2025 IEEE 22nd International Conference on Software Architecture (ICSA) | 979-8-3315-2090-8/25/$31.00 ©2025 IEEE | DOI: 10.1109/ICSA65012.2025.00016

2025 IEEE 22nd International Conference on Software Architecture (ICSA)

Architecture and Performance Anti-patterns
Correlation 1n Microservice Architectures

Alberto Avritzer Andrea Janes
eSulabSolutions Inc.
Princeton (NJ), USA

beto@esulabsolutions.com

Bolzano, Italy
ajanes @unibz.it

Yuanfang Cai

Drexel University
Philadelphia, USA
yfcai@cs.drexel.edu

Abstract—Microservice architecture design requires the ar-
chitect to meet the needs of multiple stakeholders and to
address their needs for maintainability, scalability, and avail-
ability. In the microservice architecture context, a compre-
hensive performance and scalability assessment is a dynamic
activity, which is focused on the detection of service level
metric deviations from objectives using a defined operational
profile. Root cause analysis is focused on the identification
of the activated microservice components given the defined
load profile. Therefore, performance issues are identified by
detecting dynamic deviations from the expected behaviors of
the service level metric.

In contrast, microservice architecture assessment focus is on
identifying implicit relations among microservice components.
Architecture anti-patterns are identified by detecting devia-
tions from the defined formal design patterns. As the ultimate
objective of microservice architecture design is to build high-
quality applications it would be expected that architecture
refactoring based on the removal of architecture anti-patterns
will result in meeting stakeholder needs of better scalability
and availability.

In this paper we present an empirical assessment of
architecture anti-pattern detection in combination with the
identification of performance issues using two state of the
art tools: DV8 for architecture and PPTAM for performance.
We make use of Train Ticket, i.e., a benchmark microservice
system, and we observed the co-occurrence of architectural
(Clique) and performance (Blob) anti-patterns, noting that
high coupling shows much worse performance scores. We
have found strong correlation between the normalized distance
performance metric and architecture coupling values using
several similarity metrics. Our empirical results show that
operational profile based performance testing and analysis can
be used to help prioritize architecture refactoring.

Index Terms—Microservice architecture, Performance eval-
uation, Antipattern detection

I. INTRODUCTION

Microservice architecture design structures an application
as a collection of small autonomous services with the objec-
tive of enhancing development practices and maintainability.
It is a complex distributed activity that evaluates archi-
tecture alternatives for data management, data consistency,
communication style, service orchestration, etc. In addition,
horizontal and vertical microservice scaling strategies are
used to react to changes in workload. These microservice
architecture design choices impact the application’s perfor-
mance and scalability.

Scalability can be characterized as architectural structure
scalability or system load scalability. A system architecture

2835-7043/25/$31.00 ©2025 IEEE
DOI 10.1109/ICSA65012.2025.00016

Daniel Sadoc Menasché
Federal University of Rio de Janeiro (UFRJ)
Rio de Janeiro, Brazil
sadoc@dcc.ufrj.br

60

Catia Trubiani Helena Rodrigues

Free University of Bozen-Bolzano Gran Sasso Science Institute Universidade do Minho

L’ Aquila, Italy
catia.trubiani @gssi.it

Braga, Portugal
helena@dsi.uminho.pt

Alvaro José Abreu de Oliveira
Universidade do Minho
Braga, Portugal
a88001 @alunos.uminho.pt

is structurally scalable if its architecture design does not
restrict the number of objects it can hold simultaneously
(e.g., connections, transactions, or users) [1]. In contrast,
a system is considered load scalable if it is able to sat-
isfy performance requirements when the offered load is
increased [2]. In addition, elastic scaling is proposed to
increase the architecture structure in response to an increase
in load [3].

A performance and scalability end-to-end assessment ap-
proach of microservice architectures entails the application
of expertise in the following domains: (1) the definition of
the service-level metric objective, (2) the high-level model
definition of the system being evaluated, (3) the approach
used for automated load generation, (4) the operational
profile definition of load types and their probability of
occurrence. These are black-box customer focused activ-
ities that are complemented by two architecture focused
activities: (5) the evaluation of microservice architecture
alternatives, and (6) the identification of the architecture
microservice resources activated in the performance and
scalability assessment. This scalability assessment frame-
work is illustrated in Figure 1.

The architecture and performance assessment of a mi-
croservice application can trigger architecture and perfor-
mance anti-patterns. However, since architecture design
rules are mostly structural and static, and performance as-
sessment rules are mostly dynamic, in this paper we address
the following research question: “Is there a correlation
between architectural and performance issues?”

By answering this research question, we intend to identify
which aspects need further research and whether the results
already achieved provide a consistent answer on the impact
the microservice architecture has on system performance
and scalability.

The key contribution of this paper is the empirical
assessment of the correlation between architecture and
performance issues.

The paper is structured as follows. Section II presents an
overview of the related work. In Section III, we provide
a detailed definition of the performance and scalability
analysis framework for the assessment of microservice
architectures. Section IV presents the list of software
performance anti-patterns we selected to describe the iden-
tified performance and scalability bottlenecks. Section V

describes the architecture anti-patterns detection framework,
while Section VI describes the performance and scalability
anti-pattern detection framework. Section VII presents the
empirical evaluation of the scalability assessment frame-
work. Section VIII presents the identified threats to validity.
Finally, Section IX contains our conclusions and guidance
for future research.

II. RELATED WORK
A. Software Performance Anti-patterns

Software performance anti-patterns detection has been
investigated looking at different software systems’ abstrac-
tions, such as the architectural models, the source code anal-
ysis, and the data analysis of performance testing results.

1) Architectural models: In [4] a first-order logic for-
malization of software performance anti-patterns is pro-
vided, and its associate engine is used to detect anti-
patterns in UML models enriched with MARTE profile for
performance-related knowledge. In [5] an approach for the
automated detection and solution of software performance
anti-patterns in Palladio architectural models was presented.
The experimentation showed an observed performance im-
provement of up to 50% in a case study, thus illustrating the
effectiveness of performance anti-pattern solutions. In [6] a
model-driven approach to detect performance anti-patterns
in Architecture Description Languages (ADL) is presented,
and experimental results give evidence of the anti-patterns’
benefits in ADL-based software architectures. In [7] soft-
ware performance anti-patterns are adopted to build trace-
ability links between architectural models and performance
analysis results, thus supporting software architects in the
identification of the most critical (from a performance-based
perspective) design elements. In [8] the authors introduced
a tool to automatically detect software performance anti-
patterns in UML models.

2) Source code analysis: In [9] a framework for the auto-
mated detection of seven software performance anti-patterns
in Java-based applications was presented. Such framework
exploits both static and dynamic information of software
systems, thus assessing its accuracy in the detection of the
anti-patterns. In the literature, many approaches have been
defined to detect code smells [10], and several investigations
are performed, e.g., the analysis of (i) inter-smell interac-
tions to understand their impact [11] and (ii) sequences of
different types of bad smells to improve both the detection
and the solution [12]. Static and dynamic approaches differ
from detecting performance issues at different stages, i.e.,
during the development and operational phases, respectively.
The trade-off is between effort costs and accuracy, given
that design changes are usually cheaper, whereas runtime
information can probably contribute to capture a larger set
of performance issues [13].

