ij,@* > i;ﬁ*, we choose ¢ = x; —x; € R"*+4. In this scenario,
the the condition is met since max{||ci:n||; , \/7/d + 1||Cpt1m+dll2} = 2, and [[€]]2 = [[c]]2 =
V2T 2d+1)/n.

An important corollary of Theorem 10 is the limiting distribution of &z, , where S, is
any subset over [n] with size k < oo. The corresponding theoretical property is summarized
in the following Corollary 11.

12
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Corollary 11. Assume the assumptions of Theorem 7 hold. Then for any fized k € [n], as

long as
VEk(d+1)logn k(d+1)logn logn
6 4
———|Vd+1 =o(1
K] NG + K] o ( + —l—\/@) o(1),
we have

B ~1/2
VL ([PVZE(B*)PE ) ) (Gars, — @) ~ N (0,Ty),

where S, is any subset over [n] with size k.

Although our results are established under a more general setting than the existing
literature on the BTL model, which does not involve the covariates, our specific result in
Corollary 11 with d = 0 can still compare favorably. Compared with Liu et al. (2022), we
need a much smaller sample complexity to establish the asymptotic normality. Specifically,
they require nlogn/vL + logn/\/pL = o(1) to derive the asymptotic normality. This

condition requires L > n?

. In contrast, we allow L = O(1) and our requirement for the
sample complexity is minimax optimal up to logarithm terms (Negahban et al., 2012; Chen
et al., 2019). Moreover, Liu et al. (2022) use the Lagrangian debiasing method to derive
the estimators, which involves an additional tuning parameter.

Compared with Han et al. (2020), we allow sparse compare graphs (p 2 1/n by ignoring
logarithm terms), whereas they require a much denser comparison graph (p 2 1/ nt/ 10) than
ours.

We now compare our results with Gao et al. (2021) and Fan et al. (2022) (under the
pairwise comparison regime). As the analysis in these two works does not incorporate the
condition number k; or covariate, we will consider the regime k1 = O(1) and d = 0 in
our theorems for comparison. First of all, both papers show that the asymptotic normality
holds even for the sparse regime p =< 1/n, up to a logarithmic order. However, the choice
of approximators and approximation errors are very different. Instead of using the Taylor
expansion £(+) given by Eq. (6), Gao et al. (2021); Fan et al. (2022) consider the following
quadratic approximation:

Lons(B) = £ + (B F) VEE) +5 (B8 (diagv?L(3") (B~ 5").,

which only keeps the diagonal part of VQE(B*), and define the approximator Bdiag =
argminzdiag(ﬁ). In addition, it is worth noting that their approach, which only keeps
the diagonal of the Hessian matrix to handle the approximation error, cannot be applied
directly to our setting (with covariates) due to several reasons. Firstly, results in Gao et al.
(2021) without involving covariates imply that for any pair of indices i, j within the sample
space [n], the estimators ajs; and ajr; (corresponds to @, @\] in their paper) are asymp-
totically independent, which justifies their utilization of a quadratic approximation for a

13
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single variable while keeping others fixed. In our model that incorporates covariates, the
corresponding estimators ays; and aipr,; do not exhibit asymptotic independence. Secondly,
the approach in Gao et al. (2021) overlooks the off-diagonal elements of the Hessian ma-
trix V2£(,§*), which is an acceptable approximation when no covariates are involved since
these off-diagonal entries are negligible compared with asymptotic variances. However, in
our study, after we take the covariates into consideration, this approximation no longer
holds. As a result, an expansion similar to [(2.10), (Gao et al., 2021)] would not give a valid
expansion in our case. Therefore, this motivates us to drive our own method presented
above.
In terms of the approximation errors, they show that with high probability

\/E(&M,k _Bdia&k) < logn N (log n)3 N <10g n>1/4 M7 ®
~ 1t np  (np)? (np)S/ LA
J=ean)
Kok

while we prove that for our approximation 3, with high probability for k& € [n] it holds that

npL

VL (@ — ) logn  (logn)'®

S + : (9)

+ np np
\/ PV2£ (B) })
.k

When L = o(np/logn), the term (log n/an)l/4 dominates the right-hand side of (8) and
hence also dominates the error rate given by (9) as long as np > (logn)2. In other words,

our approximation error is an order of magnitude smaller than that in Gao et al. (2021) and
Fan et al. (2022) (when considering the pairwise comparison regime). This holds true for the
common case where L =< 1. We next explain the underlying rationale. In scenarios where
the likelihood function does not contain covariates, the off-diagonal elements of the Hessian
matrix, though in smaller order compared to the asymptotic variance, still contribute to
bias in the remainder term beyond the non-asymptotic expansion. This inherent bias,
which emerges when examining marginal likelihoods, is more pronounced than using joint
likelihood. Owur approach, which employs joint likelihood, effectively accounts for these
off-diagonal elements, thereby mitigating their impact and resulting in a more accurate
approximation.

Besides investigating the asymptotic behavior of @;,i € [n], studying the asymptotic
property for Bj, j € [d] is another crucial task as it depicts whether some covariates have
any power for explaining latent scores. We deduce these from the Theorem 7 and Theorem
10, and summarize them together with a refined ¢s-upper bound of ||B v — B%|2 in Corollary
12.

14
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Corollary 12. Under the assumptions of Theorem 7 and Theorem 10, we first obtain a
refined upper bound for ||Bar — B*||2, namely

(d+1) logn logn
25 - max K] oL LK1 oL (° (10)

In addition, we also achieve the distributional results for every Ej,j € [d],

HBM - B

VI (e iB — eliP)

sup |P <z |-PW(0,1) <x)
reR elys [PV2L(Bu)P] T e
n+j M €n+tj
0.5
< M +n%(d+l) logn+i

VL L

Therefore, when (d + 1)%51logn/(pL) — 0, for any j € [d], we have

P (8 € [CL(Bu), Cu(Bu)]) =1 - o,

Ver  [PV2LBanP] entszas Ve, Wﬁ(gmpr%za/g]

where [CL(Br), Cu(Bar)] = le) i Bu— = Jey Bur+t L
with z, /9 being the upper o /2-quantile of the standard Gaussian distribution.

In Corollary 12, we first obtain a refined upper bound of H@M — B*|l2, and we next
explain the rationality behind this. In Theorem 4, a rough upper bound for || ﬁ v — %2
is obtained via concentration since no precise distributional results are involved in that
stage. Given the statistical rates derived in Theorem 4, we then analyze the non-asymptotic
approximation and distribution of ,@M, in Theorems 7 and 10, respectively. Finally, based
on these distributional results, a refined upper bound for || BM — 3*||2 is achieved.

If we let k1,d = O(1), one observes that the final upper bound of HB\M — 3*||2 involves

both rates \/T%pL and ﬁ, by ignoring logarithm terms. We conjecture the term ﬁ,
which comes from the approximation error (||By — B,41.1m44qll2) in Theorem 7, can be

improved to m%L' In this case, ||Ba — 3*||2 should be bounded by the rate of O(, / np%L) (the

same order as the variance of ,[/3\ ar). The numerical studies in §5.1 validates this conjecture by
showing that the rates of ||BM — (3*||2 is proporation to ﬁ after we fix n and d. However,
improving the approximation error is highly non-trivial and needs more complex theoretical
analysis. Therefore, we will leave this as our future work. It is worth mentioning that the
assumption (d 4+ 1)*?logn/(pL) — 0 is only required while doing inference for 87,7 € [d].
In all the previously mentioned theorems and corollaries, we do not need this condition and
allow L = 1.

Besides the refined ¢o-bounds, the asymptotic distribution for each Bj, j € [d] and the
(1 — a)- confidence interval for 3} are also derived in Corollary 12. This will enable us to

determine each covariate’s significance in real data studies.
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5 Numerical Results

In this section, we conduct numerical experiments using synthetic and real data to validate
our theories. In §5.1 and §5.2, we leverage synthetic data to corroborate the statistical
rates given in §3 and distributional results given in §4, respectively. In addition, in §5.5, we
illustrate further our model and methods by using the mutual funds holding data.

5.1 Rate of Convergence

We begin with the data generation process. Throughout the synthetic data experiments,
we set n to be 200 and d to be 5. The covariates are generated independently with (z;); ~
Uniform[—0.5,0.5] for all i € [n],j € [d]. For matrix X = [®1,®2,...,2,] € R4
its columns are then normalized such that they have mean 0 and standard deviation 1.
Next, we scale x; by x;/K so that max;c|, [|%i|l2/K = \/(d +1)/n. We generate & € R"
by sampling its entries independently from Uniform[0.5,log(5) — 0.5]. Also, a ,é e R4 is
generated uniformly from the hypersphere {3 : ||3||2 = 0.5\/n/(d + 1)}. Then we project
(&', BT)T onto linear space © and let it be ,5* In this way, we ensure k1 < 5.

To validate the statistical rates in Theorem 4, we use the above method to generate the
covariates x; and ,5* for three times. This gives us three different instances of the covariates
x; and the parameter ,5* For each given instance, we consider 6 different (p, L) pairs, which
are listed below.

p| 1 05 0222 0.625 04 0.278
L |50 25 25 ) ) )

For each (p, L) pair, comparion graph &, {yi(?,l € [L],(i,j) € £} is generated and the
MLE BM is calculated based on the available data. This process is repeated 200 times
and the averaged |Gy — a*||so, ||Bar — B*||2/]|8* |2 as well as their associated standard
deviations are recorded. The results are depicted in Figure 1 for each of the three instances.
Note that ||Gia; — o*||ee and ||Bar — B||2/|I8* ||2 are nearly proportional to 1/4/pL, lending
further support of the results in Theorem 4. The results are insensitive to three different
instances, as expected.

5.2 Distributional Results

We employ the same method given in §5.1 to generate the covariates x; and ,5* once and
fix them throughout the simulation. Letting the effective sample size n, = n/[(d+ 1) logn],
we choose the 6 pairs (p, L) with p = 1.25/n, or p = 2/n, and L € {2,6,20}. For each
(p, L) pair, the graph £ and data {yg;),l € [L],(i,7) € £} are generated 250 times and the
MLEs BM for all simulations are recorded. Figure 2 presents the Q-Q plots for checking
the normality of (@)1, the first component of aps. The results show that (epr); follows
closely the normal distribution.
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Instance 1 Instance 2 Instance 3
0.40 1 0.40 - 0.40 4
0.35 A 0.35 1 0.35
. 0.30 0.30 - 0.30 A
*ts 0.25 0.25 0.25 A
]
§ 0.20 0.20 4 0.20 4
0.15 0.15 0.15 A
0.10 0.10 0.10 A
0.05 0.05 0.05 A
0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2
1npL 1/v/pL el
0.16 0.175 4 0.175 -
0.14
0.150 0.150
~ 0.12 A
* 0.125 0.125
2 010
= 0.100 0.100 -
@ 0.08
I
0.075 0.075 -
& 0.06
0.04 1 0.050 0.050
0.02 0.025 0.025
0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2
1/y/pL 1/ pL 1/VpL

Figure 1: Statistical rates of |Gy — a*||ec and [|Bar — B*|l2/[3*||2 for three simulated
instances (realization of simulated models). The solid red lines and light areas
represent the averaged [|Gia; — o*|los, [|Bar — B*]l2/]13%|l2 and their associated
standard errors based on 200 Monte Carlo simulations.

In addition to checking the asymptotic normality, we now verify the asymptotic variance
of our estimator. As an illustration, we consider the linear combination cT,EilM7 where ¢ =
e1+ e and e; is the i-th vector from the standard basis of R?%°. Based on 250 simulations
with (p,L) = (1.25/n4,2) and (p,L) = (2/ng,20), the histograms of the following two
standardized random variables are plotted:

ﬁ(CTBM_CTB*> i \/E(CTEM_CTB*)
an =

A= .
\/J [PV%(B*)P} ‘e \/cT [PV?ﬁ(BM)P} ‘e

(11)

This uses the asymptotic theory with plug-in asymptotic variance using the true and esti-
mated parameters, where ¢ = Pg(c) is the projection of ¢ onto linear space ©. Figure 3
shows that the histograms follow closely the standard Gaussian density. The first row of
Figure 3 is presented in the regime with (p, L) = (1.25/n4,2). It holds that, even when the
sample size is very small, the two density plots are still very close to the standard Gaussian
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Figure 2: Q-Q Plots for checking the normality of (@s); based on 250 simulations.

density. The second row of Figure 3 is drawn based on the setting where (p, L) = (2/n4, 20).
In this case, the density plots of A and B are more stable and close to the standard Gaussian
curve. These results in turn support our theoretical results in Theorem 10.

5.3 Comparison with BTL Model Without Covariates

In this section, we conduct a series of simulations to make comparisons (proportion of
information being explained, prediction accuracy, and sensitivity analysis) and present the
detailed results below.

e We show the first merit of our proposed method, in terms of the proportion of infor-
mation being explained.

We record the following quantity 1 — ||G||3 /||Gar + X,@MH%, which quantifies the
proportion of information being explained by the covariates. We consider the same
(p, L) pair presented in Section 5.1. For each (p, L) pair, we generate the comparison
graph &, the comparison results {yi(?,l € [L],(i,j) € £} and solve the MLE BM for
200 times. We report the mean and standard deviation of the concerned quantity
for each (p, L) pair based on these 200 repetitions. The results are presented in the

following Table 1.
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A:Theoretical Variance

N <
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B:Estimated Variance

Figure 3: Histograms of standardized random variables A and B in (11) along with the
density of the standardized Gaussian random variable. The first row is based on
(p, L) = (1.25/n4,2) and the second row is based on (p, L) = (2/n4,20).

L)

~ 2 1~ I~
1 —flamlls /llaen + XBull3

(p,

(1,50)
(0.5, 25)
(0.222,25)
(0.625, 5)
(0.4,5)
(0.278,5)

0.370 £ 0.008
0.390 £ 0.016
0.415 £ 0.023
0.449 £ 0.028
0.486 £ 0.030
0.531 £ 0.032

Table 1: Mean and standard deviation of 1 — ||Guy|3 /||Gar + XBMH% for each (p, L) pair

based on 200 repetitions.

