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Abstract. We give a tighter lifting theorem for security games in the quan-
tum random oracle model. At the core of our main result lies a novel
measure-and-reprogram framework that we call coherent reprogramming.
This framework gives a tighter lifting theorem for query complexity prob-
lems, that only requires purely classical reasoning. As direct applications
of our lifting theorem, we first provide a quantum direct product theo-
rem in the average case — i.e., an enabling tool to determine the hard-
ness of solving multi-instance security games. This allows us to derive
in a straightforward manner the hardness of various security games, for
example (i) the non-uniform hardness of salted games, (ii) the hardness
of specific cryptographic tasks such as the multiple instance version of
one-wayness and collision-resistance, and (iii) uniform or non-uniform
hardness of many other games.

1 Introduction

Hash functions are a fundamental workhorse in modern cryptography. Efficient
constructions such as SHA-2 and SHA-3 are widely used in real-world crypto-
graphic applications. To facilitate the analysis of constructions based on hash
functions, Bellare and Rogaway [BR93] proposed a framework known as the
random oracle model (ROM). Recent development of quantum computing de-
mands re-examining security against potential quantum attackers. The quantum
random oracle model (QROM) has since been proposed by Boneh et al. [BDF+11]
as an extension of ROM by taking into account quantum attackers. Various
techniques have been developed for analyzing security in the QROM; however,
they are often either ad-hoc (for specific scenarios) or too involved to apply.

In this paper we revisit a general tool for lifting security from ROM to
QROM by Yamakawa and Zhandry [YZ21]. The lifting theorems are applica-
ble to search games in (Q)ROM between a classical challenger interacting with



an adversary (e.g., think of an adversary that aims to find a preimage of 0 in
the random oracle, with the challenger querying the random oracle to verify
the adversary’s answer). Roughly speaking, the lifting theorems assert that if a
search game with a challenger performing a constant number of queries to the
random oracle is hard against a classical adversary, then it is also hard against
a quantum adversary in the QROM. Specifically, if the challenger performs 𝑘
queries and if a quantum adversary performs 𝑞 quantum queries and wins the
search game with probability 𝜖, then there exists a classical adversary perform-
ing only 𝑘 classical queries winning with probability 𝜖/(2𝑞 + 1)2𝑘.

This tool is particular powerful to establish quantum query lower bounds
in the QROM. Let us consider function inversion from above for example; the
goal is to find an input 𝑥, whose image equals 0. In this case, 𝑘 = 1 and

𝜖

(2𝑞 + 1)2𝑘
=

𝜖

(2𝑞 + 1)2
≤ 1

𝑁
.

This is because a single query reveals a pre-image of 0 with probability at most
1/𝑁 . Therefore we have 𝜖 ≤ (2𝑞 + 1)2/𝑁 , which immediately reproduces the
tight bound for the famous Grover’s search problem [BBBV97]. However, for a
𝑘-search problem whose goal is to find 𝑘 distinct inputs that all map to 0, the
bound derived from [YZ21] is 𝑂

(︀
(𝑘𝑞)2/𝑁

)︀𝑘 for any quantum algorithm with

𝑘𝑞 queries, which has a large 𝑘2𝑘 factor gap from the tight bound 𝛩
(︀
𝑞2/𝑁

)︀𝑘 5 .
Similar weaknesses appear in a variety of problems involving multiple inputs.

In this work, we derive a new tighter lifting theorem for search games. If the
challenger performs 𝑘 queries and the quantum adversary performs 𝑞 quantum
queries and wins the search game with probability 𝜖, then there exists a quan-
tum adversary performing only 𝑘 quantum queries and winning with probabil-
ity 𝜖/22𝑘

(︀
𝑞+𝑘
𝑘

)︀2
, improving on the previous lifting theorem by Yamakawa and

Zhandry. Let us consider a (𝑘𝑞)-quantum-query algorithm for the previous 𝑘-
search problem. Our bound (in this case, 𝑞 in the theorem should be 𝑘𝑞) gives
the tight bound as below:

𝜖

22𝑘
(︀
𝑘𝑞+𝑘

𝑘

)︀2 ≤ 1

𝑁𝑘
←→ 𝜖 ≤

22𝑘
(︀
𝑘𝑞+𝑘

𝑘

)︀
𝑁𝑘

2

≤ 𝑂
(︂
(𝑞 + 1)2

𝑁

)︂𝑘

.

To achieve this, we develop a new measure-and-reprogram technique which
is a key technical contribution of our work. The technique, which we call coher-
ent reprogramming, improves on the recent results on adaptively reprogramming
QRO on multiple points by Don et al. [DFM20, DFMS22] and Liu and Zhandry
[LZ19], yielding tighter reprogramming bounds than the existing measure-and-
reprogram proofs. As an immediate consequence, we are able to derive tighter

5 We believe this is a folklore result that to our knowledge, this bound follows from a re-
sult in [CGK+23] (Theorem 3.1). Moreover, we would like to emphasize that since our
main result is a strengthening of the lifting Lemma of [YZ21], we can also show that
our result concerning the bound of this problem is stronger than the bound derived
from [YZ21].
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quantum hardness bounds for many applications, such as direct-product theo-
rems, salted security, and non-uniform security.

1.1 Summary of Our Results

Lifting Theorem for Search Games. Our central result is a new lifting theorem
for search games that relates (and upper bounds) the success probability of an
arbitrary quantum algorithm to the success probability of a quantum algorithm
performing a small number of queries to the RO. More formally:

Theorem 1 (Quantum Lifting Theorem (Informal)). Let 𝒢 be a search game with
a classical challenger 𝒞 that performs at most 𝑘 queries to the RO, and let 𝒜 be a 𝑞-
quantum query adversary in the game 𝒢 (against the 𝑘-classical query challenger 𝒞).
Then there exists a 𝑘-quantum query adversary ℬ such that:

Pr[ℬ wins 𝒢] ≥ 1

22𝑘
(︀
𝑞+𝑘
𝑘

)︀2 Pr[𝒜 wins 𝒢].

Remark 1. Comparing to the lifting theorem in [YZ21], we have a better loss
22𝑘

(︀
𝑞+𝑘
𝑘

)︀2
, whereas it is (2𝑞+1)𝑘 in their work. Since the algorithm often makes

more queries than the challenger 𝑞 ≫ 𝑘, it is roughly a (𝑘!)2 save. In [YZ21],
they are able to reduce a 𝑞-quantum-query algorithm to a 𝑘-classical-query al-
gorithm; whereas in this work, we only reduce the number of the queries, with
the algorithm ℬ still making quantum queries. Nonetheless, it does not affect
the applications and improvement we have in this work. Our framework handles
the case where the challenge is independent of the oracle (similar to the results
in [YZ21]). We leave the case of oracle-dependent challenges as an interesting
open question.

Coherent Reprogramming. At the core of our main lifting result above lies a
new framework for quantum reprogramming which we call coherent reprogram-
ming. This new framework has the following advantages:

1. It simplifies the proofs and frameworks of existing quantum reprogram-
ming results;

2. It yields improved tighter reprogramming bounds; and
3. It implies in a straightforward manner several applications in quantum

query complexity and cryptography.

In order to present our main coherent reprogramming result, we first need
to introduce a few notions. For an oracle 𝐻 we call 𝐻𝑥,𝑦 the reprogrammed or-
acle that behaves almost like the original function 𝐻 , with the only difference
that its value on input 𝑥 will be 𝑦. Similarly, we define the reprogrammed or-
acle on 𝑘 inputs 𝒙 = (𝑥1, ..., 𝑥𝑘) and 𝑘 corresponding outputs 𝒚 = (𝑦1, ..., 𝑦𝑘),
denoted by 𝐻𝒙,𝒚 , as the original function 𝐻 with the only difference that for
every input 𝑥𝑖 in 𝒙, the corresponding image will be 𝑦𝑖 in 𝒚.
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Theorem 2 (Coherent Reprogramming (Informal)). Let 𝐻,𝐺 be two random
oracles. Let 𝒜 be any 𝑞-quantum query algorithm to the oracle 𝐻 , and let 𝒙𝗈 =
(𝑥1, ..., 𝑥𝑘) ∈ 𝑋𝑘 be any 𝑘-vector of inputs and 𝒚𝗈 = (𝑦1, ..., 𝑦𝑘) = (𝐺(𝑥1), ..., 𝐺(𝑥𝑘)).
Then there exists a simulator algorithm 𝖲𝗂𝗆 that given oracle access to 𝐻,𝐺 and 𝒜,
simulates the output of 𝒜 having oracle access to 𝐻𝒙𝗈,𝒚𝗈 (the reprogrammed version of
𝐻) with probability:

Pr
𝐻,𝐺

[𝖲𝗂𝗆 outputs correct (𝒙,𝒚)] ≥ 1

22𝑘
(︀
𝑞+𝑘
𝑘

)︀2 · Pr𝐻,𝐺

[︀
𝒜𝐻𝒙𝗈,𝒚𝗈 outputs correct (𝒙,𝒚)

]︀
.

where "correct" is defined with respect to some predicate that can depend on the repro-
grammed oracle 𝐻𝒙𝗈,𝒚𝗈 .

Remark 2. Similar to the comparison between Theorem 1 and [YZ21], the second
theorem improves the factor (2𝑞 + 1)𝑘 in [DFM20] to 22𝑘

(︀
𝑞+𝑘
𝑘

)︀2
. Our simulator

does not measure and reprogram directly, but does everything coherently (or in
superposition).

Next, we show the applications of our lifting theorem in query complexity
and cryptography.

Quantum Lifting Theorem with Classical Reasoning. A multi-output 𝑘-search
game between a challenger and an adversary is defined as follows. The adver-
sary receives 𝑘 different challenges from the challenger, and at the end of their
interaction, the adversary needs to respond with 𝑘 outputs. If the 𝑘 outputs
(taken together) satisfy some relation 𝑅 specified by the game, we say the ad-
versary wins the multi-output 𝑘-search game . The goal of the lifting theorem is
to establish the hardness of solving the multi-output 𝑘-search game by any gen-
eral quantum adversary, with only simple classical reasoning. For an arbitrary
𝑘-ary relation 𝑅, let 𝒮𝑘 be the symmetric group on [𝑘] and we define:

𝑝(𝑅) := Pr[∃𝜋 ∈ 𝒮𝑘 | (𝑦𝜋(1), 𝑦𝜋(2), ..., 𝑦𝜋(𝑘)) ∈ 𝑅 : (𝑦1, ..., 𝑦𝑘)
$←− 𝑌 𝑘] .

Note that 𝑝(𝑅) is a quantity that only depends on the game itself, and can be
calculated with only classical reasoning.

Theorem 3 (Quantum Lifting Theorem with Classical Reasoning (Informal)).
For any quantum algorithm 𝒜 equipped with 𝑞 quantum queries to a random oracle
𝐻 : 𝑋 → 𝑌 , 𝒜’s success probability to solve the multi-output 𝑘-search game as speci-
fied by the winning relation 𝑅, is bounded by:

Pr[𝒜 wins multi-output 𝑘-search game ] ≤ 22𝑘
(︂
𝑞 + 𝑘

𝑘

)︂2

· 𝑝(𝑅) .

Our lifting theorem translates into the following quantum hardness results
for our applications in query complexity and cryptography.

