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Abstract. The problem of reliable/secure all-to-all communication over low-degree networks has been
essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly
communicates only with a few, typically polylogarithmic in n, parties) and more recently for com-
munication over ad hoc networks, which are used in blockchain protocols. However, a limited number
of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of
parties to act in some specific manner before the adversary can corrupt them. Two such assumptions
were made in the work of Chandran et al. [ITCS ’15]—parties can (a) multisend messages to several
receivers simultaneously; and (b) securely erase the message and the identities of the receivers, before
the adversary gets a chance to corrupt the sender (even if a receiver is corrupted).

A natural question to ask is: Are these assumptions necessary for adaptively secure CL MPC? In this
paper, we characterize the feasibility landscape for all-to-all reliable message transmission (RMT) under
these two assumptions, and use this characterization to obtain (asymptotically) tight feasibility results
for CL MPC.

– First, we prove a strong impossibility result for a broad class of RMT protocols, termed here
store-and-forward protocols, which includes all known communication protocols for CL MPC from
standard cryptographic assumptions. Concretely, we show that no such protocol with a certain
expansion rate can tolerate a constant fraction of parties being corrupted.

– Next, under the assumption of only a PKI, we show that assuming secure erasures, we can obtain
an RMT protocol between all pairs of parties with polylogarithmic locality (even without assuming
multisend) for the honest majority setting. We complement this result by showing a negative result
for the setting of dishonest majority.

– Finally, and somewhat surprisingly, under stronger assumptions (i.e., trapdoor permutations with
a reverse domain sampler, and compact and malicious circuit-private FHE), we construct a
polylogarithmic-locality all-to-one RMT protocol, which is adaptively secure and tolerates any
constant fraction of corruptions, without assuming either secure erasures or multisend. This last
result uses a novel combination of adaptively secure (e.g., non-committing) encryption and (static)
FHE to bypass the impossibility of compact adaptively secure FHE by Katz et al. [PKC’13], which
we believe may be of independent interest. Intriguingly, even such assumptions do not allow reduc-
ing all-to-all RMT to all-to-one RMT (a reduction which is trivial in the non-CL setting). Still, we
can implement what we call sublinear output-set RMT (SOS-RMT for short). We show how SOS-
RMT can be used for SOS-MPC under the known bounds for feasibility of MPC in the standard
(i.e., non-CL) setting assuming, in addition to SOS-RMT, an anonymous PKI.

⋆ This research was supported in part by NSF grants CNS-2246355, CCF-2220450, US-Israel BSF grant 2022370,
and by Sunday Group.



1 Introduction

1.1 Communication Locality and Adaptive Security

Secure multi-party computation (MPC) [Yao82,GMW87a,BGW88a,CCD88] allows a set of n parties to
securely compute a function on their joint private data. Initial work on MPC focused on feasibility, and it was
followed by a series of works on improving round and communication complexity. Envisioning the potential
need to deploy MPC on massive networks, novel works on scalable MPC (e.g., [DI06,IPS08,DIK10,GIOZ17])
have investigated settings and techniques that allowed for protocols with communication complexity that
grows (asymptotically) slower than the size of the player set. Boyle, Goldwasser, and Tessaro [BGT13a] put
forth a different metric that is very relevant for the design of massive-scale MPC, namely, communication
locality (CL). The CL of a party in a protocol is the number of parties that this party sends/receives
messages to/from, via a direct point-to-point channel, through the execution of the protocol; as such, the CL
of a protocol is the maximum CL of any party. Motivated by the potential application of MPC to privately
executing sublinear algorithms in a distributed manner, [BGT13a] proposed a solution which achieves MPC
with a sublinear (i.e., polylogarithmic in n) CL tolerating a (sub-optimal) number of t < (1/3− ϵ)n actively
corrupted parties, for ϵ > 0.

The original solution in [BGT13a] only considered static corruptions and relied on the existence of a
public-key infrastructure (PKI), a common reference string (CRS), semantically secure public-key encryption
and existentially unforgeable signatures. Chandran et al. [CCG+15] improved on the above result to tolerate
an asymptotically optimal number of t < (1/2 − ϵ)n adaptive active corruptions, for an arbitrary small
constant ϵ. Their construction relied on the same assumptions except for the CRS, which was replaced by a
hidden (random) graph: A suitable random graph on n vertices (with sublinear degree) that is sampled by a
trusted entity and where each party is given its neighborhood in this graph. However, parties do not know the
other parties’ neighborhoods, and, most importantly, the adversary does not know the (honest) neighbors
of honest parties. As shown in [CCG+15], this random graph can be realized via a standard symmetric-
key infrastructure (SKI)—wherein every two parties share a (secret) symmetric-key encryption key. The
emulation is simple: Every two nodes locally use their symmetric key as a seed to a PRF to derive sufficiently
long pseudorandomness that can be utilized to decide (locally and independently) whether or not the parties
should have an edge between them in any given round. In fact, we mention that, as noted in [CCG+14],
the above hidden graph (or, equivalently, SKI) assumption can be replaced by standard number-theoretic
cryptographic assumptions (such as DDH and its resulting PKI), allowing non-interactive key exchange
(NIKE, for short—cf. [FHKP13]). The simple idea is that the PKI can be used to non-interactively establish
the SKI required in [CCG+15], which can then be used to derive the hidden graph.

The core challenge associated with such sublinear CL protocols is propagating information and connecting
any two parties using a sparse (i.e., sublinear degree) communication graph. In such a context, one needs
to route messages through the induced (incomplete) communication graph so that the adversary cannot
block (even indirect) communication between any two honest nodes, thus disconnecting the graph. Indeed,
since any party can only directly communicate with a sublinear number of neighbors, the only way for it to
reach all parties in the network is by means of a gossiping protocol. In [BGT13a], gossiping was done via a
routing protocol based on hierarchical routing and sorting networks that cleverly knit the paths to ensure
each message travels over sufficiently many paths, making it impossible for the adversary to block it.

The above gossiping protocol works for a static adversary corrupting t < (1/3−ϵ)n parties. However, when
one considers stronger adversaries, with an asymptotically optimal (for MPC) corruption threshold—i.e.,
t < (1/2 − ϵ)n—and, most importantly, adaptive adversaries, the problem becomes even more challenging,
as message routing through the incomplete graph turns into a “cat-and-mouse” game—more formally, a
graph discovery game—with the adversary using an initial set of corrupted parties to try to discover possible
message routes and block them. In [CCG+15], properties of a hidden Erdős-Rényi graph were used along
with a clever use of edges in a disposable manner (where every edge was used only once) in order to win
the above graph discovery game, and devise a sublinear-locality communication protocol for the problem of
reliable message transmission (RMT) between any two honest nodes, which allowed every honest party to
reach every other honest party. The protocol from [CCG+15] tolerates an arbitrary constant fraction of the
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parties being adaptively (and actively) corrupted. RMT protocols can then be used to trivially construct
secure message transmission (SMT) protocols—informally, these are protocols which emulate a secure, i.e.,
private and authenticated, channel between a sender and a receiver—in the model assuming a PKI, which
can then be used to build communication local MPC protocols5.

1.2 Erasures and Network Assumptions in CL Protocols

The protocol in [CCG+15] relied on the aforementioned setup and hardness assumptions, namely, a PKI, an
SKI, and the existence of enhanced one-way permutations—the latter being a common minimal assumption
for MPC. In addition, an assumption was made in [CCG+15] which is not essential for MPC, but, as we
show in this paper, turns out to be necessary for sublinear communication when natural gossiping protocols
are used. In more detail, the assumption of secure erasures [CFGN96a]—namely, that honest parties can
erase whichever part of their state they wish, in a way that if they are corrupted later on, the adversary
cannot recover the erased information—is only needed for a subset of adaptively secure MPC protocols
without the sublinear CL restriction [GS12]. The construction from [CCG+15], however, assumes not just
erasures, but actually two levels of strengthening of the assumption: First, it also assumes an atomic multisend
capability [HZ10], which in a nutshell ensures that if a player p attempts to send a message to a subset Q
of the player set in some given round, then either all honest parties will receive the message or none of
them will6. However, even assuming secure erasures in addition to such a rushing adversary proves not to be
sufficient for the protocol in [CCG+15]. The reason is that when a message is sent to a polylogarithmic (in n)
number of parties, then one of these parties may be corrupted, in which case the adversary can corrupt the
sender and learn who the other receivers were, before the sender has had a chance to erase their identities,
and corrupt them too, thereby completely neutralizing the sender. In fact, the inability of the adversary to
mount such an attack is essential in [CCG+15]’s security proof. In order to exclude this attack, [CCG+15]
also assumes that multisend and erase can jointly be done as an atomic operation—i.e., p can send his
message so that it is received by all the parties in Q and erase their identitites before the adversary is able
to corrupt him.

1.3 Our Results

The above state of affairs leaves open several questions regarding the minimal assumptions required for
sublinear locality in all-to-all communication (and therefore also in MPC) in the adaptive security setting. In
particular, it leaves open the question of the necessity and sufficiency of secure erasures, atomic multisend, and
their atomic combination as mentioned above. In this paper we provide a characterization of this landscape,
as depicted in Table 1. The impossibility results in Table 1 are for adaptively secure all-to-all reliable message
transmission, i.e., the task of allowing every party pi to send a (potentially different) message to every party
pj in a reliable, i.e., authenticated manner—where pj becomes aware that the message was sent by pi—so
that the adversary cannot block or alter the message exchanges between any pair of honest parties. As noted
earlier, this serves as a building block for SMT and CL MPC protocols. These results apply to a broad class
of protocols which we call store-and-forward (SF) protocols, which, intuitively, allow intermediate parties to
only store and forward previously received messages, and (for the non-erasure case) under an expansion-rate
assumption, which mandates that messages originating from any neighbors of a sender will reach a large
(polylogarithmic size) set relatively fast (i.e., before they reach their respective receiver) (see Definitions 1
and 2). This includes several natural message propagation and gossiping protocols, and in particular all those
used in the CL literature (see Section 2 for a discussion).

The positive results in Table 1 are for all-to-one RMT, i.e., there is one receiver who everyone wishes to
send messages to. As we shall show, assuming erasures, the feasibility results can be extended to all-to-all

5 As a side note, an interesting side effect of the recent popularity of blockchain protocols is that, as they also rely
on gossiping for communication, results on the feasibility of sublinear-communication protocols provide insights on
basic feasibility questions in the blockchain context as well (see related work for further details).

6 As shown in [HZ10,KMTZ13], this property is impossible to obtain from simple point-to-point communication in
the standard adaptive and rushing adversary setting [Can00].
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RMT. However, intriguingly, in the non-erasure setting, the protocol can only be extended to allow for a
sublinear (polylogarithmic) set of receivers. Even so, the assumption of an additional setup, namely, an
anonymous PKI, allows us to rescue the situation: We show that we can implement a new notion of MPC,
which we term sublinear output-set MPC (SOS-MPC for short). Likewise, we use the term SOS-RMT to
refer to the formerly obtained notion of RMT with a sublinear set of receivers. Intuitively, in an anonymous
PKI setting, parties have access to a PKI but do not know which public-key corresponds to which party.
Such a setup is common in YOSO-style MPC protocols which have become highly relevant in the blockchain
literature [GHK+21]. Our newly defined SOS-MPC is similar to standard MPC (i.e., the inputs of all parties
are accounted for in the computation) but only a (random) subset of the parties of sublinear size receives
the output from the computation. We note that SOS-MPC is sufficient for the motivating applications of
CL MPC, namely, secure computation of sublinear algorithms, where the output is by definition far smaller
than the input (cf. [BGT13b]). This leaves open the question of feasibility or impossibility of (all-to-all RMT
and) standard MPC in this setting.
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✓ ✓ ✓ [CCG+15]: Assuming PKI and one-way functions, there exists an (SF) sublinear locality RMT
protocol tolerating t < (1− ϵ)n corruptions, for any ϵ > 0.

✓ ✗ ✗ Theorem 1: There exists no SF polylogarithmic locality RMT protocol with expansion rate
(polylog(n), k logn

c log log n
) tolerating a constant fraction of corruptions, for any k < 1, where the

degree of the communication graph is O(logc n).

✗ ✓ ✗ Theorem 2: Assuming PKI and one-way functions, there exists an (SF) polylogarithmic
locality RMT protocol tolerating t < ( 1

2
− ϵ)n corruptions, for any 0 < ϵ < 1

2
.

Theorem 3: There exists no SF polylogarithmic locality RMT protocol tolerating t > ( 1
2
+ϵ)n

corruptions, for any 0 < ϵ < 1
2
.

✗ ✗ ✗ Theorem 4: Assuming PKI, trapdoor permutations with a reversed domain sampler and com-
pact and malicious circuit-private FHE, there exists a polylogarithmic locality RMT protocol
tolerating t < (1− ϵ)n corruptions, for any ϵ > 0.

Table 1. A characterization of feasibility of reliable communication (RMT) under the different assumptions: Atomic
multisend (A-MS), secure erasures (Erasures), and multi-send and secure erasures as an atomic operation (A-MSE).
All negative results are for all-to-all RMT. The positive results are for all-to-one RMT; but all except Theorem 4 are
extended to all-to-all RMT, whereas Theorem 4 is extended to SOS-RMT. Note that SF stands for store-and-forward
as defined in Definition 1, and expansion rate is as defined in Definition 2.

