PROFINITE PROPERTIES OF ALGEBRAICALLY CLEAN GRAPHS OF
FREE GROUPS

KASIA JANKIEWICZ AND KEVIN SCHREVE

ABSTRACT. We prove that for every prime p algebraically clean graphs of groups are vir-
tually residually p-finite and cohomologically p-complete. We also prove that they are
cohomologically good. We apply this to certain 2-dimensional Artin groups.

1. INTRODUCTION

An algebraically clean graph of free groups is a graph of groups where each vertex group
and edge group are finite rank free groups, and all the inclusion maps are inclusions of free
factors. Examples of the fundamental groups of algebraically clean graph groups include
free-by-cyclic groups, the fundamental groups of clean 2-complexes in the sense of Wise
[Wis00], and certain 2-dimensional Artin groups [Jan22al lJan22b]. We note that (many
among) the former examples are known to not admit (virtual) cocompact actions on CAT(0)
cube complexes, so they are not virtually cocompactly special. In particular, the family of
algebraically clean graphs of groups is strictly larger than the family of the fundamental
groups of finite clean 2-complexes, which all are virtually special.

1.1. Virtual residual p-finiteness. A group G is residually finite if for every g € G — {1}
there exists a quotient ¢ : G — K where K is a finite group and ¢(g) # 1. The fundamental
groups of algebraically clean graph of free groups are known to be residually finite [Wis02,
Thm 3.4].

Let p be a prime number. A group G is residually p-finite if for every g € G — {1} there
exists a quotient ¢ : G — K where K is a finite p-group and ¢(g) # 1. Clearly, every
residually p-finite group is residually finite, but the converse does not hold.

Theorem 1.1. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup that is residually p-finite.

We do not know whether algebraically clean graphs of free groups are linear. We note that
linear groups are known to be virtually residually p-finite [Pla68] for all but finitely many
primes p. There have been previous combination theorems concerning residual p-finiteness,
originating in the work of Higman [Hig64], see e.g. [Will9, |Azal7. [Sok23] and references
therein.

2020 Mathematics Subject Classification. 20F65, 20E26, 20F36.
Key words and phrases. algebraically clean graphs of groups, residual p-finiteness, cohomological p-
completeness, cohomological goodness, Artin groups.
1



1.2. Cohomology of profinite and pro-p completions. For a residually finite group G,
the profinite completion G of G is defined as
G= lm G/H,
[G:H]<ow
where the inverse limit is taken over the system of finite quotients of GG. For every G, there
is a canonical homomorphism i : G — G which sends g € G to the cosets gH. A group G

is called cohomologically good (also known as good in the sense of Serre) if for every finite
G-module M the induced homomorphism

HE,W (G, M) = lim  H*(G/H,M) S H*(G, M)
[G:H]<w

is an isomorphism. We always take the cohomology of a profinite group to be its continuous
cohomology. Goodness was introduced in [Ser97, Exercises 2.6]

We can analogously define cohomological p-completeness for a residually p-finite group. In
this case, the pro-p completion @p of G is given by

G, =limG/H

where H varies over all the normal subgroups of G whose index is a power of p. Then G is
cohomologically p-complete if the homomorphism G — G, induces an isomorphism

H:ont(Gp’Fp) - H*(Gan)
where we assume the G-action on F, is trivial.

Theorem 1.2. The fundamental group of an algebraically clean graph of free groups is

(1) cohomologically good,
(2) for every prime p, virtually cohomologically p-complete.

For each p, the cohomologically complete finite index subgroup is a priori different. General
graphs of free groups do not always satisfy the above theorem. Indeed, there exist examples
of amalgamated products of free groups that are not residually finite [Bha94, [Wis96]. There
are even examples of simple groups that split as amalgamated products of free groups [BM97].

1.3. Virtual poly-freeness. A group G is poly-free if it admits a chain of subgroups 1 =
Gy <G, 944G, = G such that G;/G,_; is a free group (of possibly infinite rank). We
say G is normally poly-free if additionally all subgroups G; are normal in G.

Theorem 1.3. Algebraically clean graphs of free groups are normally poly-free.

This has a number of consequences; for instance it implies these groups are locally indi-
cable, hence left-orderable [RR02], and satisfy the K— and L—theoretic Farrell-Jones Con-
jecture [BEW21, BKW21].

1.4. Applications to Artin groups. An Artin group is given by a presentation

A={s1,...,5]8iSjS;- -+ = 5j8iS; )
~— ~—
mgj terms m;j terms
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where m;; € {2,3,...} U {0}. We understand m;; = o as no relation involving s; and s;.
A triangle Artin group Agp, is an Artin group where k = 3, and mqs = £, me3 = m, and
mi3 = n.