Direct Product Theorem. We give the first direct product theorem (DPT) in the
average case (in the QROM). Previously, only worst-case quantum DPTs were
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known [She11, LR13] and were proof-method dependent; until recently, Dong
et al. [DLW24] shows the first average-case quantum DPTs for some problems
in the QROM. While they are non-tight, our DPTs works for all games in the
QROM and proof-method independent.

Our direct product theorem establishes the hardness of solving 𝑔 indepen-
dent instances (each instance is associated with an independent oracle) of a
game 𝒢 given a total of 𝑔 · 𝑞 quantum queries:

Theorem 4 (Direct Product Theorem). For any quantum algorithm 𝒜 equipped
with 𝑔 · 𝑞 quantum queries, 𝒜’s success probability to solve the Direct Product game
𝒢⊗𝑔 with the underlying 𝒢 specified by the winning relation 𝑅, is bounded by

Pr[𝒜 wins 𝒢⊗𝑔] ≤

(︃
22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

𝑝(𝑅)

)︃𝑔

.

Non-uniform Security of Salting. The above theorem directly implies non-
uniform security of salting. Non-uniform attacks allow a malicious party to
perform heavy computation offline and attack a protocol much more efficiently,
using the information in the offline stage. Salting is a generic method that pre-
vent non-uniform attacks against hash functions. Chung et al. [CGLQ20] shows
that “salting generically defeats quantum preprocessing attacks”; they show
that if a game in the QROM is 𝜖(𝑞) secure, the salted game with salt space [𝐾]

is 𝜖(𝑞) + 𝑆𝑞
𝐾 secure against a quantum adversary with 𝑆-bit of advice. Their

bound is non-tight, since when the underlying game is collision-finding, the
tight non-uniform security should be 𝜖(𝑞)+ 𝑆

𝐾 . Improving the additive factor is
an interesting open question and until recently [DLW24] is able to answer this
question affirmatively for a limited collection of games.

Using our direct product theorem, we show:

Theorem 5 (Another “Salting Defeats Quantum Preprocessing”). For any non-
uniform quantum algorithm 𝒜 equipped with 𝑞 quantum queries and 𝑆-bit of classical
advice, 𝒜’s success probability to solve the salted game 𝒢𝑠 with the underlying 𝒢 spec-
ified by the winning relation 𝑅, is bounded by

Pr[𝒜 wins 𝒢𝑠] ≤ 4 ·

(︃
22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

𝑝(𝑅) +
𝑆

𝐾

)︃
.

Our bound is incomparable to that in [CGLQ20]. We are able to improve the
additive term from 𝑆𝑞

𝐾 to 𝑆
𝐾 , while only able to give an upper bound for 𝜖(𝑞).

Even our bound is non-tight in general, it still confirms (on a high level) that
the help from classical advice only comes from the following:

– using 𝑆-bit advice to store solutions for 𝑆 random salts;
– if the challenge salt matches with the random salts (with probability 𝑆

𝐾 ), the
attack succeeds; otherwise, proceed the attack as if there is no advice.
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Non-Uniform Security. By combining our lifting theorem with the results by
Chung et al. [CGLQ20], we derive the following results concerning the security
(hardness) against non-uniform quantum adversaries with classical advice, for
a broader class of games.

Lemma 1 (Security against Quantum Non-Uniform Adversaries (Informal)).
Let 𝒢 be any classically verifiable search game specified by the winning relation 𝑅.
Let 𝑅⊗𝑆 be the winning relation of the multi-instance game of 𝒢. Any quantum non-
uniform algorithm 𝒜 equipped with 𝑞 quantum queries and 𝑆 classical bits of advice,
can win 𝒢 with probability at most:

Pr[𝒜 wins 𝒢] ≤ 4 · 22𝑘
(︂
𝑆(𝑞 + 𝑘)

𝑆𝑘

)︂ 2
𝑆

· 𝑝(𝑅⊗𝑆)1/𝑆 .

To demonstrate the power of our results, we also apply them to the hard-
ness of three concrete cryptographic tasks: the multiple instance versions of
one-wayness, collision resistance and search, as described next. Note that the
applications we list below are non-exhaustive, given 𝑝(𝑅) is easy to define for
almost every game.

Hardness of Multi-Image Inversion. Firstly, we can analyze the quantum hard-
ness of inverting 𝑘 different images of a random oracle 𝐻 : [𝑀 ]→ [𝑁 ].

Our first result establishes the quantum hardness of multi-image inversion,
which is a tight bound as already proven in [CGLQ20], but achieved here in a
much simpler way, directly from our quantum lifting theorem.

Lemma 2 (Quantum Hardness of Multi-Image Inversion (Informal)). For any
distinct 𝒚 = (𝑦1, ..., 𝑦𝑘) ∈ [𝑁 ]𝑘 and for any 𝑞-quantum query algorithm 𝒜 whose aim
is to invert all the images in 𝒚, the success probability of 𝒜 is upper bounded by:

Pr
𝐻
[𝒜(𝒚)→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥𝑖) = 𝑦𝑖 ∀𝑖 ∈ [𝑘]] ≤ 22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

· 𝑘!
𝑁𝑘

.

Hardness of Multi-Collision Finding. Secondly, we can analyse the quantua-
nalyzeess of finding 𝑘 collisions, namely, 𝑘 inputs that map to the same image
of the random oracle 𝐻 : [𝑀 ] → [𝑁 ]. We can also determine upper bounds
for solving the salted version of this task, as well as the hardness of finding a
collision for quantum algorithms that are also equipped with advice.

Lemma 3 (Quantum Hardness of Multi-Collision Finding and Salted Multi-
Collision Finding (Informal)). For any 𝑞-quantum query algorithm 𝒜, the proba-
bility of solving the 𝑘-multi-collision problem is at most:

Pr
𝐻
[𝒜()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥1) = ... = 𝐻(𝑥𝑘)] ≤

1

𝑁𝑘−1

[︂
2𝑒(𝑞 + 𝑘)

𝑘

]︂2𝑘
.
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Any quantum algorithm 𝒜 equipped with 𝑞 quantum queries and 𝑆-bit of classi-
cal advice can win the salted multi-collision finding game with salted space [𝐾] with
probability at most:

Pr
𝐻
[𝒜()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥1) = ... = 𝐻(𝑥𝑘)] ≤

4

𝑁𝑘−1

[︂
2𝑒(𝑞 + 𝑘)

𝑘

]︂2𝑘
+

4𝑆

𝐾
.

The above bounds become 𝑂(𝑞4/𝑁) and 𝑂(𝑞4/𝑁 + 𝑆/𝐾) respectively, for
𝑘 = 2 (the standard collision-finding). Previous work [YZ21] achieves the same
uniform bound, but only achieves 𝑂((𝑆𝑞)4/𝑁 + 𝑆/𝐾), due to the extra loss in
their lifting theorem.

Hardness of Multi-Search. Finally, we also establish a tight bound for finding
𝑘 distinct inputs that all map to 0 under the random oracle 𝐻 : [𝑀 ] → [𝑁 ].
This is potentially useful in analyzing proofs-of-work in the blockchain con-
text [GKL15].

Lemma 4 (Quantum Hardness of Multi-Search). For any 𝑞-quantum query al-
gorithm 𝒜 whose task is to find 𝑘 different preimages of 0 of the random oracle, the
success probability of 𝒜 is upper bounded by:

Pr
𝐻
[𝒜()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥𝑖) = 0 ∀𝑖 ∈ [𝑘]] ≤

[︂
4𝑒2(𝑞 + 𝑘)2

𝑁𝑘2

]︂𝑘
.

1.2 Related Work

The measure-and-reprogram framework was proposed, and subsequently gen-
eralized and improved with tighter bounds in the works of [DFM20, LZ19,
DFMS22, GHHM21]. A main application of the framework has been in the con-
text of the Fiat-Shamir transformation, with several works establishing its post-
quantum security [Cha19, DFMS19, AFK22, AFKR23, GOP+23]. Other crypto-
graphic applications of measure-and-reprogram have been considered in [Kat21,
BKS21, ABKK23, JMZ23, DFHS23, KX24]. Finally, applications in query com-
plexity of the framework have been developed in [CGLQ20, YZ21].

2 Preliminaries

Notation. For two vectors 𝒙,𝒙′ ∈ 𝑋𝑘, we say 𝒙 ≡ 𝒙′ if and only if there exists a
permutation 𝜎 over the indices {1, 2, . . . , 𝑘} such that 𝑥′𝑖 = 𝑥𝜎(𝑖). For a function
𝐻 : 𝑋 → 𝑌 and 𝒙 ∈ 𝑋𝑘, 𝐻(𝒙) is defined as (𝐻(𝑥1), 𝐻(𝑥2), . . . ,𝐻(𝑥𝑘)). We say
𝑥 ∈ 𝒙, if 𝑥 = 𝑥𝑖 for some 𝑖 ∈ [𝑘].

2.1 Quantum Query Algorithms

We will denote a quantum query algorithm by 𝒜. Let 𝑞 be the total number
of quantum queries of 𝒜. By 𝒜𝐻 we mean that 𝒜 has quantum access to the
function 𝐻 .
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A quantum oracle query to𝐻 will be applied as the unitary𝑂𝐻 :𝑂𝐻 |𝑥⟩ |𝑦⟩ −→
|𝑥⟩ |𝑦 ⊕𝐻(𝑥)⟩. Without loss of generality, we assume an algorithm will never
perform any measurement (until the very end) and thus the internal state is al-
ways pure. We use |𝜑𝐻𝑖 ⟩ to denote the algorithm 𝒜’s internal (pure) state right
after the 𝑖-th query.

|𝜑𝐻𝑖 ⟩ = 𝑂𝐻𝑈𝑖 · · ·𝑂𝐻𝑈1 |0⟩ .

Specifically, we have,

– |𝜑𝐻0 ⟩ = |0⟩ is the initial state of 𝒜;
– |𝜑𝐻𝑞 ⟩ is the final state of 𝒜.

Without loss of generality, the algorithm will have three registers 𝒳 ,𝒴,𝒵 at the
end of the computation, where 𝒳 consists of a list of inputs, 𝒴 consists of a list
of outputs corresponding to these inputs and some auxiliary information in 𝒵 .

Definition 1 (Reprogrammed Oracle). Reprogram oracle 𝐻 to output 𝑦 on input
𝑥, results in the new oracle, defined as:

𝐻𝑥,𝑦(𝑧) =

{︃
𝑦, if 𝑧 = 𝑥

𝐻(𝑧), otherwise.

We can similarly define a multi-input reprogram oracle 𝐻𝒙,𝜣 for 𝒙 ∈ 𝑋𝑘 without
duplicate entries and 𝜣 ∈ 𝑌 𝑘:

𝐻𝒙,𝜣(𝑧) =

{︃
𝛩𝑖, if 𝑧 = 𝑥𝑖

𝐻(𝑧), otherwise.

2.2 Quantum Measure-and-Reprogram Experiment

We recall the measure-and-reprogram experiment and the state-of-the-art re-
sults here, first proposed by [DFM20] and later adapted by [YZ21].

