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Abstract. We prove that for every prime p algebraically clean graphs of groups are vir-
tually residually p-finite and cohomologically p-complete. We also prove that they are
cohomologically good. We apply this to certain 2-dimensional Artin groups.

1. Introduction

An algebraically clean graph of free groups is a graph of groups where each vertex group
and edge group are finite rank free groups, and all the inclusion maps are inclusions of free
factors. Examples of the fundamental groups of algebraically clean graph groups include
free-by-cyclic groups, the fundamental groups of clean 2-complexes in the sense of Wise
[Wis00], and certain 2-dimensional Artin groups [Jan22a, Jan22b]. We note that (many
among) the former examples are known to not admit (virtual) cocompact actions on CAT(0)
cube complexes, so they are not virtually cocompactly special. In particular, the family of
algebraically clean graphs of groups is strictly larger than the family of the fundamental
groups of finite clean 2-complexes, which all are virtually special.

1.1. Virtual residual p-finiteness. A group G is residually finite if for every g P G ´ t1u
there exists a quotient � : G Ñ K where K is a finite group and �pgq ‰ 1. The fundamental
groups of algebraically clean graph of free groups are known to be residually finite [Wis02,
Thm 3.4].

Let p be a prime number. A group G is residually p-finite if for every g P G ´ t1u there
exists a quotient � : G Ñ K where K is a finite p-group and �pgq ‰ 1. Clearly, every
residually p-finite group is residually finite, but the converse does not hold.

Theorem 1.1. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup that is residually p-finite.

We do not know whether algebraically clean graphs of free groups are linear. We note that
linear groups are known to be virtually residually p-finite [Pla68] for all but finitely many
primes p. There have been previous combination theorems concerning residual p-finiteness,
originating in the work of Higman [Hig64], see e.g. [Wil19, Aza17, Sok23] and references
therein.
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1.2. Cohomology of profinite and pro-p completions. For a residually finite group G,
the profinite completion pG of G is defined as

pG “ lim–›
rG:Hs†8

G{H,

where the inverse limit is taken over the system of finite quotients of G. For every G, there
is a canonical homomorphism i : G Ñ pG which sends g P G to the cosets gH. A group G

is called cohomologically good (also known as good in the sense of Serre) if for every finite
G-module M the induced homomorphism

H
˚
cont

p pG,Mq “ lim›Ñ
rG:Hs†8

H
˚pG{H,Mq i

˚Ñ H
˚pG,Mq

is an isomorphism. We always take the cohomology of a profinite group to be its continuous
cohomology. Goodness was introduced in [Ser97, Exercises 2.6]

We can analogously define cohomological p-completeness for a residually p-finite group. In
this case, the pro-p completion pGp of G is given by

pGp “ lim–›G{H
where H varies over all the normal subgroups of G whose index is a power of p. Then G is
cohomologically p-complete if the homomorphism G Ñ pGp induces an isomorphism

H
˚
cont

p pGp,Fpq Ñ H
˚pG,Fpq

where we assume the G-action on Fp is trivial.

Theorem 1.2. The fundamental group of an algebraically clean graph of free groups is

(1) cohomologically good,
(2) for every prime p, virtually cohomologically p-complete.

For each p, the cohomologically complete finite index subgroup is a priori di↵erent. General
graphs of free groups do not always satisfy the above theorem. Indeed, there exist examples
of amalgamated products of free groups that are not residually finite [Bha94, Wis96]. There
are even examples of simple groups that split as amalgamated products of free groups [BM97].

1.3. Virtual poly-freeness. A group G is poly-free if it admits a chain of subgroups 1 “
G0 ⇥ G1 ⇥ ¨ ¨ ¨ ⇥ Gn “ G such that Gi{Gi´1 is a free group (of possibly infinite rank). We
say G is normally poly-free if additionally all subgroups Gi are normal in G.

Theorem 1.3. Algebraically clean graphs of free groups are normally poly-free.

This has a number of consequences; for instance it implies these groups are locally indi-
cable, hence left-orderable [RR02], and satisfy the K´ and L´theoretic Farrell-Jones Con-
jecture [BFW21, BKW21].

1.4. Applications to Artin groups. An Artin group is given by a presentation

A “ xs1, . . . , sk| sisjsi ¨ ¨ ¨looomooon
mij terms

“ sjsisj ¨ ¨ ¨looomooon
mij terms

y
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where mij P t2, 3, . . . u Y t8u. We understand mij “ 8 as no relation involving si and sj.
A triangle Artin group A`mn is an Artin group where k “ 3, and m12 “ `, m23 “ m, and
m13 “ n.

Since finite type Artin groups are linear ([Kra02], [Big01] for braid groups, and [CW02],
[Dig03] in general), it follows that they are also virtually residually p-finite. Moreover, pure
Artin groups of type An, Cn, G2 and I2pnq are residually p and cohomologically p-complete
for all p [AF13], and cohomologically good [Ser97].

With the next corollary in mind, we note that the only spherical triangle Artin groups are
the A22n “ ApI2pnqq ˆ Z for n • 2, and A23n where n P t3, 4, 5u. Among those, the even
ones, A22n for even n, all are known be cohomologically good and virtually residually p-finite
and cohomologically p-complete for all p.

