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Abstract

Backpropagation relies on instantaneous weight transport and global updates, thus ques-
tioning its neural plausibility. Continual learning mechanisms that are largely biologically
inspired employ backpropagation as the baseline training rule. In this work, the role of
learning rules that avoid the weight transport problem in the context of continual learn-
ing is examined. We investigate weight estimation approaches that use linear combina-
tions of local and non-local regularization primitives for alignment-based learning. These
approaches are coupled with parameter regularization and replay mechanisms to demon-
strate robust continual learning capabilities. We show that the layer-wise operations ob-
served in alignment-based learning help to boost performance in complex task-aware and
task-free scenarios on multiple image classification datasets. We study the dynamics of rep-
resentational similarity from the learning rules and provide its mapping to the knowledge
preservation capabilities of the models.

Keywords: Life-long learning, Imbalanced data

1. Introduction

Continual learning (CL) represents an area of study that aims to enable AI models to suc-
cessfully interact and learn in real-world environments. The features include, but are not
limited to, the acquisition of new knowledge and skills while keeping prior learned concepts,
transfer knowledge across tasks, learn from exposure to few examples and noise tolerance.
CL models focus on addressing a fundamental trade-off: the stability-plasticity dilemma,
whereby a model that emphasizes stability tends to suffer from poor forward transfer and
adaptation to new tasks, whereas one that is too plastic is unable to retain previously
learned information, a phenomenon commonly known as catastrophic forgetting or inter-
ference (McCloskey and Cohen, 1989). Addressing catastrophic forgetting is an important
focus of research in deep learning, with several methods proposed to help mitigate for-
getting (De Lange et al., 2021; Zenke et al., 2017; Kirkpatrick et al., 2017a). Biological
brains seem to have solved this dilemma, being able to learn continuously throughout their
lifetime while adapting to novel scenarios and environments. Taking inspiration from neu-
roscience, researchers have proposed several types of mechanisms to address catastrophic
forgetting (Kudithipudi et al., 2022). These can broadly be classified into (i) loss or func-
tional parametric adjustments, i.e. regularization (Kirkpatrick et al., 2017b; Zenke et al.,
2017), (ii) dynamic architectures, including neurogenesis (Ebrahimi et al., 2020; Rusu et al.,
2016), and (iii) rehearsal or replay of previous experiences (Aljundi et al., 2019; van de Ven
et al., 2020).
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Several of the biologically inspired mechanisms still employ backpropagation as the
baseline learning algorithm, which is the workhorse of modern deep learning. However, any
exact implementation of backpropagation requires the instantaneous transport of weights
for propagating errors, making it inherently non-local. This scheme is biologically non-
plausible since there are no known neural mechanisms for instantaneously coupling synaptic
weights (Grossberg, 1987). To alleviate this popularly known “weight transport” problem,
researchers have investigated several feedback alignment approaches (Sanfiz and Akrout,
2021) to approximate backpropagation. Furthermore, it has been demonstrated that these
alignment techniques can boost the models’ resistance to noise and adversarial attacks
(Akrout, 2019). Despite showing performance comparable to backpropagation and improv-
ing robustness, these learning mechanisms have never been explored in the context of contin-
ual learning. Moreover, a number of continual learning mechanism implementations combine
backpropagation – a non-local process – with local learning rules (Ostapenko et al., 2021;
Arani et al., 2022). The learning dynamics become unstable as a result, since the global
loss function overrides changes imposed by the local rules at different layers (Choromanska
et al., 2018). This leads us to the question: Can learning rules created as a substrate of
combining different regularization primitives provide a better alternative to backpropagation
for continual learning? Henceforth, we explore simple local and non-local primitives with
decoupled alignment-based learning for better representational invariance and robustness
in continual learning scenarios.

In this work, we investigate and compare the performance of alignment-based methods
with backpropagation for continual learning scenarios. First, we untie the weights into
forward and backward components, which are optimized using a loss function that is pro-
portional to the global cost function and the linear sum of local and non-local primitives.
Further, we couple this loss with weight- and neuron-based regularization functions and
replay-based mechanisms to apply them to continual learning scenarios. Secondly, we in-
vestigate how these local and non-local rules formed with regularization primitives enable
robust continual learning. Finally, we analyze the efficacy of these algorithms through the
lens of semantic similarity across layer-wise activations while learning.