Definition 2 (Measure-and-Reprogram Experiment). Let𝒜 be a 𝑞-quantum query
algorithm that outputs 𝒙 ∈ 𝑋𝑘 and 𝑧 ∈ 𝑍. For a function 𝐻 : 𝑋 → 𝑌 and
𝒚 = (𝑦1, ..., 𝑦𝑘) ∈ 𝑌 𝑘, define a measure-and-reprogram algorithm ℬ[𝐻,𝒚]:

1. For each 𝑗 ∈ [𝑘], uniformly pick (𝑖𝑗 , 𝑏𝑗) ∈ ([𝑞]×{0, 1})∪{(⊥,⊥)} such that there
does not exist 𝑗 ̸= 𝑗′ such that 𝑖𝑗 = 𝑖𝑗′ ̸=⊥;

2. Run 𝒜𝑂 where the oracle 𝑂 is initialized to be a quantumly accessible classical
oracle that computes 𝐻 and when 𝒜 makes its 𝑖-th query, the oracle is simulated
as follows:
(a) If 𝑖 = 𝑖𝑗 for some 𝑗 ∈ [𝑘], measure𝒜’s query register to obtain 𝑥′𝑗 and do either

of the following:
i. If 𝑏𝑗 = 0, reprogram 𝑂 using (𝑥′𝑗 , 𝑦𝑗) and answer 𝒜’s 𝑖𝑗-th query using

the reprogrammed oracle;
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ii. If 𝑏𝑗 = 1, answer 𝒜’s 𝑖𝑗-th query using oracle before reprogramming and
then reprogram 𝑂 using (𝑥′𝑗 , 𝑦𝑗);

(b) Else, answer 𝒜’s 𝑖-th query by just using the oracle 𝑂 without any measure-
ment or reprogramming;

3. Let (𝒙 = (𝑥1, ..., 𝑥𝑘), 𝑧) be 𝒜’s output;
4. For all 𝑗 ∈ [𝑘] such that 𝑖𝑗 =⊥, set 𝑥′𝑗 = 𝑥𝑗
5. Output 𝒙′ := ((𝑥′1, ..., 𝑥

′
𝑘), 𝑧)

We next state the current state-of-the-art quantum measure-and-reprogram
result.

Lemma 5 (Quantum Measure-and-Reprogram (adaptation from [DFM20, YZ21])).
For any 𝐻 : 𝑋 → 𝑌 , for any 𝒙* = (𝑥*1, ..., 𝑥

*
𝑘) ∈ 𝑋𝑘 without duplicated entries, for

all 𝒚 = (𝑦1, ..., 𝑦𝑘) and any relation 𝑅 ⊆ 𝑋𝑘 × 𝑌 𝑘 × 𝑍, we have:

Pr[𝒙′ = 𝒙* ∧ (𝒙′,𝒚, 𝑧) ∈ 𝑅 | (𝒙′, 𝑧)← ℬ[𝐻, 𝑦]]

≥ 1

(2𝑞 + 1)2𝑘
Pr[𝒙 = 𝒙* ∧ (𝒙,𝒚, 𝑧) ∈ 𝑅 | (𝒙, 𝑧)← 𝒜𝐻𝒙*,𝒚 ]

where ℬ[𝐻, 𝑦] is the measure-and-reprogram experiment.

2.3 Predicates and Success Probabilities

Definition 3 (Predicate/Verification Projection/Symmetric Predicate). Let𝑅 be
a relation on 𝑋𝑘 × 𝑌 𝑘 × 𝑍. A predicate 𝑉 𝐻(𝒙,𝒚, 𝑧) parameterized by an oracle 𝐻 ,
returns 1 if and only if (𝒙,𝒚, 𝑧) ∈ 𝑅 and 𝐻(𝑥𝑖) = 𝑦𝑖 for every 𝑖 ∈ {1, 2, . . . , 𝑘}.

Let 𝒳 ,𝒴,𝒵 be the registers that store 𝒙,𝒚, 𝑧, respectively. We define 𝛱𝐻
𝑉 as the

projection corresponding to 𝑉 𝐻 :

𝛱𝐻
𝑉 |𝒙,𝒚, 𝑧⟩ =

{︃
|𝒙,𝒚, 𝑧⟩ if 𝑉 𝐻(𝒙,𝒚, 𝑧) = 1

0 otherwise
.

Finally, for any predicate 𝑉 𝐻 , we are able to establish the success probability
using the projection 𝛱𝐻

𝑉 .

Definition 4 (Success Probability). Let 𝒜 a quantum query algorithm. Its success
probability of outputting 𝒙,𝒚, 𝑧 such that 𝐻(𝒙,𝒚, 𝑧) = 1 is defined by

Pr
[︀
𝒜𝐻 → (𝒙,𝒚, 𝑧) and 𝑉 𝐻(𝒙,𝒚, 𝑧) = 1

]︀
=

⃦⃦
𝛱𝐻

𝑉 |𝜑𝐻𝑞 ⟩
⃦⃦2
.

(Recall that |𝜑𝐻𝑞 ⟩ is the final state of 𝒜.)
Sometimes, we care about the event that𝒜 outputs a particular 𝒙 and still succeeds.

For any 𝒙𝗈, the following probability denotes that 𝒜 outputs 𝒙 ≡ 𝒙𝗈 and succeeds:

Pr
[︀
𝒜𝐻 → (𝒙,𝒚, 𝑧), 𝒙 ≡ 𝒙𝗈 and 𝑉 𝐻(𝒙,𝒚, 𝑧) = 1

]︀
=

⃦⃦
𝐺𝒙𝗈𝛱

𝐻
𝑉 |𝜑𝐻𝑞 ⟩

⃦⃦2
,

where 𝐺𝒙𝗈 is defined as the projection that checks whether 𝒜 consists of 𝒙 ≡ 𝒙𝗈.
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3 Coherent Measure-and-Reprogram

In this section, we give our main theorem: the coherent measure-and-reprogram
theorem. A main difference between our theorem and the previous measure-
and-reprogram theorem [DFM20] is that our simulator needs to make quan-
tum queries, instead of classical queries, which is potentially required by the
coherent nature of our simulator and gives tighter reprogramming bounds for
many applications. While this makes the simulator slightly more complicated,
it yields improved bounds on the various applications that we mention in the
next section.

3.1 Main Theorem

We give our main theorem below.

Theorem 6. Let 𝐻,𝐺 : {0, 1}𝑚 → {0, 1}𝑛 be two functions 𝑋 → 𝑌 . Let 𝑘 be a pos-
itive integer (can be a computable function in both 𝑛 and 𝑚). There exists a black-box
quantum algorithm 𝖲𝗂𝗆𝐻,𝐺,𝒜, satisfying the properties below. Let 𝑉 𝐻 be any predicate
defined over 𝑋𝑘 × 𝑌 𝑘 × 𝑍. Let 𝒜 be any 𝑞-quantum query algorithm to the oracle 𝐻 .
Then for any 𝒙𝗈 ∈ 𝑋𝑘 without duplicate entries and 𝒚𝗈 = 𝐺(𝒙𝗈), we have,

Pr
𝐻,𝐺

[︁
𝖲𝗂𝗆𝐻,𝐺,𝒜 → (𝒙,𝒚, 𝑧) and 𝒙 ≡ 𝒙𝗈 and 𝑉 𝐻𝒙𝗈,𝒚𝗈 (𝒙,𝒚, 𝑧) = 1

]︁
≥ 1

22𝑘
(︀
𝑞+𝑘
𝑘

)︀2 · Pr𝐻,𝐺

[︀
𝒜𝐻𝒙𝗈,𝒚𝗈 → (𝒙, 𝑧) and 𝒙 ≡ 𝒙𝗈 and 𝑉 𝐻𝒙𝗈,𝒚𝗈 (𝒙, 𝐻𝒙𝗈,𝒚𝗈(𝒚), 𝑧) = 1

]︀
.

Furthermore, 𝖲𝗂𝗆 makes exactly 𝑘 quantum queries to 𝐺 and has a running time poly-
nomial in 𝑛,𝑚, 𝑘 and the running time of 𝒜.

Before formally defining our simulator, we introduce one more notation:
controlled reprogrammed oracle queries. That is, an oracle query will be repro-
grammed by a list of input and output pairs in a control register.

Definition 5 (Controlled Reprogrammed Oracle Query). For every 𝑥 ∈ 𝑋, 𝑦 ∈
𝑌 , every ℓ > 0 and 𝒙 ∈ 𝑋ℓ without duplicated entries, 𝛩 ∈ 𝑌 ℓ, controlled repro-
grammed oracle 𝑂𝖼𝗍𝗋𝗅

𝐻 acts as below.

𝑂𝖼𝗍𝗋𝗅
𝐻 |𝑥⟩ |𝑦⟩ |𝒙,𝜣⟩ =

(︀
𝑂𝐻𝒙,𝜣

|𝑥⟩ |𝑦⟩
)︀
|𝒙,𝜣⟩

Its behavior on |𝒙⟩with duplicated entries can be arbitrarily defined as long as unitarity
is maintained, as this case will never occur in the simulator or our analysis.

We define our simulator used in Theorem 6, as follows:

Definition 6 (Coherent Measure-and-Reprogram Experiment). Let𝒜 be a (𝑞+
𝑘)-quantum query algorithm that outputs 𝒙 = (𝑥1, . . . , 𝑥𝑘) ∈ 𝑋𝑘,𝒚 ∈ 𝑌 𝑘 and
𝑧 ∈ 𝑍. We assume 𝒚 is always computed by 𝐻(𝒙), using the last 𝑘 queries. For a
function 𝐻 : 𝑋 → 𝑌 and 𝐺 : 𝑋 → 𝑌 , define a measure-and-reprogram algorithm
𝐵[𝐻,𝐺]:
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1. Pick a uniformly random subset 𝒗 of [𝑞 + 𝑘], of length 𝑘. We have 1 < 𝑣1 < · · · <
𝑣𝑘 ≤ 𝑞 + 𝑘. Pick 𝒃 ∈ {0, 1}𝑘 uniformly at random.

2. Run 𝒜 with an additional control register ℛ, initialized as empty |∅⟩. Define the
following operation 𝑈 that updates the control register: for 𝑥 that is not in 𝐿,

𝑈 |𝑥⟩ |𝐿⟩ℛ ← |𝑥⟩ |𝐿 ∪ (𝑥,𝐺(𝑥))⟩ℛ.

Here 𝐿 is the set of input and output pairs. Since we will only work with basis
states |𝑥⟩ |𝐿⟩ whose 𝑥 is not in 𝐿, 𝑈 clearly can be implemented by a unitary (by
assuming that the list is initialized as empty).

3. When 𝒜 makes its 𝑖-th query,

(a) If 𝑖 = 𝑣𝑗 for some 𝑗 ∈ [𝑘], do either of the following:
i. If 𝑏𝑗 = 0, update ℛ using the input register and 𝐺, and make the 𝑖-th

query to 𝐻 controlled byℛ (see 𝑂𝖼𝗍𝗋𝗅
𝐻 above);

ii. If 𝑏𝑗 = 1, make the 𝑖-th query to 𝐻 controlled by ℛ and update ℛ using
the input register and 𝐺.

iii. Before updating the control register, it checks coherently that the input
register is not contained in the control register; otherwise, it aborts.

(b) Else, answer 𝒜’s 𝑖-th query controlled byℛ;

4. Let (𝒙,𝒚, 𝑧) be 𝒜’s output;
5. Measureℛ register to obtain 𝐿 = (𝒙′,𝜣′).
6. Output (𝒙,𝒚, 𝑧) if 𝒙′ ≡ 𝒙; otherwise, abort.