Since finite type Artin groups are linear ([Kra02], [Big01] for braid groups, and [CW02],
[Dig03] in general), it follows that they are also virtually residually p-finite. Moreover, pure
Artin groups of type A,, C,, Gy and I5(n) are residually p and cohomologically p-complete
for all p [AF13], and cohomologically good [Ser97].

With the next corollary in mind, we note that the only spherical triangle Artin groups are
the Agg, = A(Iy(n)) x Z for n = 2, and Ass, where n € {3,4,5}. Among those, the even
ones, Agg, for even n, all are known be cohomologically good and virtually residually p-finite
and cohomologically p-complete for all p.

Corollary 1.4. A triangle Artin Ay, where { < m < n is

e residually finite and cohomologically good,
e for each prime p, virtually residually p-finite and cohomologically p-complete,
e virtually normally poly-free,

provided that

e /=2, and m,n > 4 and at least one of them is even, or
e /,m,n = 4 except for the case where { = m = 4 and n is odd.

In particular, all even triangle Artin groups and all extra-extra-large triangle Artin groups
(i.e. where ¢,m,n > 5) satisfy the above.

Moreover, there are many more 2-dimensional Artin groups that have the above properties.
See [Jan22a] for a combinatorial criterion on the defining graph, which ensure that the
associated Artin group is virtually algebraically clean graph of free groups.

The Artin groups above were shown to virtually split as algebraically clean graphs of free
groups in [|Jan22a. [Jan22b]. We note that “virtual” in the above statement is necessary.
Indeed, a group G that is residually p-finite for all primes p is bi-orderable [Rhe73] (see also
[KS20]), but the only bi-orderable Artin groups are right-angled Artin groups. However,
it is possible that each Artin groups listed above contains a finite index subgroup that is
residually p-finite for all primes p.

Artin groups that are known to be poly-free are right-angled Artin groups [DK93, [How99,
Hv07], even FC-type Artin groups [BGMPP19], and even large type Artin groups [BG21].
Artin groups of types A,, B, = C,, D,, Fy, Gy and I5(n) |Bri73], as well as ﬁn, én, 5’n, I~)n
[Rou20] are known to be virtually poly-free. Independently, Wu-Ye proved that all triangle
Artin groups except Ass, where n is odd, are virtually poly-free [WY23]. Wu-Ye also show
that some triangle Artin groups are not poly-free.

Finally, we also establish residual finiteness and cohomological goodness for all even Artin
groups whose defining graphs contains no 4-cliques.

Theorem 1.5. Let I be a finite labelled graph with all even labels that does not contain a
4-clique. Then Ar is residually finite and cohomologically good.

Such Artin groups are also poly-free by [BG21, Wu22].
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2. GRAPHS OF GROUPS

2.1. Graph of groups notation. We recall the basic definitions and set the notation.
A graph Y consists of a set V(Y) of its vertices, and a set E(Y') of its edges, and two
maps:
(1) = : E(Y) — E(Y) satisfying ¢ = e, where we think of € as the edge ¢ with the
orientation reversed,
(2) 7: E(Y) - V(Y), which we think of as taking the endpoint of an edge.

A graph of groups G with underlying graph Y consists of a family of vertex groups {G, }vev (v)
and edge groups {Ge}eer(yv) Where G, = G together with maps {f. : Ge — Gr(¢)}ecn(v)-

Let T < E(Y) be a set of edges of a spanning tree of Y. The fundamental group mG of
the graph of groups G is constructed as the quotient

mg = (*UGV(Y)GU « F(E(Y))/K
where K is a set of the following relations

(1) efe(g)e = fe(g) for all e e E(Y) and g € G, and
(2)e=e' ande=1if and only ife€ T

2.2. Algebraically clean graph of groups. An algebraically clean graph of free groups is
a graph of groups ¢ with finite underlying graph Y, where GG, is a finite rank free group for
all v e V(Y), G, is finitely generated for all e € E(Y'), and the maps f. : G, — Gre) are
injective maps onto free factors.

Let G be a group, and N, M < G be two subgroups. We say that an isomorphism
¢ : N — M is a partial automorphism, if there exists an automorphism ¢*** : G — G such
that ¢fjf,t = ¢. A partial identity is a partial automorphism that can be extended to the
identity.

Proposition 2.1. Every algebraically clean graph of free groups G admits a splitting as an
algebraically clean graph of groups G’ where the underlying graph Y’ has a unique vertex,
and up to renaming e and €, G, = G is a free factor, f, is the inclusion map, and fz is a
partial automorphism of G ().