Through the proposed framework, we observe a consistent improvement in CL perfor-
mance across multiple benchmarks for the weight and neuron-based regularization models
combined with alignment-based learning rules. It is important to note that this correlation
in performance is not specific to one learning mechanism, but depending on the crite-
ria of importance measurement, respective improvements are demonstrated. However, for
replay-based mechanisms, both the local and non-local learning rules fail to demonstrate
an improvement in performance. However, we observe that alignment-based learning rules
offer improved robustness to noisy updates in comparison to backpropagation across all
the continual learning mechanisms. Furthermore, we use the Centered Kernel Alignment
(CKA) representational variance metric to better understand the optimization dynamics of
these biologically plausible alternatives. We show that these credit assignment strategies are
competitive with backpropagation and illustrate generalizability across multiple continual
learning models.
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2. Related Work

Local and Non-local learning mechanisms. Human brain demonstrates remarkable
capability to learn continuously through its many complex plasticity mechanisms (Ku-
dithipudi et al., 2022). There has been evidence of multiple plasticity mechanisms (Abraham
and Bear, 1996; Watt and Desai, 2010) and learning systems in the brain (Mcnaughton and
Morris, 1987; Ellefsen et al., 2015). These mechanisms are crucial in enabling our learning
capabilities. Researchers investigated the role of such plasticity mechanisms for enhancing
learning capabilities (Abraham, 2008; Clune, 2019). The work in (Allred and Roy, 2020)
demonstrate the use of local learning rules in unsupervised manner to mitigate catastrophic
forgetting. Mechanisms such as metaplasticity (plasticity of plasticity) (Abraham, 2008) in
synapses were shown to retain previously learned knowledge and enable continual learning
capabilities. Moreover, homeostatic mechanisms have shown to boost the computational
performance of spiking neural networks (Maass et al., 2002). Additionally, the use of local
learning rules with neuromodulation (Miconi et al., 2020; Daram and Yanguas-Gil, 2020;
Yanguas-Gil et al., 2019) enabled the networks to learn rapidly in a resource- and energy-
efficient manner.

Previous studies have demonstrated the efficacy of local learning rules and computations
in enhancing learning capabilities. However, local learning rules are very sensitive to the
selected hyperparameters, and are thus very selective within the constrained parametric
space. Only a small subset of the explored configurations produce favorable gresults (Baldi
and Sadowski, 2016). Since they are limited to a local context, in lifelong learning sce-
narios, they struggle with adaptation to new tasks with lower similarity to previous ones.
Weight estimation approaches, on the other hand have shown to address the performance
bottleneck (Frenkel et al., 2021) incurred by purely local learning mechanisms.

Weight estimation techniques. Backpropagation enables multi-layered networks to
learn complex tasks. However, the implementation of backpropagation requires instan-
taneous weight transport (using the same set of weights to propagate the forward activa-
tions and the gradients), which is non-local in nature (Grossberg, 1987). Moreover, this
non-locality leads to significant increase in movement of weights while training (Rojas and
Rojas, 1996), which is not suitable for solutions requiring learning on the edge. Researchers
have introduced approaches such as feedback alignment (Lillicrap et al., 2016) and weight
mirror (Akrout et al., 2019) that seek to approximate backpropagation while circumventing
the weight transport problem. A challenge with these techniques, lies in the requirement
of a complex hyperparameter tuning regime to achieve good performance during learn-
ing (Bartunov et al., 2018). The work in (Kunin et al., 2020; Kornblith et al., 2019)
addresses this issue by formulating a more general framework of credit assignment strate-
gies without weight symmetry that are more robust and scalable while performing on-par
with backpropagation.

These novel credit assignment approaches have never been explored in the context of
continual learning. Additionally, these weight estimation techniques use local and non-local
primitives with strong geometric interpretations that could be linearly combined to form
complex credit assignment strategies. The strategies are defined by layer-wise regularization
functions, which attempt to align based on the symmetry of representations, weights, or
activations. When we look at regularization mechanisms for continual learning, they identify
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importance and penalize based on either the activations, tracking changes in weights or
observing the shift in representations or loss while shifting between tasks. This creates
possibilities for the mapping of regularization-based mechanisms for continual learning with
alignment-based techniques.

Continual Learning mechanisms. Among the broad desiderata of continual learn-
ing (Kudithipudi et al., 2022, 2023), several approaches have focused on addressing catas-
trophic forgetting. Among these, regularization-based and replay-based are the most com-
mon ones. Regularization mechanisms (Kirkpatrick et al., 2017c; Zenke et al., 2017; Schug. Si-
mon, 2020) select important parameters and penalize their updates as a way to retain task-
specific knowledge through the lifetime. Replay methods (Chaudhry et al., 2019; Aljundi
et al., 2019) on the other hand, either store or generate previously seen experiences and in-
terleave them with the current task to alleviate forgetting while enabling positive transfer of
knowledge. Albeit a few approaches (Soures et al., July 2021; Madireddy et al., 2023), most
of these models employ backpropagation as the central learning rule and for propagating
gradients along the networks. In this work, we select multiple of these mechanisms, couple
them with other strategies in place of backpropagation and highlight potential benefits and
limitations.