At a high level, our simulator resembles that in Definition 2; instead of mea-
suring𝒜’s queries, we put it into a separate register (a.k.a., measure the queries
coherently). With the “controlled reprogrammed oracle query”, we are still able
to progressively reprogram the oracle and run the algorithm with (an) updated
oracle(s). The ability of coherently measuring and reprogramming, makes all
the improvement (mentioned in the later sections) possible.

Proof of Theorem 6. Before we start with the proof, we first recall and introduce
some notations. Fix any 𝒙 ∈ 𝑋𝑘 without duplicate entries and 𝜣 ∈ 𝑌 𝑘. Recall
that in Section 2.1,

⃒⃒⃒
𝜑
𝐻𝒙,𝜣
𝑞

⟩
is the state of the algorithm 𝒜 after making all its

queries to 𝐻𝒙,𝜣 . More precisely, it is:

⃒⃒⃒
𝜑
𝐻𝒙,𝜣
𝑞

⟩
= 𝑂𝐻𝒙,𝜣

𝑈𝑞 · · ·𝑂𝐻𝒙,𝜣
𝑈1 |0⟩ .

In the next step, we decompose this quantum state, so that each component
corresponds to one of the cases in the quantum simulator Definition 6.
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The first query. We start by considering the state up to the first query:𝑂𝐻𝒙,𝜣
𝑈1 |0⟩.

We insert an additional identity operator and have,

𝑂𝐻𝒙,𝜣
𝑈1 |0⟩ = 𝑂𝐻𝒙,𝜣

𝐼 𝑈1 |0⟩

(𝑖)
= 𝑂𝐻𝒙,𝜣

⎛⎝𝐼 −∑︁
𝑥𝑗

|𝑥𝑗⟩⟨𝑥𝑗 |+
∑︁
𝑥𝑗

|𝑥𝑗⟩⟨𝑥𝑗 |

⎞⎠𝑈1 |0⟩

= 𝑂𝐻𝒙,𝜣

⎛⎝𝐼 −∑︁
𝑥𝑗

|𝑥𝑗⟩⟨𝑥𝑗 |

⎞⎠𝑈1 |0⟩+𝑂𝐻𝒙,𝜣

⎛⎝∑︁
𝑥𝑗

|𝑥𝑗⟩⟨𝑥𝑗 |

⎞⎠𝑈1 |0⟩

(𝑖𝑖)
= 𝑂𝐻

⎛⎝𝐼 −∑︁
𝑥𝑗

|𝑥𝑗⟩⟨𝑥𝑗 |

⎞⎠𝑈1 |0⟩+
∑︁
𝑥𝑗

𝑂𝐻𝑥𝑗,𝛩𝑗
|𝑥𝑗⟩⟨𝑥𝑗 | 𝑈1 |0⟩

= 𝑂𝐻𝑈1 |0⟩⏟  ⏞  
(1)

−
∑︁
𝑥𝑗

𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩⏟  ⏞  
(2)

+
∑︁
𝑥𝑗

𝑂𝐻𝑥𝑗,𝛩𝑗
|𝑥𝑗⟩⟨𝑥𝑗 | 𝑈1 |0⟩⏟  ⏞  

(3)

Above, 𝑥𝑗 is enumerated over all entries in 𝒙.

Line (i) follows easily. Line (ii) is due to the fact that, if the query input is
not in 𝒙,𝐻𝒙,𝜣 is functionally equivalent to𝐻 ; similarly, if the query input is 𝑥𝑗 ,
𝐻𝒙,𝜣 is functionally equivalent to 𝐻𝑥𝑗 ,𝛩𝑗 .

Next, we look at the three terms (1), (2), (3):

(1) 𝑂𝐻𝑈1 |0⟩ corresponds to the case that no measurement happens for the first
query.

(2) 𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩ corresponds to the case that measurement is made at the
first query and the query input is 𝑥𝑗 ; the oracle is not reprogrammed imme-
diately. In other words, the case (𝑣1, 𝑏1) = (1, 1) in the simulator.

(3) 𝑂𝐻𝑥𝑗,𝛩𝑗
|𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩ corresponds to the case that measurement is made

at the first query and the query input is 𝑥𝑗 ; the oracle is reprogrammed
immediately and used for the first query. In other words, the case (𝑣1, 𝑏1) =
(1, 0) in the simulator.

The second query. We do the same: insert an additional identity operator. To
make the presentation clearer, we focus only on one term 𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩; the
other cases are simpler.

12



𝑂𝐻𝒙,𝜣
𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩

(1)
=𝑂𝐻𝒙,𝜣

⎛⎝𝐼 − ∑︁
𝑥𝑘 ̸=𝑥𝑗

|𝑥𝑘⟩⟨𝑥𝑘|+
∑︁

𝑥𝑘 ̸=𝑥𝑗

|𝑥𝑘⟩⟨𝑥𝑘|

⎞⎠𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩

(2)
=𝑂𝐻𝒙,𝜣

⎛⎝𝐼 − ∑︁
𝑥𝑘 ̸=𝑥𝑗

|𝑥𝑘⟩⟨𝑥𝑘|

⎞⎠𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩

+ 𝑂𝐻𝒙,𝜣

⎛⎝ ∑︁
𝑥𝑘 ̸=𝑥𝑗

|𝑥𝑘⟩⟨𝑥𝑘|

⎞⎠𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩

(3)
=𝑂𝐻𝑥𝑗,𝛩𝑗

⎛⎝𝐼 − ∑︁
𝑥𝑘 ̸=𝑥𝑗

|𝑥𝑘⟩⟨𝑥𝑘|

⎞⎠𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩

+

⎛⎝ ∑︁
𝑥𝑘 ̸=𝑥𝑗

𝑂𝐻(𝑥𝑗,𝑥𝑘),(𝛩𝑗,𝛩𝑘)
|𝑥𝑘⟩⟨𝑥𝑘|

⎞⎠𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩

= 𝑂𝐻𝑥𝑗,𝛩𝑗
𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩⏟  ⏞  

(1)

−
∑︁

𝑥𝑘 ̸=𝑥𝑗

𝑂𝐻𝑥𝑗,𝛩𝑗
|𝑥𝑘⟩⟨𝑥𝑘|𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩⏟  ⏞  

(2)

+
∑︁

𝑥𝑘 ̸=𝑥𝑗

𝑂𝐻(𝑥𝑗,𝑥𝑘),(𝛩𝑗,𝛩𝑘)
|𝑥𝑘⟩⟨𝑥𝑘|𝑈2𝑂𝐻 |𝑥𝑗⟩⟨𝑥𝑗 |𝑈1 |0⟩⏟  ⏞  

(3)

We explain the equations line by line:

1. This one is straightforward by realizing the summation inside the bracket
is an identity operator.

2. This one follows from the distributive property.
3. This is the most important one.

– For the first term, we realize that the oracle will only be applied to in-
puts that are not in 𝒙, or are equal to 𝑥𝑗 . Thus, 𝐻𝒙,𝜣 is functionally
equivalent to 𝐻𝑥𝑗 ,𝛩𝑗

.
– For the second term, the oracle will only be applied to inputs that are

equal to 𝑥𝑘. Thus, 𝐻𝒙,𝜣 is functionally equivalent to 𝐻(𝑥𝑗 ,𝑥𝑘),(𝛩𝑗 ,𝛩𝑘)
6.

(1) corresponds to the case that no measurement happens for the second query,
but since the first query is measure-and-reprogrammed, the second query
is made with the oracle 𝐻𝑥𝑗 ,𝛩𝑗

. In other words, the case (𝑣1, 𝑏1) = (1, 1).
(2) corresponds to the case that measurement is made at the second query and

the query input is 𝑥𝑘; the oracle is not reprogrammed immediately. In other
words, the case (𝑣1, 𝑏1) = (1, 1) and (𝑣2, 𝑏2) = (2, 1) in the simulator.

6 It is also equivalent to 𝐻𝑥𝑘,𝛩𝑘 . However, due to our description of the simulator,
𝐻(𝑥𝑗 ,𝑥𝑘),(𝛩𝑗 ,𝛩𝑘) is more natural to work with.
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(3) corresponds to the case that measurement is made at the second query and
the query input is 𝑥𝑘; the oracle is reprogrammed immediately. In other
words, the case (𝑣1, 𝑏1) = (1, 1) and (𝑣2, 𝑏2) = (2, 0) in the simulator.

Generalization to all queries — state decomposition. By repeating the same state
decomposition up to the first 𝑞 queries (instead of all 𝑞 + 𝑘 queries), we will
end up a collection of subnormalized states, who sum up to the original state⃒⃒⃒
𝜑
𝐻𝒙,𝜣
𝑞

⟩
. These states are parameterized by when the measurement happens

(an ordered vector 𝒗 such that 1 ≤ 𝑣1 · · · ≤ 𝑣𝑡 ≤ 𝑞), whether these queries are
made before or after each reprogramming (𝒃 ∈ {0, 1}𝑡), and 𝑡 ∈ {0, . . . , 𝑞}; in the
following we will denote these states by |𝜑𝒗,𝒃⟩. For example, assuming 𝒃 = 𝟎
(all reprogramming happens immediately), we have,

|𝜑𝒗,𝟎⟩ =
∑︁
𝜎∈𝑆𝑘

𝑡

𝑂𝐻𝒙𝜎,𝜣𝜎
𝑈𝑞 · · ·𝑂𝐻𝒙𝜎,𝜣𝜎

𝑈𝑣𝑡+1𝑂𝐻𝒙𝜎,𝜣𝜎
|𝑥𝜎𝑡
⟩⟨𝑥𝜎𝑡

| · · ·𝑈𝑣𝑡−1+1⏟  ⏞  
stage (t)

· · ·
·𝑂𝐻(𝑥𝜎1

,𝑥𝜎2
),(𝛩𝜎1

,𝛩𝜎2
)
|𝑥𝜎2
⟩⟨𝑥𝜎2

|𝑈𝑣2
· · ·𝑂𝐻𝑥𝜎1

,𝛩𝜎1
𝑈𝑣1+1⏟  ⏞  

stage (2)

·𝑂𝐻𝑥𝜎1
,𝛩𝜎1
|𝑥𝜎1
⟩⟨𝑥𝜎1

|𝑈𝑣1
𝑂𝐻 · · ·𝑂𝐻𝑈1 |0⟩⏟  ⏞  

stage (1)

Here 𝑆𝑘
𝑡 denotes all ordered list of length 𝑡, with elements in {1, . . . , 𝑘}without

duplication; 𝒙𝜎 denotes (𝑥𝜎1
, . . . , 𝑥𝜎𝑡

) and 𝜣𝜎 denotes (𝛩𝜎1
, . . . , 𝛩𝜎𝑡

). We can
similarly define |𝜑𝒗,𝒃⟩ for all other 𝒃 ∈ {0, 1}𝑡, the only difference here is the
oracle may not be immediately reprogrammed at the end of each stage. More
generally, for each 𝒗 of length 𝑡 and 𝒃 ∈ {0, 1}𝑡, we define

|𝜑𝒗,𝒃⟩ =
∑︁
𝜎∈𝑆𝑘

𝑡

|𝜑𝒗,𝒃,𝜎⟩ ,

where |𝜑𝒗,𝒃,𝜎⟩ is the state that is measured-and-reprogrammed according to 𝒗, 𝒃
with the order 𝜎, similar to that in the definition of |𝜑𝒗,𝟎⟩. Thus, we have:⃒⃒⃒