Our positive results are of two flavors. Assuming secure erasures under standard assumptions (i.e., one-way
functions), we provide SF protocols for RMT tolerating the (asymptotically) optimal number of corruptions,
as implied by the impossibility result of Theorem 3. This leaves open the following important question:

Is it possible to construct a (non-SF) RMT protocol in the no-erasures setting that is adaptively
secure against a constant fraction of corruptions?

We answer this question in the affirmative, albeit using strong cryptographic assumptions. Concretely,
assuming trapdoor permutations with a reversed domain sampler and the existence of a malicious, compact,
and circuit-private fully-homomorphic encryption (FHE) scheme [OPP14], we can construct a protocol, which
is not SF, and thus circumvents our impossibility result, allowing for RMT tolerating any constant fraction
of corruptions. Its construction relies on a novel combination of adaptively secure (e.g., non-committing) en-
cryption [CFGN96a] and (statically) secure FHE to obtain a homomorphic encryption scheme that, although
not fully homomorphic, allows to compute a class of circuits sufficient for our RMT, while providing adaptive
security (including deniability), a property which is known to be impossible for general FHE [KTZ13].

Regarding our MPC feasibility results, using techniques from [CCG+15], we can “lift” all the above
all-to-all RMT feasibility results on adaptive all-to-all communication to adaptively secure MPC, under the
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assumption of enhanced trapdoor permutations, or any other assumption that would allow for corruption-
optimal adaptively secure MPC over a complete point-to-point network. Similarly, we can lift the SOS-RMT
results to SOS-MPC.

1.4 Related Work

Although introduced as a notion explicitly for standard MPC by Boyle, Goldwasser, and Tes-
saro [BGT13b], the idea of low communication locality was already implicit in a number of
works on almost-everywhere secure (communication, Byzantine agreement, and computation) proto-
cols [KSSV06a,KSSV06b,DPPU86,Upf92,CGO10,CGO12,GO08]. Such protocols can operate over incom-
plete networks (or under-utilize a complete network to achieve low CL as we do here) but “give up” security
for a number of parties; such so-called doomed parties might loose their input privacy, and/or contribute a
false input to or receive a false output from the computation. The goal of such almost-everywhere secure
protocols is then to achieve optimal tradeoffs between number of corruptions and number of doomed parties.
We refer to [CFG+22] for a recent formal treatment of and detailed literature review of almost-everywhere
secure protocols.

As already mentioned, Chandran et al. [CCG+15] improved on the resiliency of the protocol
from [BGT13b] and brought adaptive security to the model, at the cost, however, of the strong atomic
erase-and-multisend assumption, which restricts the ability of an adaptive adversary to attack the protocol,
as we discuss in detail in Section 2. The results from [CCG+15] relied on a hidden-graph setup which, by
construction, was an expander graph. The follow-up work by Boyle et al. [BCP15] provided the first solutions
to the problem for PRAM-based MPC, which in addition achieved some load balancing properties. Following
that, Boyle et al. [BCDH18] investigated the question of whether an expander is in fact needed for sublinear
locality MPC, answering it in the negative.

Also related to our goals are works that explicitly target sublinear per-party communication complexity.
In this context, Dani et al. [DKMS12] presented a statically secure information-theoretic MPC protocol
with a per-party communication complexity of O(

√
n) tolerating t < n/3 corruptions. King and Saia [KS10]

showed how to construct a Byzantine agreement (BA) protocol that is secure against adaptive corruptions,
where the communication complexity of every party is Õ(

√
n), which leads to a BA protocol with Õ(n)

communication locality tolerating t < ( 13 − ϵ)n corruptions.
Also related to our work is the work of Matt et al. [MNT22], who consider a weakening of the adversary’s

adaptivity, which they term delayed adaptive corruption. Here the adversary who wants to corrupt a party
needs to first indicate its intention, say, in round r, but the actual corruption does not take effect until a few
rounds later. Despite being useful for making statements about the load balance and delivery guarantees of
blockchain-inspired message propagation protocols, in the context of sublinear locality we are considering, this
assumption trivializes feasibility questions. Indeed, the latter protocols tend to use parties (network nodes)
as “disposable” relays, i.e., once a party successfully relays its message to its neighbors, corrupting it does
not buy the adversary anything. This fact, in combination with the delayed adaptive corruption assumption
(which would imply that the adversary’s ability to corrupt is slower than the message propagation), would
prevent the adversary from adaptively blocking discovered paths.

2 Model

Notation. Here we present some basic notation used throughout the paper. We denote by [n] the set
[n] = {1, . . . , n}. P = {p1, . . . , pn} denotes the set of parties participating in the MPC protocol. We will
often refer to parties as nodes in a network. We will assume that the adversary is able to corrupt a number
t < n of the parties; it will be convenient for our exposition to express corruption in terms of a fraction τ of
the total number of parties; hence t = τn, for 0 < τ < 1.

In any directed graph over P, we will use ρi,j to denote the length of the shortest path from node i ∈ P
to node j ∈ P . Further, we will denote by Γq(u) the set of all nodes (not including u) that are at forward
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distance ≤ q from node u ∈ P, and we will define γq(u) = |Γq(u)|. Hence, Γ1(u) denotes the set of all outgoing
neighbors of u. Analogously, we will denote by Γ in

q (u) the set of all nodes v ∈ P such that u ∈ Γq(v). Hence,
Γ in
1 (u) denotes the set of all incoming neighbors of u.

2.1 Adversarial Model

Next, we turn to defining the communication and adversary model for adaptively secure computation with
communication locality. We note that most works in this area leave several of the model assumptions implicit
or unspecified. Instead, since our goal is to provide a complete feasibility landscape given such assumptions,
we need to take a more rigorous and detailed approach to the specification of the model.

Consistently with the classical MPC literature, we assume that parties are connected with each other via
a complete network of secure (i.e., authenticated and private) point-to-point channels [GMW87b,BGW88b].
However, since each party can “talk” to only a sublinear (i.e., polylogarithmic in n) number of other parties,
no party will be using all its point-to-point channels. The communication is synchronous, which means
all parties advance in a round-based manner, where whenever the round switches everyone is informed,
and messages sent in any round r are guaranteed to be delivered by the beginning of the following round
r + 1—unless the sender gets corrupted during r and no multi-send capability is assumed (see below). We
will consider an adaptive and rushing adversary who might actively corrupt parties during the protocol
execution.

The combination of sublinear communication locality and synchrony with such an adversary brings up a
number of modeling challenges, described below.

Localized notification. In classical synchronous point-to-point networks, the adversary is always informed
when a party pi sends a message to another party pj via their direct point-to-point channel. Notifying the
adversary about such a transmission implicitly captures the assumption that the adversary has a global
view of the entire network, including runtime-observable events, such as messages being transmitted. This
gives him the ability to induce a worst-case (arbitrary/adversarial) scheduling of messages that makes for
stronger security statements.

However, when we shift to settings with vastly large sets of parties—these are the settings where sublinear-
locality protocols become relevant—the assumption that the adversary has a complete view of all the events
that occur in the network might be too strong. In fact, it is impossible to achieve adaptive security with
sublinear locality in this worst-case setting. Indeed, in low-locality settings7, a party might only communicate
with a small number of its neighbors. Hence, if the adversary is able to detect that an honest party p
attempts to send a message to another honest party, then he can simply corrupt the receiver and block
this transmission path; by performing this attack on every transmission of p the adversary will be able to
isolate the party from the rest of the network, making all-to-all communication (and therefore “full” MPC)
impossible8. Hence, for such settings, it is natural and relevant to limit the visibility to the adversary in
message transmission events to only events happening near his neighborhood, i.e., assume that the adversary
only observes message transmissions on channels that are incident to a neighborhood where he is present—
e.g., channels in the immediate neighborhoods of parties currently under his control. In our model, we make
this assumption—which is necessary for sublinear-locality communication and MPC, and therefore implicit
in all relevant works—explicit by assuming that the adversary is only able to observe a transmission when
the sender or the receiver of that transmission is corrupted.

Adaptive adversarial scheduling. The above localized notification assumption is natural in large networks
(and necessary for adaptive corruption), but it does create a challenge with allowing the adversary to perform
worst-case scheduling: Since the adversary does not have a full view of which honest-to-honest channels
are used in each round (recall that only a small, sublinear per party, number is utilized), how can he

7 Here “low” specifically means asymptotically smaller than the adversary’s corruption budget.
8 Here, we use “full” MPC to refer to the standard MPC formulation where no party is left out; this is in contrast to
“almost-everywhere” MPC [GO08], where some of the parties are not given any correctness and privacy guarantees.
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induce a worst-case scheduling? In fact, although the above localized-notification assumption was implicit
in [CCG+15], this delicate issue was not addressed.

To address it, we look back at the classical way of defining scheduling for an adaptive and rushing
adversary in [Can00]: Every round is split in “mini-rounds”, where in each mini-round the adversary can
have one party pi send his message to another party pj . If in the protocol every party communicates with all
other parties in each round (a common protocol structure in feasibility results) then this means that each
round has n2 mini-rounds. The adaptive adversary is able to corrupt parties between any two mini-rounds.
Note that, as explicitly discussed in [Can00], this means that a worst-case adversary would first deliver all
messages sent to corrupted receivers and then schedule the remaining messages in an adaptive manner. To
allow for worst-case scheduling in our model, we rely on the exact same idea: In each round r, the adversary
operates in n2 mini-rounds, where each such mini-round corresponds to a unique (ordered) pair of parties
(pi, pj), allowing pi to send its rth round message to pj . The only difference here is that if and while both pi
and pj are honest, the adversary does not learn whether or not a message was sent on the (pi, pj) channel
in that round. (Of course, if either pi or pj gets corrupted down the line, then the adversary will find out at
the point of corruption whether a message was exchanged in round r, unless the corrupted party has had a
chance to erase before becoming corrupted—see discussion about erasures below.)

Trusted setup assumptions. We assume classical correlated randomness setups: The parties have access
to a public-key infrastructure (PKI), which they can use for digital signatures and public-key encryption.
In addition, the parties are given an appropriately sampled hidden random graph setup with polylogarith-
mic degree [CCG+15]. As discussed in [CCG+15], and already mentioned earlier, under standard hardness
assumptions (i.e., existence of pseudo-random generators) this graph setup can be replaced by a different
correlated randomness setup, namely, a secret key infrastructure (SKI); alternatively, if the PKI allows for
non-interactive key exchange (NIKE), then any other setup assumption is not needed since an SKI can be
created by pairwise invocation of the NIKE protocol—since this is a non-interactive process, it does not
result in an increase in communication locality.

Secure erasures. Secure erasures are common (and, in fact, necessary in SF protocols) for adaptively secure
MPC and, as we prove here, for point-to-point communication over a sublinear-degree network graph. The
assumption is that (honest) parties are able to erase any part of their internal state (including parts of their
setup and/or randomness) so that if they get corrupted later on, the adversary does not have access to
the erased information. We note that in a model where such erasures are possible, such actions take place
responding to protocol instructions, and therefore the adversary corrupting a party is allowed to learn that
an erasure was performed by the party in the past.

2.2 Atomicity Assumptions

Atomicity of actions. One of the most important parameters of any adaptive adversary setting, which is
often left as implicit, is the question of atomicity of operations for the honest party. A block of operations
is considered atomic if, once an honest party starts performing them, it is allowed to complete them before
the adversary gets a chance to act (e.g., perform additional corruptions). Clearly, the higher the number of
operations that are bundled in an atomic block, the harder the job of the adversary becomes. One of the
standard uses of atomicity in the distributed computing and cryptographic protocols literature is the so-
called atomic multi-send, where if in a given round a party is supposed to send a message to multiple parties,
it is allowed to do so without any in-between adversarial interference. One can view this assumption as a way
to restrict the rushing ability of the adaptive adversary. As such, in the recent literature the (setting of an)
adaptive adversary over a network of standard (point-to-point) channels (i.e., with non-atomic multisend) is
at times referred to as strongly rushing [ACD+19,WXDS20] and the term “rushing” is used to refer to the
setting where the adaptive adversary operates over a network with atomic-multisend channels.

In this work we use the term “rushing” consistently with [Can00,Can01,HZ10,GKKZ11] to characterize
the adversary (i.e., its ability to schedule the delivery honest parties’ messages) rather than the setting of
network and adversary. Hence, atomic multisend is a network/protocol-related atomicity assumption: When
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the protocol instructs a party p to deliver a message to several parties in some set Q in the same round (or
even a vector (mp1 , . . . ,mpQ) of messages, where each mpi is to be sent to pi ∈ Q), then the party can send
all those messages as an atomic operation, meaning that these messages will be delivered to their intended
recipients at the beginning of the following round; in particular, the adversary cannot corrupt p in the middle
of the transmission and enforce that some pi ∈ Q receives the message mpi

from p while some other pj ∈ Q
does not.

Atomicity assumptions used in this work. The way different feasibility assumptions are bound together
in an atomic operation has an impact on the feasibility of reliable communication (and therefore MPC)
that one is able to prove. As our goal is to investigate the different relevant assumptions for sublinear-
(polylogarithmic-) locality MPC, we next include a detailed discussion on the ways these assumptions can
be bound (and have been bound in the prior literature):

No erasures/no (atomic) multisend (NE-NAMS): This is the worst-case network and erasures model
(fourth row of Table 1): (1) No honest party is allowed to erase its internal state and the adversary,
upon corrupting a party, learns that party’s entire prior and current state, and (2) the parties send their
messages one by one as discussed in the adaptive scheduling paragraph above.

No erasures/(atomic) multisend (NE-AMS): This corresponds to the second row of Table 1): (1) (Lack
of) erasures are as above, and (2) the parties can atomically multisend their messages.