We conclude from Table 1, involving the covariates helps reduce the magnitude of
unexplained information for all settings. Therefore, this further helps making out-of-
sample predictions, and we will discuss this point in the following step.

e Second, we present the prediction performance of our model and compare it with BTL

model without covariates. We generate a new set of covariates [z1, 22, . . ., zn]T where

z; € R? falls in the same column space of X. (the detailed simulation setting can be

found in the main text). With these new covariates, for any i # j, the out-of-sample
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probability P{item j is preferred over item i} becomes

o= B

*
Dij = otz Br L e G2l B

Using the covariate information, the probability predicted by our model is

~ . TAa
eOM 5125 Bum

Pij =

—~ ~ ~ TAa. °
eaM,i‘f’z;r,B]M 4 M jtZ; Bm

However, when one does not take the covariates information into consideration, the
best one can do is to use the estimated score #; under the original BTL model, as
Chen et al. (2019); Gao et al. (2021) did. In this case, the predicted probability is

el 4 b

In Table 2 we present the mean square error >, (p5 ; —p; j)2 and (P15 —pj j)2 for
the six (p, L) pairs we mentioned above. The results show then mean and standard
deviation of the mean square error calculated over 200 repetitions. As we can see
from Table 2, the estimator p; ; which takes the covariate information into considers
performs much better than the one without covariate information.

(p, With covariates Without covariates
(1, 50) 0.970 + 0.094 110.325 £ 1.377
(0.5,25) 3.909 £ 0.394 113.453 £ 3.086
(0.222,25) 8.975 £ 0.940 118.796 £ 4.293
(0.625,5) 15.537 £ 1.572 125.149 £ 5.441
(0.4,5) 24.874 £2.718 134.796 £ 7.432
(0.278,5) 36.487 £+ 4.243 146.286 + 9.961
Table 2: Mean and standard deviation of mean square error ., .(pj; — pj j)2 and

Zi<j (pi,j

p; j) under each setting based on 200 simulations.

In the next step, we will also conduct a sensitivity analysis to compare our prediction
results with a scenario where no covariates are considered.

Lastly, we test the sensitivity of our model by violating the linearity assumption of
our model. And subsequently, we also compare its performance to that of the BTL
model without covariates.

We modify the underlying model to be

* T % .
eaj+wj B +g(wj)

*
]?v .=
bJ eaijrw;'—B*Jrg(wi) + ea;—i-w;r[i*—i-g(wj)’
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where w; = x; when we fit the model and w; = z; when we make prediction. Here
g(+) is a nonlinear function. In our experiment, we fix d = 5 and let

g(’wl) = c(O.l(wi)l(wi)g + 0.2(wi)2(wi)3 + O.S(wi)4(wi)5), (12)

and c is chosen to be 20 and 100 to accommodate different levels of non-linearity.
With covariate information, the winning probability is still predicted as

~ . TA
OM 25 Bum

Pij = — 2 P T3
’ eOéM,H-z;rﬁM + M, TZ; B

while the predicted probability of the original BTL model is

0.
~nc e

bij =

e@' + egj ‘
In Table 3 and 4 we present the results when c is chosen to be 20 and 100. We again
consider the mean square error ), (py ; —p;j)2 and -, (P — p:-ij)2 as the metric.
The experiments are repeated 200 times for each (p, L) pair and we report the mean
and standard deviation.

(p, L) With covariates Without covariates
(1,50) 4.160 £ 0.271 201.799 £ 2.056
(0.5,25) 7.173 £0.625 204.962 £ 3.729
(0.222, 25) 12.411 +1.203 209.903 £6.010
(0.625,5) 18.871 +1.885 216.580 4+ 7.871
(0.4,5) 27.797 + 2.896 225.813 + 11.310
(0.278,5) 39.372 £ 4.024 237.060 £ 11.710

Table 3: Mean and standard deviation of mean square error >, .(pj; — p; j)Q and
> ie; (D15 — pf j)2 under each setting based on 200 simulations. The level of non-
linearity in (12) is chosen to be ¢ = 20.

From Table 3 and 4 we can see that our model consistently performs better than the
original BTL model when different levels of non-linearity exist.

5.4 Application to Pokemon Challenge Data Set

We apply the proposed method to study the Pokemon challenge data set. The original
data set can be found at https://www.kaggle.com/c/intelygenz-pokemon-challenge/
data. This data set records the pairwise competition records among 800 pokemon, whose
covariate information is also recorded. This data set contains 50000 competition results,
each competition takes place between two pokemons and has one winner.
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(p, L) With covariates Without covariates
(1,50) 49.074 £+ 0.960 102.936 £ 1.438
(0.5,25) 51.679 £ 1.986 105.463 £ 2.870
(0.222, 25) 56.958 £ 3.026 111.269 +£4.317
(0.625,5) 63.858 £ 4.076 117.639 £ 5.670
(0.4,5) 72.375 £5.574 125.958 £ 7.556
(0.278,5) 84.260 £ 7.122 138.484 £ 9.488

Table 4: Mean and standard deviation of mean square error ) ._ j pm — pm)2 and
Yic j (PrS S — Dy j) under each setting based on 200 simulations. The level of non-
linearity in (12) is chosen to be ¢ = 100.

Our experiments mainly focus on predicting the ability of the mega evolved pokemons.
We think that a mega evolved pokemon has the same intrinsic ability (same ;) as pre-
evolutionary pokemon, and the mega evolution may only change the covariates . We have
48 mega evolved pokemons in this data set, and we randomly select 28 of them to test
our predictive performance. Among these remaining 800 — 28 = 772 pokemons for training
purpose, we select the largest connected component of their comparison graph. Eventually
we have 757 pokemons left for training. For each pokemon, we select log(Attack), log( HP),
Mega or not as their covariates. Here Attack and HP denote the ability to attack and
durability, respectively. The variable Mega or not takes binary value and represents whether
this pokemon is mega evolved or not. We optimize the likelihood of our CARE model in
(4) using training data and record aj; and ,@M.

We first investigate the statistical significance of these 3 variables we are interested in.
This amounts to testing the following hypothesis testing problems for each feature:

Ho:B8; =0 wvs. Hg:p5#0,1i€]3].

The test statistics are given by BMJ/\/([PVQE(BM)P]JF)TLH’HH for all i € [3] and the
corresponding p-values are calculated via the asymptotic normality results in §4. The
results are depicted in Table 5.4, and these three variables are all statistically significant.

Estimate p-value
Attack 2.743 <le—5
HP 3.759 <le—-5

Mega or not 1.603 <le—-5

We then evaluate the competitions performance of the 28 mega evolved pokemons in

the test sample, whose pre-evolutionary versions are the training data. We predict the

é\predicted -

score of an evolved pokemon as SOFT(aar,pes Tpe) + z' By, where @ M,pe 18
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the estimated intrinsic score of the pre-evolutionary version and z is the new covariates
of this mega evolved pokemon. Here we apply a soft-thresholding to the a part with
SOFT(z, 7) = sign(z) - max{|x| — 7,0} and 7; = &~ (1 — 0.025/757) - \/([Pvzﬁ(BM)P]ﬂM
for each pokemon 7 in the training data set. This corresponds to set those estimates &; that

are statistically indifferent from zero to zero. The use of significant level 0.025/757 is to
control the familywise false positive rates at a level of 0.05.

In order to formalize the metric we used to test our procedure, we introduce the following
notation first. Let 73 be set of the pokemons we want to predict and let 77 be set of the
pokemons in the training data who have competitions with pokemons in 7. Given any two
pokemons i and j, we let D;; be the competitions between 7 and j. For each pokemon ¢
from 77, we further define the estimated score as Hesnmated SOFT (an,i, 7i) + wT,BM We
use the following quantity Loss. as a measure of the prediction loss for pokemons in 7
when we have covariate information

ébrcdictcd é})rcdlctcd 2
LOSSC = : : z : < gestlmated + eé};redicted - y) + : : : : < ”brcdlctcd + é})redicted - y) °

i€T1,j€T2 yeD; j 1,j€T2 yED; ; e

As a comparison, for the original BTL model, we let OBTL he the estimated score under the
original BTL model. Since there no covariate information is involved, for pokemons from
T, their gpredicted are set to be the estimated scores of their pre-evolutionary versions. In

OBTL estimated via the

addition, for pokemons from 77, their scores gestimates aro got to be
training data. The loss for our method and original BTL model are reported in Table 5.4.

As we can see, our model achieves a significant improvement over the original BTL model.

With covariates Without covariates
283.23 316.04

5.5 An Application to Ranking of Stocks

In this subsection, we apply our methods to mutual fund holding data collected from the
CRSP Mutual Funds database and the stock prices from Yahoo Finance in 2021 and 2022.
Most mutual funds have a variety of stocks and derivatives in their portfolios. The percent-
age of total net assets allocated to the stocks in a portfolio shows the fund manager’s views
on their expected future returns. If the percentage of asset A is higher than asset B in a
portfolio, it is an indication that the fund manager ranks asset A higher than asset B. As a
result, the holding information of the mutual funds provides us with pairwise comparisons
between the two assets. Although there are a lot of financial assets such as stocks and
derivatives on the market, we concentrate on the stocks in the S&P500 list.

Since the returns of the portfolios reflect the quality of the comparisons, we only consider
those portfolios that outperform their peers. At any time ¢, we look at the returns of all
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the funds over the past two years. Those funds with the top 5% returns among all the
funds are selected. This selection reflects fund managers actually have the stock-picking
ability (we selected the top 25% and got similar results). Then we focus on the holding
information of the portfolios corresponding to these funds (approximately, 1400 funds). In
other words, we only consider the portfolios that have performed well over the last two years
since they are more likely to produce more accurate comparison results. We then collect the
pairwise comparison results for the S&P500 stocks in these selected portfolios. In specific,
if the percentage of stock A is higher than stock B in a portfolio, stock A is preferred, and
the comparison result is discarded if their percentages are the same. Moreover, among all
constituents in the S&P500, only stocks that are compared for at least 5 times are kept.
We consider the following three covariates: the log returns over the past month and the log
returns over the past year, which quantify the short-term and long-term performances of
this stock, respectively. The third covariate is the weighted percentage of holdings of the
stock, calculated from all the selected portfolios that contain this stock. In specific, letting
Portfolios(i) be the set of selected portfolios that contain stock ¢, the third covariate of stock
i is calculated as the weighted percentage defined by

1
ﬂ Z |q| x percentage of total net assets of stock 7 in q,

g€Portfolios(i) q€Portfolios(i)

where |q| is the total number of assets in portfolio q.

Since each portfolio’s holdings do not change much in a short period (such as one or two
months), we select three time points in the past two years as representatives to analyze, and
the intervals between these time points are roughly half a year apart. Specifically, we focus
on the portfolio holdings recorded on May 10, 2021, October 21, 2021, and April 7, 2022,
with 1415, 1417, and 1422 funds respectively chosen for these three time points. Based on
the information in these funds, there are 332, 334, and 334 S&P500 stocks, respectively,
that were compared at least 5 times. At each time point given above, we calculate the MLE
estimator BM in (3), and the implementation details are deferred to Appendix E.

We first investigate the statistical significance of these 3 variables at each time point.
This amounts to testing the following hypothesis testing problems for each feature:

Ho:B;=0 vs. Hyg:p7#0, i€3].

The test statistics are given by BM,i/\/([PVQE(,@M)P]JF),ZHWH for all i € [3] and the
corresponding p-values are calculated via the asymptotic normality results in §4. The results
are depicted in Table 5, where most of these three variables are statistically significant at
each given time point.

We next turn to compare our model with the original BTL model in terms of predicting
future returns. We consider the following two estimators as the representatives of ranking
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‘ one month return one year return weighted percentage
May 10, 2021 <le-b <le-b <le-b
Oct. 21, 2021 <le-b <le-5 4.49e-3
April 7, 2022 3.76e-3 2.49¢-3 5.82e-1

Table 5: p-values for the testing significance of three defined variables on the scores of
ranking

scores derived from our model:

CARE,1 ~Ta .
01' = mz‘ /6M7

CARE,2 ~ JUREPN
0; = SOFT(Qari, 73) + &; Bur-
.. . aCARE,1 . .
In specific, in 6; we simply set the o part to 0 as if the scores were completely
captured by the covariates, which corresponds to HiCARE’Q with 7, = oco. In Qic ARE2 o

apply a soft-thresholding to the a part with SOFT(x,7) = sign(z) - max {|z| — 7,0} and

7 = ®71(0.995) - \/([PV2£(,§M)P]+)M for each item i. This corresponds to set those
estimates a; that are statistically indifferent from zero to zero. The use of significant level

0.005 is to control the familywise false positive rates for hundreds of stocks. We then
generate the ranking results RZ-CARE’1 and RSARE’Q for the stocks according to HZ-C ARED and
QZ-C AREZ 1 addition, we also let R?TL be the ranking result given by the ranking scores of

the original BTL model.

To see if the preference ranking of stocks has better performance, we compute the
average log-returns of the top k stocks and bottom k stocks for the subsequent month for
each ranking method. The average log-returns of the top k stocks and bottom k stocks for
different k ranging from 30 to n is presented in Figure 4. It is observed that the ranking

results R?ARE’I and RICARE’Q given by our method achieve higher log-returns for the top &
stocks and lower log-returns for the bottom & stocks. This implies that our model predicts

future returns better than the original BTL model.