3. Methodology

Continual Learning Problem Formulation. We define the continual learning prob-
lem F as the ability to learn tasks sequentially, while optimizing the performance across
the entire distribution of tasks D. The neural network fθ(x) with learnable parameters
θ attempts to solve this problem without suffering severe performance loss on previously
learned tasks while learning new ones. Formally, we consider the distribution of tasks D =
{T1,T2...TN} for N ∈ Z+, wherein each task Tk is a set (Xk,Yk) of ordered pairs of input
data points and their corresponding class labels. Performance on the problem F is evalu-
ated by first training the network on the tasks {Ti}, i ∈ [1, k] sequentially, then measuring
the mean performance Ψ(D) ≡ µ({ψ(T1), ψ(T2), ..., ψ(Tk)}), where ψ(Tk) represents the
performance on task Tk. The objective is to learn a mapping fθ : X → Y that maximizes
the performance across all the samples seen throughout the lifetime.

Learning framework with regularization primitives

In the proposed framework for continual learning, we consider a credit assignment strategy
that is parameterized by two sets of weight parameters (θ), namely the forward weights θf
and backward weights θb. The net loss L in the model is defined by the sum of a global loss
function G for θf and a local layer-wise regularization function P for θb,

L(θf , θb) = G(θf ) + P(θb) (1)

As shown in Eq. 1, every training step consists of two sub-parts: i) updating the forward
weights using the error signal transported via the backward weights (similar to feedback
alignment), and ii) updating the backward weights as a function of the primitives. These
primitives can be combined to derive different local and non-local learning rules that impact
the dynamics of the backward weights. These primitives, for any layer l are derived as a
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function of the backward weights Bl ∈ θb, the forward weights Wl ∈ θf , forward activation
of the layer al and the forward activations of the next layer al+1. In this scenario, the
forward weights are outgoing while the backward weights are incoming to a layer. Based on
the parameters being used, the primitives define the locality of the learning rules. We follow
the definitions proposed in (Whittington and Bogacz, 2017) to determine the locality of a
primitive, wherein a) local computation is defined as those which involve synaptic weights
acting on their associated inputs and b) local plasticity implies that modifications to weights
depend only on the pre- and post-synaptic activations.

There are multiple primitives which can be both local and non-local in nature, as intro-
duced in (Akrout et al., 2019; Kunin et al., 2020).

• Decay primitive (Pdecayl ) - The decay primitive focuses on penalizing the euclidean
norm of the backward weights (Bl). The primitive is represented as 1

2 ||Bl||
2. As

a result, while taking the derivative of this primitive with respect to the backward
weights gives Bl.

• Amp Primitive (Pampl ) - The amp primitive encourages the alignment of the pre-
synaptic activations (al) with the backward reconstruction (Blal+1). The primitive is
represented by the negative trace of inner product of the activations, with the recon-
struction as −tr(aTl Blal+1). The update of the backward weight using this primitive
is Hebbian in nature, similar to the rule presented in weight mirror (Akrout et al.,
2019).

• Null primitive (Pnulll ) - The null primitive applies a Euclidean norm penalty on the
backward reconstruction of the pre-synaptic activations. The null primitive is rep-
resented by 1

2 ||Blal+1||2, thereby adding sparsity to the layer wise activity. The
derivative sums to Blal+1a

T
l+1 thereby increasing the separability of the activations by

imposing a quadratic penalty of activations.

• Sparse primitive (Psparsel ) - The sparse primitive penalizes the Euclidean norm of the
alternative construction of the post-synaptic activations by taking a product of the
pre-synaptic activations with the backward weights ( 1

2 ||alBl||
2). Unlike the aforemen-

tioned primitives, this one is non-local in nature since the connections from l+1 layer
to its predecessor cannot act on al.

• Self primitive (Pselfl ) - The self primitive aligns the forward and backward weights by
directly promoting their inner product (−tr(BlWl)). The update directly subtracts
the forward weights (−Wl) from the backward weights, thereby attempting to increase
the orthogonality with respect to each other. This primitive is also non-local in nature
since the assumption is that the gradient of backward weights can directly access the
forward weights.