𝜑
𝐻𝒙,𝜣
𝑞

⟩
=

∑︁
𝒗,𝒃

|𝜑𝒗,𝒃⟩ ,

Adding the extra 𝑘 queries. We assume the algorithm 𝒜, after the first 𝑞 queries,
already prepares the output 𝒙, 𝑧. We will force 𝒜 making the last 𝑘 queries, to
generate 𝒚 = 𝐻(𝒙). Recall the definitions 𝛱𝐻𝒙𝗈,𝒚𝗈

𝑉 and 𝐺𝒙𝗈 in Definition 4. By
setting 𝒙 = 𝒙𝗈 and 𝜣 = 𝒚𝗈 in the above analysis, the probability on the RHS in
the theorem we are proving is equal to:

Pr
𝐻,𝐺

[︀
𝒜𝐻𝒙𝗈,𝒚𝗈 → (𝒙, 𝑧) and 𝒙 ≡ 𝒙𝗈 and 𝑉 𝐻𝒙𝗈,𝒚𝗈 (𝒙, 𝐻𝒙𝗈,𝒚𝗈(𝒙), 𝑧) = 1

]︀
=

⃦⃦⃦
𝐺𝒙𝗈𝛱

𝐻𝒙𝗈,𝒚𝗈

𝑉

⃒⃒⃒
𝜑
𝐻𝒙𝗈,𝒚𝗈

𝑞+𝑘

⟩⃦⃦⃦2

.
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Since 𝐺𝒙𝗈 and 𝛱
𝐻𝒙𝗈,𝒚𝗈

𝑉 commute (as they are both projections over compu-
tational basis), we can assume 𝐺𝒙𝗈 is applied to the state first. Even further, as
the computation of 𝒚 = 𝐻(𝒙) and the projection 𝐺𝒙𝗈 also commute, we can
assume 𝐺𝒙𝗈 applies to the state right before the last 𝑘 queries, which are used
to compute 𝒚. Therefore, for every |𝜑𝒗,𝒃,𝜎⟩, even if 𝑡 < 𝑘 (the length of 𝒗), we
can measure-and-(immediately)-reprogram exactly 𝑘 − 𝑡 locations of the last 𝑘
queries, and making the random oracle exactly reprogrammed to 𝐻𝒙𝗈,𝒚𝗈 .

Thus, we have: ⃒⃒⃒
𝜑
𝐻𝒙𝗈,𝒚𝗈

𝑞+𝑘

⟩
=

∑︁
𝒗,𝒃

|𝒗|=𝑘

|𝜑𝒗,𝒃⟩ , (1)

where the RHS has (at most) 2𝑘
(︀
𝑞+𝑘
𝑘

)︀
terms.

By Equation (1), Cauchy-Schwartz and the triangle inequality, we have:⃦⃦⃦
𝐺𝒙𝗈𝛱

𝐻𝒙𝗈,𝒚𝗈

𝑉

⃒⃒⃒
𝜑
𝐻𝒙𝗈,𝒚𝗈

𝑞+𝑘

⟩⃦⃦⃦2

≤ 2𝑘
(︂
𝑞 + 𝑘

𝑘

)︂ ∑︁
𝒗,𝒃

|𝒗|=𝑡

⃦⃦⃦
𝐺𝒙𝗈𝛱

𝐻𝒙𝗈,𝒚𝗈

𝑉 |𝜑𝒗,𝒃⟩
⃦⃦⃦2

. (2)

Finally, to prove the theorem statement, we relate each individual term on
the RHS with the behaviors of our simulator 𝐵.

Relating each term with our simulator 𝐵. Next, we prove that each term⃦⃦⃦
𝐺𝒙𝗈𝛱

𝐻𝒙𝗈,𝒚𝗈

𝑉 |𝜑𝒗,𝒃⟩
⃦⃦⃦2

is upper bounded by the probability that when the simu-
lator 𝐵 picks 𝒗, 𝒃, it succeeds and outputs 𝒙 ≡ 𝒙𝗈, which we denote by 𝑝𝒙𝗈,𝒗,𝒃.

Since the simulator 𝐵 ensures that (1) no duplicated elements ever in the
control register, (2) at the end, the control register only consists of inputs that
are outputted by 𝐴 (which will be 𝒙𝗈, enforced by 𝐺𝒙𝗈 ), we have that 𝑝𝒙𝗈,𝒗,𝒃

is the squared norm of the state
(︁
𝐺𝒙𝗈𝛱

𝐻𝒙𝗈,𝒚𝗈

𝑉 ⊗ 𝐼ℛ
)︁
|𝜓𝒗,𝒃⟩, with the state |𝜓𝒗,𝒃⟩

being:

|𝜓𝒗,𝒃⟩ =
∑︁
𝜎∈𝑆𝑘

𝑘

|𝜑𝒗,𝒃,𝜎⟩ ⊗ |𝗌𝖾𝗍 {(𝑥𝗈,𝜎1 , 𝑦𝗈,𝜎1), . . . , (𝑥𝗈,𝜎𝑘
, 𝑦𝗈,𝜎𝑘

)}⟩ℛ .

The only difference between |𝜓𝒗,𝒃⟩ and |𝜑𝒗,𝒃⟩ is the extra control register! How-
ever, we realize that in this case, when 𝜎 is a permutation of [𝑘], the control

register is unentangled, making 𝑝𝒙𝗈,𝒗,𝒃 is equal to
⃦⃦⃦
𝐺𝒙𝗈𝛱

𝐻𝒙𝗈,𝒚𝗈

𝑉 |𝜑𝒗,𝒃⟩
⃦⃦⃦2

. This
is because the set will simply be 𝗌𝖾𝗍{(𝑥𝗈,1, 𝑦𝗈,1), . . . , (𝑥𝗈,𝑘, 𝑦𝗈,𝑘)}, regardless of
what 𝜎 is.

Finally, we have the L.H.S. is equal to

Pr
𝐻,𝐺

[︁
𝖲𝗂𝗆𝐻,𝐺,𝐴 → (𝒙,𝒚, 𝑧) and 𝒙 ≡ 𝒙𝗈 and 𝑉 𝐻𝒙𝗈,𝒚𝗈 (𝒙,𝒚, 𝑧) = 1

]︁
=

1

2𝑘
(︀
𝑞+𝑘
𝑘

)︀ ∑︁
𝒗,𝒃

|𝒗|=𝑘

𝑝𝒙𝗈,𝒗,𝒃
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Thus, combining Equation (2) and the equation above, we have:

R.H.S. =
⃦⃦⃦
𝐺𝒙𝗈𝛱

𝐻𝒙𝗈,𝒚𝗈

𝑉

⃒⃒⃒
𝜑
𝐻𝒙𝗈,𝒚𝗈
𝑞

⟩⃦⃦⃦2

≤ 2𝑘
(︂
𝑞 + 𝑘

𝑘

)︂ ∑︁
𝒗,𝒃

|𝒗|=𝑘

𝑝𝒙𝗈,𝒗,𝒃

≤
(︂
2𝑘

(︂
𝑞 + 𝑘

𝑘

)︂)︂2

· 1

2𝑘
(︀
𝑞+𝑘
𝑘

)︀ ∑︁
𝒗,𝒃

|𝒗|=𝑘

𝑝𝒙𝗈,𝒗,𝒃

= L.H.S.

where L.H.S. and R.H.S. denote the left/right-hand side term in the theorem
statement. Therefore, we conclude the proof.

Lemma 6 (Coherent Measure-and-Reprogram results in Uniform Images).
Consider the Coherent Measure-and-Reprogram Experiment in Definition 6, but where
we choose 𝐺 to be uniformly random Then, for the measure-and-reprogram algorithm
ℬ, the measurement 𝐿 = (𝒙′,𝜣′) of theℛ register (in Step 5) will result in uniformly
random images 𝜣′.

Proof. We will proceed with a proof by induction over the number of quantum
queries of 𝒜. In this proof, we will denote by 𝑛 the total number of queries
(𝑛 = 𝑞+ 𝑘). For 𝑛 = 1, let 𝑣𝑗 = 𝑛 = 1. Then, if 𝑏𝑗 = 0, after updating the register
ℛ using the unitary 𝑈 (in step 2), the register ℛ will contain superposition of
𝐿 sets consisting of a single pair (𝑥,𝐺(𝑥)). Then, we perform the query to 𝐻
controlled byℛ using 𝑂𝖼𝗍𝗋𝗅

𝐻 , which is a query to the reprogrammed 𝐻 on single
points 𝑥, modifying accordingly the image register (𝑦 → 𝑦⊕𝐻𝑥,𝐺(𝑥)), but which
does not affect the ℛ register. As 𝐺 is random oracle, measuring ℛ will result
in a uniform image 𝜃′ = 𝐺(𝑥), for some 𝑥 ∈ 𝑋 . If 𝑏𝑗 = 1, we first query using
𝑂𝖼𝗍𝗋𝗅

𝐻 , which is a query to the original 𝐻 as 𝐿 is empty. Then, we update ℛ
using unitary 𝑈 , resulting inℛ containing superposition of 𝐿 sets consisting of
a single pair (𝑥,𝐺(𝑥)). As before, measuring ℛ will result in a uniform image
𝜃′ = 𝐺(𝑥), for some 𝑥 ∈ 𝑋 . We emphasize that although Definition 6 defines 𝐺
as an arbitrary function, in the statement of this Lemma, we consider uniformly
random 𝐺 instead of an arbitrary 𝐺.

For the inductive step, suppose that up to query 𝑛−1, the registerℛ consists
of sets 𝐿′ with uniform images. Let𝒜make its 𝑛-th query. If there does not exist
any 𝑣𝑗 equal to 𝑛 then algorithm ℬ answer 𝒜’s query controlled by ℛ, repro-
gramming the oracle with the inputs and outputs pairs in 𝐿′, but importantly
ℛ remains unchanged, hence ℛ contains only uniform images by our induc-
tive hypothesis. Otherwise, suppose there exists 𝑗* such that 𝑣𝑗* = 𝑛. Then if
𝑏𝑗* = 0, we are first going to add in 𝐿 the pair (𝑥,𝐺(𝑥)) if 𝑥 is not already in
𝐿, i.e. 𝐿 = 𝐿′ ∪ {(𝑥,𝐺(𝑥))}, otherwise 𝐿 = 𝐿′. We are then going to make the
controlled query 𝑂𝖼𝗍𝗋𝗅

𝐻 to the reprogrammed oracle 𝑂𝐻𝐿
, which does not affect

the register ℛ. Hence by measuring ℛ results in either (𝑥′, 𝜃′) ∈ 𝐿′, which by
hypothesis contains uniform image 𝜃′ or in (𝑥,𝐺(𝑥)), which given that 𝐺 is a
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random oracle, also results in a uniform image. Similarly, if 𝑏𝑗* = 1 we are first
going to make the controlled query 𝑂𝖼𝗍𝗋𝗅

𝐻 to the reprogrammed oracle 𝑂𝐻′
𝐿

, then
we will update the register ℛ using the unitary 𝑈 , which as before will either
result in either 𝐿 = 𝐿′ ∪ {(𝑥,𝐺(𝑥))} or 𝐿 = 𝐿′. In both cases, by measuring ℛ
we will get a uniform image by using the uniformity of 𝐺 and the inductive
hypothesis.

4 Applications

4.1 Query Complexity

We will begin by first introducing the family of (security) games for which we
will establish their quantum query complexity, namely the hardness of a quan-
tum adversary to win such games.