Erasures/no (atomic) multisend (E-NAMS): This corresponds to the third row of Table 1. We assume
erasures but no atomic multisend. Hence: (1) In each mini-round where a party pi is allowed to “speak”
(we say the party is activated); i.e., in each miniround corresponding to a pair (pi, pj) for some pj , the
party pi can first erase and then send, but it cannot erase the message it is about to send (including
the identity of the receiver) until the next mini-round when the party is activated), and (2) messages
are sent in a one-by-one manner (in mini-rounds as above), where between any two mini-rounds the
adversary can act.

Erasures/(atomic) multisend (E-AMS): (1) Erasures are as in the previous case, and (2) when a party is
activated for sending, it is allowed to erase and then send to a set Q of parties (but as above, it cannot
erase this set or the messages it sends until the next time it is activated). Note that this case allows an
adversary who has corrupted a party in Q to learn the message, corrupt the sender, learn the identities
of all other parties in Q (since the sender is not given a chance to erase before) and corrupt all of these
parties thereby blocking this message.

Atomic erasures and multisend (AE-AMS): This is the strongest of the atomicity assumpions (first row
of Table 1) and corresponds to the model considered in past works on sublinear locality MPC with
adaptive corruptions (e.g., [CCG+15,BCDH18]). In this case, whenever a party is activated for sending
a message, it is allowed to send to a set Q of parties (where all are guaranteed to receive their messages
at the beginning of the following round) and perform erasures after sending is complete and before the
adversary has a chance to corrupt this party. This, in particular, means that even if the adversary controls
one of the parties in Q, he is still unable to learn who the other parties in Q are even by corrupting the
sender (as before corruption the sender is able to erase their identities).

3 Technical Overview

Impossibility of store-and-forward without erasures. Our first technical contribution (see Section 4)
is an impossibility result for all-to-all (in fact, even one-to-all) store-and-forward RMT with a high ex-
pansion rate, if we do not assume erasures. In particular, we show this impossibility for expansion rate
(logz(n), k logn

c log log n ), for all z > 1 and k < 1, where the degree of the communication graph is O(logc n). In-

tuitively, our definition of (L, ℓ) expansion rate (see Definition 2) captures the constraint that, in an honest
execution of the protocol, when the sender’s message reaches parties up to a distance ℓ from himself, his
message also reaches at least L parties through each of his neighbors. To our knowledge, this property can be
shown to hold for all CL MPC protocols in the current literature. The result holds independently of whether
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or not we assume atomic multisend. The proof utilizes a combination of graph-theoretic and protocol results
and can be summarized as follows: The first step in the proof shows that, due to the polylogarithmic locality
assumption, there must exist a pair (ps, pr) of sender and receiver that are far enough from one another,
concretely, in distance greater than k logn

c log log n (Lemma 2). Looking ahead, this will be the pair the adversary
will try to disconnect. The expansion rate assumption will then ensure that for each forward neighbor p of
ps in the RMT to pr, the graph rooted at p that is created by coloring the communication graph as the
message of ps (intended for pr) passes though the intermediate nodes, will have sufficiently many colored
nodes before it reaches pr, so that with high probability one of them can be adversarial. Once this happens,
the adversary will be able to follow the thread backwards all the way to this neighbor p and then corrupt
p and all parties that p has sent the message to, thereby eliminating p as a possible relayer. Since each
such p can be eliminated with high probability, and ps had at most polylogarithmically many neighbors, the
above adversary will be able to capture all these neighbors (and the colored graphs rooted at them) before
the message reaches pr (and without corrupting ps). This adversary can drop all the message passing from
captured nodes, thereby disconnecting ps and pr and violating the security of the RMT. The details of this
proof are given in Section 4.

We remark that, although the above SF subclass might appear somewhat simple, it captures the structure
of several natural message-propagation and gossiping protocols—in particular those used in the context
of blockchains, as well as in so-called store-and-forward (switching) networks (cf. [BAB+01]). In fact, as
demonstrated in Lemma 1, the class of SF RMT protocols with expansion-rate parameter that fall within our
impossibility range includes all known message-propagation protocols in the sublinear locality MPC realm.
We stress that our impossibility is not intended as a way to tightly characterize the feasibility landscape
of CL RMT in the non-erasure setting, but rather to abstract the core of the above protocols that makes
them inadequate against adaptive adversaries in this setting. Notwithstanding, we are not aware of any
technique that yields a protocol in the non-erasure setting, as even common approaches for anonymous
communication, e.g., onion-routing-based protocols, seem insufficient in this highly adversarial setting (as
discussed in Section 1.4).

The power of secure erasures for CL protocols. As discussed above, the above impossibility (for
SF RMT) protocols renders existing communication protocols in the CL MPC (and blockchain-via-gossip)
literature insecure when erasures are not assumed. Continuing our exploration of the landscape, we turn to
the question of how far can the secure-erasures assumption take us in terms of feasibility of RMT. Recall
that [CCG+15] proved that if erasures and multisend can be performed/bundled in an atomic operation, then
any adversary corrupting any constant fraction of the parties can be tolerated in RMT. Here we ask what
happens if we unbounded these two assumptions, i.e., assume either only erasures, or erasures and multi-send
as separate operations. And we shoot for the strongest possible results: (1) Feasibility even without atomic
multisend and (2) Impossibility even with atomic multisend.

For the first (feasibility) result, our starting point is the RMT protocol from [CCG+15], which at a high
level operates as follows: The sender sends his signed inputs to his hidden graph Round-1 neighbors,9 and
whenever a party receives a message in some round rnd, he relays it (in the next round, rnd + 1) to his
(rnd+ 1)-round hidden-graph (forward) neighbors10.

The above protocol does not work here, since the communicating parties can be cut off by the attack
described in Section 1.2; namely, a corrupted node p who receives a message from an honest neighbor q can
corrupt q and all of q’s neighbors before any chance of erasure. To make the above protocol secure when (just)
erasures are assumed, we make the following modification: Every round is assigned to exactly one party in P,
who, if he has a message to send, sends this message to exactly one of his hidden graph (forward) neighbors
at a time, and then (in the next activation/round) erases both the fact that he sent it and the relevant (used)
edge from his hidden graph setup (i.e., the edge pointing to the neighbor he just contacted). Importantly,
unlike [CCG+15], where as soon as a party relays a message he does not need to do any more relaying, we
require every party that has received a message to keep relaying it to its hidden graph(s) neighbors. By

9 Since we will be running at most polylogarithmic-round protocols, we can assume wlog that the hidden graph is a
multi-graph consisting of polylogarithmic, independent copies of polylogarithmic-degree hidden graph setup.

10 Recall that the hidden graph is directed.
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forwarding messages to neighbors one at a time and erasing in between, the adversary is prevented from
corrupting the neighbors of honest relayers who get corrupted, enabling a message to propagate into the
network even after a past relayer is compromised. Note that to allow for worst-case attacks, one needs to
devise a careful structure that gives the adversary sufficient attack-opportunities. We ensure this by forcing
on our protocol a structure that makes erasures slow enough, so that the adversary is given enough time to
attack (see Section 5.1).

The above protocol is clearly SF, and it even has an expansion rate that matches the parameter of our
non-erasure impossibility theorem. Hence, one might be tempted to believe that if the adversary corrupts
a constant fraction of the parties, then with good probability he will be able to block the message in a
similar way as in our no-erasures impossibility proof. However, contrary to the above intuition, we show
that any adversary corrupting at most t < (1/2 − ϵ)n of the parties can be tolerated (with overwhelming
probability). The proof follows a careful probabilistic argument: Since, from a Chernoff bound, more than
half of the hidden graph neighbors of any party are honest, we can show that the above protocol will create
an avalanche effect: With good probability, for several rounds from the start of the above protocol the set
of honest parties that has received the message will keep growing and it will become large enough to be
guaranteed to include a party who is one hop (in the hidden graph) from the RMT receiver. Once this
happens, it is game over for the adversary since this party will relay the message to the RMT receiver in the
following round.

The above result establishes (one-to-one) RMT assuming an honest majority and erasures only (Theo-
rem 2) and as a corollary, (one-to-one) RMT assuming honest majority, erasures, and multisend, not nec-
essarily bulked as a single atomic operation (Corollary 1). Furthermore, it can be trivially extended to the
all-to-all RMT case (where every party wants to send a message reliably to every other party) by using
batching techniques from [CCG+15] (Corollary 2). This settles the feasibility question.

We next turn to impossibility. Here we use an argument that can be seen as mirroring the proof of
Theorem 2: We prove that if the majority of the parties can be corrupted (in particular, t > (1/2 + ϵ)n for
any constant ϵ) then in any RMT-protocol candidate, the adversary can with noticeable probability make
the expansion of the set of parties that learn the sender’s input shrink, resulting in the message dying in
the network before it reaches the receiver. This yields a strong impossibility of RMT in the erasures model,
which as we show holds even if we assume multisend (Theorem 3).

Beyond Store-and-Forward. Next, we turn our attention to the question of whether one can design RMT
protocols in the non-erasure model, by devising non-SF protocols, thereby circumventing our impossibility.
The answer to this question is far from simple, which further underpins the challenges that CL protocol
design poses.

Our key idea is to hide the store-and-forward procedure under the hood of fully homomorphic encryption
(FHE). This will hide the message and signature (and in particular, origin and path) for transmitted messages.
But as as we shall see, this seemingly simple intuition needs several modification to work.

The protocol structure is similar to the above protocol (which assumed secure erasures), with the main
difference being that the sender encrypts his original message and signature with the receiver’s HE public
key, and this ciphertext is what is diffused through the low locality network. In particular, instead of checking
signatures in the clear, every party uses HE to check if any of the received ciphertexts is an encoding of
a message signed by the sender. If so, it (the circuit evaluated by HE) outputs a new, rerandomized HE
ciphertext that encrypts the sender’s message and signature (if several such messages are received then use
any of them); otherwise encrypt the all-zero message along with a default signature on it. We denote the
above protocol by ΠRMT

FHE .
In order for the above approach to work we need the HE scheme to satisfy several properties that are

common in the fully homomorphic encryption (FHE) literature, namely compactness and malicious circuit-
privacy [Gen09,SV10,vGHV10]. Informally, compactness ensures that the ciphertext size depends only on the
plaintext and the security parameter (in particular it does not grow when the EvalFHE operation is applied).
On the other hand, malicious circuit privacy ensures that the ciphertext that is computed by EvalFHE leaks
no information about the circuit that was homomorphically evaluated, even when the ciphertext on which
EvalFHE is computed is maliciously formed. This last property will ensure that applying EvalFHE automatically
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rerandomizes the ciphertext. We note that both of these properties are common in standard FHE schemes
(cf. [Gen09,SV10,vGHV10,OPP14]).

A caveat in the above idea is that it is known that adaptively secure FHE which satisfies compactness
is impossible [KTZ13]. Nonetheless, as we show below, we can construct a compact adaptively secure homo-
morphic encryption scheme which allows for the homomorphic evaluation of the specific function needed by
our RMT protocol. In particular the specific function we require does not actually modify the contents of the
underlying message that was encrypted (but only checks validity of a signature “under-the-hood” and then
retains or disregards the underlying message). We stress that existence of such a scheme does not contradict
the impossibility result of Katz et al. [KTZ13], as the circuits we consider are not in the class considered
there.

Next, we describe the idea to circumvent the above impossibility. We consider only the single-pair RMT
setting, where one sender u wishes to send a message to one receiver v. In order to ensure that ciphertexts
can be simulated without knowledge of the plaintext and, if, later on, the sender and/or receiver is corrupted,
the simulator can present randomness matching this ciphertext, we use the following idea: The sender first
encrypts the message m it wishes to send with the receiver’s public key, using an adaptively secure encryption
scheme (e.g., the non-committing encryption of Canetti et al. [CFGN96b]). (Looking ahead, this will allow a
simulator to equivocate the message if needed.) Next, the sender signs the resulting ciphertext c, and encrypts
the resulting pair (c, σ) using the receiver’s public key for a (statically secure) FHE scheme. For brevity, we
will refer to the above operation of encrypting with FHE an authenticated version of the adaptively encrypted
plaintext as adaptively authenticated homomorphic encryption (aaHE for short). Then the sender propagates
the aaHE ciphertext through the hidden communication graph, identically to the original protocol described
in Section 5.1.

However, unlike the original protocol, parties that are at distance > 1 from the sender cannot tell if the
aaHE ciphertext they receive is encrypting a valid message (i.e., one actually originating from the sender)
or if it was generated by the adversary. Looking ahead, this property is the key part where our protocol
deviates from the SF protocol structure; yet, parties need to decide what to relay. One solution would be for
the intermediaries to propagate all the messages they receive. This, however, would result in an exponentially
growing message and could compromise the security of the protocol, as the number of relayed messages would
leak information about the position of the relayer in the hidden graph, information that could be used by
the adversary.

This is where FHE comes to the rescue. Upon receiving several such ciphertexts, a relayer homomorphi-
cally evaluates the circuit which on input all the (plaintexts of the) received ciphertexts and the sender’s
verification key, checks if any of these plaintexts is of the form (c, σ), where σ is a valid sender’s signature
on c, and if it finds one it outputs (an FHE ciphertext c̃ encrypting) it. (If more than one such message is
found then output the first one encountered in the above search.) This will make sure that every relayer
sends out ciphertexts of the same length which encrypt either (c, σ), in case the sender was honest and
the relayer is on an honest path between the sender and the receiver, or some arbitrary pair (∗, ∗) (chosen
by the adversary) otherwise. In other words, the above scheme ensures that the information transmitted
by the above scheme is exactly an aaHE encryption of the message m which our original SF protocol from
Section 5.1 would propagate, except that since this information is encrypted, the adversary cannot use it to
trace the message/aaHE ciphertext back to the sender.