Corollary 1.4. A triangle Artin A`mn where ` § m § n is

‚ residually finite and cohomologically good,
‚ for each prime p, virtually residually p-finite and cohomologically p-complete,
‚ virtually normally poly-free,

provided that

‚ ` “ 2, and m,n • 4 and at least one of them is even, or
‚ `,m, n • 4 except for the case where ` “ m “ 4 and n is odd.

In particular, all even triangle Artin groups and all extra-extra-large triangle Artin groups
(i.e. where `,m, n • 5) satisfy the above.

Moreover, there are many more 2-dimensional Artin groups that have the above properties.
See [Jan22a] for a combinatorial criterion on the defining graph, which ensure that the
associated Artin group is virtually algebraically clean graph of free groups.

The Artin groups above were shown to virtually split as algebraically clean graphs of free
groups in [Jan22a, Jan22b]. We note that “virtual” in the above statement is necessary.
Indeed, a group G that is residually p-finite for all primes p is bi-orderable [Rhe73] (see also
[KS20]), but the only bi-orderable Artin groups are right-angled Artin groups. However,
it is possible that each Artin groups listed above contains a finite index subgroup that is
residually p-finite for all primes p.

Artin groups that are known to be poly-free are right-angled Artin groups [DK93, How99,
Hv07], even FC-type Artin groups [BGMPP19], and even large type Artin groups [BG21].
Artin groups of types An, Bn “ Cn, Dn, F4, G2 and I2pnq [Bri73], as well as rAn, rBn, rCn, rDn

[Rou20] are known to be virtually poly-free. Independently, Wu-Ye proved that all triangle
Artin groups except A23n where n is odd, are virtually poly-free [WY23]. Wu-Ye also show
that some triangle Artin groups are not poly-free.

Finally, we also establish residual finiteness and cohomological goodness for all even Artin
groups whose defining graphs contains no 4-cliques.

Theorem 1.5. Let � be a finite labelled graph with all even labels that does not contain a
4-clique. Then A� is residually finite and cohomologically good.

Such Artin groups are also poly-free by [BG21, Wu22].
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2. Graphs of groups

2.1. Graph of groups notation. We recall the basic definitions and set the notation.
A graph Y consists of a set V pY q of its vertices, and a set EpY q of its edges, and two

maps:

(1) ¨ : EpY q Ñ EpY q satisfying e “ e, where we think of e as the edge e with the
orientation reversed,

(2) ⌧ : EpY q Ñ V pY q, which we think of as taking the endpoint of an edge.

A graph of groups G with underlying graph Y consists of a family of vertex groups tGvuvPV pY q
and edge groups tGeuePEpY q where Ge “ Ge together with maps tfe : Ge Ñ G⌧pequePEpY q.

Let T Ñ EpY q be a set of edges of a spanning tree of Y . The fundamental group ⇡1G of
the graph of groups G is constructed as the quotient

⇡1G “ p˚vPV pY qGv ˚ F pEpY qq{K
where K is a set of the following relations

(1) efepgqe “ fepgq for all e P EpY q and g P Ge, and
(2) e “ e

´1, and e “ 1 if and only if e P T .

2.2. Algebraically clean graph of groups. An algebraically clean graph of free groups is
a graph of groups G with finite underlying graph Y , where Gv is a finite rank free group for
all v P V pY q, Ge is finitely generated for all e P EpY q, and the maps fe : Ge Ñ G⌧peq are
injective maps onto free factors.

Let G be a group, and N,M Ñ G be two subgroups. We say that an isomorphism
� : N Ñ M is a partial automorphism, if there exists an automorphism �

ext : G Ñ G such
that �ext

|N “ �. A partial identity is a partial automorphism that can be extended to the
identity.

Proposition 2.1. Every algebraically clean graph of free groups G admits a splitting as an
algebraically clean graph of groups G 1 where the underlying graph Y

1 has a unique vertex,
and up to renaming e and e, Ge Ñ G⌧peq is a free factor, fe is the inclusion map, and fe is a
partial automorphism of G⌧peq.

Proof. Consider a spanning tree T in the underlying graph Y of G. We define a new graph
Y

1 to have the vertex set V pY 1q “ tT u and edge set EpY 1q “ te P EpY q | e R EpT qu. Let GT

denote the graph of groups with the underlying graph T , and the vertex and edge groups
and maps as in G. Then ⇡1GT “ ˚vPTGv{tfepgq “ fepgqu. By induction on the number of
vertices in T , we can argue that ⇡1GT is a finite rank free group, where each Gv for v P T

embeds as a direct factor. That is clearly the case when |V pT q| “ 1. Let V pT q • 1, and
let v P T be a leaf, and T

1 be the subtree of T excluding v, and let e be the unique edge in
T such that ⌧peq “ v. Then ⇡1GT “ GT 1 ˚fepgq“fepgq Gv, which is an amalgamated product
of two finite rank free groups along their free factors, so it is a finite rank free group. By
construction, the group Gv and every free factor of GT 1 embed in GT as free factors.