6 Conclusion and Discussion

In this paper, we study a Covariate-Assisted Ranking Estimation (CARE) model system-
atically. This allows us to incorporate the covariate information of compared items into the
ranking framework, which includes the standard BTL model as a particular case. We derive
the minimal sample complexity required for statistical consistency and uncertainty quan-
tification for MLE based on novel proof techniques and illustrate the theory and methods
using the mutual fund holding data set. The empirical results lend further support to the
CARE model over the classical BTL model.
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May 10, 2021 Oct. 21, 2021 April 7, 2022
0.030 ~0.02
00354 - —— CARE 1 (top) —— CARE 1 (top)
= —— CARE 2 (top) —— CARE 2 (top) —— CARE 2 (top)

—— BTL (top) 0.025 — BTL (top) -0.03 — BTL (top)
0.030 CARE 1 (bottom) CARE 1 (bottom) CARE 1 (bottom)

CARE 2 (bottom) 0.020 CARE 2 (bottom) CARE 2 (bottom)
-~ BTL (bottom) < BTL (bottom) BTL (bottom)

—— CARE 1 (top)

-0.04
0.015 £ -0.05
2

0.010 8 -0.06

00051 | g -0.07

Average log return

0.000 -0.08

-0005{ i —0.09

-0.010 -010

Figure 4: Average log return of the top k stocks and bottom k stocks given by the ranking
results RiCARE’l, RiCARE’2 and RPTL.

There are a few future directions worth exploring. First, it is worth extending the idea of
incorporating covariates into a more general ranking framework, such as the Plackett-Luce
or nonparametric models, under a more general comparison graph. In contrast, our work
only studies the BTL model with the Erdés-Rényi comparison graph. Second, it would be
interesting if some structure assumptions exist on the parameters {«;}!" ; and 8%, such as
sparsity. In this scenario, one shall leverage certain regularizers on v and 3 in the likelihood
function to achieve a solution that generalizes well. Third, except for the covariate, one may
also incorporate time information into the ranking framework as in many real applications,
the underlying scores of compared items change over time. Lastly, in our paper, we consider
the scenario where the underlying score of the i-th item is given by o —I—X;-r B*,i € [n], in the
sense that the overall score of the i-th item is the summation of its intrinsic score {a] }?
and its covariate times one specific evaluation criterion 3. It would be interesting if we do
a ranking based on data evaluated from multiple sources. In specific, suppose that we have
L users and n items and the score of the i-th item, ¢ € [n] evaluated by the ¢-th person,
¢ € [L], is af + % Be. It would be interesting to derive novel statistical estimation and
uncertainty quantification principles for ranking models under this setting. We will leave
these open problems for future research.
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Appendix A. Proof Outline of Estimation Results

In this section, we first present the proof outline for Theorem 4. The detailed proof of
Theorem 4 is presented in §A.5.
To understand statistical error of 3,7, we begin with analyzing the regularized MLE 3y

BA = argmin EA(E), (13)
BeO

where £,(8) := L(8)+2 ||BH for A > 0, and then make connections with 3y, by a properly
chosen A. The 1ntroduct10n of {5- regularization as a intermediate step is essential for ensur-
ing the MLE fall in a bounded area around the ground truth through this regularized MLE.
Therefore, strong convexity of the loss holds in this bounded area. Prevailing methodolo-
gies for examining the BTL model (Chen et al. (2019, Theorem 6) and Chen et al. (2022b,
Lemma 8.5)) also relies on this /5 regularization to ensure strong convexity of the loss.
Before proceeding, we introduce the following two quantities ko and k3 indicating the

&,
n(d+ 1)

difficulty of recovering 3*

Ko = max|a;|, K3:=
i€n]
The regularized MLE solves a strong convex problem whose estimation error bounds are
derived in Theorem 13 below.

Theorem 13. Suppose np > c,logn for some ¢, > 0 and d < n,dlogn S np. We consider
L <cq-n% for any absolute constants cq4,c5 > 0 and

Ao mm{lﬁ 1 } /nplogn
-7 K2 I€3\/d+

for some ¢y > 0. Let By = (&), )\)T be the solution of the reqularized MLE Eq. (13).
Then with probability at least 1 — O(n~%), we have

~ N d+1)logn logn
6 — oo < 2y [UEDIBR g | <y 18T,
npL pL

HXVBA—NN* < (d+1)logn. _ o < 2 (d+1)logn
npL HeXB* npL
(o]
where X = [551753127--‘7&571}—r
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Theorem 13 presents the statistical rates of the regularized MLE in (13). Before pre-
senting the formal proof for Theorem 13, in the following several subsections A.1, A.2 and
A.3 , we focus on establishing its associated building blocks.

Given that our final objective is to establish the statistical rates of the Maximum Like-
lihood Estimator (MLE) applied to the unregularized loss function (3), we present a formal
proof of Theorem 4 in §A.5, leveraging the insights provided by Theorem 13.

A.1 Preliminaries and Basic Results

In this subsection, we study the theoretical properties of the gradient and Hessian of the
loss function in (13). Their expressions are given by

- o B
VL(B) = Z {_yj,i + ~~~~} (@i — z;), (14)

(i,7)€€,i>]

V2L(B) =

~ o~y T
— (@ —xj) (@ — ) . (15)
(i,))€E i>] (ew?ﬂ + ew;ﬁ)

The gradient of 5(5) at B* is controlled by the following lemma.

Lemma 14. With A given by Theorem 13, the following event

a = {oe (@), = /7=

happens with probability exceeding 1 — O(n~11) for some Cy > 0 which only depend on cy.

Proof For the proof of Lemma 14, we refer to §C.2 for more details. |

Next, we proceed to analyzing the Hessian matrix V2£y(3). First, we consider Lg =
Do (ig)egisj (@i — ;) (@i — Z;)" and study its eigenvalues in Lemma 15.

Lemma 15. Suppose pn > c,logn for some c, > 0. The following event
1
Az = {2021?” < Amin, L (Lg) < || Lg|| < 201]?”}

happens with probability exceeding 1 — O(n~'') when n is large enough.

Proof See §C.3 for a detailed proof. |

In the rest of the content, without loss of generality, we assume the conditions stated
in Lemma 15 hold. Moreover, with the help of Lemma 15, we next analyze the Hessian

V2L, (B) and summarize its theoretical properties in Lemma 16 and Lemma 17, respectively.

Lemma 16. Suppose event As holds, we obtain

~ 1 ~
Mnae(VZLA(B)) < A+ C1Pm, V3 e Rt
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Proof Since 5 < —, we have

~ 1 1 ~
Amax(VZLA(B)) < A + ZHLgH <A+ gapn, VBE R,

Lemma 17. Suppose event Ao happens. Then for all 5 such that ||o — a*||ee < C4,
1B — B*|l2 < Ca, we have

Amin 20,(8)) > A+ 2P

,J_(v [’)\(IB)) = A+ 8/11607

where C' = 2C1 + 24/ %H)Cg.

Proof The formal proof of this Lemma 17 can be found in §C.4. |

In the following two subsections §A.2 and §A.3, we understand the statistical rates of
the regularized estimator 3, via analyzing the iterates in our gradient method.

A.2 Convergence of Projected Gradient Descent

In this subsection, we consider a sequence of iterates {Bt}t:(],l,... which is generated by the

following projected gradient descent algorithm with stepsize n = and the number

of iterations T = n°.

2
2A+cinp

Algorithm 1 Gradient descent for regularized MLE.
Initialize 3° = 3*
fort=0,1,...,7—1 do
(=B~ VLB
BtJrl — PC

end for

We initialize at ,5* and the target loss given in (13) is strongly convex. The projected
gradient descent is employed (since the likelihood has a linear constraint) to ensure the
iterates Bt converge to the fo-regularized MLE ,BA exponentially. In the follovvmg section,
using the leave-one-out analysis, we also show ﬁt at the same time stays close to ,B* for all
t < poly(n). Therefore, combine these two parts together, we are able to conclude that ,6)\
is also close to B*

We summarize the theoretical findings in the following Lemma 18, Lemma 19 and
Lemma 20, respectively.

29



Fan, Hou AND YU

Lemma 18. Under event As, we have
3-8, < ]85,

2\

h =1-—.
waere p 2\ + cinp

Next, we prove that the initial point is not far from BA-

Lemma 19. On the event Ay happens, it follows that

2Cy

8- ], = B - ], < 20 ma { 2 o+ 1| v
1

C)
Proof See §C.6 for a detailed proof. |

Combining Lemma 18 and Lemma 19, we obtain the following result on the optimization
error.

Lemma 20. On event Ay N As, there exists some constant Cr such that

(d+1)logn

sl <
R

Proof See §C.7 for a detailed proof. |

In this subsection, we prove that the iterate BT converges to BA geometrically and enjoys a
good optimization error after T = n® iterations. In order to prove the distance between ﬂA
and 5 i.e. the statistical error of 5,\, in the next subsection, we leverage the leave-one-out
technique and use induction to prove that the iterate BT stays close to our initial point
BO = B*, even after T' = n® iterations.

A.3 Analysis of Leave-one-out Sequences

In this section, we construct the leave-one-out sequences (Ma et al., 2018; Chen et al., 2019,
2020) and bound the statistical error by induction. To construct the leave-one-out sequence,
we consider the following loss function for any m € [n].

@) = 3w (B3] +log (14 )}

(i,§) €€ i>jiFm,j#m

& T

£5"(B) =£(B) + §uﬁ||%.

Then for any m € [n], we construct the leave-one-out sequence { §t7(m)} o in the way
t=0,1,...
of Algorithm 2.
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Algorithm 2 Construction of leave-one-out sequences.
: Initialize 50’(7”) = ,5*

—_

2: fort=0,1,...,T—1 do

3 (= peem v (gum)
4: Bt+1,(m) =P(

5: end for

With the help of the leave-one-out sequences, we do induction to demonstrate that the

2
2 +cinp

and T = n’. With the leave-one-out sequences in hand, we prove the following bounds by

induction for ¢t < T.
~ o~ logn
Hﬁ B , = Csrnyf oL (A)
~ o~ d+1)1 1
/Bt _ ﬁt7(m)H S C4:‘Q1 ( + ) ogn S 04/4;1 Ogn7 (B)
2 npL pL

iterate BT will not be far away from ,5* when T' = n®. In specific, we take again n =

max
1<m<n

d+1)logn

L) _ or | < onp2, |Gt 1) ogn
lrgnw?%(n |am am| = C5Kl npL ) (C)

" d+1)logn
o = ol < oty [, (D)
For ¢t = 0, since ,50 = ,50’(1) = 507(2) =...= 507(") = B*, the (A)~ (D) hold automatically.

In the following lemmas, we prove the conclusions of (A)-(D) for the (t+ 1)-th iteration are
true when the results hold for the ¢-th iteration.

Lemma 21. Suppose bounds (A)~ (D) hold for the t-th iteration. With probability exceeding
1—O(n™Y) we have

~ ~ logn
t+1 g% <
Hﬁ B 2_03"61UTL :
2 2
aslongas 0 <n < —, C3 > 0C% and n is large enough.
2\ + cinp Co
Proof See §C.8 for a detailed proof. [ |

Lemma 22. Suppose bounds (A)~ (D) hold for the t-th iteration. With probability exceeding
1—O(n™Y) we have

(d+1)logn
npL

max

Ft+1 ~t+1,(m)H < Cuke
1<m<n "B B 2 4

I
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2 1
as long as 0 <n < Cy C4Zg and np 2, (d+ 1) logn.

Proof See §C.9 for a detailed proof. |

Lemma 23. Suppose bounds (A)~ (D) hold for the t-th iteration. With probability exceeding
1—O(n™Y) we have

(d+1)logn

max |al M — o | < Csr? L

1<m<n m
as long as Cs > 3060(00 +c1C3 + 0104), Cs > 7.5(1 -+ 2@)(03 + 04), Cs > 300,\/\/6[ +1
and n is large enough.

Proof See §C.10 for a detailed proof. |

Lemma 24. Suppose bounds (A)~ (D) hold for the t-th iteration. With probability exceeding
1—O(n™Y) we have

latt! — ooy < Cor? (d+1)logn
oo = 1 an bl
as long as Cg > Cy + C5 and n is large enough.
Proof See §C.11 for a detailed proof. |

With these necessary building blocks at hand, we next prove Theorem 13 by providing
statistical rates of the regularized estimator in (13).

A.4 Proof of Theorem 13

In this subsection, we aim at providing proof for Theorem 13 by combining the results
established above.
For any m € [n], by Taylor expansion, one obtains

=T 3 ~T
xmﬁ)\ - wmﬁ*

T 3% | =T 32T 3| |~T > ~T =
< AP LB =T (wfnﬂx &g

oEmBr _ eim*‘ < ¥

where wy, is some real number between @LEA and ELB* As a result, it holds that

=T3 ~T 3+
YA ¥ 3% =T gx max |mmﬁ>\7mmﬂ | ~T 5 ~T 5
Hexﬂ* —eXB Max) <<, €XmP elsmsn ARG AN

= maxi<m<n
x L
—~—~ _ ~T~
HGX o maxi<m<n €m
00
=T 3 =T 3%
max |&,,B\—T,,3 T~ T =
§61§m§n‘ " | max m;,@)\—w;ﬁ* .
1<m<n
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By the Cauchy-Schwartz inequality, we have
B — T | <@ — ol + |2 By — 28
< lax = @l + lzmll2lBx = 872
T * ~ T T * 2 T
<la” —affloo +llax = @ [loo + [2mll2]187 = B2 + [[@m[2/l8x — B [|2
< lla” = oo + |[Ba = BT, + lznll218” = B2 + @2 ||Br — B

(d+1)logn
npL

S CSKJ%

Y

where Cg > Cs+ (1 + y/c3) C7 +/c3C3 and n is large enough. The last inequlity holds from
the results derived in §A.2 and §A.3. Then for n and L such that Cgx?4/ % < 0.6,

we have

(d+1)logn

0 < 9CkK?
- 81 nplL

x>

[e.9]

Similarly, we also obtain

16 — "l < [l — @[l + lax = o' |

d+1)1 d+1)1
< ey [ Dlogn | [id ) 1ogn
npL npL
< 2 (d—i—l)logn;
~ npL

1B = B7ll2 < 18" = 8712+ 18 — 87 Il2

I d+1)1 I
< Cory &Ln 4 Gy (& D]ogn < hyy 1B
D npL pL

Next, we use the proof ideas and conclusions from Theorem 13 to prove the statistical

rate of a non-regularized MLE defined in (3).