We stress that the properties of compactness as well as malicious circuit privacy, of FHE play a crucial
role here:

Compactness ensures that all communicated ciphertexts have the same size, and therefore their size
conveys no information about the position of the relayer in the hidden communication graph.

Malicious circuit privacy ensures that when the FHE circuit evaluation algorithm, EvalFHE, is given input
an invalid (i.e., maliciously generated) ciphertext it first projects it to a valid ciphertext of a (potentially
adversarially chosen) plaintext x, and then performs the evaluation on this x. Circuit privacy ensures
that any two relayed messages have computationally indistinguishable distributions (i.e., that EvalFHE
rerandomizes the aaHE ciphertext), and hence, they can also not be used to expose relayers’ position
in the hidden graph. Further, when the sender is honest, it is impossible for the adversary to make a
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relayer forward an aaHE ciphertext of (c, σ) of a message m′ ̸= m, as this would correspond to forging a
signature σ′ on c′ (encryption of m′) ̸= c (encryption of m) except with negligible probability.

However, there is still a way the adversary can obtain information in the above scheme that allows him
to potentially link the sender to the transmitted aaHE ciphertext, by observing which parties “speak” in
which round. This can easily be mitigated by decoy traffic: every party sends some message in every round,
where in the first round, parties other than the actual sender create and send to their neighbors an aaHE
ciphertext using dummy strings d and s in place of m and σ respectively, with |d| = |m| and |s| = |σ|.11

The final missing piece in the protocol is to ensure that we can use the above protocol for transmitting
multiple messages (as is needed in MPC). It is not hard to see that for this to be possible, we need to exclude
replay attacks. Indeed, although the adversary cannot create an aaHE of a new message corresponding to
honest senders, he can replay past aaHE of messages created by the sender. The way to mitigate this is, as
it is common in the security literature, to use unique publicly agreed identifiers—e.g., round-number and/or
message ID—and make sure that the circuit which EncFHE is run on, also takes as input (and checks) the
corresponding identifier. Yet, one needs to be careful about where the identifier is placed inside the aaHE. If
one encrypts (m,msg ID) with aaHE then EvalFHE will be unable to check the message ID msg ID under the
(adaptively secure) encryption. Therefore, the actual message which is encrypted with FHE will be of the
form ((c,msg ID), σ), where σ is a signature on the pair (c,msg ID).

This completes the high-level protocol description. In Theorem 4 we prove that the above protocol is
an adaptively secure single-pair RMT protocol with polylogarithmic locality. Intuitively, the fact that the
message is transmitted successfully between two honest parties follows from the fact that the protocol view
of the adversary in this case is fully simulatable, hence any attack by an adaptive adversary who does not
corrupt the sender or receiver can be reduced to the static case proven in [CCG+15]. If, on the other hand,
the adversary corrupts the sender or the receiver, then the only challenge for the simulator is to be able to
come up with coins that are consistent with the actual input m of the sender. But this is straightforward
in aaHE as the FHE ciphertext (i.e., encrypting ((c,msg ID), σ)) is generated by the simulator and hence
he can simply reveal the keys used for this encryption. Having these coins, the simulator needs to simply
show how to open c to the message m. But for that, he can use the adaptive security of the underlying
encryption scheme. The detailed description of the protocol now follows, followed by Theorem 4. The proof
of the theorem follows the above arguments and can be found in the supplementary material.

From one-to-one CL RMT to many-to-many CL RMT. The FHE-based protocol described above
is for one-to-one RMT. One might might be tempted to assume that having such a protocol gives us also
all-to-all RMT in this model. Indeed, at first thought, it appears that one can achieve this by simply running
n(n−1)

2 instances of ΠRMT
FHE in parallel over the same hidden graph (i.e., a joint state) on separate slots, one

for each sender-receiver pair, following the idea of Section 5.1. However, the following major flaw breaks such
a protocol.

Let u and v be honest parties in the network, and z be a party corrupted by adaptive adversary A,
with u being a sender while v and z act as receivers. Further, suppose the shortest honest path from u to
z is shorter than that from u to v; i.e., z receives her message from u before (in an earlier round than)
v. Now, adversary A can decrypt z’s message in that same round and learn that it is a valid message
originating from u. Moreover, A can corrupt the neighbor who sent her this valid message and decrypt
that neighbor’s previously received set of messages for z. In this manner, A can corrupt everyone who this
message has passed through by following the inverse path the message travelled. Clearly, this is identical
to the adversarial strategy employed in Section 4 to prove the impossibility of SF RMT in the NE-NAMS
model, and it is easy to see that the same reasoning breaks the protocol here.

Intuitively, the root of the problem is that using FHE under the receiver’s key renders messages “unlink-
able” for everyone but the receiver. In single-pair RMT, there is a single receiver and correctness is trivial
if he is corrupted, so ΠRMT

FHE suffices. But with multiple receivers, corrupted receivers can evidently cause
trouble for honest ones.

11 WLOG, we assume that valid RMT messages are from a fixed-size domain.
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The above discussion, points to a restricted class of all-to-all RMT, which we call sublinear-output-set
RMT (in short, SOS-RMT) to come to the rescue. SOS RMT allows every party (a sender) to send a
(potentially different) message to every receiver in a subset of P of size o(n)—in our case this will be of
polylogarithmic size. Here is how we proceed towards the design such an SOS RMT:

1. First we observe that the above one-to-one RMT can be trivially turned into an all-to-on RMT, by
having honest parties replace their decoy messages with the actual message they want to send to the
(single) receiver and adjusting the homomorphic operation to keep (one copy of) all these messages as
the ciphertext is diffused through the network. We provide the specification of this operation and the
corresponding statement of security in Section 6.2. Note that this protocol uses exactly the same edges
of the underlying communication graph as the one-to-one RMT protocol it “piggybacks” on.

2. Having such an all-to-one RMT it is straightforward to turn it to an SOS RMT by using an independent
(part of the) hidden-graph setup for each of the receivers. Since there are polylogarithmic receivers
and each of these hidden (sub-)graphs has polylogarithmic degree, the resulting protocol will also have
polylogarithmic locality (see Corollary 4).

From CL RMT to CL MPC. Last but not least, we show how to turn the above feasibility results on
RMT into feasibility for CL multi-party computation (CL MPC). For the erasures case, we can use the
same approach as the one used in [CCG+15] for this reduction: Use a constant-round MPC, e.g., [BMR90],
where calls to a broadcast channels are replaced by a polylogarithmic-round (in the worst-case) byzantine
broadcast protocol. Because the expected constant-round protocol of [KK06] is guaranteed to terminate with
overwhelming probability after polylogarithmically many round, we can simply employ this protocol. This
will result in polylogarithmically many invocations of the all-to-all RM from Section 5.1, which consumes a
polylogarithmic hidden graph setup, thereby yielding a CL MPC protocol in the secure-erasures model (with
or without atomic multisend), which is secure under an honest-majority (adaptive) adversary. We refer to
Section 7.1 for details.

The more challenging case is the non-erasures setting. Here, we do not have an all-to-all CL RMT, so we
cannot hope for standard CL MPC—as the latter would imply the former. Instead, we go for (CL) SOS MPC,
which as with SOS RMT, computes a function with inputs from all parties, but only distributes the output to
a sublinear (polylogarithmic) set of parties. We believe that the notion of SOS MPC is interesting in is own
accord, as it appears to be a best-possible security notion in the CP non-erasure setting. Furthermore this
notion is already reasonable for the core application of CL MPC, namely computing sublinear algorithms.
Indeed, such algorithms typically have output asymptotically smaller than n. In this case, having the output-
set of SOS MPC distribute the otputs to the whole player set (using the complete graph) does not incur a
big overhead in communication complexity.

To implement CL SOS MPC, we assume an additional setup, namely, anonymous PKIs for the FHE,
NCE, and signature schemes used in our non-erasures RMT protocol: Parties are given public keys but they
do not know who has the corresponding secret key. Given this setup and SOS RMT, SOS MPC can be
designed as follows: Let C denote a polylogarithmic size subset of the (owners of the secret keys for) the
anonymous public keys. (Any subset will do, but for simplicity we can assume that this is the first polylog(n)
public key in a lexicographic order). The parties use SOS RMT (where the FHE and NCE encryptions, and
the underlying signatures are are with the anonymous PKIs) to share their input to C. Then the parties in C
run an MPC over SOS RMT (again with these anonymous keys). However, to avoid leaking their identities
through communication pattern, all n parties participate in these RMTs, where parties not in C simply send
decoy traffic as in our one-to-one version of the non-erasure RMT protocol. The details on this construction
and security proof are given in the end of Section 7.1.

4 Impossibility in the NE-NAMS and NE-AMS Models

In this section, we show an impossibility result for a natural class of reliable message transmission (RMT)
protocols (and therefore also MPC) which we term store-and-forward protocols, with low communication
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locality in NE-NAMS and NE-AMS models—i.e., a model where secure erasures are not allowed—tolerating
an adaptive adversary corrupting a linear number of parties. As discussed above, this class includes most if
not all, gossip-style communication protocols which have been used in the CL MPC and CL communication
literature.

Let us first define the class of store-and-forward RMT protocols:

Definition 1 (Store-and-Forward). A PKI-hybrid RMT protocol with sender ps and receiver pr, using
parties in P who communicate over point-to-point channels, is a store-and-forward (in short, SF) protocol if
it has the following structure:

– In the first round of the protocol, ps sends the message m (that he wishes to transmit to pr) to any neigh-
bors of his choosing, along with his signature σs on m. ps does not participate in any other transmission.

– In every round j > 1, any party who has received a pair (m,σs), where σs is a valid signature (with
respect to ps’s verification key) on m, may forward the pair (m,σs) to any neighbors of his choosing.

We remark that the above definition allows parties to selectively decide (using their current state) when
and to whom they forward the pair (m,σs). As such it also captures protocols that use delays to hide
communication patterns. Furthermore, the assumption that in the first round, ps sends all his protocol
messages does not pose a restriction with respect to such scheduling—i.e., on when ps sends his message to
each neighbor—as such delays can be trivially simulated by ps telling his neighbors (in the first round) to
apply the intended delay. We also point out that the above single-pair RMT can be trivially extended to
all-to-all RMT, by allowing each relayer p to forward vectors of pairs ((mi1 , σi1), . . . , (miℓ , σiℓ)), where each
(mij , σij ) is a (message, pij -signature)-pair that p heard in a previous round.

Our impossibility result assumes a restriction on the above class of SF protocols, which relates the
maximum length of a path traversed by the sender’s message to the size of the set of parties that have seen
the message. To define this, we introduce the following graph theoretic notation.

Notation. We will denote by Gs,r the labeled graph with vertices V = P which corresponds to a protocol’s
execution in the following manner: an edge (w1, w2) is added to Gs,r when w1 ∈ V sends the message (m,σs)
to w2 ∈ V through their point-to-point channel, in the RMT protocol between sender ps and receiver pr.
The label lw1,w2 of each such edge (w1, w2) is defined as the round of the RMT protocol in which this edge
was added to Gs,r. Further, we denote by Grnd

s,r the subgraph of Gs,r that only contains edges (w1, w2) having
labels lw1,w2

≤ rnd.

Definition 2 (Expansion rate of SF RMT protocols). We say that an SF RMT protocol has expansion
rate (L, ℓ), where L ∈ [n] and ℓ ∈ N, if the following property holds at every round rnd in the protocol
execution: If the maximum size of a path in Grnd

s,r from ps to a sink (i.e., a node which has out-degree 0 in

Grnd
s,r) is ℓ, then for any (forward) neighbor p of ps in Grnd

s,r, the number of nodes in the subgraph of Grnd
s,r (with

in-degree at least 1) rooted at p is at least L.

The above definition can easily be extended to all-to-all SF RMT protocols (resp. one-to-all), by requiring
that for every pair (ps, pr) (resp. for sender ps and all receivers pr) the expansion rate of the transmission is
as in the above definition.

Looking ahead, we will prove our impossibility result for SF RMT protocols with expansion rate
(logz(n), k logn

c log log n ) for all k < 1 and z > 1, where the degree of the communication graph is O(logc n).
To get a better intuition of how the expansion rate affects the security of RMT protocols against adaptive
adversaries, it is worth looking at the simpler case with expansion rate (dξ−1, ξ), where d = O(logc n) is the
degree of the underlying communication graph and ξ is a constant. We note that this seemingly simple case
corresponds to (the first of ξ rounds of) the “vanilla” SF strategy which, to our knowledge, is employed by
all CL MPC protocols in the literature.

Lemma 1. Assuming no erasures, there exists no polylogarithmic-locality SF one-to-all RMT protocol with
sender ps that has expansion rate ((logc n)2, 3)) for some constant c > 1, and tolerates an adaptive adversary
corrupting a constant fraction of the parties.
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Note that this is the case with ξ = 3. We next give a sketch of the proof of the above lemma. In fact,
the above is just a special case of the general theorem (Theorem 1) proved later in this section. For that
reason, we keep the proof at an informal level, to allow the reader to grasp the main ideas, and refer to the
remainder of this section for formal claims (that even cover the more general case).