By “collapsing” T in Y , we can identify ⇡1G with the fundamental group of a graph of
groups G 1 with underlying graph Y

1, where
4



‚ the unique vertex group GT is ⇡1GT ,
‚ for each edge e P EpY q, i.e. e R EpT q, Ge becomes identified with fepGeq Ñ G⌧peq Ñ GT

which is a free factor in G⌧peq and therefore also in GT , and the map fe : Ge “ Ge Ñ
G⌧peq Ñ GT is an embedding onto some free factor of G⌧peq and again also a free factor
of GT . We can thus think of that map fe as a partial automorphism of GT .

⇤

3. Residual p-finiteness

Throughout this section p is a fixed prime.

3.1. Well-known basics on residual p-finiteness. We start with stating some easy facts
that we will use later.

Lemma 3.1. Let G be a finitely generated group.

(1) Let N ⇥ G be a subgroup whose index is a power of p. Then there exists a charac-
teristic subgroup K ⇥G whose index is a power of p, such that K Ñ N .

(2) Suppose G fits in a short exact sequence

1 Ñ N Ñ G Ñ Q Ñ 1

where Q is a finite p-group, and N is residually p-finite. Then G is residually p-finite.

Proof.
(1) Let K be the intersection

ì
H of all the normal subgroups H of G of index rG : N s.

Note that K is also the kernel of a homomorphism G Ñ ±
H
G{H, since the order

of each G{H is a power of p, so is the order of
±

H
G{H. In particular, the index

rG : Ks is a power of p.
(2) Let g P G. If g survives in Q, then Q is the required finite p-quotient of G. Suppose

g P N . Since N is residually p-finite, then using (1) we know that there exists a
characteristic subgroup K Ñ N such that g R K and whose index is a power of p.
Since K is characteristic in N , it is normal in G, and rG : Ks is a power of p.

⇤
3.2. Basics on lower central p-series. Let G be a finitely generated group. For subgroup
H,K Ñ G we denote:

‚ H
p “ xhp | h P Hy,

‚ rH,Ks “ xrh, ks | h P H, k P Ky, and we use the convention that rh, ks “ hkh
´1
k

´1,
‚ HK “ xhk | h P H, k P Ky.

Let G be a finitely generated group. A filtration of G is a collection pGnqnPN of subgroups
of G where G1 “ G, and Gn`1 Ñ Gn for each n P N. A filtration pGnqnPN is normal if Gn⇥G

is normal for each n P N, and it is separating if
ì

nPN Gn “ t1u.
The lower p-central filtration t�p

n
pGqun of G is defined as:

�
p

1pGq :“ G, �
p

n`1pGq :“ p�p
n
pGqqp rG, �

p

n
pGqs.

We also denote L
p

n
pGq “ �

p

n
pGq{�p

n`1pGq. In particular, Lp

1pGq “ H1pG,Fpq. The lower
p-central filtration of G is a normal filtration, and it is separating if and only if G is residually
p-finite. We note a couple of basic well-known properties of the lower p-central series. For
completeness, we provide proofs.
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Lemma 3.2.
(1) For each n we have p�p

n
pGqqp Ñ �

p

n`1pGq.
(2) For each n,m we have r�p

m
pGq, �p

n
pGqs Ñ �

p

n`mpGq.
(3) Each �p

n
pGq is a characteristic subgroup of G. In particular, for each i there are nat-

ural homomorphisms ✓n : AutpGq Ñ AutpLp

n
pGqq and �n : AutpGq Ñ AutpG{�p

n
pGqq.

Proof.
(1) Follows immediately from the definition.
(2) We induct on m. For m “ 1 the statement follows directly from the definition for

every n. Suppose that r�p
m´1pGq, �p

n
pGqs Ñ �

p

n`m´1pGq for every n.
First we claim that rp�p

m´1pGqqp, �p
n
pGqs Ñ �

p

n`mpGq. Given k P �
p

n
pGq and h P

�
p

m´1pGq we need to show that rhp
, ks P �

p

n`mpGq. First note that rhp
, ks “ h

p
u
p

where u “ kh
´1
k

´1. By the inductive assumption u “ h
´1
` for some ` P �p

n`m´1pF q.
We have

rh, ksp “ phkh´1
k

´1qp

“ h
pph´pp´1q

uh
pp´1qqph´pp´2q

uh
pp´2qq . . . ph´1

uhqu.
By substituting u “ h

´1
` we get

h
´pp´iq

uh
pp´iq “ h

´pp´iq
h

´1
`h

pp´iq “ h
´1
h

´pp´iq
`h

pp´iq “ h
´1
``i “ u`i

for some `i P �n`m where the equality h
´pp´iq

`h
pp´iq “ ``i follows from rG, �n`m´1s Ñ

�n`m. Thus we have

rh, ksp “ h
p
u`p´1u`p´2 . . . , u`1u P php

u
pq�pn`mpGq,

and in particular rhp
, ks�pn`mpGq “ php

u
pq�pn`mpGq “ rh, ksp�pn`mpGq. Since rh, ks P

�
p

n`m´1pGq by induction, we have rh, ksp P �pn`mpGq by Lemma 3.2(1). We conclude
that rhp