We can derive different learning and credit assignment strategies through a linear com-
bination of the aforementioned primitives. When considering these primitives in the context
of regularization-based continual learning mechanisms, we can observe that alignments of
either activations or weights can form strong correlations with the importance measurement
and penalizing techniques.
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Alignment based local and non-local learning

The linear combination of the primitives addresses instability issues with singular update
mechanisms such as Hebbian update observed in Pampl , or the direct application of forward

weight penalty in Pselfl . Therefore, these primitives are combined to form a set of local
and non-local learning rules that can be used as alternatives to backpropagation. More-
over, these combinations include credit assignment techniques that encompass both local
and global updates in the network, which can benefit continual learning. Although multi-
ple combinations of these primitives are possible, three of those combinations which focus
either on aligning activations, weights or representations work effectively in bridging the
performance gap with backpropagation.

Information Alignment (IA) : This is a local learning rule defined by the combination
of three local primitives.

(2)PIA =
∑

l∈layers

(
β1(− tr(aTl Blal+1)) + β2(

1

2
||Bl||2) + β3(

1

2
||Blal+1||2)

)

where β1, β2, β3 represent tunable parameters. The gradient of PIA is proportional to the
gradient of a quadratically regularized linear autoencoder (Kunin et al., 2019). The autoen-
coder can be represented by 1

2 ||al − BlWlal||2+β2
2 (||Wl||2+||Bl||2), and the gradient with

respect to Bl, attempts to achieve symmetry of the encoder and the decoder between the
forward and the backward construction of the pre-synaptic activation al for a given layer
l. The information alignment rule is local in nature and captures layer-specific features
without high instability, but in deeper networks, it is unable to capture downstream de-
pendencies leading to a drop in performance on complex tasks. However, in a continual
learning context, the layer specific features can be compartmentalized to improve separa-
bility of task-specific representations, which could help improve performance in gating or
sparsity based approaches (Masse et al., 2018).

Symmetric Alignment (SA) : It is defined by a combination of the self and decay
primitives.

(3)PSA =
∑

l∈layers

(
α1(

1

2
||Bl||2) + α2(− tr(BlWl))

)

The gradient of PSA is proportional to the gradient with respect to Bl of 1
2 ||Wl−Bl|| and

thereby encourages the symmetry of weights. Despite being non-local in nature, symmetric
alignment still mitigates the need for instantaneous weight transport. It effectively opti-
mizes the framework of decoupled forward-backward weight updates, wherein the backward
weights are eventually encouraged to become the transpose of the forward counterparts.
Moreover, aligning based on the weights can be critical in identification of importance pa-
rameters for several weight regularization-based methods for continual learning.

Activation Alignment (AA) : This rule is defined by the sum of amp and sparse
primitives.

(4)PAA =
∑

l∈layers

(
γ1(− tr(aTl Blal+1)) + γ2(

1

2
||alBl||2)

)
,
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where γ1 and γ2 are tunable parameters. When γ1 = γ2, and al+1 = Wlal, then the
gradient of PAA is proportional to the gradient with respect to Bl of 1

2 ||Wlal − BT
l al||2.

This update mechanism encourages the alignment of the activations, i.e. the post-synaptic
forward activations of layer l with the pre-synaptic backward activations. This function,
similar to SA is non-local in nature and explicitly imposes the backward weights to align to
the transpose of forward weights. However, the optimization based on the activations can
play an important role in increasing the separability of important and unimportant neurons
for neuron-activation based regularization techniques.

These learning mechanisms operate on a principle of “weight estimation” avoiding in-
stantaneous weight transport required in backpropagation. Additionally, these weight es-
timation techniques are observed to be more robust to noisy updates in comparison to
approaches using backpropagation (Guerguiev et al., 2019). The next section covers how
these mechanisms can be incorporated in the context of continual learning and how the
primitives in presence of noise can help in achieving robust continual learning.

Continual Learning strategies with alignment

The weight estimation alignment techniques presented above add a two-factor loss to the
model (shown in Eq. 1, with the global loss modifying the forward weights and the layer-
specific loss updating the backward weights. In the context of continual learning, with
a focus on regularization-based techniques, an additional loss is added to the model to
regularize synaptic updates based on task-specific information. The net loss across the
entire distribution of tasks D can thereby be modelled by

LD(θ) =
N−1∑
t=1

(L(θtf , θ
t
b) + Lreg(θt)) (5)

With alignment-based learning mechanisms, the regularization-based schemes for con-
tinual learning can be applied to either θf , θb, or even both. In this manuscript, we evaluate
these rules as the base learning mechanism for multiple weight and neuron regularization
based approaches. Moreover, we employ these learning mechanisms with replay-based ap-
proaches as a test for generalizability.