Proof (sketch). Assume the adversary corrupts t = τn parties for some τ = O(1), and let π be a one-to-all
SF RMT protocol with sender ps and expansion rate as in the lemma. A crucial step in the proof is to argue
that there exists a receiver pr ∈ P such that the shortest path in Gs,r from ps to pr is of length at least 3.
This follows from the sublinear locality assumption of the communication graph. (In fact, in Lemma 2, we
will argue that there is a receiver at distance greater than q = k logn

c log log n >> 3.) In the following, we focus on
the graph Gs,r corresponding to the sender ps and this far-away receiver pr.

Let rnd be the round of π in which the (ps, pr)-RMT message (m,σs) first travels 3 hops away from ps.
As defined in Section 2, let Γq(u) denote the set of nodes at forward distance ≤ q from any node u in Grnd

s,r .
The expansion rate assumption implies that by the time (m,σs) travels 3 hops in the network, the number of
nodes that have received it through each forward neighbor of ps will be at least log2c n. As we show in (the
general case) Lemma 3, with overwhelming probability, if the adversary corrupts at random a constant (say
τ/4) fraction of the parties, then for every (forward) neighbor p of ps, there will be an adversarial node in
the sub-graph of Grnd

s,r rooted at p. In this case, the adversary realizes that p is an immediate neighbor of ps
and can (1) corrupt p, (2) corrupt all forward neighbors of p, and their forward neighbors too (i.e., corrupt
all nodes in Γ2(p))—the adversary can do this as (a) there are no erasures which means that each party’s
state has his neighbor’s identities, and (b) the adversary still has a linear corruption budget 3τ/4 unspent
and there are at most polylogarithmic nodes in Γ2(p)—, and (3) crash all corrupted parties, thereby blocking
any transmission of (m,σs) that might have used p as a relay, as it has only traveled for 3 hops. Since the
adversary has an overwhelming probability of succeeding in the above attack at each ps-neighbor p, and
there are at most polylog(n) such neighbors, the probability of this adversary corrupting all ps-neighbors and
preventing them from transmitting (m,σs) is noticeable. This contradicts the assumed security of π. ⊓⊔

The case of expansion rate (logz n, k logn
c log log n ). We assume that the adversary is able to corrupt a constant

fraction τ of the nodes; hence t = τn. Our impossibility result holds for any constant τ > 0. Our proof relies
on a series of lemmas on the (polylogarithmic-degree) communication graph and how the adversary attacks
any RMT protocol π over such a graph. Concretely, towards our impossibility result, we prove the following:

1. First, we will show (Lemma 2) that there exists a sender ps and a receiver pr, such that the length of
the shortest path between ps and pr (in the communication graph Gs,r of π) is strictly greater than

q, where q = k logn
c log log n , for any k < 1 and where the communication locality of the RMT protocol is

O(logc n). In other words, let rnd be the round of π in which the (ps, pr)-RMT message first reaches a
distance q from ps; then, pr is not connected to any node in Grnd

s,r .

2. The remainder of our proof strategy is as follows: Consider an execution of RMT with sender ps and
receiver pr as above; the communication graph after rnd rounds is Grnd

s,r . The goal of the adversary (and
what we will prove he can achieve) is to corrupt each of the neighbors of ps in this graph, and also
corrupt everyone to whom they have (directly or indirectly) conveyed information on ps’s message,
before this information reaches the receiver pr. Thus, our proof focuses on each of the neighbors of
s individually, and shows that the above is achieved with overwhelming probability. Using the fact
that the total number of neighbors of ps is O(logc n), and by the choice of q, we can then prove that
the probability of an adversary successfully attacking all of ps’s neighbors and cutting ps off before
(information on) his intended message reaches pr is noticeable (Lemma 3). This forms a successful
attack on the RMT protocol π, as it disconnects ps and pr, completing the proof.

The details of the proof now follow.

Lemma 2. For any given SF RMT protocol π with communication locality O(logc n), let q = k logn
c log log n for

any k < 1. Consider a sender ps. There exists a receiver pr such that pr is not connected to any node in
Grnd

s,r, where rnd denotes the round of π in which the (ps, pr)-RMT message first reaches distance q from ps.
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Proof. To show this, consider the union of all Gs,r for all pr ∈ P; call this graph Gs. We know that the
degree of every node in Gs is at most d = O(logc n) (from the communication locality of the protocol). Now,
in this graph, the number of nodes that are at distance ≤ q from ps can be at most dq = O(nk) < n. This
means there exists a node pr that is at distance > q from ps in Gs, and thus in Gs,r. Now, consider the
subgraph Grnd

s,r for this pr, where rnd is as defined in the lemma. Clearly, Grnd
s,r only contains edges up to a

distance q from ps; thus, pr is not connected to any node in Grnd
s,r . Hence the lemma follows. ⊓⊔

The most interesting step which captures the essence of our proof is Lemma 3 below. The intuition of
the proof is that because the distance between ps and pr is larger than q, each ps-neighbor in Gs,r will have
distance of at least q to pr in Gs,r. Thus, any message originating from such a ps-neighbor needs at least q
hops to reach the receiver. Now consider the subgraph of Gs,r which grows from a forward neighbor p of ps
only, i.e., the graph consisting of p, his neighbours, his neighbors’ neighbors and so on. To prevent ps from
communicating with pr via p, the adversary will first corrupt nodes at random with the hope of corrupting
at least one node in this subgraph. More specifically, let us consider an adversary that initially corrupts a
β < τ

4 fraction of random nodes in the whole graph Gs,r, and show that such an adversary leaves both ps and
pr initially uncorrupted—and looking ahead, will avoid corrupting ps and pr after this initial step. The first
observation is that the message sent by ps and relayed by p will, with overwhelming probability, hit some
party in this initially corrupted set before it hits the receiver pr. Once this happens, the adversary corrupts
everyone who this message has passed through by following the inverse path the message travelled. This is
feasible because nodes cannot erase any information, and in particular where messages came from and where
they were relayed. If the adversary is able to do this for every ps-neighbor, then he successfully cuts ps off
from pr. To complete the proof we need to argue that this strategy can be launched within the adversary’s
corruption budget. Intuitively, this is the case, because in each step the total set of parties who have received
information about the sender’s message grows by a polylogarithmic factor. Hence, by the above choice of q
we are guaranteed that the size of the set remains sublinear. Since the adversary has only spent a fraction
of his linear budget in his initial corruption choice, he still has sufficiently many corruptions to perform the
above attack. The formal statement and proof follow.

Lemma 3. For any given SF RMT protocol π with communication locality O(logc n), let q = k logn
c log log n for

any k < 1. Further, let π have expansion rate (logz n, q) for any z > 1. Consider a sender ps and a receiver
pr, and an adversary A who corrupts each node in P at random with constant probability β < τ

4 . Then, with
noticeable probability 1

poly(n) , A (i) does not corrupt more than τn
2 nodes in total; (ii) does not corrupt nodes

ps and pr; but (iii) corrupts at least one node in {p}
⋃
Γ(q−1)(p) for every p ∈ Γ1(ps).

Proof. From the Chernoff bound, the probability q1 with which A corrupts more than τn
2 nodes in G is

≤ e−
τn
12 . Next, the probability that ps and pr are not corrupted, q2, is (1− τ

4 )
2. Now consider Γq−1(p) for an

arbitrary p ∈ Γ1(ps). From the expansion rate assumption and Definition 2, we have |{p}
⋃

Γq−1(p)| ≥ logz n.
Now, let q3 be the probability that at least one node in {p}

⋃
Γq−1(p) is corrupted for all p ∈ Γ1(ps).

Since the adversary corrupts nodes at random with probability β, the probability that no node is corrupted
in {p}

⋃
Γ(q−1)(p) for a single p is q̃ = (1− β)log

z n (which is negligibly small), and hence q3 = (1− q̃)γ1(ps)

is the probability that for all nodes p ∈ Γ1(ps), at least one node in {p}
⋃

Γq−1(p) is corrupted. Now,
γ1(ps) = O(logc n), due to communication locality. Therefore, with probability (1 − q1)q2q3 = 1

poly(n) , we

have that A does not corrupt more than τn
2 nodes in total, does not corrupt nodes ps and pr, but corrupts

at least one node in {p}
⋃
Γq−1(p) for every p ∈ Γ1(ps). ⊓⊔

We now combine Lemmas 2 and 3 to obtain our impossibility result, in the following theorem.

Theorem 1. In NE-NAMS and NE-AMS models (i.e. models not assuming erasures), there exists no SF pro-
tocol, with (logz n, q) expansion-rate, for all-to-all RMT with polylogarithmic (i.e., O(logc n)) communication
locality tolerating an adaptive adversary corrupting a linear number t = τn (for any constant τ) of parties,
where q = k logn

c log log n , for any k < 1 and z > 1. The statement holds even assuming an arbitrary correlated
randomness setup, atomic multisend, and any cryptographic hardness assumptions.
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Proof. Towards a contradiction, suppose there does exist such an SF RMT protocol with an expansion rate
(logz n, q); call this protocol π. From Lemma 2, we know there exists a sender ps ∈ P and a receiver pr ∈ P ,
such that ρps,pr

> q in Gs,r. We show that there exists an adversarial strategy that can disconnect ps and
pr before they have exchanged any messages with each other, thereby violating the security of π.

The strategy is as follows: Let rnd be the round of π in which the (ps, pr)-RMT message first reaches
distance q from ps. At this point, A corrupts each node in P at random with constant probability β < τ

4 .
For every p ∈ Γ1(ps), let p∗ be the node in Γ(q−1)(p) that is corrupted (such a node exists with noticeable
probability by Lemma 3). Since no erasures are allowed, when A corrupts p∗, he also learns which nodes sent
messages to p∗ at any prior point of time in the protocol. Now, define Sp∗ to be the set of nodes that sent
messages to p∗ at any time up to this point (pertaining to the RMT protocol between ps and pr). Next, A
corrupts all nodes in Sp∗ . Iteratively, consider all nodes x ∈ Sp∗ and for all such nodes x, consider the set
Sx. The adversary can corrupt all nodes in Sx as well (since there are no erasures, the adversary learns the
sets Sx for all x). Iteratively, the adversary corrupts all such nodes and finally also corrupts p. Now, A can
move forward through the communication graph, and eventually corrupt all the nodes in Γq−1(p), before the
message can be transmitted outside of Γq(ps) by the honest parties.

What is left to be shown is the bound on the number of corrupted parties. The total nodes corrupted
using this strategy is at most (using Lemma 3) τn

2 + γq(ps). Now, this quantity is ≤ τn; since γq(ps) ≤ dq =

O(nk) < τn
2 , where d = O(logc n) is the degree of the communication graph, and q = k logn

c log log n for k < 1.

Moreover, observe that all nodes in Γq(ps) who possessed ps’s message have been corrupted, and ps has
not communicated any message to any node outside of Γq(ps). We know from Lemma 2 that pr /∈ Γq(ps).
Furthermore, since ps has already communicated with all nodes in Γ1(ps), it cannot communicate with any
new neighbors. Hence, all messages that ps sends henceforth are to corrupted nodes. Thus, A has successfully
cut off transmission from ps to pr, violating the security of RMT protocol π.

Note that none of the arguments in the above proof rely on the absence of an atomic multisend capability;
as such, this impossibility holds even if we assume atomic multisend. ⊓⊔

5 Positive Results in the E-NAMS/E-AMS Models

In this section, we assume that parties can erase their state. In our positive result, we do not assume that
parties have an atomic multisend operation available to them, and the operations of sending a message and
erasing state are not atomically bound either. This corresponds to the E-NAMS model. We will first show
an all-to-all RMT protocol in this model with polylogarithmic locality tolerating t < ( 12 − ϵ)n corruptions
(Section 5.1); this automatically also implies a protocol in the stronger E-AMS model. To complement this
result, we also show that tolerating t > ( 12+ϵ)n corruptions is impossible in the E-NAMS model (Section 5.2).

5.1 Polylogarithmic Locality RMT in the E-NAMS Model

Our protocol is a standard RMT protocol that allows a sender ps to reliably transmit a message to a remote
recipient pr over a polylogarithmic degree graph. The all-to-all RMT is then obtained by having each pair
use this RMT simultaneously. In addition to a PKI (for digital signatures) our protocol uses a hidden graph
setup as in [CCG+15] as follows: the setup picks a directed random Erdős-Rényi graph G(n, p) = (V,E),
where V = P is the vertex set and E is the set of edges in G, and for every i, j ∈ V , Pr[(i, j) ∈ E] = p. This
graph is given to the parties such that every party learns its incoming and outgoing edges in G (and nothing
else). From Section 2, recall that for any node u ∈ V , we denote its set of outgoing neighbors by Γ1(u). The
set of nodes at distance ≤ i on a forward (directed) path starting from a node u are denoted by Γi(u).

5.1.1 Single-pair RMT protocol in the E-NAMS model. We now describe our RMT protocol from
honest sender ps to honest receiver pr, where ps, pr ∈ V , denoted by ΠRMT . Our protocol assumes a PKI, a
hidden graph setup, existentially unforgeable digital signatures (equivalently, one-way functions), worst-case
secure erasures (as discussed in Section 2), and no atomic multisend. As a corollary of our statement, at the
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end of the section we prove that the protocol with a minor tweak works even if we assume atomic multisend
instead of just point-to-point communication. (The latter corollary is not that surprising, as atomic multisend
restricts the adversary’s power, but needs to be nonetheless done with care to make sure the adversary cannot
abuse it to discover more of the hidden graph.)