Proof. Consider a spanning tree 7" in the underlying graph Y of G. We define a new graph
Y’ to have the vertex set V(Y’) = {T'} and edge set E(Y') ={ee E(Y) | e¢ E(T)}. Let Gr
denote the graph of groups with the underlying graph T, and the vertex and edge groups
and maps as in G. Then mGr = k,erGy/{fe(9) = f=(¢9)}. By induction on the number of
vertices in T, we can argue that m Gy is a finite rank free group, where each G, for v € T
embeds as a direct factor. That is clearly the case when |V(T)| = 1. Let V(T') = 1, and
let v € T be a leaf, and T” be the subtree of T" excluding v, and let e be the unique edge in
T such that 7(e) = v. Then mGr = G #f.(g)=f.(9) Gv, Which is an amalgamated product
of two finite rank free groups along their free factors, so it is a finite rank free group. By
construction, the group G, and every free factor of G+ embed in Gr as free factors.

By “collapsing” T in Y, we can identify mG with the fundamental group of a graph of
groups G’ with underlying graph Y, where
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e the unique vertex group Gr is mGr,

e foreachedgee e E(Y),i.e.e ¢ E(T), G becomes identified with fo(Ge) S Gr) S Gr
which is a free factor in G, and therefore also in G, and the map fz: Gz = G, —
Gr@ S Gr is an embedding onto some free factor of G and again also a free factor
of Gr. We can thus think of that map fz as a partial automorphism of Gr.

O

3. RESIDUAL p-FINITENESS

Throughout this section p is a fixed prime.

3.1. Well-known basics on residual p-finiteness. We start with stating some easy facts
that we will use later.

Lemma 3.1. Let GG be a finitely generated group.

(1) Let N < G be a subgroup whose index is a power of p. Then there exists a charac-
teristic subgroup K < G whose index is a power of p, such that K < N.
(2) Suppose G fits in a short exact sequence

l1>N->-G—-Q—1
where @ is a finite p-group, and N is residually p-finite. Then G is residually p-finite.

Proof.

(1) Let K be the intersection () H of all the normal subgroups H of G of index [G : N].
Note that K is also the kernel of a homomorphism G — [[5 G/H, since the order
of each G/H is a power of p, so is the order of [ [, G/H. In particular, the index
[G : K] is a power of p.

(2) Let g € G. If g survives in @, then @ is the required finite p-quotient of G. Suppose
g € N. Since N is residually p-finite, then using (1) we know that there exists a
characteristic subgroup K < N such that ¢ ¢ K and whose index is a power of p.

Since K is characteristic in N, it is normal in G, and [G : K] is a power of p.
0

3.2. Basics on lower central p-series. Let GG be a finitely generated group. For subgroup
H, K < G we denote:
o H? =(h? | he H),
e [H,K]|={[h,k]| he H,k € K), and we use the convention that [h, k] = hkh ™'k~
e HK ={(hk |he H,k € K).

Let G be a finitely generated group. A filtration of G is a collection (G,,)nen of subgroups
of G where G = G, and G,,1 € G, for each n € N. A filtration (G,,)ney is normal if G, <G
is normal for each n € N, and it is separating if (), .y Grn = {1}

The lower p-central filtration {v2(G)}, of G is defined as:

NG =G, 1a(G) = (n(G)" G RG]
We also denote LP(G) = +2(G)/4%.1(G). In particular, LY(G) = Hy(G,F,). The lower
p-central filtration of G is a normal filtration, and it is separating if and only if G is residually

p-finite. We note a couple of basic well-known properties of the lower p-central series. For

completeness, we provide proofs.
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Lemma 3.2.
(1) For each n we have (42(G))P < 7, ,(G).
(2) For each n,m we have [v£(G),72(G)] < - ...(G).
(3) Each 42(G) is a characteristic subgroup of G. In particular, for each ¢ there are nat-

ural homomorphisms 6,, : Aut(G) — Aut(L2(G)) and o, : Aut(G) — Aut(G/~2(G)).

Proof.
(1) Follows immediately from the definition.
(2) We induct on m. For m = 1 the statement follows directly from the definition for
every n. Suppose that [ _,(G), 2 (G)] € +7..,.,_1(G) for every n.
First we claim that [(7?,_,(G))?,72(G)] € +*.,.(G). Given k € v2(G) and h €
P (G) we need to show that [h?, k] € ~F. (G). First note that [hP, k] = hPuP
where u = kh™'k~!. By the inductive assumption u = h~"¢ for some £ €42, = (F).
We have

[h,k]P = (hkh™ k1P
= WP (R~ @ Dy pP=D) (== Dy pn =2 (A~ uh)u.
By substituting © = A~ we get
(=0 p0=0) — p=(p=) p=1pp(p=0) — p=1p—(p=0) pp(p—1) — hflggi —

for some ¢; € 7, where the equality h~®=)¢h®=) = ¢¢; follows from [G, Vi m_1] S
Ynim- Lhus we have

[h, kP = hPuly_quly_s ... uliu € (RPuP)yh . (G),

and in particular [h?, k]vE,, (G) = (hPuP)yP ., (G) = [h, k]P~E ., (G). Since [h, k] €
Y vm-1(G) by induction, we have [h, k] € 4},,,(G) by Lemma [3.2(1). We conclude
that [h?, k] € 47 ,,.(G), as claimed.