3) Data analysis of performance testing results: In [14]
the authors developed an automated process for software
performance anti-pattern detection that was based on data
derived from performance testing and profiling data. In [15]
a methodology was introduced for Software Performance
Anti-pattern (SPA) characterization and detection, which
applied SPA statistical characterization and multivariate
analysis based on performance testing results. The method-
ology was applied to a large telecom system and was able to
automatically identify top five software bottleneck services.

61

B. Architecture Anti-Patterns

Researchers have proposed various design and architec-
ture smell definitions and detection techniques [16, 17,
18, 19]. Mo et al. [20] introduce a set of high-level
issues called architecture anti-patterns, empirically shown
to indicate excessive maintenance costs. Defined through
Baldwin and Clark’s design rule theory [21] and established
design principles, these anti-patterns aim to detect influential
abstractions that can decouple systems into independent
modules. Researchers study anti-patterns due to their proven
applicability in industry and their use of co-change history,
which helps identify design debt with real maintenance
penalties [22, 23, 24, 25, 26]. DV8, the supporting tool,
assesses the maintenance cost of each anti-pattern instance
by file count, file percentage, churn, and churn percent-
age, allowing for severity assessment. These anti-patterns
leverage co-change history, which helps identify real design
debt with added maintenance costs [27]. The DVS8 [28]
tool reports each anti-pattern’s maintenance impact by file
count, file percentage, churn, and churn percentage, enabling
severity assessment.

Researchers have proposed a suite of anti-patterns specific
to microservices [29, 30, 31]. In particular, Taibi et al. [29,
30] summarized a taxonomy of microservices, including
technical and organizational anti-patterns. Technical anti-
patterns are categorized into two main types:

« Internal anti-patterns: Primarily focus on implementa-

tion details, such as API versioning.

« Communication anti-patterns: Most relevant to this
work, including Cyclic Dependency, ESB Usage, No
API-Gateway, Shared Libraries, and Timeout.

These anti-patterns currently lack a unified representation,
making it unclear which are most correlated with perfor-
mance anti-patterns.

Fang et al. [32] first presented an approach that extracts
and aggregates different types of dependencies into one
design structure matrix model, and defined additional types
of anti-patterns concerning distributed systems in general,
including retiring components, data coupling, unstable API,
etc. In this paper, we use this unified model to visualize
multiple types of architecture anti-patterns and analyze their
relations with performance anti-patterns.

C. Correlation between Performance and Architecture Anti-
patterns

In [33] the authors model and analyze seven design
patterns that industrial practitioners indicate as relevant for
the performance of microservice systems. Table I briefly
reports the main findings of the investigated architectural
patterns, so that software architects are informed of possible
system bottlenecks. A follow-up work [34] assesses the per-
formance evaluation of three design patterns (i.e., Gateway
Aggregation, Gateway offloading, and Pipes and Filters)
by building an experimental environment and collecting
real performance measurements. Overall, the experimental
results confirm the performance variations observed by the
previous theoretical performance estimations, even if the
absolute values of real measurements w.r.t. model-based pre-
dictions can deviate. Such a deviation can be motivated by
the minimal/maximal load to which the system is exposed,
or the requests’ heterogeneity that impacts on a different
utilization of the system resources.

TABLE I
UNDERSTANDING THE CORRELATION BETWEEN ARCHITECTURAL
PATTERNS AND SYSTEM PERFORMANCE [33]

Architectural Performance Implications

Pattern

Anti- An adapter manages requests between different
corruption microservices. This can result in performance.
Layer pain due to the overhead of translating requests
Backends for | It avoids customizing a single backend mi-
Frontends croservice for multiple interfaces. This is a

possible performance gain since it improves the
autonomy and flexibility of the management
w.r.t. generalized backends.

Command and
Query Respon-

It separates read and update operations for a
data store microservice. This can be a perfor-

sibility Segre- | mance gain since it speeds up read and write

gation (CQORS) requests in case of no data overlap.

Gateway A gateway aggregates requests to multiple mi-

Aggregation croservices in a single inquiry. This can result
in a performance gain since communication
overhead is reduced.

Gateway It offloads common functionalities of multiple

Offloading microservices to a proxy gateway. This is a per-

formance gain since some tasks are offloaded to
the gateway.

Pipes and Fil-
ters

It decomposes a complex task (i.e., single ser-
vice) into separate elements (i.e., microservices)
that can be independently managed. This might
represent a performance gain due to the parallel
computing of separate components.

Static Content
Hosting

It deploys static content into cloud-based stor-
age microservice. This is perceived as a perfor-
mance gain since some requests are managed
more rapidly.

III. SCALABILITY ASSESSMENT FRAMEWORK

In this section, we describe the performance and scala-
bility assessment framework (PSAF) we used to identify
architecture components responsible for performance and
scalability deviations. The PSAF is illustrated in Figure 1.

The following dimensions were selected to build an end-
to-end PSAF:

1) Service Level Metric Objective (SLMO) — response
time and throughput,

High-Level Model (HLM) — queuing-theoretic analyt-
ical, simulation model, parametrization from measure-
ment of the production environment, test cases,
Operational Profile Definition (OPD) — workload
trace and automated analysis of historical data, proba-
bility of occurrence of load levels,

Automated Load Test Generation (ATCG) — opera-
tional profile sampling,

Software Architecture Assessment (SAS) — evaluates
domain metric,

Identify Architecture Component (IAC) — perfor-
mance deviations in experiments with variations.

2

3)

4)
5)
6)

Figure 1 illustrates the three key building blocks of
the performance and scalability assessment framework: 1)
Test design framework, 2) Measurement framework, and 3)
Quality assessment framework.

The test design framework consists of the high-level
model (HLM), operational profile definition (OPD), and
the automated test case generation approach (ATCG).
Parametrization from measurement of the production envi-
ronment is used as input to HLM, and workload trace and
analysis of historical data were selected as input to the OPD.

62

In addition, the probability of the occurrence of load levels
is computed by the HLM and is also used as input to the
OPD. The ATCG uses as input sampling from the OPD. The
HLM can also be used as an emulator to generate emulated
test cases.

The measurement framework produces as output the
performance and scalability assessment metrics: response
time and throughput.

The assessment framework evaluates the domain-metric
derived from empirical measurements to detect performance
deviations from the service level metric objective. These
performance deviations are used in the quality assessment
feedback process to identify microservice architecture com-
ponents that could be the root cause of these performance
deviations.