Protocol structure. To make the protocol and proof simplest, we will (implicitly) induce the following
structure: The protocol advances in blocks of two sequential (mini-)rounds, where in the first of these two
minirounds a specific sender gets a chance to send a message to a specific receiver, and in the second one that
sender gets a chance to erase his state (e.g., the information of the previous receiver). These miniround-blocks
are advanced in a round-robin fashion: the first n blocks of such minirounds are with sender p1 and receiver
each party pj in the party set; the next n blocks of minirounds are for sender p2 and receiver each party pj
in the party set, and so on; after n such sets of n blocks, the (n+1)st set of n blocks is again with sender p1,
etc. Thus, a sequence of 2n2 minirounds (where all parties have had a chance to send all the messages they
have for any other parties) constitutes a round in the protocol. We induce the above structure as it makes
the influence of an adaptive adversary clean, no matter what model one is used to. Recall that we consider
an adversary A who can adaptively corrupt up to a τ fraction of nodes in the network. Hence, A is allowed
to order the blocks of minirounds within a single round (worst-case adaptive scheduling), and he can corrupt
any party in between any two minirounds. Observe that this protocol structure does not increase the CL of
the protocol, as a party will utilize its associated minirounds if and only if it has something to send to the
corresponding receiver.

More concretely, the protocol starts at round 0, and we call the entire block below a round in the protocol.

– For spkr = 1 to n, do the following:
• If Party pspkr has a message to send to p0 it will do so.
• Party pspkr is given a chance to erase.
• If Party pspkr has a message to send to p1 it will do so.
• Party pspkr is given a chance to erase.
...

• If Party pspkr has a message to send to pn−1 it will do so.
• Party pspkr is given a chance to erase.

The protocol then proceeds to the next round, completing a total of R rounds. The protocol ΠRMT itself is
defined as follows.

RMT protocol between ps and pr. Our protocol proceeds for a total of R = logc̃ n rounds, for some
constant c̃ > 1 (where rounds are defined as above). All the verification keys of all nodes (denoted vkw for
each party w ∈ P, with corresponding signing key skw) are known to all parties.

1. First, ps signs (m, pr) with skps
. Denote the signed message (which comprises of the (m, pr) as well as

the signature on it) by µm. Party ps also initializes ctrps
to the index of a random neighbor in Γ1(ps).

2. Now, at every round 0 ≤ j ≤ R, every node w does the following:

– w checks if he possesses a single valid message µm - i.e., a message of the form (m, pr) that has been
signed by ps. If so, then w sends µm to Γ1(w)[ctrw] and sets ctrw = ctrw + 1. (This constitutes a
mini-round, and is immediately followed by another mini-round in which w is given a chance to erase
the information of the node in Γ1(w)[ctrw] he sent to in the previous miniround.) Node w repeats
the above over d many neighbors in Γ1(w) by iteratively incrementing ctrw, where d = O(logc n)
(for some c > 1) is the communication locality. Otherwise, if he possesses no valid message µm,
then he does nothing.

– w disregards all messages from w∗ /∈ Γ in
1 (w).

We now prove that the above protocol is an RMT between ps and pr. Define set, GOODj , 0 ≤ j ≤ R to
be the set of nodes, who at the beginning of round j of the protocol are a) honest and b) are in possession of
the message µm. Nodes can be corrupted by an adversary adaptively at any point of time (note that nodes
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can get corrupted even within a round as defined above) e.g. after a node sends µm to an adversarial node,
it can get corrupted. As long as some node in GOODj for some j sends µm to pr, RMT is achieved between
ps and pr. Also, note that until an honest node w sends a message to its next neighbor, Γ1(w)[ctrw] is a
random node from the adversary’s view. Hence, the probability that pr receives the message µm is simply
the probability that of all the random neighbors selected by nodes in GOODj , 0 ≤ j ≤ R, at least one of
these nodes is pr. Let gj = |GOODj | for all j.

The idea of our proof is that no matter what the adversary does, the set of parties that know the message
(and will therefore forward it in the next round) grows multiplicatively in each round of the protocol. Hence,
in logc̃ n rounds, the message will reach a large enough honest set, so that one of them will be a neighbor
of pr and will therefore forward the message to pr. Once this happens, pr will observe it (since the message
carries the sender’s signature) which means that the RMT will have succeeded. Details follow.

The first lemma below will be useful in arguing that the good set (of parties that have the message)
starts off with a large enough size.

Lemma 4. Let W = {w1, · · · , wk} be a set of nodes selected uniformly at random with replacement. Let
k ≥ logc n for some c > 1. Then, for any constant δ < 1 the number of unique nodes in W , i.e., |W | is
≥ (1− δ)k, except with probability negligible in n.

Proof. Consider the ordered list of nodes w1, · · · , wk. Now, for any wi, the probability with which wi is a
repeated node (i.e., there exists some wj , j < i, s.t. wj = wi) is at most k

n . Then, the probability with which

wi is repeated for δk of the indices is bounded by ( kn )
δk, which is negligible in n, when k ≥ logc n, c > 1.

Hence the lemma follows.

Using the above lemma we can prove that the set GOOD1 of honest parties that have seen message µm

at the beginning of round 1 has size polylogarithmic in n.

Lemma 5. For corruption threshold τ and any 0 < ϵ < 1 − τ , the size of the good set after round 0 is
bounded as g1 ≥ (1− τ − ϵ)d, except with probability negligible in n.

Proof. This follows from a simple Chernoff bound argument. Let ctrps
= f initially. Then, Dps

1 =
{Γ1(ps)[f ], Γ1(ps)[f + 1], . . . , Γ1(ps)[f + d]} is a set of nodes chosen at random independently of everything
else that the adversary A has seen so far in the network. Hence, the nodes in Dps

1 are each corrupt indepen-
dently with probability τ . The probability with which the number of honest nodes in Dps

1 is < (1− τ − ϵ′)d
is the probability with which the number of adversarial nodes in Dps

1 is ≥ (τ + ϵ′)d, which by the Chernoff

bound is at most e
−ϵ′d

3 , i.e., negligible in n as d = logc n, for some c > 1, by assumption. Finally, the number
of unique nodes in this set will be ≥ (1− τ − ϵ)d (by Lemma 4).

Next we show that as long as the adversary corrupts a minority of parties, in every round, the size of the
good set increases multiplicatively by a constant greater than 1.

Lemma 6. For any corruption threshold τ and any 0 < ϵ < 1− τ , the size of the good set after any round
0 < j ≤ R is bounded as gj+1 ≥ 2(1− τ − ϵ)gj, except with probability negligible in n.

Proof. The proof is by induction on j. First, let us analyze the base case. We have g1 ≥ (1 − τ − ϵ)d from
Lemma 5. Now, in the next round, all nodes w in GOOD1 will send µm to a random neighbor (namely
Γ1(w)[ctrw]). Now, for a node w, w′ = Γ1(w)[ctrw] is honest with probability (1− τ). In this case, we include
both w and w′ in GOOD2. If for a node w ∈ GOOD1, w

′ = Γ1(w)[ctrw] is malicious, we include neither
w nor w′ in GOOD2 (as w′ could then also corrupt w). By Lemma 4, the expected size of GOOD2 will be
2(1− τ)g1, and applying the Chernoff bound shows that the size of GOOD2, i.e., g2 will be ≥ 2(1− τ − ϵ)g1
with overwhelming probability.

Now, for the inductive hypothesis, assume that gℓ ≥ 2(1 − τ − ϵ)gℓ−1. Now, again for every node w in
GOODℓ, w

′ = Γ1(w)[ctrw] is honest with probability (1−τ) and in this case two nodes are added to GOODℓ+1.
Again, by the Chernoff argument, and Lemma 4, the size of GOODℓ+1, i.e., gℓ+1 will be ≥ 2(1− τ − ϵ)gℓ.
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Finally, we prove that the above constant expansion will ensure that in logc̃ n rounds (which is how long
our protocol runs), the message will arrive at its intended receiver v.

Lemma 7. For any j ≥ logc̃ n, if corruption threshold τ < 1
2 − ϵ for any 0 < ϵ < 1

2 , then probability that
pr ̸= Γ1(w)[ctrw] for any w in any good set GOODj is negligible.

Proof. This is the probability that pr was never randomly selected as Γ1(w)[ctrw] for any w ∈ GOODj for

any j. Now, since τ < 1
2 − ϵ, we have 2(1− τ − ϵ) > 1 and hence, from Lemma 6, for j = R = logc̃ n, GOODR

is of size gR = νnlogc̃−1 n for some 0 < ν < 1 and c̃ > 1. This means then that the probability with which
pr was never randomly selected as Γ1(w)[ctrw] for any w in any GOODj is bounded by (1 − 1

n )
gR , which is

negligible in n.

This completes the proof of the following theorem.

Theorem 2. Assuming a PKI, a hidden graph setup as above, secure erasures, one-way functions (for
existentially unforgeable signatures) and an adaptive adversary corrupting at most t < ( 12 − ϵ)n parties for
any 0 < ϵ < 1

2 , the protocol ΠRMT realizes reliable message transmission from ps to pr. The statement holds
in the E-NAMS as well as E-AMS models.

Since atomic multisend is a stronger model that the non-atomic multisend setting considered above, the
possibility results applies also to this case. Indeed, given atomic multisend one can trivially simulate point-to-
point communication between a sender ps and receiver pr, by having ps multisend the vector that includes the
intended message to the location corresponding to pr and 0 to all other parties in its outgoing neighborhood

of the hidden graph setup. This proves the following statement about the protocol Π
(MS)
RMT which results from

instantiating ΠRMT by sending a message via the above invocation of the atomic multisend primitive.

Corollary 1. Assuming a PKI, a hidden graph setup as above, secure erasures, one-way functions (for
existentially unforgeable signatures), atomic multisend, and an adaptive adversary corrupting at most t <

( 12 − ϵ)n parties for any 0 < ϵ < 1
2 , the protocol Π

(MS)
RMT described above realizes reliable message transmission

from ps to pr in the E-AMS model.

5.1.2 All-pairs (aka all-to-all) RMT in the E-NAMS model. We now describe our protocol for RMT
between all pairs of parties, denoted by Πa2aRMT. This will allow every party u to send a message to every
other party v in a total of R rounds (where a round is defined as earlier). At a high level, Πa2aRMT works as

follows. We will execute a total of n(n−1)
2 instances of protocol ΠRMT from Section 5.1 in parallel. For every

receiver v, every sender u signs (m, v) with sku. Denote the signed message (which comprises of the (m, v)

as well as its signature) by µu,v. Every party w will maintain n(n−1)
2 slots, each corresponding to one (u, v)

pair. Now, at every round 0 ≤ j ≤ R, w checks if it possesses any valid message that has been sent by sender
u to receiver v (i.e. a message µu,v of the form (m, v) that has been signed by u). It places this message in

the slot corresponding to the pair (u, v). w then sends (potentially) all n(n−1)
2 messages to Γ1(w)[ctrw] and

sets ctrw = ctrw +1. It is easy to see that the communication locality of any party does not increase through
this process – only the number of messages sent by a party at a time increases from a single message to a

collection of n(n−1)
2 messages. Applying a union bound over all pairs of senders and receivers, one can obtain

the following corollary to Theorem 2.

Corollary 2. Assuming a PKI, a hidden graph setup as above, secure erasures, one-way functions (for
existentially unforgeable signatures) and an adaptive adversary corrupting at most t < ( 12 − ϵ)n parties for
any 0 < ϵ < 1

2 , the protocol Πa2aRMT realizes reliable message transmission between all pairs of parties
(u ∈ P , v ∈ P). The statement holds in the E-NAMS as well as E-AMS models.
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5.2 Impossibility of Dishonest Majority in the E-NAMS model

In this section, we shall show that it is impossible to construct SF reliable message transmission (RMT)
protocols (and therefore also MPC) with low communication locality, in a model even with erasures, if the
corruption threshold is 1

2 + ϵ for any constant ϵ > 0. To do so, we shall prove that an adversary can break
correctness of any RMT protocol between some pair of honest nodes in any such protocol. The proof idea can
be seen as symmetric to the proof of Theorem 2. In particular, in Theorem 2 we showed that if the adversary
corrupts t < ( 12 − ϵ)n parties, for any constant 0 < ϵ < 1/2, then the set of honest nodes that learns (and

forwards) the sender’s message grows exponentially fast, and therefore in logc̃ n rounds it will be large enough
to hit a neighbor of the receiver. Here we prove that if t ≥ ( 12 + ϵ)n for any constant 0 < ϵ < 1/2, then there
is a strategy making the above set shrink exponentially fast, which can make the message disappear before
reaching the receiver pr.

Consider an RMT protocol between an honest sender ps and an honest receiver pr. We shall show that
for any SF RMT protocol from ps to pr, an adversary that corrupts 1

2 + ϵ parties can prevent the message
m from reaching pr in any polynomial number of rounds. As in Section 5.1, let the RMT protocol from ps
to pr begin at round 0, and define GOODj , 0 ≤ j ≤ R to be the set of nodes, who at round j of the protocol
are a) honest and b) are in possession of the message µm. Let gj = |GOODj | for all j.

Adversarial strategy. Our adversarial strategy is as follows: First, corrupt nodes in the graph uniformly
at random (i.e., every node is corrupted with probability 1

2 + ϵ
4 ). Next, if an adversarial node receives a

message (that was a part of the RMT protocol between ps and pr) from some node w (other than ps), then
corrupt w. Do not forward any messages.