Now we claim that [[G,~F _(G)],72(G)] € ~-,,.(G). By the three subgroup
lemma (see e.g. [[sa09, Cor 8.28])

G 1 (GG < (-1 (G), WG] G- G (G v (G
< [’yz-i-m—l(G)?G] [P)/n-&-l( ) Pym 1(G)]
€ Ynem(G)
and the second and third line follow from the inductive hypothesis. Thus we conclude
that [77,(G), 7(G)] = [(1m1(G) (11 (G), G1, 10(G)] S Yiim (G), as desired.

(3) We now induct on n. For n = 1, clearly 77(G) = G is characteristic in G. We
assume that the statements in true for n — 1 and prove it for n. Let h € 42(G) =
(GG, AE_(G)], i.e. h = hY - [k, ha] where hi,hy € 4P_(G) and k € G. Let
¢ € Aut(G). Then

¢(h) = @(hY - [k, hal) = ¢(ha)? - [¢(k), ¢ (h2)].
Since 17, (G) is characteristic, 6(h), &(hs) € 12 (G), 50 6(h) € 11 (GG, 7 (G)]
v2(@). Thus 72(G) is characteristic.
Since v2(@G) is characteristic in G, every automorphism ¢ : G — G preserves 72 (G),
and therefore 0,(¢) : G/72(G) — G/42(G) is well-defined. It is clear that o, is a

homomorphism. The automorphism ¢ restricts to ¢,z : 75(G) — 75(G), and to
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ey - Thi1(G) = 751 (G). Thus ¢ descends to a well-defined automorphism of
LP(G). The map 6, is clearly a homomorphism.

U
Proposition 3.3 ([HB82, Chap VIIL.1]). Let ¢ € Aut(G) such that 6;(¢) = Idzr ().
(1) We have 0,,(¢) = Idz ¢ for all n.
(2) The order of 0,(¢) is a power of p.
Proof. (1) We induct on n. The case of n = 1 is immediate. We assume that the

statement holds for n — 1.
Let first h € v7_,(G). Then by assumption ¢(h) = hk, where k,, € v2(G). We have

(I v341(G)) = (hkn)’ 7311 (G)

= WP (WP Ve, P (WP Dk, hP72) - (e, h) i A2 (G)

= WPk lp_1kplyps - kplikn, v 1 (G)

= WPEE (ke P00, k2N (ke P20, ok 72 L (ke k) AR (G)

= "k}, Y (G)

= hP 77€+1(G)
where ¢y, ..., 0,_1,(, 0 are some elements of 7* | (G). Indeed, the fact that h™7k,h/ =
knt; follows from the fact that [vh_,(G),72(G)] < [G,72(G)] < v .1(G) (Proposi-

tion [3.2(2)). Finally, the fact that k% €+, follows from Proposition [3.2[1).
Now let g € G. Then ¢(g) = gl for some ¢ € v5(G). We have

o([g, ] Vi1(G)) = [gl2, hkn] Vi1 (G)
= g(lahkyly™ g k'R A 4 (G)
= gh(kndn1g™ by )R A0 (G)
= ghdn+1g_1d;z+1h_1 Tr41(G)
= ghg™ h™' 77,1 (G)
= [9. "] 141 (G)

where we used Proposition (2) to write lohk, by~ = hk,d,.4 for some d,.; €
i1 (G) since [v5(G),7_1(G)] € 7511 (G), and kydnirg™ k™" = dpyag™'d),, for
some &), € 1241 (G) since [18(G), G € 17, (G).

Finally, every generator h of v2(G) is of the form h = hi[g, ho| for some hy, hy €
¥ (G). We have

P71 (@) = d(M)([g, hal) 101 (G) = LG, hal73i41 ()
for some ¢ € 77, ,(G). This proves that 6;(¢) = Id.r(g) as claimed.

(2) We prove by induction on n that o,(¢?" ) = Idg/ec)- The case of n = 1 is
immediate as o7 = 6;. We assume that the statement holds for n — 1, in particular
for every h € G we have ¢ (hy?_,(G)) = hy?_,(G), i.e. there exists k € 7%, (G)
such that ¢~ (h) = hk. We have

&7 () = (Y = (7 (¢

7

n—2

(1) = (") (k).