, ks P �pn`mpGq, as claimed.
Now we claim that rrG, �

p

m´1pGqs, �p
n
pGqs Ñ �

p

n`mpGq. By the three subgroup
lemma (see e.g. [Isa09, Cor 8.28])

rrG, �
p

m´1pGqs, �p
n
pGqs Ñ rr�p

m´1pGq, �p
n
pGqs, Gs ¨ rrG, �

p

n
pGqs, �p

m´1pGqs
Ñ r�p

n`m´1pGq, Gs ¨ r�p
n`1pGq, �p

m´1pGqs
Ñ �

p

n`mpGq
and the second and third line follow from the inductive hypothesis. Thus we conclude
that r�p

m
pGq, �p

n
pGqs “ rp�p

m´1pGqqpr�p
m´1pGq, Gs, �p

n
pGqs Ñ �

p

n`mpGq, as desired.
(3) We now induct on n. For n “ 1, clearly �

p

1pGq “ G is characteristic in G. We
assume that the statements in true for n ´ 1 and prove it for n. Let h P �

p

n
pGq “

�
p

n´1pGqrG, �
p

n´1pGqs, i.e. h “ h
p

1 ¨ rk, h2s where h1, h2 P �
p

n´1pGq and k P G. Let
� P AutpGq. Then

�phq “ �php

1 ¨ rk, h2sq “ �ph1qp ¨ r�pkq,�ph2qs.
Since �p

n´1pGq is characteristic, �ph1q,�ph2q P �p
n´1pGq, so �phq P �p

n´1pGqrG, �
p

n´1pGqs “
�
p

n
pGq. Thus �p

n
pGq is characteristic.

Since �p
n
pGq is characteristic in G, every automorphism � : G Ñ G preserves �p

n
pGq,

and therefore �np�q : G{�p
n
pGq Ñ G{�p

n
pGq is well-defined. It is clear that �n is a

homomorphism. The automorphism � restricts to �|�p
npGq : �p

n
pGq Ñ �

p

n
pGq, and to
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�|�p
npGq : �p

n`1pGq Ñ �
p

n`1pGq. Thus � descends to a well-defined automorphism of
L
p

n
pGq. The map ✓n is clearly a homomorphism.

⇤
Proposition 3.3 ([HB82, Chap VIII.1]). Let � P AutpGq such that ✓1p�q “ IdL

p
1pGq.

(1) We have ✓np�q “ IdL
p
npGq for all n.

(2) The order of �np�q is a power of p.

Proof. (1) We induct on n. The case of n “ 1 is immediate. We assume that the
statement holds for n ´ 1.

Let first h P �p
n´1pGq. Then by assumption �phq “ hkn where kn P �p

n
pGq. We have

�php
�
p

n`1pGqq “ phknqp �p
n`1pGq

“ h
pph´pp´1q

knh
p´1qph´pp´2q

knh
p´2q ¨ ¨ ¨ ph´1

knhqki �pn`1pGq
“ h

p
kn`p´1kn`p´2 ¨ ¨ ¨ kn`1kn �pn`1pGq

“ h
p
k
p

n
pk´pp´1q

n
`p´1k

p´1
n

qpk´pp´2q
n

`p´2k
p´2
n

q . . . pk´1
n
`1knq �p

n`1pGq
“ h

p
k
p

n
�
p

n`1pGq
“ h

p
�
p

n`1pGq
where `1, . . . , `p´1, `, `

1 are some elements of �p
n`1pGq. Indeed, the fact that h´j

knh
j “

kn`j follows from the fact that r�p
n´1pGq, �p

n
pGqs Ñ rG, �

p

n
pGqs Ñ �

p

n`1pGq (Proposi-
tion 3.2(2)). Finally, the fact that kp

n
P �p

n`1 follows from Proposition 3.2(1).
Now let g P G. Then �pgq “ g`2 for some `2 P �p2pGq. We have

�prg, hs �p
n`1pGqq “ rg`2, hkns �p

n`1pGq
“ gp`2hkn`2´1qg´1

kn
´1
h

´1
�
p

n`1pGq
“ ghpkndn`1g

´1
kn

´1qh´1
�
p

n`1pGq
“ ghdn`1g

´1
d

1
n`1h

´1
�
p

n`1pGq
“ ghg

´1
h

´1
�
p

n`1pGq
“ rg, hs �p

n`1pGq
where we used Proposition 3.2(2) to write `2hkn`2

´1 “ hkndn`1 for some dn`1 P
�
p

n`1pGq since r�p2pGq, �p
n´1pGqs Ñ �

p

n`1pGq, and kndn`1g
´1
kn

´1 “ dn`1g
´1
d

1
n`1 for

some d
1
n`1 P �p

n`1pGq since r�p
n
pGq, Gs Ñ �

p

n`1pGq.
Finally, every generator h of �p

n
pGq is of the form h “ h

p

1rg, h2s for some h1, h2 P
�
p

n´1pGq. We have

�ph�p
n`1pGqq “ �php

1q�prg, h2sq�p
n`1pGq “ h

p

1rg, h2s�pn`1pGq.
for some ` P �p

i`1pGq. This proves that ✓ip�q “ IdL
p
i pGq as claimed.