Lemma 8. Except with probability negligible in n, the adversary will corrupt at most 1
2 +ϵ fraction of nodes.

Proof. First, from a simple Chernoff bound, the adversary corrupts at most 1
2 +

ϵ
2 when corrupting nodes at

random. Next, for every node corrupted this way, the adversary at most corrupts one additional node (the
node w which sent the message to it). Hence, at most 1

2 + ϵ nodes are corrupted in total.

Next, we show that after initial round, only a small set of honest nodes are in possession of the message.

Lemma 9. Except with probability negligible in n, the size of the good set after round 0 is bounded as
g1 ≤ ( 12 − ϵ′)d, for some constant ϵ′ > 0 and communication locality d.

Proof. The proof of this Lemma follows from the Chernoff bound in a very similar manner to the proof of
Lemma 5.

Finally, we show that after every round in the protocol, the number of honest nodes in possession of the
message reduces.

Lemma 10. Except with probability negligible in n, the size of the good set after any round j > 0 is bounded
as gj+1 ≤ ( 12 − ϵ′)gj for some constant ϵ′ > 0.

Proof. The proof of this lemma follows in a similar manner to the proof of Lemma 6. This is because,
whenever an honest node sends a message to an adversarial node (which happens with probability ≥ 1

2 + ϵ′′),
this honest node will be corrupted by the adversary, hence progressively decreasing the size of GOODj as j
increases.

Putting the above together, it follows from Lemmas 8, 9,and 10, that our adversary corrupts 1
2+ϵ parties

and the RMT message from ps to pr fails to reach pr with noticeable probability, which proves the following
theorem.

Theorem 3. In the E-NAMS model (i.e., without atomic multisend), there exists no all-to-all store-and-
forward RMT protocol with polylogarithmic CL tolerating an adaptive adversary corrupting t ≥ ( 12 + ϵ)n (for
any constant 0 < ϵ < 1

2) parties. The statement holds even assuming an arbitrary correlated randomness
setup, secure erasures, and any cryptographic hardness assumption.
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Remark 1. We note that the above argument holds if we do not assume atomic multisend (i.e., in E-NAMS).
Indeed, in the stronger E-AMS model, the nodes might be able to do some smart multisend-based relay that
prevents the set of parties that know the message from shrinking, or slows down the rate. We leave this
interesting question as a future research direction.

6 Polylogarithmic Locality RMT in the NE-NAMS Model

In this section, we propose RMT protocols which are not store-and-forward, and can therefore circumvent
the impossibility result from Section 4. Our key idea is to remove the ability of the adversary to identify
the sender by looking at intermediate messages, with the use of fully homomorphic encryption (FHE) to
hide the contents (and in particular, origin and path) of transmitted messages. The resulting protocol for
single-pair RMT is described in Section 6.1. However, we subsequently note that the same protocol loses its
security when composed in parallel for the purpose of all-pairs RMT. In the following Section 6.2, we show
how the protocol can be extended to obtain RMT from all senders to polylog(n) receivers, which we term
sublinear output-set RMT (or SOS-RMT) and later use directly to achieve communication-local SOS-MPC
in Section 7.2.

6.1 Single-Pair RMT using Fully Homomorphic Encryption

We next provide a description of our (one-to-one) RMT protocol in the non-erasure case under strong
cryptographic assumptions. Here we denote the sender by u and the receiver by v.

Single-pair RMT protocol ΠRMT
FHE between u and v from FHE and adaptively secure (non-

committing) encryption. Similarly to the protocol from Section 5.1, our protocol proceeds for a total of
R = logc̃ n rounds for any constant c̃ > 1 (where rounds are as defined in Section 5.1). The protocol assumes
setup for the following schemes:

An existentially unforgeable digital signature scheme (KeyGen, Sign, Verify). Denote by vku the verifi-
cation key of the sender u and by sku the corresponding signing key.

A non-committing encryption scheme (KeyGenNCE, EncNCE, DecNCE). Denote by pkNCEv and skNCEv the encryp-
tion and decryption keys of the receiver.

A compact and malicious circuit-private FHE scheme (KeyGenFHE, EncFHE, EvalFHE, DecFHE). Denote by
pkFHEv and skFHEv the encryption and decryption keys of the receiver, respectively.

The protocol also assumes that the parties have agreed on unique public message IDs msg ID for the trans-
mitted messages (this will include the protocol ID, the party ID, and the current round). The protocol
proceeds as follows:

1. Computation of each party when the protocols starts (to compute the first message they will send):

Code for the sender u: First, u encrypts m with v’s (non-committing) encryption key pkNCEv ; de-
note the resulting ciphertext by c. Then, u signs (c, v,msg ID) with sku; denote the corresponding
signature by σ. Finally, u encrypts the pair ((c, v,msg ID), σ) with v’s FHE encryption key pkFHEv ;
denote the resulting (aaHE) ciphertext by c̃u.

Code for each party w ̸= u: Party w computes c as an encryption of the all-zero message of size
|m| with v’s (non-committing) encryption key pkNCEv and sets σ to the all-zero string of same size as
the actual signature of u above. Then, w encrypts ((c, v,msg ID), σ) with v’s FHE encryption key
pkFHEv ; denote the ciphertext by c̃w.

2. Next, at any round 0 ≤ j ≤ R, every node w does the following: Let Cw,j = {ỹ1, . . . , ỹq} be the
ciphertexts that party w has received in the previous rounds (Cw,j = {c̃w} if no messages have been
received yet.)

w applies the homomorphic evaluation function EvalFHE on input the ciphertexts in Cw,j , the
verification key vku of the sender u, and the pre-agreed message ID msg ID to compute the following
function: If any ỹ ∈ Cw,j can be parsed as ((c, v,msg ID), σ), where σ is a valid signature on
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(c, v,msg ID) according to the sender’s verification key vku, then output ((c, v,msg ID), σ). (If there
are multiple such ỹ, output the one with the smallest c.) Party w denotes the resulting FHE
ciphertext by c̃w,j , sends it to Γ1(w)[ctrw] and sets ctrw = ctrw + 1.

w disregards all messages from w∗ /∈ Γ in
1 (w).

3. At round R, v uses his FHE decryption key to decrypt each FHE ciphertext in Cv,R (i.e., all ciphertexts
received in the protocol). If any ỹ ∈ Cv,R can be parsed as ((c, v,msg ID), σ), where σ is a valid signature
on (c, v,msg ID) according to the sender’s verification key vku, then v uses his NCE decryption key
skNCEv to decrypt c and outputs the corresponding message as the one sent by u (if more than one such
c exists, then v takes the one corresponding to the smallest message m). Otherwise, v outputs 0 as the
message received from u.

Theorem 4. Assuming a PKI, a hidden graph setup, trapdoor permutations with a reversed domain sampler,
and compact and malicious circuit-private FHE [OPP14], protocol ΠRMT

FHE securely realizes single-pair RMT,
tolerating an adaptive adversary who corrupts t < ϵn parties for any constant 0 ≤ ϵ < 1, in the NE-NAMS
model.

6.2 Multi-Sender RMT

While ΠRMT
FHE cannot be composed in parallel to achieve all-pairs RMT as discussed in Section 3, we show in

this section that simple joint state parallel composition of single-pair RMT is sufficient for all-to-one RMT,
and the usage of multiple all-to-one RMT instances over independent hidden graphs can further extend this
to SOS-RMT.

We note that each form of parallel composition in this section will require unique message identifiers
(denoted by msg ID) used in each constituent RMT instance. In more detail, unique message IDs must be
used for each of the n instances of single-pair RMT that are composed into an all-to-one RMT, and similarly,
distinct message IDs must be used in each of the polylog(n) all-to-one RMT instances that form SOS-RMT.

6.2.1 All-to-one RMT by parallel composition. We now define our protocol for RMT with a single
receiver v, and all other parties acting as senders, denoted by Πa21RMT

FHE . At a high level, the protocol works
as follows. We will execute n− 1 instances of ΠRMT

FHE in parallel over the same hidden graph, with each party
maintaining one slot for each (u, v) pair, where u is any node except the receiver v. At the beginning, each
sender u ̸= v creates an aaHE ciphertext µu for his own slot, along with dummy ciphertexts for all other
slots. At every round 0 ≤ j ≤ R, every party w runs EvalFHE on his collection of ciphertexts Cw,j for each
slot (u, v), before forwarding the results from all n−1 slots to a neighbor Γ1(w)[ctrw] and incrementing ctrw.
Finally, after round R, the receiver v decrypts the received aaHE ciphertexts from each of the n − 1 slots
using his FHE and NCE decryption keys, to obtain the messages from all n − 1 senders. Observe that the
flaw discussed in Section 6.1 does not apply here, as there is only one receiver. We thus have the following
corollary, the proof of which can be found in the supplementary material.

Corollary 3. Assuming a PKI, a hidden graph setup, trapdoor permutations with a reversed domain sam-
pler, and compact and malicious circuit-private FHE, protocol Πa21RMT

FHE securely realizes all-to-one RMT,
tolerating an adaptive adversary who corrupts t < ϵn parties for any constant 0 ≤ ϵ < 1, in the NE-NAMS
model.

6.2.2 SOS-RMT by multiple hidden graphs. We now show a simple extension of Πa21RMT
FHE to achieve

RMT with all parties acting as senders, and some polylog(n) parties acting as receivers. We term this sublinear
output-set RMT, or SOS-RMT. We denote our protocol by ΠSOS−RMT

FHE . The idea is as follows. Instead of a
single hidden graph, we provide the parties with polylog(n) independent hidden graphs as part of the setup.
Observe that this can be realized by a single hidden graph setup of a higher-degree polylog(n), and thus it
does not complicate the setup any further. With polylog(n) independent hidden graphs, ΠSOS−RMT

FHE simply
requires the parties to perform one instance of all-to-one RMT (using Πa21RMT

FHE ) for each receiver v on a
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unique hidden graph Gv. Even if some of the receivers are corrupted by the adversary, they clearly cannot
block a sender from reaching the honest receivers, due to independence of edges between hidden graphs. The
following corollary is immediate.

Corollary 4. Assuming a PKI, a hidden graph setup, trapdoor permutations with a reversed domain sam-
pler, and compact and malicious circuit-private FHE, protocol ΠSOS−RMT

FHE securely realizes SOS-RMT, tol-
erating an adaptive adversary who corrupts t < ϵn parties for any constant 0 ≤ ϵ < 1, in the NE-NAMS
model.

An important point to note is that the overall communication locality of each party remains polylog(n),
since any party communicates with polylog(n) many neighbors in each of polylog(n) hidden graphs.

7 Communication-Local MPC

Having established the feasibility of RMT with polylogarithmic CL in all four models, we turn to the question
of adaptively secure MPC with polylogarithmic communication locality. In Section 7.1, we show that all-pairs
RMT can be used to realize CL MPC, and we outline our impossibility and feasibility results for CL MPC
in the NE-AMS, E-NAMS, and E-AMS models. In Section 7.2, we show that our protocol for SOS-RMT in
the NE-NAMS model can be used to realize SOS-MPC, and we state our final feasibility result for SOS-MPC
with polylogarithmic CL.

7.1 CL MPC in the NE-AMS, E-NAMS, and E-AMS Models

All our negative results on all-to-all RMT trivially apply to MPC, since the former is a special case. Next,
we show that a PKI, an appropriate hidden graph setup with polylogarithmic locality, and the standard
cryptographic assumptions facilitating adaptively secure MPC in the complete (i.e., non-communication
local) setting, are sufficient for MPC, under the combination of the feasibility bounds of all-pairs RMT
proven here and the classical t < n/2 bound which is necessary and sufficient for MPC in the standard
(non-communication local) setting.

The idea for the above is as follows: Execute the MPC protocol where the point-to-point communication
is replaced by encrypting the message with the public key of the receiver and sending it using a fresh all-pairs
RMT execution (as constructed here). As noticed in [CCG+15] the above seemingly straightforward idea has
one caveat: to achieve adaptive security, in each round of the MPC protocol, the used RMT will require a
new hidden graph setup which, in the worst case, induces an additive polylogarithmic increase in the CL in
every round. To keep the overall communication locality of the MPC polylogarithmic, one needs to be careful
that the total number of point-to-point rounds in the MPC protocol we are using is at most polylogarithmic.
To this direction, [CCG+15] provided the following solution, which we also adopt here: Invocations to the
(typically round-intensive) broadcast channel are replaced by a polylogarithmic-round broadcast protocol
which was provided and proved secure in [CCG+15]. This protocol can be used within an adaptively secure
constant-round MPC protocol (e.g., [BMR90]) to get an overall polylogarithmic-round MPC protocol.

Theorem 5. Assuming a PKI, a polylogarithmic-degree hidden graph setup12, and trapdoor permutations
with a reversed domain sampler, the following feasibility and impossibility statements hold for the existence
of a store-and-forward protocol for securely evaluating any given n-party function against an adaptive t-
adversary satisfying the following two conditions with overwhelming probability:

Locality. Every party communicates with at most O(log1+ϵ n) other parties, for some constant ϵ > 0.

Rounds. The protocol terminates after O(logϵ
′
n) rounds, for some constant ϵ′ > 0.

1. In the NE-AMS and NE-NAMS models, i.e. if we do not assume erasures, then no such MPC exists if
t = O(n) and the protocol has an expansion rate of (logz n, k logn

(1+ϵ) log log n ), for some k < 1 and z > 1.