Since k € 17_,(G) and 6,(¢*" ") = 0,(p)?" " = Idzz (¢, using Proposition (1),
we get

n—2

JH k) = (&)@ (e (k)
A R H(E)
= (@) (R R(G)) = o = BR(G).
In particular, since k? € v2(G) by Proposition (1), we conclude ¢?" ' (h) € hy2(G)

as required.

(¢"

O

Corollary 3.4. Let A < Aut(G) be a subgroup.
(1) The image 0;(A) < Aut(L{(G)) is a finite p-group if and only if 6,,(A) < Aut(LP(G))
is a finite p-group for every n > 1.
(2) The image 61(A) < Aut(G/+7(G)) is a finite p-group if and only if 0,,(A) < Aut(G/~+E(Q))
is a finite p-group for every n > 1.

Proof.

(1) Fixn > 1, and suppose that 6;(A) is a finite p-group. By Proposition[3.3(1) for every
¢ € A, if 01(¢) = Idpr(q), then 0,(¢) = Idpr(). Thus 6;(A) is a quotient of 6;(A4). In
particular, 0;(A) is a finite p-group as required.

(2) Fix n > 1, and suppose that o1(A) = 6,(A) is a finite p-group. For every ¢ € A
there exists £ > 1 such that 91(¢pk) = 01(¢)pk = Idr(g). By Proposition (2) the

order of an(gb”k) is a power of p, and therefore the order of 0,(¢) is a power of p. We
conclude that 0,(A) is a p-group. As a subgroup of the automorphism group of a
finite group o, (A) is also finite.

[

The above corollary implies that for every subgroup K of ker(Aut(G) — Aut(L{(G))
(which has finite index in Aut(G)), all the images o;(K) are finite p-groups. This observation
is crucial in the proof of Theorem [I.1]

We note the following observation that the operators #; and o; can be extended to partial
automorphisms.

Lemma 3.5. A partial automorphism ¢ : N — M induces a partial automorphism N N
Y2(G)) - M n~2(G) of 42(G). In particular, it descends to the following partial automor-
phisms

(1) on(9) : N/N 0 3(G) — M/M 5 (G), and

(2) On(9) : N " R(G)/N 0 1 (G) = M y(G) /M 014 (G).

Proof. Since ¢ is a partial automorphism of G, there exists ¢** € Aut(G) such that <b|e]f,t = ¢.
By Proposition [3.2|3), 7%(G) is a characteristic subgroup of G, so ¢°*!(1£(G)) = 4£(G) for
every n. Thus ¢(N n2(G)) = ¢“*(N n2(G)) = M n ~2(G) for every n. The lemma
follows. O

3.3. Residual p-finiteness criterion for graphs of groups. We generalize a theorem of

[AF13] that every graph of virtually residually p-groups, where edge group inclusions are
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isomorphisms, are virtually residually p-finite. Their result, in particular, applies to free-
by-cyclic groups. We will use a criterion for residual p-finiteness of graphs of groups stated
therein.

A filtration G of a graph of groups G is a collection {G,}, of compatible filtrations G, =
{Gyn}n of G, for each v € V(I'), in the sense that for all n

f;l(GT(e),n) = fgl(GT(E),n>'

For a given property X (e.g. normal, separating), we say that G is X if for every v € V(Y)
the filtration G, is X. We say that a filtration G of a graph of groups G separates edge
groups if fo(Ge) =), Gr(eym - Je(Ge) for all edges e.

Let G,, be the n-th depth subgroups of the filtration G of G, i.e. G,, = (G )vev(v)- Since
the filtrations of the vertex groups are compatible, there exists a natural graph of groups

quotient G/G,, which has Y as it underlying graph and vertex groups G, /G, .
The following will be used to prove Theorem [L.1]

Theorem 3.6 ([AF13, Cor 3.14]). Let G be a normal separating filtration of G which
separates edge groups of G, such that 7 (G/G,,) is residually p-finite for every n > 1. Then
m G is residually p-finite.

3.4. Main proof. The following lemma can be deduced from [Will9] but in this case it is
easy to prove it directly.

Lemma 3.7. Let P be a finite p-group. Let G be a graph of p-groups where each vertex
group comes with an injective homomorphism ¢, : G, — P, and each edge group comes
with an inclusion ¢, : G, — P such that ¢, = 1¥z. Moreover, assume that for each edge e
the composition ;) - fe = Y. Then m G is residually p-finite.

Proof. The assumption on G imply that there exists an epimorphism v : mG — P which is
an isomorphism on each vertex group. Indeed, v is defined as 1, on each vertex group G,
and sending all edge generators (not edge groups) to the identity. The kernel ker ¢ is thus a
finite index subgroup of m G and splits as a finite graph of trivial groups, i.e. ker ¢ is a finite
rank free group. By Lemma (2) m G is residually p-finite. 0

We are now ready to prove the main theorem.