IV. PERFORMANCE ANTI-PATTERNS

The following performance anti-patterns [35, 36, 37] were
selected to investigate the correlation between architecture
(described in Section V) and performance anti-patterns:

o Application Hiccups — a transient increase in applica-
tion response time, followed by an equivalent decrease,
is termed an ‘application hiccup.” This behavior can be
triggered when periodic tasks (e.g., garbage collection)
are activated.

o Continuous Violated Requirements — can occur as a
result of the inefficient implementation of a critical
routine or third party software.

e Traffic Jam — can occur when a software bottleneck
triggers a job queue causing persistent response time
variability.

o The Stifle — manifests as the result of the execution of

multiple similar database queries.

Expensive Database Call — manifests as the result of

the execution of one long response time database query.

o Empty Semi Trucks — similar to the Stiffle it manifests
as the result of the execution of several similar shorts
requests, causing inefficient use of interface resources.

e The Blob — manifests when one god class is imple-
mented to either execute most of the required work, or
to hold most of the data.

V.

In DV8, anti-patterns can be visualized using a Design
Structure Matrix (DSM). The columns and rows of this
square matrix are labeled with the same set of elements, that
is, files, packages, or service components, in the same order,
and a marked cell indicates that the row element depends on
the column element due to certain relations. For example,
the **C2, E’’ in the cell at the intersection of the 5th
row and 18th column in Figure 5 means the seat service
calls the order service 2 times, and they share one entity.
The number on the first row, first column, and the diagonal
are the indexes of each element.

The key feature of DV is that it can integrate different
dependency types. By default, DV8 can integrate static
dependencies, e.g., call, inherit, with evolution couplings,
that is, co-change relations among files, and detect the
following history-based anti-patterns: (1) Unstable Inter-
face/API (UIF): an element with a large number of depen-
dent elements that also changes frequently with those depen-
dent files; (2) Modularity Violation Group (MVG): a group

DV8 ARCHITECTURE ANTI-PATTERNS DETECTION

Measurement Test Design
Framework Framework
AFssessmer;t : Workload " Automated Operational ! Production
R rameworx ... : <« orkloads i «<— | pad <— Profile P o
N ' 1y test . . '
:) : : Il awes Generation ™" Definition yorkesdrece SY
: Service | responsetime 1 Test Architectur [‘of historical data
Level throughput es chitectural | probabiyof !
Metric 23 |1 : engine | < Alternatives ! oot |
: : i High :
Objective Metrics ! ; I. p— Level :
AR - Deployment : ost cases Model paramsterizaton
domain metic Alternatives | analytical / simulation
todetet === Naaaaaaacccccccsccccsccccccccccccccaaa L g
et | Quality A poromance
Assessment in experiments.
L —
———————— Feedback - - - - - - - - with variations
Process

Fig. 1. Performance and scalability assessment framework

of elements that frequently co-change with structurally
unrelated peers. The higher the co-change frequency, the
stronger the coupling; and (3) Crossing (CRS) or Crossing
API: a file or service with a large number of dependent
and dependee files that also changes frequently with those
dependent and dependee files.

When the co-change information is not available, DV8
can still detect the following anti-patterns: (1) Unhealthy
Inheritance Hierarchy (UIH): a group of files with one of
the following two structures: a parent class depends on its
sub-classes, or the client of the hierarchy uses both the par-
ent and the children, which are empirically validated to be
high-maintenance [38, 20, 23, 39, 40, 24]; (2) Clique (CLQ):
a set of files or services where each file directly or indirectly
depends on every other file, and the whole file group forms a
strongly connected graph. In Figure 5, services from 4 to 24
either call each other or share entities, and thus form a clique
through these two relations; (3) Package Cycle (PKC): a pair
of mutually dependent packages, which is not applicable in
this paper. In addition, DV8 also displays the fan-in and
fan-out of each element so that a god class or an overly
complicated element can be easily detected.

To assess the heterogeneous types of dependencies within
a microservice system, in this study, we combined the
call relation and the entity-sharing relation among service
components into one DSM. Figure 5 is an example showing
all the service components involved in the scenarios shown
in Figure 4. We manually recovered the call relation and
entity sharing relation among these components, represented
these two types of dependencies into a unified JSON format,
and merged them into one DSM using DV8.

VI. IDENTIFICATION OF PERFORMANCE BOTTLENECKS

The performance and scalability assessment frame-
work, described in Section III, compares the performance
and scalability assessment metrics with the service level
metric objective to detect performance issues. These de-
tected performance issues are used by the HLM to detect
architecture components that are the root cause of perfor-
mance issues. The identification of architecture components
that are the root cause of performance problems follows the
approaches recommended in [37, 41]. In [37] the Normal-
ized Distance and slope of the performance requirement are
used to identify performance anti-patterns. In [41] response
time and throughput are tracked as a function of load to
identify resource bottlenecks.

63

The following process is used to identify bottlenecks and
performance anti-patterns:

1) Baseline architecture: use architecture analysis per
approach in [32] to reconstruct the communication
structure between and within microservices.

Baseline scalability requirement: execute the low
load performance tests to derive the scalability require-
ment: R = ¥ + 30 measured at low load.

Baseline performance: execute performance tests with
increased load to compute the Normalized Distance
(ND) of the scalability requirement, 2%, where T'
is the measured response time, and R is the scalability
requirement computed in Step 2.

Identify degrading microservices: compute the ND,
and average response time slope, as described in [37].
Correlate between architecture and performance
microservices identified as problematic: compare
microservices marked as degrading with high load
from the performance perspective in Step 3, with the
microservices detected as problematic in the baseline
architecture of Step 1.

2)

3

~

4

~

5

~

VII. EMPIRICAL EVALUATION OF THE SCALABILITY
FRAMEWORK

In this section we present the empirical evaluation of
this new framework in a production-like environment, to
assess the correlation between architecture anti-patterns and
performance anti-patterns. The approach consists of the
following six steps, as illustrated in Figure 2.

1) Reconstruct dependencies using DVS: the tool DV8 is
used to identify dependencies based on static source
code analysis. The result shows that, if only con-
sidering static relations, these services appear to be
independent of each other, as expected.

Parse microservice-to-microservice calls: Next we
identify inter-microservice calls by determining when
each microservice establishes HTTP connections to
other services, and how these services share data el-
ements among themselves.

Identification of architecture anti-patterns: based on the
results of the previous steps, through manual inspec-
tion, identify microservices with potential anti-patterns,
e.g., high coupling.

Performance tests of endpoints: as described below,
we run performance tests with increasing loads, which
identify endpoints with increasing response times.

2)

3

~

4)

Dependencies within
microservices

Reconstruct
dependencies
using DV8

f
Parse

microservice to
microservice calls

Dependencies '
1 microservices

Identification of
co-occurrences of [<
architecture anti-
patterns with
performance
issues

Software', \]/
“\ Identification of
) architecture
\ antipatterns .
J/ e Architecture
*._ antipatterns
_______ Performance tests N
of endpoints
Test 7
scenarios . \J, Microservice H
Aggregate performance :
endpoint '
...... > — :
performance to :
N microservices T :
Endpoint : :
performance J/ ' :

Architecture anti-patterns
with performance issues

Fig. 2. Empirical evaluation approach combining architecture and perfor-
mance analysis

5) Aggregate endpoint performance to microservices: we
manually associate each endpoint with its respective
microservice to evaluate the overall performance of
each microservice.