Regularization mechanisms. We evaluate these rules as the base learning method for
multiple weight and neuron-based regularization mechanisms for continual learning. We
select multiple regularization mechanisms, namely 1) online Elastic Weight Consolidation
(oEWC) (Schwarz et al., 2018) that applies a quadratic penalty term for each previously
learned task, whereby each task’s term penalizes the parameters for how different they are
compared to their value directly after finishing the training on that task; 2) Synaptic In-
telligence (SI) (Zenke et al., 2017) that consists of only one quadratic term that penalizes
changes to important parameters which are identified by tracking each synapse’s credit
assignment during the task. The importance parameter is measured by computing the
per parameter contribution to the change of loss for the current task and thus strongly
contributing parameters are heavily penalized in subsequent tasks; 3) Learning without
Forgetting (LwF) (Li, 2017) is a distillation-based approach towards continual learning,
wherein previous model outputs are used as soft labels for previous tasks; 4) Stochastic
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Synapses (SS) (Schug. Simon, 2020) is a regularization approach that implements Bernoulli
transmission probabilities and magnitudes with synapses to measure their importance and
applies a regularization factor based on the probability factor; 5) Uncertainty-regularized
continual learning (UCL) (Jung et al., 2020) is a neuron importance based regularization
mechanisms. The importance is measured by means of an ‘uncertainty’ factor that is com-
puted from the variability during training of each neuron’s incoming weights. The idea is
that weights that are important for a task tend to vary less during training. Thus, a neu-
ron’s importance for a task can be measured based on the stability of its incoming weights
during training of that task; 6) Neuron state-dependent mechanisms for continual learning
(NEO) (Daram and Kudithipudi, 2023) is a neuron importance based mechanism coupled
with state-dependent selective learning rules to mitigate catastrophic forgetting.

Replay mechanisms. For replay-based schemes, we select: 1) Episodic Replay (ER)
(Chaudhry et al., 2019) which uses random sampling for retrieval from memory and a
reservoir sampling technique with a ring buffer to update the replay memory. 2) Averaged
Gradient Episodic Memory (A-GEM) (Chaudhry et al., 2018) uses episodic memory as an
optimization constraint to avoid catastrophic forgetting. The sample handling of A-GEM
avoids solving a quadratic optimization problem for retrieval of samples in the buffer and,
instead uses the mean gradient of such samples from the buffer. 2) iCaRL (Rebuffi et al.,
2017) uses a neural network for feature extraction and performs classification based on a
nearest-class-mean rule, where the class means is retrieved from stored data with a special
form of distillation. 3) Gradient-based Sample Selection (GSS) (Aljundi et al., 2019) is a
sample selection strategy for a setup without task boundaries or at least knowledge about
these. Each seen sample is regarded as an individual constraint, to which every following
sample must be compatible. Sample selection in this context is identical to a constraint
reduction problem, which is solved by a greedy strategy. This strategy selects n random
samples from the buffer and calculates the cosine-similarity between the gradient of the
current sample and the gradients of the selected samples.

4. Results and Discussion

The following section will cover the performance and analysis of the alignment-based rules
on different continual learning benchmarks in both task-aware and task-agnostic scenar-
ios. We evaluate on three scenarios, i.e., task-incremental, domain-incremental and class-
incremental (van de Ven and Tolias, 2019). In the case of task-incremental learning (Task-
IL), the model is aware of the task identity during training and inference, whereas in domain-
incremental learning (Domain-IL) scenario, tasks share the same output layer while the
model is unaware of task identity. And for class-incremental learning (Class-IL), it expands
upon Domain-IL scenario, wherein the output layer is not shared between tasks and the
output head increases with the number of tasks.

Datasets and Tasks

To study the characteristics of catastrophic forgetting with alignment based rules, we define
experiments on extensively adopted continual learning benchmarks. We evaluate on both
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Table 1: Comparison of mean accuracy (MA%) of regularization mechanisms on
Domain-IL and Task-IL scenarios for the Split MNIST dataset

Method Domain-IL(%) Task-IL (%)

Baselines
Non-CL

SGD 61.23± 0.66 84.32± 0.99
IA 60.62± 0.11 83.82± 1.20
AA 63.32± 0.48 85.47± 0.56
SA 62.65± 0.26 84.24± 0.85

Baselines
CL

oEWC 65.42± 1.6 99.12± 0.11
SI 65.36± 1.57 99.09± 0.15
LwF 71.50± 1.63 99.57± 0.02