Theorem 3.8. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup that is residually p-finite.

To illustrate the proof, we first consider the special case of free-by-free groups.

Proof for ' x ). Let F,(Q be finite rank free groups. In particular, F' and @) are residually
p-finite. Let o : @ — Aut(F) be a homomorphism associated to the semi-direct product.
By Lemma [3.2{(3) 75(F) is characteristic in F, so every automorphism ¢ € Aut(F) descends
to an automorphism of LY(F), i.e. there is a well-defined homomorphism 5 : Aut(F) —
Aut(LY(F)). By composing a with 3, we obtain a homomorphism to a finite group (5 - ¢ :
Q — Awt(LY(F)). Let Q be its kernel. Then F' x @' is a finite index subgroup of F x Q,
which we claim is residually p-finite.

By Corollary [3.4(2) the image 0;(Q’) is a p-group for every i. In particular (F/47) x Q'
is residually p-finite. Indeed if g € (F/+7) x Q' survives in @', then we can use the fact that

Q' is residually p-finite. Otherwise, when g € ker((F/7?) x Q" — @'), then g must survive
9



in the quotient (F/4?) x 0;(Q"), which is a p group as its order is a power of p. Since every
element g € F' x Q' survives in F'/7?(F) x Q' for some i, we conclude that F' x Q) is residually
p-finite. O

We now move to the general case. Let F' be a finite rank free group, and let N, M be two
subgroups of the same rank, each being a free factor of F. Every isomorphism ¢ : N — M
can be extended to an automorphism ¢¢ : F' — F'| i.e. gbf]‘ff = ¢, which we call an extension

of ¢ to F'. Note that an extension of ¢ is far from being unique. Indeed, it is only unique if
N=M=F.

Proof in general case. Let G’ be a fundamental group of an algebraically clean graph of free
groups. By Proposition [2.1] we can think of G’ as the fundamental group of a graph of
groups G’ where the underlying graph Y’ of G’ is a wedge of k oriented circles {ey, ..., e,}.
The unique vertex group of G’ is identified with a finite rank free group F', and for each
1 <@ < k the edge groups G, can be identified with a free factor N; so that f., = Idy, and
fe; = ¢i : N; — M, is a partial automorphism onto a free factor M; of F. Let @)’ be a free
group freely generated by {¢1, ..., ¢x}, which can be naturally identified with 7 (V).

Step 1. We construct a finite index normal subgroup Q of Q' such that 0,,(Q) is trivial.

Let {@§"t, ..., ¢} be a choice of extensions of {¢q,..., ¢}, ie. for each 1 < i < k
¢t € Aut(F) such that ¢f“‘ n, = ¢i- Recall the homomorphism 6; : Aut(F') — Aut(Lj(F))
from Proposition (3) We construct a subgroup @ of Q' as

Q = ker(Q" — Aut(F) — Aut(LY(F))

where the first map sends ¢; to ¢ € Aut(F'), and the second map is ;. Since Aut(LY(F))
is a finite group, the index [Q' : Q] is finite.
By Corollary [3.4(1), the image of @ in Aut(LE(F)) is trivial for every n.

Step 2. We construct the corresponding finite index normal subgroup G of G’ and realize it
as the fundamental group of a graph of groups G covering the graph of groups for G'.

Consider the finite index subgroup G of G’ corresponding to @, i.e. G = ker(G' — Q' —
Q'/Q). The group G is the fundamental group of the following graph of groups G. The
underlying graph Y of G is the finite covering space of Y’ corresponding to @@ < @)’. Each
vertex group of G is a copy of F'. The edge groups of edges labelled with e; are copies of
N; with the maps Idy, and ¢; into the respective vertex groups. We note that G is still an
algebraically clean graph of finite rank free groups, with a natural quotient Q).

Step 3. There is a natural filtration G of G where G, = {V2(Gy)}n of G, for eachv e V(Y).
The filtration is normal, separating, and it separates the edge groups.

Lemma implies that the filtrations G, on the individual vertex groups are compatible
and indeed define a filtration on G. It is immediate that G is normal. Since all the vertex
groups are free groups, hence residually p-finite, their lower p-central series are separating.
Since the edge groups are retracts of the vertex groups, and vertex groups are residually
p-finite, [AF13, Lem 1.6] implies that the filtration separates the edge groups.