Definition 7 (Multi-Output 𝑘-Search Game (Single-Instance)). Let the random
oracle𝐻 : [𝑀 ]→ [𝑁 ], a distribution over challenges 𝜋𝐻 and a winning relation𝑅𝐻,𝑐𝑕

defined over 𝑌 𝑘.
Then we define the multi-output 𝑘-search game 𝒢 as follows:

1. Challenger samples randomness 𝑐𝑕 and sends it to a quantum algorithm𝒜 having
(quantum) oracle access to 𝐻 ;

2. Adversary 𝒜 gets oracle access to 𝐻 and outputs 𝒙 := (𝑥1, ..., 𝑥𝑘), 𝑧;
3. Challenger queries 𝒙 to the random oracle, resulting in 𝒚 := (𝑦1 = 𝐻(𝑥1), ..., 𝑦𝑘 =
𝐻(𝑥𝑘)) and checks if they satisfy the winning relation:
𝑏 := (𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑘, 𝑧) ∈ 𝑅𝐻,𝑐𝑕;

4. If 𝑏 = 1, 𝒜 wins the 𝒢 game.

We will denote by 𝜖𝒢(𝑞) the maximum probability over all 𝑞-quantum algorithms 𝒜 of
winning the multi-output 𝑘-search game 𝒢.

Our main result is a quantum lifting theorem in the average case, relat-
ing the success probability of an arbitrary quantum algorithm to win a multi-
output 𝑘-search game with the probability of success of a quantum algorithm
equipped with exactly 𝑘 quantum queries.

Theorem 7 (Lifting for Multi-Output 𝑘-Search Games). Let 𝒢 be a multi-output
𝑘-search game (as defined in Def. 7). Let𝒜 be a 𝑞-quantum query adversary in the game
𝒢 (against the 𝑘-classical query challenger 𝒞). Then there exists a 𝑘-quantum query
adversary ℬ against the game such that:

Pr[ℬ|𝐻⟩ wins 𝒢] ≥ 1

22𝑘
(︀
𝑞+𝑘
𝑘

)︀2 Pr[𝒜|𝐻⟩ wins 𝒢].

Proof. We will show that our Coherent Reprogramming result in Theorem 6
implies the lifting theorem. We will now show how to instantiate the coherent
reprogramming theorem. Let 𝒙𝗈 be uniformly sampled from 𝑋𝑘. Let 𝐻 ′, 𝐺′ :
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𝑋 → 𝑌 be two uniform random oracles. Then, it is clear that, as 𝒚𝗈 = 𝐺′(𝒙𝗈)
is also uniform over 𝑌 𝑘, the reprogrammed function 𝐻 ′

𝒙𝗈,𝒚𝗈 : 𝑋 → 𝑌 is a
uniform random function; this is due to the fact that, as stated in Theorem 6
(invoked here), the tuple 𝒙𝗈 has distinct values for its element. We will instan-
tiate the random oracle in the game 𝒢 as the function 𝐻 ′

𝒙𝗈,𝒚𝗈 . Assume that in
the game 𝒢 after receiving the challenge and after performing its 𝑞 quantum
queries to 𝐻 ′

𝒙𝗈,𝒚𝗈 , the adversary 𝒜 returns to the Challenger the outcome 𝒙.
Then, the Challenger queries 𝒙 to 𝐻 ′

𝒙𝗈,𝒚𝗈 resulting in 𝒚 and checks if 𝒚 satisfies
the winning relation 𝑅𝐻′

𝒙𝗈,𝒚𝗈 ,𝑐𝑕. Define 𝑉 𝐻′
𝒙𝗈,𝒚𝗈 as the predicate that outputs 1

if 𝒚 ∈ 𝑅𝐻′
𝒙𝗈,𝒚𝗈 ,𝑐𝑕 and 0 else. In this way, we observe that the probability that 𝒜

wins the game 𝒢 is exactly the RHS of Theorem 6. As a result, by Theorem 6,
there must exist an efficient quantum simulator 𝖲𝗂𝗆𝐻′,𝐺′,𝒜 performing 𝑘 quan-
tum queries that also wins the game 𝒢. Hence, it suffices to instantiate ℬ as the
simulator 𝖲𝗂𝗆.

Let 𝐿𝒞 represent the set of (classical) queries that a challenger performs dur-
ing a multi-output 𝑘-search game 𝒢 (Def. 7). For a quantum query adversary ℬ
against 𝒢, we will denote by 𝐿ℬ the result of measuring its input and output
query registers. Now, for the query complexity applications we will need the
following stronger lifting theorem, which intuitively additionally guarantees
the existence of an algorithm against 𝒢 such that at the end of the game, mea-
suring its input and output registers gives us exactly the set of queries of the
challenger.

Theorem 8 (Lifting for Search Game with Uniform Images). Let 𝒢 be a multi-
output 𝑘-search game (as defined in Def. 7). Let 𝒜 be a 𝑞-quantum query adversary in
the game 𝒢 (against the 𝑘-classical query challenger 𝒞). Then there exists a 𝑘-quantum
query adversary ℬ such that 𝐿ℬ is uniform, satisfying:

Pr[ℬ|𝐻⟩ wins 𝒢 and 𝐿𝒞 = 𝐿ℬ] ≥
1

22𝑘
(︀
𝑞+𝑘
𝑘

)︀2 Pr[𝒜|𝐻⟩ wins 𝒢].

Proof. The simulator algorithm ℬ will follow the outline of the algorithm in the
proof of Theorem 7, with the only difference that ℬ will perform an additional
step at the end. Namely, after interaction with Challenger 𝒞, compute list of
queries of 𝒞 as𝐿𝒞 . If any query in𝐿𝒞 has not yet been queried by ℬ, ℬwill query
them to oracle 𝐻 . The uniformity of 𝐿ℬ follows directly from Lemma 6.

4.2 A New Quantum Lifting Theorem and Direct Product Theorem for
Image Relations

Our first quantum lifting result (in Theorem 7) gives a first bound on the quan-
tum hardness of solving any multi-output 𝑘-search game 𝒢 by relating it to the
probability of 𝒢 being solved by a quantum algorithm with a small number
of quantum queries. In this section we can derive a stronger quantum lifting
theorem for the class of relations that only depend on images.

18



Theorem 9 (Quantum Lifting Theorem for Image Relations). For any quan-
tum algorithm𝒜 equipped with 𝑞 quantum queries,𝒜’s success probability to solve the
multi-output 𝑘-search game specified by the winning relation 𝑅, is bounded by:

Pr[𝒜|𝐻⟩ wins multi-output 𝑘-search game ] ≤

22𝑘
(︂
𝑞 + 𝑘

𝑘

)︂2

Pr[∃ perm 𝜋 | (𝑦𝜋(1), 𝑦𝜋(2), ..., 𝑦𝜋(𝑘)) ∈ 𝑅 : (𝑦1, ..., 𝑦𝑘)
$←− 𝑌 𝑘].

For simplicity, in the rest of the section, we define 𝑝(𝑅) as:

𝑝(𝑅) = Pr[∃ perm 𝜋 | (𝑦𝜋(1), 𝑦𝜋(2), ..., 𝑦𝜋(𝑘)) ∈ 𝑅 : (𝑦1, ..., 𝑦𝑘)
$←− 𝑌 𝑘].

Proof. Let 𝒢 be a multi-output 𝑘-search game and assume a 𝑞-quantum adver-
sary 𝒜 sends to the Challenger the answer 𝒙 = (𝑥1, ..., 𝑥𝑘). Challenger 𝒞 will
accept if and only if 𝒚 := (𝐻(𝑥1), ...,𝐻(𝑥𝑘)) ∈ 𝑅𝐻,𝑐𝑕 and if 𝑥𝑖, 𝑥𝑗 are pairwise
distinct. By Theorem 8 we know there exists a quantum algorithm ℬ making 𝑘
quantum queries to 𝐻 winning the game such that 𝐿ℬ = 𝐿𝒞 with success prob-
ability at least the success probability of 𝒜 multiplied by a factor of 22𝑘

(︀
𝑞+𝑘
𝑘

)︀2
.

The condition 𝐿ℬ = 𝐿𝒞 implies that 𝒞 will verify as the images of ℬ’s answer
exactly a permutation of the recorded information in 𝐿ℬ. Therefore, due to the
property of Theorem 8 that 𝐿ℬ will be uniformly over 𝑌 𝑘, ℬ’s winning proba-
bility will be lower bounded by the probability that there exists a permutation
such that for uniformly sampled images from 𝑌 𝑘, the permuted images will
belong to our target relation:

Pr[𝒜|𝐻⟩ wins multi-output 𝑘-search game ] ≤ 22𝑘
(︂
𝑞 + 𝑘

𝑘

)︂2

𝑝(𝑅) .

Next, we show a Direct Product Theorem for Image Relations.

Definition 8 (Direct Product). Let 𝒢 be a multi-output 𝑘-search game specified by
the winning relation 𝑅, with respect to a random oracle [𝑀 ]→ [𝑁 ]. Define the follow-
ing Direct Product 𝒢⊗𝑔 :

– Let 𝐻 be a random oracle [𝑔]× [𝑀 ]→ [𝑁 ], and 𝐻𝑖 denotes 𝐻(𝑖, ·);
– Challenger samples 𝑐𝑕𝑖 as in 𝒢 for 𝑖 ∈ {1, . . . , 𝑔}.
– Adversary 𝒜 gets oracle access to 𝐻 and outputs 𝒙1, . . . ,𝒙𝑔 , 𝑧1, . . . , 𝑧𝑔 such that

each input in 𝒙𝑖 start with 𝑖.
– Challenger computes 𝑏𝑖 := (𝒙𝑖, 𝐻(𝒙𝑖), 𝑧𝑖) ∈ 𝑅𝐻𝑖,𝑐𝑕𝑖

;
– If all 𝑏𝑖 equal to 1, 𝒜 wins the 𝒢⊗𝑔 game.

Theorem 10 (Direct Product Theorem for Image Relations). For any quantum
algorithm 𝒜 equipped with 𝑔𝑞 quantum queries, 𝒜’s success probability to solve the
Direct Product 𝒢⊗𝑔 with the underlying 𝒢 specified by the winning relation 𝑅, is
bounded by

Pr[𝒜|𝐻⟩ wins 𝐺⊗𝑔] ≤

(︃
22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

𝑝(𝑅)

)︃𝑔

.
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Proof. Let 𝒢 be a multi-output 𝑘-search game and assume a 𝑔𝑞-quantum adver-
sary 𝒜 sends to the Challenger the answer 𝒙1, . . . ,𝒙𝑔, 𝑧1, . . . , 𝑧𝑔 . By Theorem 8
we know there exists a quantum algorithm ℬ making 𝑔𝑘 quantum queries to
𝐻 winning the game such that 𝐿ℬ = 𝐿𝒞 with success probability at least the
success probability of 𝒜 multiplied by a factor of 22𝑔𝑘

(︀
𝑔𝑞+𝑔𝑘

𝑔𝑘

)︀2
. The condition

𝐿ℬ = 𝐿𝒞 implies that 𝒞 will verify as the images of ℬ’s answer exactly a per-
mutation of the recorded information in 𝐿ℬ. Moreover, for every image 𝑦, its
associated input 𝑥 only belongs to one of the oracles 𝐻(𝑖, ·); thus, it can only
contribute to one of the relation checks 𝑅𝐻𝑖,𝑐𝑕𝑖

. Thus, the permutation of the
recorded information can only permute images with respect to the same oracle
𝐻𝑖.