Identification of co-occurrences of architecture anti-
patterns with performance issues: we compare the
architecture of a microservice (including its commu-
nication structure to other microservices) with their
performance behavior under increasing load.

6)

The following section introduces the Train Ticket bench-
mark microservice in detail.

A. Train Ticket

Train Ticket is a containerized, microservice-based web
application benchmark, composed of over 40 microservices
implemented using modern technology stacks, as described
in [42]. In this paper, we use a forked version of the original
Train Ticket repository! since the original version seems not
to be under development anymore.

A typical interaction flow within the Train Ticket system
would execute login, booking a ticket booking and payment,
and using or canceling the ticket. Each functionality triggers
a sequence of interactions between the different microser-
vices that compose the Train Ticket system. Microservices
in Train Ticket do interact with each other and are orga-
nized into different layers depending on the dependencies
among microservices. A microservice A is dependent on

Thitps:/github.com/CUHK-SE-Groupl/train-ticket/

64

microservice B if A sends a request to B. Figure 3 depicts
the architecture of the Train Ticket system in the form of a
call graph.

For our experiments with the Train Ticket system, we
have defined the workload specification as a set of requests
that corresponds to expected user behavior when interacting
with the Train Ticket system (the system under test). This
behavior considers: logging in with the administrator and
creating a user; logging in with the user with token genera-
tion and accessing the home page; getting trip information
for departure and return data; selecting the trip and perform-
ing the booking steps: get contact info, get insurance, food
and consign options; ticket payment (if status is booked);
and collecting and using the ticket. Table II describes the
requests sent to the Train Ticket system that corresponds to
each user action. It defines the API endpoint and arguments.

In addition, Figure 4 illustrates a sequence diagram de-
picting the interactions between the microservices for ticket
booking. It illustrated service dependencies, data flow, and
the order of operations.

Our performance evaluation consisted of testing the end-
points described in Table II. We utilized the PPTAM? (Pro-
duction and Performance Testing Application Monitoring)
tool ecosystem [43]. The setup involved a containerized
deployment of the Train Ticket system on Kubernetes,
managed locally using Minikube. Minikube creates a local,
single-node Kubernetes cluster with all essential Kubernetes
components, including the API server, controller manager,
and scheduler, to provide a complete Kubernetes environ-
ment.

In this setup, each microservice and database of the Train
Ticket system was deployed as a separate Kubernetes pod,
allowing isolated runtime environments and better resource
allocation across components. This architecture enabled us
to simulate realistic interactions within a microservices
environment, where each service instance and the database
operated independently while communicating over the net-
work.

The experimental setup included two primary compo-
nents: the Drive component (PPTAM) operated on a Linux
virtual machine with 8 GB RAM and 4 logical CPUs at
2.095 GHz per core, while the Testbed component (Train
Ticket system) was deployed in the Minikube environment
on a Linux virtual machine with 64 GB RAM and 8 logical
CPUs at 2.095 GHz per core.

The approach used in this performance evaluation con-
sists of the following steps:

Experiment Generation In this step, we define the ex-
periment settings for the test case. The test cases consist
of a series of experiments, each performed according to
a load test specification and evaluated against a baseline
requirement [43]. Overall, the experiment setting aims to
simulate an user interaction flow while capturing detailed
performance metrics, with failure handling and retry logic
ensuring robustness in the test environment. The load test
specification includes the workload situation, which refers
to the automated generation of the operations described
in Table II, as well as the definition of the number of
concurrent users. In our test case, we conducted experiments
available at:

2PPTAM is an open-source software

https://github.com/pptam/pptam-tool.

project

ts-
travel-
plan-

service (5)

ts- t
route: admin-

plan- travel-
service (3) service (5)

ts- ts-
travel- travel2-
service (4)-service (4)

/4‘

I

a

Fig. 3. Train Ticket call graph

TABLE II
FUNCTIONALITIES, API ENDPOINTS AND PARAMETERS FOR TRAIN TICKET BENCHMARK.

Functionality Service Relative path from /api/vl Method Arguments

User login Users /users/login POST username: string, password: string

Create contact Contacts /contactservice/contacts POST name: string, accountld: string, documentType: int,
“documentNumber: string, phoneNumber: string

Get trip information Travel Ntravelservice/trips/left POST startPlace: string, endPlace: string, departureTime: string

Get contacts Contacts /contactservice/contacts/account/{ user_id } GET —

Get foods Food /foodservice/foods/ { date }/{ startStation }/

{ endStation }/{ tripId } GET —

Get insurance types Assurance /assuranceservice/assurances/types GET —_—

Book ticket Preserve Ipreserveservice/preserve POST accountld: string, contactsld: string, tripld: string, seat-
Type: int, date: string, from: string, to: string, assur-
ance: int, foodType: int, foodName: string, foodPrice:
double, stationName: string, storeName: string

Get last order Order Jorderservice/order/refresh POST loginld: string, enableStateQuery: boolean, enable-
TravelDateQuery: boolean, enableBoughtDateQuery:
boolean, travelDateStart: string, travelDateEnd: string,
boughtDateStart: string, boughtDateEnd: string

Pay ticket Payment /inside_pay_service/inside_payment POST orderld: string, tripld: string

Colletc ticket Execute /executeservice/execute/collected/{ orderld } GET —

Use ticket in station Execute /executeservice/execute/execute/{ orderld } GET —

with 1, 5, 10, 15, 20, and 25 concurrent users. The workload
scenario corresponding to 1 user serves as the baseline
workload for identifying the baseline requirement. Each test
ran for 20 minutes, resulting in a total testing time of 120
minutes.

Experiment execution In this step, each endpoint is tested
under the experiment settings defined in the previous step.
For each endpoint, we collected a set of performance
metrics, which will serve as the basis for calculating the
Mean Normalized Distance for each endpoint/microservice
(the results are analyzed in section VII-B). The performance
results are presented in Table III, where we provide the

average response time (E[T]), maximum response time
(Tnax), and number of failures (IV(F)). For the sake of
conciseness, in this table we report results for Test 1 (one
user), Test 3 (ten users), and Test 5 (twenty users). We report
results accounting for all tests in Figures 6 and 7.