A.5 Proof of Theorem 4

With all necessary building blocks at hand, in this subsection, we provide the formal proof
for Theorem 4. In specific, we assume L = O(n?) in the following proof and it is easy to
extend the proof to the regime L < ¢4 -n®. The way to solve this is changing the power 11
in Lemma 14 and Lemma 15 to a larger number.

Proof Consider the following MLE

Beon = argmin L(B). (16)
BEO, [a—ar* [0 <0.025,[ B—B* [2<0.025+/n/ (2c3d+2c3)
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We choose ¢y in the definition of A such that

1 1
An? > 1 and <“2” +v/n(d+1)ks + (Cs + Cr)k1 c;)gzn) A< 022]8”09\/%

for some Cy > 0. As long as L < ¢4 - n% for some absolute constants c4,c5; > 0, the

proof of Lemma 20 is still valid and Theorem 13 still holds for this A. For n large enough
such that 3, satisfies the constraints in Eq. (16), by the optimality of Bcon we know that
L(Bx) > L(Beon)- On the other hand, by Taylor’s expansion

£(Beon) = £(B2) + VLB (Beon—B2) + 3 (Beon—Br) VL(€) (Bon — B2 )

where ¢ = Beon + (1 — £)By for some ¢ € [0, 1].
This leads to

V'C(B)\>T <Bc0n - EA) + % (Bcon - B/\)T VQE(C) <Ec0n - ,g)\> <0. (17)

Next, we first define the norm || - ||, as

n+d _ _
> B2 VBeRM

j=n+1

‘= max [Ai’;

n cs(d+1)
c i€[n] n

o

Therefore, we have
le =Bl < max {18 = Blle, | Beon — Bl < 0.1

as long as

(d+1)logn <

[2(06 + 07)16% + 2+ 203(03 + 07),‘-{1] oL

0.1.

As a result, by Lemma 17 we have

copn copn
2p>2p

. 18
8/4;160 — 10k ( )

Amin, L (V2L(€)) > A +

Combine Eq. (17) and Eq. (18) we have

copn ‘

B — B, < 5 (B = Bn) V2L(€) (Beon — 1)
—VL(BN)" (Bcon - BA)

< HVﬁ(BA)HZ ‘ Beon — @Hz :

IN

A

Therefore, after some simple calculations, it holds that

Beon — ’5’\“2 < ig;; HVﬁ(B)\)HQ < 2602/;1;\ HEAHQ < Cgm\/%.
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And, when n is large enough, we have

~ ~ - N logn d+1)logn
|Gcon — @ |loo < [[@con — @Alloo + [|GN — @00 < Cokiy | % + (Cs + C7)f£%1 / % <0.01,
+(Cs+ Cy) log”

3 7 203 d—l— 1)’

where Qop 1= (Econ)l ., and Bcon = (Bcon)n+1:n+d- As a result, Bcon falls in the interior of

”IBCOH ﬂ H? < H;Bcon IBAHZ + Hﬁ)\ - ;6 HZ < Cyki1

the 1nequahty constraints in Eq. (16). By the convexity of £ and its strong convexity in O,
we have ,Bcon = ,BM Therefore, by Eq. (19) and Eq. (20) we have

(d+1)logn

21
e 21)

”&M - a*HOO = Hacon - a*Hoo < CIOFG%

logn
pL -~

1831 = B% 112 = [1Beon — B7[l2 < C1181 (22)

> 13 > | 3%
8-
€ €
> hold based on the same deriva-

The result of HX/TBM — ETB*H and

’ e;‘;TB*

tions in Section A.4 and we omit the corresponding details. |
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Appendix B. Proof of Inference Results in Section 4

In this section we first introduce our extension to top-K testing and provide the proof
outlines for Theorem 7. Then, we prove Theorem 10 and Corollaries 11 and 12, based on
the results of Theorem 7. The details of proofs in this section is deferred to Section C. We
next introduce some building blocks for the proof of main theorems.

B.1 Extension to Top-K set hypothesis testing

In this section, we extend the method to conduct the top-K test using estimators for overall
scores 07 1= af +x; B*,i € [n] (for simplicity, here we define the overall scores as 6} and its
estimators as 0; := &; + xiTg,i € [n]).

We use the following statistics to construct top-K test simultaneously for all elements

in M.

O — Oy — (07 — 07
T := max max — m_ (0% m)
meM k#m Om,k

It’s distribution can be approximated by the bootstrap counterpart

. N
(em —ex) (VZL(O)T)(ei—ej), , ~» & )y, ()

G := max max g E = (0(0; — 0;) — yjz')wji'
meM kM g i Tm ik

We are able to achieve similar theoretical results by following the similar proof procedure
of Theorem 5 in Fan et al. (2023) for 7 and G. Let ¢;_4 be the (1 — a)-th quantile of G,
we have the following theorem for the test statistics 7T .

Theorem 25. Under the conditions of Theorem 1, we have
|P(T > ci—a) —a| — 0.

Next, we introduce some applications on constructing (simultaneous) one-sided con-
fidence intervals for out-of-sample ranks via the distribution of 7 in the following two
examples.

Example 1. For an item m of interest, and let K be the targeted rank threshold, we are
interested in the following testing problem

Hy:r(m) <K wersus Hp:r(m)>K. (23)

Let ¢1_,, be the estimated (1 — «)-th quantile of T from the bootstrap samples. As a result,
we have

P (‘972 — 0%, > O — O — Ekaam,k) >1—a.
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Similarly, this implies
Plrm)>14Y 10— 0n > C—abmp) | >1- o
k#m
This yields a critical region at a significance level of alpha for the test (23)

1+ Z 1(67k — é\m > /C\l—aam,k) > K
k#m

B.2 Proof Outline

Lemma 26. For i € [n], with probability at least 1 — O(n~'%) we have

< /nplogn;
~ L

(ve@).

(2

~ N2 < \2 -
o v2r(3* ) < ( 2 ;3% ) < 2 ( 2 o 3% ) <
> (VL) Smprdp), ST(VL@E)), Snde’, 3 |(VLBY), |5
J#i k>n J€[n],j#
np.
o [z — Byjal S /", for any i,j € [n],i # j.
Proof See §D.1 for a detailed proof. |
Recall that we define the norm || - ||, as
_ B d+1 ntd _
1B]| = max]|a:| + sldrD) |3~ g2 vgerm
c 1€[n] n .
Jj=n+1
Then for any i € [n] and 8 € R, we have @TH‘ < HE )

B.3 Proof Outline of Theorem 7

In this subsection, we provide the proof outline for Theorem 7. The following lemma gives

a bound for ‘ A,5H2 = HEM — B||2, which validates the first part of Theorem 7.

Theorem 27. Under the assumptions of Theorem 4, with probability at least 1 — O(n~9%)

we have
~ — d+1)%%1ogn
— < 4(—
[ =B, < s
Proof See §D.2 for a detailed proof. |

Next, we consider controlling the magnitude of Ac; = @ps; —@; for i € [n] in order to prove
the second part of Theorem 7.
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Recall that we define the quadratic approximation £(-) to £(-) in (6), which is also given
as below:

~ ~AT ~ ~  ~A\T - e~
L) =LB) + (B~ F) YL@+ (B-F) VL) (5-5).
We adopt the following notation for a given vector x € R**+,

(z;) = L(B)

X_j

9

Bi:xiwé—i:x—i

which acts as a marginal likelihood function for the i-th coordinate x; given the other
coordinates x_; fixed. Accroding to this definition, we have the following proposition. The
proof of Proposition 28 is included in §D.3.

Proposition 28. Fori € [n], @; is the minimizer of the univariate function Z’E;'

By changing the n + d — 1 coordinates that we fix, we define @, as the minimizer of
L] By (). Here we fix Ba7,—; and optimize £ based on this fixed parameter. Explicitly,
the minimizer is calculated as
(ve@) +3 (Bus - 8;) (v22(8Y)
i i
(v2£(8)

i?j

£l
I
o

4,0

In order to bound |a@ys; — @;|, we bound |@ — @;| and |ar,; — @} separately.
In terms of @ — @;|, we provide an upper bound for this quantity in Lemma 29.

Lemma 29. Under the assumptions of Theorem 4, as long as ﬂ%\/(d—l- 1)logn/npL =
O(1), fori € [n], with probability at least 1 — O(n=%) we have

d+1)logn k? d+1)logn logn d+1 logn . o
|a;—ai\§n§’(¢+—l (L>g<\/d+1+ S )Jm%( — + fp)HGM—aHOO.

npL np /np np

Proof The detailed proof of Lemma 29 is given in §D.5. |

On the other hand, for a given x € R**? we let

L (z;) = 5(6)

X_g

(24)

Bi=z.B-i=x_;

Here we consider the marginal loss of £(-) in the i-th coordinate given other coordinates
fixed. Similar to Proposition 28, we have the following proposition for £|z ~ (z). The
proof of Proposition 30 is also included in §D.3. 7

Proposition 30. For i € [n], an; is the minimizer of the univariate function £]5M ().
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We now describe the intuition of bounding |aas; — @}|. Since apz,; is the minimizer
of ﬁ’EM’_i(:L') and @, is the minimizer of E\ﬁM’_i(x). Therefore, as long as E‘ﬁkf,—i<.) and
L| B _ () are close enough, the difference between their minimizers as; and @, is small.
We summarize this finding in the following lemma 31.

Lemma 31. Under the assumptions of Theorem 4, for i € [n], with probability at least
1 —O(n=%) we have

‘& ' } d +1) logn
My — pL
Proof The proof of Lemma 31 is presented in §D.6. |

Finally, combining the conclusions of Lemma 29 and Lemma 31 we get the following theorem
for |(/)4\M7Z — ai|.

Theorem 32. Under the assumptions of Theorem 4, as long as H%\/(d‘i‘ 1)logn/npL =

O(1) and K2 (\/ (d+1)/np+ log n/np) < ¢ for some fized constant ¢ > 0, with probability
at least 1 — O(n=%), for i € [n] we have

@ '_a‘|</€6(d+1)logn+/ﬁ (d+1)logn \/Cm+logn
M. e npL np L NGO

If we further assume np > (logn)?, then with probability at least 1 — O(n=>), for i € [n] we

have
¢(d+1)logn d+1 [logn
|aMZ—ozz|<f11 pL —i—lﬁl o 7

Proof [Proof of Theorem 32| Combining Lemma 29 and Lemma 31, we know that

Gy — el g @t Dlosm | i Jld ot Dlogn (g Jogn
M o~ plL np L \/1p

bt (/S 2B )y - al
H —
1 np np M 0

with probability at least 1 —O(n~>). To reveal the constant hidden in the above inequality,
we write it as

lGias — @ chldden< o(d+Dlogn i [(d+1)logn (\ﬁJr ogn>>

npL np L v/
d+1 logn ~ _
+ Chiiddenk 1 ( — + ) lan — |
np np
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with probability at least 1 — O(n=%). We choose ¢ = 1/(2Chjqden) in Theorem 32. As a
result, as long as k2 («/(d—l— 1)/np + log n/np) < ¢, we have

. _ Chidden [ g(d+1)logn x} [(d+1)logn logn
_ < — ) —=(Vd+1
e =@l < 1-0.5 1 npL + np L T \/Tp

< poldt Dlogn st J(d+Dlogn (fr | logn
npL np L N7

with probability at least 1 — O(n™°). [ |

B.4 Proof of Theorem 7

Proof [Proof of Theorem 7] The conclusion of Theorem 7 follows directly from conclusions
of Theorem 27 and Theorem 32. |

We next prove Theorem 10 based on the results of Theorem 7.

B.5 Proof of Theorem 10

This subsection aims at deriving theoretical proof for Theorem 10.
Proof The following content is conditioned on the event Ay. Recall that € is the projection
of ¢ onto linear space ©. Therefore, we obtain

CTB . CTB'* — 6TB - 6TB*-
By Proposition 35 we have PVL(B*) + PV2L(B*)(B — B*) = 0. Since 3, 3* € ©, we also
have PVL(B*) + PV2L(B*)P(B — 3*) = 0. Let v = [PV?&(B*)P} & Then we have
0=v" (PVL(B") + PV2L(BIP(B - )
=v PVL(B)+c'B—¢ B
As a result, we have

ETB o 7TB* _ _,UT,PVE(E*)
1

L l eija
> oyl {y;z . }m 5

NC] z 3
I=1 (i) €€ i>] €% F 4 e

For (i, j) such that (i,j) € £, > j and | € [L], we define

o_1] o evi T
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Then we have

E|xO| PG _ . N R B )
‘(’;)2 < (flz ;)| (qﬁ(%?ﬁ* ~ & B+ (1@ B~ %Iﬁ*)f)
E (Xm>
— 2 = + ~ ~
iel, |[P722@P] | 1P @i - @, .
< el m
- L ™ Amin L (V2L(B*))L ~ npL 72

with probability exceeding 1 — O(n~!%) (randomness comes from G). As a result, by Berry
(1941) we have

o[ cB-c'p E|xj ‘3 /E (Xf,?>2
sup

x| \ \/Var[¢"B | d]

(i,5)€€ i>j,l€[L]

Var [e' 3| G

< x}g “PWN(0,1) <) <

K1

<]
npLy/Var [ETE | g] ’

with probability exceeding 1 — O(n~1Y) (randomness comes from G). And, we know that
_ 1 ~ 1+
Var[¢"B | ¢] = e’ [Pv2L(3)P| € and

AN

-9+ 1
=T 2 * => _~ |52
e [PVPLEP] ez els
with probability exceeding 1 — O(n~!°). Therefore,
VL (ETB - ETB*)
sup |P =
e \/cT PvL(BP| e

<z

G -PWI(,1) <) 5

with probability exceeding 1 — O(n~!?) (randomness comes from G). On the other hand,
by Theorem 7 we have