SS* 82.9± 0.01 -
NEO 78.14± 2.23 99.04± 0.14
UCL 69.72± 2.53 99.32± 0.05

Alignment
Information

oEWC + IA 63.28± 2.43 98.15± 0.46
SI + IA 64.56± 1.24 98.34± 0.26
LwF + IA 68.82± 1.63 98.22± 0.32
SS + IA 80.11± 0.54 -
NEO + IA 76.92± 1.37 98.18± 0.45
UCL + IA 66.78± 3.10 98.02± 0.66

Alignment
Symmetric

oEWC + SA 66.13± 0.88 99.10± 0.08
SI + SA 65.30± 1.35 99.11± 0.04
LwF + SA 70.22± 0.94 99.14± 0.01
SS + SA 82.45± 0.14 -
NEO + SA 77.69± 1.08 99.02± 0.11
UCL + SA 70.00± 1.44 99.26± 0.04

Alignment
Activation

oEWC + AA 64.69± 0.86 98.74± 0.23
SI + AA 64.77± 1.57 99.01± 0.15
LwF + AA 69.93± 1.26 98.89± 0.21
SS + AA 83.3± 0.05 -
NEO + AA 79.9± 1.05 99.19± 0.04
UCL + AA 69.72± 2.53 99.32± 0.05

* SS cannot leverage task-awareness, and therefore is missing values in
the task-IL column.

Table 2: Comparison of mean accuracy (MA%) of continual learning mechanisms on Class-
IL scenarios for the Split CIFAR-10 and Split CIFAR-100 datasets

Method Split CIFAR-10 Split CIFAR-100

SGD(%) IA (%) SA(%) AA (%) SGD(%) IA (%) SA(%) AA (%)

Mechanisms
Regularization

oEWC 19.49± 0.12 19.12± 1.23 19.84 ± 0.08 19.37± 0.16 8.12± 0.35 7.36± 0.74 8.64 ± 0.27 8.05± 0.42
SI 19.48± 0.17 19.46± 0.22 20.02 ± 0.13 19.42± 0.21 8.10± 0.24 6.97± 0.72 8.32 ± 0.13 8.22± 0.45
LwF 19.61 ± 0.05 18.10± 1.63 19.23± 0.50 18.84± 0.77 15.93 ± 0.87 13.22± 1.49 14.72± 0.25 15.04± 0.62
SS 28.13± 0.04 29.22 ± 0.09 28.01± 0.11 28.87± 0.21 9.82± 0.16 9.68± 0.28 10.21 ± 0.36 9.88± 0.64
NEO 25.61± 0.05 23.31± 1.03 24.95± 0.09 27.72 ± 0.35 8.42± 0.12 6.20± 0.42 8.13± 0.18 8.48 ± 0.02
UCL 17.63± 0.08 15.85± 0.58 18.04 ± 0.12 17.77± 0.04 7.35± 0.18 7.04± 0.18 7.86 ± 0.07 7.22± 0.13

Mechanisms
Replay

ER 44.79 ± 1.86 41.26± 2.45 43.48± 0.62 42.10± 1.10 37.57± 0.21 32.08± 2.04 38.54 ± 0.12 37.23± 0.95
iCARL 47.55 ± 3.95 43.16± 2.03 45.80± 1.20 46.62± 0.47 37.83 ± 0.21 35.50± 1.22 37.04± 0.18 36.45± 1.39
A-GEM 22.67± 0.57 20.72± 0.89 21.90± 0.17 23.04 ± 0.10 20.38± 1.45 19.15± 1.88 21.87± 0.54 22.70 ± 0.05
GSS 49.73± 4.78 45.26± 2.15 50.10 ± 1.63 48.20± 2.78 40.20± 1.40 38.16± 0.92 41.36 ± 0.88 39.44± 0.45

task aware and agnostic scenarios on the Split MNIST, Split CIFAR-10 and Split CIFAR-100
datasets.

Split MNIST task consists of splitting the standard ten-class image classification of
MNIST digits into five 2-class classification tasks. The model incrementally sees the five
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Table 3: Comparison of mean accuracy (MA%) of continual learning mechanisms on Task-
IL scenarios for the Split CIFAR-10 and Split CIFAR-100 datasets

Method Split CIFAR-10 Split CIFAR-100

SGD(%) IA (%) SA(%) AA (%) SGD(%) IA (%) SA(%) AA (%)