(2) We prove by induction on n that �np�p
n´1q “ IdG{�p

npGqq. The case of n “ 1 is
immediate as �1 “ ✓1. We assume that the statement holds for n ´ 1, in particular
for every h P G we have �p

n´2ph�p
n´1pGqq “ h�

p

n´1pGq, i.e. there exists k P �
p

n´1pGq
such that �p

n´2phq “ hk. We have

�
p
n´1phq “ p�p

n´2qpphq “ p�p
n´2qp´1

´
�
p
n´2phq

¯
“ p�p

n´2qp´1phkq.
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Since k P �
p

n´1pGq and ✓np�p
n´2q “ ✓np�qpn´2 “ IdL

p
npGq, using Proposition 3.3(1),

we get

p�p
n´2qp´1phkq “ p�p

n´2qp´2p�p
n´2phq�p

n´2pkqq
P p�p

n´2qp´2phk ¨ k�p
n
pGqq

“ p�p
n´2qp´3phk3

�
p

n
pGqq “ ¨ ¨ ¨ “ hk

p
�
p

n
pGq.

In particular, since kp P �p
n
pGq by Proposition 3.2(1), we conclude �p

n´1phq P h�
p

n
pGq

as required.
⇤

Corollary 3.4. Let A Ñ AutpGq be a subgroup.

(1) The image ✓1pAq Ñ AutpLp

1pGqq is a finite p-group if and only if ✓npAq Ñ AutpLp

n
pGqq

is a finite p-group for every n • 1.
(2) The image ✓1pAq Ñ AutpG{�p1pGqq is a finite p-group if and only if �npAq Ñ AutpG{�p

n
pGqq

is a finite p-group for every n • 1.

Proof.
(1) Fix n • 1, and suppose that ✓1pAq is a finite p-group. By Proposition 3.3(1) for every

� P A, if ✓1p�q “ IdL
p
1pGq, then ✓np�q “ IdL

p
i pGq. Thus ✓ipAq is a quotient of ✓1pAq. In

particular, ✓ipAq is a finite p-group as required.
(2) Fix n • 1, and suppose that �1pAq “ ✓1pAq is a finite p-group. For every � P A

there exists k • 1 such that ✓1p�p
kq “ ✓1p�qpk “ IdL

p
1pGq. By Proposition 3.3(2) the

order of �np�p
kq is a power of p, and therefore the order of �np�q is a power of p. We

conclude that �npAq is a p-group. As a subgroup of the automorphism group of a
finite group �npAq is also finite.

⇤
The above corollary implies that for every subgroup K of kerpAutpGq Ñ AutpLp

1pGqq
(which has finite index in AutpGq), all the images �ipKq are finite p-groups. This observation
is crucial in the proof of Theorem 1.1.

We note the following observation that the operators ✓i and �i can be extended to partial
automorphisms.

Lemma 3.5. A partial automorphism � : N Ñ M induces a partial automorphism N X
�
p

n
pGqq Ñ M X �

p

n
pGq of �p

n
pGq. In particular, it descends to the following partial automor-

phisms

(1) �np�q : N{N X �
p

n
pGq Ñ M{M X �

p

n
pGq, and

(2) ✓np�q : N X �
p

n
pGq{N X �

p

n`1pGq Ñ M X �
p

n
pGq{M X �

p

n`1pGq.
Proof. Since � is a partial automorphism of G, there exists �ext P AutpGq such that �ext

|N “ �.
By Proposition 3.2(3), �p

n
pGq is a characteristic subgroup of G, so �extp�p

n
pGqq “ �

p

n
pGq for

every n. Thus �pN X �
p

n
pGqq “ �

extpN X �
p

n
pGqq “ M X �

p

n
pGq for every n. The lemma

follows. ⇤

3.3. Residual p-finiteness criterion for graphs of groups. We generalize a theorem of
[AF13] that every graph of virtually residually p-groups, where edge group inclusions are
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isomorphisms, are virtually residually p-finite. Their result, in particular, applies to free-
by-cyclic groups. We will use a criterion for residual p-finiteness of graphs of groups stated
therein.

A filtration G of a graph of groups G is a collection tGvuv of compatible filtrations Gv “
tGv,nun of Gv for each v P V p�q, in the sense that for all n

f
´1
e

pG⌧peq,nq “ f
´1
e

pG⌧peq,nq.
For a given property X (e.g. normal, separating), we say that G is X if for every v P V pY q

the filtration Gv is X. We say that a filtration G of a graph of groups G separates edge
groups if fepGeq “ ì

n
G⌧peq,n ¨ fepGeq for all edges e.

Let Gn be the n-th depth subgroups of the filtration G of G, i.e. Gn “ pGv,nqvPV pY q. Since
the filtrations of the vertex groups are compatible, there exists a natural graph of groups
quotient G{Gn which has Y as it underlying graph and vertex groups Gv{Gv,n.

The following will be used to prove Theorem 1.1.

Theorem 3.6 ([AF13, Cor 3.14]). Let G be a normal separating filtration of G which
separates edge groups of G, such that ⇡1pG{Gnq is residually p-finite for every n • 1. Then
⇡1G is residually p-finite.

3.4. Main proof. The following lemma can be deduced from [Wil19] but in this case it is
easy to prove it directly.

Lemma 3.7. Let P be a finite p-group. Let G be a graph of p-groups where each vertex
group comes with an injective homomorphism  v : Gv Ñ P , and each edge group comes
with an inclusion  e : Ge Ñ P such that  e “  e. Moreover, assume that for each edge e

the composition  ⌧peq ¨ fe “  e. Then ⇡1G is residually p-finite.