B. Empirical Results

1) Reconstruction dependencies using DVS: DV8 was
used to analyze the Train Ticket system and to create the
initial design structure matrix. When we only consider static
relations among these service components, they appear to
be independent of one another, which is expected because

; o [eI [[T [[T [[T [T g
3 GET, fl
——|
P ————
|
wer f
il
i)
1
5 i
T 1
0o 1
E——— 1
p— =g
Fig. 4. A fragment of Sequence Diagram of the Book a Ticket scenario (POST /api/v1/preserveservice/preserve API call).
TABLE III
TRAIN TICKET PERFORMANCE RESULTS.
Relative path from /api/v1 Test 1 (1 user) Test 3 (10 users) Test 5 (20 users)
E[T] (ms) Tmax (ms) N(F) E[T] (ms) Tmax (ms) N(F) E[T] (ms) Tnax (ms) N(F)
/users/login 130.57 153.55 0 177.35 24391 0 254.81 895.99 0
/contactservice/contacts 49.33 49.33 0 31.61 54.25 0 34.21 96.42 0
[travelservice/trips/left 128.92 210.43 0 138.63 617.18 0 8864.92 349530.81 9
/contactservice/contacts/account/{user_id } 11.75 36.69 0 9.44 52.25 0 12.69 37.87 0
/foodservice/foods/{date}/

{startStation }/{endStation }/{tripId} 43.43 109.60 0 32.49 98.30 0 597.57 22289.25 0
/assuranceservice/assurances/types 9.32 29.19 0 8.00 81.40 0 10.94 62.34 0
/preserveservice/preserve 344.33 495.94 0 685.40 2699.25 0 42331.99 376227.90 34
/orderservice/order/refresh 14.49 52.30 0 20.45 292.80 0 1146.92 23150.74 0
/inside_pay_service/inside_payment 52.58 93.33 0 70.29 314.56 0 3481.73 334729.73 1
/executeservice/execute/collected/{orderId } 22.03 42.94 0 27.80 338.88 0 3707.63 335011.35 1
executeservice/execute/execute/{orderld } 21.76 48.85 0 27.36 313.79 0 5509.01 337643.53 2

these service components are containerized. But they are
not actually independent, as we will elaborate next.

2) Parse microservice-to-microservice calls: The analy-
sis of the software under test resulted in the identification
of the microservice-to-microservice call graph (see Fig. 3).

Recall that the call graph was parsed from the source code
identifying all places where microservices opened HTTP
calls to other microservices. In the graph, the number of
distinct microservices called by a specific microservice is
indicated in brackets. Microservices calling many distinctive
other microservices are depicted in red and gradually to-
wards green if they have fewer connections to other services.
The result of this step was imported by DVS8 to create a
combined DSM as shown in Fig. 5.

66

Relationship between call graph, sequence diagram,
and DSM. Figure 3 (call graph) and Figure 5 (DSM)
were generated semi-automatically and report a global
perspective towards the system, while Figure 4 (sequence
graph) was produced manually and represents an example
of local interaction flows. To produce Figure 4 we chose the
“preserve” endpoint because it was the API call that showed
more performance problems, in addition to presenting high
out-degree in Figure 3.

There is a clear relationship between Figures 3 and 5:
an edge * — y in Figure 3 corresponds to a C entry in
cell (z,y) of Figure 5, reflecting a coupling relationship
derived from the call graph. In addition, interactions shown
in Figure 4 also correspond to C entries in the DSM.

1 2 3 4 5 6 7 8

%%

ts-user-service - 1
ts-assurance-service - 2

ts-contacts-service - 3

ts-security-service - 4 4 C,E CE
ts-seat-service - 5 5 C2E E C2E
ts-admin-basic-info-service -... c4 6 E E E
ts-preserve-other-service-7 ¢ C C | C C 7 (@) o] E
ts-travel-plan-service - 8 c 8 E C3E CE
ts-food-delivery-service - 9 9 E CE E
ts-train-food-service - 10 E 10 E E
ts-station-food-service - 11 E E 11 E
ts-wait-order-service - 12 E 12 E E E E c
ts-order-other-service - 13 E E E 13 E E E E
ts-cancel-service- 14 C E C2E 14 C2E E CE
ts-rebook-service - 15 CE E C4E 15 E C4E c2 CE
ts-route-plan-service - 16 E E 16 E E E C3E
ts-admin-route-service - 17 E 17 E E E
ts-order-service - 18 E E E E E E E
ts-execute-service - 19 c2 E c2 @ E
ts-admin-travel-service - 20 E E E 20 E C4E
ts-inside-payment-service - 21 E C2E E C2E E @
ts-food-service - 22 E CE CE E E E @ CE
ts-travel-service - 23 C E E E E E E E @
ts-preserve-service-24 ¢ C C | C C E (o3 c C @
Fig. 5. DVS8 output
Conversely, E entries in Figure 5 have no direct counterpart 2.0 60 ; Q@
in Figure 3. Instead, parameter passing depicted in Figure 4 @& ©
may suggest an E relationship in Figure 5. Determining § 2
precise rules to link E entries in Figure 5 to specific £
interactions in Figure 4 remains an open challenge, as noted E
in Section VIII. 2
T 1.0
3) Identification of Architecture Anti-Patterns: To iden- E
tify architecture anti-patterns, we first extracted the call 2
relations (labeled using ’C’) among service, and analyzed §
their data coupling by investigating if two services share the =
same entities (labeled using "E’). Figure 5 displays all the
services involved in the Book a Ticket Scenario and their 0.0
relations. From this DSM, we can identify a clique formed - o mTest: v ©

by 21 services, which either call each other or share entities.
The services with circles are those listed in Table IIL
The DSM revealed that the following three services are
independent of other services: user, assurance, and
contacts. All other circled services are involved in the
clique. In particular, several services depend on a large
number of other services, such as Preserve, travel,
and order.

4) Performance Tests of Endpoints: After performing
the experiments described in Section VII-A we obtained
the average and maximum response times, the standard
deviation and the number of failures. The results for the
tests 1, 3, and 5 (1, 10, and 20 users) are reported in table
III. Figure 6 reports the Normalized Distance (calculated
as described in Sect. VI) for each experiment and endpoint.
Analyzing these results, we see that the endpoints marked as
@.53,6,D,.®, @, and show significant performance
degradation when load increases, i.e., reach a value near 2,
while the endpoint marked as (D) shows minor performance
degradation, i.e., reach a value of 1.06.

67

Fig. 6. Normalized distance

To further study the collected data, we calculated the
slope [37], which describes how much the average re-
sponse time changes over the range of utilization. Fig-
ure 7 visualizes the results for each endpoint, positioning
it on the horizontal axis on the Normalized Distance it
achieved in the last experiment, and on the vertical axis
at the slope it reached. For example, endpoint number
© (/api/vl/preserveservice/preserve), in the
last experiment, shows significant violation of the defined
performance requirement and the steepest degradation rate,
as shown by the slope of response time. Both outliers shown
in Fig. 7 (9 and also are two endpoints belonging
to microservices with the highest Coupling Values (see
Table V).