12 Recall that this can be replaced by an SKI or a NIKE scheme assuming the PKI supports it.
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2. In the E-NAMS and E-AMS models, i.e., if we assume erasures (with or without atomic multisend),
then there exists such an MPC protocol if t < ( 12 − ϵ′′)n for some constant ϵ′′.

3. In the E-NAMS model, no such MPC exists if t > ( 12 + ϵ′′)n for some constant ϵ′′.13

7.2 CL Sublinear-Output-Set (SOS) MPC in the NE-NAMS Model

Since we do not have all-pairs RMT in the NE-NAMS model, we must adopt a different approach. Here,
we propose our protocol for sublinear output-set MPC (i.e., SOS-MPC), wherein a sublinear (in our case,
polylogarithmic) set of parties is able to learn the output. The high-level outline of our protocol is as follows.
A committee of some polylog(n) parties is selected; these are the parties that perform the actual MPC and
ultimately learn the output. Next, each party creates polylog(n) secret shares of his MPC input, and he
sends one share to each member of the commitee. Then, the committee members simulate an arbitrary MPC
protocol to obtain the output.

The first task here is to select the committee members and keep their identities hidden from the adversary,
while still allowing parties to send messages to committee members. We resolve this by introducing an
additional assumption: an anonymous PKI setup. In particular, we dissociate the identities of parties from
their public keys for all three schemes involved, namely the signature scheme, the non-committing encryption
scheme, and the FHE scheme. Each party receives its secret keys, while the public keys are made known
to everyone without disclosing the party’s identity. In addition, the setup selects some polylog(n) parties
uniformly at random to form the committee, and it publishes the set of public keys of committee members.

The next task is to allow all parties in the network to communicate their input shares to the committee
members. Since the committee is of size polylog(n), this is easily achieved by running a single instance of
SOS-RMT (using protocol ΠSOS−RMT

FHE ), with each party sending a share of his input to each committee
member.

The final task is for the committee members to execute the MPC protocol reliably. In particular, we
must allow the committee members to communicate over hidden graphs without disclosing their location
in the network. This can be realized by simulating each round of communication in the MPC protocol via
a new instance of SOS-RMT (using protocol ΠSOS−RMT

FHE , with polylog(n) new hidden graphs), wherein each
committee member sends the appropriate message for the MPC protocol to all other committee members,
while the rest of the parties just send a dummy all-zeros message to each committee member. At the
end of every RMT instance, each committee member simply decrypts only the messages received in slots
corresponding to other committee members.

A detailed description of the complete protocol now follows. Note that it only requires executing multiple
instances of ΠSOS−RMT

FHE sequentially, and thus we immediately get Theorem 6, which states that the protocol
achieves adaptively secure SOS-MPC with polylogarithmic communication locality.

Protocol for communication-local SOS-MPC. Our protocol assumes an anonymous PKI setup for (1)
an existentially unforgeable digital signature scheme, (2) a non-committing encryption scheme, and (3) a
compact and malicious circuit-private FHE scheme.

We also assume that the setup selects a committee C = {C1, . . . , C|C|} uniformly at random among the
n parties (where |C| = O(logc n) for some constant c > 0), and it publishes the list of committee public keys
for all three schemes involved. Let each party pi’s input be xi, and ΠMPC be an arbitrary honest majority
MPC protocol. Our SOS-MPC protocol to compute f(x1, . . . , xn) proceeds as follows:

1. Initially, each party pi computes a (|C|/2)-out-of-|C| secret sharing of its input xi into |C| shares,
denoted by x1

i , . . . , x
|C|
i .

2. Next, the parties run one instance of ΠSOS−RMT
FHE , where each party pi sends input share x

j
i to committee

member Cj (1 ≤ j ≤ |C|), using the public keys of Cj for non-committing encryption and FHE. Recall

13 Note that Theorem 3 implies that if we assume erasures as an atomic operation and no atomic multisend, then no
MPC as in the above theorem exists if t > ( 1

2
+ ϵ′′)n for some constant ϵ′′. However, this is anyway implied by the

tightness of the condition t < n/2 for adaptive security even in the complete (i.e., non-CL) point-to-point channels
setting, and is therefore omitted.
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that by the anonymous PKI setup, the identity of Cj as a party in the network, say pk, is kept hidden.

Still, pk(= Cj) is able to receive each share xj
i (1 ≤ i ≤ n) as it propagates through the network.

3. Having received shares of xi from all pi, the committee members execute ΠMPC among themselves to
compute the output f(x1, . . . , xn), as follows. Each round of point-to-point communication in ΠMPC is
replaced by an instance of ΠSOS−RMT

FHE , where

each committee member Cj ∈ C sends the appropriate messages forΠMPC to all the other committee
members in C, and

each party pi ̸∈ C sends a dummy all-zeros message (of the same length as above) to all the
committee members in C.

At the end of every ΠSOS−RMT
FHE instance (i.e., every round of ΠMPC), each Cj ∈ C decrypts the messages

received from other committee members, and does any local computation prescribed by ΠMPC.

4. Finally, every committee member Cj ∈ C learns the output f(x1, . . . , xn) (after an opening round, if
necessary, which can be realized using another instance of ΠSOS−RMT

FHE ).

Note that for an underlying protocol ΠMPC using R rounds of communication, our protocol requires
(R+ 1) logc̃ n rounds of communication, for a constant c̃ > 1 (dependent on the communication locality).

Theorem 6. Assuming an anonymous PKI, a polylogarithmic-degree hidden graph setup, trapdoor permuta-
tions with a reversed domain sampler, and compact and malicious circuit-private FHE, there exists a protocol,
satisfying the following two constraints with overwhelming probability:

Locality. Every party communicates with at most O(log1+ϵ n) other parties, for some constant ϵ > 0,
and

Rounds. The protocol terminates after O(logϵ
′
n) rounds, for some constant ϵ′ > 0,

which securely evaluates any given n-party function against an adaptive t-adversary corrupting up to t < n/2

parties in the NE-NAMS model, and delivers the output to any O(logϵ
′′
n) parties, for constant ϵ′′ > 0.
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Supplementary Material

Proof of Theorem 4

Proof (sketch). We will show that the protocol ΠRMT
FHE securely realizes the standard RMT functionality which

allows the simulator to learn the message, but once he does, he cannot erase it without corrupting the sender
(see e.g., [CCGZ16]).

To this direction we provide a simulator S that that simulates the view of any adversary A attacking
ΠRMT

FHE .
S interacts (in a black-box, straight-line manner) with A and simulates towards A: (1) the signature

setup—by generating pairs of signing/verification keys for each party and giving A all verification keys along
with the corrupted parties’ signing keys; (2) the non-committing encryption setup—by creating encryption
key and giving it to A, and a corresponding decryption key so that if A corrupts the sender or the receiver,
then S uses the non-commiting property to give A coins that decrypt all ciphertexts A has seen so far to the
messages preferred by S; (3) the FHE setup—by creating encryption keys and giving them to the adversary,
and corresponding decryption keys which are given to A if he corrupts their intended owner. S also samples
the hidden graph setup as in the real protocol, i.e., as an Erdős-Rényi graph.

For simulating the protocol execution, while neither the sender or receiver is corrupted, S simulates the
code of all parties as follows. For simulating the first message, S generates each c̃w similarly to how the
protocol parties would (using the simulated encryption keys), with the only difference that the signature σ
encrypted under c̃u is computed with u’s actual (simulated) signing key. From that point on, S can easily
simulate all parties (by actually following the protocol) as he has control (and knowledge) of the whole
(simulated) FHE setup. If A requests to corrupt any of the parties w ̸∈ {u, v}, then S simply hands him the
simulated state of that party.

If A requests to corrupt the sender, then the simulator learns the actual message transmitted by the
sender, and uses the non-committing property to give A coins that encrypt this message to the ciphertext
transmitted in the simulation. S also hands the adversary the sender’s signing key. Subsequently, the sim-
ulator keeps track of which (if any) of the underlying simulated aaHE plaintexts would be delivered to the
receiver in the simulation, and updates the input to the functionality with the smallest such message (or 0
if no such message is received).

If A requests to corrupt the receiver, then the simulator learns the actual output to the receiver from the
functionality, and uses the non-committing property to give A a decryption key that opens u’s transmitted
ciphertext to this actual output. A then learns u’s message whenever it is delivered by the simulation to the
corrupted receiver.

We next argue that the view of A in the above experiment is indistinguishable from his view in the
protocol. Indeed, the compactness and circuit-privacy property of the FHE ensures that all aaHE ciphertexts
that the adversary sees in the protocol are indinsinguishable from one-another and also from the simulated
ones. Since the distribution of the simulated hidden graph is identical to the protocol, the adversary cannot
distinguish between the two executions, assuming the receiver is honest. If the receiver too is corrupted, then
the views are trivially identical, as all ciphertexts gets decrypted to the actual messages in the protocol.

To complete the proof we need to argue that the output of the simulation is also indistinguishable from
the output of the protocol. The hardest case here is when both the sender and the receiver are honest through
the protocol/simulation. In this case, the simulated execution (ideal world) will always output the sender’s
message to the receiver. We next argue that this will also be the case in the real protocol. To this direction
we show that any such A will always leave an honest path (i.e., a path consisting of only honest nodes) in
the hidden graph of length at most R from the sender to the receiver. This combined with the malicious
security of the FHE scheme implies that unless the adversary can forge the sender’s signature—this is the
only way to change the underlying aaHE ciphertext across an honest path—the message of the sender will
be delivered through this path (and will be unique as the sender would never sign a different message with
the same msg ID).

To prove the above existence of an honest u-v path, assume towards contradiction that such a path does
not exists. Then the above simulator can be used to turn A into a adversary strategy A′ that disconnects u
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from v while only performing hidden graph discovery before the protocol starts. This, however, contradicts
the results from [CCG+15] which prove that any such A′ corrupting (and removing) a constant fraction of
parties has negligible probability of making the distance between u and v larger that R = log n.

Given the existence of such an honest path, it is straight-forward to verify the correctness of the simulation
also when the sender gets corrupted (for a corrupted receiver, correctness is trivial). Indeed, in this case,
since A observes indistinguishable views in the real and simulated setting, the distributions of the output
message that A’s strategy induce (i.e., the way that the message changes when A injects additional and
potentially contradicting signatures) must also be indistinguishable in the real and ideal setting.

Proof of Corollary 3

Proof (sketch). We will show that the protocol Πa21RMT
FHE securely realizes all-to-one RMT, with n−1 senders

and a single receiver v.
To this direction, we provide a simulator S ′, very similar to simulator S described in the proof of The-

orem 4 above, that simulates the view of any adversary A attacking Πa21RMT
FHE . S ′ interacts (in a black-box,

straight-line manner) with A and simulates towards A the exact same setup as S in the preceding proof;
i.e., signatures, non-committing encryption, FHE, and a hidden graph setup.

To simulate the protocol execution, S ′ simulates the code of all the parties as follows. To begin with, S ′

creates n−1 slots at each party of the form (u, v), where v is the receiver and u is any party except v. Then,
for each such slot (u, v), in which u acts as the sender, S ′ generates each party’s aaHE ciphertext c̃w exactly
as it was in the protocol (using the simulated encryption keys), except u’s own ciphertext c̃u, which has its
signature σ computed with u’s actual (simulated) signing key. Subsequently, S ′ can easily simulate all n− 1
slots for all the parties by following the protocol.

If A requests to corrupt any party u ̸= v, then S ′ learns u’s actual input to the all-to-one RMT function-
ality, and it gives A this input, along with the signing key of u, and coins that encrypt u’s actual input to
the simulated ciphertext c̃u in slot (u, v), using the non-committing property. S ′ also gives A the simulated
state of u in all n− 1 slots. Then, S ′ keeps track of which (if any) simulated aaHE plaintexts from u reach v
in slot (u, v) of the simulation, and updates u’s input to the functionality with the smallest one (or 0, if no
such plaintext reaches v).

If A requests to corrupt the receiver v, then S ′ hands A the simulated state of v in all n− 1 slots, along
with the simulated decryption key of the FHE scheme. Further, S ′ also learns the actual outputs obtained
by the receiver v from all n− 1 senders in the ideal functionality, and it uses the non-committing property
to compute a decryption key that opens the ciphertexts transmitted in all n− 1 slots to the actual outputs
obtained by the receiver. A then learns each sender’s message whenever it is delivered by the simulation to
the corrupted receiver in the corresponding slot.

Exactly as in the preceding proof, the compactness and circuit-privacy of the FHE scheme along with
random sampling of the hidden graph ensures that the adversary’s view in the above experiment is indis-
tinguishable from his view in the protocol, in all n − 1 slots, assuming the receiver is not corrupted. If the
receiver too is corrupted, then the views are trivially identical, as all ciphertexts gets decrypted to the actual
messages in the protocol.

We next argue the indistinguishability of outputs between the simulation and the protocol. Consider the
case where A corrupts a subset T of the parties (v ̸∈ T ). Then, the ideal functionality will always output to
receiver v the inputs of all honest parties u ̸∈ T . We argue that this must also be the case in the real protocol.
Observe that A’s view, restricted to the slot (u, v), which is used by sender u, is exactly identical to that of
the adversary in the simulation described in the preceding proof for single-pair RMT. Applying exactly the
same reasoning for each u ̸∈ T , A leaves an honest u-v path in the hidden graph of length ≤ R, and along
with the malicious security of FHE and existential unforgeability of the signature scheme, this guarantees
that every honest sender u’s message is delivered to v in the slot (u, v) with overwhelming probability. The
correctness of the simulation in the case of a corrupted receiver is trivial.
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