VE (7B - TB) Slﬁgwﬂmgnw o g
c

logn\ | llerallr
: VIFI+ )]
\/J [PVQE(B*)PT vipL P

VP [l
ok (d+1)%%logn ||ent1mtdll2
N5 l[ell2

with probability at least 1 — O(n~?). Therefore, we conclude the first part of Theorem 10.
We next take all randomness into consideration. For simplicity we denote by

I' = ogn |’cn+1:n+d||2

d+1)°°1
vpL [ell2

¢(d+1)logn 4 [(d+1)logn ( logn> lernll - 4(
RS S Y e Liy (/7 iy g S
b VnpL ! np vip/) | el
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To begin with, for fixed x we have

NG (ETB _ ET5*>
P <z|-PW(@O,1) <)
\/cT [PV%(E*)PFE
NG <ETB _ ETB*>
=Eg |P <zlG || =PN(0,1) < 2)
~ 1+
\/J [Pv%(ﬁ*)ﬂ c
VL (e'B-2"3)
<Eg|P <26 | —PW@©,1) <)
\/ [PV?ﬁ(ﬁ )79} ¢
< 1 + i
~npL | nl0

As a result, we have

NG (ETB _ ETE*) <

K1 1
sup |P <z |-PW(0,1)<z) < + —=. (25
suplP | <————— (N, 1) Bt )
o' [Pvec(Bp| e
TBM —-c 5)
Consider event A = < AT' , where A > 0 is some constant such
\/ PVL ﬁ* E

that P(A€) = . Then we consider the following three events

VL (¢"Bu —' 5 VL (e'B-2'5")
By = <zp,By= <z — AL,
\ \/CT [PV%(&*)PFE \/cT [PV%(E*)PTE
VL (ETB _ 5T§*>
Bs = <x+ ATl
\/CT {PV%(B*)PFE
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Then we have

VL <ETB’M _ ETB’*)

P <z | -PW(0,1) <z)|=|P(BiNA)+P(B;NA°) —PN(0,1) < z)|
\/cT [Pv2c()P) e
(26)
SIP(BLNA) — PN(O,1) < 2)| +
(27)
On the other hand, for B;1 N A we have
BaNACB NACB3NA.
As a result, we know that
P(BiNA) <P(BsnA) <P(Bs). (28)
By Eq. (25) we have
P(Bs) ~ PN(0,1) < 2+ AT)| S 4 1
VnpL | nid
On the other hand, we have
IP(N(0,1) <z + AT') —P(N(0,1) < x)| < AT
Therefore, we have
P(Bs) = P(N(0,1) < )| < \/Z;T”*nlm' (29)
For B1 N A we also have
P(Bi1NA)>P(B2NA). (30)

By definition we have

P(B2 N1 A) — B(By)| < B(AY) £

nd’
By Eq. (25) we have
K1 1
P(Bs) — P 1) <z—-AD)| < —.
|<2) (N(O,)_.T )‘Nm—i_nlo

On the other hand, we have

IP(N(0,1) < 2 — AT) — P(N(0,1) < z)| < AT.
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Therefore, we have

_ < _ M 1
P(ByN A) P(N(O,l)gm)|N\/m+F+n5. (31)

Combine Eq. (27), Eq. (28) and Eq. (30) we know that
VL (ETBM - ETE*)

\/cT {PVZ,C(B*)P} e
1

Smax{|P(B3) —P(N(0,1) < z)|,|P(BaNA) —PN(0,1) < z)|} + 5"

P <z|-PW(0,1) <x)

Therefore, by Eq. (29), Eq. (31) we have

VL (ETBM - ET&‘)

\/cT [PV?L(H*)P} ‘e

1
+T+—

P <z|-PWI(©0,1) <)

~

an

Since the above inequality holds for every « € R, we prove the desired result.

Thus, we finally conclude our proof of Theorem 10.

B.6 Proof of Corollary 11

Proof [Proof of Corollary 11| Let {Ei}?jld be canonical basis vectors of R"*?. By taking
c = ey, for k € [n] in Theorem 10, we only have to show that ”ﬁl ﬁ”l < 1, and this is also
equivalent to ||€||2 2 1. By the definition of P we have

||c||%=< (z(z72)"27) )* > (2(z2)'77)

1€[n],i#k
>12< (272 ) >1-2
d+1

V\_/

—1
‘z <ZTZ) A

2,00

21—260

v

0.1.

As a result, the first part of Corollary 11 is proved by Theorem 10.
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. (d+1)logn 4, [(d+1)logn logn
For simplicity we denote by I' = x§——2=20 4 g1y [ —— 22— (Vd + 1+ .
! vnpL ! np /np

To begin with, for fixed z we have

VL (ax - aZ)

PV2£ (B*)P )
k.k

<z |-PW(0,1) <)

_ ak—ak) <y

PV2£ (B*)P r)

G|l| -PWN(O,1) <ux)

k.k

VL (@ — af)
Jr
\/ PV?L (8P| >
k.k

an nlo0

<Eg |P <z|G | -PWN(0,1) <)

As a result, we have

L (a0 — o
sup |P \/>(ak: ak)

G

+ . (32)

OéMk - ak)

% veir]’)

such that P(A€) = . Then we consider the following three events

< AT }, where A > 0 is some constant

Consider event A =

= _ * . _ *
B, — VL (@ — of) <2l B, - VL (ay — of) <o AT

k \/ ( [PVQE(E*)P] +> y ) \ \/ < [Pv%(ﬁ*)ﬂ +>k7k

L =. __ *
By = \F(Oék o) <24 AT

\/ ( [Pv2c(B)P] +> .
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Then we have

VL (@Qag — )

P <z | =PWI(0,1) <) =P(BNA)+P(B;NA°) —P(N(0,1) < z)|

\/ <[7>v2£(5*)7>r>“ )

)

(33)
<IP(BiNA) - P(N(0,1) < )| + %
(34)
On the other hand, for By N A we have
BaNACB NACBsNnA.
As a result, we know that
P(B; N A) <P (B;n A) < P(Bs). (35)
By Eq. (32) we have
P(Bs) — P(N(0,1) < + AT)| < — 2 4 L
JrpL | nid
On the other hand, we have
IP(NV(0,1) < 2+ AT) — P(N(0,1) < z)| < AT.
Therefore, we have
IP(Bs) — P (N(0,1) < )| < \/%JrrJrnlm. (36)
For B1 N A we also have
P(BiNA) >P(BaNA). (37)

By definition we have

c 1
IP(BoNA) —P(By)| <P(A°) < 5
By Eq. (32) we have
K1 1
P(By) — P 1)<z - Al < —.
B(B:) ~PV(0.1) < 2= AT)| § <P +

On the other hand, we have

IP(N(0,1) < 2 — AT) — P(N(0,1) < z)| < AT.
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Therefore, we have

K1
v/npL
Combine Eq. (34), Eq. (35) and Eq. (37) we know that

IP(BaNA) —P(N(0,1) <z)| < +F+%. (38)

\/Z(aMk_ak

\/ ([Pv% (B*)P > |

Smax{|P(Bs) —P(N(0,1) < z)|,|P(B2NA) — (N(O,l)g:c)\]w—ﬁ.

P

~P(N(0,1) < )

Therefore, by Eq. (36), Eq. (38) we have

\/f(aMVk*ay];) <z _P(N(0,1)§x>

\/ ([PV?L(H*)PT)M )

)

K1 1
'+ —.
npL T nd

Since the above inequality holds for every x € R, we prove the desired result.

B.7 Proof of Corollary 12

The proof of Corollary 12 except the refined bound Eq. (10) follows directly from the proof
of Theorem 10. Therefore, we omit the details and only prove Eq. (10) here. We prove the
following lemma first.

Lemma 33. Consider some fixed constants a for (1,7) € €,1 € [L], and random variable
L ETE*
! e%i
ey il &
I=1 (i,j)e€ e®i P 4 €%

Conditioned on the comparison graph G, with probability exceeding 1 — O(n~'1) we have

|X| < k1 Var[X | G] - logn.

Proof Let X( ) = (l) (y](ll) IB*/ (e?’fja* + eiyﬁ*)). Then we know that IEXl(lj) =0and
\XZ-’ j] < \azlj)\ As a result, by Hoeffding inequality, with probability at least 1 — O(n~11),
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we have

Z > xU< logn~i (a(lj)>2 (40)

1 (i,5)€€i>j =1 (3,5)€€,i>j

On the other hand, since y(l)

;. are independent random variables, we know that

L
Var[X | ] = Z Y o ovalxg =Y Y (@f})%’(f}é*fa}é*)

=1 (¢,j)€€,i>j =1 (i,5)€€,i>]

2 %Z > (d)

=1 (i,5)€&,i>j

2
As a result, we have El 12(17] cEij (af?) < k1Var[X | G]. Therefore, by Eq. (40) we
know that

1X| = Z S X < Ve Var[X [ Gllogn

L (i,5)€€i>]
with probability exceeding 1 — O(n~11). [ |
Proof [Proof of Eq. (10)] Conditioned on the comparison graph G, the entries of 3 can

be written as the form Eq. (39). By Lemma 33 and union bound, conditioned on the
comparison graph G, we know that

“Bn+1:n+d - /6*H2 = Zd: ( ntj — »)2 < .| k1logn - Zd:Var [Bn_"_j _ ﬂ; | g}

J=1 J=1

= \/’il logn -tr [Var [BnJrl:ner - B* | g” (41)

with probability at least 1 — O(n~'?). By Proposition 35 we know that

Var [ Bra - 5 | 6] = % <[7>v2£(5*)73}+)

n+1l:n+dn+1n+d

By the definition of © we know that

Amax (([Pv%(é*wr) > < Amax ([PVQE(B )7’]+>

< 1 <k

T Amin L (V2L(3%)) ~ np

n+1:n+d,n+1l:n+d
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under event As. As a result, we have

tr [V [Businga = 871 91) < o (<[PV2£<5">7’}+) ) (12)
n+1l:n+dn+1ln+d
k1(d+1)
STl (43)

with probability at least 1 — O(n~'%). Combine Eq. (41) and Eq. (43) we know that

(d+1)logn

HBn—i—l:n—l—d - 16*H2 S K1 npL

with probability at least 1 — O(n~'?). On the other hand, by Theorem 7, we have

with probability at least 1 — O(n~"). We know that

— . — ~ d+1 4logn logn
9 < H/@nJrl:n+d - /3 HQ + H/Bn+1:n+d - /BAf\/lH2 5 n max {’{1 pL y K1 pL

with probability at least 1 — O(n=?). [ |

_ . ~ d+1)*?logn
_ < 4(—
Brtintd 'BMH2 = HA,6H2 ~ M /npL

HEM - B
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Appendix C. Proof of Auxiliary Lemmas in Section A

In this section, we prove detailed proof of aforementioned building blocks.

C.1 Proof of Proposition 1

Proof Assume that there are two parameter vectors B = (a",8N)T € © and E’ =
(@'",8T)" € © such that

* T * 1% T ar*
eajerj Jé] eaj +mj Jé]

- Vi<i#j<n.

et B | o0 e B - et B 4 o tafp’
Since €’/(e? 4 €®) = 1/(e*"? 4 1), we know that
of +a) B — (o] + 2] B) = o + 2 B" — (o +2;87), VI<i#j<n.

Let ¢ = o +x{ B* — (o} + ={ B) and 1,, be a n-dimensional vertoc whose entries are all
one, then we know that

o + X3 ="+ XB* +cl,.
Since X Ta* = X Ta* = 0, we know that
Ha* . a/*H; — (Ot* . a/*)T(a* o al*) — (a* _ a/*)T(XIB/* + C].n . XI@*) —=0.

This implies a* = a’*. Therefore, we have X 3* = X3 + c1,,. This is equivalent to

x| ¢ —0.

Since X has full column rank, we know that [c, (3* — 3*)T] = 0. As a result, we must have
B=pa"
|

C.2 Proof of Lemma 14 and Its Corollary

In this subsection, we provide the proof of Lemma 14 in the sense that we provide an upper
bound for the gradient vector in fo-norm.
Proof The gradient is calculated as

- - L @ B
VLB =AY Y {—y}? + e} (@i~ 7).

T 3+ 71 3*
(i.j)€€ i>j I=1 ¥ P 4 e
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Since E[z{ )] = 0, [|2{)]l2 < 1@ — &j[|2 < V6, we have

Bl = Varly\)(@ — &)@ — &) 7 < (@ — &)@ — &)
and E[z.(lﬁzi(o] < 6.

as long as n/d is large enough. Thus, with high probability (with respect to the randomness
of G), we have

> ZE[ Q0T <Ll ¥ @-3)@-&)"| = LlLel < Lnp

(1,9)€€,i>j =1 (i,)€E,i>]

and

L
> Y[R <er| > 15 e’

(i.4)€€,i>j I=1 (i,5)€€,1>]

H_()T OT _(@
Let V' := LQmaX{HZ(zJGSZZ 1 |:zz(j)zz(j) } Z” eng 1 [ ]) Z(])”} and B =
max; j Hz” ||/L. By matrix Bernstein inequality (Tropp, 2015), we have

HVEA(B) [Vﬁk( )|g”‘ <\/Vlog(n+d+1)+Blog(n—i—d+1)§\/W+loin

with probability exceeding 1 — O(n~!!) as long as d < n and npL > logn. On the other

1 nplogn n2plogn
< K d+1n <4/ ——.
S ovie 7 sV mS\ g

[2
< n’plogn
2™ L

with probability exceeding 1 — O(n~11). [ |

)

hand, we have

2 [ver@n 6], =7

To summarize, we have

HVEA(B*)

Once Lemma 14 is established, we have the following lemma which can be viewed as a
direct corollary of Lemma 14.
Lemma 34. With A given by Theorem 13, the following event

Az = {HV/J,\ (,@) H2 < Coy/ nQplIf)gn + ()\ + ;clpn> T, VB s.t. , < r}

is contained by the event Ay N As. As a result, As happens with probability exceeding
1—O(n™1h.
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Proof By the fundamental theorem of calculus we know that

VLA(B) = VLA(B / V2LA(B(r)(B — B)dr

where B(7) = B8* + 7(8 — 8*). So for all 8 such that || — 8|2 < r, we have

[ves@], < [ve@)], / Hv% DB -5,

<|[v£a(8)|), LA(B de
< |[vend)|, / Hv% )| ar
Under event A, we have
fros (5], = oy 2"

And, under event Ay, we have |[V2L\(B(7))|| < A+ cipn/2. As a result, As is contained
by A1 N As. [ |

C.3 Proof of Lemma 15

In this subsection, we prove Lemma 15 by demonstrating

1
Ay = {2022?71 < Amin, L (Lg) < || Lg|| < 201?”}

holds with high probability.
Proof Let O be any r x (n+ d) matrix with orthonormal rows such that the row space of
O is O, where r is the dimension of ©. Then, it holds that

ILg| = IOLGO™[l;  Amin, 1 (Lg) = Anin(OLGOT).
Let X, = O(@;—&;)(T;—%;) 'O 1((i,7) € §) fori > j. Then we have OLgO " = ZXW
and i
Xij =0, |1Xi4ll <@ —z;]3 <6,
as long as n/d is large enough. Furthermore,

)\min EZXi,j = )\min <pOEOT> = p)\min,L(E) > Capn;

i>]

Amax | E Z Xi,j = Amax (pOEOT> = p)\max(z) < cipn.