Therefore, due to the property of Theorem 8 that 𝐿ℬ will be uniformly over
𝑌 𝑔𝑘, ℬ’s winning probability will be lower bounded by the probability that
there exists a permutation such that for uniformly sampled images from 𝑌 𝑔𝑘,
the permuted images will belong to our target relation:

Pr[𝒜|𝐻⟩ wins 𝒢⊗𝑔]

≤ 22𝑔𝑘
(︂
𝑔𝑞 + 𝑔𝑘

𝑔𝑘

)︂2

Pr[∃𝜋1, . . . , 𝜋𝑔 ∈ 𝒮𝑘 | (𝑦𝑖,𝜋𝑖(1), ..., 𝑦𝑖,𝜋𝑖(𝑘)) ∈ 𝑅 : (𝑦𝑖,1, ..., 𝑦𝑖,𝑘)
$←− 𝑌 𝑘]

≤

(︃
22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

Pr[∃ 𝜋 ∈ 𝒮𝑘 | (𝑦𝜋(1), 𝑦𝜋(2), ..., 𝑦𝜋(𝑘)) ∈ 𝑅 : (𝑦1, ..., 𝑦𝑘)
$←− 𝑌 𝑘]

)︃𝑔

≤

(︃
22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

𝑝(𝑅)

)︃𝑔

.

In the following section, we will show some of the query complexity and
cryptographic applications of our quantum lifting theorems and Direct Product
Theorem.

4.2.1 Application 1: Non-uniform Security

Definition 9 (Advice Algorithms). We define an advice (non-uniform) algorithm
𝒜 = (𝒜1,𝒜2) equipped with 𝑞 queries and advice of length 𝑆 as follows:

1. 𝒜𝐻
1 → |𝑎𝑑𝑣⟩: an unbounded algorithm 𝒜1 outputs the advice |𝑎𝑑𝑣⟩ consisting of

𝑆 qubits;
2. 𝒜𝐻

2 (|𝑎𝑑𝑣⟩ , 𝑐𝑕)→ 𝑥: 𝑞-quantum algorithm 𝒜2 takes as input the quantum advice
|𝑎𝑑𝑣⟩ and a challenge 𝑐𝑕, outputs answer 𝑥;

We define 𝜖𝐶𝒢 (𝑞, 𝑆) as the maximum winning probability over any advice adversary 𝒜
equipped with 𝑞 quantum queries and 𝑆 classical bits of advice against the classically-
verifiable search game 𝒢.

We also consider multi-instance games, similar to Direct Product, except all
the instances share the same oracle.
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Definition 10 (Multi-Instance Game). Let 𝒢 be a multi-output 𝑘-search game spec-
ified by the winning relation 𝑅, with respect to a random oracle [𝑀 ]→ [𝑁 ]. Define the
following Direct Product 𝒢⊗𝑔

𝖬𝖨𝖲:

– Let 𝐻 be a random oracle [𝑀 ]→ [𝑁 ];
– Challenger samples 𝑐𝑕𝑖 as in 𝒢 for 𝑖 ∈ {1, . . . , 𝑔};
– Adversary 𝒜 gets oracle access to 𝐻 and outputs 𝒙1, . . . ,𝒙𝑔 , 𝑧1, . . . , 𝑧𝑔 ;
– Challenger computes 𝑏𝑖 := (𝒙𝑖, 𝐻(𝒙𝑖), 𝑧𝑖) ∈ 𝑅𝐻,𝑐𝑕𝑖

;
– If all 𝑏𝑖 equal to 1, 𝒜 wins the 𝒢⊗𝑔

𝖬𝖨𝖲 game.

From above, we can define 𝑅⊗𝑔
𝖬𝖨𝖲 as the winning relation for 𝒢⊗𝑔

𝖬𝖨𝖲.

Lemma 7 (Multi-Output Implies Non-Uniform Classical Advice ([CGLQ20])).
Let 𝒢 be a search game (as defined in Def. 7). If the maximum winning probability

for any quantum algorithm equipped with 𝑞 quantum queries against 𝒢⊗𝑔
𝖬𝖨𝖲 is 𝜖𝒢⊗𝑔

𝖬𝖨𝖲
(𝑞),

then the maximum probability of any non-uniform adversary equipped with 𝑞 quantum
queries and 𝑆-length classical advice against the original game 𝒢 is at most:

𝜖𝐶𝒢 (𝑞, 𝑆) ≤ 4 ·
[︁
𝜖𝒢⊗𝑆

𝖬𝖨𝖲
(𝑆𝑞)

]︁ 1
𝑆

By combining these results with our Quantum Lifting Theorem, we derive
the security against advice (non-uniform) quantum algorithms.

Lemma 8 (Security against Advice Quantum Adversaries). Let 𝒢 be any multi-
output 𝑘-search game specified by the winning relation 𝑅. Let 𝒢⊗𝑔

𝖬𝖨𝖲 be the multi-
instance game and 𝑅⊗𝑔

𝖬𝖨𝖲 be the relation. Any non-uniform algorithm 𝒜 equipped with
𝑞 quantum queries and 𝑆 classical bits of advice can win the game 𝒢 with probability
at most:

𝜖𝐶𝒢 (𝑞, 𝑆) ≤ 4 · 22𝑘
(︂
𝑆(𝑞 + 𝑘)

𝑆𝑘

)︂ 2
𝑆

· 𝑝(𝑅⊗𝑆
𝖬𝖨𝖲) .

Proof. By combining our (strong) quantum lifting theorem (in Theorem 9) with
the two advice results (Lemma 7).

4.2.2 Application 2: Salting Against Non-uniform Adversaries

Definition 11 (Salted Game). Let 𝒢 be a search game (as defined in Def. 7) specified
by a random oracle 𝐻 : [𝑀 ] → [𝑁 ], a distribution over challenges 𝜋𝐻 and a winning
relation 𝑅𝐻,𝑐𝑕 defined over 𝑌 . Then we define the salted version of 𝒢 as the game 𝒢𝑠
with salted space [𝐾] defined as follows:

1. The random oracle function is defined as: 𝐺 = (𝐻1, ...,𝐻𝐾) for 𝐾 random func-
tions 𝐻𝑖 : [𝑀 ]→ [𝑁 ];

2. For any such 𝐺, the challenge 𝑐𝑕 := (𝑖, 𝑐𝑕𝑖) is produced by first sampling uni-
formly at random 𝑖 ∈ [𝐾] and then sampling 𝑐𝑕𝑖 according to 𝜋𝐻𝑖

;
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3. The winning relation is defined as 𝑅𝐺,𝑐𝑕 := 𝑅𝐻𝑖,𝑐𝑕𝑖 ;

We will denote by 𝜖𝒢𝑠
(𝑞) the maximum probability over all 𝑞-quantum algorithms 𝒜

of winning the salted game 𝒢𝑠.

Lemma 9 (Security of Salted Game against Classical Advice). Let 𝒢 be a multi-
output 𝑘-search game (as defined in Def. 7), specified by a relation𝑅. Let 𝒢𝑠 be the salted
game, with salt space [𝐾]. Then we have,

𝜖𝐶𝒢𝑠
(𝑞, 𝑆) ≤ 4 · 𝑆

𝐾
+ 4 · 22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

𝑝(𝑅).

Proof. By Lemma 7, the non-uniform security is related to the multi-instance
game 𝒢⊗𝑔

𝑠,𝖬𝖨𝖲, with salt space [𝐾]. The security of the multi-instance game is
closely related to the Direct Product, for salted games, as shown in [DLW24]
(in the proof of Theorem 4.1). More precisely,

𝜖𝒢⊗𝑔
𝑠,𝖬𝖨𝖲

(𝑔𝑞)1/𝑔 ≤ 𝜖𝒢⊗𝑔
𝑠

(𝑔𝑞)1/𝑔 +
𝑔

𝐾
.

Intuitively, the only difference between the multi-instance game and the Direct
Product is that, the same salt can be sampled with duplication. The extra factor
𝑔
𝐾 captures the fact that the salt can be duplicated. Combining with Theorem 10,
we have:

𝜖𝐶𝒢𝑠
(𝑞, 𝑆) ≤ 4

(︁
𝜖𝒢⊗𝑆

𝑠,𝖬𝖨𝖲
(𝑆𝑞)

)︁1/𝑆

≤ 4

(︂
𝜖𝒢⊗𝑆

𝑠
(𝑆𝑞)1/𝑆 +

𝑆

𝐾

)︂
≤ 4 · 𝑆

𝐾
+ 4 · 22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

𝑝(𝑅).

4.2.3 Application 3: Multi-Image Inversion

Our first result establishes the quantum hardness of multi-image inversion,
which is a tight bound as already proven in [CGLQ20], but achieved here in a
much simpler way, directly from our quantum lifting theorem.

Lemma 10 (Quantum Hardness of Multi-Image Inversion).
For any 𝒚 = (𝑦1, ..., 𝑦𝑘) ∈ 𝑌 𝑘 = [𝑁 ]𝑘 (without duplicates) and for any 𝑞-quantum

query algorithm𝒜 whose task is to invert all the images in 𝒚, the success probability of
𝒜 is upper bounded by:

Pr
𝐻
[𝒜|𝐻⟩(𝒚)→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥𝑖) = 𝑦𝑖 ∀𝑖 ∈ [𝑘]]

≤
[︂
4𝑒(𝑞 + 𝑘)2

𝑁𝑘

]︂𝑘
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Proof. We will show this using our strong quantum lifting theorem for image re-
lations (Theorem 9). Define𝑅 as the relation over [𝑁 ]𝑘, with𝐻 : [𝑀 ]→ [𝑁 ] such
that:𝑅 = {𝑦1, ..., 𝑦𝑘}. Then for each permutation 𝜋, we have Pr[(𝑦𝜋(1), ..., 𝑦𝜋(𝑘)) ∈
𝑅 | (𝑦1, ..., 𝑦𝑘) ← [𝑁 ]𝑘] = 1

𝑁𝑘 . Using that the number of permutations 𝜋 is 𝑘!
leads to:

Pr
𝐻
[𝒜|𝐻⟩(𝒚)→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥𝑖) = 𝑦𝑖 ∀𝑖 ∈ [𝑘]] ≤ 22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

· 𝑘!
𝑁𝑘

Using first the inequality
(︀
𝑞+𝑘
𝑘

)︀
≤ (𝑞+𝑘)𝑘

𝑘! and then the Stirling approximation

𝑘! ≥
(︀
𝑘
𝑒

)︀𝑘
, we get:

22𝑘
(︂
𝑞 + 𝑘

𝑘

)︂2

· 𝑘!
𝑁𝑘
≤

(︂
4

𝑁

)︂𝑘

· 𝑘! ·
[︂
(𝑞 + 𝑘)𝑘

𝑘!

]︂2
≤

(︂
4

𝑁

)︂𝑘

· (𝑞 + 𝑘)2𝑘 ·
(︁ 𝑒
𝑘

)︁𝑘

=

[︂
4𝑒(𝑞 + 𝑘)2

𝑁𝑘

]︂𝑘

4.2.4 Application 4: Multi-Collision Finding and Multi-Search

Next, we can determine the quantum hardness of the multi-collision prob-
lem, namely finding 𝑘 different inputs that map to the same output of the ran-
dom oracle.