Proof. The assumption on G imply that there exists an epimorphism  : ⇡1G Ñ P which is
an isomorphism on each vertex group. Indeed,  is defined as  v on each vertex group Gv,
and sending all edge generators (not edge groups) to the identity. The kernel ker is thus a
finite index subgroup of ⇡1G and splits as a finite graph of trivial groups, i.e. ker is a finite
rank free group. By Lemma 3.1(2) ⇡1G is residually p-finite. ⇤

We are now ready to prove the main theorem.

Theorem 3.8. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup that is residually p-finite.

To illustrate the proof, we first consider the special case of free-by-free groups.

Proof for F ¸ Q. Let F,Q be finite rank free groups. In particular, F and Q are residually
p-finite. Let ↵ : Q Ñ AutpF q be a homomorphism associated to the semi-direct product.
By Lemma 3.2(3) �p2pF q is characteristic in F , so every automorphism � P AutpF q descends
to an automorphism of Lp

1pF q, i.e. there is a well-defined homomorphism � : AutpF q Ñ
AutpLp

1pF qq. By composing ↵ with �, we obtain a homomorphism to a finite group � ¨ � :
Q Ñ AutpLp

1pF qq. Let Q1 be its kernel. Then F ¸ Q
1 is a finite index subgroup of F ¸ Q,

which we claim is residually p-finite.
By Corollary 3.4(2) the image �ipQ1q is a p-group for every i. In particular pF {�p

i
q ¸ Q

1

is residually p-finite. Indeed if g P pF {�p
i
q ¸ Q

1 survives in Q
1, then we can use the fact that

Q
1 is residually p-finite. Otherwise, when g P kerppF {�p

i
q ¸ Q

1 Ñ Q
1q, then g must survive

9



in the quotient pF {�p
i
q ¸ �ipQ1q, which is a p group as its order is a power of p. Since every

element g P F ¸Q
1 survives in F {�p

i
pF q¸Q

1 for some i, we conclude that F ¸Q
1 is residually

p-finite. ⇤

We now move to the general case. Let F be a finite rank free group, and let N,M be two
subgroups of the same rank, each being a free factor of F . Every isomorphism � : N Ñ M

can be extended to an automorphism �
ext : F Ñ F , i.e. �ext

|N “ �, which we call an extension
of � to F . Note that an extension of � is far from being unique. Indeed, it is only unique if
N “ M “ F .

Proof in general case. Let G1 be a fundamental group of an algebraically clean graph of free
groups. By Proposition 2.1 we can think of G1 as the fundamental group of a graph of
groups G 1 where the underlying graph Y

1 of G 1 is a wedge of k oriented circles te1, . . . , enu.
The unique vertex group of G 1 is identified with a finite rank free group F , and for each
1 § i § k the edge groups Gei can be identified with a free factor Ni so that fei “ IdNi and
fei “ �i : Ni Ñ Mi is a partial automorphism onto a free factor Mi of F . Let Q1 be a free
group freely generated by t�1, . . . ,�ku, which can be naturally identified with ⇡1pY q.
Step 1. We construct a finite index normal subgroup Q of Q1 such that ✓npQq is trivial.

Let t�ext

1 , . . . ,�
ext

k
u be a choice of extensions of t�1, . . . ,�ku, i.e. for each 1 § i § k

�
ext

i
P AutpF q such that �ext

i |Ni
“ �i. Recall the homomorphism ✓1 : AutpF q Ñ AutpLp

1pF qq
from Proposition 3.2(3). We construct a subgroup Q of Q1 as

Q “ kerpQ1 Ñ AutpF q Ñ AutpLp

1pF qq
where the first map sends �i to �ext

i
P AutpF q, and the second map is ✓1. Since AutpLp

1pF qq
is a finite group, the index rQ1 : Qs is finite.

By Corollary 3.4(1), the image of Q in AutpLp

n
pF qq is trivial for every n.

Step 2. We construct the corresponding finite index normal subgroup G of G1 and realize it
as the fundamental group of a graph of groups G covering the graph of groups for G 1.

Consider the finite index subgroup G of G1 corresponding to Q, i.e. G “ kerpG1 Ñ Q
1 Ñ

Q
1{Qq. The group G is the fundamental group of the following graph of groups G. The

underlying graph Y of G is the finite covering space of Y 1 corresponding to Q Ñ Q
1. Each

vertex group of G is a copy of F . The edge groups of edges labelled with ei are copies of
Ni with the maps IdNi and �i into the respective vertex groups. We note that G is still an
algebraically clean graph of finite rank free groups, with a natural quotient Q.

Step 3. There is a natural filtration G of G where Gv “ t�p
n
pGvqun of Gv for each v P V pY q.

The filtration is normal, separating, and it separates the edge groups.

Lemma 3.5 implies that the filtrations Gv on the individual vertex groups are compatible
and indeed define a filtration on G. It is immediate that G is normal. Since all the vertex
groups are free groups, hence residually p-finite, their lower p-central series are separating.
Since the edge groups are retracts of the vertex groups, and vertex groups are residually
p-finite, [AF13, Lem 1.6] implies that the filtration separates the edge groups.