>]
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By the matrix Chernoff inequality (Tropp, 2012), we have

1
P >\min Z Xi,j < §>\min E Z Xi,j < (n —+ d) . 0.8022771/6;
i>] 1>]

3
P | Amax Z Xi,j > 5)\max E Z Xi,j < (7’L + d) . 0'802pn/6.
i>j 1>]

As a result, if pn > ¢,logn for some ¢, > 0, we have

3
Jeipn >1-0(nh.

1
P(A2) > P 5C2Pn < Amin ZXi,j < Amax Z Xij| <
i>j i>j

This concludes the proof of Lemma 15. |

C.4 Proof of Lemma 17

In this subsection, we provide the proof of Lemma 17 by providing a lower bound for

)\min,J_ (V2£)\ (/8))

U . ) e .
Proof For pair (4, j), without loss of generality we assume x; 8 < z; 3, we then obtain
E BE B ] o1& B—E] Bl
~T3 —T\2 T3 =TANZ =T3_=T3\2 =z
(emi Bte ﬁ) (1 + % PE ﬁ) (1 + e 1% BT ﬂ‘)
One the other hand, it holds that
@8-z 6l < |/ 8"~z 5| + |z 6"~/ B| + |z B* — ] .

<log(k1) + |ai — of| + @] B* — &/ Bl + | — | + |z] B* — ] B]

ZTA_ZTA3
e |z, B T ; IB|

=

ca(d+1), .
<log(k1) +2||a — a™||ec + 2 ?’(n)H,B —Bll2
d+1
< log(rm) + 204 + 2/ T g,
n
Therefore, we obtain
GEIEBEJTE 1

> )
(65?5—1—65;5)2 ~ 4k1eC

d+1 ~
where C' = 2C + 2 MCQ. As a result, for the Hessian V2L, (3) we have
n
~ 1 copn
2 2P
)\minA_(v £>\(ﬂ)) > A+ W)\mimJ_(Lg) > A+ 8/%160‘
This completes the proof of Lemma 17. |
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C.5 Proof of Lemma 18

1
Proof Since £)(+) is A-strongly convex and A + iclnp—smooth on the event As, we know
that

Hgt —1Va(BY) ~ H*HQ =7 Hﬁt B ’g’\Hz'
As a result, when event Ay happens, we have

HBt+l ~*

HP <5t —nVA(By) — )

< |8 = nvnBY - B <0 |8 - B,
Therefore, under event As, we have

o

<o -5

.

C.6 Proof of Lemma 19

In this section, we prove ,BA is not far from the initial pomt 6*
Proof Since 3y is the minimizer, we have that £)\(B*) > L')\(,B)\) By the mean value
theorem, for some ﬁ’ between ﬁ* and ,3>\7 we have

£2(B) = £2(B%) + VLB (Ba— B%) + 4 (Br — B) V2LA(B) (Br — B).
As a result, we have

Lr(B) 2 £2(B) + VEAB) T (Br — B + 3 (B~ B) V2 Lr(B) (B — )

> LA(F) + VLB (B~ B) + 5 B~ B

2

Therefore, we get

< —VLA(B)T(Br - B7)
< |[vea@)|, |3 -7

)BA— B*

3|

As a result, on event A; we have

o 2 HVQ\(E*) D)
H,@A—IB* < 2 < Co max{lw’/igvd—i- 1}\/?5
2 A C) K1
We conclude the proof of Lemma 19. |
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C.7 Proof of Lemma 20

Proof Combine Lemma 18 and Lemma 19 we have
|67 = Ba, < "8~ ],
5
2 )
< <1 A ) Comax{@,ﬁgvd—l—l}\/ﬁ
K1

oA+ cinp cy

2 2\n’
< &max @,Hg\/d-i—l Vnexp A
C) K1 2N+ cinp
d+1)1
< Coryy | 41 1) Togn
npL

for L < ¢4 -n® and n which is large enough.

C.8 Proof of Lemma 21
Proof By definition we know that
Bt =B =P (B —nVLA(B)) - B =P (B —nVLA(B) - B7).
Consider B(1) = B* + 7 (Bt _ B*). By the fundamental theorem of calculus we have
B! = VLB = B = B = nVLA(B") — | B — VLB —nVLA(BY)
= {In+d - 77/01 VQﬁA(B(T))dT} (Bt - B*) —nVLA(BY).
Let npL be large enough such that

(d+1)logn <

(d+1)logn <
npL -

2C6K3
6fi1 npL

0.1, 203/11\/073 0.1.

In addition, by the assumption of induction, we have

* - 5
le(r) = @ flos < 0,05, [1B(r) ~ B2 < 0'05m |

Then by Lemma 17, we have

copn copn
> , <
8k1e0-2 10k,

Muin,t (VELEAB(T)) = A+
On the other hand, by Lemma 16, we have

Amax (VQE)\(B(T))) <A+ %clpn.
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1 ~
Let A = / V2L (B(7))dr, then we have
0

A+

copn 1
< )\min A < )\m X A < A 5 .
10/€1 — »J—( ) a ( ) + 261pn

Since 8" — B* € O, it holds that

|PEnia = )3 - )

< max{ 1= nAin, 1 (A),1 = Duax ()1} |8 - 57|

C2 at %
< _ e _
< (1 20&1?71)?%) Hﬁ B

-
Therefore, on the event A1, we have

i

<P Tsa =) (B - B —wpvLa(8)

< [P Tura —na) B = 3|, +n|[vLr(BY)|,

¢ ~ =, n?plogn
< <1 - 277pn> Hﬁt = B[, + Comy/ pL &
L

20/4,1

c logn n2plogn
< (1= =npn ) Cam o8n + Con b8
205, oL V

20C
as long as C5 > 9. |

2

C.9 Proof of Lemma 22

Proof For any m € [n], by definition we have
Bt—l—l . Bt—l—l,(m) —P (Bt . UVLA(Bt) o [gt,(m) . nvﬁg\m) (Bt,(m)ﬂ) )

We consider B(T) = Bt’(m) + 7 (Bt - Bt’(m)). By the fundamental theorem of calculus we
have

B —nVLA(B") - B4 — v L™ (B)] (44)
=B~ nVLA(B) — | B — O LA(BH)] = (VLA - L (@) ()

~{ta=n [ FLa @i (3= 0) <0 (VEAEO) - VL F). (19
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From (A)~ (D) we know that

d+1)1
o) — oo < ! = "o + s ﬁﬂ (Cu+ oty | LB,
1<m npL
~ = ~ logn
t,(m) g% t g% t,(m at gn .
18 8%l < [ = B, + max (|00 =B < (Gt Copmy |2
d+1)logn
o = 0l < Cort[L0E
~ = logn
18"~ B2 < [|B* — B*|| < Camry |2
2 pL
Consider npL which is large enough such that
d+1)logn (d+1)logn
2Ci + Oy | LT DIBN o gy AR08
(Ca + Co)k1 Ll (C3 + Cy)k1/c3 L
Then we also have
d+1)logn (d+1)logn
2 2 (7 2 Vesy | ————— < 0.1.
CGK/I an C5I<é1 pL ~ 0

Use the same approach derived in §C.8, we have

HP {In+d - 77/01 v2£)\(/§(7))d7} (Bt _ Bt,(m))

1 O<n< ——.
as long as n < INT cinp

On the other hand, since HP(VEA(Bt’(m)) - Vﬁg\m) (E’f’(m)))H2 < HVE)\(Bt’(m)) -VL

it remains to bound ‘)VEA(Et’(m)) - Vﬁg\m) (Et’(m))H2 . By definition, we have

VLo Bt (m . Vﬁg\m) (Bt,(m))

< (1= g 8- 8,

(47)

(m) ¢ 3t,(m)
A (ﬁt )‘ 25

eg?ﬁt,(m) egjgu(m)
- - 1((i,m)e&)—p| -y, — — T, — T
Z#m { ( ym 7 + Ci;ﬁt’(m) + eilzﬁt«m)) ((Z m) ) p ( ymy’l + eﬁj[@t,(m) + 657—;’3@(7”)> } ( 1 m)

i B el Bhm ~ o~
L\ ame i ) MO €80 )

57



Fan, Hou AND YU

By definition, we also have

( & B*
1 L l . .
T 205 —yfn)j t 55— ) if (j,m) €&
§ e J +@mmﬁ* ~

1 L (1) & B .
,U;n _ L Zi:(i,m)es Zl:l Ymyg — m 5 if J =m,;

1 L (L0, ol 50— (), i > e

T 2oii(iym)e€ 2otet | —Ymyi + s (=) — (®m);), ifj>mn

0, else.

Consider random variable M = |{i: (i,m) € £} |. By Chernoff bound (Tropp, 2012), we
know that

P(M > 2pn) < (e/4)P" < O(n™ 1),

as long as np > ¢,logn for some ¢, > 0. As long as |[z; — |2 < 2¢/c3(d+1)/n <1,
& pg*
0 % P ‘ < 1, by Hoeffding’s

) eTi B +e:z:;;ﬁ*

we have |(z;); — (€m);)| < 1 for j > n. Since '—y

inequality and union bound, we get

M1
o S /=7 i =mor j > m

logn
L

il < , if (j,m) € €.

with probability exceeding 1 — O(n~!!) conditioning on &£ as long as d < n. On the other
hand, since M < 2pn with probability exceeding 1 — O(n~'!), we have

2pnl 1
pnlogn +opn

ogn<pn(d+1)logn
L L -

m(2 < 1
o™ 3 < @+ 1) .

with probability exceeding 1 — O(n~11).

On the other hand, for 4™ we have

§j(1_p), if (]7m)€€
i = . ~ ~ o
Piimyee & (L((Em) € E) —p) (i); — (@m)j), i j>mns
—&;p, else,
where
& = ok n &7 B B 1 1
T g eBRB BN | E ] B o O B A e e
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1
Consider g(x) = ——. Since |¢/(z)| < 1, we have that
14 €%

&1 = |g@,8" —&] B - g(@)5" — & B")
<|@n 8" — 2] 4 — (@B — 3] )
< |zTgtm _ T 5|+ (%}E“m) ~z)p
<2 Hab(m) —at N +2\/mH5t,(m) _ g 2

< [2(Cy + Co)ri +2(C + Cu)r1 /e \/7:: Cl\/T'

By Bernstein inequality we know that

n

m| < 2 ,

il S (P;@) IOgn"‘lI;l%)%KzHOgn
1=

~ d+1)1
< (x/nplogn%—logn) Ch (+np)LOgn7 if j=morj>n.

As a result, for u™ we have

(3 = () + > @)+ > @ Y @)
j>n j:(4,m)€E J:(Gm)¢E, j#m,j<n
2 . (d+1)logn ~o(d+1)logn ~o(d+1)logn
< 1 2 2 2.2
S(d+1) (x/nplogn+ ogn> Clian +np017an +p*nCy npL
(d+1)logn

< pn(d + 1) log nC?
S pn(d + 1) lognCy oL

In summary, there exists constants Dq, Dy which are independent of Cj,7 > 0 such that

m n(d+1)logn m ~ 1
o7l < D2 DRER o, < G gy T
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with probability exceeding 1 —O(n~!!). Combining Eq. (46), Eq. (47) and Eq. (48) we have

et =] < (1= gz m ) [ - 8

d+1)1 ~ 1
+n (Dl\/pn(—i—L)ogn + D2C1(d + 1) logn\/;>

o (d+1)logn
<(1- A Te
- ( 20K ) Cary npL

n(d+ 1)1 ~ 1
+77( \/ T Ogn+D2C’1(d+1)logn\/;>
logn
<Cyk1

40D 40D d+ 1)1
Land n is large enough such that Cy > 201 (d+1) ogn'
C2 C2 np

as long as Cy >

C.10 Proof of Lemma 23

Proof For m € [n], we have
alFLm) _ g [73 (atim Ly (Bt ) B)L
— ) —y [Py (8] —ar,
— abm [vg’" (ﬁt,(m)>}m_a:n+n [(I P)Vﬁ (ﬁt )}

b1 12

m

For po, we have

ol <1 = Pywes™ (B2 |

<l = Pllyoe [ VL5 (B) |

<cm S o (34)]

By Lemma 34, with probability at least 1 — O(n~!!) we have

ch({”)(étv )H (Co+ 103 + 10k \/”QMLOg”,

42 K2 1
L>— L= 1] )
np 81 mln{ (d+1) } ogn

as long as

60



UNCERTAINTY QUANTIFICATION FOR RANKING WITH COVARIATES

In this case, for us we have

d+ 1)nplogn ~ d—+ 1)nplogn
’/1/2‘ < Co(C() + 6103 + 0104)77/€1 \/()Lpg = CQ?]Hl \/()Lpg (49)

On the other hand, for p; we have

= alm) = [ve™ (84)] —a, (50)
z] B T Bt(m)
—abm _ ¢ _ e — e _ t,(m)
G Om 1P ; {e?i;rﬁ* + ei:ﬂg* efé;r‘ﬁvt,(m) + ei;ﬁt,(m) } 77>\Oém : (51)
1Fm

Normalizing the numerators below to 1 and by the mean value theorem, there exists some
¢i between ) 3* — & B* and &, (™) — 2T 350" such that

=T 3* ~T”‘i},(fm) )

i P i P e ~T 3 =Tax =T Atm) o =T At(m)
eija* +ei;5* B 652'51,(771) +6£L5t’(m) - (1—|—eci)2 [wmﬁ —Z; B8 _iUmIB + x; B8 }

e L £ (m)

T At em) o, — af = g™+

e 7
e Tax  Tax . Tatm) , T atim)
(e [ 8w s al ).