Table V illustrates the achieved Normalized Distance
values for each endpoint, the associated microservice, and

|
!
i
i
50000 |
|
|
i
40000 |
{
i
{
g i
£ 30000 |
& |
|
i
!
20000 |
|
i
10000 |
! @ ¥O)
!
! ®
0 @ @ HO)
0.0 0.5 1.0 15 2.0

Normalized Distance

Fig. 7. Slope vs Normalized Distance

TABLE 1V
LINKAGE OF ENDPOINTS TO MICROSERVICES

API Endpoint Microservice

/api/v1/executeservice/execute/execute/-
order

ts-execute-service

/api/v1/preserveservice/preserve ts-preserve-service

/api/v1/executeservice/execute/collected/- ts-execute-service

order

/api/v1/travelservice/trips/left ts-travel-service

/api/v1/inside_pay_service/inside_payment ts-inside-payment-service

/api/v1/orderservice/order/refresh ts-order-service

/api/v1/foodservice/foods/departure/- ts-food-service
shanghai/suzhou/D1345

/api/v1/assuranceservice/assurances/types

ts-assurance-service

/api/v1/users/login ts-user-service

/api/v1/contactservice/contacts/account/- ts-contacts-service

user

/api/v1/contactservice/contacts ts-contacts-service

the Coupling Value of each microservice.

We can observe that the microservice
(ts—preserve-service) implements a Blob (god
class) performance anti-pattern, because it controls the
full functionality and issues several data requests to other
microservices. This microservice had the largest slope
and Normalized Distance assessment in the performance
analysis and is also part of a clique architecture anti-pattern
identified by DV8.

5) Aggregate Endpoint Performance to Microservices:
In this step, we linked each endpoint to a microservice as
shown in Table IV.

6) Identification of the Correlation of Microservices Cou-
pling with Performance Issues: To analyze the relationship
between the Normalized Distance of endpoints (which
increases as the performance of microservices degrades)
and the Coupling Value (also referred to as the node
degree in the call graph) per microservice, we computed
multiple metrics, including Pearson correlation, Spearman
correlation, Normalized Mutual Information (NMI), and
Cosine similarity. For completeness, we briefly introduce
the considered metrics and measures in Appendix A. The
data used to compute the corelation metrics and similarity
measures is reported in Table V (see columns titled Nor-
malized Distance and Coupling Value).

68

The results of these calculations highlight key insights
into the relationship between Normalized Distance and
coupling. The Pearson correlation coefficient, valued at
0.555, indicates a moderate positive linear correlation, re-
flecting a general proportionality between the two variables.
The Spearman correlation coefficient is higher, at 0.734,
revealing a stronger monotonic relationship, suggesting that
as one variable increases, the other tends to do so con-
sistently, even if not linearly. The Normalized Mutual
Information (NMI), with a value of 0.769, quantifies the
shared information between the variables, underscoring a
significant connection. Finally, the Cosine similarity, calcu-
lated at 0.740, demonstrates a strong directional alignment
between the vectors, suggesting that Normalized Distance
and coupling share similar patterns despite differences in
magnitude.

The clique anti-pattern correlates with poor perfor-
mance. Services not involved in the Clique anti-pattern,
such as user, assurance, and contacts, exhibit min-
imum response times in the range of tens to hundreds of
milliseconds. In contrast, services affected by the Clique
demonstrate response times thousands of times greater,
highlighting significantly degraded performance. This trend
is further confirmed in Table V. Among the four elements
with the lowest Normalized Distance — indicating higher
performance — three, namely 1, 2, and 3, are those not
part of the Clique anti-pattern, providing additional evidence
of the relationship between architectural design and system
performance.

Takeaway message. Our findings suggest that as the
coupling of microservices increases, there is a tendency
for their Normalized Distance to increase, supporting the
hypothesis that architectural metrics, e.g., as captured by
the Coupling Values, are correlated with performance devi-
ations, e.g., as captured by Normalized Distance. Another
observation is that services involved in a Clique anti-pattern
perform significantly worse.

VIII. THREATS TO VALIDITY

In this work we implemented an empirical assessment to
identify correlations between performance and architecture
issues. The following threats to validity were identified.

Internal validity. This is an initial research that used only
one benchmark. Even tough our empirical assessment iden-
tified correlations between performance and architecture
issues, the results might be affected by the lack of diversity
in benchmarks and deployment architectures. We are cur-
rently extending our research by incorporating additional
benchmarks.

Construct validity. We plan to implement an automated
approach to derive correlations between performance and
architecture anti-patterns. The assessment presented in this
paper was based on expert assessment, which is difficult to
generalize.

External validity. The applicability of our results to a
more general context is limited by gaps in the automated
environment used. There is a need to integrate PPTAM
and DV8 with automated performance anti-pattern detection
tools to overcome this limitation.

TABLE V
ENDPOINTS, NORMALIZED DISTANCE, THE ASSOCIATED MICROSERVICE, AND THE RELATED COUPLING

Number API Endpoint Normalized Distance = Microservice Coupling Value
® /api/v1/executeservice/execute/execute/order 1.98 ts-execute-service 2
©® /api/v1/preserveservice/preserve 1.98 ts-preserve-service 11
@) /api/v1/executeservice/execute/collected/order 1.98 ts-execute-service 2
@ api/v1/travelservice/trips/left 1.96 ts-travel-service 4
@) /api/v1/inside_pay_service/inside_payment 1.95 ts-inside-payment-service 3
/api/v1/orderservice/order/refresh 1.95 ts-order-service 1
® /api/v1/foodservice/foods/departure/shanghai/suzhou/D1345 1.93 ts-food-service 3
©) /api/v1/assuranceservice/assurances/types 1.06 ts-assurance-service 0
@ /api/v1/users/login 091 ts-user-service 1
® /api/v1/contactservice/contacts/account/user 0.89 ts-contacts-service 0
@) /api/v1/contactservice/contacts 0.57 ts-contacts-service 0
TABLE VI microservice systems, and bridging the systems architecture
RELATION BETWEEN NORMALIZED DISTANCE AND COUPLING VALUE and performance teams.
Metric Value | Range of Possible Values APPENDIX A
Minimum Maximum CORRELATION AND SIMILARITY MEASURES
Pearson Correlation 0555 -1.0 L0 Next, we briefly introduce the definitions of correlation
Spearman Correlation 0.734 10 1.0 metrics and similarity measures considered in our analysis.
Normalized Mutual Information 0769 0.0 10 Pearson Correlation. The Pearson correlation coeffi-
Cosine Similarity 0.740 10 10 cient measures the linear relationship between two variables.

IX. CONCLUSION AND FUTURE WORK

Microservice architecture design must address stake-
holder needs for maintainability, scalability, and availabil-
ity, requiring a dynamic assessment process for detecting
performance deviations and identifying root causes. While
performance anti-patterns correspond to dynamic metric
deviations, architecture anti-patterns expose structural issues
by identifying misalignments with formal design standards.