Step 4. For each n, ⇡1pG{Gnq is residually p-finite.
10



The graph of groups G{Gn has all the vertex groups naturally isomorphic to F {�p
n
pF q and

the edge groups are pNi{pNi X �
p

n
pF qq for respective i, with the respective edge maps being

partial identities and partial automorphisms �i. We construct a further subgroup Qn of Q
as

Qn “ kerpQ Ñ AutpF q Ñ AutpF {�p
n
pF qq

the first map sends �i to �
ext

i
P AutpF q, and the second map is the map �n defined in

Lemma 3.2(3). By Corollary 3.4(2), the image of Q in AutpF {�p
n
pF qq is a finite p-group,

and therefore rQ : Qns is a p-power. We now claim that the kernel Kn “ kerp⇡1pG{Gnq Ñ
Q Ñ Q{Qnq is the fundamental group of a graph of groups satisfying the assumptions of
Lemma 3.7, and therefore is residually p-finite. Indeed, Kn is a finite cover Gn of the graph of
groups G{Gn whose all the vertex groups are still naturally isomorphic to F {�p

n
pF q, and edge

groups are pNi{pNi X �
p

n
pF qq for respective i, with the respective edge maps being partial

identities and partial automorphisms �i. We fix a vertex group Gv0 of Gn and for each
v P V pY q we construct a map �v : Gv Ñ Gv0 . We describe each map as an automorphism
 v P AutpF {�p

n
pF qq using the natural identification of each Gv with F {�p

n
pF q. First,  v0 “

IdF {�p
npF q. For v such that there is a path from v to v0 is labelled by edges ei1 . . . eik we define

 v “ �np�ext

ik
¨ ¨ ¨�ext

i1
q.

We claim that  v does not depend on the choice of the path from v to v0. Indeed, given
some other path with labels ej1 . . . ejk1 we get that

✓np�ext

ik
¨ ¨ ¨�ext

i1
q✓np�ext

jk1 ¨ ¨ ¨�ext

j1
q´1 “ ✓np�ext

ik
¨ ¨ ¨�ext

i1
p�ext

j1
q´1 ¨ ¨ ¨ p�ext

jk1 q´1q “ IdGv0

by our choice of Qn. This proves that ✓np�ext

ik
¨ ¨ ¨�ext

i1
q “ ✓np�ext

jk1 ¨ ¨ ¨�ext

j1
q. For any edge e with

label i, we set  e “  e “  ⌧peq|Ge , and easily verify that this choice is compatible with both
 ⌧peq and  ⌧peq. By Lemma 3.7 Gn is residually p-finite. By Lemma 3.1, so is G{Gn since it
has a power-p subgroup that is residually p-finite.

Step 5. The group ⇡1pGq is residually p-finite.

Residual p-finiteness of ⇡1pGq follows from Theorem 3.6 and Steps 3 and 4. ⇤

4. Cohomological p-completeness and goodness

In this section we prove Theorem 1.1. The proofs are nearly identical for goodness/p-
completeness. Therefore, we will just prove the p-completeness statements, and mention in
the last subsection how the same arguments work for goodness.

4.1. Cohomological p-completeness. Recall from the introduction that a discrete group
G is cohomologically p-complete if the canonical homomorphism G Ñ pGp to the pro-p com-
pletion induces an isomorphism

H
˚
cont

p pGp,Fpq Ñ H
˚pG,Fpq.

Theorem 4.1. The following groups are cohomologically p-complete for all p:

(1) Free groups [LS07]
(2) Finitely generated nilpotent groups [Lor08]
(3) Right-angled Artin groups [Lor08]
(4) Free products of cohomologically p-complete groups [LS07].
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(5) Direct products of cohomologically p-complete groups where at least one factors has
a finite classifying space [LS07]

(6) Retracts of cohomologically p-complete groups [LS07]

We refer to [LS07] for further details on cohomologically p-complete groups. The idea
behind our proof is simple. We are considering multiple HNN extensions of a free group
F , and the cohomology of these can be computed by a Mayer-Vietoris sequence. It is
well-known that free groups are cohomologically p-complete for every p, hence four out of
every five terms in the Mayer-Vietoris sequence are cohomology groups of cohomologically p-
complete groups, and the remaining term is H˚pG,Fpq. If there was a similar exact sequence

for the cohomology of the pro-p completion pGp, then we would be done by the Five Lemma
(this is essentially the argument for right-angled Artin groups used in [Lor08]). The following
property of a graph of groups is a su�cient condition for this pro-p Mayer-Vietoris sequence
[AF13, Lem 5.11]. A profinite version can be found in [WZ10, Prop 4.3].

Definition 4.2. Let G be the fundamental group of a graph of groups, and suppose G is
residually p-finite. The pro-p topology on G is p-e�cient if the vertex and edge groups of G
are closed in the pro-p topology of G and if the pro-p topology on G induces the full pro-p
topologies on the vertex and edge groups of G.

In general, if H † G and G is residually p-finite, the pro-p topology on G induces the full
pro-p topology on H if and only if for every p

n-index subgroup K † H, there is a p
m-index

subgroup J † G with J X H Ä K. A subgroup H † G is closed in the pro-p topology if it
is the intersection of pn-index subgroups.