Combining Eq. (51) and Eq. (52), we have

eci .
S S Z (1 ¥ ea)? (a%m) B am)

+npz

ecz

{ Bom) _ o + (Tm — 371) (B :Bt )] - 77>‘O‘7tq’z(m)

=|1-nr~ npz 1+ecl (af;l(m)—aj;b)

+p Z e [ =0t + (e —w)T (80 =840 ) [
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By taking absolute value on both side, we get

C .

| < |1 —nA— UPZW m T O
im
np : * «
+ 257 [0l = a4 llm — ill18” — 8] + Al
i#Em
eCi .
<|1—nA— UPZW o™ — aj |
i#m
c3(d+1
Vitlat ™ — ety -2/ D g g, | e
Ci .
<1 —nA— anm o™ — |
i#m
+ Vi (14 2v/e(d+ D) B = B4+ mra.
eCl n
Since 1 —nA —np 721—77/\—7719—20, we have
2 4
i£m )
T DL s g
z;ém z;ﬁm
ci
<1-np(n—1)min ———
np(n — 1)1 HllIl e
By the defintion of ¢;, we have
n;éax lei] < n;ax z) B — %] B*| + max‘ B —z g -z g 4 :E?Bt’(m)‘
<log ky + max|a, — af —ab™ + a )] + max | (@, — ;)| (B* - ﬁt’(m))’
i#Em i#m
. d+1
<logrr +2at — oo + 2/ ULED ge gy,
Consider npL which is large enough such that
d+1)logn (d+1)logn
2(Cy + Coy2y | LEDIBT o sy 4 — e <0,
(Cy+ Ce)r1 oL =0 (C3 + Cy)k1y/c3 R
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Then we have

(d+1)

ﬁ%‘ci‘ <log 1 +2[a"™ — a*[|oc +2 18* = 8™
< t t,(m)”
<logry +2 <Ha e -l
sd+1) Mz 3 t
2= (- A o
N (e
<log ki + 0.2.
Then it holds that,
eCi e*|Cz‘| e —|ei| e~ MaXizm les 1 1
minizmini min = > > —.
i#m (1 + Gci)Q i#m (1 + €_|Ci‘) i#m 4 4 4k1e0-2 Y
. n
Usingn —1 > 5 for n > 2, we have
| <(1- (- o™ — |
- 10k1 m m
1+2y/c3(d+1 ~ o~
4 1<m<n 2
1 (d+1)logn
<[1- Cyriy | —————=—
- < 101 npn) 511 npL
1 + 2\/ (d+1) n
npf(Cs + C1)k1 ng + nAk2.
Combine this result with Eq. (49), we get
ab ) — o | + |2l
~ (d+ 1)nplogn 1 5 [(d+1)logn
< SRS (1 —— RSt - R
_CzTII‘dl\/ L + 10K ) Cshi npL
1+24y/c3(d+1 logn
+ 43( )Up\/ﬁ(cs + Ca)k1 ng + NAK2
d+1)logn
<Oyr2, [ Dlogn
=t npL

as long as C5 > 305’2, Cs > 7.5(1+2,/c3)(C3+ C4) and C5 > 30cy/v/d + 1. This concludes
our proof for Lemma 23. |
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C.11 Proof of Lemma 24

Proof For any m € [n], we have

ol — gl < g = ol 4ol — o |

m

<C4/<;1\/m (d+1)logn
npL
[(d+ 1)1
< (Ci+Cs)k + ogn

. (d+1)logn
ot~ = o [+ Do,

< HBtJrl _ BHL(MH +lablm) _gr |

As a result, we have

as long as Cg > Cy + C5.
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Appendix D. Proof of Auxiliary Lemmas in Section B

D.1 Proof of Lemma 26 and Two Propositions (Propositions 35 and 36)
Proof [Proof of Lemma 26| (1) By definition for i € [n] we have

(ved)) = > {rwite@ 8 -8}

(2
J#i,(6,5)€E

- > i{ V0@l B - ).

j#i,(i,5)€€ =1

< 1, by Bernstein inequality we have

Since |—y\!) + ¢(&/ 8" — &, B")

logn Z 1| L+logn
J#4,(6,5)€E

1
L

[nplogn
L

, as long as npL 2 logn. On the other hand, since
g] = 0. As a result, we

3 K3

(ve@), -2 |(ve@),

g”s

N

with probability exceeding 1 — O(n~19)

E [ yjz + o(x TB* — 5;5*)} = 0, we know that E [(Vﬁ(ﬁ*))l

have
~ Inplogn
* < e Ys
‘(VE(B >>z ~ L
(2) By definition we have
2
~ N2 ~ -
> (VL) = (@B -] ) (@i - 3)
i 7 J#i,(i.4)€E _illy
2
= > 1| Y S@ S -E) (i - x))
J#4,(1,5)€E J#1,(65)€E 2
< D> 1+l > 1] Y w3
J#4,(i,5)€E J#i(g)eE ) j#i(i,5)€E
S np+np-dp
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with probability at least 1 — O(n~!°). Similarly, we have

2
S (V@) =| X SGIE & F) - w)
k>n Y |liGaee 2

< > 1 T el

J#4,(1,5)€E J#4,(1,5)€E

Snp-dp
and
> |(ved), = Y @I - 8|1 e s Y Ui)ed) S
jelnlj#i e g jelnl i

with probability at least 1 — O(n~10).
L
1
(3) For i,j € [n],i # j, by definition we know that y;; = 7 Zyj(ll) is the average of L
I=1
independent Bernoulli random variables. By Hoeffding’s inequality we know that

logn
L

1y — Byja| S

with probability at least 1 — O(n~'2?). As a result, by union bound we know that

logn
i — Byl <
|3, Yiil S I
holds for all i,j € [n],i # j with probability at least 1 — O(n10). ]

We also include here two propositions which are also involved in the later proofs.

Proposition 35. 5 1s the solution of the following linear equations

{ PYL(F") + PVAL(B) (B~ B7) = 0;
PB = B.

Proposition 35 follows from Eq. (5), which gives the definition of 3.

Proposition 36. Under event Ao, we have
2 1 2 % +
Var[B 1G] = - [PV2L(B)P
We next provide the proof of Proposition 36 here.
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Proof [Proof of Proposition 36| Since PVL(8*) + PV2L(3*)(8 — B*) = 0, by taking
variance (conditioned on G) on the both sides we have

PVar [w( 3 | g} P+ PV2L(3*)Var [ B | G] V2L(B*)P + 2PCov (vz(ﬁ*),ﬁ | g) V2L(B")P = 0.
(53)

On the other hand, by considering the covariance (conditioned on G) of VL£(B*) and
PVL(B*) +PVIL(B*)(B — B*) we get

Var [vc( 5% \g}P+cm(vc( 34, mg) V2L(B")P = o.
As a result, we know that
PCov (vz(ﬁ*)ﬁ | g) V2L(B*)P = —PVar [vz( )| g] (54)
Combine Eq. (53) and Eq. (54) we get
PV2L(B")Var [ B| 0] V2L(B")P = PVar [VL(B") | G| P = PVQL(H*)P. (55)

By taking variance on the both sides of P38 = 3, we have PVar [B ’ g] P = Var [B ] g].
This also implies (I — P)Var [B ! g] = 0. As a result, Eq. (55) can be also written as

PV2L(B*)PVar [ B | G| PVL(B*)P = %PV%(B*)P.

This immediately implies PV2L(3*)P(I — Var [B]7] PV2L(B*)P) = 0. Under event Aj,
we have Apin 1 (V2L£(8%)) > 0. As a result, for any 3 € ©, we have

Ain, - (V2L(B) || (1 = Var [ B| 6] PV2L(B" )6”

<g7 (I — Var [ B| G] PV2L( TP)TV (I Var [ B | G] PV2L(B" )P) ]
=37 (1-Var[B| 9] PV2L( )T PV2L(BYP (I - Var [ B| ] PV2L(B*)P) B = 0.

As a result, we have (I — Var [ 8| §] PVQE(B*)P),E = 0 for all B € ©. Combine this fact
with (I —P)Var [ 8| G] =0, we know that

Var [B | g] = [PVZE(E*)PTF
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D.2 Proof of Theorem 27
Proof We know that

~ ~ 1 ~ ~ ~ ~ ~
0 =PVL(Bym) = PVL(BY) + P/ V2L(B* + t(Bu — B7)) (ﬂM - ﬂ*) dt

— PVL(F) +7>{/ V2L(5" + HBu E))dt}(ﬁM_ﬁ*).

Let
1 ~ ~ ~ ~ ~ ~ ~ ~
{ [ VB (s~ 5 (Bus -~ B) - VL) (B~ ).
0
we have
0=PVL(B") + PV2L(B") (B — B") + PR. (56)
On the other hand, we know that
0= PVL(B) = PVL(F) + PV2L(B") (B-B"). (57)
Combine Eq. (56) and Eq. (57) we have
PV2L(B") (B~ B ) = PR. (58)
For R we have
IRl < | / VLB + t(Bu — B7)) - VEL(B")dt

< /0 Hvzﬁ(ﬁ*ﬂ(ﬁMfﬁ*))*

By definition we have

2L(B* + By — B")) — V2L(B")
= X (GC@ By —F] Bu) + (1 - 0@ B - FF) - F B -7 B)) @ - E) @ - )
(i,5)€Ei>7
<| X |6@ By -7 Bu)+ (- 0)(E] B -7 BY) - ¢ 5 - 7] 5| (F - 7)) @i - 7))
(i,5)€Ei>7
S ‘ (@ By — &} Bu) — (@] B" — ] B°)| (@i — ;) (®i «’75]')TH
(i,5)EEi>]
(i,)EE i>] ¢
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By Lemma 15 we know that

Hv%(,@* (B — ) — V2L(8Y)

holds uniformly for all ¢ € [0, 1] with probability at least 1 — O(n~!1). As a result, we get

iRl s [ (59)
with probability exceeding 1 — O(n~!!). Since 3, BM € O, we know that
Amin, L (V2 ) Hﬁ ﬁMH (B_BM> V2L(BY) (,3 ,3M>
= (B~ Bw) PVL@) (B~ Bu) = (B~ Bu) PR
<8 Bu, IPRI, < BB, IRl
As a result, we get
= 3 IR
HB — ﬂMH2 < o (VZC(B*)) : (60)
By Lemma 17 we know that
Amin, L (VQE(B*)) 2 % (61)

with probability exceeding 1 —O(n~11). Therefore, combine Eq. (59), Eq. (60) and Eq. (61)
we get
IRz ,(d+1) 5 logn
~ ~ Rl
)\min,J_ (V2£(,8*)) \/ﬁpL

B =, <

with probability exceeding 1 — O(n~%). [ ]

D.3 Proof of Proposition 28 and Proposition 30

We denote by ¥ = {x; — ; : i,j € [n]}. By the definition of £(-) and £(-) we know that
for any B € R"*? and v € U+, we have

L(B) = L(B +v) and L(8) = L(B + v).
On the other hand, under Assumption 3 we have the following lemma.

Lemma 37. For any 5 € R"t4, there exists a v € W' such that ,g—i— v EOBO.
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Proof We only have to show that for any B e R, B + U+ MO # . Assume there exists
a B € R™*? such that B—i— UL N6 = @. First of all, we must have ZTB ¢ ZTWt. Since
ZTUt c R we must have dim(ZT¥+) < d as ZTU+ # R Since dim(¥+) = d + 1,
we know that there exists a non-zero vector v € ¥+ such that Z v = 0. By the definition of
O, we know that v € ©. Recall the definition of ¥ and Assumption 3 in §3. Since v € U,
we know that ¥v = 0, so we must have Ayin | (3) = 0. As a result, this contradicts to
Assumption 3 since ¢y = 0. |

With this lemma, we then turn to prove Proposition 28 and 30.
Proof [Proof of Proposition 28 and 30| Assume there exists a z such that Z\B_,(z) <

Z!E;(@-). Then we let w € R"¢ be the vector such that w_; = B_; and w; = z. And, let
v be the vector in UL such that w + v € ©. Then we have

L(w+v) = L(w) = L|5_(2) < Llz_ (@) = L(B)-

This contradicts to the definition of B Eq. (5).
Similarly, if we assume that there exists a z such that £|§M (7)< £|5M (@)(Qnsi)-

Then we let w € R*™? be the vector such that w_; = §M7,i and w; = z. And, let v be the
vector in Ut such that w 4+ v € ©. Then we have

Llw+v)=L(w) =Lz (2) <Lz, (@wu)=LBu)

This contradicts to the definition of BM Eq. (3). |

D.4 Auxiliary Results for Proving Lemma 29

In this section we include two results which are helpful to the proof of Lemma 29 in §D.5.
These two results are analogies of Theorem 4 and Theorem 27 which we have proven before.
The main difference is we replace £(-) with £&)(-). As a result, the following two results can
be viewed as the leave-one-out version of Theorem 4 and Theorem 27. To be more specific,
we define EE\Z} as

55\2) = argmin £ (5)
Beo

and let B(i) be the solution of the following equations

PVLO(B) + PV (B) (B - B) =0,
PB(i) _ B(i)-

Lemma 38. Suppose np > c,logn for some ¢, > 0 and d +1 < n,(d + 1)logn < np.
We consider L < cq - n for any absolute constants cq,c5 > 0. Then for every i € [n] and
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B](é[) = (&g\?—r,,é](\f[)T)T, with probability at least 1 — O(n=%) we have

(d+1)logn

’ <k logn
npL

(d+1)logn
2~ pL '

lal) — a*flow < K3 -

~

By — B

o |31,

Lemma 39. Under the assumptions of Theorem 38, for every i € [n], with probability at
least 1 — O(n=%) we have

< (d+1)0° logn.
v/npL

2N

4"

The proof of Lemma 38 and Lemma 39 are almost the same as the previous results so
we omit the proof details here. One can show Lemma 38 by mimicing the proof in §A.5,
§C.7 and the results in Lemma 22. In addition, Lemma 39 can be proved by mimicing the
proof in §D.2.
D.5 Proof of Lemma 29

Proof Since @; can be expressed as

(ved) + 5 (B, - 8;) (v2£(8).