Lemma 11 (Quantum Hardness of Multi-Collision Finding and Salted Multi-
Collision Finding).

For any 𝑞-quantum query algorithm 𝒜, we have the upper bound for solving the
𝑘-multi-collision problem:

Pr
𝐻
[𝒜|𝐻⟩()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥1) = ... = 𝐻(𝑥𝑘)] ≤

1

𝑁𝑘−1

[︂
2𝑒(𝑞 + 𝑘)

𝑘

]︂2𝑘
Any quantum algorithm 𝒜 equipped with 𝑞 quantum queries and 𝑆-bit of classical
advice can win the salted multi-collision finding game with salted space [𝐾] with prob-
ability at most:

Pr
𝐻
[𝒜()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥1) = ... = 𝐻(𝑥𝑘)] ≤

4

𝑁𝑘−1

[︂
2𝑒(𝑞 + 𝑘)

𝑘

]︂2𝑘
+

4𝑆

𝐾
.

Proof. We will show this using our strong quantum lifting theorem for image
relations (Theorem 9). Define 𝑅 := {𝑦, ..., 𝑦}𝑦 the relation over [𝑁 ]𝑘, where
𝐻 : [𝑀 ] → [𝑁 ]. Then for each permutation 𝜋, we have Pr[(𝑦𝜋(1), ..., 𝑦𝜋(𝑘)) ∈
𝑅 | (𝑦1, ..., 𝑦𝑘)← [𝑁 ]𝑘] = 1

𝑁𝑘−1 . As𝑅 is permutation invariant, this implies that:

Pr
𝐻
[𝒜|𝐻⟩()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥1) = ... = 𝐻(𝑥𝑘)] ≤ 22𝑘

(︂
𝑞 + 𝑘

𝑘

)︂2

· 1

𝑁𝑘−1
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Using first the inequality
(︀
𝑞+𝑘
𝑘

)︀
≤ (𝑞+𝑘)𝑘

𝑘! and then the Stirling approximation:

22𝑘
(︂
𝑞 + 𝑘

𝑘

)︂2

· 1

𝑁𝑘−1
≤ 𝑁 ·

(︂
4

𝑁

)︂𝑘

·
[︂
(𝑞 + 𝑘)𝑘

𝑘!

]︂2
≤ 𝑁

(︂
4

𝑁

)︂𝑘

· (𝑞 + 𝑘)2𝑘 ·
(︁ 𝑒
𝑘

)︁2𝑘

=
1

𝑁𝑘−1

[︂
2𝑒(𝑞 + 𝑘)

𝑘

]︂2𝑘
Finally, the security of salted multi-collision against non-uniform quantum ad-
versaries equipped with 𝑆 bits of advice follows by combining this quantum
hardness bound of multi-collision with Lemma 9.

Finally, we consider another search application, namely the task of deter-
mining 𝑘 different inputs that all map to 0 under the random oracle. One of the
main motivations behind this problem is its relation to the notion of proof-of-
work in the blockchain context [GKL15].

Lemma 12 (Quantum Hardness of Multi-Search). For any 𝑞-quantum query al-
gorithm 𝒜 whose task is to find different preimages of 0 of a random oracle 𝐻 , the
success probability of 𝒜 is upper bounded by:

Pr
𝐻
[𝒜|𝐻⟩()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥𝑖) = 0 ∀𝑖 ∈ [𝑘]] ≤

[︂
4𝑒2(𝑞 + 𝑘)2

𝑁𝑘2

]︂𝑘
Note that this bound is asymptotically tight, as an algorithm with 𝑞 queries

can use 𝑞/𝑘 queries to find each pre-image (Grover’s algorithm), resulting in a
probability of 𝛩

(︁{︀
( 𝑞𝑘 )

2/𝑁
}︀𝑘

)︁
.

Proof. We will show this using our strong quantum lifting theorem for im-
age relations (Theorem 9). Define 𝑅 := {0, ..., 0} the relation over [𝑁 ]𝑘, where
𝐻 : [𝑀 ] → [𝑁 ]. Then for each permutation 𝜋, we have Pr[(𝑦𝜋(1), ..., 𝑦𝜋(𝑘)) ∈
𝑅 | (𝑦1, ..., 𝑦𝑘)← [𝑁 ]𝑘] = 1

𝑁𝑘 . As 𝑅 is permutation invariant, this implies that:

Pr
𝐻
[𝒜|𝐻⟩()→ 𝒙 = (𝑥1, ..., 𝑥𝑘) : 𝐻(𝑥𝑖) = 0 ∀𝑖 ∈ [𝑘]] ≤ 22𝑘 ·

(︂
𝑞 + 𝑘

𝑘

)︂2
1

𝑁𝑘

Using first the inequality
(︀
𝑞+𝑘
𝑘

)︀
≤ (𝑞+𝑘)𝑘

𝑘! and then the Stirling approximation:

22𝑘
(︂
𝑞 + 𝑘

𝑘

)︂2

· 1

𝑁𝑘
≤

(︂
4

𝑁

)︂𝑘

·
[︂
(𝑞 + 𝑘)𝑘

𝑘!

]︂2
≤

(︂
4

𝑁

)︂𝑘

· (𝑞 + 𝑘)2𝑘 ·
(︁ 𝑒
𝑘

)︁2𝑘

=

[︂
4𝑒2(𝑞 + 𝑘)2

𝑁𝑘2

]︂𝑘

24



Acknowledgements

J.G. was partially supported by NSF SaTC grants no. 2001082 and 2055694. F.S.
was partially supported by NSF grant no. 1942706 (CAREER). J.G. and F.S. were
also partially support by Sony by means of the Sony Research Award Program.
A.C. acknowledges support from the National Science Foundation grant CCF-
1813814, from the AFOSR under Award Number FA9550-20-1-0108 and the
support of the Quantum Advantage Pathfinder (QAP) project, with grant ref-
erence EP/X026167/1 and the UK Engineering and Physical Sciences Research
Council.

References

ABKK23. Amit Agarwal, James Bartusek, Dakshita Khurana, and Nishant Kumar. A
new framework for quantum oblivious transfer. In Carmit Hazay and Mar-
tijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages 363–
394, Cham, 2023. Springer Nature Switzerland.

AFK22. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation
of multi-round interactive proofs. In Eike Kiltz and Vinod Vaikuntanathan,
editors, Theory of Cryptography, pages 113–142, Cham, 2022. Springer Nature
Switzerland.

AFKR23. Thomas Attema, Serge Fehr, Michael Klooß, and Nicolas Resch. The
fiat–shamir transformation of (𝛾1, . . . , 𝛾𝜇)-special-sound interactive proofs.
Cryptology ePrint Archive, Paper 2023/1945, 2023. https://eprint.iacr.org/
2023/1945.

BBBV97. Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM J. Comput.,
26(5):1510–1523, 1997.

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASI-
ACRYPT 2011 - 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings, volume 7073 of Lecture Notes in Computer Science, pages 41–69.
Springer, 2011.

BKS21. Nir Bitansky, Michael Kellner, and Omri Shmueli. Post-quantum resettably-
sound zero knowledge. In Kobbi Nissim and Brent Waters, editors, Theory of
Cryptography, pages 62–89, Cham, 2021. Springer International Publishing.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
Conference on Computer and Communications Security, pages 62–73, 1993.

CGK+23. Alexandru Cojocaru, Juan Garay, Aggelos Kiayias, Fang Song, and Petros
Wallden. Quantum Multi-Solution Bernoulli Search with Applications to
Bitcoin’s Post-Quantum Security. Quantum, 7:944, March 2023.

CGLQ20. Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight quantum
time-space tradeoffs for function inversion. In 2020 IEEE 61st Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 673–684. IEEE, 2020.

25

https://eprint.iacr.org/2023/1945
https://eprint.iacr.org/2023/1945


Cha19. André Chailloux. Tight quantum security of the fiat-shamir transform for
commit-and-open identification schemes with applications to post-quantum
signature schemes. Cryptology ePrint Archive, Paper 2019/699, 2019. https:
//eprint.iacr.org/2019/699.

DFHS23. Jelle Don, Serge Fehr, Yu-Hsuan Huang, and Patrick Struck. On the
(in)security of the buff transform. Cryptology ePrint Archive, Paper
2023/1634, 2023. https://eprint.iacr.org/2023/1634.

DFM20. Jelle Don, Serge Fehr, and Christian Majenz. The Measure-and-Reprogram
Technique 2.0: Multi-round Fiat-Shamir and More, page 602–631. Springer In-
ternational Publishing, 2020.

DFMS19. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the fiat-shamir transformation in the quantum random-oracle model. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, pages 356–383, Cham, 2019. Springer International Pub-
lishing.

DFMS22. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-
extractability in the quantum random-oracle model. In Orr Dunkelman and
Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022,
pages 677–706, Cham, 2022. Springer International Publishing.

DLW24. Fangqi Dong, Qipeng Liu, and Kewen Wu. Tight characterizations for pre-
processing against cryptographic salting. In Annual International Cryptology
Conference. Springer, 2024.

GHHM21. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Ma-
jenz. Tight adaptive reprogramming in the qrom. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages
637–667, Cham, 2021. Springer International Publishing.

GKL15. Juan A Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. Journal of the ACM, 2015.

GOP+23. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and
Daniel Tschudi. Fiat-shamir bulletproofs are non-malleable (in the random
oracle model). Cryptology ePrint Archive, Paper 2023/147, 2023. https:
//eprint.iacr.org/2023/147.

JMZ23. Haodong Jiang, Zhi Ma, and Zhenfeng Zhang. Post-quantum security of key
encapsulation mechanism against cca attacks with a single decapsulation
query. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASI-
ACRYPT 2023, pages 434–468, Singapore, 2023. Springer Nature Singapore.

Kat21. Shuichi Katsumata. A new simple technique to bootstrap various lattice
zero-knowledge proofs to qrom secure nizks. In Tal Malkin and Chris Peik-
ert, editors, Advances in Cryptology – CRYPTO 2021, pages 580–610, Cham,
2021. Springer International Publishing.

KX24. Haruhisa Kosuge and Keita Xagawa. Probabilistic hash-and-sign with retry
in the quantum random oracle model. In Qiang Tang and Vanessa Teague,
editors, Public-Key Cryptography – PKC 2024, pages 259–288, Cham, 2024.
Springer Nature Switzerland.

LR13. Troy Lee and Jérémie Roland. A strong direct product theorem for quantum
query complexity. computational complexity, 22:429–462, 2013.

LZ19. Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, pages 326–355, Cham, 2019. Springer International Pub-
lishing.

26

https://eprint.iacr.org/2019/699
https://eprint.iacr.org/2019/699
https://eprint.iacr.org/2023/1634
https://eprint.iacr.org/2023/147
https://eprint.iacr.org/2023/147


She11. Alexander A Sherstov. Strong direct product theorems for quantum commu-
nication and query complexity. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 41–50, 2011.

YZ21. Takashi Yamakawa and Mark Zhandry. Classical vs quantum random ora-
cles. In Anne Canteaut and François-Xavier Standaert, editors, Advances in
Cryptology – EUROCRYPT 2021, pages 568–597, Cham, 2021. Springer Inter-
national Publishing.

27


	 Improved Quantum Lifting by Coherent Measure-and-Reprogram 