Step 4. For each n, m(G/G,,) is residually p-finite.
10



The graph of groups G/G,, has all the vertex groups naturally isomorphic to F'/4?(F') and
the edge groups are (N;/(N; n +2(F)) for respective i, with the respective edge maps being
partial identities and partial automorphisms ¢;. We construct a further subgroup @, of @
as

Qn = ker(Q — Aut(F) — Aut(F/~4E(F))

the first map sends ¢; to ¢¢*" € Aut(F'), and the second map is the map o, defined in
Lemma [3.23). By Corollary [3.4)2), the image of Q in Aut(F/4%(F)) is a finite p-group,
and therefore [Q : @Q,] is a p-power. We now claim that the kernel K,, = ker(m(G/G,) —
Q — Q/Q,) is the fundamental group of a graph of groups satisfying the assumptions of
Lemma[3.7, and therefore is residually p-finite. Indeed, K, is a finite cover G, of the graph of
groups G/G,, whose all the vertex groups are still naturally isomorphic to F'/4F(F"), and edge
groups are (N;/(N; n ~E(F)) for respective i, with the respective edge maps being partial
identities and partial automorphisms ¢;. We fix a vertex group G,, of G, and for each
v e V(Y) we construct a map ¢, : G, — G,,. We describe each map as an automorphism
1y € Aut(F /+2(F)) using the natural identification of each G, with F/~2(F). First, ¥,, =
Id gy (p). For v such that there is a path from v to vy is labelled by edges e;, . .. e;, we define
= (0.

We clainﬁ that 11% does not depend on the choice of the path from v to vy. Indeed, given

some other path with labels e, ...e;, we get that
exr er exr ext\—1 exr ex ext\—1 ext\—1
en( ikt T ilt)en( jk/t T jlt) = en( ikt T ilt( jlt) ( jk/t) ) = IdeO
by our choice of @,,. This proves that 6, (g5 - ¢57") = 0, (857 - - #57). For any edge e with
label i, we set Y. = 1)z = V- (¢)|c., and easily verify that this choice is compatible with both
() and Y. By Lemma G, is residually p-finite. By Lemma so is G/G,, since it
has a power-p subgroup that is residually p-finite.

Step 5. The group m(G) is residually p-finite.
Residual p-finiteness of m;(G) follows from Theorem and Steps 3 and 4. O

4. COHOMOLOGICAL p-COMPLETENESS AND GOODNESS

In this section we prove Theorem . The proofs are nearly identical for goodness/p-
completeness. Therefore, we will just prove the p-completeness statements, and mention in
the last subsection how the same arguments work for goodness.

4.1. Cohomological p-completeness. Recall from the introduction that a discrete group
G is cohomologically p-complete if the canonical homomorphism G — G, to the pro-p com-
pletion induces an isomorphism

H:ont(épv Fp) — H* (G, Fp>'

Theorem 4.1. The following groups are cohomologically p-complete for all p:
(1) Free groups [LSQT7]
(2) Finitely generated nilpotent groups [Lor(§]
(3) Right-angled Artin groups [Lor08]
(4) Free products of cohomologically p-complete groups [LS07].
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(5) Direct products of cohomologically p-complete groups where at least one factors has
a finite classifying space [LS07]
(6) Retracts of cohomologically p-complete groups [LS07]

We refer to [LSQ7] for further details on cohomologically p-complete groups. The idea
behind our proof is simple. We are considering multiple HNN extensions of a free group
F, and the cohomology of these can be computed by a Mayer-Vietoris sequence. It is
well-known that free groups are cohomologically p-complete for every p, hence four out of
every five terms in the Mayer-Vietoris sequence are cohomology groups of cohomologically p-
complete groups, and the remaining term is H*(G,F,). If there was a similar exact sequence

for the cohomology of the pro-p completion G?, then we would be done by the Five Lemma
(this is essentially the argument for right-angled Artin groups used in [Lor08]). The following
property of a graph of groups is a sufficient condition for this pro-p Mayer-Vietoris sequence
[AF13, Lem 5.11]. A profinite version can be found in [WZ10, Prop 4.3].

Definition 4.2. Let G be the fundamental group of a graph of groups, and suppose G is
residually p-finite. The pro-p topology on G is p-efficient if the vertex and edge groups of G
are closed in the pro-p topology of G and if the pro-p topology on G induces the full pro-p
topologies on the vertex and edge groups of G.

In general, if H < G and G is residually p-finite, the pro-p topology on G induces the full
pro-p topology on H if and only if for every p™-index subgroup K < H, there is a p"-index
subgroup J < G with J n H ¢ K. A subgroup H < G is closed in the pro-p topology if it
is the intersection of p™-index subgroups.

Lemma 4.3. Let G be a graph of groups where the edge groups are retracts of the vertex
group. Then 7 G is p-efficient if and only if

(1) G = m G is residually p-finite,

(2) the pro-p topology on G induces the pro-p topology on G, for all vertices v, and

(3) every vertex group G, is closed in the pro-p topology of G.