Lemma 4.3. Let G be a graph of groups where the edge groups are retracts of the vertex
group. Then ⇡1G is p-e�cient if and only if

(1) G “ ⇡1G is residually p-finite,
(2) the pro-p topology on G induces the pro-p topology on Gv for all vertices v, and
(3) every vertex group Gv is closed in the pro-p topology of G.

Proof. Every homomorphism � : Ge Ñ P to a finite p-group P extends to a homomorphism
from Gv. This proves that the pro-p topology on Gv induces to the pro-p topology on Ge,
and it follows that the pro-p topology on G induces the pro-p topology on Gv. When the
edge group Ge is a retract of a vertex group Gv, then it is closed in the pro-p topology of Gv

by [AF13, Lem 1.6]. Thus if Gv is closed in the pro-p topology of G, then so is Ge. ⇤
We state the criterion.

Theorem 4.4 ([AF13, Cor 5.12]). Let G be a p-e�cient graph of finitely generated groups,
where all vertex and edge groups are cohomologically p-complete. Then ⇡1G is cohomologi-
cally p-complete.

Theorem 4.5. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup which is cohomologically p-complete

Proof. We have already constructed in the proof of Theorem 3.8 a finite index subgroup ⇡1pGq
of ⇡1pG 1q which is residually p-finite. We claim that the corresponding decomposition as a
graph of free groups is e�cient. Recall that the pro-p topology on vertex groups is generated
by the filtration �p

n
pGvq. By construction, for every n, ⇡1pGq admits a homomorphism to a

12



finite p-group which restricts to Gv Ñ Gn{�p
n
pGvq. This combined with Lemma 4.3 shows

that the pro-p topology on ⇡1pGq is e�cient, so we are done by Theorem 4.4. ⇤
4.2. Goodness. Cohomological goodness is a bit easier to establish; we will give a more
straightforward proof without restating the relevant definitions (which essentially involves re-
placing the pro-p completion/topology everywhere with the profinite completion/topology).

Theorem 4.6. The fundamental group G of an algebraically clean graph of free groups is
cohomologically good.

Proof. We know G decomposes as an iterated HNN extension of a free group F , where the
edge maps extend to automorphisms of F . We claim these decompositions are e�cient. To
see this, take a finite index characteristic subgroup C of F . There is an induced homomor-
phism from G to an iterated HNN extension of F {C, denoted by G

1. Since F {C is finite, G1

is virtually free, so let H” be any finite index free subgroup which intersects F {C trivially.
The preimage H of H 1 hence intersects F inside of C. This shows the HNN extension is
e�cient, so we are done by the profinite Mayer-Vietoris sequence [WZ10, Prop 4.3]. ⇤

Since finite extensions of good groups are good, this implies that any Artin group satisfying
the conditions of Corollary 1.4 is good as well.

5. Virtual poly-freeness

Proof of Theorem 1.3. Let G be an algebraically clean graph of finite rank free groups over
a finite graph �. By Proposition 2.1, we can assume that � has a unique vertex v, and some
finite number of loops. Then the fundamental group of G fits in the following short exact
sequence

1 Ñ xxGvyy Ñ ⇡1pGq Ñ ⇡1� Ñ 1.

We claim that xxGvyy is a (possibly infinite rank) free group. Indeed, the induced graph of
groups decomposition of xxGvyy is an infinite tree of Gv, amalgamated along free factors. The
chain 1⇥ xxGvyy ⇥ ⇡1pGq is a chain witnessing the normal poly-freeness of ⇡1pGp�qq. ⇤

6. Even Artin groups

Lemma 6.1. Let � be a graph labelled by even numbers • 2, and let ⇤ Ñ � be any induced
subgraph. Then A� retracts onto A⇤.

Proof. The retraction is obtained by mapping each generator s P V p⇤q to itself, and each
generator s P V p�q ´ V p⇤q to 1. ⇤
Proof of Theorem 1.5. The proof is an induction on the number of non-edges in the defining
graph � of A�. If � is a full graph, then by the assumption on no 4-cliques � has at most three
vertices. If � has one vertex, then A� “ Z is residually finite and cohomologically good. If �
has two vertices, then A� is virtually F ˆ Z (see e.g. [HJP16, Lem 4.3]), which is residually
finite and cohomologically good. Since residual finiteness and cohomological goodness pass
to finite index supergroups [GJZZ08, Lem 3.2], A� has those properties. Finally, when � has
three vertices then A� is residually finite and cohomologically good by Corollary 1.4.

We now prove the inductive step. Let � has a non-edge tu, vu. Then A� splits as an
amalgamated product A�´tuu˚A�´tu,vuA�´tvu. By the inductive assumption A�´tuu and A�´tvu
are residually finite and cohomologically good. By Lemma 6.1, A� is an amalgamated
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product along retracts, so A� is residually finite by [BE73], and cohomologically good by
[GJZZ08, Prop 3.5]. ⇤

More generally, the argument in the proof above shows that for even Artin groups being
residually finite and cohomologically good are “free-of-infinity properties”, in the sense that
if we prove that all even Artin groups whose defining graphs are cliques are residually finite
and cohomologically good, then we will be able to deduce that the same holds for all even
Artin groups.
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