This study presents an assessment using DV8 and
PPTAM tools on the Train Ticket benchmark, show-
ing correlations between performance and architecture
issues. Specifically, we have found that one microser-
vice (ts—-preserve-service) implements a Blob (god
class) performance anti-pattern. This microservice had the
largest slope and Normalized Distance assessment in the
performance analysis and is also part of a clique architecture
anti-pattern identified by DV8. This result shows that quan-
titative performance analysis can guide architecture refac-
toring prioritization efforts. We used node degree in call
graphs as a network centrality metric, revealing a correlation
between such architecture metric and performance metrics,
such as Normalized Distance. Our findings suggest that
high-degree nodes, which often result from a lack of atten-
tion to modularity by developers, represent an architectural
anti-pattern. This anti-pattern is shown to correlate with
reduced performance, as indicated by higher Normalized
Distance values. In future work, we plan to experiment
with architecture-inspired performance improvements and
further explore the relationship between architecture and
performance by considering additional network centrality
metrics, such as PageRank, betweenness, and closeness,
while also relating these to broader performance metrics like
throughput. This approach aims to deepen understanding of
how architectural features impact performance, supporting
the development of more efficient, scalable, and resilient

69

It is defined as:

L Sh@m-m-n _covXY)

Vi (@i =22/ (v — 9)?

where z; and y; are the individual data points for the
two variables (Normalized Distance and coupling), Z and
y are their respective means, and n is the number of data
points. It ranges from -1 (perfect negative correlation) to +1
(perfect positive correlation) [44]. For our data, r = 0.555,
indicating a moderate positive linear correlation.

Spearman Correlation. The Spearman correlation co-
efficient quantifies the strength of a monotonic relationship
between two variables. It is defined as the Pearson correla-
tion coefficient between the ranked variables:

_ cov(R[X].R[Y])
OR[X]IR[Y]
where R[X] and R[Y] are the ranks of X and Y, respec-
tively, cov(R[X],R[Y]) is the covariance of the ranks, and
or[x] and og[y] are the standard deviations of the ranks.

When multiple values have the same rank they are as-
signed the average of the tied ranks. For example, in our
data, 1.98 appears three times among 11 elements, and these
tied values are assigned the average rank of 10.

The resulting Spearman correlation coefficient ranges
from —1 (perfect negative monotonic relationship) to +1
(perfect positive monotonic relationship). For our data, the
computed Spearman correlation coefficient is p = 0.734.
This value suggests a strong monotonic relationship between
Normalized Distance and Coupling Values, exceeding the
linear relationship captured by the Pearson correlation.

Normalized Mutual Information (NMI). NMI quanti-
fies the shared information between two variables:

2-1(X;Y)
HX)+H(Y)’
where I(X;Y) is the mutual information between X and
Y, and H(X) and H(Y) are the entropies of X and Y,

OXx0y

NMI(X,Y) =

respectively. NMI values range from O (no shared infor-
mation) to 1 (complete information overlap). For our data,
NMI = 0.769, highlighting a significant connection between
Normalized Distance and coupling.

Cosine Similarity. Cosine similarity measures the cosine
of the angle between two non-zero vectors, indicating their
directional alignment:

D TV i 7

where x; and y; are elements of the two vectors (Normalized
Distance and coupling). The value ranges from -1 (exactly
opposite), 0 (no similarity) to 1 (perfect similarity). For

our data, Cosine Similarity = 0.740, indicating a strong
directional alignment.

Cosine Similarity =

ACKNOWLEDGMENTS

This work has been partially funded by the MUR-
PRIN project 20228FT78M DREAM, MUR Department of
Excellence 2023 - 2027 for GSSI, PNRR ECS00000041
VITALITY, FCT - Fundagao para a Ciéncia e Tecnologia
within the R&D Unit Project of ALGORITMI Centre, and
the National Science Foundation of the US under grants
CCF-2232720, CCF-2213764, and TI-2236824.

REFERENCES

[1] Andre B. Bondi. Characteristics of scalability and
their impact on performance. In Second International
Workshop on Software and Performance, WOSP 2000,
Ottawa, Canada, September 17-20, 2000, pages 195—
203. ACM, 2000.

Elaine J. Weyuker and Alberto Avritzer. A metric for
predicting the performance of an application under a
growing workload. IBM Syst. J., 41(1):45-54, 2002.
Ming Yan, XiaoMeng Liang, ZhiHui Lu, Jie Wu, and
Wei Zhang. Hansel: Adaptive horizontal scaling of
microservices using bi-lstm. Applied Soft Computing,
105:107216, 2021.

Vittorio Cortellessa, Antinisca Di Marco, and Catia
Trubiani. An approach for modeling and detecting
software performance antipatterns based on first-order
logics. Software & Systems Modeling, 13(1):391-432,
2014.

Catia Trubiani, Anne Koziolek, Vittorio Cortellessa,
and Ralf H. Reussner. Guilt-based handling of soft-
ware performance antipatterns in palladio architectural
models. J. Syst. Softw., 95:141-165, 2014.

Martina De Sanctis, Catia Trubiani, Vittorio Cortel-
lessa, Antinisca Di Marco, and Mirko Flammin;.
A model-driven approach to catch performance an-
tipatterns in adl specifications. Inf. Softw. Technol.,
83(C):35-54, March 2017.

Catia Trubiani, Achraf Ghabi, and Alexander Egyed.
Exploiting traceability uncertainty between software
architectural models and extra-functional results. J.
Syst. Softw., 125:15-34, 2017.

Davide Arcelli, Vittorio Cortellessa, and Daniele Di
Pompeo. Automating performance antipattern detec-
tion and software refactoring in uml models. In 2019
IEEE 26th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pages
639-643, 2019.

[2

—

[3]

[4

—

[5

—

[6

—_

(7

(8]

70

[9] Catia Trubiani, Riccardo Pinciroli, Andrea Biaggi, and
Francesca Arcelli Fontana. Automated detection of
software performance antipatterns in java-based appli-
cations. IEEE Transactions on Software Engineering,
49(4):2873-2891, 2023.

Bartosz Walter, Francesca Arcelli Fontana, and Vin-
cenzo Ferme. Code smells and their collocations: A
large-scale experiment on open-source systems. Jour-
nal of Systems and Software, 144:1-21, 2018.

Aiko Yamashita and Leon Moonen. Exploring the im-
pact of inter-smell relations on software maintainabil-
ity: An empirical study. In International Conference on
Software Engineering (ICSE), pages 682-691, 2013.
Hui Liu, Zhiyi Ma, Weizhong Shao, and Zhendong
Niu. Schedule of bad smell detection and resolution: A
new way to save effort. I[EEE transactions on Software
Engineering, 38(1):220-235, 2011.

Jinfu Chen, Weiyi Shang, and Emad Shihab. Perfjit:
Test-level just-in-time prediction for performance re-
gression introducing commits. /EEE Transactions on
Software Engineering, 48(5):1529-1544, 2020.

Catia Trubiani, Alexander Bran, André van Hoorn,
Alberto Avritzer, and Holger Knoche. Exploiting load
testing and profiling for performance antipattern detec-
tion. Information and Software Technology, 95:329—
345, 2018.