Proof. Every homomorphism ¢ : G, — P to a finite p-group P extends to a homomorphism
from G,. This proves that the pro-p topology on G, induces to the pro-p topology on G,
and it follows that the pro-p topology on G induces the pro-p topology on G,. When the
edge group G, is a retract of a vertex group G, then it is closed in the pro-p topology of G,
by [AF13, Lem 1.6]. Thus if G, is closed in the pro-p topology of G, then so is G.. O

We state the criterion.

Theorem 4.4 (JAF13, Cor 5.12]). Let G be a p-efficient graph of finitely generated groups,
where all vertex and edge groups are cohomologically p-complete. Then mG is cohomologi-
cally p-complete.

Theorem 4.5. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup which is cohomologically p-complete

Proof. We have already constructed in the proof of Theorem a finite index subgroup 7 (G)
of m1(G") which is residually p-finite. We claim that the corresponding decomposition as a
graph of free groups is efficient. Recall that the pro-p topology on vertex groups is generated

by the filtration 42 (G, ). By construction, for every n, m1(G) admits a homomorphism to a
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finite p-group which restricts to G, — G, /v2(G,). This combined with Lemma shows
that the pro-p topology on m1(G) is efficient, so we are done by Theorem O

4.2. Goodness. Cohomological goodness is a bit easier to establish; we will give a more
straightforward proof without restating the relevant definitions (which essentially involves re-
placing the pro-p completion/topology everywhere with the profinite completion/topology).

Theorem 4.6. The fundamental group G of an algebraically clean graph of free groups is
cohomologically good.

Proof. We know GG decomposes as an iterated HNN extension of a free group F', where the
edge maps extend to automorphisms of F'. We claim these decompositions are efficient. To
see this, take a finite index characteristic subgroup C' of F. There is an induced homomor-
phism from G to an iterated HNN extension of F'/C, denoted by G’. Since F'/C'is finite, G’
is virtually free, so let H” be any finite index free subgroup which intersects F'/C trivially.
The preimage H of H’ hence intersects F' inside of C. This shows the HNN extension is
efficient, so we are done by the profinite Mayer-Vietoris sequence [WZ10, Prop 4.3]. U

Since finite extensions of good groups are good, this implies that any Artin group satisfying
the conditions of Corollary [1.4]is good as well.

5. VIRTUAL POLY-FREENESS

Proof of Theorem[1.3. Let G be an algebraically clean graph of finite rank free groups over
a finite graph I". By Proposition 2.1 we can assume that I' has a unique vertex v, and some
finite number of loops. Then the fundamental group of G fits in the following short exact
sequence

1 — <<Gv>> — Wl(g) — 7T1F — 1.

We claim that {G,) is a (possibly infinite rank) free group. Indeed, the induced graph of
groups decomposition of (G, ) is an infinite tree of G,,, amalgamated along free factors. The
chain 1 <G, ) < m(G) is a chain witnessing the normal poly-freeness of 7 (G(I)). O

6. EVEN ARTIN GROUPS

Lemma 6.1. Let I" be a graph labelled by even numbers > 2, and let A € I" be any induced
subgraph. Then Ar retracts onto Ay.

Proof. The retraction is obtained by mapping each generator s € V(A) to itself, and each
generator s € V(I') — V(A) to 1. O

Proof of Theorem[1.5. The proof is an induction on the number of non-edges in the defining
graph I' of Ap. If ' is a full graph, then by the assumption on no 4-cliques I' has at most three
vertices. If I' has one vertex, then Ar = 7Z is residually finite and cohomologically good. If I
has two vertices, then Ar is virtually F' x Z (see e.g. [HJP16, Lem 4.3]), which is residually
finite and cohomologically good. Since residual finiteness and cohomological goodness pass
to finite index supergroups [GJZZ08, Lem 3.2], Ar has those properties. Finally, when I" has
three vertices then Ar is residually finite and cohomologically good by Corollary [1.4]

We now prove the inductive step. Let I' has a non-edge {u,v}. Then Ar splits as an
amalgamated product Ap_g,y*4,. - Ar_yy. By the inductive assumption Ar_g,; and Ap_g,,
are residually finite and cohomologically good. By Lemma [6.1, Ar is an amalgamated
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product along retracts, so Ar is residually finite by [BE73], and cohomologically good by
[GJZZ08, Prop 3.5]. U

More generally, the argument in the proof above shows that for even Artin groups being
residually finite and cohomologically good are “free-of-infinity properties”, in the sense that
if we prove that all even Artin groups whose defining graphs are cliques are residually finite
and cohomologically good, then we will be able to deduce that the same holds for all even
Artin groups.
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