Mechanisms
Regularization

oEWC 85.78± 1.2 81.26± 3.39 86.45 ± 0.74 85.83± 0.50 62.86± 1.70 59.23± 4.20 63.37 ± 0.31 63.24± 0.45
SI 85.61± 1.51 83.46± 1.22 88.10 ± 0.54 87.42± 1.36 60.74± 0.39 59.88± 0.75 61.76 ± 0.39 60.20± 1.16
LwF 88.42 ± 0.68 84.34± 2.75 87.68± 1.12 87.38± 1.20 68.28 ± 1.19 65.30± 3.24 67.20± 0.64 67.47± 1.34
NEO 86.4± 1.74 83.52± 1.43 85.50± 1.10 88.20 ± 1.85 58.36± 1.82 55.21± 1.23 57.40± 0.68 59.12 ± 0.77
UCL 86.72 ± 1.65 84.04± 2.20 85.28± 1.36 86.37± 1.40 63.62± 2.13 61.03± 3.21 63.85 ± 2.13 63.62± 0.80

Mechanisms
Replay

ER 91.19± 0.94 87.70± 2.85 90.04± 1.25 91.74 ± 1.63 68.43± 0.24 66.20± 1.16 67.50± 0.08 68.89 ± 0.15
iCARL 88.99 ± 2.13 84.57± 0.97 87.20± 0.53 87.03± 0.92 67.23± 1.75 64.50± 0.91 67.04± 0.71 67.45 ± 0.59
A-GEM 83.88± 1.49 81.16± 2.35 83.92 ± 1.18 82.18± 1.45 61.35± 1.27 60.33± 2.65 61.55± 1.04 62.70 ± 1.01
GSS 88.80 ± 2.89 87.12± 2.12 88.44± 0.94 88.29± 1.12 69.57± 1.68 66.59± 1.48 69.03± 0.36 70.20 ± 0.25

tasks over time. We evaluate on the MNIST dataset for Task-IL and Domain-IL scenarios
of continual learning.

Split CIFAR-10 task is analogous to the Split-MNIST task. However, we evaluate this
task on Task-IL and Class-IL scenarios only.

Split CIFAR-100 task consists of 100 classes, which could be split into either 20 tasks
of 5 classes each or 10 tasks of 10 classes each. Our construction of this task uses the latter
configuration of 10 tasks (Chen et al., 2020).

For the Split MNIST task, we use a multilayer perceptron with two layers of 400 neurons
each. As for the Split CIFAR-10 and Split CIFAR-100 task, we use a ResNet-18 architecture
with an additional final classifier layer.

Evaluating learning rules

We evaluate the learning rules on two different architectures based on the datasets. Table
1 shows the mean accuracy of the neuron and weight regularization models on the Split
MNIST task for Domain-IL and Task-IL scenarios. We observe that for the non-CL base-
lines, the activation alignment learning rule performs consistently better across both task
scenarios. The gradient of AA, as shown in Eq. 4, attempts to align the layer-wise acti-
vation response, which in turn impacts the representational similarity across tasks. This
preservation of similarity leads to lower forgetting in the network. While evaluating with
continual learning models, fully local information alignment is not able to perform in com-
parison to SGD and other non-local alignment rules. No singular alignment rule works
best across the multiple regularization mechanisms and network models. For instance,
online-EWC, SI, and UCL, which rely on synapse dynamics (importance measurement de-
pendent on the movement in θf across tasks and the shift in their gradients across tasks),
perform well with the symmetric alignment rule, which primarily encourages aligning the
backward and forward weights while training. On the other hand, methods like NEO and
SS, which primarily rely on activation-based importance, perform better under the con-
straints of the activation-alignment learning rule. LwF, which utilizes soft labels with a
distillation loss, performs better with backpropagation itself. This observation points us
towards the potential challenge of alignment-based learning mechanisms with distillation.
However, consistently better performance on the Split MNIST problem was achieved when
alignment-based rules were used.
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One problem when considering alignment-based mechanisms is their metaparameter
stability and baseline performance while scaling to complex tasks (Sanfiz and Akrout,
2021). Therefore, for the next set of experiments, we evaluate the CL algorithms (including
both regularization and replay-based approaches) on Split CIFAR-10 and Split CIFAR-100
datasets with both Task-IL and Class-IL scenarios. Tables 2 and 3 demonstrate the mean
accuracy of the aforementioned regularization and replay-based models with alignment-
based mechanisms. We notice that as the complexity of the model and task increased, the
purely local Information Alignment learning rule observed a higher drop in performance.
This can be attributed to the implicit symmetry of weights not being able to generate pseu-
dogradients as close to the exact ones. However, both non-local learning rules encourage
symmetry, and both performed at least as well as backpropagation for complex tasks. Even
in these scenarios, the correlation between the performance of regularization mechanisms is
analogous to the behavior shown in the Split MNIST task. The replay mechanisms, on the
other hand, did not show any noticeable improvement in performance when coupled with
non-local alignment rules. The benefits of these rules with replay are demonstrated when
training with noisy perturbations in weight updates. The next section addresses the robust-
ness and variance analysis of the proposed learning rules in both task-aware and agnostic
scenarios.
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(a) Task-IL scenario
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Figure 1: Mean accuracy of the continual learning mechanisms on the Split CIFAR-10
dataset in (a) task-IL scenarios and (b) task-agnostic scenarios. The models were trained
with and without noise added to the gradients. The log variance of applied Gaussian noise
was set to -5. Models trained using Symmetric Alignment are observed to be more robust
than backpropagation.