Alberto Avritzer, Ricardo Britto, Catia Trubiani, Bar-
bara Russo, Andrea Janes, Matteo Camilli, André van
Hoorn, Robert Heinrich, Martina Rapp, and Jorg Hen8.
A multivariate characterization and detection of soft-
ware performance antipatterns. In Proceedings of the
ACM/SPEC International Conference on Performance
Engineering, ICPE 21, page 61-72, New York, NY,
USA, 2021. Association for Computing Machinery.
Martin Lippert and Stephen Roock. Refactoring in
Large Software Projects: Performing Complex Re-
structurings Successfull. Wiley, 2006.

Joshua Garcia, Daniel Popescu, George Edwards, and
Nenad Medvidovic. Toward a catalogue of architec-
tural bad smells. In Proceedings of the 5th Interna-
tional Conference on the Quality of Software Archi-
tectures: Architectures for Adaptive Software Systems,
pages 146-162, 2009.

Joshua Garcia, Daniel Popescu, George Edwards, and
Nenad Medvidovic. Identifying architectural bad
smells. In Proc. 13th, pages 255-258, March 2009.
Duc Le and Nenad Medvidovic. Architectural-based
speculative analysis to predict bugs in a software
system. In Proceedings of the 38th International Con-
ference on Software Engineering Companion, pages
807-810, 2016.

Ran Mo, Yuanfang Cai, Lu Xiao, Rick Kazman, and
Qiong Feng. Architecture anti-patterns: Automatically
detectable violations of design principles. IEEE Trans-
actions on Software Engineering, 47(5), 2021.
Carliss Y. Baldwin and Kim B. Clark. Design Rules:
The Power of Modularity Volume 1. MIT Press,
Cambridge, MA, USA, 1999.

Ran Mo, Will Snipes Yuanfang Cai, , S. Ramaswamy,
Rick Kazman, and Martin Naedele. Experiences
applying automated architecture analysis tool suites.

[10

[t

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

In Proceedings of the 33rd IEEE/ACM International
Conference on Automated Software Engineering, 2018.
Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng,
Lu Xiao, Serge Haziyev, Volodymyr Fedak, and An-
drey Shapochka. A case study in locating the archi-
tectural roots of technical debt. In Proc. 37th, May
2015.

Wensheng Wu, Yuanfang Cai, Rick Kazman, Ran
Mo, Zhipeng Liu, Rongbiao Chen, Yingan Ge, We-
icai Liu, and Junhui Zhang. Software architecture
measurement—experiences from a multinational com-
pany. In Carlos E. Cuesta, David Garlan, and Jennifer
Pérez, editors, Software Architecture, pages 303-319.
Springer International Publishing, 2018.

M. Nayebi, Y. Cai, R. Kazman, G. Ruhe, Q. Feng,
C. Carlson, and F. Chew. A longitudinal study of
identifying and paying down architecture debt. In 2079
IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP), pages 171-180, 2019.

Robert Schwanke, Lu Xiao, and Yuanfang Cai. Mea-
suring architecture quality by structure plus history
analysis. In Proc. 35rd, pages 891-900, May 2013.
Jason Lefever, Yuanfang Cai, Humberto Cervantes,
Rick Kazman, and Hongzhou Fang. On the lack
of consensus among technical debt detection tools.
In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 121-130, 2021.
Yuanfang Cai and Rick Kazman. Dv8: Automated ar-
chitecture analysis tool suites. In 2019 IEEE/ACM In-
ternational Conference on Technical Debt (TechDebt),
pages 53-54, 2019.

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl.
Microservices Anti Patterns: A Taxonomy. 06 2019.
Davide Taibi and Valentina Lenarduzzi. On the def-
inition of microservice bad smells. IEEE Software,
35(3):56-62, 2018.

Mark Richards. Microservices AntiPatterns and Pit-
falls. 07 2016.

Hongzhou Fang, Yuanfang Cai, Rick Kazman, and
Jason Lefever. Identifying anti-patterns in distributed
systems with heterogeneous dependencies. In 2023
IEEE 20th International Conference on Software
Architecture Companion (ICSA-C), pages 116-120,
2023.

Riccardo Pinciroli, Aldeida Aleti, and Catia Trubiani.
Performance modeling and analysis of design patterns
for microservice systems. In International Conference
on Software Architecture (ICSA), pages 35-46, 2023.
Willem Meijer, Catia Trubiani, and Aldeida Aleti.
Experimental evaluation of architectural software per-
formance design patterns in microservices. J. Syst.
Softw., 218:112183, 2024.

Connie U. Smith and Lloyd G. Williams. Software
performance antipatterns for identifying and correcting
performance problems. In [International Computer
Measurement Group Conference, 2012.

Alexander Wert. Performance Problem Diagnosis by
Systematic Experimentation. PhD thesis, 2015.
Alberto Avritzer, Ricardo Britto, Catia Trubiani, Mat-

71

[38]

[39]

[40]

[41]

[42]

[43]

[44]

teo Camilli, Andrea Janes, Barbara Russo, André van
Hoorn, Robert Heinrich, Martina Rapp, Jorg HenB, and
Ram Kishan Chalawadi. Scalability testing automation
using multivariate characterization and detection of
software performance antipatterns. Journal of Systems
and Software, 193:111446, 2022.

Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao.
Hotspot patterns: The formal definition and automatic
detection of recurring high-maintenance architecture
issues. In Proc. 12th, 2015.

Ran Mo, Will Snipes, Yuanfang Cai, Srini Ra-
maswamy, Rick Kazman, and Martin Naedele. Expe-
riences applying automated architecture analysis tool
suites. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineer-
ing, ASE 2018, page 779-789, New York, NY, USA,
2018. Association for Computing Machinery.

M. Nayebi, Y. Cai, R. Kazman, G. Ruhe, Q. Feng,
C. Carlson, and F. Chew. A longitudinal study of
identifying and paying down architecture debt. In 2019
IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP), 2019.

Riccardo Pinciroli, Aldeida Aleti, and Catia Trubiani.
Performance modeling and analysis of design patterns
for microservice systems. In 2023 IEEE 20th Inter-
national Conference on Software Architecture (ICSA),
pages 35-46, 2023.

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie
Xu, Chao Ji, and Wenyun Zhao. Benchmarking mi-
croservice systems for software engineering research.
In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings,
pages 323-324, 2018.

Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Bar-
bara Russo, Henning Schulz, and André van Hoorn. A
quantitative approach for the assessment of microser-
vice architecture deployment alternatives by automated
performance testing. In Software Architecture: 12th
European Conference on Software Architecture, ECSA
2018, Madrid, Spain, September 24-28, 2018, Pro-
ceedings 12, pages 159-174. Springer, 2018.

David Freedman, Robert Pisani, and Roger Purves.
Statistics (international student edition). Pisani, R.
Purves, 4th edn. WW Norton & Company, New York,
2007.