= — L g " :
| (v22),,
we have
& —a = 7 (Bus =) (VQE(B*DZ‘J_ (62)

(v2£(8)

0,0

We decompose Eq. (62) as

S (Bus—B51;) (V2B). 5 (B, -8Y) (v28)

a @ = J# 2Y n J#i 0]
(v2£(6) (v22(8),,
A A
£ () 5) (v,
T (),
As
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Next, we bound Aj-As one by one. Before proceeding, the denominator (VQE(BJ*))' A
1,0
can be bounded as

(V2£B) =3 0@ B - B(.]) € &)

Y
1 n
> 2 N 1((iq > P
J#i
with probability at least 1 — O(n~11).
For Ay, by Lemma 38 we have
‘ ~ (d+1)logn
npL

So the numerator of A; can be bounded as

Z (BM,j - 55\14)]) (V25(5*>>. .

Z7‘7
J#i

<3 -

Z (V2£ 3 )

d+1)1 I
<k1 (th))LOgn\/(d—l—l)npSm(d—Fl) Oin

with probability at least 1 — O(n~10). As a result, A; can be bounded as

m(d+ Dy g
s —— W 2D (63)
1

with probability at least 1 — O(n~10).

When it comes to Ao, by definition we know that ,[;](\2) i~ BEZ) is independent with
(VQE(B*))‘ for all j € [n+d]. As a result, by Bernstein’s inequality and Lemma 39 we
know that "

S (5 (em),, 2| £ @A) (e,

€[n],j#i

SVplogn &l -

j€ln).j#i j€[n).j#i "
(64)
< J dogn) Y (B, ~B) B (722E)° + togm) 6 - ()
j€ ’

+ (logn) H&S\? —at

(66)

d+1)%5(logn)> (i -

< 4( (4) —_ @
<k L + (logn) HaM || (67)
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with probability at least 1 — O(n~%). On the other hand, by Lemma 39 we have

E { %:#(ﬁﬁ?,j —ﬁy)) (VQE(B*))i,j ~§5}7/3(“] (68)
VISV E=]
<$ > (ﬁﬁ?,jﬂy))ZJ > (E (v22(8). ) (69)
jelnl.j#i jelnl.j#i I
<o ) - B, 5 wildE D homn (70)
and
(- (vre), | < [ -5, 5 (e, 5 e

(71)

with probability exceeding 1 — O(n~%). Combine Eq. (67), Eq. (70) and Eq. (71) we finally
bound the numerator of Ay as

5 (3, -7 (v2e),

JF

SH%(d—i_lglogn

+ (log n) Hagj — &

with probability at least 1 — O(n=%). As a result, we have

(d—|— 1)logn _Hﬂlogn Hag\? e

Aol < kg
[42] S npL np

o0

with probability at least 1 — O(n~9).
We finally consider bounding As. By definition, we know that

PYLB) +PVLB) (B - ﬂ*?—
PVLO(B) + PV (3 (B - B7) = 0.

Combine the two equations we get

P (VL(B) = VLD (B)) +P (V2L(B) - VLD (BY) (B—B7) +PvL (3 (B-B") = 0

w1 w2

(73)

For wy, it is easy to see |P(VL(B*) — VLD (8|2 < [[VL(B*) — VLD (B%)|]2. By
definition we have

VL(B*) = VLO(BY) = (—yji+ 6@ B* — 7] B)L((, ) € E)(&: — ).
i#i
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For (VE(E*) —vLW (B*))z, by Hoeffding inequality, we have

)m(a ) = vLi(

Z Z —y\") + 0@ B — &) B))1((i. ) € &)

(i,5)e€ =1

Z i,7) € €)logn
J#

conditioned on G with probability at least 1—O(n~1?). On the other hand, since Y _ ; e 1((6,) €
&) < np with probability at least 1 — O(n~1?), we have

< [nplogn
~ L

with probability at least 1 — O(n~!?). Furthermore, by Lemma 26 we have

S (ve@) - veO@)) = Y ((upi+0l@ B & BN ) € 6)

J

(VLB - VLD (B));

Jj#4,5€n] J#4,j€n]
< 10815~ (5, 5) e £) < MRo8™
L o L

with probability at least 1 — O(n~10). For (VL(8*) — VLD (8))pi1mrd, we have

|(ve@) - veo )

Y (i + 6@ B -] B)1((G,)) € E)(w; — )
o

<Z ‘ yjz+¢(~T;6 _NTﬁ)
J#i

\/logn\/aH—l \/d—I—l)nplogn
L

with probability at least 1 — O(n~1%). Therefore, for w; we have

n+1l:n+d 2

2

|z; — x5,

bl < [28%) = V0@, < (V28 - 9LE) + 3 (VLA - vLOBY),
J#i,jE€M]
(74)
~ i — 2
* H (Ve -veh@) = <d+1>£wlgn
(75)

with probability exceeding 1 — O(n~19).
For wy, since V2L(3*) — V2L (B) = Y.,(1((i,§) € €) — p)¢/ (@] B* — &) B*) (@
ij)(iz — 5’3]')1—, it holds that

(V2e@) - ve9 @) (8- 8)
=Y (UG € &) -nd@] B 5] 8) (@ —3) (B-5")) @ — ).
J#i
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As a result, it follows that

[P (v2e@) - v2e0@) (55|, <[ (Ve - v2e0@) (8- 5°),
<3 |0 106.9) € )8/ @ B~ 7] 5 (@i~ )T (6 8)) @),
J#£i

<>l -1 € 6l |@— 7)) (B-5")| 17 - &,
j#i

Sl -G el |[B-5| sm|B-5
J#
with probability exceeding 1 — O(n~'?). On the other hand, we obtain
-5l -,
d+1)logn . _ [d+1 ,(d+1)*%logn
< 2 ( o 4
~ k1 an + HQM aHoo + n K1 \/ﬁpL

(d+1)logn
npL

< k2

~ 1

lan — ol

with probability at least 1 — O(n~°). That is to say, we have

d+ 1)nplogn ~ _
fall, [ DB (76)

with probability at least 1 — O(n~9).
Combine Eq. (75) and Eq. (76) with Eq. (73), we know that

(d+ 1)nplogn

P23 (B-B")|, = llwr +wally < lhwally + w2, S J i

+nplla —all
with probability at least 1 — O(n=%). Since 8 — B(i) € O, we have

M.t (v208) 3-8 < (3-8 v @) (B-8")
=(3-8") peci@) (3-3) < [B-3", [pvievd (3-57),
As a result, we know that

-5 [Pveco@ (8-8")]), 2 o 3 [(d+1)logn

Z H = AminL <V2£()(,3 )) ~ npL

+rillan —al (77)
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with probability at least 1 — O(n~%). Therefore, for A3 we finally achieve

> (ﬁgi) _@) (Vzﬁ(ﬁ*)), | HB@) _BH2 \/Zj;ﬁi (v2£(5*)>
<

2

Z?]

i ]
As] < |2 78
45! o~ npln (78)
d+1 [logn d+1 _
< A 2 (2T _
S K p \ 7 + K1 np laen — el (79)

with probability at least 1 — O(n~°).
And, by Eq. (77) we know that

Haﬁé} —at| < HBE(} —BMH2 tll@nr -l + HE_B(@

2

(d+1)logn

3
S kY npL

+rullaar — ol

with probability exceeding 1 — O(n~%). Combine with Eq. (72) we have

d+1)logn logn d+1)logn logn
( )Lg 4+ silo8 ( ) log 42108
np n

|A2| S K7 lan — |, (80)

npL
with probability exceeding 1 — O(n~%). Combine Eq. (63), Eq. (80) and Eq. (79) we know
that

d+1)1 1 d+1)1 1 d+1 1 ~
-l g R 1 JEE DR (s Og”)wﬁ( arly Og”> @ — ..
np np V1P np np

with probability at least 1 — O(n~5).
|

D.6 Proof of Lemma 31

(+), we know that (ﬁ
By, —i

/
- > (aari) = 0. By
By, —i

Proof Since &y ; is the minimizer of £’

the mean value theorem we know that

(d, Yoo (d, Jen(e
B, —i B, —i

where by is some real number between o and ;. As a result, we have

1
~ )(bl)(aw—a;‘),
B, —i
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By the definition Eq. (4) and Eq. (24), we have
(g
<g

We first estimate the difference (E

(ﬁ
= > @ Bu—&] By +b—an) - @ B -3 B)
J#i,(1,5)€E
< Y @ By - & Bu b dw) - @8- 3] BY)
J#i,(1,5)€E
S S (-5, - w)
J#i(i.5)€E ¢
Snp HEM - B

_ > () = Z {_yj,z' +o(&] B — &) By + 1 — &M,z‘)}
B, —i

J#4,(1,5)€E

. ) (@)= > ¢@ Bu—T,Bu+z—au).
Bum,—i

J#4,(1,5)€E

0

)H (b1) — (VQE(B*)) . We have

Bum,—i

)H (b1) - (V2£(8")

0,0

Bwm,—i

[

with probability at least 1 — O(n~!!). On the other hand, we have

(ﬁ ; ) (Br) - ((mﬁ*))i +3 (B - B) (v%(x’i*))i’j) (81)

J#i
= Z {_yj,i + (@ Bur — 5;51\4 +a; — @M,z’)} - Z {_yj,i + (& B - @TB*)}
J#4,(1,5)€E J#i,(1,5)€E
(82)
= > (Bug-B) (vEB) (33)
j#ijEln+d "

= > 0@ By — &) Bu + o} — Gn) — 0@ B 7] BY) — (o) — Gny) 6@ B~ 7 B }

J#4,(1,5)€€

(84)

= (B —Bis) | Y S@IB -3 (i - wj)k) (85)
keld] J#4,(1,5)€E

= Y 7 (86)

J74,(i,5)€E
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where

rj =6(&; Bur — &) By + of — Qi) — 0@ BT — &) B) — (af — ) ¢'(F, B* — T, B7)

— (@i — ;)" (Bu — B¢ (2] 8" — 2] B").
By Taylor expansion we know that

O(&, Bur — ) Bus + of — Gury) =9(F] B — &) B7)

+ 8@ 5~ 7] B%) (@i — ) (Bur — B) + ) — )
0" (0) (@i —2) T (Bar — 8% + 0 —dnry)

: ~T3« _ =T3 =T33 =T o~
where by is some real number between x; 3 — x; B* and x; By — x; Bum + of — ;. As
a result, we have
2
E

1 < 10" 02| (i — )T (Bas — 8%) + 5 — ) < [|Bor — B

(87)

Combine Eq. (86) and Eq. (87) we have

(4, ) - ((vem), S oo 3) (o), |

J#i
with probability exceeding 1 — O(n~!!). As a result, we have
/
Bum,—i

77
- ) (b1)
B, —i

: (ve), 5 (s ) (7))
) (b1) - (V2£(8")) i

2
c

S np HBM - B*

VLB)) + X (Buy—B;) (V2LB)) (£
i g w
<VQ£(B*))Z',1‘ (ﬁ

(ﬁlaM,z) (bn) = (V2£(B") (
<g
f
(g’~ )Im;) - ((vz(ﬁ*))ﬁ 5 (Bws - 5) (v%(B*))i’j)

Bum,—i
" 9
Bum,—i

Az

~ —
Qprg — Q=

Bum,—i b

+
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where
bl |
S [ | ) R BB (),
< Jahimn o) o5 ) (o),
J#i ’
and

5(d+1)logn
R}———

[Aa| S

1
3 ~ npL
o C v

c

with probability exceeding 1 — O(n~%). On the other hand, we know that

(V8),+ 2 (Bus ~85) (28,

7’7.]
J#i

<|(ve@) |+ 3 (Bus - 8;) (v22(8),
j#i 7
<|(ve@) |+l - o'l 3 |(VE), |+ 1B - 81, [3 (7228,
JEn],j#i k>n
/nplogn (d+1) logn /1o \/72</£ d—|—1nplogn
with probability at least 1 — . To sum up, we have
Ki /d—l—llon d—l—lnlon d+1)logn
asza’<\A1|+|A2\< M S \/ pg ( )g
logn
an
with probability at least 1 — O(n~%). [ |

Appendix E. Details of Real Data Experiments

In this section, we provide the details in computing the maximum likelihood estimator
(aar, BM) We first generated the variables X and comparisons as described in §5.4. We
standardized each column to make sure they have mean 0 and standard deviation 1 and then
multiplied by 2/27 (scale to the order of \/d + 1/n as mentioned in the main text). In real-
world data the numbers of comparisons between each compared pair are not the same, so we
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denote by L; j the number of comparisons between pair (4, j). Let {yl(l]) 2 (i,5) € €l € [Lij]}
be all the comparisons we have, then the negative log-likelihood can be written as

L(B): = Z Z{ yﬂ( 3 5;B>+log(1+elﬁ”;'8)}

(1,9)€€,i>j I=1
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