Robustness Analysis

As a proxy to determine our conclusions about the robustness of these rules under the
context of continual learning, we model this uncertainty by adding Gaussian noise to the
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Figure 2: Visualization of the representational similarity across different stages using
ResNet-18 as the prototypical model for different learning scenarios. The y-axis repre-
sents the CKA score between activations of block of convolutions (stages) before and after
training on the second task. In general, both activation and symmetric alignment enable
better preservation of representations from the prior task. Symmetric alignment with weight
regularization mechanisms such as oEWC show better retention capabilities in deeper layers.
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backward updates during learning. We modify the update rule by,

∆θb ∝
∂P
∂θb

+N (0, σ2) (6)

The forward weights (∆θf ∝ ∇̃G) change based on the modification of the backward
weights. We add similar noise to the gradients for backpropagation as well. Figure 1, shows
the performance of the CL algorithms on Split CIFAR-10 benchmark with the log variance
of Gaussian noise (σ2) at -5. It can be seen that Symmetric alignment is more robust than
backpropagation and other rules towards noisy updates. Prior work has shown how noise
in the presence of spiking discontinuities was useful for weight estimation (Guerguiev et al.,
2019). This behavior was translated to rate coded networks as well. Therefore, employing
pseudogradients from weight estimation techniques with noisy updates leads to increased
robust learning in comparison to using exact noisy gradients.

Representational Variance Analysis

In this section, we investigate the changes in semantic representations of the activations
in the network while training sequentially. To understand these properties, we utilize the
Centered Kernel Alignment metric proposed in (Kornblith et al., 2019). This metric mea-
sures the similarity between two representations of the same dataset which is invariant to
orthogonal transformation. For instance, given the data from a task Tk with n examples,
we compare two representations H and S, with mh and ms features such that. H ∈ Rn×mh

and S ∈ Rn×ms . In this case the size of features is the same i.e. mh = ms, since we
compare features from the same layers in the network. The CKA similarity between two
representations is given by,

CKA(H,S) =
||HTS||

||HTH||2F ||STS||2F
(7)

In our investigation, we measure the CKA similarity between representations of the
same data across different tasks, i.e H represents the layer activations for task k and S
represents the layer activations for task k + 1. Figure 2 compares the CKA similarity for
CL algorithms trained using the alignment learning rules and backpropagation. The lower
layers in the network do not change much while training later tasks, however the major
change is observed in the deeper layers. In general, those with higher representational sim-
ilarity demonstrate better capabilities in preserving previous knowledge, thereby showing
an improved response to catastrophic forgetting. It can be noted that the CKA similarity
is higher for the alignment based mechanisms, demonstrating the impact of local inter-
actions towards learning tasks sequentially. These interactions work in conjunction with
importance measurement techniques to mitigate forgetting. Moreover, interpolating this
similarity analysis shows the efficacy of the learning algorithms in the context of continual
learning.

5. Conclusion

In this paper, we investigated the role of multiple alignment based learning rules for contin-
ual learning. We raise a question regarding why should alignment mechanisms be employed
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in lieu of backpropagation? This concern is addressed due to its two-fold benefits. One,
there is a positive correlation between the local primitives and the importance measure-
ment techniques, making them viable for exploring CL models that leverage locality. We
show that the layer-wise alignment of weights, activations or representations can benefit
synapse or neuron regularization mechanisms for alleviating catastrophic forgetting. Two,
the decoupled loss function with weight estimation techniques is observed to be more robust
to noise, which is a necessary feature for continual learning. We observe that employing
alignment-based rules instead of backpropagation enhances the models’ resilience to noisy
updates. By using representational similarity techniques, we demonstrate how the local
regularization primitives are better at preserving prior tasks’ knowledge. Overall, this work
provides an insight into the potential benefits and limitations of biologically plausible alter-
natives to backpropagation that are generalizable across several continual learning models.
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